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Preface to the Second Edition

The years after the first edition of this book appeared have been very turbulent. We

have seen one of the largest financial crisis in the history of the global financial

system. Banks which existed since more than one century have disappeared or had

to be rescued by the state. Although Basel II has been implemented by many banks

so far and still a lot of effort is spent in improving credit risk management by

building up rating systems and procedures for estimating the loan loss parameters

PD, LGD, and EAD, there is still a feeling that this is insufficient to prevent the

financial system from further crisis.

There are ongoing discussions how the financial system can be stabilized by either

improving the regulatory framework or the internal risk management of banks.

During the time when we worked on this second edition, the regulatory framework

Basel III has been discussed. The basic idea behind Basel III is extending the capital

basis of banks. It is not the aim of Basel III to improve the methods and processes of

banks’ internal credit risk management but simply to improve system stability by

increasing capital buffers. Since we did not view this book as a book on regulation

(although it was motivated by a regulatory framework) but as a book on risk

management, we do not discuss the current regulatory ideas in this edition.

Instead, we focus on one of the causes for the financial crisis, the lending

behaviour of banks in the retail sector. By retail, we mean lending to debtors

where no market information on their credit quality, like asset swap or credit

default swap spreads, is available. This is the case for almost all loans except

for loans to large corporations, states or banks. In the recent financial crisis one

of the origins was that American banks granted mortagage loans to too many

debtors with low income. By assuming that house prices could not fall sharply it

was thought that the value of the loan’s collateral will be sufficient in the case of

a default to ensure that no loss occurs. A large number of bankruptcies among

the banks which had invested in the American housing sector and expensive

rescue programs for banks that were considered as too important to fail are the

result of this wrong assumption.

The consequences of the financial crisis are not yet clear. The question how an

optimal financial system has to look like is difficult to answer. On the one hand the

lending behaviour of banks should not be too restrictive because this will obstruct

the real economy. On the other hand it must be restrictive enough to prevent the
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creation of bubbles. The same considerations are true for the spectrum of financial

products. There should be enough vehicles for banks and corporations to manage

their risks but the complexity and the volume of derivative instruments should not

lead to a less stable financial system.

We do not attempt to give an answer to this complex question. Contrary to some

opinions in the aftermath of the crisis that blamed mathematical models as its main

driver, we still believe that mathematics and statistics are valuable tools to quantify

risks. However, one has to be aware that this cannot be done with arbitrary

precision. The role of a model in our view is more to increase the transparency of

a bank’s business and to identify key risks. We want to illustrate this view by

presenting a pricing framework for retail loans that shows how the Basel II risk

parameters can be used in building a simple and transparent framework for the

pricing and the risk management of loan portfolios. In our view an increase in

transparency in the loan market is a necessary prerequisite of any risk management

or regulatory action.

Compared to the first edition, we have extended the book by three new chapters.

In Chap.6 estimation techniques for transition matrices are presented and their

properties are discussed. A transition matrix is a natural extension of a 1-year

default probability since it measures all transitions of a rating system not only the

transitions to default. It is an important building block of the loan pricing frame-

work that is presented in Chaps.17 and 18. In Chap.17 it is shown how the Basel II

risk parameters can be used to build a risk-adjusted pricing framework for loans that

can be applied to compute a loan’s term based on RAROC (risk-adjusted return on

capital) as performance measure and to calculate general loss provisions for a loan

portfolio in an economically sensible way. Furthermore, this framework allows for

an easy stress testing and answering of questions like: “What happens if the value of

collateral turns out to be 10% lower than assumed?” In Chap.18, the pricing

framework is extended in a consistent way to loans with embedded options using

option pricing theory. Often a loan contains prepayment rights, i.e. a debtor has the

right to pay back parts or all of the notional at certain dates or throughout the loan’s

lifetime without penalty. We demonstrate that the value of such an option is too

large to be neglected and show further how to include embedded options into the

RAROC framework of Chap.17.

Finally, we would like to thank Martina Bihn from Springer-Verlag again for her

support of this second edition and last but not least our families for their support

when we again spent a lot of time working on it.

Questions and comments on this book are welcome. The editors can be

reached under their e-mail addresses bernd.engelmann@quantsolutions.de and

robert.rauhmeier@arcor.de.

Frankfurt am Main, Germany Bernd Engelmann

Munich, Germany Robert Rauhmeier

December 2010
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Preface to the First Edition

In the last decade the banking industry has experienced a significant development in

the understanding of credit risk. Refined methods were proposed concerning the

estimation of key risk parameters like default probabilities. Further, a large volume

of literature on the pricing and measurement of credit risk in a portfolio context has

evolved. This development was partly reflected by supervisors when they agreed on

the new revised capital adequacy framework, Basel II. Under Basel II, the level of

regulatory capital depends on the risk characteristics of each credit while a portfolio

context is still neglected.

The focus of this book is on the estimation and validation of the three key

Basel II risk parameters, probability of default (PD), loss given default (LGD),

and exposure at default (EAD). Since the new regulatory framework will become

operative in January 2007 (at least in Europe), many banks are in the final stages of

implementation. Many questions have arisen during the implementation phase and

are discussed by practitioners, supervisors, and academics. A “best practice”

approach has to be formed and will be refined in the future even beyond 2007.

With this book we aim to contribute to this process. Although the book is inspired

by the new capital framework, we hope that it is valuable in a broader context. The

three risk parameters are central inputs to credit portfolio models or credit pricing

algorithms and their correct estimation is therefore essential for internal bank

controlling and management.

This is not a book about the Basel II framework. There is already a large volume

of literature explaining the new regulation at length. Rather, we attend to the current

state-of-the-art of quantitative and qualitative approaches. The book is a combina-

tion of coordinated stand-alone articles, arranged into 15 chapters so that each

chapter can be read exclusively. The authors are all experts from science, supervi-

sory authorities, and banking practice. The book is divided into three main parts:

Estimation techniques for the parameters PD, LGD and EAD, validation of these

parameters, and stress testing.

The first part begins with an overview of the popular and established methods for

estimating PD. Chapter 2 focuses on methods for PD estimation for small and

medium sized corporations while Chap.3 treats the PD estimation for the retail

segment. Chapters 4 and 5 deal with those segments with only a few or even no

default data, as it is often the case in the large corporate, financial institutions,
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or sovereign segment. Chapter 4 illustrates how PD can be estimated with the

shadow rating approach while Chap.5 uses techniques from probability theory.

Chapter 6 describes how PDs and Recovery Rates could be estimated under

considerations of systematic and idiosyncratic risk factors simultaneously. This is

a perfect changeover to the chaps.7–10 dealing with LGD and EAD estimation

which is quite new in practice compared to ratings and PD estimation. Chapter 7

describes how LGD could be modelled in a point-in-time framework as a function

of risk drivers, supported by an empirical study on bond data. Chapter 8 provides a

general survey of LGD estimation from a practical point of view. Chapters 9 and 10

are concerned with the modelling of EAD. Chapter 9 provides a general overview

of EAD estimation techniques while Chap.10 focuses on the estimation of EAD for

facilities with explicit limits.

The second part of the book consists of four chapters about validation and

statistical back-testing of rating systems. Chapter 11 deals with the perspective

of the supervisory authorities and gives a glance as to what is expected when rating

systems will be used under the BaselII framework. Chapter 12 has a critical

discussion on measuring the discriminatory power of rating systems. Chapter 13

gives an overview of statistical tests for the dimension calibration, i.e. the accuracy

of PD estimations. In Chap.14 these methods are enhanced by techniques of Monte-

Carlo-Simulations which allows e.g. for integration of correlation assumptions as is

also illustrated within a back-testing study on a real-life rating data sample.

The final part consists of Chap.15, which is on stress testing. The purpose of

stress testing is to detect limitations of models for the risk parameters and to analyse

effects of (extreme) worse scenarios in the future on a bank’s portfolio. Concepts

and implementation strategies of stress test are explained and a simulation study

reveals amazing effects of stress scenarios when calculating economic capital with

a portfolio model.

All articles set great value on practical applicability and mostly include empirical

studies or work with examples. Therefore we regard this book as a valuable contri-

bution towards modern risk management in every financial institution, whereas we

steadily keep track on the requirements of Basel II. The book is addressed to risk

managers, rating analyst and in general quantitative analysts who work in the credit

risk area or on regulatory issues. Furthermore, we target internal auditors and super-

visors who have to evaluate the quality of rating systems and risk parameter estima-

tions. We hope that this book will deepen their understanding and will be useful for

their daily work. Last but not least we hope this book will also be of interest to

academics or students in finance or economics who want to get an overview of the

state-of-the-art of a currently important topic in the banking industry.

Finally, we have to thank all the people who made this book possible. Our

sincere acknowledgements go to all the contributors of this book for their work,

their enthusiasm, their reliability, and their cooperation. We know that most of the

writing had to be done in valuable spare time. We are glad that all of them were

willing to make such sacrifices for the sake of this book. Special thank goes to

Walter Gruber for bringing us on the idea to edit this book.
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We are grateful to Martina Bihn from Springer-Verlag who welcomed our idea

for this book and supported our work on it.

We thank Dresdner Bank AG, especially Peter Gassmann and Dirk Thomas, and

Quanteam AG for supporting our book. Moreover we are grateful to all our

colleagues and friends who agreed to work as referees or discussion partners.

Finally we would like to thank our families for their continued support and

understanding.

Frankfurt am Main, Germany Bernd Engelmann

Munich, Germany Robert Rauhmeier

June 2006
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Daniel Rösch and Harald Scheule

8 Modelling Loss Given Default: A “Point in Time”-Approach . . . . . . . . 137

Alfred Hamerle, Michael Knapp, and Nicole Wildenauer

9 Estimating Loss Given Default: Experience

from Banking Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Christian Peter

10 Possibilities of Estimating Exposures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Ronny Hahn and Stefan Reitz

xi



11 EAD Estimates for Facilities with Explicit Limits . . . . . . . . . . . . . . . . . . . 201

Gregorio Moral

12 Validation of Banks’ Internal Rating Systems: A Supervisory

Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Stefan Blochwitz and Stefan Hohl

13 Measures of a Rating’s Discriminative Power: Applications

and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Bernd Engelmann

14 Statistical Approaches to PD Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Stefan Blochwitz, Marcus R.W. Martin, and Carsten S. Wehn

15 PD-Validation: Experience from Banking Practice . . . . . . . . . . . . . . . . . . 311

Robert Rauhmeier

16 Development of Stress Tests for Credit Portfolios . . . . . . . . . . . . . . . . . . . 349

Volker Matthias Gundlach

17 Risk Management of Loans and Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 373

Bernd Engelmann and Walter Gruber

18 Risk Management of Loans with Embedded Options . . . . . . . . . . . . . . . 391

Bernd Engelmann

About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

xii Contents



Contributors

Stefan Blochwitz Deutsche Bundesbank, Stefan.Blochwitz@bundesbank.de

Bernd Engelmann Independent Consultant, bernd.engelmann@quantsolutions.de

Ulrich Erlenmaier KfW Bankengruppe, Ulrich.Erlenmaier@gmail.com

Konstantin Ermakov Independent Consultant, konstantin@ermakov.de

Walter Gruber 1 PLUS i GmbH, walter.gruber@1plusi.de

Volker Matthias Gundlach THM – University of Applied Sciences, Giessen-

Friedberg, matthias.gundlach@mni.th-mittelhessen.de

Ronny Hahn 1 PLUS i GmbH, ronny.hahn@1plusi.de

Alfred Hamerle Universität Regensburg, Alfred.Hamerle@wiwi.uni-regensburg.de

Evelyn Hayden Raiffeisen Bank International, Evelyn.Hayden@univie.ac.at

Stefan Hohl Bank for International Settlements, stefan.hohl@bis.org

Michael Knapp Risk Research Prof. Hamerle GmbH & Co. KG, michael.knapp@

risk-research.de

Marcus R.W. Martin University of Applied Sciences, Darmstadt, marcus.martin@

h-da.de

Gregorio Moral Banco de España, Gregorio.Moral@bde.es

Christian Peter KfW Bankengruppe, Christian.Peter@Web.de

Katja Pluto HSBC Holdings plc, Katja.Pluto@gmx.de

Daniel Porath University of Applied Sciences, Mainz, daniel.roesch@finance.

uni-hannover.de
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Chapter 1

Statistical Methods to Develop Rating Models

Evelyn Hayden and Daniel Porath

1.1 Introduction

The Internal Rating Based Approach (IRBA) of the New Basel Capital Accord

allows banks to use their own rating models for the estimation of probabilities of

default (PD) as long as the systemsmeet specifiedminimum requirements. Statistical

theory offers a variety of methods for building and estimation rating models. This

chapter gives an overview of these methods. The overview is focused on statistical

methods and includes parametric models like linear regression analysis, discriminant

analysis, binary response analysis, time-discrete panel methods, hazard models and

nonparametric models like neural networks and decision trees. We also highlight the

benefits and the drawbacks of the various approaches. We conclude by interpreting

the models in light of the minimum requirements of the IRBA.

1.2 Statistical Methods for Risk Classification

In the following we define statistical models as the class of approach which uses

econometric methods to classify borrowers according to their risk. Statistical rating

systems primarily involve a search for explanatory variables which provide as

sound and reliable a forecast of the deterioration of a borrower’s situation as

possible. In contrast, structural models explain the threats to a borrower based on

an economic model and thus use clear causal connections instead of the mere

correlation of variables.

The opinions expressed in this chapter are those of the author and do not necessarily reflect views

of Raiffeisen Bank International.

E. Hayden

Raiffeisen Bank International

e-mail: Evelyn.Hayden@univie.ac.at

D. Porath (*)

University of Applied Sciences, Mainz

e-mail: daniel.porath@wiwi.fh.mainz.de

B. Engelmann and R. Rauhmeier (eds.), The Basel II Risk Parameters,
DOI 10.1007/978-3-642-16114-8_1, # Springer-Verlag Berlin Heidelberg 2011
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The following sections offer an overview of parametric and nonparametric

models generally considered for statistical risk assessment. Furthermore, we dis-

cuss the advantages and disadvantages of each approach. Many of the methods are

described in more detail in standard econometric textbooks, like Greene (2003).

In general, a statistical model may be described as follows: As a starting point,

every statistical model uses the borrower’s characteristic indicators and (possibly)

macroeconomic variables which were collected historically and are available for

defaulting (or troubled) and non-defaulting borrowers. Let the borrower’s charac-

teristics be defined by a vector of n separate variables (also called covariates)

x ¼ x1,. . ., xn observed at time t � L. The state of default is indicated by a binary

performance variable y observed at time t. The variable y is defined as y ¼ 1 for a

default and y ¼ 0 for a non-default.

The sample of borrowers now includes a number of individuals or firms that

defaulted in the past, while (typically) the majority did not default. Depending on the

statistical application of this data, a variety of methods can be used to predict the

performance. A common feature of the methods is that they estimate the correlation

between the borrowers’ characteristics and the state of default in the past and use this

information to build a forecasting model. The forecasting model is designed to assess

the creditworthiness of borrowers with unknown performance. This can be done by

inputting the characteristics x into themodel. The output of themodel is the estimated

performance. The time lag L between x and y determines the forecast horizon.

1.3 Regression Analysis

As a starting point we consider the classical regression model. The regression

model establishes a linear relationship between the borrowers’ characteristics and

the default variable:

yi ¼ b0 � xi þ ui (1.1)

Again, yi indicates whether borrower i has defaulted (yi ¼ 1) or not (yi ¼ 0). In

period t, xi is a column vector of the borrowers’ characteristics observed in period

t � L and b is a column vector of parameters which capture the impact of a change

in the characteristics on the default variable. Finally, ui is the residual variable

which contains the variation not captured by the characteristics xi.
The standard procedure is to estimate (1.1) with the ordinary least squares (OLS)

estimators of b which in the following are denoted by b. The estimated result is the

borrower’s score Si. This can be calculated by

Si ¼ E yijxið Þ ¼ b0 � xi: (1.2)

Equation (1.2) shows that a borrower’s score represents the expected value of the

performance variable when his or her individual characteristics are known.

2 E. Hayden and D. Porath



The score can be calculated by inputting the values for the borrower’s character-

istics into the linear function given in (1.2).

Note that Si is continuous (while yi is a binary variable), hence the output of the

model will generally be different from 0 or 1. In addition, the prediction can take on

values larger than 1 or smaller than 0. As a consequence, the outcome of the model

cannot be interpreted as a probability level. However, the score Si, can be used for

the purpose of comparison between different borrowers, where higher values of Si
correlate with a higher default risk.

The benefits and drawbacks from model (1.1) and (1.2) are the following:

l OLS estimators are well-known and easily available.
l The forecasting model is a linear model and therefore easy to compute and to

understand.
l The random variable ui is heteroscedastic (i.e. the variance of ui is not constant

for all i) since

Var uið Þ ¼ Var yið Þ ¼ E yijxið Þ � 1� E yijxið Þ½ � ¼ b0 � xi 1� b0 � xið Þ: (1.3)

As a consequence, the estimation of b is inefficient and additionally, the

standard errors of the estimated coefficients b are biased. An efficient way to

estimate b is to apply the Weighted Least Squares (WLS) estimator.
l WLS estimation of b is efficient, but the estimation of the standard errors of b

still remains biased. This happens due to the fact that the residuals are not

normally distributed as they can only take on the values b0xi (if the borrower

does not default and y therefore equals 0) or (1 � b0xi) (if the borrower does

default and y therefore equals 1). This implies that there is no reliable way to

assess the significance of the coefficients b and it remains unknown whether the

estimated values represent precise estimations of significant relationships or

whether they are just caused by spurious correlations. Inputting characteristics

which are not significant into the model can seriously harm the model’s stability

when used to predict borrowers’ risk for new data. A way to cope with this

problem is to split the sample into two parts, where one part (the training sample)

is used to estimate the model and the other part (the hold-out sample) is used to

validate the results. The consistency of the results of both samples is then taken

as an indicator for the stability of the model.
l The absolute value of Si cannot be interpreted.

1.4 Discriminant Analysis

Discriminant analysis is a classification technique applied to corporate bankruptcies

by Altman as early as 1968 (see Altman 1968). Linear discriminant analysis is

based on the estimation of a linear discriminant function with the task of separating

individual groups (in this case of defaulting and non-defaulting borrowers) accord-

ing to specific characteristics. The discriminant function is

1 Statistical Methods to Develop Rating Models 3



Si ¼ b0 � xi: (1.4)

The Score Si is also called the discriminant variable. The estimation of the

discriminant function adheres to the following principle:

Maximization of the spread between the groups (good and bad borrowers) and minimiza-
tion of the spread within individual groups

Maximization only determines the optimal proportions among the coefficients of

the vector b. Usually (but arbitrarily), coefficients are normalized by choosing the

pooled within-group variance to take the value 1. As a consequence, the absolute

level of Si is arbitrary as well and cannot be interpreted on a stand-alone basis. As in
linear regression analysis, Si can only be used to compare the prediction for

different borrowers (“higher score, higher risk”).

Discriminant analysis is similar to the linear regression model given in (1.1) and

(1.2). In fact, the proportions among the coefficients of the regression model are

equal to the optimal proportion according to the discriminant analysis. The diffe-

rence between the two methods is a theoretical one: Whereas in the regression

model the characteristics are deterministic and the default state is the realization of

a random variable, for discriminant analysis the opposite is true. Here the groups

(default or non-default) are deterministic and the characteristics of the discriminant

function are realizations from a random variable. For practical use this difference is

virtually irrelevant.

Therefore, the benefits and drawbacks of discriminant analysis are similar to

those of the regression model:

l Discriminant analysis is a widely known method with estimation algorithms that

are easily available.
l Once the coefficients are estimated, the scores can be calculated in a straight-

forward way with a linear function.
l Since the characteristics xi are assumed to be realizations of random variables,

the statistical tests for the significance of the model and the coefficients rely on

the assumption of multivariate normality. This is, however, unrealistic for the

variables typically used in rating models as for example financial ratios from the

balance-sheet. Hence, the methods for analyzing the stability of the model and

the plausibility of the coefficients are limited to a comparison between training

and hold-out sample.
l The absolute value of the discriminant function cannot be interpreted in levels.

1.5 Logit and Probit Models

Logit and probit models are econometric techniques designed for analyzing binary

dependent variables. There are two alternative theoretical foundations.

The latent-variable approach assumes an unobservable (latent) variable y*which
is related to the borrower’s characteristics in the following way:

4 E. Hayden and D. Porath



y�i ¼ b0 � xi þ ui (1.5)

Here b, xi and ui are defined as above. The variable yi* is metrically scaled and

triggers the value of the binary default variable yi:

yi ¼ 1 if y�i>0

0 otherwise

�
(1.6)

This means that the default event sets in when the latent variable exceeds the

threshold zero. Therefore, the probability for the occurrence of the default event

equals:

P yi ¼ 1ð Þ ¼ P ui>� b0 � xið Þ ¼ 1� F �b0 � xið Þ ¼ F b0 � xið Þ: (1.7)

Here F(.) denotes the (unknown) distribution function. The last step in (1.7)

assumes that the distribution function has a symmetric density around zero. The

choice of the distribution function F(.) depends on the distributional assumptions

about the residuals (ui). If a normal distribution is assumed, we are faced with the

probit model:

F(b0 � xiÞ ¼ 1ffiffiffiffiffiffiffi
2 p

p
ðb0�xi

�1
e
�t2

2 dt (1.8)

If instead the residuals are assumed to follow a logistic distribution, the result is

the logit model:

F(b0 � xiÞ ¼ eb
0�xi

1þ eb
0 �xi (1.9)

The second way to motivate logit and probit models starts from the aim of

estimating default probabilities. For single borrowers, default probabilities cannot

be observed as realizations of default probabilities. However, for groups of bor-

rowers the observed default frequencies can be interpreted as default probabilities.

As a starting point consider the OLS estimation of the following regression:

pi ¼ b0 � xi þ ui (1.10)

In (1.10) the index i denotes the group formed by a number of individuals, pi is
the default frequency observed in group i and xi are the characteristics observed for
group i. The model, however, is inadequate. To see this consider that the outcome

(which is E(yi|xi) ¼ b0xi) is not bounded to values between zero and one and

therefore cannot be interpreted as a probability. As it is generally implausible to

assume that a probability can be calculated by a linear function, in a second step the

linear expression b0xi is transformed by a nonlinear function (link function) F:

pi ¼ F b0 � xið Þ: (1.11)

1 Statistical Methods to Develop Rating Models 5



An appropriate link function transforms the values of b0xi to a scale within the

interval [0,1]. This can be achieved by any distribution function. The choice of the link

function determines the type of model: with a logistic link function (1.11) becomes a

logit model, while with the normal distribution (1.11) results in the probit model.

However, when estimating (1.10) with OLS, the coefficients will be heteroscedas-

tic, because Var(ui) ¼ Var(pi) ¼ p(xi)�(1�p(xi)). A possible way to achieve homo-

scedasticity would be to compute the WLS estimators of b in (1.10). However, albeit
possible, this is not common practice. The reason is that in order to observe default

frequencies, the data has to be grouped before estimation. Grouping involves consid-

erable practical problems like defining the size and number of the groups and the

treatment of different covariates within the single groups. A better way to estimate

logit and probitmodels, which does not require grouping, is theMaximum-Likelihood

(ML) method. For a binary dependent variable the likelihood function looks like:

L bð Þ ¼
Y
i

P b0 � xið Þyi�1� P b0 � xið Þ�1�yi : (1.12)

For the probit model P(.) is the normal density function and for the logit model

P(.) is the logistic density function. With (1.12) the estimation of the model is

theoretically convincing and also easy to handle. Furthermore, the ML-approach

lends itself for a broad set of tests to evaluate the model and its single variables (see

Hosmer and Lemeshow (2000) for a comprehensive introduction).

Usually, the choice of the link function is not theoretically driven. Users familiar

with the normal distribution will opt for the probit model. Indeed, the differences in

the results of both classes of models are often negligible. This is due to the fact that

both distribution functions have a similar form except for the tails, which are

heavier for the logit model. The logit model is easier to handle, though. First of

all, the computation of the estimators is easier. However, today computational

complexity is often irrelevant as most users apply statistical software where the

estimation algorithms are integrated. What is more important is the fact that the

coefficients of the logit model can be more easily interpreted. To see this we

transform the logit model given in (1.9) in the following way:

Pi

1� Pi
¼ eb

0�xi (1.13)

The left-hand side of (1.13) is the odds, i.e. the relation between the default

probability and the probability of survival. Now it can be easily seen that a variation

of a single variable xk of one unit has an impact of ebk on the odds, when bk denotes
the coefficient of the variable xk. Hence, the transformed coefficients eb are called

odds-ratios. They represent the multiplicative impact of a borrower’s characteristic

on the odds. Therefore, for the logit model, the coefficients can be interpreted in a

plausible way, which is not possible for the probit model. Indeed, the most important

weakness of binary models is the fact that the interpretation of the coefficients is not

straightforward.
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The strengths of logit and probit models can be summarized as:

l The methods are theoretically sound.
l The results generated can be interpreted directly as default probabilities.
l The significance of the model and the individual coefficients can be tested.

Therefore, the stability of the model can be assessed more effectively than in

the previous cases.

1.6 Panel Models

The methods discussed so far are all cross-sectional methods because all covariates

are related to the same period. However, typically banks dispose of a set of

covariates for more than one period for each borrower. In this case it is possible

to expand the cross-sectional input data to a panel dataset. The main motivation is to

enlarge the number of available observations for the estimation and therefore

enhance the stability and the precision of the rating model. Additionally, panel

models can integrate macroeconomic variables into the model. Macroeconomic

variables can improve the model for several reasons. First, many macroeconomic

data sources are more up-to-date than the borrowers’ characteristics. For example,

financial ratios calculated from balance sheet information are usually updated only

once a year and are often up to 2 years old when used for risk assessment. The oil

price, instead, is available on a daily frequency. Secondly, by stressing the macro-

economic input factors, the model can be used for a form of stress-testing credit

risk. However, as macroeconomic variables primarily affect the absolute value of

the default probability, it is only reasonable to incorporate macroeconomic input

factors into those classes of models that estimate default probabilities.

In principle, the structure of, for example, a panel logit or probit model remains

the same as given in the equations of the previous section. The only difference is

that now the covariates are taken from a panel of data and have to be indexed by an

additional time series indicator, i.e. we observe xit instead of xi. At first glance panel
models seem similar to cross-sectional models. In fact, many developers ignore the

dynamic pattern of the covariates and simply fit logit or probit models. However,

logit and probit models rely on the assumption of independent observations.

Generally, cross-sectional data meets this requirement, but panel data does not.

The reason is that observations from the same period and observations from the

same borrower should be correlated. Introducing this correlation in the estimation

procedure is cumbersome. For example, the fixed-effects estimator known from

panel analysis for continuous dependent variables is not available for the probit

model. Besides, the modified fixed-effects estimator for logit models proposed by

Chamberlain (1980) excludes all non-defaulting borrowers from the analysis and

therefore seems inappropriate. Finally, the random-effects estimators proposed in the

literature are computationally extensive and can only be computed with specialized

software. For an econometric discussion of binary panel analysis, refer to Hosmer

and Lemeshow (2000).
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1.7 Hazard Models

All methods discussed so far try to assess the riskiness of borrowers by estimating a

certain type of score that indicates whether or not a borrower is likely to default

within the specified forecast horizon. However, no prediction about the exact

default point in time is made. Besides, these approaches do not allow the evaluation

of the borrowers’ risk for future time periods given they should not default within

the reference time horizon.

These disadvantages can be remedied by means of hazard models, which

explicitly take the survival function and thus the time at which a borrower’s default

occurs into account. Within this class of models, the Cox proportional hazard model

(cf. Cox 1972) is the most general regression model, as it is not based on any

assumptions concerning the nature or shape of the underlying survival distribution.

The model assumes that the underlying hazard rate (rather than survival time) is a

function of the independent variables; no assumptions are made about the nature or

shape of the hazard function. Thus, the Cox’s regression model is a semiparametric

model. The model can be written as:

hi tjxið Þ ¼ h0ðtÞ � eb0 �xi ; (1.14)

where hi(t|xi) denotes the resultant hazard, given the covariates for the respective

borrower and the respective survival time t. The term h0(t) is called the baseline

hazard; it is the hazard when all independent variable values are equal to zero. If the

covariates are measured as deviations from their respective means, h0(t) can be

interpreted as the hazard rate of the average borrower.

While no assumptions are made about the underlying hazard function, the model

equation shown above implies important assumptions. First, it specifies a multipli-

cative relationship between the hazard function and the log-linear function of the

explanatory variables, which implies that the ratio of the hazards of two borrowers

does not depend on time, i.e. the relative riskiness of the borrowers is constant,

hence the name Cox proportional hazard model.

Besides, the model assumes that the default point in time is a continuous random

variable. However, often the borrowers’ financial conditions are not observed

continuously but rather at discrete points in time. What’s more, the covariates are

treated as if they were constant over time, while typical explanatory variables like

financial ratios change with time.

Although there are some advanced models to incorporate the above mentioned

features, the estimation of these models becomes complex. The strengths and

weaknesses of hazard models can be summarized as follows:

l Hazard models allow for the estimation of a survival function for all borrowers

from the time structure of historical defaults, which implies that default prob-

abilities can be calculated for different time horizons.
l Estimating these models under realistic assumptions is not straightforward.
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1.8 Neural Networks

In recent years, neural networks have been discussed extensively as an alternative

to the (parametric) models discussed above. They offer a more flexible design to

represent the connections between independent and dependent variables. Neural

networks belong to the class of non-parametrical methods. Unlike the methods

discussed so far they do not estimate parameters of a well-specified model. Instead,

they are inspired by the way biological nervous systems, such as the brain, process

information. They typically consist of many nodes that send a certain output if they

receive a specific input from the other nodes to which they are connected. Like

parametric models, neural networks are trained by a training sample to classify

borrowers correctly. The final network is found by adjusting the connections

between the input, output and any potential intermediary nodes.

The strengths and weaknesses of neural networks can be summarized as:

l Neural networks easily model highly complex, nonlinear relationships between

the input and the output variables.
l They are free from any distributional assumptions.
l These models can be quickly adapted to new information (depending on the

training algorithm).
l There is no formal procedure to determine the optimum network topology for a

specific problem, i.e. the number of the layers of nodes connecting the input with

the output variables.
l Neural networks are black boxes, hence they are difficult to interpret.
l Calculating default probabilities is possible only to a limited extent and with

considerable extra effort.

In summary, neural networks are particularly suitable when there are no expec-

tations (based on experience or theoretical arguments) on the relationship between

the input factors and the default event and the economic interpretation of the

resulting models is of inferior importance.

1.9 Decision Trees

A further category of non-parametric methods comprises decision trees, also called

classification trees. Trees are models which consist of a set of if-then split condi-

tions for classifying cases into two (or more) different groups. Under these meth-

ods, the base sample is subdivided into groups according to the covariates. In the

case of binary classification trees, for example, each tree node is assigned by

(usually univariate) decision rules, which describe the sample accordingly and

subdivide it into two subgroups each. New observations are processed down the

tree in accordance with the decision rules’ values until the end node is reached,

which then represents the classification of this observation. An example is given in

Fig. 1.1.
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One of the most striking differences of the parametric models is that all covari-

ates are grouped and treated as categorical variables. Furthermore, whether a

specific variable or category becomes relevant depends on the categories of the

variables in the upper level. For example, in Fig. 1.1 the variable “years in business”

is only relevant for companies which operate in the construction sector. This kind of

dependence between variables is called interaction.

The most important algorithms for building decision trees are the Classification

and Regression Trees algorithms (C&RT) popularized by Breiman et al. (1984) and

the CHAID algorithm (Chi-square Automatic Interaction Detector, see Kass 1978).

Both algorithms use different criteria to identify the best splits in the data and to

collapse the categories which are not significantly different in outcome.

The general strengths and weaknesses of trees are:

l Through categorization, nonlinear relationships between the variables and the

score can be easily modelled.
l Interactions present in the data can be identified. Parametric methods can model

interactions only to a limited extent (by introducing dummy variables).
l As with neural networks, decision trees are free from distributional assumptions.
l The output is easy to understand.
l Probabilities of default have to be calculated in a separate step.
l The output is (a few) risk categories and not a continuous score variable.

Consequently, decision trees only calculate default probabilities for the final

node in a tree, but not for individual borrowers.
l Compared to other models, trees contain fewer variables and categories. The

reason is that in each node the sample is successively partitioned and therefore

continuously diminishes.
l The stability of the model cannot be assessed with statistical procedures. The

strategy is to work with a training sample and a hold-out sample.

Sector

OtherConstruction

Years in business

Less than 2 

EBIT

Risk class 2 Risk class 3

Equity ratio
Less than 15% More than 15%

….

….

Fig. 1.1 Decision tree
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In summary, trees are particularly suited when the data is characterized by a

limited number of predictive variables which are known to be interactive.

1.10 Statistical Models and Basel II

Finally, we ask the question whether the models discussed in this chapter are in line

with the IRB Approach of Basel II. Prior to the discussion, it should be mentioned

that in the Basel documents, rating systems are defined in a broader sense than in

this chapter. Following } 394 of the Revised Framework from June 2004 (cf. BIS

2004) a rating system “comprises all the methods, processes, controls, and data

collection and IT systems that support the assessment of credit risk, the assignment

of internal ratings, and the quantification of default and loss estimates”. Compared

to this definition, these methods provide one component, namely the assignment of

internal ratings.

The minimum requirements for internal rating systems are treated in Part II,

Section III, H of the Revised Framework. A few passages of the text concern the

assignment of internal ratings, and the requirements are general. They mainly

concern the rating structure and the input data, examples being:

l A minimum of seven rating classes of non-defaulted borrowers (} 404)
l No undue or excessive concentrations in single rating classes (}} 403, 406)
l A meaningful differentiation of risk between the classes (} 410)
l Plausible, intuitive and current input data (}} 410, 411)
l All relevant information must be taken into account (} 411)

The requirements do not reveal any preference for a certain method. It is indeed

one of the central ideas of the IRBA that the banks are free in the choice of the

method. Therefore the models discussed here are all possible candidates for the IRB

Approach.

The strengths and weaknesses of the single methods concern some of the

minimum requirements. For example, hazard rate or logit panel models are espe-

cially suited for stress testing (as required by }} 434, 345) since they contain a time-

series dimension. Methods which allow for the statistical testing of the individual

input factors (e.g. the logit model) provide a straightforward way to demonstrate the

plausibility of the input factors (as required by } 410). When the outcome of the

model is a continuous variable, the rating classes can be defined in a more flexible

way (}} 403, 404, 406).
On the other hand, none of the drawbacks of the models considered here excludes

a specific method. For example, a bank may have a preference for linear regression

analysis. In this case the plausibility of the input factors cannot be verified by

statistical tests and as a consequence the bank will have to search for alternative

ways to meet the requirements of } 410.
In summary, the minimum requirements are not intended as a guideline for the

choice of a specific model. Banks should rather base their choice on their internal
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aims and restrictions. If necessary, those components that are only needed for the

purpose to satisfy the criteria of the IRBA should be added in a second step. All

models discussed in this chapter allow for this.
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Chapter 2

Estimation of a Rating Model for Corporate

Exposures

Evelyn Hayden

2.1 Introduction

This chapter focuses on the particular difficulties encountered when developing

internal rating models for corporate exposures. The main characteristic of these

internal rating models is that they mainly rely on financial ratios. Hence, the aim is

to demonstrate how financial ratios can be used for statistical risk assessment. The

chapter is organised as follows: Sect. 2.2 describes some of the issues concerning

model selection, while Sect. 2.3 presents data from Austrian companies that will

illustrate the theoretical concepts. Section 2.4 discusses data processing, which

includes the calculation of financial ratios, their transformation to establish linearity,

the identification of outliers and the handling of missing values. Section 2.5 describes

the actual estimation of the rating model, i.e. univariate and multivariate analyses,

multicollinearity issues and performance measurement. Finally, Sect. 2.6 concludes.

2.2 Model Selection

Chapter 1 presents several statistical methods for building and estimating rating

models. The most popular of these model types – in the academic literature as well

as in practice – is the logit model, mainly for two reasons. Firstly, the output from

the logit model can be directly interpreted as default probability, and secondly, the

model allows an easy check as to whether the empirical dependence between the

potential explanatory variables and default risk is economically meaningful

(see Sect. 2.4). Hence, a logit model is chosen to demonstrate the estimation of

internal rating models for corporate exposures.
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Next, the default event must be defined. Historically, rating models were

developed using mostly the default criterion bankruptcy, as this information was

relatively easily observable. However, banks also incur losses before the event of

bankruptcy, for example, when they allow debtors to defer payments without

compensation in hopes that later on, the troubled borrowers will be able to repay

their debt. Therefore, the Basel Committee on Banking Supervision (2001) defined

a reference definition of default that includes all those situations where a bank

looses money and declared that banks would have to use this regulatory reference

definition of default for estimating internal rating-based models. However, as

demonstrated in Hayden (2003), rating models developed by exclusively relying

on bankruptcy as the default criterion can be equally powerful in predicting the

comprising credit loss events provided in the new Basel capital accord as models

estimated on these default criteria. In any case, when developing rating models one

has to guarantee that the default event used to estimate the model is comparable to

the event the model shall be capable to predict.

Finally, a forecast horizon must be chosen. As illustrated by the Basel Commit-

tee on Banking Supervision (1999), even before Basel II for most banks it was

common habit to use a modelling horizon of one year, as this time horizon is on the

one hand long enough to allow banks to take some action to avert predicted

defaults, and on the other hand the time lag is short enough to guarantee the

timeliness of the data input into the rating model.

2.3 The Data Set

The theoretical concepts discussed in this chapter will be illustrated by application

to a data set of Austrian companies, which represents a small sample of the credit

portfolio of an Austrian bank. The original data, which was supplied by a major

commercial Austrian bank for the research project described in Hayden (2002),

consisted of about 5,000 firm-year observations of balance sheets and gain and loss

accounts from 1,500 individual companies spanning 1994 to 1999. However, due to

obvious mistakes in the data, such as assets being different from liabilities or

negative sales, the data set had to be reduced to about 4,500 observations. Besides,

certain firm types were excluded, i.e. all public firms including large international

corporations that do not represent the typical Austrian company and rather small

single owner firms with a turnover of less than 5 mATS (about 0.36 m EUR), whose

credit quality often depends as much on the finances of a key individual as on the

firm itself. After eliminating financial statements covering a period of less than

twelve months and checking for observations that were included twice or more in

the data set, almost 3,900 firm-years were left. Finally, observations were dropped

where the default information (bankruptcy) was missing or dubious.

Table 2.1 shows the total number of observed companies per year and splits the

sample into defaulting and non-defaulting firms. However, the data for 1994 is not

depicted, as we are going to calculate dynamic financial ratios (which compare
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current to past levels of certain balance sheet items) later on, and these ratios cannot

be calculated for 1994 as the first period in the sample.

2.4 Data Processing

Section 2.4 discusses the major preparatory operations necessary before the model

estimation can be conducted. They include the cleaning of the data, the calculation

of financial ratios, and their transformation to establish linearity.

2.4.1 Data Cleaning

Some of the important issues with respect to data cleaning were mentioned in

Sect. 2.3 when the Austrian data set was presented. As described, it was guaranteed

that:

l The sample data was free of (obvious) mistakes
l The data set comprised only homogeneous observations, where the relationship

between the financial ratios and the default event could be expected to be

comparable
l The default information was available (and reliable) for all borrowers

In addition, missing information with respect to the financial input data must be

properly managed. Typically, at least for some borrowers, part of the financial

information is missing. If the number of the observations concerned is rather low,

the easiest way to handle the problem is to eliminate the respective observations

completely from the data set (as implemented for the Austrian data). If, however,

this would result in too many observations being lost, it is preferable to exclude all

variables with high numbers of missing values from the analysis. Once the model

has been developed and is in use, the missing information needed to calculate the

model output can be handled by substituting the missing financial ratios with the

corresponding mean or median values over all observations for the respective time

period (i.e. practically “neutral” values) in order to create as undistorted an assess-

ment as possible using the remaining input factors.

Table 2.1 Number of

observations and defaults

per year

Year Non-defaulting firms Defaulting firms Total

1995 1,185 54 1,239

1996 616 68 684

1997 261 46 307

1998 27 2 29

1999 23 1 24

Total 2,112 171 2,283
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2.4.2 Calculation of Financial Ratios

Once the quality of the basic financial data is guaranteed, potential explanatory

variables have to be selected. Typically, ratios are formed to standardise the

available information. For example, the ratio “Earnings per Total Assets” enables

a comparison of the profitability of firms of different size. In addition to considering

ratios that reflect different financial aspects of the borrowers, dynamic ratios that

compare current to past levels of certain balance sheet items can be very useful for

predicting default events. Overall, the selected input ratios should represent the

most important credit risk factors, i.e. leverage, liquidity, productivity, turnover,

activity, profitability, firm size, growth rates and leverage development.

After the calculation of the financial input ratios, it is necessary to identify and

eliminate potential outliers, because they can and do severely distort the estimated

model parameters. Outliers in the ratios might exist even if the underlying financial

data is absolutely clean, for example, when the denominator of a ratio is allowed to

take on values close to zero. To avoid the need to eliminate the affected observa-

tions a typical procedure is to replace the extreme data points by the 1% respec-

tively the 99% percentile of the according ratio.

Table 2.2 portrays the explanatory variables selected for use for the Austrian

data and presents some descriptive statistics. The indicators chosen comprise a

small set of typical business ratios. A broader overview over potential input ratios

as well as a detailed discussion can be found in Hayden (2002).

The last column in Table 2.2 depicts the expected dependence between the

accounting ratio and the default probability, where + symbolises that an increase

in the ratio leads to an increase in the default probability and – symbolises a

decrease in the default probability given an increase in the explanatory variable.

Table 2.2 Selected input ratios

Financial ratio Risk factor Mean Stand. Dev. Min. Max. Hypo.

1 Total Liabilities/Total Assets Leverage 0.89 0.18 0.02 1.00 +

2 Equity/Total Assets Leverage �0.04 0.34 �0.92 0.98 �
3 Bank Debt/T. Assets Leverage 0.39 0.26 0.00 0.97 +

4 Short Term Debt/Total Assets Liquidity 0.73 0.25 0.02 1.00 +

5 Current Assets/Current

Liabilities

Liquidity 0.08 0.15 0.00 0.72 �

6 Accounts Receivable/Net Sales Activity 0.13 0.12 0.00 0.41 +

7 Accounts Payable/Net Sales Activity 0.12 0.12 0.00 0.44 +

8 (Net Sales – Material Costs)/

Person. Costs

Productivity 2.56 1.85 1.03 8.55 �

9 Net Sales/Total Assets Turnover 1.71 1.08 0.01 4.43 �
10 EBIT/Total Assets Profitability 0.06 0.13 �0.18 0.39 �
11 Ordinary Business Income/

Total Assets

Profitability 0.02 0.13 �0.19 0.33 �

12 Total Assets (in 1 Mio. EUR) Size 35.30 72.98 0.22 453.80 �
13 Net Sales/Net Sales last year Growth 1.06 0.34 0.02 2.03 �/+

14 Total Liabilities/Liabilities

last year

Leverage

Growth

1.00 1.03 0.07 1.23 +
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Whenever a certain ratio is selected as a potential input variable for a rating model,

it should be assured that a clear hypothesis can be formulated about this dependence

to guarantee that the resulting model is economically plausible. Note, however, that

the hypothesis chosen can also be rather complex; for example, for the indicator

sales growth, the hypothesis formulated is “�/þ”. This takes into account that the

relationship between the rate at which companies grow and the rate at which they

default is not as simple as that between other ratios and default. While it is generally

better for a firm to grow than to shrink, companies that grow very quickly often find

themselves unable to meet the management challenges presented by such growth –

especially within smaller firms. Furthermore, this quick growth is unlikely to be

financed out of profits, resulting in a possible build up of debt and the associated

risks. Therefore, one should expect that the relationship between sales growth and

default is non-monotone, what will be examined in detail in the next section.

2.4.3 Test of Linearity Assumption

After having selected the candidate input ratios, the next step is to check whether

the underlying assumptions of the logit model apply to the data. As explained in

Chap. 1, the logit model can be written as

Pi ¼ P(yi ¼ 1Þ ¼ F(b0 � xiÞ ¼ eb
0�xi

1þ eb
0 �xi ; (2.1)

which implies a linear relationship between the log odd and the input variables:

Log odd ¼ ln
Pi

1� Pi

� �
¼ b0 � xi (2.2)

This linearity assumption can be easily tested by dividing the indicators into

groups that all contain the same number of observations, calculating the historical

default rate respectively the empirical log odd within each group, and estimating a

linear regression of the log odds on the mean values of the ratio intervals.

When applied to the Austrian data (by forming 50 groups), this procedure

permits the conclusion that for most accounting ratios, the linearity assumption is

indeed valid. As an example the relationship between the variable “EBIT/Total

Assets” and the empirical log odd as well as the estimated linear regression is

depicted in Fig. 2.1. The regression fit is as high as 78.02%.

However, one explanatory variable, namely sales growth, shows a non-linear

and even non-monotone behaviour, just as was expected. Hence, as portrayed in

Fig. 2.2, due to the linearity assumption inherent in the logit model, the relationship

between the original ratio sales growth and the default event cannot be correctly

captured by such a model.
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Therefore, to enable the inclusion of the indicator sales growth into the rating

model, the ratio has to be linearized before logit regressions can be estimated. This

can be done in the following way: the points obtained from dividing the variable

sales growth into groups and plotting them against the respective empirical log odds

are smoothed by a filter, for example the one proposed in Hodrick and Prescott

(1997), to reduce noise. Then the original values of sales growth are transformed to

log odds according to this smoothed relationship, and in any further analysis the

transformed log odd values replace the original ratio as input variable.

This test for the appropriateness of the linearity assumption also allows for a first

check as to whether the univariate dependence between the considered explanatory

variables and the default probability is as expected. For the Austrian data the

univariate relationships between the investigated indicators and the default event

coincide with the hypotheses postulated in Table 2.2, i.e. all ratios behave in an

economically meaningful way.

2.5 Model Building

2.5.1 Pre-selection of Input Ratios

After verifying that the underlying assumptions of a logistic regression are valid, the

model building process can be started. However, although typically a huge number of

potential input ratios are available when developing a rating model, from a statistical

point of view it is not advisable to enter all these variables into the logit regression. If,

for example, some highly correlated indicators are included in the model, the

estimated coefficients will be significantly and systematically biased. Hence, it is

preferable to pre-select the most promising explanatory variables by means of the

univariate power of and the correlation between the individual input ratios.

To do so, given the data set at hand is large enough to allow for it, the available

data should be divided into one development and one validation sample by ran-

domly splitting the whole data into two sub-samples. The first one, which typically

contains the bulk of all observations, is used to estimate rating models, while the

remaining data is left for an out-of-sample evaluation. When splitting the data, it

should be ensured that all observations of one firm belong exclusively to one of the

two sub-samples and that the ratio of defaulting to non-defaulting firms is similar in

both data sets. For the Austrian data, about 70% of all observations are chosen for

the training sample as depicted in Table 2.3.

The concrete pre-selection process now looks as follows: At first, univariate logit

models are estimated in-sample for all potential input ratios, whose power to

identify defaults in the development sample is evaluated via the criterion of the

accuracy ratio (AR), a concept discussed in detail in Chap. 13. Afterwards, the

pairwise correlation between all explanatory variables is computed to identify sub-

groups of highly correlated indicators, where by rule of thumb ratios with absolute
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correlation values of above 50% are pooled into one group. Finally, from each

correlation sub-group (that usually contains only ratios from one specific credit risk

category) that explanatory variable is selected for the multivariate model building

process that has got the highest and hence best accuracy ratio in the univariate

analysis.

Table 2.4 displays the accuracy ratios of and the correlation between the

financial ratios calculated for the Austrian data set. As can be seen, explanatory

variable 1 is highly correlated with indicator 2 (both measuring leverage) and ratio

10 with variable 11 (both reflecting profitability). Besides, the input ratios 2 and 11

have got better (higher) accuracy ratios than the indicators 1 respectively 10, hence,

the latter ones are dropped from the list of explanatory variables for the multivariate

analysis.

2.5.2 Derivation of the Final Default Prediction Model

Those ratios pre-selected in the previous step are now used to derive the final

multivariate logit model. Usually, however, the number of potential explanatory

variables is still too high to specify a logit model that contains all of them, because

the optimal model should contain only a few, highly significant input ratios to avoid

overfitting. Thus, even in our small example with only 12 indicators being left, we

would have to construct and compare 212 ¼ 4,096 models in order to determine the

“best” econometric model and to entirely resolve model uncertainty. This is, of

course, a tough task, which becomes infeasible for typical short lists of about 30 to 60

pre-selected input ratios. Therefore, the standard procedure is to use forward/

backward selection to identify the final model (see Hosmer and Lemeshow 2000).

For the Austrian data set backward elimination, one possible method of these

statistical stepwise variable selection procedures that is implemented in most

statistical software packages, was applied to derive the final logit model. This

method starts by estimating the full model (with all potential input ratios) and

continues by eliminating the worst covariates one by one until the significance level

of all remaining explanatory variables is below the chosen critical level, usually set

at 90% or 95%.

Table 2.5 describes two logit models derived by backward elimination for the

Austrian data. It depicts the constants of the logit models and the estimated coefficients

Table 2.3 Division

of the data into in-

and out-of-sample

subsets

Year Training sample Validation sample

Non-defaulting Defaulting Non-defaulting Defaulting

1995 828 43 357 11

1996 429 44 187 24

1997 187 25 74 21

1998 20 2 7 0

1999 17 1 6 0
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for all those financial ratios that enter into the respective model. The stars represent

the significance level of the estimated coefficients and indicate that the true

parameters are different from zero with a probability of 90% (*), 95% (**) or

99% (***).

Model 1 arises if all 12 pre-selected variables are entered into the backward

elimination process. Detailed analysis of this model shows that most signs of the

estimated coefficients correspond to the postulated hypotheses, however, the model

specifies a positive relationship between the ratio number 9 “Net Sales/Total

Assets”, while most empirical studies find that larger firms default less frequently.

What’s more, even for our data sample a negative coefficient was estimated in

the univariate analysis. For this reason, a closer inspection of input ratio 9 seems

appropriate.

Although the variable “Net Sales/Total Assets” does not exhibit a pairwise

correlation of more than 50%, it shows absolute correlation levels of about 30%

with several other covariates. This indicates that this particular ratio is too highly

correlated (on a multivariate basis) with the other explanatory variables and has to

be removed from the list of variables entering the backward elimination process.

Model 2 in Table 2.5 depicts the resulting logit model. Here all coefficients are

of comparable magnitude to those of model 1, except that the ratio “Accounts

Receivable/Net Sales” becomes highly insignificant and is therefore excluded from

the model. As a consequence, all estimated coefficients are now economically

plausible, and we accept model 2 as our (preliminary) final model version.

2.5.3 Model Validation

Finally, the derived logit model has to be validated. In a first step, some statistical

tests should be conducted in order to verify the model’s robustness and goodness of

fit in-sample, and in a second step the estimated model should be applied to the

validation sample to produce out-of-sample forecasts, whose quality can be eva-

luated with the concept of the accuracy ratio and other methods depicted in

Chap. 13.

Table 2.5 Estimates of multivariate logit models

Financial ratio Risk factor Model 1 Model 2

(final M.)

Hypo.

2 Equity/Total Assets Leverage �0.98** �0.85** �
3 Bank Debt/Total Assets Leverage 1.55*** 1.21*** +

4 Short Term Debt/Total Assets Liquidity 1.30** 1.56*** +

6 Accounts Receivable/Net Sales Activity 1.71* +

7 Accounts Payable/Net Sales Activity 2.31** 1.53* +

8 (Net Sales – Material Costs)/Personnel

Costs

Productivity �0.23*** �0.23*** �

9 Net Sales/Total Assets Turnover 0.26** �
Constant �1.18 �0.95
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The goodness-of-fit of a logit model can be assessed in two ways: first, on the

basis of some test statistics that use various approaches to measure the distance

between the estimated probabilities and the actual defaults, and second, by analys-

ing individual observations which can each have a certain strong impact on the

estimated coefficients (for details see Hosmer and Lemeshow 2000).

One very popular goodness-of-fit test statistic is the Hosmer-Lemeshow test

statistic that measures how well a logit model represents the actual probability of

default for groups of firms of differently perceived riskiness. Here, the observations

are grouped based on percentiles of the estimated default probabilities. For the

Austrian data 10% intervals were used i.e. ten groups were formed. Now for every

group the average estimated default probability is calculated and used to derive the

expected number of defaults per group. Next, this number is compared with the

amount of realised defaults in the respective group. The Hosmer-Lemeshow test

statistic then summarises this information for all groups. In our case of ten groups

the test statistic for the estimation sample is chi-square distributed with 8 degrees of

freedom, and the corresponding p-value for the rating model can then be calculated

as 79.91%, which indicates that the model fits quite well.

However, the Hosmer-Lemeshow goodness-of-fit test can also be regarded from

another point of view for the application at hand. Until now we only dealt with the

development of a model that assigns each corporation a certain default probability

or credit score, which leads towards a ranking between the contemplated firms.

However, in practice banks usually want to use this ranking to map the companies

to an internal rating scheme that typically is divided into about ten to twenty rating

grades. The easiest way to do so would be to use the percentiles of the predicted

default probabilities to build groups. If for example ten rating classes shall be

formed, then from all observations the 10% with the smallest default probabilities

would be assigned the best rating grade, the next 10% the second and so on till the

last 10% with the highest estimated default probabilities would enter into the worst

rating class. The Hosmer-Lemeshow test now tells us that, given one would apply

the concept described above to form rating categories, overall the average expected

default probability per rating grade would fit with the observed default experience

per rating class.

What’s more, as depicted in Table 2.6, the in-sample accuracy ratio is about

44%, which is a reasonable number. Usually the rating models for corporate

exposures presented in the literature have an accuracy ratio between 40% and

70%. As discussed in Chap. 13 in detail, AR can only be compared reliably for

models that are applied to the same data set, because differences in the data set such

as varying relative amounts of defaulters or non-equal data reliability drives this

measure heavily, hence, an AR of about 44% seems satisfactory.

Table 2.6 Validation results of the final logit model

Final model

(model 2)

Accuracy

ratio

sÂR 95% conf. interval Hosmer-Lemeshow

test statistic p-value

In-sample 0.4418 0.0444 [0.3574, 0.5288] 79.91%

Out-of-sample 0.4089 0.0688 [0.2741, 0.5438] 68.59%
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Finally, the out-of-sample accuracy ratio amounts to about 41%, which is almost

as high as the in-sample AR. This implies that the derived rating model is stable and

powerful also in the sense that it produces accurate default predictions for new data

that was not used to develop the model. Therefore, we can now eventually accept

the derived logit model as our final rating tool.

2.6 Conclusions

This chapter focused on the special difficulties that are encountered when develop-

ing internal rating models for corporate exposures. Although the whole process

with data collection and processing, model building and validation usually takes

quite some time and effort, the job is not yet completed with the implementation of

the derived rating model. The predictive power of all statistical models depends

heavily on the assumption that the historical relationship between the model’s

covariates and the default event will remain unchanged in the future. Given the

wide range of possible events such as changes in firms’ accounting policies or

structural disruptions in certain industries, this assumption is not guaranteed over

longer periods of time. Hence, it is necessary to revalidate and eventually recali-

brate the model regularly in order to ensure that its predictive power does not

diminish.
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Chapter 3

Scoring Models for Retail Exposures

Daniel Porath

3.1 Introduction

Rating models for retail portfolios deserve a more detailed examination because

they differ from other bank portfolios. The differences can mainly be attributed to

the specific data structure encountered when analyzing retail exposures. One

implication is that different statistical tools have to be used when creating the

model. Most of these statistical tools do not belong to the banker’s standard

toolbox. At the same time – and strictly speaking for the same reason – the banks’

risk management standards for retail exposures are not comparable to those of other

portfolios.

Banks often use scoring models for managing the risk of their retail portfolios.

Scoring models are statistical risk assessment tools especially designed for retail

exposures. They were initially introduced to standardize the decision and monitor-

ing process. With respect to scoring, the industry had established rating standards

for retail exposures long before the discussion about the IRBA emerged. The Basel

Committee acknowledged these standards and has modified the minimum require-

ments for the internal rating models of retail exposures. The aim of this chapter is to

discuss scoring models in the light of the minimum requirements and to introduce

the non-standard statistical modelling techniques which are usually used for building

scoring tables.

The discussion starts with an introduction to scoring models comprising a

general description of scoring, a distinction of different kinds of scoring models

and an exposure of the theoretical differences compared to other parametric rating

models. In Sect. 3.3, we extract the most important minimum requirements for

retail portfolios from the New Basel Capital Framework and consider their rele-

vance for scoring models. Section 3.4 is dedicated to modelling techniques. Here,

special focus is placed on the preliminary univariate analysis because it is

completely different from other portfolios. We conclude with a short summary.
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3.2 The Concept of Scoring

3.2.1 What is Scoring?

Like any rating tool, a scoring model assesses a borrower’s creditworthiness. The

outcome of the model is expressed in terms of a number called “score”. Increasing

scores usually indicate declining risk, so that a borrower with a score of 210 is more

risky than a borrower with a score of 350. A comprehensive overview about scoring

can be found in Thomas et al. (2002).

The model which calculates the score is often referred to as a scoring table,

because it can be easily displayed in a table. Table 3.1 shows an extract of two

variables from a scoring model (usually scoring models consist of about 7 up to 15

variables):

The total customer score can be calculated by adding the scores of the bor-

rower’s several characteristics. Each variable contains the category “neutral”. The

score of this category represents the portfolio mean of the scores for a variable and

therewith constitutes a benchmark when evaluating the risk of a specific category.

Categories with higher scores than “neutral” are below the average portfolio risk

and categories with lower scores are more risky than the average. For example,

divorced borrowers display increased risk compared to the whole portfolio, because

for the variable “marital status” the score of a divorced borrower (16) is lower than

the score for the category “neutral” (19).

Scoring models usually are estimated with historical data and statistical meth-

ods. The historical data involves information about the performance of a loan

(“good” or “bad”) and about the characteristics of the loan some time before. The

time span between the measurement of the characteristic on the one hand and the

performance on the other hand determines the forecast horizon of the model.

Estimation procedures for scoring models are logistic regression, discriminant

analysis or similar methods. The estimation results are the scores of the single

Table 3.1 Extract from a

scoring table
Variable Score of the variables’

attributes

Marital status of borrower
Unmarried 20

Married or widowed 24

Divorced or separated 16

No answer 16

Neutral 19

Age of borrower
18 � 24 14

24 � 32 16

32 � 38 25

38 � 50 28

50 � 65 30

65 or older 32

Neutral 24
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characteristics. Usually the scores are rescaled after estimation in order to obtain

round numbers as in the example shown in Table 3.1. More details regarding

estimation of the scores are shown in Sect. 3.4.

3.2.2 Classing and Recoding

Scoring is a parametric rating model. This means that modelling involves the

estimation of the parameters b0,. . .,bN in a general model

Si ¼ b0 þ b1xi1 þ b2xi2 þ . . .þ bNxiN: (3.1)

Here Si denotes the Score of the loan i ¼ 1,. . .,I and x1,. . .,xN are the input

parameters or variables for the loan i. The parameters bn (n ¼ 0,. . .,N) reflect the
impact of a variation of the input factors on the score.

Scoring differs from other parametric rating models in the treatment of the input

variables. As can be seen from Table 3.1, the variable “marital status” is a qualita-

tive variable, therefore it enters the model categorically. Some values of the

variable have been grouped into the same category, like for example “married”

and “widowed” in order to increase the number of borrowers within each class. The

grouping of the values of a variable is a separate preliminary step before estimation

and is called “classing”.

The general approach in (3.1) cannot manage categorical variables and therefore

has to be modified. To this end, the (categorical) variable xn has to be recoded.

An adequate recoding procedure for scoring is to add the category “neutral” to the

existing number of C categories and replace xn by a set of dummy variables dxn(c),
c ¼ 1,. . .,C which are defined in the following way:

dxnðcÞ ¼
1 for xn ¼ c

�1 for xn ¼ ‘‘neutral’’
0 else:

8<
: (3.2)

The recoding given in (3.2) is called effect coding and differs from the standard

dummy variable approach where the dummies only take the values 0 and 1. The

benefit from using (3.2) is that it allows for the estimation of a variable-specific

mean which is the score of the category “neutral”. As can be seen from (3.2), the

value of the category “neutral” is implicitly given by the vector of dummy values

(�1,. . .,�1). The coefficients of the other categories then represent the deviation

from the variable-specific mean.

This can be illustrated by recoding and replacing the first variable xi1 in (3.1).

Model (3.1) then becomes

Si ¼ b0 þ b10 þ b11dx11;i þ b12dx12;i þ . . .þ b1Cdx1C;i
� �þ b2xi2 þ . . .þ bNxiN:

(3.3)
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Here (b10 � b11 � b12 � ��� � b1C) is the variable-specific average (“neutral”)
and the coefficients b11,. . .,b1C represent the deviation of the individual categories

from the average. The scores of the single categories (see Table 3.1) are given by

the sums b10 þ b11, b10 þ b12,. . ., b10 þ b1C.
Apart from the special recoding function (3.2), the procedure discussed so far is

the standard procedure for handling categorical variables. The major characteristic

of scoring is that the same procedure is conducted for the quantitative variables.

This means that all variables are classed and recoded prior to estimation and

therefore are treated as categorical variables. As a consequence, the overall mean

b0 in (3.3) disappears and the model can be rewritten as:

Si ¼ b10 þ b11dx11;i þ . . .þ b1Cdx1C;i
� �þ . . .þ bN0 þ bN1dxN1;i þ . . .þ bNCdxNC;i

� �
:

(3.4)

With an increasing number of variables and categories, equation (3.4) soon

becomes unmanageable. This is why scoring models are usually displayed in tables.

The effect of classing and recoding is twofold: On the one hand, the information

about the interclass variation of the quantitative variable disappears. As can be seen

from Table 3.1, an increasing age reduces risk. The model, however, does not

indicate any difference between the age of 39 and 49, because the same score is

attributed to both ages. If the variable age entered the model as a quantitative

variable with the estimated coefficient bage, any difference in age (Dage) would be

captured by the model (its effect on risk, i.e. the score, ceteris paribus, being bage �
Dage). On the other hand, categorization allows for flexible risk patterns. Referring
again to the example of age, the impact on risk may be strong for the lower age

categories while diminishing for increasing ages. Such a nonlinear impact on the

score Si can be modelled by selecting narrow classes for lower ages and broad

classes for higher ages. The quantitative model, on the contrary, attributes the same

impact of bage to a one-year change in age starting from any level. Thus, classing

and recoding is an easy way to introduce nonlinearities in the model.

The theoretical merits from classing and recoding, however, were not pivotal for

the wide use of scoringmodels. The more important reason for classing and recoding

is that most of the risk-relevant input variables for retail customers are qualitative.

These are demographic characteristics of the borrower (like marital status, gender, or

home ownership), the type of profession, information about the loan (type of loan,

intended use) and information about the payment behaviour in the past (due payment

or not). The reason for transforming the remaining quantitative variables (like age or

income) into categorical variables is to obtain a uniform model.

3.2.3 Different Scoring Models

Banks use different scoring models according to the type of loan. The reason is that

the data which is available for risk assessment is loan-specific. For example, the
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scoring of a mortgage loan can make use of all the information about the real estate

whereas there is no comparable information for the scoring model of a current

account. On the other hand, models for current accounts involve much information

about the past payments observed on the account (income, drawings, balance)

which are not available for mortgage loans. For mortgage loans, payment informa-

tion generally is restricted to whether the monthly instalment has been paid or not.

As a consequence, there are different models for different products and when the

same person has two different loans at the same bank, he or she generally will have

two different scores. This is a crucial difference to the general rating principles of

Basel II.

Scoring models which are primarily based on payment information are called

behavioural scoring. The prerequisite for using a behavioural score is that the bank

observes information about the payment behaviour on a monthly basis, so that the

score changes monthly. Furthermore, in order to obtain meaningful results, at least

several monthly payment transactions should be observed for each customer. Since

the behavioural score is dynamic, it can be used for risk monitoring. Additionally,

banks use the score for risk segmentation when defining strategies for retail

customers, like for example cross-selling strategies or the organization of the

dunning process (“different risk, different treatment”).

When payment information is sporadic, it is usually not implemented in the

scoring model. The score then involves static information which has been queried

in the application form. This score is called an application score. In contrast to the

behavioural score, the application score is static, i.e. once calculated it remains

constant over time. It is normally calculated when a borrower applies for a loan and

helps the bank to decide whether it should accept or refuse the application.

Additionally, by combining the score with dynamic information it can be used as

a part of a monitoring process.

3.3 Scoring and the IRBA Minimum Requirements

Internal Rating systems for retail customers were in use long before Basel II. The

reason is that statistical models for risk assessment are especially advantageous for

the retail sector: on the one hand, the high granularity of a retail portfolio allows

banks to realize economies of scale by standardization of the decision and monitor-

ing processes. On the other hand, the database generally consists of a broad number

of homogenous data. Homogeneity is owed to standardized forms for application

and monitoring. As a consequence, the database is particularly suited for modelling.

In fact, statistical procedures for risk forecasting of retail loans have a history of

several decades (cf. Hand 2001), starting with the first attempts in the 1960s and

coming into wide use in the 1980s. Today, scoring is the industrial standard for the

rating of retail customers. Since these standards have developed independently

from the New Basel Capital Approach, there are some differences to the IRBA

minimum requirements. The Capital Accord has acknowledged these differences
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and consequently modified the rules for retail portfolios. Hence most banks will

meet the minimum requirements, possibly after some slight modifications of their

existing scoring systems. In the following subsections we discuss the meaning of

some selected minimum requirements for scoring and therewith give some sugges-

tions about possible modifications. The discussion is restricted to the minimum

requirements, which according to our view, are the most relevant for scoring. We

refer to the Revised Framework of the Basel Committee on Banking Supervision

from June 2004 (cf. BIS 2004) which for convenience in the following is called

Capital Framework.

3.3.1 Rating System Design

Following } 394 of the Capital Framework, a rating system comprises the assign-

ment of a rating to credit risk and the quantification of default and loss estimates.

However, scoring models only provide the first component, which is the score Si.
The default and loss estimates (which in the Capital Framework are PD, LGD, and

EAD) usually are not determined by the scoring model. When a bank intends to use

a scoring model for the IRBA, these components have to be assessed separately.

3.3.2 Rating Dimensions

Generally, the IRBA requires a rating system to be separated by a borrower-specific

component and a transaction-specific component (see } 396 of the Capital Frame-

work). However, in the previous section we have seen that scoring models typically

mix variables about the borrower and the type of loan. In order to render scoring

models eligible to the IRBA, the Basel Committee has modified the general

approach on the rating dimensions for retail portfolios. According to } 401 of the

Capital Framework both components should be present in the scoring model, but

need not be separated. Consequently, when referring to the risk classification of

retail portfolios, the Capital Framework uses the term pool instead of rating grade.

With } 401, banks have greater flexibility when defining pools, as long as the

pooling is based on all risk-relevant information. Pools can be customer-specific or

loan-specific (like in a scoring model) or a mixture of both. A further consequence

of } 401 is that one the same borrower is allowed to have two different scores.

3.3.3 Risk Drivers

Paragraph 402 of the Capital Framework specifies the risk drivers banks should use

in a scoring model. These cover borrower characteristics, transaction characteristics
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and delinquency. As seen in the previous section, borrower and transaction char-

acteristics are integral parts of a scoring table. Delinquency, on the other hand, is

not usually integrated in a scoring model. The rationale is that scoring aims at

predicting delinquency and that therefore no forecast is needed for a delinquent

account. However, a correct implementation of a scoring model implies that

delinquent accounts are separated (and therefore identified), so that the calculation

of the score can be suppressed. Hence, when using a scoring model, normally all

risk drivers mentioned in } 402 of the Capital Framework are integrated.

3.3.4 Risk Quantification

Risk quantification in terms of Basel II is the assessment of expected loss as the

product from PD, LGD and EAD. Since the expected loss of a loan determines the

risk weight for the capital requirement, the regulatory capital framework contains

precise definitions for the quantification of these components. This means that the

underlying time horizon is fixed to 1 year and that the underlying default event is

explicitly defined.

Scoring models generally do not follow these definitions since their primary aim

is not to fulfil the supervisory requirements but to provide internal decision support.

The application score, for example, tells whether an application for a loan should be

accepted or refused and for this decision it would not suffice to know whether the

loan will default in the following year only. Instead, the bank is interested to know

whether the loan will default in the long run, and therefore scoring models generally

provide long-run predictions. Additionally, the default event sets as soon as the loan

becomes no longer profitable for the bank and this is usually not the case when the

loan defaults according the Basel definition. It depends, instead, on the bank’s

internal calculation.

To sum up, scoring models used for internal decision support generally will not

comply with the requirements about risk quantification. A strategy to conserve the

power of an internal decision tool and at the same time achieve compliance with the

minimum requirements is:

l Develop the scoring model with the internal time-horizons and definitions of

default.
l Define the pools according to } 401 of the Capital Framework.
l Estimate the pool-specific PD, LGD and EAD following the Basel definitions in

a separate step.

Finally, it should be noted that the time horizon for assigning scores is not

specified in the Basel Accord. In paragraph 414 of the Capital Framework it is

stated that the horizon should be generally longer than 1 year. The long-term

horizon normally used by scoring systems therefore is conforming to the minimum

requirements.
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3.3.5 Special Requirements for Scoring Models

In } 417 the Capital Framework explicitly refers to scoring models (and other

statistical models) and specifies some additional requirements. The rationale is

that the implementation of a scoring model leads to highly standardized decision

and monitoring processes where failures may be overlooked or detected too late.

Therefore, the requirements given in } 417 refer to special qualitative features of the
model and special control mechanisms.

These requirements will generally be met when banks follow the industrial

standards for the development and implementation of scoring models. The most

important standards which have to be mentioned in this context are:

l The use of a representative database for the development of the model
l Documentation about the development including univariate analysis
l Preparation of a user’s guide
l Implementation of a monitoring process

3.4 Methods for Estimating Scoring Models

The statistical methods which are suitable for estimating scoring models comprise

the techniques introduced in Chap. 1, e.g. logit analysis, or discriminant analysis,

with the special feature that all input variables enter the model as categorical

variables. This requires an extensive preliminary data analysis which is referred

to as “univariate analysis”. Univariate analysis generally is interesting for rating

analysis because it serves to detect problems concerning the data and helps to

identify the most important risk-drivers. However, for retail portfolios, univariate

analysis is more complex and more important than in the general case. There are

several reasons for this:

l Univariate analysis determines the classes on which the recoding is based (see

Sect. 3.2) and hereby becomes an integral part of the model-building process.
l In retail portfolios, qualitative information is predominant (e.g. a person’s

profession, marital status).
l In retail portfolios, many qualitative variables are hard factors and do not

involve human judgement. Examples include a person’s profession, marital

status and gender. Note that qualitative information encountered in rating sys-

tems for corporate loans, often require personal judgement on part of the analyst

(e.g. a company’s management, the position in the market or the future develop-

ment of the sector where the company operates).
l For retail portfolios, a priori, it is often unknown whether a variable is relevant

for the risk assessment. For example, there is no theory which tells whether a

borrower’s profession, gender or domicile helps in predicting default. This is

different for the corporate sector where the main information consists of finan-

cial ratios taken from the balance sheet. For example, EBIT ratios measure the
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profitability of a firm and since profitability is linked to the firm’s financial

health, it can be classified as a potential risk factor prior to the analysis. For retail

portfolios, univariate analysis replaces a priori knowledge and therefore helps to

identify variables with a high discriminatory power.
l Often, the risk distribution of a variable is unknown a priori. This means that

before analyzing a variable, it is not clear which outcomes correlate with high

risks and which outcomes correlate with low risks. This is completely different

from the corporate sector, where for many financial ratios, the risk patterns are

well-known. For example, it is a priori known that ceteris paribus, high profit-

ability leads to low risk and vice versa. For retail portfolios, the risk distribution

has to be determined with the help of univariate analysis.

The consequences are twofold: On one hand, univariate analysis is particularly

important for replacing a priori knowledge. On the other hand, the statistical

methods applied in the univariate analysis should be designed to handle qualitative

hard factors.

The basic technique for creating a scoring model is crosstabulation. Crosstabs

display the data in a two-dimensional frequency table, where the rows c ¼ 1,. . .,C
are the categories of the variable and the columns are the performance of the loan.

The cells contain the absolute number of loans included in the analysis. Cross-

tabulation is flexible because it works with qualitative data as well as quantitative

data – quantitative information simply has to be grouped beforehand. A simple

example for the variable “marital status” is displayed in Table 3.2.

The crosstab is used to assess the discriminative power. The discriminative

power of a variable or characteristic can be described as its power to discriminate

between good and bad loans. However, it is difficult to compare the absolute figures

in the table. In Table 3.2, the bank has drawn a sample of the good loans. This is a

common procedure, because often it is difficult to retrieve historical data. As a

consequence, in the crosstab, the number of good loans cannot be compared to the

number of bad loans of the same category. It is therefore reasonable to replace

the absolute values by the column percentages for the good loans P(c|Good) and for
the bad loans P(c|Bad), see Table 3.3.

Table 3.2 Crosstab for the

variable “Marital status”
Marital status of borrower No. of good loans No. of bad loans

Unmarried 700 500

Married or widowed 850 350

Divorced or separated 450 650

Table 3.3 Column

percentages, WoE and IV
Marital status of borrower P(c|Good) P(c|Bad) WoEc

Unmarried 0.3500 0.3333 0.0488

Married or widowed 0.4250 0.2333 0.5996

Divorced or separated 0.2250 0.4333 �0.6554

IV 0.2523
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The discriminative power can be assessed by regarding the risk distribution of

the variable which is shown by the Weight of EvidenceWoEc (see Good 1950). The

Weight of Evidence can be calculated from the column percentages with the

following formula:

WoEc ¼ ln P cjGoodð Þð Þ � ln P cjBadð Þð Þ: (3.5)

The interpretation ofWoEc is straightforward: Increasing values of theWeight of

Evidence indicate decreasing risk. A value ofWoEc > 0 (WoEc < 0) means that in

category c good (bad) loans are over-represented. In the above example, the Weight

of Evidence shows that loans granted to married or widowed customers have

defaulted with a lower frequency than those granted to divorced or separated

customers. The value of WoEc close to 0 for unmarried customers displays that

the risk of this group is similar to the average portfolio risk.

The Weight of Evidence can also be interpreted in terms of the Bayes theorem.

The Bayes theorem expressed in log odds is

ln
PðGoodjcÞ
PðBadjcÞ ¼ ln

PðcjGoodÞ
PðcjBadÞ þ ln

PðGoodÞ
PðBadÞ : (3.6)

Since the first term on the right hand of (3.6) is the Weight of Evidence, it

represents the difference between the a posteriori log odds and the a priori log odds.

The value ofWoEc therefore measures the improvement of the forecast through the

information of category c. Hence it is a performance measure for category c.
A comprehensive performance measure for all categories of an individual

variable can be calculated as a weighted average of the Weights of Evidence for

all categories c ¼ 1,. . .,C. The result is called Information Value, IV (cf. Kullback

1959) and can be calculated by:

IV ¼
XC
c¼1

Woec

�
PðcjGoodÞ � PðcjBadÞ

�
: (3.7)

A high value of IV indicates a high discriminatory power of a specific variable.

The Information Value has a lower bound of zero but no upper bound. In the

example of Table 3.3, the Information Value is 0.2523. Since there is no upper

bound, from the absolute value we cannot tell whether the discriminatory power is

satisfactory or not. In fact, the Information Value is primarily calculated for the

purpose of comparison to other variables or alternative classings of the same

variable and the same portfolio.

The Information Value has the great advantage of being independent from the

order of the categories of the variable. This is an extremely important feature when

analyzing data with unknown risk distribution. It should be noted that most of the

better-known performance measures like the Gini coefficient or the power curve do

not share this feature and therefore are of limited relevance only for the univariate

analysis of retail portfolios.
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Crosstabulation is a means to generate classings which are needed for the

recoding and estimation procedures. There are three requirements for a good

classing. First, each class should contain a minimum number of good and bad

loans, otherwise the estimation of the coefficients b in (3.4) tend to be imprecise.

Following a rule of thumb there should be at least 50 good loans and 50 bad loans in

each class. Probably this is why in the above example there is no separate category

“widowed”. Second, the categories grouped in each class should display a similar

risk profile. Therefore, it is feasible to combine the categories “separated” and

“divorced” to one single class. Third, the resulting classing should reveal a plausi-

ble risk pattern (as indicated by theWeight of Evidence) and a high performance (as

indicated by a high Information Value).

Fixing a classing is complex, because there is a trade-off between the require-

ments. On one hand, the Information Value tends to increase with an increasing

number of classes, on the other hand, estimation of the coefficients b tends to

improve when the number of classes decreases.

In order to fix the final classing analysts produce a series of different crosstabs

and calculate the corresponding Weights of Evidence and Information Values.

Finally, the best classing is selected according to the criteria above. The final

classing therefore is the result of a heuristic process which is strongly determined

by the analyst’s know-how and experience.

3.5 Summary

In this section, we briefly summarise the ideas discussed here. We have started from

the observation that for retail portfolios, the methods for developing rating models

are different from those applied to other portfolios. This is mainly due to the

different type of data typically encountered when dealing with retail loans: First,

there is a predominance of hard qualitative information which allows the integra-

tion of a high portion of qualitative data in the model. Second, there is little

theoretical knowledge about the risk relevance and risk distribution of the input

variables. Therefore, analyzing the data requires special tools. Finally, there is a

high amount of comparably homogenous data. As a consequence, statistical risk

assessment tools were developed long before rating models for other banks’

portfolios have boosted and the standards have been settled independently from

Basel II. The standard models for the rating of retail portfolios are scoring models.

Generally, scoring models comply with the IRBA minimum requirements as long

as they fulfil the industrial standards. However, usually they only constitute risk

classification systems in terms of the IRBA and it will be necessary to add a

component which estimates PD, EAD and LGD.

The estimation of a scoring model requires the classing of all individual vari-

ables. This is done in a preliminary step called univariate analysis. The classings

can be defined by comparing the performance of different alternatives. Since risk

distribution of the variables is often completely unknown, the univariate analysis
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should rely on performance measures which are independent from the ordering of

the single classes, like for example the Weight of Evidence and the Information

Value. Once the classing is settled the variables have to be recoded in order to build

the model. Finally, the model can be estimated with standard techniques like logit

analysis or discriminant analysis.
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Chapter 4

The Shadow Rating Approach: Experience

from Banking Practice

Ulrich Erlenmaier

4.1 Introduction

In this article we will report on some aspects of the development of shadow rating

systems found to be important when re-devising the rating system for large cor-

porations of KfW Bankengruppe (KfW banking group). The article focuses on

general methodological issues and does not necessarily describe how these issues

are dealt with by KfW Bankengruppe. Moreover, due to confidentiality we do not

report estimation results that have been derived. In this introductory section we

want to describe briefly the basic idea of the shadow rating approach (SRA), then

summarise the typical steps of SRA rating development and finally set out the scope

of this article.

The shadow rating approach is typically employed when default data are rare

and external ratings from the three major rating agencies (Standard & Poor’s,

Moody’s or Fitch) are available for a significant and representative part of the

portfolio. As with other approaches to the development of rating systems, the first

modelling step is to identify risk factors – such as balance sheet ratios or qualitative
information about a company – that are supposed to be good predictors of future

defaults. The SRA’s objective is to choose and weight the risk factors in such a way

as to mimic external ratings as closely as possible when there is insufficient data to

build an explicit default prediction model (the latter type of model is e.g. described

in Chap. 1. To make the resulting rating function usable for the bank’s internal risk

management as well as for regulatory capital calculation, the external rating grades

(AAA, AA, etc.) have to be calibrated, i.e., a probability of default (PD) has to be

attached to them. With these PDs, the external grades can then be mapped to the

bank’s internal rating scale.

The opinions expressed in this article are those of the author and do not reflect views of KfW

Bankengruppe (or models applied by the bank).
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37



The following modular architecture is typical for SRA but also for other types of

rating systems:

1. Statistical model

2. Expert-guided adjustments

3. Corporate group influences/Sovereign support

4. Override

The statistical model constitutes the basis of the rating system and will most

likely include balance sheet ratios, macroeconomic variables (such as country

ratings or business cycle indicators) and qualitative information about the company

(such as quality of management or the company’s competitive position). The

statistical model will be estimated from empirical data that bring together compa-

nies’ risk factors on the one hand and their external ratings on the other hand. The

model is set up to predict external ratings – more precisely, external PDs – as

efficiently as possible from the selected risk factors.

The second modelling layer of the rating system, that we have termed “Expert-

guided adjustments” will typically include risk factors for which either no historical

information is available or for which the influence on external ratings is difficult to

estimate empirically.1 Consequently, these risk factors will enter the model in the

form of adjustments that are not estimated empirically but that are determined by

credit experts.

The third modelling layer will take into account the corporate group to which the

company belongs or probably some kind of government support.2 This is typically

done by rating both the obligor on a standalone basis and the entity that is supposed

to influence the obligor’s rating. Both ratings are then aggregated into the obligor’s

overall rating where the aggregation mechanism will depend on the degree of

influence that the corporate group/sovereign support are assessed to have.

Finally, the rating analyst will have the ability to override the results as derived

by steps 1–3 if she thinks that – due to very specific circumstances – the rating

system does not produce appropriate results for a particular obligor.

This article will focus on the development of the rating system’s first module, the

statistical model.3 The major steps in the development of the statistical model are:

1This occurs e.g. when a new risk factor has been introduced or when a risk factor is relevant only

for a small sub-sample of obligors.
2There also might be other types of corporate relationships that can induce the support of one

company for another one. For example, a company might try to bail out an important supplier

which is in financial distress. However, since this issue is only a minor aspect of this article we will

concentrate on the most common supporter-relationship in rating practice, i.e. corporate groups

and sovereign support.
3We will, however, also include a short proposal for the empirical estimation of corporate group

influences/sovereign support (step 3).
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1. Deployment of software tools for all stages of the rating development process

2. Preparation and validation of the data needed for rating development (typically

external as well as internal data sets)4

3. Calibration of external ratings

4. Sample construction for the internal rating model

5. Single (univariate) factor analysis

6. Multi factor analysis and validation

7. Impact analysis

8. Documentation

This article deals with steps 3–6, each of which will be presented in one separate

section. Nevertheless, we want to provide comments on the other steps and empha-

sise their relative importance both in qualitative as in quantitative terms for the

success of a rating development project:

l Initial project costs (i.e. internal resources and time spent for the initial develop-

ment project) will be very high and mainly driven by steps 1–3 (but also 8) with

step 1 being the single biggest contributor. In contrast, follow-up costs (future

refinement projects related to the same rating system) can be expected to be

much lower and more equally distributed across all steps with step 2 most likely

being the single biggest contributor.
l The importance of step 2 for the statistical analyses that build on it must be

stressed. Moreover, this step will be even more important when external data

sets are employed. In this case, it will also be necessary to establish compatibi-

lity with the internal data set.
l Step 7: Once a new rating system has been developed and validated, it will be

important to assess the impact of a change to the new system on key internal and

regulatory portfolio risk measures, including for example, expected loss or

regulatory and economic capital.
l Regarding step 8 we found it very helpful and time saving to transfer a number of

the results from statistical analyses to appendices that are automatically gene-

rated by software tools.

Finally, we want to conclude the introduction with some comments on step 1, the

deployment of software tools. The objective should be to automate the complex

rating development process as completely as possible through all the necessary

steps, in order to reduce the manpower and a-priori know how required to conduct

4In this article, the term “external data sets” or “external data” will always refer to a situation

where – additional to internally rated companies – a typically much larger sample of not internally-

rated companies is employed for rating development. This external data set will often come from

an external data provider such as e.g. Bureau van Dijk but can also be the master sample of a data-

pooling initiative. In such a situation, usually only quantitative risk factors will be available for

both, the internal and the external data set while qualitative risk factors tend to be confined to the

internal data set. In this situation, a number of specific problems arise that have to be taken into

account. The problems we found most relevant will be dealt with in this article.
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a development project. Therefore, different, inter-connected tools are needed,

including:

l Datamarts: Standardised reports from the bank’s operating systems or data

warehouse covering all information relevant for rating development/validation

on a historical basis
l Data set management: to make external data compatible with internal data, for

sample construction, etc.
l Statistical analysis tools: tailor made for rating development and validation

purposes. These tools produce documents that can be used for the rating sys-

tem’s documentation (step 8). These documents comprise all major analyses as

well as all relevant parameters for the new rating algorithm.
l Generic rating algorithm tool: Allows the application of new rating algorithms

to the relevant samples. It should be possible to customise the tool with the

results from the statistical analyses and to build completely new types of rating

algorithms.

4.2 Calibration of External Ratings

4.2.1 Introduction

The first step in building an SRA model is to calibrate the external agencies’ rating

grades, i.e. to attach a PD to them. The following list summarises the issues we

found important in this context:

l External rating types: which types of ratings should be employed?

– Probability of default (PD)/Expected loss (EL) ratings,

– Long-/Short-term ratings,

– Foreign/Local currency ratings
l External rating agencies: pros and cons of the different agencies’ ratings with

respect to the shadow rating approach
l Default definition/Default rates: differences between external and internal defi-

nitions of the default event and of default rates will be discussed
l Samples for external PD estimation: which time period should be included, are

there certain obligor types that should be excluded?
l PD estimation technique: discussion of the pros and cons of the two major

approaches, the cohort and the duration-based approach
l Adjustments of PD estimates: if PD estimates do not have the desired properties

(e.g. monotonicity in rating grades), some adjustments are required
l Point-in-time adjustment: external rating agencies tend to follow a through-the-

cycle-rating philosophy. If a bank’s internal rating philosophy is point-in-time

then either

– The external through-the-cycle ratings must be adjusted to make them

sensitive to changes in macroeconomic conditions or,
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– The effects of developing on a through-the-cycle benchmark must be taken

into account

The above mentioned issues will be addressed in the following sections.

4.2.2 External Rating Agencies and Rating Types

For SRA ratings systems, typically the ratings of the three major ratings agencies –

Standard & Poors (S&P), Moody’s and Fitch – are employed. Two questions arise:

1. For each rating agency, which type of rating most closely matches the bank’s

internal rating definition?

2. Which rating agencies are particularly well suited for the purpose of SRA

development?

Regarding question 1 issuer credit ratings for S&P and Fitch and issuer ratings
for Moody’s were found to be most suitable since these ratings assess the obligor

and not an obligor’s individual security. Moreover, it will usually make sense to

choose the long-term, local currency versions for all rating agencies and rating

types.5

Regarding question 2 the major pro and cons were found to be the following:

l Length of rating history and track record: S&P and Moody’s dominate Fitch. See

e.g. Standard and Poor’s (2005), Moody’s (2005), and Fitch (2005).
l Rating scope: while both S&P and Fitch rate an obligor with respect to its

probability of default (PD), which is consistent with banks’ internal ratings as

required by Basel II, Moody’s assesses its expected loss (EL).This conclusion

draws on the rating agencies’ rating definitions (cf. Standard and Poor’s (2002),

Moody’s (2004), and Fitch 2006), discussions with rating agency representatives

and the academic literature (cf. G€uttler 2004).
l Are differences between local and foreign currency ratings (LC and FC) always

identifiable? While S&P attaches a local and foreign currency rating to almost

every issuer rating, this is not always the case for Moody’s and Fitch.

Based on an assessment of these pros and cons it has to be decided whether one

agency will be preferred when more than one external rating is available for one

obligor.

The following sections will deal with PD estimations for external rating grades.

In this context we will – for the sake of simplicity – focus on the agencies S&P and

Moody’s.

5Long-term ratings because of the Basel II requirements that banks are expected to use a time

horizon longer than one year in assigning ratings (BCBS (2004), } 414) and because almost all

analyses of external ratings are conducted with long-term ratings. Local currency ratings are

needed when a bank measures transfer risk separately from an obligor’s credit rating.
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4.2.3 Definitions of the Default Event and Default Rates

For the PD estimates from external rating data to be consistent with internal PD

estimates, (a) the definition of the default event and (b) the resulting definition of

default rates (default counts in relation to obligor counts) must be similar. While

there might be some minor differences regarding the calculation of default rates,6

the most important differences in our opinion stem from different definitions of the

default event. Here are the most important deviations7:

l Different types of defaults (bank defaults vs. bond market defaults): a company

that has problems meeting its obligations might e.g., first try to negotiate with its

bank before exposing it to a potential default in the bond market.
l Differences in qualitative default criteria: according to Basel II, a company is to

be classified as default when a bank considers that the obligor is unlikely to pay

its credit obligations in full. This could easily apply to companies that are in the

lowest external non-default rating grades.8

l Number of days of delayed payment that will lead to default

– Basel II: 90 days

– S&P: default when payments are not made within grace period which

typically ranges from 10 to 30 days

– Moody’s: 1 day
l Materiality: While external agencies will measure defaults without respect to the

size of the amount due, under Basel II, payment delays that are small with

respect to the company’s overall exposure will not be counted as defaults.

In order to assess the effects of these and other differences in default definition

on estimated PDs, the default measurement of S&P and Moody’s has to be

compared with the bank’s internal default measurement. In a first step S&P and

Moody’s could be compared with each other (a) If the differences between the two

external agencies are not significant, internal defaults can be compared with the

pooled external defaults of S&P and Moody’s (b) The following technique might be

useful for steps (a) and (b):

6Examples: (a) While the external agencies count the number of obligors only at the beginning of

the year and then the resulting defaults from these obligors over the year, a bank might count on a

finer basis (e.g., monthly) in order to track as many obligors as possible; (b) defaults that occur

because of foreign currency controls and not because the individual obligor is not able to meet its

obligations should not be counted as default for the purpose of PD-estimation if a bank quantifies

transfer risk separately.
7The Basel II default definition is given in (BCBS (2004), } 452). The rating agencies’ default

definitions are described in their respective default reports (cf. Standard and Poor’s (2005),

Moody’s (2005), and Fitch 2005).
8This assessment draws on external agencies’ verbal definitions of those rating grades (cf.

Standard and Poor’s (2002), Moody’s (2004), and Fitch 2006).
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1. Estimation of the ratio of Moody’s defaults for each S&P default and the ratio of

external defaults for each internal default respectively.

2. This ratio can be interpreted as an adjustment factor with which (a) PDs derived

for Moody’s have to be scaled in order to arrive at PDs compatible with S&P and

(b) with which external PDs have to be adjusted in order to be comparable with

internally derived PDs.

3. Calculation of confidence intervals for the resulting estimators using a multino-

mial model and a Chi-square-type test statistic9

Depending on the estimation results it has to be decided whether an adjustment

factor should be applied. If estimators prove to be very volatile, additional default

data (e.g. form data pooling initiatives) might be needed to arrive at more confident

estimates.

4.2.4 Sample for PD Estimation

For the estimation of external PDs the obligor samples of S&P and Moody’s as used

by these agencies to derive default rates in their annual default reports can be

employed.10 The following two dimensions of sample construction should in our

opinion be closely analysed:

1. Obligor sector and country: should all obligor types be included irrespective of

industry sector and country?

2. Length of time series

With respect to (4.1) one can start with the hypotheses that – as ratings agencies

claim – external ratings are comparable across industry sectors and countries.11

Consequently, for those rating types (S&P and Fitch) that aim to measure an

obligor’s PD, PD estimates would only have to be conditional on an obligor’s

rating grade, not its industry sector or country. Where ratings measure an obligor’s

EL for senior unsecured obligations (Moody’s), however, PD estimates would also

have to be conditional on all obligor characteristics that affect the LGD on these

obligations, as could – for example – be the case for a company’s industry sector or

home country. But if LGD differences across obligors are small compared to PD

9For example, for the comparison of external and internal defaults, the multinomial random

variable would for each defaulted company indicate one of three potential outcomes: (1) External

and internal default, (2) External default but no internal default, (3) Internal default but no external

default. Moreover, due to the typically small amount of data, no large-sample approximation but

the exact Chi-square distribution should be employed. Confidence limits can be estimated by

applying the test statistic on a sufficiently fine grid for the parameters of the multinomial

distribution.
10See Standard and Poor’s (2005) and Moody’s (2005).
11See agencies’ rating definitions: Standard and Poor’s (2002) and Moody’s (2004) respectively.
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differences between rating grades, estimates based only on the rating grade might

be tolerable for pragmatic reasons.

To address the first issues (comparability of ratings across countries/sectors), the

literature on differences between external default rates across industry sectors and

countries should be reviewed. We found only three papers on the default rate

issue.12 None identified country specific differences while they were inconclusive

with respect to sector specific differences.13

Regarding the second issue (relative size of the LGD effect), the bank’s internal

LGD methodology should be analysed with respect to differences between senior

unsecured LGDs across industries and countries.14 Based on the assessment of both

issues it should be decided as to whether country or industry sector specific

estimates are needed.

We now turn to the second dimension of sample construction, i.e. the length of

the time series. On the one hand, a long time series will reduce statistical uncer-

tainty and include different states of the business cycle. On the other hand, there is

the problem that because of structural changes, data collected earlier, might not

reflect current and future business conditions. A sensible starting point will be the

time horizon that is most often used by both the rating agencies and the academic

literature (starting with the years 1981 and 1983 respectively). One can then analyse

changes in rating grade default rates over time and assess whether structural

changes in the default rate behaviour can be identified or whether most of the

variability can be explained by business cycle fluctuations.

4.2.5 PD Estimation Techniques

Once the sample for PD estimation has been derived, the estimation technique must

be specified. Typically, the so called cohort method (CM) is applied where the

number of obligors at the beginning of each year in each rating grade and the

number of obligors that have defaulted in this year are counted respectively. Both

figures are then summed over all years within the time horizon. The resulting PD

estimate is arrived at by dividing the overall number of defaults by the overall

number of obligors.15

The duration-based (DB) approach aims to improve on the cohort-method by

including information on rating migration in the estimation process. The underlying

12See Ammer and Packer (2000), Cantor and Falkenstein (2001), and Cantor (2004).
13Ammer and Packer (2000) found default-rate differences between banks and non-banks. How-

ever, they pointed out that these differences are most likely attributable to a specific historic event,

the US Savings and Loans crisis, and should therefore not be extrapolated to future default rates.

Cantor and Falkenstein (2001), in contrast, found no differences in the default rates of banks and

non-banks once one controls for macroeconomic effects.
14For a discussion of LGD-estimation methods we refer to Chapter VIII of this book.
15This method can be improved on by counting on a monthly or even finer base.
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idea is to interpret default events as the result of a migration process. In the simplest

setting where the migration process can be assumed to follow a stationary Markov

process, a T-year migration matrix MT can be derived by applying the one year

migration matrix MT T times:

MT ¼ M1
T (4.1)

The continuous time analogue of (4.1) is

Mt ¼ Expðm � tÞ; (4.2)

where m is the marginal migration matrix, t the time index and Exp(.) the matrix

exponential.16 Hence, M1 (including in particular 1-year default probabilities) can

be derived by first estimating m from transition counts and then applying the matrix

exponential to the estimated marginal transition matrix. A detailed description of

the duration-based approach (DB) and the cohort method (CM) can be found in

Schuermann and Hanson (2004). They also state the major differences between CM

and DB estimates, in particular, that the latter produce PDs that spread more widely

across the rating scale, i.e. PDs for good rating grades will be much lower and PDs

for bad ratings will be much higher under DB than under CM.

Both estimation techniques have their pros and cons:

l DB makes more use of the available information by also taking into account

rating migrations. For this reason, the DB method can also produce positive PD

estimates for the best rating grades where no default observations are available.
l CM is more transparent and does not rely on as many modelling assumptions as

the DB method.

As long as there is no clear-cut empirical evidence on the relative performance

of both methods, it seems therefore sensible to apply both techniques and compare

the resulting estimates. However, it is likely that in the future such comparisons will

become available and therefore it will be helpful to keep an eye on the

corresponding regulatory and academic discussion.

4.2.6 Adjustments

Because the PD estimates resulting from the application of the estimation methods

as described in the previous section will not always be monotonic (i.e. not always

will PD estimates for better rating grades be lower than for worse rating grades), the

estimates have to be adapted in these non-monotonic areas. One option is to regress

16The matrix exponential applies the exponential series to matrices: exp (m) ¼ I + m1/
1! + m2/2! + . . . , where I is the identity matrix.
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the logarithm of the PD estimates on the rating grades and to check whether the

interpolations that result for the non-monotonic areas are within confidence limits.

Here are some comments on the underlying techniques:

l Regression

– In order to perform the regression, a metric interpretation has to be given to

the ordinal rating grades. Plots of PD estimates against rating grades on a

logarithmic scale suggest that this approach is sensible from a pragmatic

point of view (cf. Altman and Rijken 2004).

– It may make sense to weight the regression by the number of observations

available for each rating grade since the precision of PD estimates is depen-

dent on it.
l Confidence intervals (CI)

– For the cohort approach, confidence intervals can be derived from the

binomial distribution by assuming independent observations.17

– It is usually assumed that default observations are correlated because of

macroeconomic default drivers that affect the default behaviour of different

obligors. Hence, binomial confidence intervals will be a conservative esti-

mate (they are tighter then they would be under correlated defaults). CIs

derived from a Merton style simulation model (cf. Chap. 15 of this book)

could be the logical next step.

– In the context of the duration-based method, CIs are typically derived via

Bootstrap methods (cf. Schuermann and Hanson 2004). These tend to be

even tighter. The topic of correlated defaults/migrations has to our know-

ledge not yet been addressed in this context.

4.2.7 Point-in-Time Adaptation

In the context of Basel II, a bank’s rating system is supposed to measure an obligor’s

probability of default (PD) over a specific time horizon (the next T years). In

practice, the objective of rating systems differs, particularly with respect to:

1. The time horizon chosen by a bank

2. Whether PDs are conditional on the state of the business cycle (through-the-

cycle philosophy, TTC) or not (point-in-time philosophy, PIT)

While the first point can be taken into account by correspondingly adjusting the

time horizon for default rate estimation, a bank that follows a PIT approach will have

17For an efficient derivation and implementation of exact confidence limits for the binomial

distribution see Daly (1992).
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to apply PIT-adjustments to the PD estimates derived for external rating grades

since external rating agencies tend to follow a TTC-approach.18

In the remainder of this section we will (a) analyse the effects resulting from the

development of ratings systems on TTC-PDs and (b) outline a technique for PIT

adjustments of external rating grades. To address both points, we first summarise

the most important properties of PIT and TTC rating systems in Table 4.1. These

properties follow straightforwardly from the above definitions. A detailed discus-

sion can be found in Heitfield (2004).

Turning to the first point of investigation, we now list the most important

consequences when developing a rating system on a TTC-PD benchmark:

l Pure macroeconomic risk factors that focus on business cycle information will

explain only the (typically quite small) PIT-part of external ratings and will

therefore tend to receive very low weights in statistical models.
l This effect should be less pronounced for “mixed factors” that contain both

business cycle information and non-business cycle elements, for example bal-

ance sheet ratios or country ratings.

A bank that follows a PIT rating approach but has not yet finalised a fully-fledged

PIT-adaptation of external ratings might therefore manually adjust regression results

Table 4.1 Comparison of point-in-time and through-the-cycle rating systems

Issue Point-in-time (PIT) Through-the-cycle (TTC)

What does the rating system

measure?

Unconditional PD PD conditional on the state of

the business cycle.

The PD estimate might be

either conditional on a worst

case (“bottom of the cycle

scenario”)a or on an average

business cycle scenario

Stability of an obligor’s

rating grade over the

cycle

Pro-cyclical: Rating improves

during expansions and

deteriorates in recessions

Stable: Rating grades tend to be

unaffected by changes in the

business cycle

Stability of a rating grade’s

unconditional PD

Stable: Unconditional PDs of

ratings grades do not

change. Obligor’s higher

unconditional PDs during

recession are accounted for

by migrations to lower

rating grades and vice versa

Pro-cyclical: PDs improve

during expansions and

deteriorate during

recessions

aThis has for example been suggested by a survey of bank rating practices by the Basel Committee’s

Model Task Force (cf. BCBS 2000).

18The TTC-property of external ratings has been observed in the academic literature (cf. L€offler
2004) and has also been proved to be significant by our own empirical investigations. It must,

however, be stressed that in practice rating systems will neither be completely TTC or PIT but

somewhere in between.
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in order to attach higher weights to pure business-cycle risk factors. For banks that

already want to implement a statistically founded PIT-adaptation of external rat-

ings, the following approach could be considered:

l Estimation of a classic default prediction model, for example via logistic regres-

sion (see Chap. 1), with external PDs and business cycle factors (on a regional,

country or industry level) as risk factors
l The dependent variable is the company’s default indicator as measured by the

external ratings agencies’ default definition (or, where available, the bank’s own

default definition). Accordingly, data from external rating agencies will be

needed on a single obligor level while for TTC-PD estimation, aggregate obligor

and default counts are sufficient.

When estimating such a model, the following challenges are pertinent:

l Different countries have different macroeconomic indicators that might not be

comparable.
l Because estimating separate models for separate countries will not be feasible

due to data restrictions, it will be important to use indicators that are approxi-

mately comparable across countries.
l To get a picture of the related effects, it might be sensible to start by building a

model for the US (where data availability is high) and see how parameter

estimates change when other countries are added. Probably separate regional

models can help.

An alternative approach would be to use external point-in-time rating systems

for the PIT-adaptation of through-the-cycle agency ratings. An example of a point-

in-time external rating is Moody’s KMV’s EDF credit risk measure that builds on a

Merton style causal default prediction model.19 Analysis is then required as to

whether it would not be better to skip the through-the-cycle agency ratings alto-

gether and replace them with the external point-in-time ratings. In deciding on

which approach to take, a bank must trade off the associated costs with the

availability of the respective benchmarks.20

4.3 Sample Construction for the SRA Model

4.3.1 Introduction

Once external PDs have been calibrated, and all internal and external data required

for the development of the SRA model have been compiled, it is necessary to

19See http://www.moodyskmv.com/.
20For example, market-based measures such as Moody’s KMV’s EDF are only available for public

companies.
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construct samples from this data. As we will see, different samples will be needed

for different types of statistical analysis. In this section we mention these analysis

techniques in order to map them to the corresponding samples. The techniques will

be described in Sects. 4.4 and 4.5. In this section, the following issues will be dealt

with:

l Which types of samples are needed?
l How can these samples be constructed?
l Weighted observations: If the information content of different observations

differs significantly, it might be necessary to allow for this by attaching different

weights to each observation.
l Correlated observations: We discuss the correlation structure that may result

from the described sample construction technique and discuss the consequences.

It should be noted that some parts of the sample construction approach described

in this section might be too time consuming for an initial development project.

Nevertheless, it can serve as a benchmark for simpler methods of sample construc-

tion and could be gradually implemented during future refinements of the initial

model.

4.3.2 Sample Types

The samples relevant for the development of SRA rating systems can be classified

by the following dimensions:

l Samples for single (univariate) factor analysis (e.g. univariate discriminatory

power, transformation of risk factors) vs. multi factor analysis samples (e.g.

regression analysis, validation)
l Samples that include only externally rated obligor vs. samples that include

externally and only internally rated obligors
l External data vs. internal data21

l Development vs. validation sample

We will start with the first dimension. Univariate analysis investigates the

properties of each single risk factor separately. Therefore, for this type of analysis

each change of the one analysed factor will generate a new observation in the data

set; for the multi factor analysis, each change of any risk factor will produce a new

observation. This can be taken into account by the following approach to sample

construction:

21External data are often employed for the development of SRA rating systems in order to increase

the number of obligors and the number of points in time available for each obligor. See Sect. 4.1

for more details.
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1. Risk factors are divided in different categories. All factors for which changes are

triggered by the same event are summarised into the same risk factor category.22

2. The samples for the univariate risk factor analysis are constructed separately for

each category. A complete series of time intervals is build that indicates which

risk factor combination is valid for the category in each time interval or whether

no observation was available in the interval. The time intervals are determined

by the points in time where the risk factors of the category under consideration

change. This is done separately for each obligor.

3. All single category samples from step 2 are merged into a new series of time

intervals. Each interval in the series is defined as the largest interval for which

the risk factors in each category remain constant. This is done separately for

each obligor.

In the following table we give an example comprising two risk factor categories

(balance sheet data and qualitative factors) and hence two different samples for

univariate factor analysis. Table 4.2 displays the observations for one single obligor.

For each of the sample types described above, two sub-types will be needed, one

that includes only externally rated obligors and one that contains all obligors. The

first sub-type will be needed e.g. for discriminatory power analysis, the second e.g.,

for risk factor transformation or validation.

A third dimension is added when external as well as internal data are employed.

Typically, for SRA models, external data will be used to estimate the quantitative

model (comprising balance sheet factors as well as macroeconomic indicators)

while the complete model, consisting of both, quantitative and qualitative risk

factors will be calculated on the internal data set because qualitative risk factors

are not available for the external data set.

A fourth dimension comes with the need to distinguish between development and

validation samples. Moreover, validation should not only rely on the external PD

but should also include default indicator information, i.e. the information whether

Table 4.2 Stylised example for different samples and observations involved in rating develop-

ment

Sample Trigger ID Valid from Valid until

Balance sheet data Accounts 1 Jan 03 Dec 03

2 Jan 04 Dec 04

Qualitative factors Internal rating 1 May 03 March 04

2 April 04 Dec 04

Multi factor (merged) Accounts 1 Jan 03 April 03

Internal rating 2 May 03 Dec 03

Accounts 3 Jan 04 March 04

Internal rating 4 April 04 Dec 04

22One category might for example include all balance sheet factors (triggered by the release of a

company’s accounts). Another category will be qualitative factors as assessed by the bank’s loan

manger. They are triggered by the internal rating event. A third category might be macroeconomic

indicators.
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a company has or has not defaulted within a specific period of time after its rating

has been compiled.

When validating with respect to the default indicator, the need for the separation

of development and validation samples is not so pressing since the benchmarks

employed for development and validation are different. Due to the typical scarcity

of internal default data (the rationale for the SRA approach), it is sensible to

perform this type of validation on the complete internal data set.

However, when validating with respect to external PDs, a separation between

development and validation sample is desirable. If the quantitative model has been

developed on external data, the internal data set should typically be an appropriate

validation sample.23 For the validation of the complete model, – depending on the

number of observations available relative to the number of risk factors, the follow-

ing options can be considered:

l Constructing two completely different samples (preferably out-of-time24)
l Developing on the complete internal sample and validating on a subset of this

sample, e.g. the most recent observations for each obligor or some randomly

drawn sub-sample
l Application of bootstrap methods25

Summarising the issues raised in this section, Table 4.3 gives a simple example

of the different samples involved in SRA rating development and the types of

statistical analysis performed on these samples. For simplicity, our example com-

prises only two input categories of which only one (balance sheet data) is available

for the external and the internal data set and the other (qualitative factors) is only

available for the internal data set.

4.3.3 External PDs and Default Indicator

For those samples consisting only of externally rated obligors (EX) and for those

samples that are employed for validation on the default indicator (VAL-D), an

external PD or the default indicator have to be attached to each line of input variables

respectively. At least two different approaches to achieve this can be considered:

23Note that the external sample will typically also include some or almost all internal obligors. To

construct two completely different sets, internal obligors would have to be excluded from the

external data. However, if the external data set is much larger than the internal data set, such

exclusion might not be judged necessary.
24“Out-of-time” means that development and validation are based on disjoint time intervals.
25For an application of bootstrap methods in the context of rating validation see Appasamy et al.

(2004). A good introduction to and overview over bootstrap methods can be found in Davison and

Hinkley (1997).
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1. External PDs/the default indicator are treated as yet another risk factor category,

i.e. a series of time intervals is constructed for each external rating agency/for

the default indicator indicating the time spans for which a specific external

rating/default indicator realisation had been valid. These intervals are then

merged with the relevant single factor or merged factor samples in the same

way as single factor samples are merged with each other.26 If there are competing

Table 4.3 Stylised example for the different samples and corresponding types of analysis that are

needed for the development of SRA type rating systems

IDa Input categories Sample typeb Type of analysis

E1 Balance sheet data SC EX DEV Representativeness, Fillers for missing

values, Univariate discriminatory

power, Estimation of the quantitative

multi factor modelc

I1a Balance sheet data SC ALL DEV Representativeness, Truncation and

standardisation of risk factors, Fillers

for missing values

I1b EX VAL-E/DEV Univariate discriminatory power,

Validation of the quantitative multi

factor model developed on sample E1

I2a Qualitative factors SC ALL DEV Standardisation of risk factors, Fillers for

missing values

I2b EX Score calculation, Univariate

discriminatory power

I3a Balance sheet data

and qualitative

factors

M EX Risk factor correlations/multicollinearity,

Estimation of the complete multi

factor model (quantitative and

qualitative)

I3b ALL DEV/VAL-D Risk factor correlations/multicollinearity,

default indicator validation of the

complete multi factor model

developed on sample I3a

I4 EX VAL-E Separate validation sample, for example

most recent observations for all

obligors from sample I3a or a

randomly drawn sub-sample
aE denotes external and I denotes internal data.
bWe write SC for single-category samples and M for merged samples. ALL and EX are standing

for “all obligors” and “only externally rated obligors” respectively. DEV denotes development

sample, VAL-E and VAL-D denote validation samples where validation is performed on external
PDs and on the default indicator respectively.
cNote that in this case it is not necessary to merge different single-factor samples in order to

perform the multi-factor analysis, because only one input-category exists. Moreover, a separate

validation sample for the external data is not necessary since validation is performed on the

internal data set.

26Note that the time intervals of input factors and default indicator are shifted against each other by

the length of the time horizon for which the rating system is developed. For example, if the horizon

is 1 year and the default indicator is equal to zero from Jan 2003 to Dec 2004 then this value will be

mapped to the risk-factor interval from Jan 2002 to Dec 2003.
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PDs from different external agencies at the same time, an aggregation rule will be

applied. We will discuss this rule in the second part of this section.

2. For each risk factor time interval, a weighted average is determined for each

external agency PD and for the default indicator respectively. The weights are

chosen proportionally to the length of the time interval for which the external

rating/the default indicator has been valid. As under 1), an aggregation rule is

applied to translate the PDs of different external agencies into one single

external PD.

For the default indicator the first approach seems to be more adequate, since with

the second approach the 0/1 indicator variable would be transformed into a contin-

uous variable on the interval [0,1] and many important analytical tools (e.g. the

ROC curve) would not be directly applicable.

This argument, obviously does not apply to the external PDs since they are

already measured on the interval [0,1]. Moreover, external PDs tend to change more

frequently than the default indicator and hence the number of observations would

increase markedly compared to the corresponding risk factor samples. Additionally,

the PDs of not only one but three different rating agencies would have to be merged,

further increasing the number of observations. Since the information content of

different observations belonging to the same risk factor combination will tend to

differ only slightly, such a procedure will produce many highly correlated observa-

tions which is not desirable (see Sect. 4.3.5). Consequently the second approach

appears to be more adequate for external PDs.

As mentioned above, an aggregation rule has to be devised for cases where more

than one external rating is valid at some point in time. The most straightforward

choice will be weighted averages of the different external PDs with a preferential

treatment of those rating agencies that are assessed to be most suitable for SRA

development (see Sect. 4.2.2).

4.3.4 Weighting Observations

The information content of a single observation in the different samples depends on

the length of the time interval it is associated with. If, for example, a particular

balance sheet B is valid from Jan 04 to Dec 04 and we observe two corresponding

sets of qualitative factors, Q1 (valid until Feb 04) followed by Q2 (valid from

Feb 04 until Dec 04) we would obviously like to put a much higher weight on the

observation (B, Q2) than on (B, Q1).

The most straightforward way is to choose weights that are proportional to the

length of the time interval associated with a specific observation. In this context, the

following issues are of particular interest:

l Stochastic interpretation of weighted observations: The weight attached is a

measure for the size of the error term associated with each observation, i.e. its

standard deviation: the lower the weight, the higher the standard deviation.
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l Practical implementation: Most statistics software packages include options to

perform statistical computations with weighted observations. This usually

applies for all techniques mentioned in this article.

4.3.5 Correlated Observations

Correlated observations (or, more precisely, correlated error terms) are a general

problem in single and multi factor analysis. Basic techniques assume independence.

Using these techniques with correlated observations will affect the validity of

statistical tests and confidence intervals, probably also reducing the efficiency of

estimators. To resolve this problem, information about the structure of the correla-

tions is necessary. In this article, the correlation issue will be dealt with in two steps:

1. In this section we will address the specific correlations structure that may arise

from the method of sample construction described above

2. In Sect. 4.5.3 we will analyse the statistical techniques that can be used to

address this or other correlation structures in the context of multi factor analysis.

When constructing samples according to the method described above, the degree

of correlation in the data will rise when the time intervals associated with each

observation become smaller. It will also depend on the frequency and intensity of

changes in the risk factor and the external rating information employed. It is worth

noting that the resulting type of correlation structure can be best described within a

panel data setting where the correlations within the time series observations for

each single obligor will be different to the cross-sectional correlation between two

obligors. Cross-sectional correlations in SRA development may result from country

or industry sector dependencies. Time series correlations will typically be due to the

fact that there are structural similarities in the relationship between a single

company’s risk factors and its external rating over time. Since models for cross-

sectional correlations are widely applied in credit portfolio models,27 we will focus

on time series correlations in this article.

In what follows we propose some options for dealing with correlations in the

time series parts. The options are listed in order of rising complexity:

l For simplicity, basic statistical techniques are employed that do not account for

correlated error terms. With this option, as much correlation as possible can be

eliminated by dropping observations with small weights. If all observations have

approximately the same weight, a sub-sample can be drawn. Here, the appropri-

ate balance has to be found between losing too much information in the sample

and retaining a degree of correlation that still appears to be compatible with not

modelling these correlations explicitly. In any case, the remaining correlation in

27See Erlenmaier (2001).
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the data should be measured and the modeller should be aware of the resulting

consequences, in particular with respect to confidence intervals (they will tend to

be too narrow) and with respect to statistical tests (they will tend to be too

conservative, rejecting the null too often).
l Simple models of autocorrelation in the time series data are employed, the most

obvious being a first order autoregressive process (AR1) for the time series error

terms. Of course, higher order AR processes or more complex correlation

models might also be considered appropriate.28

l A continuous time model for the relation between risk factors and external

ratings is built (e.g. Brownian motion or Poison process type models) and the

resulting correlation structure of the discrete observations’ error terms is derived

from this model. This of course is the most complex option and will most

probably be seen as too time consuming to be applied by most practitioners.

It might, however, be a road for academic researchers that in turn could make the

method available for practitioners in the future.

4.4 Univariate Risk Factor Analysis

4.4.1 Introduction

Before building a multi factor model, each risk factor has to be analysed separately

in order to determine whether and in which form it should enter the multi factor

model. This type of analysis is referred to as univariate risk factor analysis. The

following issues should be dealt with in this context:

l Measurement of a risk factor’s univariate discriminatory power
l Transformation of risk factors to (a) improve their linear correlation – as

assumed by the multi factor regression model – with the log external PD29 or

(b) to make different risk factors comparable with each other
l Checking whether the samples on which the rating system is developed are

representative for the samples to which the rating system will be applied

(development vs. “target” sample)
l Treatment of missing values

Each of these issues will be dealt with separately in the following sections.

28For an introduction to such models and further references see Greene (2003).
29See Sect. 4.5.2. Throughout this article we will use the term “log external PD” to denote the

natural logarithm of the PD of an obligor’s external rating grade. How PDs are derived for each

external rating grade has been described in Sect. 4.2.
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4.4.2 Discriminatory Power

A rating system is defined as having a high discriminatory power if good rating

grades have a comparatively low share of obligors that will default later on and vice

versa. Accordingly, its discriminatory power will deteriorate with an increase in the

relative share of later on defaulted obligors in good rating grades. There are several

statistical measures for this important attribute of a rating system, the Gini coeffi-

cient being the most popular.30

Due to the lack of a sufficient number of default observations in SRA models,

these types of discriminatory power measurement will usually only be applied as an

additional validation measure. In the development stage, discriminatory power will

be defined in terms of the usefulness of the rating system or – in the context of

univariate factor analysis – a single risk factor in predicting an obligor’s external

PD: The better a rating system or a risk factor can be used to predict an obligor’s

external PD, the higher its discriminator power for the SRA approach.31

The following techniques can be helpful to measure a risk factor’s discrimina-

tory power for the SRA approach:

l Linear and rank-order correlations of the risk factors with the log external PD32

l Bucket plots

While the correlation measures are straightforward, the bucket plots require

further comment. The underlying rationale for applying bucket plots is to visualise

the complete functional form of the relationship between the risk factor and the

external PD – in contrast to the correlation measures that aggregate this information

into a single number. This is done to make sure that the risk factors indeed display

an approximately linear relationship with external PDs as is required by the multi

factor model. Bucket plots for continuous risk factors can for example be con-

structed in the following way:

l Each risk factor range was divided into n separate buckets, where we chose the 0,
1/n, 2/n,. . ., (n-1)/n, 1 quantiles of each risk factor’s distribution as interval

boarders.

30For an overview on measures of discriminatory power see Deutsche Bundesbank (2003) or

Chap. 13.
31A good discriminatory power of the internal rating system in terms of predicting external ratings

and a good discriminatory power of the external ratings in terms of predicting future defaults will

then establish a good discriminatory power of the internal rating system in terms of predicting

future defaults.
32Linear correlations are typically termed Pearson correlations while rank-order correlations are

associated with Spearman. Linear correlations are important since they measure the degree of

linear relationship which corresponds with the linear model employed for the multi-factor analy-

sis. Rank-order correlations can be compared with linear correlations in order to identify potential

scope for risk factor transformation.
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l For each bucket we calculated the average associated external PD. By construct-

ing the bucket boarders using quantiles it can be made sure that each interval

contains the same number of observations.
l The number n of intervals has to be chosen with regard to the overall number of

PD observations available for each risk factor: with increasing n it will be

possible to observe the functional form of the relationship on an ever finer

scale. However, the precision of the associated PD estimates for each bucket

will decrease and their volatility will increase.
l In order to quantify the degree of uncertainty, confidence intervals for the PD

estimates of each bucket can be calculated.
l The resulting PD estimates and confidence intervals are then plotted against the

mean risk factor value of each bucket. If a logarithmic scale is used for the PD

axis, an approximately linear relationship should result when the risk factor has

been appropriately transformed. Figure 4.1 shows an example of a bucket plot

for a continuous risk factor.

Bucket plots for discrete risk factors can be devised according to the same

method as described above with only one difference: for discrete factors, each

realisation should represent one bucket irrespective of the number of observations

available.
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Fig. 4.1 Example of a bucket plot. It illustrates the functional relationship between a risk factor

and corresponding external PDs where the latter are measured on a logarithmic scale. The

relationship on this scale should be approximately linear
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4.4.3 Transformation

The following types of transformation typical for the development of rating models

will be considered in this section:

l Truncation
l Other non-linear transformations of continuous risk factors (e.g. taking a risk

factor’s logarithm)
l Attaching a score to discrete risk factors
l Standardisation, i.e. a linear transformation in order to achieve the same mean

and standard deviation for each risk factor

We will discuss each of these types of transformations in turn. Truncation means

that continuous risk factors will be cut off at some point on the left and right, more

precisely,

xtrunc ¼ min xu;max xl; xf gf g

where xu is the upper and xl the lower border at which the risk factor x is truncated.
Note that the truncation function described above can be smoothed by applying a

logit-type transformation instead. Truncation is done mainly for the following reasons:

l To reduce the impact of outliers and to concentrate the analysis on a risk factor’s

typical range33

l To reduce a risk factor to the range on which it has discriminatory power

Other types of non-linear transformations are typically applied to continuous risk

factors to achieve an approximately linear relationship with the log external PD. An

overview of methods to achieve linearity can be found in Chap. 2. These methods

will therefore not be discussed here.

In contrast to continuous risk factors, discrete factors (such as qualitative

information about the obligor, e.g. its quality of management or competitive

position) do not have an a priori metric interpretation. Therefore, a score has to

be attached to each of the discrete risk factor’s potential realisations (e.g., excellent,

good, medium or poor quality management). As with the non-linear transformation

for the continuous risk factors, the scores have to be chosen in such a way as to

achieve the linear relationship of risk factors with log PDs. This can typically be

achieved by calculating the mean external PD for each risk factor realisation and

then applying the logarithm to arrive at the final score.

However, the resulting scores will not always be monotonic in the underlying

risk factor (i.e., the average PD may not always decrease when the assessment with

respect to this risk factor improves). In such cases it has to be decided whether the

effect is within statistical confidence levels or indeed indicates a problem with the

33This is often necessary for sensible visualization of the risk factor’s distribution.
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underlying risk factor. If the first holds true (typically for risk factor realisations

where only very few observations are available), interpolation techniques can be

applied augmented by expert judgements. In the second case, depending on the

severity of the effects identified, it may be necessary (a) to analyse the reasons for

this effect, or (b) to merge different realisations of the risk factor to a single score,

or (c) to eliminate the risk factor from subsequent analysis.

All transformations that have been described up to now have been performed in

order to improve the risk factor’s linear correlation with log external PDs. The

remaining transformation (standardisation) has a linear functional form and will

therefore not alter linear correlations. It is performed in order to unify the different

risk factor’s scales and, accordingly, improve their comparability, primarily in the

following two respects:

l How good or bad is a risk factor realisation compared with the portfolio average?
l Interpretability of the coefficients resulting from the linear regression as weights

for the influence of one particular risk factor on the rating result

Typically, the risk factors are standardised to the same mean and standard

deviation. This transformation only makes sure that the risk factors are comparable

with respect to the first and second moment of the distribution. Perfect comparabi-

lity will only be achieved when all moments of the standardised risk factor’s

distribution will be roughly the same, i.e. if they follow a similar probability

distribution. This will typically not be the case, in particular since there are risk

factors with continuous and discrete distributions respectively. However, some

degree of overall distributional similarity should be achieved by the need to

establish an approximately linear relationship between each risk factor and the

log external PD. Moreover, we will comment on the rationale of and the potential

problems with the interpretation of regression estimates as weights of influence in

Sect. 4.5.4 where we deal with multi factor analysis.

4.4.4 Representativeness

Representativeness, while important for other types of rating systems, should be

treated with particular care when developing SRA rating systems.34 The following

two types of comparisons are of specific interest:

l Comparison of the internal samples types IE (including only externally rated
obligors) and IA (comprising all internal obligors) with each other.

34An SRA-rating system will always face the problem that – due to the relative rareness of default

data – it is difficult to validate it for obligors that are not externally rated. While some validation

techniques are available (see Sect. 4.5.8), showing that the data for externally rated obligors is

comparable with that of non-externally rated obligors will be one of the major steps to make sure

that the derived rating system will not only perform well for the former but also for the latter.
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This comparison is necessary since SRA rating systems are developed on samples

that include only externally rated obligors but are also applied to obligors without

external ratings.
l Comparison of the external data set (E) with the internal data set IA. This

comparison arises from the need to increase the available number of observa-

tions for rating development by including external data.

Representativeness can be analysed by comparing the distribution of the risk

factors and some other key factors (such as countries/regions, industry sectors,

company type, obligor size, etc.) on each sample. In this context frequency plots

(for continuous factors, see Fig. 4.2) and tables ordered by the frequency of each

realisation (for discrete factors) can be particularly useful.

These tools can be supplemented with basic descriptive statistics (e.g. difference

of the medians of both samples relative to their standard deviation or the ratio of the

standard deviations on both samples). Formal statistical tests on the identity of

distributions across samples were not found to be useful since the question is not

whether distributions are identical (typically they are not) but whether they are

sufficiently similar for the extrapolation of results and estimates derived on one

sample to the other sample.
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Fig. 4.2 Example for a frequency plot that compares a risk factor’s distribution on the external

data set with its distribution on the internal data set
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What can be done when data is found to be unrepresentative?

l First, it has to be ascertained whether the problem occurs only for a few risk

factors/key figures or for the majority.
l In the first case, the reasons for the differences have to be analysed and the

development samples adjusted accordingly. One reason, for example, might be

that the distribution of obligors across regions or industry sectors is extremely

different. The development sample can then be adjusted by reducing the amount

of obligors in those regions/industry sectors that are over-represented in the

development sample.
l In the second case, a variety of approaches can be considered, depending on the

specific situation. Examples include:

– The range of the risk factors can be reduced so that it only includes areas that

are observable on both the development and the target sample.

– The weight of a risk factor found to be insufficiently representative can be

reduced manually or it can be excluded from the analysis.

4.4.5 Missing Values

A missing value analysis typically includes the following steps:

l Decision as to whether a risk factor will be classified as missing for a particular

observation
l Calculation of fillers for missing values/exclusion of observations with missing

values

While for some risk factors such as qualitative assessments (e.g., management

quality), the first issue can be decided immediately, it is not always that clear-cut for

quantitative risk factors such as balance sheet ratios that may be calculated from a

number of different single positions. Typical examples are balance sheet ratios that

include a company’s cash flow that in turn is the sum of various single balance sheet

items.

The problem – typically arising on the external data set – is that for a large

proportion of observations at least one of these items will be missing. Hence, in a

first step the relative sizes of the balance sheet items have to be compared with each

other and based on this comparison, rules must be devised as to which combination

of missing values will trigger the overall position to be classified as missing: if

components with a large absolute size are missing, the risk factors should be set to

missing; if not, the aggregate position can be calculated by either omitting the

missing items or using fillers which, however, should be chosen conditional on the

size of the largest components.

We now come back to the second issue raised at the beginning of this section, i.e.,

the calculation of fillers for missing values on the risk factor level. It is, of course,

related to the issue of calculating fillers on the component level. However, the need to
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employ conditional estimates is not so severe. Typically, there will be quite a lot of

risk factors that are correlated with each other. Hence, making estimates for missing

values of one risk factor conditional on other risk factors should produce more

accurate fillers. However, it will also be time consuming. Therefore, in practice,

only some very simple bits of information will typically be used for conditioning,

e.g., the portfolio to which an obligor belongs (external or internal data set).

Moreover, different quantiles of the distribution might be employed for the

calculation of fillers on the external and internal data set respectively. For the

external sample, a missing value may not constitute a significant negative signal

in itself. For the internal sample, on the other hand, missing values usually are

negative signals, since a company could be expected to provide to the bank the

information it needs to complete its internal rating assessment. Therefore, missing

values on the internal sample will typically be substituted by more conservative

quantiles than missing values on the external data set.

Finally, depending on the relative frequency of missing values in the sample, it

might be necessary to exclude some observations with missing values to avoid

biases in statistical estimates.

4.4.6 Summary

Concluding this section we want to summarise the techniques that we have pre-

sented for univariate risk factor analysis and map them to the samples on which they

should be performed. Since we have already dealt with the sample issue in Sect. 4.3,

here we will focus on those two sample dimensions that we think are most

important for univariate factor analysis, i.e. externally rated obligors versus all

obligors and external versus internal data set. As in Sect. 4.4.4 we use the following

shortcuts for these sample types:

l E: External data set, only externally rated obligors,
l IE: Internal data set, only externally rated obligors.
l IA: Internal data set, all obligors,

The univariate analysis techniques and corresponding sample types are sum-

marised in Table 4.4.

4.5 Multi-factor Model and Validation

4.5.1 Introduction

Once the univariate analysis described in Sect. 4.4 has been completed, the multi-

factor model has to be estimated and the estimation results communicated, adjusted

(if necessary), and validated. These issues will be dealt with in Sect. 4.5 in this order:
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l Model selection: which type of model is chosen and which risk factors will enter

the model?
l Model assumptions: Statistical models typically come with quite a few model-

ling assumptions that guarantee that estimation results are efficient and valid.

Therefore, it has to be analysed whether the most important assumptions of the

selected model are valid for the data and if not, how any violations of modelling

assumptions can be dealt with.
l Measuring the influence of risk factors:Wewill discuss how the relative influence

of single risk factors on the rating result can be expressed in terms of weights to

facilitate the interpretation of the estimated model. In a second step, we comment

on the problems associated with the calculation and interpretation of these weights.
l Manual adjustments and calibration: We discuss the rationale and the most

important issues that must be dealt with when model estimates are adjusted

manually and describe how the resulting model can be calibrated.
l Two-step regression: It is briefly noted that with external data the regression

model will typically have to be estimated in two steps.
l Corporate groups and government support: We propose a simple method to

produce an empirical estimate for the optimal absolute influence of supporters on

an obligor’s rating.
l Validation: We briefly itemise the validation measures that we found most

useful for a short-cut validation in the context of rating development.

4.5.2 Model Selection

The issue of model selection primarily has two dimensions. First, the model type

has to be chosen and then it has to be decided which risk factors will be included in

Table 4.4 Univariate analysis techniques and corresponding sample types

Type of univariate

analysis

Sample

type

Description

Factor transformation IE,IAa (a) Truncation

(b) other non-linear transformations of continuous risk factors

(e.g., taking a risk factor’s logarithm)

(c) calculating scores for discrete risk factors

(d) standardisation: linear transformation in order to achieve

the same median (mean) and standard deviation for all risk

factors

Discriminatory power E,IE (a) Correlation (rank order and linear) with external PD

(b) Bucket plots

Representativeness IE,IA (a) Comparison of internal samples with each other (IE and IA)

E,IA (b) Comparison of external sample (E) with internal sample (IA)

Missing values E,IA Fillers for missing values in the external and internal samples

respectively
aIE is only needed to derive the scores for the qualitative risk factors. All other types of analysis are

performed on IA.
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the model. Regarding the first question the most simple and most frequently used

model in multi factor analysis is linear regression. A typical linear regression

models for SRA type rating systems will have the following form35:

LogðPDiÞ ¼ b0 þ b1xi1 þ � � � þ bmxim þ ei ði ¼ 1; . . . ; nÞ; (4.3)

where PDi denotes the external PD, xij the value of risk factor j, ei the regression

model’s error term for observation i, and b0,. . ., bm are the regression coefficients

that must be estimated from the data. Note that each observation i describes a

specific firm over a specific time span.

Risk factors are regressed on log PDs because on the one hand, this scale is

typically most compatible with the linear relationship assumed by the regression

model and on the other hand, because internal master scales that translate PDs into

rating grades, are often logarithmic in PDs.

We now turn to the second issue in this section, the selection of those risk factors

that will constitute the final regression model employed for the rating system. The

following types of analysis are useful for risk factor selection:

l Univariate discriminatory power (on internal and external data set)
l Representativeness
l Correlations/multicollinearity between risk factors
l Formal model selection tools

We have already dealt with the issues of discriminatory power and representa-

tiveness in Sect. 4.4. For correlations between risk factors and multicollinearity we

refer the reader to Chap. 2. In this section we will add some comments on typical

formal model selection tools in the context of linear regression:

l Formal model selection tools are no substitute for a careful single factor and

correlation analysis.
l There are quite a variety of formal model selection methods.36 We found the R2

maximisation method that finds the model with the best R2 for each given

number of risk factors particularly useful for the following reasons:

– It allows to trade off the reduction in multicollinearity against the associated

loss in the model’s R2 on the development sample.

– The R2 measure is consistent with the linear correlation measure employed in

the single factor analysis.37

35Throughout this article Log denotes the natural logarithm with base e.
36For reviews on formal model-selection methods see Hocking (1976) or Judge et al. (1980).
37R2 is the square of the linear correlation between the dependent variable (the log external PD)

and the model prediction for this variable.
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4.5.3 Model Assumptions

Three crucial stochastic assumptions about the error terms e constitute the basis of
linear regression models38:

l Normal distribution (of error terms)
l Independence (of all error terms from each other)
l Homoscedasticity (all error terms have the same standard deviation)

For all three issues there are a variety of statistical tests (e.g., Greene 2003).

If these tests reject the above hypotheses, it is up to the modeller to decide on the

severity of these effects, i.e., whether they can be accepted from a practical point of

view or not.

As for normality, looking at distribution plots of the residuals39 we found that

they often came very close to a normal distribution even in cases where statistical

tests reject this hypothesis. Moreover, even under the violation of the normality

assumption, estimators are still efficient (or, more precisely, BLUE).40 Only the

related statistical tests and confidence intervals are no longer valid. But even here

convergence is achieved for large sample size.

Violations of the two other assumptions (independence and homoscedasticity)

tend to be more severe. They can be summarised as deviations from the regression

model’s error term covariance matrix which is assumed to have identical values for

each entry of the diagonal (homoscedasticity) and zeros for each entry that is not on

the diagonal (independence).

If statistical tests reject the hypotheses of independence/homoscedasticity, this

problem can be dealt with when a) plausible assumptions about the structure of the

covariance matrix can be made and b) when this structure can be described with a

sufficiently small set of parameters. If this is the case these parameters and hence the

covariance matrix can be estimated from the data (or, more precisely, from the

residuals). The least square method employed for parameter estimation in the regres-

sion model can then be adjusted in such a way that the original desirable properties of

the ordinary least square estimators (OLS) can be restored. In the literature (e.g.,

Greene 2003) this method is referred to as generalised least square (GLS).

In order to proceed, hypotheses on the structure of the covariance matrix have to

be derived. In Sect. 4.3 dealing with sample construction, we have already

described one possible source of heteroscedasticity41 and correlation in the data

respectively.

38For a comprehensive overview on applied linear regression see Greene (2003).
39Residuals (e) are the typical estimators for the (unobservable) theoretical error terms (e). They
are defined as the difference between the dependent variable and the model predictions of this

variable.
40BLUE stands for best linear unbiased estimator.
41The term heteroscedasticity refers to cases where standard deviations of error terms are different

as opposed to the assumption of identical standard deviations (homoscedasticity).
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We argued that the size (i.e., the standard deviation) of the error term might

sensibly be assumed to be proportional to the length of the time interval to which

the observation is attached. Hence, we proposed to weight each observation with

the length of the corresponding time interval. In the context of regression analysis,

weighting observations exactly means to assume a specific type of heteroscedastic

covariance matrix and application of the corresponding GLS estimation.

We also concluded that autocorrelation in the time series part of the data might

well increase when time intervals become smaller and smaller. One of the simplest

and most commonly employed structures for correlated error terms assumes an AR

(1) correlation structure between subsequent error terms:

et ¼ ret�1 þ ut ðt ¼ 1; . . . ; TÞ ; (4.4)

where the variables ut are independent of each other. Hence, the issue could be dealt
with by estimating the parameter r from the data, deriving the correlation matrix

and applying GLS.42 There is, however, one crucial problem with this procedure: it

is not logical to assume this correlation structure for the complete data set as would

be done in a standard time series regression setting. Rather, the rating development

data set at hand will typically have a panel data structure where the correlation

structure of the cross section’s error terms (different obligors) will most likely be

different from the correlation structure of the time series part (different points in

time for the same obligor). Applying a panel data model with an AR(1) structure in

the time series part could be a sensible first approximation. Corresponding error

term models offered by statistics software packages are often of the type

eit ¼ riei;t�1 þ uit ðt ¼ 1; . . . ; T; i ¼ 1; . . . ; nÞ : (4.5)

Note that the AR parameter r is estimated separately for each cross section (i.e.

firm): r ¼ ri. Therefore, quite a few time series observations are required for each

single obligor to make confident estimates, which often will not be feasible for

rating development data. A more practicable model would estimate an average AR

parameter r for all obligors:

eit ¼ rei;t�1 þ uit ðt ¼ 1; . . . ; T; i ¼ 1; . . . ; nÞ : (4.6)

There might be other sources of correlation or heteroscedasticity in the data

requiring a different structure for the covariance matrix than the one described

above. If no specific reasons can be thought of from a theoretical point of view, one

will usually look at residual plots to identify some patterns. Typically, residuals will

be plotted (a) against the independent variable (log PD in our case), (b) against

those dependent variables (risk factors) with the highest weights or (c) against some

other structural variable, such as the length of the time interval associated with each

42Indeed, a standard procedure for dealing with autocorrelated error terms in the way described

above is implemented in most statistical software packages.
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observation. If effects can be identified, first a parametrical model has to be devised

and then the associated parameters can be estimated from the residuals. That will

give a rough picture of the severity of the effects and can hence provide the basis for

the decision as to whether to assess the deviations from the model assumptions as

acceptable or whether to incorporate these effects into the model – either by

weighting observation (in the case of heteroscedasticity) or by devising a specific

correlation model (in the case of deviations from independence).

4.5.4 Measuring Influence

Once a specific regression model has been chosen and estimated, one of the most

important aspects of the model for practitioners will be each risk factor’s influence

on an obligor’s rating. Hence, a measure of influence has to be chosen that can also

be used for potential manual adjustments of the derived model.

To our knowledge, the most widely applied method is to adjust for the typically

different scales on which the risk factors are measured by multiplying the estimator

for the risk factor’s coefficient in the regression model by the risk factor’s standard

deviation and then deriving weights by mapping these adjusted coefficients to the

interval [0,1] so that the absolute values of all coefficients add up to 1.43

What is the interpretation of this approach to the calculation of weights?

It defines the weight of a risk factor xj by the degree to which the log PD predicted

by the regression model will fluctuate when all other risk factors (xk)k 6¼j are kept

constant: the more log PD fluctuates, the higher the risk factor’s influence. As a

measure for the degree of fluctuation, the predictor’s standard deviation is used.

Hence, the weight wj of a risk factor xj with coefficient bj can be calculated as

wj ¼
w�
j

w�
1

�� ��þ � � � þ w�
m

�� �� ; (4.7)

where

w�
j ¼ STD LogðPDÞ ðxkÞk 6¼j

���n o
¼ STDðbjxjÞ ¼ bjSTDðxjÞ; (4.8)

and STD denotes the standard deviation operator.

43Note that this method is also suggested by standard regression outputs. The associated estimates

are typically termed “standardized coefficients”. Moreover, if the risk factors have already been

standardized to a common standard deviation – as described in Sect. 4.4 – they already have the

same scale and coefficients only have to be mapped to [0,1] in order to add up to 1.
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However, when using this type of influence measure, the following aspects have

to be taken into account:

l The standard deviation should be calculated on the internal data set containing

all obligors, not only the externally rated obligors.
l The master rating scale will typically be logarithmic in PDs. Therefore, measur-

ing the risk factor’s influence on predicted log PDs is approximately equivalent

to measuring its influence on the obligor’s rating. This should usually be what

practitioners are interested in. However, if the influence on an obligor’s pre-

dicted PD is to be measured, the above logic will not apply anymore since

predicted PDs are an exponential function of the risk factor and hence their

standard deviation cannot be factored in the same fashion as described above.

Moreover, the standard deviation of the external PD will depend on the realisa-

tions of the other risk factors (xk)k 6¼j that are kept constant.
l The problems described in the previous point also arise for the log-PD influence

when risk factors are transformed in a non-linear fashion, e.g. when a risk

factor’s logarithm is taken. In this case, the above interpretation of influence

can only be applied to the transformed risk factors which usually have no

sensible economic interpretation.
l Also, the above mentioned interpretation does not take into account the risk

factor’s correlation structure. The correlation between risk factors is usually not

negligible. In this case the conditional distribution (in particular, the conditional

standard deviation) of the log-PD predictor, given that the other risk factors are

constant, will depend on the particular values at which the other risk factors are

kept constant.
l Making the risk factor’s distributions comparable only by adjusting for their

standard deviation might be a crude measure if their distributional forms differ a

lot (e.g., continuous versus discrete risk factors).44

l The weights described above measure a risk factor’s average influence over the

sample. While this may be suitable in the model development stage when

deciding, e.g., about whether the resulting weights are appropriate, it may not

be appropriate for practitioners interested in the influence that the risk factors

have for a specific obligor. Other tools can be applied here, e.g., plotting how a

change in one risk factor over a specified range will affect an obligor’s rating.

Despite the above cited theoretical problems standard deviation based measures

of influence have proved to work quite well in practice. However, there appears to

be some scope for further research on alternative measures of influence. Moreover,

it should be noted that, when correlations between risk factors are non-negligible, a

risk factor’s correlation with predicted log PDs can be quite high, even if the weight

as defined above is not. We therefore found it important for the interpretation of the

44Additionally, the standard deviation tends to be a very unstable statistical measure that can be

very sensitive to changes in the risk factor’s distribution. However, this problem should be reduced

significantly by the truncation of the risk factors which reduces the influence of outliers.
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derived regression model, to evaluate these correlations for all risk factors and

report them together with the weights.

4.5.5 Manual Adjustments and Calibration

There may be quite a variety of rationales for manually adjusting the estimation

results derived from the statistical model, for instance, expert judgements that deviate

significantly from those estimations, insufficient empirical basis for specific portfolio

segments, insufficient representativeness of the development sample, or excessively

high weights of qualitative as opposed to quantitative risk factors.45 When manual

adjustments are made, the following subsequent analyses are important:

1. Ensuring that the ratings system’s discriminatory power is not reduced too much

2. Re-establishing the calibration that statistical models provide automatically in

the SRA context

Regarding the first issue, the standard validation measures – as briefly described

in Sect. 4.5.8 – will be applied. The second issue can be addressed by regressing the

score resulting from the manually adjusted weights o1,. . .,on against log PDs:

LogðPDiÞ ¼ c0 þ c1½o1xi1 þ � � � þ omxim� þ ei ði ¼ 1; . . . nÞ: (4.9)

Note that c0 and c1 are the coefficients that must be estimated in this second

regression. The parameter c0 is related to the average PD in the portfolio while c1
controls the rating system’s implicit discriminatory power, i.e., the degree to which

predicted PDs vary across the obligors in the portfolio.46

The estimates for c0 and c1 will give additional evidence for the degree to which
the manual adjustments have changed the rating system’s overall properties: If

changes are not too big, then c0 should not differ much from b0 and c1 should be

close to bS ¼ jb1j þ � � � þ jbmj½ � if all risk factors have been standardised to the

same standard deviation.47

Finally, for each observation i, a PD estimate can be derived from the above

regression results by the following formulas:

45With the SRA approach to rating development, there is the problem that the loan manager may

use qualitative risk factors in order to make internal and external ratings match. If that is the case,

the relative weight of qualitative factors as estimated by the statistical model will typically be too

high compared to the weights of quantitative risk factors. The validation measures that are not

linked to external ratings (see Sect. 4.5.8) and also expert judgement may then help to readjust

those weights appropriately.
46More formally, the implicit discriminatory power is defined as the expected value of the

(explicit) discriminatory power – as measured by the Gini coefficient (cf. Chap. 13).
47This can be derived from (4.7) and (4.8).
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E½PDijXi� ¼ expðmi þ si2=2Þ (i ¼ 1;:::,n), where (4.10a)

mi ¼ E½logðPDiÞjXi� ¼ c0 þ c1½o1xi1 þ � � � þ omxim� and (4.10b)

si2 ¼ VarðeiÞ: (4.10c)

Note that Xi denotes the vector of all risk factor realisations for observation i and
E[.] is the expectation operator. The result is derived from the formula for the mean

of log-normally distributed random variables.48 For the formula to be valid, the

error terms ei have to be approximately normally distributed which we found

typically to be the case (see Sect. 4.5.3). Moreover, the most straightforward way

to estimate si from the residuals would be to assume homoscedasticity, i.e. si ¼ s
(i ¼ 1,. . .,n). If homoscedasticity cannot be achieved, the estimates for si will have
to be conditional on the structural variables that describe the sources of hetero-

scedasticity.

4.5.6 Two-step Regression

In this section we note that – when external data are employed – it will typically be

necessary to estimate two models and, therefore, go through the process described

in the previous sections twice. If, for example, only balance sheet ratios and

macroeconomic risk factors are available for the external data set, then a first

quantitative model will have to be estimated on the external data set. As a result,

a quantitative score and corresponding PD can be calculated from this model that in

turn can be used as an input factor for the final model. The final model will then

include the quantitative score as one aggregated independent variable and the

qualitative risk factors (not available for the external data set) as the other indepen-

dent variables.

4.5.7 Corporate Groups and Sovereign Support

When rating a company, it is very important to take into account the corporate

group to which the company belongs or probably some kind of government support

(be it on the federal, state or local government level). This is typically done by

rating both the obligor on a standalone basis (¼standalone rating) and the entity that

48If X is normally distributed with mean m and standard deviation s, then E [exp (X)] ¼ exp

(m + s2/2), where E is the expectation operator (Limpert et al. 2001).
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is supposed to influence the obligor’s rating (¼supporter rating).49 The obligor’s

rating is then usually derived by some type of weighted average of the associated

PDs. The weight will depend on the degree of influence as assessed by the loan

manager according to the rating system’s guidelines.

Due to the huge variety and often idiosyncratic nature of corporate group or

sovereign support cases, it will be very difficult to statistically derive the correct

individual weight of each supporter, the average weight, however, could well be

validated by estimates from the data. More precisely, consider that for the deve-

lopment sample we have i ¼ 1,. . .,n obligors with PDs PDi, corresponding suppor-

ters with PDs PDS
i and associated supporter weights wi > 0 as derived by the

rating analyst’s assessment.50 Then, a regression model with [(1�wi) � PDi] and

[wi � PDS
i ] as independent variables and PDex

i (the obligor’s external PD) as depen-

dent variable can be estimated to determine as to whether the average size of the

supporter weights wi is appropriate or whether it should be increased or decreased.

4.5.8 Validation

The validation of rating systems is discussed at length in Chaps. 12–15. Specific

validation techniques that are valuable in a low default context (of which SRA

portfolios are a typical example) are discussed in BCBS (2005) and in Chap. 5.

During rating development it will typically not be possible to run through a fully-

fledged validation process. Rather, it will be necessary to concentrate on the most

important measures. We will therefore briefly itemise those issues that we found

important for a short-cut validation of SRA rating systems in the context of rating

development:

l Validation on external ratings/external PDs

– Correlations of internal and external PDs (for all modules of the rating

system51)

– Case-wise analysis of those companies with the largest differences between

internal and external ratings

– Comparison of average external and internal PDs across the entire portfolio

and across sub-portfolios (such as regions, rating grades, etc.)
l Validation on default indicators

– Gini coefficient (for all modules of the rating system)

49Note that for the sake of simplicity, the expression “supporter” is used for all entities that

influence an obligor’s rating, be it in a positive or negative way.
50The standalone and supporter PDs have of course been derived from the regression model of the

previous sections, probably, after manual adjustments.
51The typical modules of a SRA-rating system (statistical model, expert-guided adjustments,

corporate-group influence/government support, override) have been discussed in Sect. 4.1.
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– Comparison of default rates and corresponding confidence intervals with

average internal PDs. This is done separately for all rating grades and also

across all rating grades

– Formal statistical tests of the rating system’s calibration (such as e.g.

Spiegelhalter, see Chap. 15)
l Comparison of the new rating system with its predecessor (if available)

– Comparison of both rating system’s validation results on external ratings and

the default indicator

– Case-wise analysis of those companies with the largest differences between

old and new rating system

There are also some other validation techniques not yet discussed but that could

enter a short-cut validation process in the rating development context, in particular

addressing the relative rareness of default data in SRA portfolios (see BCBS 2005):

l Using the lowest non-default rating grades as default proxies
l Comparison of SRA obligors with the obligors from other rating segments that

have the same rating
l Estimation of internal PDs with the duration-based approach, i.e. including

information on rating migration into the internal PD estimation process
l Data pooling

4.6 Conclusions

In this article we have reported on some aspects of the development of shadow

rating (SRA) systems found to be important for practitioners. The article focused on

the statistical model that typically forms the basis of such rating systems. In this

section we want to summarise the major issues that we have dealt with:

l We have stressed the importance both, in terms of the quality of the resulting

rating system and in terms of initial development costs of

– The deployment of sophisticated software tools that automate the develop-

ment process as much as possible and

– The careful preparation and validation of the data that are employed.
l External PDs form the basis of SRA type models. We have outlined some major

issues that we found to be important in this context:

– Which external rating types/agencies should be used?

– Comparison between bank internal and external default definitions and con-

sequences for resulting PD estimates

– Sample construction for the estimation of external PDs (which time period,

which obligor types?)

– PD estimation techniques (cohort method vs. duration-based approach)

– Point-in-time adjustment of external through-the-cycle ratings
l In Sect. 4.3 we pointed out that different samples will be needed for different

types of analysis and made a proposal for the construction of such samples.
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In this context we also dealt with the issues of weighted and correlated

observations.
l Univariate risk factor analysis is the next development step. In Sect. 4.4 we have

described the typical types of analysis required – measurement of a risk factor’s

discriminatory power, transformation of risk factors, representativeness, fillers

for missing values – and have mapped them to the samples on which they should

be performed.
l In Sect. 4.5 we dealt with multi factor modelling, in particular with

– Model selection

– The violation of model assumptions (non-normality, heteroscedasticity, error

term correlations)

– The measurement of risk factor influence (weights)

– Manual adjustments of empirical estimates and calibration

– A method to empirically validate the average influence of corporate groups

or sovereign supporters on an obligor’s rating
l Finally, in the same section, we gave a brief overview over the validation

measures that we found most useful for a short-cut validation in the context of

SRA rating development.

While for most modelling steps one can observe the emergence of best practice

tools, we think that in particular in the following areas further research is desirable

to sharpen the instruments available for SRA rating development:

l Data pooling in order to arrive at more confident estimates for adjustment factors

of external PDs that account for the differences between bank internal and

external default measurement
l Empirical comparisons of the relative performance of cohort-based versus

duration-based PD estimates and related confidence intervals
l Point-in-time adjustments of external through-the-cycle ratings
l Panel type correlation models for SRA samples and software implementations of

these models
l Measurement of risk factor influence (weights)
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Chapter 5

Estimating Probabilities of Default for Low

Default Portfolios

Katja Pluto and Dirk Tasche

5.1 Introduction

A core input to modern credit risk modelling and managing techniques is prob-

abilities of default (PD) per borrower. As such, the accuracy of the PD estimations

will determine the quality of the results of credit risk models.

One of the obstacles connected with PD estimations can be the low number of

defaults, especially in the higher rating grades. These good rating grades might

enjoy many years without any defaults. Even if some defaults occur in a given year,

the observed default rates might exhibit a high degree of volatility due to the

relatively low number of borrowers in that grade. Even entire portfolios with low

or zero defaults are not uncommon. Examples include portfolios with an overall

good quality of borrowers (e.g. sovereign or bank portfolios) as well as high-

exposure low-number portfolios (e.g. specialized lending).

Usual banking practices for deriving PD values in such exposures often focus on

qualitative mapping mechanisms to bank-wide master scales or external ratings.

These practices, while widespread in the industry, do not entirely satisfy the desire

for a statistical foundation of the assumed PD values. One might “believe” that the

PDs per rating grade appear correct, as well as thinking that the ordinal ranking and

the relative spread between the PDs of two grades is right, but find that there is

insufficient information about the absolute PD figures. Lastly, it could be ques-

tioned whether these rather qualitative methods of PD calibration fulfil the mini-

mum requirements set out in BCBS (2004a).
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This issue, amongst others, has recently been raised in BBA (2004). In that

paper, applications of causal default models and of exogenous distribution assump-

tions on the PDs across the grades have been proposed as solutions. Schuermann

and Hanson (2004) present the “duration method” of estimating PDs by means of

migration matrices (see also Jafry and Schuermann 2004). This way, nonzero PDs

for high-quality rating grades can be estimated more precisely by both counting the

borrower migrations through the lower grades to eventual default and using Markov

chain properties.

We present a methodology to estimate PDs for portfolios without any defaults, or

a very low number of defaults in the overall portfolio. The proposal by Schuermann

and Hanson (2004) does not provide a solution for such cases, because the duration

method requires a certain number of defaults in at least some (usually the low-

quality) rating grades.

For estimating PDs, we use all available quantitative information of the rating

system and its grades. Moreover, we assume that the ordinal borrower ranking is

correct. We do not use any additional assumptions or information.1 Our methodo-

logy delivers confidence intervals for the PDs of each rating grade. The PD range

can be adjusted by the choice of an appropriate confidence level. Moreover, by the

most prudent estimation principle our methodology yields monotonic PD estimates.

We look both at the cases of uncorrelated and correlated default events, in the latter

case under assumptions consistent with the Basel risk weight model.

Moreover, we extend the most prudent estimation by two application variants:

First we scale our results to overall portfolio central tendencies. Second, we apply

our methodology to multi-period data and extend our model by time dependencies

of the Basel systematic factor. Both variants should help to align our principle to

realistic data sets and to a range of assumptions that can be set according to the

specific issues in question when applying our methodology.

The paper is structured as follows: The two main concepts underlying the

methodology – estimating PDs as upper confidence bounds and guaranteeing

their monotony by the most prudent estimation principle – are introduced by two

examples that assume independence of the default events. The first example deals

with a portfolio without any observed defaults. For the second example, we modify

the first example by assuming that a few defaults have been observed. In a further

section, we show how the methodology can be modified in order to take into

account non-zero correlation of default events. This is followed by two sections

discussing extensions of our methodology, in particular the scaling to the overall

portfolio central tendency and an extension of our model to the multi-period case.

The last two sections are devoted to discussions of the scope of application and of

1An important example of additional assumptions is provided by a-priori distributions of the PD

parameters which lead to a Bayesian approach as described by Kiefer (2009). Interestingly enough,

Dwyer (2006) shows that the confidence bound approach as described in this paper can be

interpreted in a Bayesian manner. Another example of an additional assumption is presented in

Tasche (2009). In that paper the monotonicity assumption on the PDs is replaced by a stronger

assumption on the shape of the PD curve.
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open questions. We conclude with a summary of our proposal. In Appendix A,

we provide information on the numerics that is needed to implement the estima-

tion approach we suggest. Appendix B provides additional numerical results to

Sect. 5.5.

We perceive that our “most prudent estimation principle” has been applied in a

wide range of banks since the first edition of this book. However, application has

not been limited to PD estimation, as intended by us. Rather, risk modellers seem to

have made generous use of the methodology to validate their rating systems. We

have therefore added another short section at the end of this paper that explains the

sense and non-sense of using our principle for validation purposes, and clarify what

the methodology can and cannot do.

5.2 Example: No Defaults, Assumption of Independence

The obligors are distributed to rating grades A, B, and C, with frequencies nA, nB,
and nC. The grade with the highest credit-worthiness is denoted by A, the grade with
the lowest credit-worthiness is denoted by C. No defaults occurred in A, B or C
during the last observation period.

We assume that the – still to be estimated – PDs pA of grade A, pB of grade B, and
pC of grade C reflect the decreasing credit-worthiness of the grades, in the sense of

the following inequality:

pA � pB � pC (5.1)

The inequality implies that we assume the ordinal borrower ranking to be

correct. According to (5.1), the PD pA of grade A cannot be greater than the PD

pC of grade C. As a consequence, the most prudent estimate of the value pA is

obtained under the assumption that the probabilities pA and pC are equal. Then, from
(5.1) even follows pA ¼ pB ¼ pC. Assuming this relation, we now proceed in

determining a confidence region for pA at confidence level g. This confidence

region2 can be described as the set of all admissible values of pA with the property

that the probability of not observing any default during the observation period is not

less than 1�g (for instance for g ¼ 90%).

If we have got pA ¼ pB ¼ pC, then the three rating grades A, B, and C do not

differ in their respective riskiness. Hence we have to deal with a homogeneous

sample of size nA þ nB þ nC without any default during the observation period.

Assuming unconditional independence of the default events, the probability of

2For any value of pA not belonging to this region, the hypothesis that the true PD takes on this

value would have to be rejected at a type I error level of 1-g (see Casella and Berger 2002,

Theorem 9.2.2 on the duality of hypothesis testing and confidence intervals).
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observing no defaults turns out to be ð1� pAÞnAþnBþnC . Consequently, we have to

solve the inequality

1� g � 1� pAð ÞnAþnBþnC (5.2)

for pA in order to obtain the confidence region at level g for pA as the set of all the

values of pA such that

pA � 1� 1� gð Þ1= nAþnBþnCð Þ
(5.3)

If we choose for the sake of illustration

nA ¼ 100; nB ¼ 400; nC ¼ 300; (5.4)

Table 5.1 exhibits some values of confidence levels g with the corresponding

maximum values (upper confidence bounds) p̂A of pA such that (5.2) is still satisfied.
According to Table 5.1, there is a strong dependence of the upper confidence

bound p̂A on the confidence level g. Intuitively, values of g smaller than 95% seem

more appropriate for estimating the PD by p̂A.
By inequality (5.1), the PD pB of grade B cannot be greater than the PD pC of

grade C either. Consequently, the most prudent estimate of pB is obtained by

assuming pB ¼ pC. Assuming additional equality with the PD pA of the best

grade A would violate the most prudent estimation principle, because pA is a

lower bound of pB. If we have got pB ¼ pC, then B and C do not differ in their

respective riskiness and may be considered a homogeneous sample of size nB þ nC.
Therefore, the confidence region at level g for pB is obtained from the inequality

1� g � 1� pCð ÞnBþnC (5.5)

(5.5) implies that the confidence region for pB consists of all the values of pB that

satisfy

pB � 1� 1� gð Þ1= nBþnCð Þ
(5.6)

If we again take up the example described by (5.4), Table 5.2 exhibits some

values of confidence levels g with the corresponding maximum values (upper

confidence bounds) p̂B of pB such that (5.6) is still fulfilled.

Table 5.1 Upper confidence bound p̂A of pA as a function of the confidence level g. No defaults

observed, frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.09% 0.17% 0.29% 0.37% 0.57% 0.86%
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For determining the confidence region at level g for pC we only make use of the

observations in grade C because by (5.1) there is no obvious upper bound for pC.
Hence the confidence region at level g for pC consists of those values of pC that

satisfy the inequality

1� g � 1� pCð ÞnC (5.7)

Equivalently, the confidence region for pC can be described by

pC � 1� 1� gð Þ1=nC (5.8)

Coming back to our example (5.4), Table 5.3 lists some values of confidence

levels g with the corresponding maximum values (upper confidence bounds) p̂C of

pC such that (5.8) is still fulfilled.

Comparison of Tables 5.1–5.3 shows that – besides the confidence level g –

the applicable sample size is a main driver of the upper confidence bound. The

smaller the sample size, the greater will be the upper confidence bound. This is not

an undesirable effect, because intuitively the credit-worthiness ought to be the

better, the greater the number of obligors in a portfolio without any default

observation.

As the results presented so far seem plausible, we suggest using upper confi-

dence bounds as described by (5.3), (5.6) and (5.8) as estimates for the PDs in

portfolios without observed defaults. The case of three rating grades we have

considered in this section can readily be generalized to an arbitrary number of

grades. We do not present the details here.

However, the larger the number of obligors in the entire portfolio, the more often

some defaults will occur in some grades at least, even if the general quality of the

portfolio is very high. This case is not covered by (5.3), (5.6) and (5.8). In the

following section, we will show – still keeping the assumption of independence of

the default events – how the most prudent estimation methodology can be adapted

to the case of a non-zero but still low number of defaults.

Table 5.2 Upper confidence bound p̂B of pB as a function of the confidence level g. No defaults

observed, frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂B 0.10% 0.20% 0.33% 0.43% 0.66% 0.98%

Table 5.3 Upper confidence bound p̂C of pC as a function of the confidence level g. No defaults

observed, frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂C 0.23% 0.46% 0.76% 0.99% 1.52% 2.28%
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5.3 Example: Few Defaults, Assumption of Independence

We consider again the portfolio from Sect. 5.2 with the frequencies nA, nB, and nC.
In contrast to Sect. 5.2, this time we assume that during the last period no default

was observed in grade A, two defaults were observed in grade B, and one default

was observed in grade C.
As in Sect. 5.2, we determine a most prudent confidence region for the PD pA of

A. Again, we do so by assuming that the PDs of the three grades are equal. This

allows us to treat the entire portfolio as a homogeneous sample of size nA þ nB þ
nC. Then the probability of observing not more than three defaults is given by the

expression

X3
i¼0

nA þ nB þ nC
i

� �
piAð1� pAÞnAþnBþnC�i

(5.9)

Expression (5.9) follows from the fact that the number of defaults in the portfolio

is binomially distributed as long as the default events are independent. As a

consequence of (5.9), the confidence region3 at level g for pA is given as the set

of all the values of pA that satisfy the inequality

1� g �
X3
i¼0

nA þ nB þ nC
i

� �
piAð1� pAÞnAþnBþnC�i

(5.10)

The tail distribution of a binomial distribution can be expressed in terms of an

appropriate beta distribution function. Thus, inequality (5.10) can be solved analyt-

ically4 for pA. For details, see Appendix A. If we assume again that the obligors’

numbers per grade are as in (5.4), Table 5.4 shows maximum solutions p̂A of (5.10)

for different confidence levels g.
Although in grade A no defaults were observed, the three defaults that occurred

during the observation period enter the calculation. They affect the upper confi-

dence bounds, which are much higher than those in Table 5.1. This is a consequence

of the precautionary assumption pA ¼ pB ¼ pC. However, if we alternatively

considered grade A alone (by re-evaluating (5.8) with nA ¼ 100 instead of nC),
we would obtain an upper confidence bound of 1.38% at level g ¼ 75%. This value

is still much higher than the one that has been calculated under the precautionary

assumption pA ¼ pB ¼ pC – a consequence of the low frequency of obligors in

grade A in this example. Nevertheless, we see that the methodology described by

(5.10) yields fairly reasonable results.

3We calculate the simple and intuitive exact Clopper-Pearson interval. For an overview of this

approach, as well as potential alternatives, see Brown et al. (2001).
4Alternatively, solving directly (5.10) for pA by means of numerical tools is not too difficult either

(see Appendix A, Proposition A.1, for additional information).
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In order to determine the confidence region at level g for pB, as in Sect. 5.2, we

assume that pB takes its greatest possible value according to (5.1), i.e. that we have

pB ¼ pC. In this situation, we have a homogeneous portfolio with nB þ nC obligors,
PD pB, and three observed defaults. Analogous to (5.9), the probability of observing
no more than three defaults in one period then can be written as:

X3
i¼0

nB þ nC
i

� �
piBð1� pBÞnBþnC�i

(5.11)

Hence, the confidence region at level g for pB turns out to be the set of all the

admissible values of pB which satisfy the inequality

1� g �
X3
i¼0

nB þ nC
i

� �
piBð1� pBÞnBþnC�i

(5.12)

By analytically or numerically solving (5.12) for pB – with frequencies of

obligors in the grades as in (5.4) – we obtain Table 5.5 with some maximum

solutions p̂B of (5.12) for different confidence levels g.
From the given numbers of defaults in the different grades, it becomes clear that

a stand-alone treatment of grade B would yield still much higher values5 for the

upper confidence bounds. The upper confidence bound 0.52% of the confidence

region at level 50% is almost identical with the naı̈ve frequency based PD estimate

2/400 ¼ 0.5% that could alternatively have been calculated for grade B in this

example.

For determining the confidence region at level g for the PD pC, by the same

rationale as in Sect. 5.2, the grade C must be considered a stand-alone portfolio.

According to the assumption made in the beginning of this section, one default

Table 5.5 Upper confidence bound p̂B of pB as a function of the confidence level g. No default

observed in grade A, two defaults observed in grade B, one default observed in grade C,
frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂B 0.52% 0.73% 0.95% 1.10% 1.43% 1.85%

Table 5.4 Upper confidence bound p̂A of pA as a function of the confidence level g. No default

observed in grade A, two defaults observed in grade B, one default observed in grade C,
frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.46% 0.65% 0.83% 0.97% 1.25% 1.62%

5At level 99.9%, e.g., 2.78% would be the value of the upper confidence bound.
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occurred among the nC obligors in C. Hence we see that the confidence region for

pC is the set of all admissible values of pC that satisfy the inequality

1� g �
X1
i¼0

nC
i

� �
piCð1� pCÞnC�i ¼ ð1� pCÞnC þ nC pC 1� pCð ÞnC�1

(5.13)

For obligor frequencies as assumed in example (5.4), Table 5.6 exhibits some

maximum solutions6 p̂C of (5.13) for different confidence levels g.
So far, we have described how to generalize the methodology from Sect. 5.2 to

the case where non-zero default frequencies have been recorded. In the following

section we investigate the impact of non-zero default correlation on the PD esti-

mates that are effected by applying the most prudent estimation methodology.

5.4 Example: Correlated Default Events

In this section, we describe the dependence of the default events with the one-factor

probit model7 that was the starting point for developing the risk weight functions

given in BCBS (2004a)8. First, we use the example from Sect. 5.2 and assume that

no default at all was observed in the whole portfolio during the last period. In order

to illustrate the effects of correlation, we apply the minimum value of the asset

correlation that appears in the Basel II corporate risk weight function. This mini-

mum value is 12% (see BCBS 2004a, } 272). Our model, however, works with any

other correlation assumption as well. Likewise, the most prudent estimation princi-
ple could potentially be applied to other models than the Basel II type credit risk

model as long as the inequalities can be solved for pA, pB and pC, respectively.

Table 5.6 Upper confidence bound p̂C of pC as a function of the confidence level g. No default

observed in grade A, two defaults observed in grade B, one default observed in grade C,
frequencies of obligors in grades given in (5.4)

g 50% 75% 90% 95% 99% 99.9%

p̂C 0.56% 0.90% 1.29% 1.57% 2.19% 3.04%

6If we had assumed that two defaults occurred in grade B but no default was observed in grade C,
then we would have obtained smaller upper bounds for pC than for pB. As this is not a desirable
effect, a possible – conservative – work-around could be to increment the number of defaults in

grade C up to the point where pC would take on a greater value than pB. Nevertheless, in this case

one would have to make sure that the applied rating system yields indeed a correct ranking of the

obligors.
7According to De Finetti’s theorem (see, e.g., Durrett (1996), Theorem 6.8), assuming one

systematic factor only is not very restrictive.
8See Gordy (2003) and BCBS (2004b) for the background of the risk weight functions. In the case

of non-zero realized default rates Balthazar (2004) uses the one-factor model for deriving

confidence intervals of the PDs.
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Under the assumptions of this section, the confidence region at level g for pA
is represented as the set of all admissible values of pA that satisfy the inequality

(cf. Bluhm et al. 2003, Sects. 2.1.2 and 2.5.1 for the derivation)

1� g �
ð1
�1

’ðyÞ 1� F
F�1 pAð Þ � ffiffiffi

r
p

yffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �� �nAþnBþnC

dy; (5.14)

where ’ and F stand for the standard normal density and standard normal distribu-

tion function, respectively. F�1 denotes the inverse function of F and r is the asset
correlation (here r is chosen as r ¼ 12%). Similarly to (5.2), the right-hand side of

inequality (5.14) tells us the one-period probability of not observing any default

among nA þ nA þ nA obligors with average PD pA.
Solving9 (5.14) numerically10 for the frequencies as given in (5.4) leads to

Table 5.7 with maximum solutions p̂A of (5.14) for different confidence levels g.
Comparing the values from the first line of Table 5.7 with Table 5.1 shows that

the impact of taking care of correlations is moderate for the low confidence levels

50% and 75%. The impact is much higher for the levels higher than 90% (for the

confidence level 99.9% the bound is even six times larger). This observation reflects

the general fact that introducing unidirectional stochastic dependence in a sum of

random variables entails a redistribution of probability mass from the centre of the

distribution towards its lower and upper limits.

The formulae for the estimations of upper confidence bounds for pB and pC can

be derived analogously to (5.14) [in combination with (5.5) and (5.7)]. This yields

the inequalities

1� g �
ð1
�1

’ðyÞ 1� F
F�1 pBð Þ � ffiffiffi

r
p

yffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �� �nBþnC

dy (5.15)

Table 5.7 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the confidence
level g. No defaults observed, frequencies of obligors in grades given in (5.4). Correlated default

events

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.15% 0.40% 0.86% 1.31% 2.65% 5.29%

p̂B 0.17% 0.45% 0.96% 1.45% 2.92% 5.77%

p̂C 0.37% 0.92% 1.89% 2.78% 5.30% 9.84%

9See Appendix A, Proposition A.2, for additional information. Taking into account correlations

entails an increase in numerical complexity. Therefore, it might seem to be more efficient to deal

with the correlation problem by choosing an appropriately enlarged confidence level in the

independent default events approach as described in Sects. 5.2 and 5.3. However, it remains

open how a confidence level for the uncorrelated case, that “appropriately” adjusts for the

correlations, can be derived.
10The more intricate calculations for this paper were conducted by means of the software package

R (cf. R Development Core Team 2003).
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and

1� g �
ð1
�1

’ðyÞ 1� F
F�1 pCð Þ � ffiffiffi

r
p

yffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �� �nC

dy; (5.16)

to be solved for pB and pC respectively. The numerical calculations with (5.15) and

(5.16) do not deliver additional qualitative insights. For the sake of completeness,

however, the maximum solutions p̂B of (5.15) and p̂C of (5.16) for different

confidence levels g are listed in rows 3 and 4 of Table 5.7, respectively.

Secondly, we apply our correlated model to the example from Sect. 5.3 and

assume that three defaults were observed during the last period. Analogous to (5.9),

(5.10) and (5.14), the confidence region at level g for pA is represented as the set of

all values of pA that satisfy the inequality

1� g �
ð1
�1

’ðyÞzðyÞdy;

zðyÞ ¼
X3
i¼0

nA þ nB þ nC

i

� �
GðpA; r; yÞi 1� GðpA; r; yÞð ÞnAþnBþnC�i; (5.17)

where the function G is defined by

Gðp; r; yÞ ¼ F
F�1ðpÞ � ffiffiffi

r
p

yffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �

: (5.18)

Solving (5.17) for p̂A with obligor frequencies as given in (5.4), and the respec-

tive modified equations for p̂B and p̂C yields the results presented in Table 5.8.

Not surprisingly, as shown in Table 5.8 the maximum solutions for p̂A, p̂B and p̂C
increase if we introduce defaults in our example. Other than that, the results do not

deliver essential additional insights.

5.5 Extension: Calibration by Scaling Factors

One of the drawbacks of the most prudent estimation principle is that in the case of
few defaults, the upper confidence bound PD estimates for all grades are higher than

the average default rate of the overall portfolio. This phenomenon is not surprising,

Table 5.8 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the confidence
level g. No default observed in grade A, two defaults observed in grade B, one default observed in
grade C, frequencies of obligors in grades given in (5.4). Correlated default events

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.72% 1.42% 2.50% 3.42% 5.88% 10.08%

p̂B 0.81% 1.59% 2.77% 3.77% 6.43% 10.92%

p̂C 0.84% 1.76% 3.19% 4.41% 7.68% 13.14%
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given that we include all defaults of the overall portfolio in the upper confidence

bound estimation even for the highest rating grade. However, these estimates might

be regarded as too conservative by some practitioners.

A remedy would be a scaling11 of all of our estimates towards the central

tendency (the average portfolio default rate). We introduce a scaling factor K to

our estimates such that the overall portfolio default rate is exactly met, i.e.

p̂AnA þ p̂BnB þ p̂CnC
nA þ nB þ nC

K ¼ PDPortfolio: (5.19)

The new, scaled PD estimates will then be

p̂X;scaled ¼ Kp̂X; X ¼ A;B;C: (5.20)

The results of the application of such a scaling factor to our “few defaults”

examples of Sects. 5.3 and 5.4 are shown in Tables 5.9 and 5.10, respectively.

The average estimated portfolio PD will now fit exactly the overall portfolio

central tendency. Thus, we remove all conservatism from our estimations. Given the

poor default data base in typical applications of our methodology, this might be seen

as a disadvantage rather than an advantage. By using the most prudent estimation

Table 5.9 Upper confidence bound p̂A;scaled of pA, p̂B;scaled of pB and p̂C;scaled of pC as a function of

the confidence level g after scaling to the central tendency. No default observed in grade A, two
defaults observed in grade B, one default observed in grade C, frequencies of obligors in grades

given in (5.4). Uncorrelated default events

g 50% 75% 90% 95% 99% 99.9%

Central Tendency 0.375% 0.375% 0.375% 0.375% 0.375% 0.375%

K 0.71 0.48 0.35 0.30 0.22 0.17

p̂A 0.33% 0.31% 0.29% 0.29% 0.28% 0.27%

p̂B 0.37% 0.35% 0.34% 0.33% 0.32% 0.31%

p̂C 0.40% 0.43% 0.46% 0.47% 0.49% 0.50%

Table 5.10 Upper confidence bound p̂A;scaled of pA, p̂B;scaled of pB and p̂C;scaled of pC as a function of
the confidence level g after scaling to the central tendency. No default observed in grade A, two
defaults observed in grade B, one default observed in grade C, frequencies of obligors in grades

given in (5.4). Correlated default events

g 50% 75% 90% 95% 99% 99.9%

Central Tendency 0.375% 0.375% 0.375% 0.375% 0.375% 0.375%

K 0.46 0.23 0.13 0.09 0.05 0.03

p̂A 0.33% 0.33% 0.32% 0.32% 0.32% 0.32%

p̂B 0.38% 0.37% 0.36% 0.36% 0.35% 0.35%

p̂C 0.39% 0.40% 0.41% 0.42% 0.42% 0.42%

11A similar scaling procedure was suggested by Benjamin et al. (2006). However, the straight-

forward linear approach as described in (5.19) and (5.20) has the drawback that, in principle, the

resulting PDs can exceed 100%. See Tasche (2009, Appendix A) for a non-linear scaling approach

based on Bayes’ formula that avoids this issue.
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principle to derive “relative” PDs before scaling them down to the final results, we

preserve the sole dependence of the PD estimates upon the borrower frequencies in

the respective rating grades, as well as the monotony of the PDs.

The question of the appropriate confidence level for the above calculations

remains. Although the average estimated portfolio PD now always fits the overall

portfolio default rate, the confidence level determines the “distribution” of that rate

over the rating grades. In the above example, though, the differences in distribution

appear small, especially in the correlated case, such that we would not explore this

issue further. The confidence level could, in practice, be used to control the spread

of PD estimates over the rating grades – the higher the confidence level, the higher

the spread.

However, the above scaling works only if there is a nonzero number of defaults

in the overall portfolio. Zero default portfolios would indeed be treated more

severely if we continued to apply our original proposal to them, compared to using

scaled PDs for low default portfolios.

A variant of the above scaling proposal that takes care of both issues is the use of

an upper confidence bound for the overall portfolio PD in lieu of the actual default

rate. This upper confidence bound for the overall portfolio PD, incidentally, equals

the most prudent estimate for the highest rating grade. Then, the same scaling

methodology as described above can be applied. The results of its application to the

few defaults examples as in Tables 5.9 and 5.10 are presented in Tables 5.11

and 5.12.

Table 5.11 Upper confidence bound p̂A;scaled of pA, p̂B;scaled of pB and p̂C;scaled of pC as a function of
the confidence level g after scaling to the upper confidence bound of the overall portfolio PD. No

default observed in grade A, two defaults observed in grade B, one default observed in grade C,
frequencies of obligors in grades given in (5.4). Uncorrelated default events

g 50% 75% 90% 95% 99% 99.9%

Upper bound for

portfolio PD

0.46% 0.65% 0.83% 0.97% 1.25% 1.62%

K 0.87 0.83 0.78 0.77 0.74 0.71

p̂A 0.40% 0.54% 0.65% 0.74% 0.92% 1.16%

p̂B 0.45% 0.61% 0.74% 0.84% 1.06% 1.32%

p̂C 0.49% 0.75% 1.01% 1.22% 1.62% 2.17%

Table 5.12 Upper confidence bound p̂A;scaled of pA, p̂B;scaled of pB and p̂C;scaled of pC as a function of
the confidence level g after scaling to the upper confidence bound of the overall portfolio PD. No

default observed in grade A, two defaults observed in grade B, one default observed in grade C,
frequencies of obligors in grades given in (5.4). Correlated default events

g 50% 75% 90% 95% 99% 99.9%

Upper bound for

portfolio PD

0.71% 1.42% 2.50% 3.42% 5.88% 10.08%

K 0.89 0.87 0.86 0.86 0.86 0.87

p̂A 0.64% 1.24% 2.16% 2.95% 5.06% 8.72%

p̂B 0.72% 1.38% 2.39% 3.25% 5.54% 9.54%

p̂C 0.75% 1.53% 2.76% 3.80% 6.61% 11.37%
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In contrast to the situation of Tables 5.9 and 5.10, in Tables 5.11 and 5.12 the

overall default rate in the portfolio depends on the confidence level, and we observe

scaled PD estimates for the grades that increase with growing levels. Nevertheless,

the scaled PD estimates for the better grades are still considerably lower than the

corresponding unscaled estimates from Sects. 5.3 and 5.4, respectively. For the sake

of comparison, we provide in Appendix B the analogous numerical results for the

no default case.

The advantage of this latter variant of the scaling approach is that the degree of

conservatism is actively manageable by the appropriate choice of the confidence

level for the estimation of the upper confidence bound of the portfolio PD. More-

over, it works in the case of zero defaults and few defaults, and thus does not

produce a structural break between both scenarios. Lastly, the results are less

conservative than those of our original methodology.

5.6 Extension: The Multi-period Case

So far, we have only considered the situation where estimations are carried out on a

1 year (or one observation period) data sample. In case of a time series with data

from several years, the PDs (per rating grade) for the single years could be

estimated and could then be used for calculating weighted averages of the PDs in

order to make more efficient use of the data. By doing so, however, the interpreta-

tion of the estimates as upper confidence bounds at some pre-defined level would

be lost.

Alternatively, the data of all years could be pooled and tackled as in the 1-year

case. When assuming cross-sectional and inter-temporal independence of the

default events, the methodology as presented in Sects. 5.2 and 5.3 can be applied

to the data pool by replacing the 1-year frequency of a grade with the sum of the

frequencies of this grade over the years (analogous for the numbers of defaulted

obligors). This way, the interpretation of the results as upper confidence bounds as

well as the frequency-dependent degree of conservatism of the estimates will be

preserved.

However, when turning to the case of default events which are cross-sectionally

and inter-temporally correlated, pooling does not allow for an adequate modelling.

An example would be a portfolio of long-term loans, where in the inter-temporal

pool every obligor would appear several times. As a consequence, the dependence

structure of the pool would have to be specified very carefully, as the structure of

correlation over time and of cross-sectional correlation are likely to differ.

In this section, we present two multi-period extensions of the cross-sectional

one-factor correlation model that has been introduced in Sect. 5.4. In the first part of

the section, we take the perspective of an observer of a cohort of obligors over a

fixed interval of time. The advantage of such a view arises from the conceptual

separation of time and cross-section effects. Again, we do not present the metho-

dology in full generality but rather introduce it by way of an example.
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As in Sect. 5.4, we assume that, at the beginning of the observation period, we

have got nA obligors in grade A, nB obligors in grade B, and nC obligors in grade C.
In contrast to Sect. 5.4, the length of the observation period this time is T >1. We

consider only the obligors that were present at the beginning of the observation

period. Any obligors entering the portfolio afterwards are neglected for the purpose

of our estimation exercise. Nevertheless, the number of observed obligors may vary

from year to year as soon as any defaults occur.

As in the previous sections, we first consider the estimation of the PD pA for

grade A. PD in this section denotes a long-term average 1-year probability of

default. Working again with the most prudent estimation principle, we assume

that the PDs pA, pB, and pC are equal, i.e. pA ¼ pB ¼ pC ¼ p. We assume, similar

to Gordy (2003), that a default of obligor i ¼ 1, . . ., N ¼ nA þ nB þ nC in year

t ¼ 1, . . ., T is triggered if the change in value of their assets results in a value lower
than some default threshold c as described below by (5.22). Specifically, ifVi,t denotes

the change in value of obligor i’s assets, Vi,t is given by

Vi;t ¼ ffiffiffi
r

p
St þ

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
xi;t; (5.21)

where r stands for the asset correlation as introduced in Sect. 5.4, St is the

realisation of the systematic factor in year t, and xi,t denotes the idiosyncratic
component of the change in value. The cross-sectional dependence of the default

events stems from the presence of the systematic factor St in all the obligors’ change
in value variables. Obligor i’s default occurs in year t if

Vi;1>c; . . . ;Vi;t�1>c;Vi;t � c: (5.22)

The probability

P[Vi;t � c� ¼ pi;t ¼ p (5.23)

is the parameter we are interested to estimate: It describes the long-term average

1-year probability of default among the obligors that have not defaulted before. The

indices i and t at pi,t can be dropped because by the assumptions we are going to

specify below pi,twill neither depend on i nor on t. To some extent, therefore, pmay

be considered a through-the-cycle PD.
For the sake of computational feasibility, and in order to keep as close as possible

to the Basel II risk weight model, we specify the factor variables St, t ¼ 1,. . .,T, and
xi,t, i ¼ 1,. . .,N, t ¼ 1,. . .,T as standard normally distributed (cf. Bluhm et al. 2003).

Moreover, we assume that the random vector (S1,. . .,ST) and the random variables

xi,t, i ¼ 1,. . .,N, t ¼ 1,. . .,T are independent. As a consequence, from (5.21) it

follows that the change in value variables Vi,t are all standard-normally distributed.

Therefore, (5.23) implies that the default threshold12 c is determined by

12At first sight, the fact that in our model the default threshold is constant over time seems to imply

that the model does not reflect the possibility of rating migrations. However, by construction of the
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c ¼ F�1ðpÞ; (5.24)

with F denoting the standard normal distribution function.

While the single components St of the vector of systematic factors, generate the

cross-sectional correlation of the default events at time t, their inter-temporal

correlation is affected by the dependence structure of the factors S1,. . .,ST. We

further assume that not only the components but also the vector as a whole is

normally distributed. Since the components of the vector are standardized, its joint

distribution is completely determined by the correlation matrix

1 r1;2 r1;3 � � � r1;T
r2;1 1 r2;3 � � � r2;T

..

. . .
. ..

.

rT;1 rT;T�1 1

0
BBBBB@

1
CCCCCA
: (5.25)

Whereas the cross-sectional correlation within 1 year is constant for any pair of

obligors, empirical observation indicates that the effect of inter-temporal correla-

tion becomes weaker with increasing distance in time. We express this distance-

dependent behaviour13 of correlations by setting in (5.25)

rs;t ¼ # s�tj j; s; t ¼ 1; � � � ; T; s 6¼ t; (5.26)

for some appropriate 0 < # < 1 to be specified below.

Let us assume that within the T years observation period kA defaults were

observed among the obligors that were initially graded A, kB defaults among the

initially graded B obligors and kC defaults among the initially graded C obligors.

For the estimation of pA according to the most prudent estimation principle,

therefore we have to take into account k ¼ kA þ kB þ kC defaults among N
obligors over T years. For any given confidence level g, we have to determine the

maximum value p̂ of all the parameters p such that the inequality

1� g � P No more than k defaults observed½ � (5.27)

is satisfied – note that the right-hand side of (5.27) depends on the one-period

probability of default p. In order to derive a formulation that is accessible to

numerical calculation, we have to rewrite the right-hand side of (5.27).

model, the conditional default threshold at time t given the value Vi,t-1will in general differ from c.
As we make use of the joint distribution of the Vi,t, therefore rating migrations are implicitly taken

into account.
13Blochwitz et al. (2004) proposed the specification of the inter-temporal dependence structure

according to (5.26) for the purpose of default probability estimation.
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The first step is to develop an expression for obligor i’s conditional probability to
default during the observation period, given a realization of the systematic factors

S1,. . .,ST. From (5.21), (5.22), (5.24) and by using the conditional independence of

the Vi,1, . . ., Vi,T given the systematic factors, we obtain

P Obligor i defaults jS1; � � � ;ST½ �

¼ P min
t¼1;...;T

Vi;t � F�1ðpÞjS1; . . . ;ST
� �

¼ 1� P xi;1>
F�1ðpÞ � ffiffiffi

r
p

S1ffiffiffiffiffiffiffiffiffi
1�r

p ; . . . ;xi;T>
F�1ðpÞ � ffiffiffi

r
p

STffiffiffiffiffiffiffiffiffi
1�r

p jS1; . . . ;ST
� �

¼ 1�
YT
t¼1

1�Gðp;r;StÞð Þ;

(5.28)

where the function G is defined as in (5.18). By construction, in the model all the

probabilities P[Obligor i defaults |S1, ..., ST] are equal, so that, for any of the i, we
can define

pðS1; :::; STÞ ¼ P[Obligor i defaults j S1; :::; ST �

¼ 1�
YT
t¼1

ð1� Gðp; r; StÞÞ
(5.29)

Using this abbreviation, we can write the right-hand side of (5.27) as

P[No more than k defaults observed]

¼
Xk
l¼0

E[P[Exactly l obligors default j S1; :::; ST ��

¼
Xk
l¼0

N

l

� �
E[pðS1; :::; STÞlð1�pðS1; :::; STÞÞN�l�:

(5.30)

The expectations in (5.30) are expectations with respect to the random vector

(S1, . . .,ST) and have to be calculated as T-dimensional integrals involving the

density of the T-variate standard normal distribution with correlation matrix

given by (5.25) and (5.26). When solving (5.27) for p̂, we calculated the values of

these T-dimensional integrals by means of Monte-Carlo simulation, taking advan-

tage of the fact that the term

Xk
l¼0

N
l

� �
E[pðS1; :::; STÞlð1�pðS1; :::; STÞÞN�l� (5.31)

can be efficiently evaluated by making use of (5.35) of Appendix A.
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In order to present some numerical results for an illustration of how the model

works, we have to fix a time horizon T and values for the cross-sectional correlation

r and the inter-temporal correlation parameter #. We choose T ¼ 5 as BCBS

(2004a) requires the credit institutions to base their PD estimates on a time series

with minimum length 5 years. For r, we chose r ¼ 0.12 as in Sect. 5.4, i.e. again a

value suggested by BCBS (2004a). Our feeling is that default events with a 5 years

time distance can be regarded as being nearly independent. Statistically, this

statement might be interpreted as something like “the correlation of S1 and S5 is

less than 1%”. Setting # ¼ 0.3, we obtain corr[S1,. . .,ST] ¼ #4 ¼ 0.81%. Thus, the

choice # ¼ 0.3 seems reasonable. Note that our choices of the parameters are

purely exemplary, as to some extent choosing the values of the parameters is rather

a matter of taste or judgement or of decisions depending on the available data or the

purpose of the estimations.14

Table 5.13 shows the results of the calculations for the case where no defaults were

observed during 5 years in the whole portfolio. The results for all the three grades are

summarized in one table. To arrive at these results, (5.27) was first evaluated with

N ¼ nA þ nB þ nC, then with N ¼ nB þ nC, and finally with N ¼ nC. In all three

cases we set k ¼ 0 in (5.30) in order to express that no defaults were observed. Not

surprisingly, the calculated confidence bounds are much lower than those presented as

in Table 5.7, thus demonstrating the potentially dramatic effect of exploiting longer

observation periods.

For Table 5.14 we conducted essentially the same computations as for

Table 5.13, the difference being that we assumed that over 5 years kA ¼ 0, defaults

were observed in grade A, kB ¼2 defaults were observed in grade B, and kC ¼ 1

14Benjamin et al. (2006) propose a similar methodology that pools multi-year data into one large

pool of customers. Effectively, they implicitly assume identical cross-borrower and intra-temporal

correlations and disregard borrower duplication within the observation period.

Table 5.13 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the

confidence level g. No defaults during 5 years observed, frequencies of obligors in grades given in
(5.4). Cross-sectionally and inter-temporally correlated default events

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.03% 0.06% 0.11% 0.16% 0.30% 0.55%

p̂B 0.03% 0.07% 0.13% 0.18% 0.33% 0.62%

p̂C 0.07% 0.14% 0.26% 0.37% 0.67% 1.23%

Table 5.14 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the

confidence level g. During 5 years, no default observed in grade A, two defaults observed in grade
B, one default observed in grade C, frequencies of obligors in grades given in (5.4). Cross-

sectionally and inter-temporally correlated default events

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.12% 0.21% 0.33% 0.43% 0.70% 1.17%

p̂B 0.14% 0.24% 0.38% 0.49% 0.77% 1.29%

p̂C 0.15% 0.27% 0.46% 0.61% 1.01% 1.70%
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defaults were observed in grade C (as in Sects. 5.3 and 5.4 during 1 year).

Consequently, we set k ¼ 3 in (5.30) for calculating the upper confidence bounds

for pA and pB, as well as k ¼ 1 for the upper confidence bounds of pC. Compared

with the results presented in Table 5.8, we observe again the very strong effect of

taking into account a longer time series.

The methodology described above could be christened “cohort approach” – as

cohorts of borrowers are observed over multiple years. It does not take into account

any changes in portfolio size due to new lending or repayment of loans. Moreover,

the approach ignores the information provided by time clusters of defaults (if there

are any). Intuitively, time-clustering of defaults should be the kind of information

needed to estimate the cross-sectional and time-related correlation parameters r
and # respectively15.

A slightly different multi-period approach (called “multiple binomial” in the

following) allows for variation of portfolio size by new lending and amortization

and makes it possible, in principle, to estimate the correlation parameters. In

particular this approach ignores the fact that most of the time the portfolio compo-

sition this year and next year is almost identical. However, it will turn out that as a

consequence of the conditional independence assumptions we have adopted the

impact of ignoring the almost constant portfolio composition is reasonably weak.

Assume that the portfolio size in year t was Nt for t ¼ 1, . . ., T, and that dt
defaults were observed in year t. Given realisations S1, . . ., ST of the systematic

factors, we then assume that the distribution of the number of defaults in year t
conditional on S1, . . ., ST is binomial as in (5.17) and (5.18), i.e.

P dt defaults in year tjS1; . . . ; ST½ �

¼ Nt

dt

� �
Gðp; r; StÞdtð1� Gðp; r; StÞÞNt�dt (5.32)

Under the additional assumption of conditional independence of default events

at different moments in time conditional on a realisation of the systematic factors,

(5.32) implies that the unconditional probability to observe d1 defaults in year

1, . . ., dT defaults in year T is given by

P dt defaults in year t; t ¼ 1; . . . ; T½ �
¼ E P dt defaults in year t; t ¼ 1; . . . ; TjS1; . . . ; ST½ �½ �

¼ E
YT
t¼1

Nt

dt

� �
Gðp; r; StÞdtð1� Gðp; r; StÞÞNt�dt

" #
(5.33)

15Indeed, it is possible to modify the cohort approach in such a way as to take account of portfolio

size varying due to other causes than default and of time-clusters of default. This modification,

however, comes at a high price because it requires a much more complicated input data structure

that causes much longer calculation time.

92 K. Pluto and D. Tasche



As (5.33) involves a binomial distribution for each point in time t we call the

approach the “multiple binomial” approach. If we assume that the latent systematic

factors follow a T-dimensional normal distribution with standard normal marginals

as specified by (5.25) and (5.26), then calculation of the right-hand side of (5.33)

involves the evaluation of a T-dimensional integral. This can be done by Monte-

Carlo simulation as in the case of (5.31).

By means of an appropriate optimisation method16, the right-hand side of (5.33)

can be used as the likelihood function for the determination of joint maximum

likelihood estimates of the correlation parameters r and # and of the long-run PD

parameter p. It however requires at least one of the annual default number observa-

tions dt to be positive. Otherwise the likelihood (5.33) is constant equal to 100% for

p ¼ 0 and it is not possible to identify unique parameters r and # that maximise the

likelihood. In the context of Table 5.14, if we assume that the three defaults

occurred in the first year and consider the entire portfolio, the maximum likelihood

estimates of r, # and p are 34.3%, 0%, and 7.5 bps respectively.

In the case where values of the correlation parameters are known or assumed to

be known, it is also possible to use the multiple binomial approach to compute

confidence bound type estimates of the long-run grade-wise PD estimates as was

done for Table 5.14. To be able to do this calculation with the multiple binomial

approach, we need to calculate the unconditional probability that the total number

of defaults in years 1 to T does not exceed d ¼ d1 þ � � � þ dT. As the sum of

binomially distributed random variables with different success probabilities in

general is not binomially distributed, we calculate an approximate value of the

required unconditional probability based on Poisson approximation:

P No more than d defaults in years 1 to T½ �

� E exp �Ir;p S1; . . . ; STð Þ� � Xd
k¼0

Ir;p S1; . . . ; STð Þk
k!

" #
;

Ir;p s1; . . . ; sTð Þ ¼
XT
t¼1

Nt Gðp; r; StÞ:

(5.34)

The expected value in (5.34) again has to be calculated by Monte-Carlo simula-

tion. Table 5.15 shows the results of such a calculation in the context of Table 5.13

[i.e. Table 5.13 is recalculated based on (5.34) instead of (5.31)].

Similarly, Table 5.16 displays the recalculated Table 5.14 [i.e. Table 5.14 is

recalculated based on (5.34) instead of (5.31)]. Both in Table 5.15 and Table 5.16

results seem hardly different to the results in Table 5.13 and Table 5.14 respec-

tively. Hence the use of (5.34) instead of (5.31) in order to allow for different

portfolio sizes due to new lending and amortisation appears to be justified.

16For the numerical examples in this paper, the authors made use of the R-procedure nlminb.
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5.7 Applications

Themost prudent estimationmethodology described in the previous sections can be

used for a range of applications, both within a bank and in a Basel II context. In the

latter case, it might be specifically useful for portfolios where neither internal nor

external default data are sufficient to meet the Basel requirements. A good example

might be Specialized Lending. In these high-volume, low-number and low-default

portfolios, internal data is often insufficient for PD estimations per rating category,

and might indeed even be insufficient for central tendency estimations for the entire

portfolio (across all rating grades). Moreover, mapping to external ratings –

although explicitly allowed in the Basel context and widely used in bank internal

applications – might be impossible due to the low number of externally rated

exposures.

The (conservative) principle of the most prudent estimation could serve as an

alternative to the Basel slotting approach, subject to supervisory approval. In this

context, the proposed methodology might be interpreted as a specific form of the

Basel requirement of conservative estimations if data is scarce.

In a wider context, within the bank, the methodology might be used for all sorts

of low default portfolios. In particular, it could complement other estimation

methods, whether this be mapping to external ratings, the proposals by Schuermann

and Hanson (2004) or others. As such, we see our proposed methodology as an

additional source for PD calibrations. This should neither invalidate nor prejudge a

bank’s internal choice of calibration methodologies.

However, we tend to believe that our proposed methodology should only be

applied to whole rating systems and portfolios. One might think of calibrating PDs

of individual low default rating grades within an otherwise rich data structure.

Table 5.16 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the

confidence level g. During 5 years, no default observed in grade A, two defaults observed in grade
B, one default observed in grade C, frequencies of obligors in grades given in (5.4). Cross-

sectionally and inter-temporally correlated default events. Calculation based on (5.34)

g 50% 75% 90% 95% 99% 99.9%

p̂A 0.12% 0.21% 0.33% 0.42% 0.68% 1.12%

p̂B 0.13% 0.23% 0.37% 0.47% 0.76% 1.24%

p̂C 0.14% 0.26% 0.44% 0.59% 0.99% 1.66%

Table 5.15 Upper confidence bounds p̂A of pA, p̂B of pB and p̂C of pC as a function of the

confidence level g. No defaults during 5 years observed, frequencies of obligors in grades given in
(5.4). Cross-sectionally and inter-temporally correlated default events. Calculation based on (5.34)

G 50% 75% 90% 95% 99% 99.9%

p̂A 0.02% 0.05% 0.10% 0.15% 0.29% 0.53%

p̂B 0.03% 0.06% 0.12% 0.17% 0.32% 0.60%

p̂C 0.06% 0.13% 0.26% 0.36% 0.66% 1.19%
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Doing so almost unavoidably leads to a structural break between average PDs

(data rich rating grades) and upper PD bounds (low default rating grades) which

makes the procedure appear infeasible. Similarly, we believe that the application

of the methodology for backtesting or similar validation tools would not add

much additional information. For instance, purely expert-based average PDs per

rating grade would normally be well below our proposed quantitative upper

bounds.

5.8 Open Issues

For applications, a number of important issues need to be addressed:

l Which confidence levels are appropriate? The proposed most prudent estimate

could serve as a conservative proxy for average PDs. In determining the confi-

dence level, the impact of a potential underestimation of these average PDs

should be taken into account. One might think that the transformation of average

PDs into some kind of “stress” PDs, as done in the Basel II and many other credit

risk models, could justify rather low confidence levels for the PD estimation in

the first place (i.e. using the models as providers of additional buffers against

uncertainty). However, this conclusion would be misleading, as it mixes two

different types of “stresses”: the Basel II model “stress” of the single systematic

factor over time, and the estimation uncertainty “stress” of the PD estimations.

Indeed, we would argue for moderate confidence levels when applying the most
prudent estimation principle, but for other reasons. The most common alterna-

tive to our methodology, namely deriving PDs from averages of historical

default rates per rating grade, yields a comparable probability that the true PD

will be underestimated. Therefore, high confidence levels in our methodology

would be hard to justify.
l At which number of defaults should users deviate from our methodology and use

“normal” average PD estimation methods, at least for the overall portfolio

central tendency? Can this critical number be analytically determined?
l If the relative number of defaults in one of the better ratings grades is signifi-

cantly higher than those in lower rating grades (and within low default portfo-

lios, this might happen with only one or two additional defaults), then our PD

estimates may turn out to be non-monotonic. In which cases should this be

taken as an indication of an incorrect ordinal ranking? Certainly, monotony or

non-monotony of our upper PD bounds does not immediately imply that the

average PDs are monotonic or non-monotonic. Under which conditions would

there be statistical evidence of a violation of the monotony requirement for

the PDs?

Currently, we do not have definite solutions to above issues. We believe, though,

that some of them will involve a certain amount of expert judgment rather than

analytical solutions. In particular, that might be the case with the first item. If our
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proposed approach were used in a supervisory – say Basel II – context, supervisors

might want to think about suitable confidence levels that should be consistently

applied.

5.9 Estimation Versus Validation

We have been somewhat surprised to see the methodology described in this chapter

being often applied for PD validation rather than PD estimation. This new section

for the second edition of the book sets out principles as to when and when not apply

the methodology for PD estimation, as well as examples where application might be

useful in practice.

First, the low default estimation methodology based on upper confidence bounds

has a high degree of inbuilt conservatism. Comparing default rates or PDs estimated

by other methodologies against confidence-bound-based PDs must take this esti-

mation bias into account – having observed default rates not breaching our upper

confidence bounds should not be regarded as a particular achievement, and observ-

ing default rates above the confidence bounds may indicate a serious PD under-

estimation indeed.

Second, spreading the central tendency of a portfolio across rating grades via the

most prudent estimation principle has the grade PDs, in effect, solely driven by

grade population and the confidence level. There are limits as to how wide the

central tendency can be statistically spread, implying that the slope of the most

prudent PDs over rating grades tends to be much flatter than PDs curves derived by

alternative methods (e.g. benchmarking to external ratings).

So which benefits can be derived from validation via benchmarking against low

default estimates based on upper confidence bounds? As the low default methodol-

ogy delivers conservative PD estimates, it can offer some insight into the degree of

conservatism for PDs calibrated by another method.

For a given PD estimate (derived, for example, by benchmarking to external

ratings) and an observed number of defaults, an intermediate step of the calculation

of upper confidence bounds gives an implied confidence level that would have

delivered the same PD from the default rate via the confidence bound calculation.

Indeed, using (5.27) with the given PD estimate to determine g generates an implied

confidence level as desired.

While there is no test as to which confidence level is “too conservative” in this

context, the approach offers an opportunity for the quantification of conservatism

that might be helpful in bank internal and regulatory discussions. The approach is

most useful for central tendency comparisons – application at grade level may

result in very different confidence levels across the rating scale due to the low

number of defaults. The interpretation of such fluctuating levels then becomes

somewhat of a challenge. The approach might yield useful results over time,

however, as the implicit confidence level changes. The volatility can give some

qualitative indication as to how much “point in time” or “through the cycle” a rating
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system is – the latter should result in higher volatility as observed default rates are

always point in time.

5.10 Conclusions

In this article, we have introduced a methodology for estimating probabilities of

default in low or no default portfolios. The methodology is based on upper

confidence intervals by use of the most prudent estimation. Our methodology

uses all available quantitative information. In the extreme case of no defaults in

the entire portfolio, this information consists solely of the absolute numbers of

counter-parties per rating grade.

The lack of defaults in the entire portfolio prevents reliable quantitative state-

ments on both the absolute level of average PDs per rating grade as well as on the

relative risk increase from rating grade to rating grade. Within the most prudent
estimation methodology, we do not use such information. The only additional

assumption used is the ordinal ranking of the borrowers, which is assumed to be

correct.

Our PD estimates might seem rather high at first sight. However, given the

amount of information that is actually available, the results do not appear out of

range. We believe that the choice of moderate confidence levels is appropriate

within most applications. The results can be scaled to any appropriate central

tendency. Additionally, the multi-year context as described in Sect. 5.6 might

provide further insight.

Appendix A

This appendix provides additional information on the analytical and numerical

solutions of (5.10) and (5.14).

Analytical solution of (5.10). If X is a binomially distributed random variable

with size parameter n and success probability p, then for any integer 0 � k � n, we
have

Xk
i¼0

n
i

� �
pið1�pÞn�i ¼ P[X� k� ¼ 1� P[Y� p� ¼

Ð 1
p t

kð1� tÞn�k�1dtÐ 1
0
tkð1� tÞn�k�1dt

(5.35)

with Y denoting a beta distributed random variable with parameters a ¼ k þ 1 and
b ¼ n�k (see, e.g., Hinderer (1980), Lemma 11.2). The beta distribution function

and its inverse function are available in standard numerical tools, e.g. in Excel.

Direct numerical solution of Equation (5.10). The following proposition shows

the existence and uniqueness of the solution of (5.10), and, at the same time,

provides initial values for the numerical root-finding [see (5.38)].
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Proposition A.1. Let 0 � k < n be integers, and define the function fn,k:
(0, 1) ! R by

fn;kðpÞ ¼
Xk
i¼0

n
i

� �
pið1� pÞn�i; p 2 ð0; 1Þ (5.36)

Fix some 0 < v < 1. Then the equation

fn;kðpÞ ¼ v (5.37)

has exactly one solution 0 < p ¼ p(v) < 1. Moreover, this solution p(v) satisfies
the inequalities

1� ffiffiffi
vn

p � pðvÞ �
ffiffiffiffiffiffiffiffiffiffiffi
1� v

n
p

(5.38)

Proof. A straight-forward calculation yields

dfn;kðpÞ
dp

¼ �ðn� kÞ n
k

� �
pkð1� pÞn�k�1: (5.39)

Hence fn,k is strictly decreasing. This implies uniqueness of the solution of

(5.37). The inequalities

fn;0ðpÞ � fn;kðpÞ � fn;n�1ðpÞ (5.40)

imply the existence of a solution of (5.37) and the inequalities (5.38).

Numerical solution of (5.14). For (5.14) we can derive a result similar to

Proposition A.1. However, there is no obvious upper bound to the solution p(v) of
(5.42) as in (5.38).

Proposition A.2. For any probability 0 < p < 1, any correlation 0 < r < 1

and any real number y define

Frðp; yÞ ¼ F
F�1ðpÞ þ ffiffiffi

r
p

yffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� �

; (5.41)

where we make use of the same notations as for (5.14). Fix a value 0 < v < 1 and a
positive integer n. Then the equation

v ¼
ð1
�1

’ðyÞð1� Frðp; yÞÞndy; (5.42)

with ’ denoting the standard normal density, has exactly one solution 0 < p ¼ p
(v) < 1. This solution p(v) satisfies the inequality

pðvÞ � 1� ffiffiffi
vn

p
: (5.43)
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Proof of Proposition (A.2) Note that – for fixed r and y – the function Fr(p, y) is
strictly increasing and continuous in p. Moreover, we have

0 ¼ lim
p!0

Frðp; yÞ and 1 ¼ lim
p!1

Frðp; yÞ (5.44)

Equation (5.44) implies existence and uniqueness of the solution of (5.42).

Define the random variable Z by

Z ¼ Frðp; YÞ; (5.45)

where Y denotes a standard normally distributed random variable. Then Z has the

well-known Vasicek distribution (cf. Vasicek 1997), and in particular we have

E[Z� ¼ p: (5.46)

Using (5.45), (5.42) can be rewritten as

v ¼ E½ð1� ZÞn�: (5.47)

Since y ! (1� y)n is convex for 0 < y < 1, by (5.46) Jensen’s inequality

implies

v ¼ E½ð1� ZÞn� � ð1� pÞn: (5.48)

As the right-hand side of (5.42) is decreasing in p, (5.43) now follows from

(5.48).

Appendix B

This appendix provides additional numerical results for the “scaling” extension of

themost prudent estimation principle according to Sect. 5.5 in the case of no default
portfolios. In the examples presented in Tables 5.17 and 5.18, the confidence level

for deriving the upper confidence bound for the overall portfolio PD, and the

confidence levels for the most prudent estimates of PDs per rating grade have

Table 5.17 Upper confidence bound p̂A;scaled of pA, p̂B;scaled of pB and p̂C;scaled of pC as a function of
the confidence level g after scaling to the upper confidence bound of the overall portfolio PD. No

default observed, frequencies of obligors in grades given in (5.4). Uncorrelated default events

g 50% 75% 90% 95% 99% 99.9%

Central tendency 0.09% 0.17% 0.29% 0.37% 0.57% 0.86%

K 0.61 0.66 0.60 0.58 0.59 0.59

p̂A 0.05% 0.11% 0.17% 0.22% 0.33% 0.51%

p̂B 0.06% 0.13% 0.20% 0.25% 0.39% 0.58%

p̂C 0.14% 0.24% 0.45% 0.58% 0.89% 1.35%
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always been set equal. Moreover, our methodology always provides equality

between the upper bound of the overall portfolio PD and the most prudent estimate
for pA according to the respective examples of Sects. 5.2 and 5.4.
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Chapter 6

Transition Matrices: Properties and Estimation

Methods

Bernd Engelmann and Konstantin Ermakov

6.1 Introduction

In Chaps. 1–3 estimation methods for 1-year default probabilities have been

presented. In many risk management applications a 1-year default probability

is not sufficient because multi-year default probabilities or default probabilities

corresponding to year fractions are needed. Practical examples in the context of

retail loan pricing and risk management are presented in Chaps. 17 and 18. In other

applications, like credit risk modelling, rating transitions, i.e. the probability that

a debtor in rating grade i moves to rating grade j within a period of time, are of

importance. In all cases, a 1-year transition matrix serves as the starting point.

In this chapter, we will assume a rating system with n rating grades where the

n-th grade is the default grade. A 1-year transition matrix is a n x n matrix with the

probabilities that a debtor in rating grade i migrates to rating grade j within 1 year.

We start with exploring the properties of transition matrices. Under the assumption

that rating transitions areMarkovian, i.e. that rating transitions have “no memory”,

and that transition probabilities are time-homogeneous it is possible to compute

transition matrices for arbitrary time periods. We will show the formulas for this

calculation in detail.

These concepts will be illustrated with a numerical example where a 6-month

transition matrix is computed. We will see from this example that a straightforward

application of the formulas for computing transition matrices for arbitrary time

frames can lead to implausible results. We will also see that this is the case for most

practical examples. To make the calculation of arbitrary transition matrices work in

practice, a regularization algorithm has to be applied to the original 1-year transition
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matrix. A number of regularization algorithms exist in the literature. We will present

one of them that is easy to implement and delivers reasonable results.

After that, two different estimation methods for transition matrices are pre-

sented, the cohort method and the duration method. While the cohort method

directly estimates a 1-year transition matrix, the duration matrix estimates the

generator of the transition matrix, i.e. its matrix logarithm. While in the literature

it is occasionally claimed that the duration method offers an advantage over the

cohort method (Jafry and Schuermann 2004), we will show using a simple simula-

tion study that this is not the case.

6.2 Properties of Transition Matrices

A 1-year transition matrix P is a matrix of the form

P ¼
p1;1 p1;2 . . . p1;n

..

. ..
.

. . . ..
.

pn�1;1 pn�1;2 � � � pn�1;n
0 0 0 1

0
BBB@

1
CCCA (6.1)

where pi,j is the probability that a debtor migrates from rating grade i to grade j
within 1 year. The final grade n is the default state which is absorbing, i.e. once a

debtor has defaulted he cannot migrate back to an alive state but will stay in the

default state forever.

A transition matrix P is characterized by the four properties:

l All entries are probabilities, i.e. 0 � pi,j � 1, i, j ¼ 1,. . ., n.
l The sum of the entries of each row is one

Pn
j¼1 pi;j ¼ 1.

l The most right entry of each row pi,n is the default probability of rating grade i.
l The default grade is absorbing, pn,j ¼ 0, j < n, pn,n ¼ 1.

The second property can also be interpreted intuitively. If a debtor is in rating

grade i at the beginning of a period he must be either still in rating grade i, or in
some other rating grade, or in default at the end of the period. Therefore, all row

probabilities have to sum to one.

In practice it can happen that a debtor disappears from the data sample because it

is no longer rated. This is not considered in a modelling approach. Typically these

cases are excluded from the data sample or an additional rating grade “Non-rated”

is introduced to measure the proportion of annual “transitions” into this class.

However, when the transition matrix is used in a practical application the “Non-

rated” grade has to be removed and the transition probabilities have to be rescaled

to sum to one.

Typically transition matrices refer to a time period of 1 year. In several risk

management applications multi-year default probabilities are needed. If we assume
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that the process of rating transitions is stationary and Markovian, it is possible to

compute multi-year transition matrices. The first property means that the probabil-

ity for a migration from i to j depends on the length of the observation period only,

not on its starting point in time. A transition matrix describing rating migrations

from 1/1/2010 to 1/1/2011 and a matrix corresponding to the time period from 1/1/2012

to 1/1/2013 are identical. Rating transitions are called Markovian if the migration

probabilities depend only on the current rating of a debtor, but not on the rating path

a debtor has passed through during the past years. Both properties of rating

processes are questionable from an empirical point of view but lead to very

convenient mathematical structures. This will be illustrated with a simple example.

Consider a rating system with two rating grades and a 1-year transition matrix

Pð1Þ ¼ 0:95 0:05
0:00 1:00

� �

We compute the 2-year transition matrix. If a debtor survives year one the

transition matrix for year two is again equal to P because of the stationarity

property. The possible rating paths are illustrated in Fig. 6.1.

A debtor in grade 1 can default after year 1, he can survive year one and default

in year two, and he can survive both years. The sum of the first two paths leads to

the 2-year default probability 0.05 + 0.05 � 0.95 ¼ 0.0975, while the last path

leads to the 2-year survival probability 0.95 � 0.95 ¼ 0.9025. This leads to the

2 year transition matrix

Pð2Þ ¼ 0:9025 0:0975
0:00 1:00

� �

A closer look to the calculations we have carried out reveals that the 2-year

transition matrix is the result of the multiplication of the 1-year transition matrix

with itself.

Pð1Þ � Pð1Þ ¼ 0:95 0:05

0:00 1:00

� �
� 0:95 0:05

0:00 1:00

� �

¼ 0:95 � 0:95 0:95 � 0:05þ 1:00 � 0:05
0:00 1:00

� �
¼ 0:9025 0:0975

0:00 1:00

� �

Therefore, arbitrary multi-year transition matrices can be computed by itera-

tive multiplication of the 1-year transition matrix with itself. Using this, default

0.95

0.05

0.95

0.05

Year 1 Year 2Fig. 6.1 Possible rating paths

of a debtor in the simple

rating system
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probabilities for m years can be computed from the 1-year transition matrix. They

can be read directly from the last column of the m-year transition matrix.

In some applications more general transition matrices are needed, e.g. a transi-

tion matrix corresponding to a time period of 3 months. An example is the pricing of

loans with embedded options which is described in Chap. 18. It is not possible to

compute transition matrices for arbitrary year fractions with the methods presented

so far.

Suppose we would like to compute a 6-months transition matrix. This is equiva-

lent to computing a square root of the 1-year transition matrix because we know that

a multiplication of the 6-months transition matrix with itself must result in the

1-year transition matrix. Therefore, we can write1

Pð1Þ ¼ Pð0:5Þ � Pð0:5Þ ¼ Pð0:5Þð Þ2

Pð0:5Þ ¼
ffiffiffiffiffiffiffiffiffiffi
Pð1Þ

p
¼ Pð1Þ0:5 ¼ exp log Pð1Þ0:5

� �� �
¼ exp 0:5 � log Pð1Þð Þð Þ (6.2)

In principle, (6.2) can be generalized to arbitrary year fractions t. If the logarithm
of the 1-year transition matrix would be known arbitrary transition matrices

could be computed from the exponential. It remains to explain how to compute

a logarithm and an exponential of a matrix. Both functions are defined for an

arbitrary matrix X by their Taylor series expansions

expðXÞ ¼ I þ X þ 1

2
X2 þ 1

3!
X3 þ . . . (6.3)

logðXÞ ¼ X � I � 1

2
X � Ið Þ2 þ 1

3
X � Ið Þ3 � . . . (6.4)

where I is the identity matrix. Both series have to be evaluated until a reasonable

accuracy for the logarithm and the exponential is achieved.

As an example, we compute the 6-months transition matrix of the 1-year matrix

M given in Fig. 6.2. The matrix is based on Moody’s average 1-year letter rating

from 1920 to 2007 (Moody’s 2008). In the original document Moody’s (2008), the

fraction of companies that migrated into the “without rating” state is reported. To

get the matrix M in Fig. 6.2, this category has to be removed and all probabilities

have to be rescaled that each row sums to one. The matrix has nine rating grades

where the ninth grade is the default grade.

To compute the 6-months transition matrix, the logarithm of M has to be

computed using (6.4) as a first step. The result is given in Fig. 6.3. For this

calculation we have used 50 terms in the Taylor expansion (6.4).

Finally, this matrix has to be multiplied with 0.5 and the exponential of

the resulting matrix has to be computed using (6.3). This leads to the 6-months

1Note that by log(x) we mean the inverse of exp(x), not the logarithm to the base ten.
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transition matrix given in Fig. 6.4. Again 50 terms of the Taylor expansion (6.3)

are used.

We find that the 6-month transition matrix does not fulfil all the necessary

properties of transition matrices because it contains negative probabilities. The

transition probabilities between low grades and high grades are very small but
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Fig. 6.2 Moody’s average 1-year letter rating migrations from 1920 to 2007
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Fig. 6.4 Six-months transition matrix corresponding to the matrix M of Fig. 6.2
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negative numbers. At a first glance, one might suppose that the small negative

numbers are the result of a numerical instability or inaccuracy in the evaluation of

(6.3) and (6.4). However, this is not the case. There is an economic reason why it is

impossible to compute a meaningful 6-month transition matrix from the matrix M.

In Fig. 6.2 we see that the matrix M contains several transition probabilities

equal to zero. In the data sample no transitions from rating grade 1 to a grade worse

than 6 have been observed. Similarly, no rating improvement from grade 7 directly

to grade 1 has been reported. However, it is possible to migrate within 1 year, for

instance, from grade 1 to grade 4. For reasons of consistency, all migration

probabilities that are zero in the 1-year matrix have to be zero in the 6-months

matrix. The same is true for the positive probabilities. Under these restrictions,

however, it is impossible to compute a valid 6-months matrix. In a 6-months matrix

a transition from grade 1 to grade 4 must have a positive probability and a transition

from grade 4 to grade 7 must have a positive probability. This implies that the

1-year transition probability from grade 1 to grade 7 must be positive because

a debtor can migrate in 6 months from grade 1 to grade 4 and in the following

6 months from grade 4 to grade 7. In the matrixM a migration from grade 1 to grade

7 has a probability of zero which is a contradiction.

From this example, we see that whenever a 1-year transition matrix contains zero

entries there is no valid transition matrix for time periods below 1 year.2 From the

theory of Markov chains it is known that transition matrices for arbitrary time

periods can be computed if the logarithm of the 1-year transition matrix results in

a generator matrix.

A matrix G ¼ (gi,j)i,j¼1,. . ., n is called a generator matrix if it has the three

properties:

l All diagonal entries are not positive, gi,i � 0, i ¼ 1, . . ., n.
l All other entries are not negative, gi,j � 0, i, j ¼ 1, . . ., n and i 6¼ j.
l All row sums are zero

Pn
j¼1 gi;j ¼ 0, i ¼ 1, . . ., n.

From the generator matrix, an arbitrary transition matrix P(t) corresponding to

a time period t is computed as

PðtÞ ¼ exp t � Gð Þ

From Fig. 6.3 we see that the logarithm of the matrix M is no generator matrix.

Some off-diagonal entries corresponding to rating transitions from very high to very

low grades and from very low to very high grades are negative. However, the absolute

value of these negative numbers is small compared to the remaining entries of the

matrix.

2This is not true in general because there are cases where it is still possible to compute transition

matrices for arbitrary time periods if the 1-year matrix contains zeros. The simplest example is the

identity matrix. However, basically for all practically relevant cases it is true that no consistent

t-year transition matrix can be computed from the one-year matrix where t is an arbitrary year

fraction.
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One idea to solve the problems associated with the non-existence of a generator

matrix is replacing the logarithm of the 1-year transition matrix by a generator

matrix that is close to the logarithm matrix. Replacing the logarithm of the 1-year

matrix by a similar matrix which has the properties of a generator matrix, or

equivalently, replacing the original 1-year transition matrix by a similar transition

matrix that allows the calculation of a generator matrix, is called regularization.

Several suggestions for regularization algorithms have been made in the literature.

Examples are Israel et al. (2001) and Kreinin and Sidelnikova (2001).

A very simple regularization algorithm is proposed by Kreinin and Sidelnikova

(2001). It can be summarized by three steps:

1. Compute the logarithm of M, G ¼ log(M).

2. Replace all negative non-diagonal entries of G by zero.

3. Adjust all non-zero elements of G by:

gi;j  gi;j � jgi;jj �
Pn

i¼1 gi;jPn
i¼1 jgi;jj

It is easy to check that the resulting matrix of the above regularization algorithm

indeed fulfils all properties of a generator matrix.

In our example, we have seen that the calculation of the logarithm of the matrix

M of Fig. 6.2 does not lead to a generator matrix. Applying the Steps 2 and 3 of the

above regularization algorithm to the matrix of Fig. 6.3 leads to the generator

matrix in Fig. 6.5 below.

From this generator matrix, we can compute the 6-months transition matrix

again. The result is presented in Fig. 6.6. We see that now the resulting matrix is

indeed a transition matrix. All entries are real probabilities taking values inside the

interval [0, 1]. Finally, we recomputed the 1-year transition matrix from the

generator matrix of Fig. 6.5 by applying the exponential function to get an impres-

sion how far the original data have been changed by the regularization algorithm. The

result is shown in Fig. 6.7. Comparing Figs. 6.2 and 6.7 we see that the regularization
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Fig. 6.5 Regularization of the matrix log(M) of Fig. 6.3
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algorithm had a very mild influence on the input data only. The changes in the

original data are well below typical statistical errors when transition matrices are

estimated. It basically replaces the zero transition probabilities by very small

positive probabilities and adjusts the remaining entries to make sure that all row

entries sum to one.

We remark that there might be situations where the regularization algorithm’s

influence on the original data is much larger. Especially it might change the 1-year

default probabilities what is unwanted because they are typically tied to a master

scale that is used in many applications of a bank. Therefore, when computing a

generator matrix by a regularization algorithm, an additional requirement might be

to keep the default probabilities unchanged. This can be obtained by adding a fourth

step to the above regularization algorithm. It is a property of generator matrices that

if a generator matrix G is multiplied with a diagonal matrix D from the left, then the

matrix product DG is still a generator matrix. Therefore, the default probabilities

can be left unchanged by finding an appropriate matrix D using some optimization

algorithm. A good reference on transition matrices and their generators for further

reading is Bluhm et al. (2003).
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Fig. 6.6 Six-months transition matrix computed from the generator matrix of Fig. 6.5
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Fig. 6.7 One-year transition matrix computed from the generator matrix of Fig. 6.5
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6.3 Estimation of Transition Matrices

Having discussed the mathematical properties of transition matrices in the last

section, the focus in this section is on the estimation of 1-year transition matrices.

A good reference on the estimation of 1-year transition matrices is Jafry and

Schuermann (2004). There are two simple methods of estimating a 1-year transition

matrix, the cohort method and the duration method. The cohort method directly

estimates a 1-year transition matrix. In practice this might lead to transition

matrices containing zero probabilities what makes the direct calculation of a

generator matrix infeasible and the application of a regularization algorithm neces-

sary. To avoid the need for a regularization algorithm for calculating the generator

matrix, it is also possible to estimate the generator matrix directly. This is done by

the duration method.

To explain both estimation techniques, we assume that we have a data sample

available that contains a portfolio of firms and the rating history of each firm, i.e. the

dates where upgrades or downgrades have occurred are stored in a data base.

An excerpt of the data sample is illustrated in Fig. 6.8.

In the data history certain reference dates have to be defined that are used to

define transition periods. For the estimation of a 1-year transition matrix, the length

of these periods is equal to 1 year. For each firm in the sample and each time period,

the rating at the period’s start is observed and the rating at the period’s end. This

defines one empirical rating transition. We illustrate the concept with some exam-

ples in Fig. 6.8. Firm 2 is at Y1 in rating grade 2 and at Y2 in rating grade 3.

Therefore, this is an observation of a rating transition from grade 2 to grade 3. In the

remaining time, Firm 2 stays in rating grade 3, i.e. from Y2 to Y3 and from Y3 to Y4

Firm 2 contributes to observations of firms staying in rating grade 3. The treatment of
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Fig. 6.8 Rating transitions in a hypothetical data sample
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rating transitions during the year as in the case of firm 5 between Y2 and Y3 depends

on the specific estimation method.

Both estimation techniques, the cohort method and the duration method, are the

result of the maximum likelihood estimation principle. The transition matrix (or

the generator matrix in case of the duration method) is estimated to maximize the

probability associated with the empirical data sample. In the case of the cohort

method, the transition probability from grade i to grade j is estimated as

p̂i;j ¼ Ni;j

Ni
; (6.5)

where Ni is the number of debtors in rating grade i at the beginning of each time

period and Ni,j is the number of rating transitions from rating grade i to rating grade
j that are observed during the time period. To clarify this concept, we consider again

Fig. 6.8. In this data sample Firm 5 is downgraded from grade 2 to grade 3 between

Y2 and Y3 and shortly after the downgrade the company is upgraded again to grade 2.

In the estimation (6.5) the period from Y2 to Y3 for Firm 5 is counted as an

observation of a firm that stays in rating grade 2 during this time interval, i.e.

intermediate observations during the year are ignored by the cohort method.

The duration method is different in this respect. In this estimation method all

rating transitions are used in the estimator. The estimator for the generator matrix G

is given by

ĝi;j ¼ Ki;jðTÞR T
0
KiðsÞds

; (6.6)

where Ki,j is the number of all transitions from rating grade i to rating grade j in
the data sample, T is the length of data set’s time horizon, and Ki(s) is the number

of firms in rating grade i at time s. In contrast to the cohort method, for the duration

method the splitting of the time frame into 1-year periods in Fig. 6.8 is not

necessary. One simply has to count all transitions in the data sample and approxi-

mate the integral in (6.6) by counting all firms in each rating grade at a given time

grid and use the result for calculating the integral.

In the literature (e.g. Jafry and Schuermann, 2004), it is often considered as an

advantage of the duration method over the cohort method that all transitions in the

data sample, also the transitions during the year, can be used in the estimator. In a

simple simulation study we would like to measure this advantage. We use the

transition matrix of Fig. 6.7 as a starting point. The basic idea is to simulate rating

paths from this matrix, estimate the 1-year transition matrix from the simulated

rating paths, and measure the estimation error using some matrix norm. Since the

estimation result is known (the transition matrix of Fig. 6.7) we can measure the

estimation error exactly and can compare the accuracy of the cohort method with

the accuracy of the duration method. Note, since the duration method estimates the

generator matrix, we have to compute the 1-year transition matrix from the genera-

tor matrix before computing the estimation error.
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We explain how rating paths are simulated. First, we have to define a time grid

0 ¼ t0, t1, . . ., ts where ratings should be observed. We will use a homogeneous

time grid tv ¼ v·Dt, v ¼ 0, . . ., s, Dt ¼ ts /s. Since each time interval is identical, it

is sufficient to compute the transition matrix P(Dt) ¼ (pi,j(Dt)) corresponding to the
time length Dt. To simulate a rating path, the following steps have to be carried out:

1. Definition of the initial rating k
2. Simulation of an uniformly distributed random number u on [0, 1]

3. Finding the index l with
Pl�1

j¼1 pk;j Dtð Þ � u �Pl
j¼1 pk;j Dtð Þ

4. Setting the rating of the next time point to k ¼ l
5. Repeating the steps 2–4 until a rating is assigned to all time points

We simulate the rating paths for a portfolio of firms and end up with a data

sample similar to the illustration in Fig. 6.8.

Finally, we have to define the matrix norm that we use to measure the estimation

error. If P ¼ (pi,j) and Q ¼ (qi,j) are two matrices, we define the difference of these

two matrices by the matrix norm

P� Qk k ¼ 1

n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xn

j¼1 pi;j � qi;j
� �2r

: (6.7)

To compare the two estimation methods, cohort method and duration method,

we carry out the following steps:

1. Definition of a portfolio, i.e. definition of the total number of firms N and the

rating decomposition Ni

2. Definition of a time grid tv where ratings should be observed

3. Simulation of a rating path for each firm

4. Estimation of the 1-year transition matrix using the cohort method and estima-

tion of the generator matrix using the duration method together with the calcu-

lation of the 1-year transition matrix from the result

5. Calculation of the estimation error for both methods using (6.7)

6. Carrying out the simulation for several times and calculating average estimation

errors

By varying the portfolio size N we can check the dependence of the estimation

quality of transition matrices on portfolio size. Further, by refining the time grid we

can measure the advantage of the duration method over the cohort method if there is

any. We expect that the duration method is the more accurate the more frequently

the firm ratings are observed.

We have used portfolios with 1,000, 5,000, 10,000, 25,000, 50,000, and 100,000

debtors in the first eight rating grades and no debtors in the default grade. We have

simulated rating paths over a time interval of 3 years and we have used six different

observation frequencies for the rating, annually, semi-annually, quarterly, monthly,

weekly, and every 2 days. Our expectation is that the duration method will be the

more efficient the more ratings are observed during the year. To measure the

estimation error we have carried out 50 simulations for each combination of portfolio
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size and observation frequency, computed the estimation error in each simulation

scenario from (6.7) and averaged over the 50 scenarios. The results are reported in

Tables 6.1–6.6.

Table 6.1 Average

estimation errors for annually

observation frequency

#Debtors Error cohort

method

Error duration

method

1,000 0.000394 0.001414

5,000 0.000165 0.001393

10,000 0.000119 0.001390

25,000 0.000076 0.001387

50,000 0.000050 0.001387

100,000 0.000037 0.001388

Table 6.2 Average

estimation errors for semi-

annually observation

frequency

#Debtors Error cohort

method

Error duration

method

1,000 0.000377 0.000784

5,000 0.000181 0.000750

10,000 0.000123 0.000735

25,000 0.000076 0.000729

50,000 0.000053 0.000734

100,000 0.000037 0.000733

Table 6.3 Average

estimation errors for quarterly

observation frequency

#Debtors Error cohort

method

Error duration

method

1,000 0.000357 0.000484

5,000 0.000171 0.000396

10,000 0.000119 0.000386

25,000 0.000076 0.000386

50,000 0.000053 0.000375

100,000 0.000039 0.000376

Table 6.4 Average

estimation errors for monthly

observation frequency

#Debtors Error cohort

method

Error duration

method

1,000 0.000367 0.000348

5,000 0.000166 0.000186

10,000 0.000113 0.000163

25,000 0.000075 0.000141

50,000 0.000053 0.000133

100,000 0.000037 0.000130

Table 6.5 Average

estimation errors for weekly

observation frequency

#Debtors Error cohort

method

Error duration

method

1,000 0.000366 0.000335

5,000 0.000163 0.000149

10,000 0.000126 0.000115

25,000 0.000079 0.000076

50,000 0.000051 0.000054

100,000 0.000038 0.000045
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We see that the average estimation error of the cohort method converges to zero

with increasing portfolio size. We also observe that this is not the case for the

duration method unless the observation frequency is large. If ratings are observed

annually the duration method contains a substantial estimation bias that cannot be

reduced by increasing the portfolio size. To reduce the bias in the duration method

at least weekly observations of ratings are required, a condition hardly met in

practice. The reason for the poor performance of the duration method is that the

theory behind this estimator relies on continuous rating paths. Our simulations have

shown that violating this continuity conditions introduces a simulation bias that can

be substantial. Therefore, we recommend using the cohort method in practice

because we do not trust a method that does not converge under practically relevant

observation frequencies.3

We remark that in this article we have presented the theory and the estimation of

transition matrices assuming Markovian rating transitions and time-homogeneous

transition probabilities. There has been research recently on relaxing one of these

assumptions or both in modelling rating transitions. An example is Bluhm and

Overbeck (2007). In some applications multi-year default probabilities are known

in addition to a 1-year transition matrix. They show how removing the time-

homogeneity assumption can lead to a satisfactory modelling of rating transitions

in this situation.
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estimation errors for bi-daily
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Chapter 7

A Multi-factor Approach for Systematic

Default and Recovery Risk

Daniel R€osch and Harald Scheule

7.1 Modelling Default and Recovery Risk

Banks face the challenge of forecasting losses and loss distributions in relation to

their credit risk exposures. Most banks choose a modular approach in line with the

current proposals of the Basel Committee on Banking Supervision (2004), where

selected risk parameters such as default probabilities, exposures at default and

recoveries given default are modelled independently. However, the assumption of

independence is questionable. Previous studies have shown that default proba-

bilities and recovery rates given default are negatively correlated [Carey (1998),

Hu and Perraudin (2002), Frye (2003), Altman et al. (2005), or Cantor and Varma

(2005)]. A failure to take these dependencies into account will lead to incorrect

forecasts of the loss distribution and the derived capital allocation.

This paper extends a model introduced by Frye (2000). Modifications of the

approach can be found in Pykhtin (2003) and D€ullmann and Trapp (2004). Our

contribution is original with regard to the following three aspects. First, we develop

a theoretical model for the default probabilities and recovery rates and show how

to combine observable information with random risk factors. In comparison to the

above mentioned models, our approach explains the default and the recovery rate

by risk factors which can be observed at the time of the risk assessment. According

to the current Basel proposal, banks can opt to provide their own recovery rate

forecasts for the regulatory capital calculation. Thus, there is an immediate industry

need for modelling.

This article originally appeared in the September 2005 issue of The Journal of Fixed Income and is
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Second, we show a framework for estimating the joint processes of all variables

in the model. Particularly, the simultaneous model allows the measurement of the

correlation between the defaults and recoveries given the information. In this

model, statistical tests for the variables and correlations can easily be conducted.

An empirical study reveals additional evidence on the correlations between risk

drivers of default and recovery. Cantor and Varma (2005) analyze the same dataset

and identify seniority and security as the main risk factors explaining recovery

rates. This paper extends their approach by developing a framework for modelling

correlations between factor-based models for default and recovery rates.

Third, the implications of our results on economic and regulatory capital are

shown. Note that according to the current proposals of the Basel Committee, only

the forecast default probabilities and recovery rates but no correlation estimates,

enter the calculation of the latter. We demonstrate the effects of spuriously neglect-

ing correlations in practical applications.

The rest of the paper is organized as follows. The theoretical framework is

introduced in the second section (“Model and Estimation”) for a model using

historic averages as forecasts and a model taking time-varying risk factors into

account. The third section (“Data and Results”) includes an empirical analysis

based on default and recovery rates published by Moody’s rating agency and

macroeconomic indices from the Conference Board. Section four (“Implications

for Economic and Regulatory Capital”) shows the implications of the different

models on the economic capital derived from the loss distribution and the regulatory

capital proposed by the Basel Committee. Section five (“Discussion”) concludes

with a summary and discussion of the findings.

7.2 Model and Estimation

7.2.1 The Model for the Default Process

Our basic framework follows the approach taken by Frye (2000) and Gordy (2003).

We assume that nt firms of one risk segment are observed during the time periods

t (t ¼ 1, . . ., T ). For simplicity, these firms are assumed to be homogenous

with regard to the relevant parameters and a latent variable describes each obligor

i’s (i ¼ 1, . . ., nt) credit quality

Sit ¼ w � Ft þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p
� Uit (7.1)

(w2 [0,1]). Ft ~ N(0,1) and Ut ~ N(0,1) are independent systematic and idiosyn-

cratic standard normally distributed risk factors. The Gaussian random variable Sit
may be interpreted as the return on a firm’s assets and therefore w2 is often called

“asset correlation”.

A default event occurs if the latent variable crosses a threshold c

Sit< c (7.2)
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which happens with probability p ¼ F(c) where F(.) is the standard normal

cumulative density function. If an obligor is in default, the indicator variable Dit

equals one and zero otherwise:

Dit ¼
1 obligor i defaults in period t

0 else

:

8<
: (7.3)

Conditional on the realization ft of the systematic risk factor, default events are

assumed to be independent between obligors, i.e., each firm defaults with the

conditional default probability

p ftð Þ ¼ P Dit ¼ 1 Ft ¼ ftjð Þ ¼ F
c� w � ftffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p
� �

: (7.4)

7.2.2 The Model for the Recovery

In modelling the recovery rate Rit of a defaulted obligor, we follow Sch€onbucher
(2003) and D€ullmann and Trapp (2004) and use a logistic normal process:

Rit ¼
exp ~Yit

� �
1þ exp ~Yit

� � (7.5)

with the transformed recovery rate

~Yit ¼ mþ b � Xt þ Zit (7.6)

where Xt ~ N(0,1), Zit ~ N(0,d2) are independent systematic and idiosyncratic

factors and m and b are parameters. These idiosyncratic factors are independent

from the idiosyncratic factors which drive the latent default variable. Compared

to the normal distribution assumption for recovery rates Frye (2000), the chosen

transformation has the advantage that recovery rates are bounded between 0 and

100%. Note that any other cumulative density function could be used. As a matter

of fact, we estimated models using a standard normal transformation and received

similar results.

If we observe a homogenous segment of borrowers, the transformed recovery

rate is given by

~Yt ¼ 1

nt

Xnt
i¼1

~Yit ¼ mþ b � Xt þ 1

nt

Xnt
i¼1

Zit (7.7)

with Zt ¼ 1
nt

Pnt
i¼1

Zit which is normally distributed with mean zero and variance

d2 n2t
�

. The variance converges for large nt to zero:
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lim
nt!1Var

1

nt

Xnt
i¼1

Zit

 !
¼ 0 (7.8)

Therefore, we approximate the average transformed recovery rate by

~Yt � Yt ¼ mþ b � Xt; (7.9)

which is driven only by a systematic risk factor and normally distributed Yt ~ N(m, b
2).

The link between the recovery and default process is introduced by modelling the

dependence of the two systematic risk factors. Since both Ft and Xt are marginally

normal distributed, we model their dependence by assuming that they have a

bivariate normal distribution with correlation parameter r. Alternative, a copula

which is different from the Gaussian could have been assumed. It then follows that

the average transformed recovery rate and latent default triggering variable have

a correlation

Corr Sit; Ytð Þ ¼ w � r (7.10)

The correlation equals one in the special case that a single systematic factor

drives both the default events as well as the recoveries given these events.

7.2.3 A Multi-factor Model Extension

So far, we presented a model for systematic risk in defaults and recoveries where

systematic risk is driven by common factors which are not directly observable.

These unobservable factors induce uncertainties into the forecasts of loss distri-

butions. The higher their impact, ceteris paribus, the more skewed the resulting

distributions are and the higher key risk measures such as the Value-at-Risk or the

Conditional Value-at-Risk will be. Since the true parameters of the models are

unknown, the severity of the impact must be estimated from observable data.

As an alternative to the models above, we analyze a model, which has already

been used in the context of default modelling. Examples are R€osch and Scheule

(2004) and Hamerle et al. (2003). These models show that part of the cyclical

fluctuations in default rates can be attributed to observable systematic risk factors.

Once these factors are identified and incorporated into the model, a large part of

uncertainty from unobservable factors can be explained. These types of models

are also exhibited in Heitfield (2005) and are related to a concept broadly known as

a point-in-time approach because losses are forecast based on information on the

prevailing point of the business cycle.

In our extension, it is assumed that the default threshold for the factor model

of the default process fluctuates over time. Alternatively, we could introduce a

factor model with time-varying mean. This variation with time is introduced by K
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observable macroeconomic risk factors, such as GDP growth or interest rates. We

assume that these state variables are observed in prior time periods and denote them

by zDt�1 ¼ zDt�1;1; . . . ; z
D
t�1;K

� 	
. As a result, the conditional default probability for

each borrower within the risk segment is modified (compare R€osch (2003) and

Heitfield (2005) who additionally condition default probabilities on firm-specific

factors):

p� zDt�1; ft
� � ¼ P Dit ¼ 1jzDt�1; ft

� � ¼ F
g0 þ g0 � zDt�1 � w� � ftffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w�2p
� �

(7.11)

where g ¼ (g1, . . ., gK)’ denotes a vector of exposures to the common observable

factors and g0 is a constant. The mean of this conditional default probability with

respect to the unobservable standard normally distributed factor ft is given by

p� zDt�1

� � ¼
ð1

�1
p� zDt�1; ft
� �

dF ftð Þ ¼ F c� þ g0 � zDt�1

� �
(7.12)

In a similar way, we assume that the mean of the log-transformed syste-

matic recovery rate depends on common macroeconomic factors zRt�1 ¼�
zRt�1;1; . . . ; z

R
t�1;L

�
. This vector may or may not contain factors which also describe

the default process:

Y�
t ¼ b0 þ b0 � zRt�1 þ b� � Xt (7.13)

where b ¼ b1; . . . ; bLð Þ denotes a vector of exposures and b0 the constant.
If models (12) and (13) hold, i.e., defaults and recoveries are driven by observ-

able lagged systematic risk factors, it can be shown that their means are fluctuating

with the change of the economy. Moreover, if these models hold, then model (4)

and (9) with constant mean are misspecifications. Consequently, fitting model (4)

and (9) to observable data will have the effect that all time variation is captured

in the estimates of the exposures to the unobservable random factors Ft and Xt. On

the other hand, attributing time variation to observable factors will lead to lower

parameter estimates for the influences of the unobservable factors, thereby reducing

uncertainty with regard to the forecasts of the loss distributions. We will demon-

strate these effects on the economic and regulatory capital below.

7.2.4 Model Estimation

Once the models are specified, an algorithm for estimating the parameters from

observable data is needed. Following work by Frye (2000) we choose the Maximum-

Likelihood method. Extending these studies, we suggest an ML-procedure which
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allows the joint estimation of all coefficients, including those of models (11) and (13)

with observable factors.

Let us consider a realization ft of the unobservable random factor Ft. Given this

realization the default events are independent and the number of defaults

Dt ¼
Pnt
i¼1

Dit is conditionally binomial distributed with probability distribution

P Dt ¼ dt ftjð Þ ¼
dt
nt

� �
p ftð Þdt � 1� p ftð Þ½ �nt�dt dt ¼ 0; 1; :::; nt

0
else

8<
: (7.14)

with p(ft) as in (7.4). Note that the transformed recovery rate can also be modelled

given a realization ft. It holds that the random vector (Ft, Yt)’ is normally distributed

with

Ft

Yt

� �
� N

0

m

� �
;

1 br
br b2

� �
 �
:

From the law of conditional expectation it follows that Yt has conditional mean

m ftð Þ ¼ E Yt ftjð Þ ¼ mþ b � r � ft (7.15)

and conditional standard deviation

s ftð Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Yt ftjð Þ

p
¼ b �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
(7.16)

Hence, the joint density g(.) of dt defaults and a transformed recovery rate

gt given ft is simply the product of the density of gt and the probability of dt, i.e.,

g dt;yt ftjð Þ

¼ 1

s ftð Þ � ffiffiffiffiffiffiffiffi
2 �pp � exp � yt�m ftð Þ½ �2

2 � s ftð Þ½ �2
( )

� dt

nt

� �
�p ftð Þdt � 1�p ftð Þ½ �nt�dt

(7.17)

Note, g(.) depends on the unknown parameters of the default and the recovery

process. Since the common factor is not observable we establish the unconditional

density

g dt;ytð Þ

¼
ð1

�1

1

s ftð Þ � ffiffiffiffiffiffiffiffi
2 �pp � exp � yt�m ftð Þ½ �2

2 � s ftð Þ½ �2
( )

� dt

nt

� �
�p ftð Þdt � 1�p ftð Þ½ �nt�dt dF ftð Þ

(7.18)
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Observing a time series with T periods leads to the final unconditional log-

likelihood function

l m; b; c;w; rð Þ ¼
XT
t¼1

ln g dt; ytð Þð Þ (7.19)

This function is optimized with respect to the unknown parameters. In the

appendix we demonstrate the performance of the approach by Monte-Carlo

simulations.

For the second type of models which include macroeconomic risk factors, we

replace p ftð Þ from (7.4) by p� zDt�1; ft
� �

from (7.11) and m ftð Þ from (7.15) by

b0 þ b0 � zRt�1 þ b � r � ft and obtain the log-likelihood l b0;b; b; g0; g;w; rð Þ.

7.3 Data and Results

7.3.1 The Data

The empirical analysis is based on the global corporate issuer default rates and issue

recovery rates (cf. Moody’s 2005). In this data set, default rates are calculated as the

ratio of defaulted and total number of rated issuers for a given period. According to

Moody’s (2005), a default is recorded if

l Interest and/or principal payments are missed or delayed
l Chapter 11 or Chap. 7 bankruptcy is filed or
l Distressed exchange such as a reduction of the financial obligation occurs

Most defaults are related to publicly traded debt issues. Therefore, Moody’s

defines a recovery rate as the ratio of the price of defaulted debt obligations

after 30 days of the occurrence of a default event and the par value. The

recovery rates are published for different levels of seniority such as total

(Total), senior secured (S_Sec), senior unsecured (S_Un), senior subordinated

(S_Sub), subordinated (Sub) and junior subordinated debt. We excluded the

debt category junior subordinated from the analysis due to a high number of

missing values.

In addition, the composite indices published by The Conference Board (http://

www.tcb-indicators.org) were chosen as macroeconomic systematic risk drivers,

i.e., the

l Index of four coincident indicators (COINC) which measures the health of the

U.S. economy. The index includes the number of employees on non-agricultural

payrolls, personal income less transfer payments, index of industrial production

and manufacturing as well as trade sales.
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l Index of ten leading indicators (LEAD) which measures the future health of the

U.S. economy. The index includes average weekly hours in manufacturing,

average weekly initial claims for unemployment insurance, manufacturers’

new orders of consumer goods and materials, vendor performance, manufac-

turers’ new orders of non-defence capital goods, building permits for new

private housing units, stock price index, money supply, interest rate spread of

10-year treasury bonds less federal funds and consumer expectations.

The indices are recognized as indicators for the U.S. business cycle. Note that for

the analysis, growth rates of the indices were calculated and lagged by 3 months.

Due to a limited number of defaults in previous years, the compiled data set was

restricted to the period 1985–2004 and split into an estimation sample (1985–2003)

and a forecast sample (2004). Tables 7.1 and 7.2 include descriptive statistics and

Bravais-Pearson correlations for default rates, recovery rates and time lagged

macroeconomic indicators of the data set. Note that default rates are negatively

correlated with the recovery rates of different seniority classes and macroeconomic

variables.

Figure 7.1 shows that both, the default and recovery rate fluctuate over time in

opposite directions. This signals that default and recovery rates show a considerable

share of systematic risk which can be explained by time varying variables.

Figure 7.2 contains similar graphs for the recovery rates of the different seniority

classes. Note that the recovery rates increase with the seniority of a debt issue and

show similar patterns over time. This indicates that they may be driven by the same

or similar systematic risk factors.

Table 7.1 Descriptive statistics of the variables

Variable Mean Median Max. Min. Std. dev. Skew. Kurt.

Default rate 0.0176 0.0144 0.0382 0.0052 0.0103 0.6849 2.2971

Recovery rate (Total) 0.4208 0.4300 0.6170 0.2570 0.0902 0.2883 3.0464

Recovery rate (S_Sec) 0.5794 0.5725 0.8360 0.3570 0.1379 0.2631 2.0440

Recovery rate (S_Un) 0.4481 0.4450 0.6280 0.2310 0.1158 �0.1816 2.2725

Recovery rate (S_Sub) 0.3703 0.3695 0.5190 0.2030 0.0984 �0.1868 1.7668

Recovery rate (Sub) 0.2987 0.3245 0.4620 0.1230 0.1117 �0.2227 1.7387

COINC 0.0215 0.0245 0.0409 �0.0165 0.0160 �0.9365 3.0335

LEAD 0.0130 0.0154 0.0336 �0.0126 0.0151 �0.4568 1.9154

Table 7.2 Bravais-Pearson correlations of variables

Variable Default rate Total S_Sec S_Un S_Sub Sub COINC LEAD

Default rate 1.00 �0.67 �0.72 �0.72 �0.53 �0.34 �0.75 �0.47

Recovery rate (Total) 1.00 0.78 0.68 0.72 0.29 0.32 0.54

Recovery rate (S_Sec) 1.00 0.66 0.48 0.37 0.33 0.55

Recovery rate (S_Un) 1.00 0.56 0.42 0.49 0.48

Recovery rate (S_Sub) 1.00 0.24 0.20 0.40

Recovery rate (Sub) 1.00 0.41 0.17

COINC 1.00 0.28

LEAD 1.00
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Next to the business cycle and the seniority, it is plausible to presume that

recovery rates depend on the industry, the collateral type, the legal environment,

default criteria as well as the credit quality associated with an obligor. Tables 7.3

and 7.4 show the recovery rates for different industries and issuer credit ratings
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(cf. Moody’s 2004, 2005). Refer to these documents for a more detailed analysis of

the properties of recovery rates.

7.3.2 Estimation Results

Based on the described data set, two models were estimated:

l Model without macroeconomic risk factors [(7.4) and (7.9)]: we refer to this

model as a through-the-cycle model because the forecast default and recovery

rate equal the historic average from 1985 to 2003
l Model with macroeconomic risk factors [(7.11) and (7.13)]: we refer to this

model as a point-in-time model because the forecast default and recovery rates

fluctuate over time

Within the credit risk community, a discussion on the correct definition of

a through-the-cycle and point-in-time model exists, in which the present article

Table 7.3 Recovery rates for

selected industries (Moody’s

2004)

Industry Recovery rate

(1982–2003)

Utility-Gas 0.515

Oil 0.445

Hospitality 0.425

Utility-Electric 0.414

Transport-Ocean 0.388

Media, broadcasting and cable 0.382

Transport-surface 0.366

Finance and banking 0.363

Industrial 0.354

Retail 0.344

Transport-Air 0.343

Automotive 0.334

Healthcare 0.327

Consumer goods 0.325

Construction 0.319

Technology 0.295

Real estate 0.288

Steel 0.274

Telecommunications 0.232

Miscellaneous 0.395

Table 7.4 Recovery rates for

selected issuer credit rating

categories (Moody’s 2005)

Issuer credit rating Recovery rate

(1982–2004)

Aa 0.954

A 0.498

Baa 0.433

Ba 0.407

B 0.384

Caa-Ca 0.364
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does not intend to participate. We use these expressions as stylized denominations,

being aware that other interpretations of these rating philosophies may exist (cf.

Heitfield 2005).

Due to the limitations of publicly available data, we use Moody’s global default

rates, total recoveries, and recoveries by seniority class. Table 7.5 shows the

estimation results for the through-the-cycle model (4) and (9) and Table 7.6 for

the point-in-time model (11) and (13) using the variables COINC and LEAD as

Table 7.5 Parameter estimation results for the through-the-cycle model

Parameter Total S_Sec S_Un S_Sub Sub

c �2.0942*** �2.0951*** �2.0966*** �2.0942*** �2.0940***

(0.0545) (0.0550) (0.0546) (0.0544) (0.0549)

w 0.2194*** 0.2212*** 0.2197*** 0.2191*** 0.2210***

(0.0366) (0.0369) (0.0367) (0.0366) (0.0369)

m �0.3650*** 0.2976** �0.2347* �0.5739*** �0.8679***

(0.0794) (0.1284) (0.1123) (0.0998) (0.1235)

b 0.3462*** 0.5598*** 0.4898*** 0.4351*** 0.5384***

(0.0562) (0.0908) (0.0795) (0.0706) (0.0873)

r 0.6539*** 0.7049*** 0.7520*** 0.5081** 0.3979*

(0.1413) (0.1286) (0.1091) (0.1799) (0.2013)

Annual default and recovery data from 1985 to 2003 is used for estimation

Standard errors are in parentheses
***Significant at 1% level
**Significant at 5% level
*Significant at 10% level

Table 7.6 Parameter estimation results for the point-in-time model

Parameter Total S_Sec S_Un S_Sub Sub

g0 �1.9403*** �1.9484*** �1.9089*** �1.9232*** �1.9040***

(0.0524) (0.05210) (0.0603) (0.05660) (0.0609)

g1 �8.5211*** �8.1786*** �10.078*** �9.2828*** �10.134***

(1.8571) (1.7964) (2.2618) (2.0736) (2.2884)

COINC COINC COINC COINC COINC

w 0.1473*** 0.1522*** 0.1485*** 0.1483*** 0.1508***

(0.0278) (0.0286) (0.0276) (0.0277) (0.0279)

b0 0.4557*** 0.1607 �0.5576*** �0.6621*** �1.1883***

(0.0867) (0.1382) (0.1635) (0.1194) (0.1845)

b1 7.4191* 11.1867* 15.0807** 7.2136 14.9625**

(4.1423) (6.4208) (6.1142) (6.0595) (6.8940)

LEAD LEAD COINC LEAD COINC

b 0.3063*** 0.4960*** 0.4260*** 0.4071*** 0.4820***

(0.0513) (0.0838) (0.0691) (0.0673) (0.0279)

r 0.6642*** 0.7346*** 0.6675*** 0.4903** 0.1033

(0.1715) (0.1520) (0.1481) (0.2088) (0.2454)

Annual default and recovery data from 1985 to 2003 is used for estimation

Standard errors are in parentheses
***Significant at 1% level
**Significant at 5% level
*Significant at 10% level
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explanatory variables. In the latter model we choose both variables due to their

statistical significance.

First, consider the through-the-cycle model. Since we use the same default rates

in each model, the estimates for the default process are similar across models, and

consistent to the ones found in other studies (compare Gordy (2000) or R€osch
2005). The parameter estimates for the (transformed) recovery process reflect

estimates for the mean (transformed) recoveries and their fluctuations over time.

Most important are the estimates for the correlation of the two processes which are

positive and similar in size to the correlations between default rates and recovery

rates found in previous studies. Note that this is the correlation between the

systematic factor driving the latent default triggering variable “asset return” Sit
and the systematic factor driving the recovery process. Therefore, higher “asset

returns” (lower conditional default probabilities) tend to come along with higher

recovery. A positive value of the correlation indicates negative association between

defaults and recoveries. The default rate decreases while the recovery rate increases

in boom years and vice versa in depression years.

Next, consider the point-in-time model. The default and the recovery process are

driven by one macroeconomic variable in each model. The parameters of all

macroeconomic variables show a plausible sign. The negative sign of the COINC

index in the default process signals that a positive change of the index comes along

with subsequent lower number of defaults. The positive signs of the variables in the

recovery process indicate that higher recoveries follow a positive change in the

variable. In addition, most variables are significant at the 10% level. The only

exception is the parameter of the macroeconomic index LEAD for the senior

subordinated recovery rate, which indicates only a limited exposure to systematic

risk drivers. Note that the influence of the systematic random factor is reduced in

each process by the inclusion of the macroeconomic variable. While we do not

mean to interpret these indices as risk drivers themselves, but rather as proxies for

the future state of the economy, these variables are able to explain part of the

previously unobservable systematic risk. The remaining systematic risk is reflected

by the size of w and b and is still correlated but cannot be explained by our proxies.
Once the point estimates for the parameters are given, we forecast separately the

defaults and recoveries for year 2004. Table 7.7 shows that the point-in-time model

leads to forecasts for the default and recovery rates that are closer to the realized

values than the ones derived from the through-the-cycle model.

Table 7.7 Forecasts and realizations for year 2004 (through-the-cycle versus point-in-time)

Parameter Total S_Sec S_Un S_Sub Sub

Default rate

Forecast TTC 0.0181 0.0181 0.0180 0.0181 0.0181

Forecast PIT 0.0162 0.0162 0.0160 0.0162 0.0162

Realization 0.0072 0.0072 0.0072 0.0072 0.0072

Recovery rate

Forecast TTC 0.4097 0.5739 0.4416 0.3603 0.2957

Forecast PIT 0.4381 0.6159 0.4484 0.3867 0.3014

Realization 0.5850 0.8080 0.5010 0.4440 0.1230
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7.4 Implications for Economic and Regulatory Capital

Since the main contribution of our approach lies in the joint modelling of defaults

and recoveries, we now apply the forecast default rates, recovery rates for the year

2004 as well as their estimated correlation to a portfolio of 1,000 obligors. To

simplify the process, we take the senior secured class as an example and assume

a credit exposure of one monetary unit for each obligor.

Figure 7.3 and Table 7.8 compare two forecast loss distributions of the through-

the-cycle model. To demonstrate the influence of correlation between the processes

we compare the distribution which assumes independence to the distribution which

is based on the estimated correlation between the default and recovery rate trans-

formations of 0.7049. Economic capital or the credit portfolio risk is usually

measured by higher percentiles of the simulated loss variable such as the 95-, 99-,

99.5- or 99.9- percentile (95%-, 99%-, 99.5%- or 99.9%-Value-at-Risk). It can be

seen that these percentiles are considerably higher if correlations between default

and recovery rates are taken into account. If we take the 99.9%-Value-at-Risk as an
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Fig. 7.3 Loss distributions for the through-the-cycle model (S_Sec)

Table 7.8 Descriptive statistics of loss distributions for the through-the-cycle model

Mean Std.

dev.

Med 95 99 99.5 99.9 Basel II

capital

(standardized)

Basel II

capital

(foundation

IRB)

Basel II

capital

(advanced

IRB)

Ind. factors 7.82 5.59 6.53 18.55 27.35 31.92 39.02 80.00 74.01 70.08

Corr. factors 8.73 7.59 6.62 23.81 36.04 42.43 58.75 80.00 74.01 70.08

Portfolios contain 1,000 obligors with an exposure of one monetary unit each, 10,000 random

samples were drawn for each distribution with and without correlation between systematic factors
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example, the percentile under dependence exceeds the percentile under indepen-

dence by approximately 50%. In other words, if dependencies are not taken into

account, which is a common feature in many of today’s credit risk models, the

credit portfolio risk is likely to be seriously underestimated.

Forecast default and recovery rates can be used to calculate the regulatory capital

for the hypothetical portfolio. For corporate credit exposures, the Basel Committee

on Banking Supervision (2004) allows banks to choose one of the following

options:

l Standardized approach: regulatory capital is calculated based on the corporate

issuer credit rating and results in a regulatory capital between 1.6 and 12% of the

credit exposure. The regulatory capital equals 8% of the credit exposure if firms

are unrated
l Foundation Internal Ratings Based (IRB) approach: regulatory capital is calcu-

lated based on the forecast default probabilities and a proposed loss given default

for senior secured claims of 45% (i.e., a recovery rate of 55%) and for sub-

ordinated claims of 75% (i.e., a recovery rate of 25%)
l Advanced IRB approach: regulatory capital is calculated based on the forecast

default probabilities and forecast recovery rates

For the through-the-cycle model, the Standardized approach and the Foundation

IRB approach result in a relatively close regulatory capital requirement (80.00 vs.

74.01). The reason for this is that the forecast default rate (0.0181) is close to the

historic average which was used by the Basel Committee when calibrating regu-

latory capital to the current level of 8%. The Advanced IRB approach leads to a

lower regulatory capital (70.08 vs. 74.01) due to a forecast recovery rate which is

higher than the assumption in the Foundation IRB approach (57.39% vs. 55%).

Note that Foundation IRB’s recovery rate of 55% is comparable to the average

recovery rate of the senior secured seniority class but is proposed to be applied to

both the senior secured (unless admitted collateral is available) as well as the senior

unsecured claims. This could indicate an incentive for banks to favour the Founda-

tion approach over the Advanced IRB approach especially for senior unsecured

credit exposures. Similar conclusions can be drawn for the Foundation IRB’s

recovery rate of 25% which will be applied for both senior subordinated as well

as subordinated claims.

Figure 7.4 and Table 7.9 compare the respective loss distributions with and

without correlations using the point-in-time model.

It can be observed that the economic capital, expressed as Value-at-Risk, is

considerably lower for the point-in-time model than for the through-the-cycle

model. The reasons are twofold. First, the inclusion of macroeconomic variables

leads to a lower forecast of the default rate (1.62%), a higher forecast of the

recovery rate (61.59%) for 2004 and therefore to lower expected losses. Second,

the exposure to unknown random systematic risk sources is reduced by the inclu-

sion of the observable factors. This leads to less uncertainty in the loss forecasts

and therefore to lower variability (measured, e.g., by the standard deviation) of

the forecast distribution. Moreover, the regulatory capital is the lowest for the
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Advanced IRB approach which takes both the forecast default and recovery rate

into account.

We also notice another important effect. The economic capital, measured by the

higher percentiles of the credit portfolio loss, increases if the estimated correlation

between the default and recovery rates is taken into account. This increase is not as

dramatic as in the through-the-cycle model, although the correlation between risk

factors of defaults and recoveries has slightly increased. The inclusion of macro-

economic factors renders the systematic unobservable factors less important and

diminishes the impact of correlations between both factors. To the extent that

recoveries and defaults are not exposed at all to unobservable random factors, the

correlations between these factors are negligible for loss distribution modelling.

Figure 7.5 shows this effect. We assumed constant exposure of b ¼ 0.5 to the

recovery factor and varied the exposure to the systematic factor for the defaults

(asset correlation) for given correlation between the systematic factors. The bench-

mark case is a correlation of zero between the factors. Here, we notice a reduction

of economic capital from 44 (i.e., 4.4% of total exposure) for an asset correlation of

0.1 to 13 (1.3%) when the asset correlation is zero. In the case of a correlation
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Fig. 7.4 Loss distributions for the point-in-time model (S_Sec)

Table 7.9 Descriptive statistics of loss distributions for the point-in-time model

Mean Std.

dev.

Med 95 99 99.5 99.9 Basel II

capital

(standardized)

Basel II

capital

(foundation

IRB)

Basel II

capital

(advanced

IRB)

Ind. factors 6.33 3.61 5.64 13.10 18.01 20.43 25.77 80.00 71.16 60.74

Corr. factors 6.78 4.71 5.64 16.03 22.78 25.60 31.77 80.00 71.16 60.74

Portfolios contain 1,000 obligors with an exposure of one monetary unit each, 10,000 random

samples were drawn for each distribution with and without correlation between systematic factors
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between the factors of 0.8, the Value-at-Risk is reduced from 61 (6.1%) to 13

(1.3%). Thus, the higher the correlation of the risk factors, the higher the economic

capital gains are from lowering the implied asset correlation by the explanation

with observable factors.

7.5 Discussion

The empirical analysis resulted in the following insights:

1. Default events and recovery rates are correlated. Based on an empirical data set,

we found a positive correlation between the default events and a negative

correlation between the default events and recovery rates.

2. The incorporation of the correlation between the default events and recovery

rates increases the economic capital. As a result, most banks underestimate their

economic capital when they fail to account for this correlation.

3. Correlations between defaults decrease when systematic risk drivers, such as

macroeconomic indices are taken into account. In addition, the impact of

correlation between defaults and recoveries decreases.

4. As a result, the uncertainty of forecast losses and the economic capital measured

by the percentiles decreases when systematic risk drivers are taken into account.
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Fig. 7.5 Economic capital gains from decrease in implied asset correlation for correlated risk

factors; Figure shows 99.9 percentiles of loss distributions for the senior secured seniority class

depending on asset correlation and correlation of systematic risk factors. Portfolio contains 1,000

obligors each with default probability of 1%, exposure of one monetary unit, and expected

recovery of 50%
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Most empirical studies on recovery rates (including this article) are based on

publicly available data provided by the rating agencies Moody’s or Standard and

Poor’s and naturally lead to similar results. The data sets of the rating agencies are

biased in the sense that only certain exposures are taken into account. Typically,

large U.S. corporate obligors in capital intensive industries with one or more

public debt issues and high credit quality are included. Thus, the findings can not

automatically be transferred to other exposure classes (e.g., residential mortgage or

credit card exposures), countries, industries or products.

Moreover, the data is limited with regard to the number of exposures and periods

observed. Note that our assumption in (7.8) of a large number of firms is crucial

since it leads to the focus on the mean recovery. If idiosyncratic risk can not be fully

diversified the impact of systematic risk in our estimation may be overstated. Due to

the data limitations, we cannot draw any conclusions about the cross-sectional

distribution of recoveries which is often stated to be U-shaped (see, e.g., Schuermann

2003). In this sense, our results call for more detailed analyses, particularly with

borrower-specific data which possibly includes financial ratios or other obligor

characteristics and to extend our methodology to a panel of individual data. As a

result, we would like to call upon the industry, i.e., companies, banks and regulators

for feedback and a sharing of their experience.

In spite of these limitations, this paper provides a robust framework, which

allows creditors to model default probabilities and recovery rates based on certain

risk drivers and simultaneously estimates interdependences between defaults and

recoveries. It can be applied to different exposure types and associated information

levels. Contrary to competing models, the presence of market prices such as bond or

stock prices is not required.

Appendix: Results of Monte-Carlo Simulations

In order to prove the reliability of our estimation method, a Monte-Carlo simulation

was set up which comprises four steps:

l Step 1: Specify model (1) and model (9) with a given set of population para-

meters w, c, b, m, and r.
l Step 2: Draw a random time series of length T for the defaults and the recoveries

of a portfolio with size N from the true model.
l Step 3: Estimate the model parameters given the drawn data by the Maximum-

Likelihood method.
l Step 4: Repeat Steps 2 and 3 for several iterations.

We used 1,000 iterations for different parameter constellations and obtained

1,000 parameter estimates which are compared to the true parameters. The portfolio

consists of 10,000 obligors. The length of the time series T is set to T ¼ 20 years.

We fix the parameters at w ¼ 0.2, m ¼ 0.5, and b ¼ 0.5 and set the correlations

between the systematic factors to 0.8, 0.1, and �0.5. In addition, we analyze three
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rating grades A, B, and C where the default probabilities and thresholds c in the

grades are:

l A: p ¼ 0:005, i.e., c ¼ �2:5758
l B: p ¼ 0:01, i.e., c ¼ �2:3263
l C: p ¼ 0:02, i.e., c ¼ �2:0537

Table 7.10 contains the results from the simulations. The numbers without

brackets contain the average of the parameter estimates from 1,000 simulations.

The numbers in round (.)-brackets represent the sample standard deviation of the

estimates (which serve as an approximation for the unknown standard deviation).

The numbers in square [.]-brackets give the average of the estimated standard

deviations for each estimate derived by Maximum-Likelihood theory. It can be

seen in each constellation that our ML–approach for the joint estimation of the

default and recovery process works considerably well: the averages of the estimates

are close to the originally specified parameters. Moreover, the estimated standard

deviations reflect the limited deviation for individual iterations. The small down-

ward bias results from the asymptotic nature of the ML-estimates and should be

tolerable for practical applications.

Table 7.10 Results from Monte-Carlo simulations

c w m b r

Grade r
A 0.8 �2.5778 0.1909 0.4991 0.4784 0.7896

(0.0495) (0.0338) (0.1112) (0.0776) (0.1085)

[0.0468] [0.0317] [0.1070] [0.0756] [0.0912]

0.1 �2.5789 0.1936 0.4970 0.4824 0.1139

(0.0484) (0.0336) (0.1154) (0.0788) (0.2269)

[0.0475] [0.0322] [0.1079] [0.0763] [0.2185]

�0.5 �2.5764 0.1927 0.5048 0.4826 �0.4956

(0.0492) (0.0318) (0.1116) (0.0798) (0.1923)

[0.0472] [0.0320] [0.1078] [0.0763] [0.1697]

B 0.8 �2.3287 0.1927 0.4999 0.4852 0.7951

(0.0480) (0.0327) (0.1104) (0.0774) (0.0920)

[0.0460] [0.0306] [0.1084] [0.0765] [0.0856]

0.1 �2.3291 0.1906 0.4927 0.4831 0.0861

(0.0472) (0.0306) (0.1105) (0.0778) (0.2330)

[0.0456] [0.0305] [0.1080] [0.0764] [0.2152]

�0.5 �2.3305 0.1900 0.4988 0.4805 �0.4764

(0.0479) (0.0324) (0.1115) (0.0806) (0.1891)

[0.0453] [0.0303] [0.1074] [0.0759] [0.1703]

C 0.8 �2.0536 0.1935 0.4972 0.4855 0.7915

(0.0489) (0.0315) (0.1104) (0.0804) (0.0956)

[0.0448] [0.0297] [0.1080] [0.0763] [0.0843]

0.1 �2.0542 0.1943 0.5030 0.4851 0.1067

(0.0580) (0.0382) (0.1168) (0.0782) (0.2374)

[0.0448] [0.0298] [0.1085] [0.0770] [0.2128]

�0.5 �2.0554 0.1923 0.4998 0.4833 �0.4898

(0.0510) (0.0359) (0.1085) (0.0852) (0.1815)

[0.0443] [0.0295] [0.1076] [0.0766] [0.1656]
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Chapter 8

Modelling Loss Given Default: A “Point

in Time”-Approach

Alfred Hamerle, Michael Knapp, and Nicole Wildenauer

8.1 Introduction

In recent years the quantification of credit risk has become an important topic in

research and in finance and banking. This has been accelerated by the reorganisa-

tion of the Capital Adequacy Framework (Basel II).1 Previously, researchers and

practitioners mainly focused on the individual creditworthiness and thus the deter-

mination of the probability of default (PD) and default correlations. The risk

parameter LGD (loss rate given default) received less attention. Historical averages

of LGD are often used for practical implementation in portfolio models. This

approach neglects the empirical observation that in times of a recession, not only

the creditworthiness of borrowers deteriorates and probabilities of default increase,

but LGD also increases. Similar results are confirmed in the empirical studies by

Altman et al. (2003), Frye (2000a), and Hu and Perraudin (2002). If LGD is only

integrated in portfolio models with its historical average, the risk tends to be

underestimated. Hence, adequate modelling and quantification of LGD will become

an important research area. This has also been advocated by Altman and Kishore

(1996), Hamilton and Carty (1999), Gupton et al. (2000), Frye (2000b), and

Schuermann (2004).

The definitions of the recovery rate and the LGD have to be considered when

comparing different studies of the LGD, since different definitions also cause different

results and conclusions. Several studies distinguish between market LGD, implied
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market LGD and workout LGD.2 This paper uses recovery rates from Moody’s

defined as market recovery rates.

In addition to studies which focus only on data of the bond market or data of

bonds and loans,3 there are studies which focus on loans only.4 Loans generally

have higher recovery rates and therefore lower values of LGD than bonds.5 This

result relies especially on the fact that loans are more senior and in many cases also

have more collectible collaterals than bonds.

Studies show different results concerning the factors potentially determining the

LGD which are presented briefly below. The literature gives inconsistent answers to

the question if the borrower’s sector has an impact on LGD. Surveys such as

Altman and Kishore (1996) confirm the impact of the sector. Gupton et al. (2000)

conclude that the sector does not have an influence on LGD. They trace this finding

back to the fact that their study only examines loans and not bonds.

The impact of the business cycle is approved by many authors, e.g. Altman et al.

(2003), Varma and Cantor (2005), Acharya et al. (2007), Grunert and Weber

(2009), and Bruche and Gonzalez-Aguado (2010). In contrast, Asarnow and

Edwards (1995) conclude that there is no cyclical variation in LGD. Comparing

these studies one has to consider that different data sources have been used, and the

latter only focused on loans.

Several studies support the influence of the borrower’s creditworthiness or the

seniority on LGD.6 Nearly all studies analysing LGD using empirical data calculate

the mean of the LGD per seniority, per sector, per rating class or per year.

Sometimes the means of the LGD per rating class and per seniority are calculated.

We refer to the latter prices as “matrix prices” sometimes enabling a more accurate

determination of LGD than the use of simple historical averages.7 The authors

agree that the variance within the classes is high and there is a need for more

sophisticated models. Altman et al. (2003) suggest a first extension of the model by

using a regression model with several variables as the average default rate per year

or the GDP growth to estimate the average recovery rate.

The present paper makes several contributions. A dynamic approach for LGD is

developed which allows for individual and time dependent LGDs. The model

provides “point-in-time” predictions for the next period. The unobservable part of

systematic risk is modelled by a time specific random effect which is responsible

for dependencies between the LGDs within a risk segment in a fixed time period.

2For a definition of these values of LGD see Schuermann (2004) and Basel Committee on Banking

Supervision (2005).
3Schuermann (2004).
4Asarnow and Edwards (1995), Carty and Lieberman (1996), Carty et al. (1998).
5Gupton et al. (2000).
6Carty and Lieberman (1996), Carty et al. (1998), Gupton et al. (2000), Altman (2006), Roesch and

Scheule (2008).
7Araten et al. (2004), Gupton et al. (2000), Schuermann (2004).

138 A. Hamerle et al.



Furthermore, the relationship between issuer specific rating developments and LGD

can be modelled adequately over time.

The rest of this chapter is organised as follows: Sect. 8.2 states the statistical

modelling of the LGD. Section 8.3 describes the dataset and the model estimations.

Section 8.4 concludes and discusses possible fields for further research.

8.2 Statistical Modelling

The dataset used in this chapter mainly uses bond data. Recovery rates will be

calculated as market value of the bonds 1 month after default. The connection

between LGD and recovery rate can be shown as:

LGDtðiÞ ¼ 1� RtðiÞ:

Here, LGDt(i) and Rt(i) denote the LGD and recovery rate of bond i that defaults
in year t, i¼1,. . .,nt. The number of defaulted bonds in year t, t¼1,. . .,T is denoted

with nt.
The resulting recovery rates and loss rates normally range between 0 and 1,

although there are exceptions.8 Firstly, the LGDs will be transformed. The trans-

formation used in this chapter is

ytðiÞ ¼ log
LGDtðiÞ

1� LGDtðiÞ
:

Written in terms of the recovery rate, the following relation is obtained:

ytðiÞ ¼ log
1� RtðiÞ
RtðiÞ

¼ � log
RtðiÞ

1� RtðiÞ
:

This logit transformation of the recovery rate is also proposed by Sch€onbucher
(2003) and D€ullmann and Trapp (2004).9 The LGD can be written as:

LGDtðiÞ ¼
expðytðiÞÞ

1þ expðytðiÞÞ
:

8Recovery rates greater than one are unusual. In these cases the bond is traded above par after the

issuer defaults. These values are excluded from the dataset in the empirical research, see

Sect. 8.3.1.
9This transformation ensures a range between 0 and 1 of the estimated and predicted LGD.
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Analogous to the model used in Basel II, the following approach for the

transformed values yt(i) is specified (D€ullmann and Trapp 2004):

ytðiÞ ¼ mþ s
ffiffiffiffi
o

p
ft þ s

ffiffiffiffiffiffiffiffiffiffiffiffi
1� o

p
etðiÞ (8.1)

The random variables ft and et(i) are standard normally distributed. All random

variables are assumed to be independent. The parameter s is non-negative and

values of o are restricted to the interval [0, 1].

Other specifications are also discussed. Frye (2000a) suggests an approach

according to (8.1) for the recovery rate itself. Pykthin (2003) assumes log-normally

distributed recovery rates and chooses a specification like (8.1) for log(Rt(i)).

In the next step, model (1) is extended including firm and time specific observ-

able risk factors. The dependence upon the observable risk factors is specified by

the following linear approach:

mtðiÞ ¼ b0 þ b0xt�1ðiÞ þ g0zt�1; (8.2)

where i¼1,. . .,nt, t¼1,. . .,T. Here xt-1(i) characterises a vector of issuer and bond

specific factors observed in previous periods. Examples for these issuer and bond

specific variables are the issuer rating of the previous year or the seniority. By zt�1

we denote a vector of macroeconomic variables representing potential systematic

sources of risk. The macroeconomic variables are included in the model with a time

lag. Generally it can be assumed that regression equation (8.2) holds for a pre-

defined risk segment, e.g. a sector.

Regarding (8.1) and (8.2) it can be seen that the logit transformed values of LGD

are normally distributed with mean mt(i) and variance s
2. The random time effects ft

cause a correlation of the transformed values of LGD yt(i) of different bonds

defaulting in year t. This correlation shows the influence of systematic sources of

risk which are not explicitly included in the model or which affect LGD contempo-

rarily. If fundamental factors are having an impact on the LGD of all defaulted

bonds – at least in one sector – a correlation of LGD is obtained as a result (as long

as these systematic risk factors are not included in the model). It can be seen that the

factors have different effects in different segments, e.g. different time lags or

sensitivities in different sectors. If in contrast, the relevant systematic risk factors

are included in the vector zt-1 and if no other risk factors influence LGD contempo-

rarily, the impact of time effects should be reduced significantly.

The unknown parameters in (8.1) and (8.2) are estimated by maximum likeli-

hood considering (8.1) – extended by (8.2) – as a panel regression model with

random effects, (Baltagi 1995, Chap. 3). Note that a bond specific random effect

does not enter the model, since defaulted bonds in different periods t and s (t 6¼s) are
different. Parameter estimates are obtained using PROC MIXED in SAS.10

10Wolfinger et al. (1994).
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For the covariance and correlation of the transformed values of LGD in year t,
the following relationships hold:

CovðytðiÞ; ytðjÞÞ ¼ s2o

CorrðytðiÞ; ytðjÞÞ ¼ o; i 6¼ j:

8.3 Empirical Analysis

8.3.1 The Data

A dataset from Moody’s Default Risk Service is used for empirical analyses. It

contains data from about 2,000 defaulted debt obligations, i.e. bonds, loans and

preferred stock from 1983 to 2003. More than 1,700 debt obligations are from

American companies.

The dataset includes information about the recovery rates of defaulted bonds.

The LGD and the transformed LGD used in this analysis can be calculated from the

recovery rate as described in Sect. 8.2. When a borrower defaulted for the first time,

this event was recorded and all default events after the first one are not considered in

this study.11

About 90% of these debt obligations are bonds. To ensure a homogenous dataset,

only bonds are used in this study. For the same reason, only data from companies in

the sector “industry”12 are used in the final analysis. In this sector there are 84% of

the bonds. In the sectors “financial service providers” and “sovereign/public utility”

there are fewer defaulted borrowers and therefore fewer defaulted bonds. After

restricting the data to American bonds in the (aggregated) sector “industry”, there

are 1,286 bonds in the dataset. Additionally, the dataset is limited to bonds with a

debt rating of “Ba3” or worse. The reason for this constraint was that the rating

categories “A3” to “Ba2” have sparse observations in several years of the period

1983–2003. In addition, several defaulted issuers hold five or more bonds. Some of

11This constraint naturally only affects borrowers who defaulted several times. Furthermore,

observations with LGD equal to zero and negative LGD are excluded from the analysis, because

the transformed LGD yt(i) cannot be calculated. If the recovery rate is greater than 1, i.e. if the

market value of a bond one month after default is greater than the nominal value of the bond, the

LGD becomes negative. In the dataset this was the case in 0.5% of all observations.
12The (aggregated) sector “industry” contains the sectors “industrial”, “transportation” and “other

non-bank” of Moody’s sectoral classification (with 12 sectors) in Moody’s Default Risk Service

(DRS) database. For reason of completeness one has to know that there are two other aggregated

sectors. On the one hand there is the (aggregated) sector “financial service providers” containing

the sectors “banking”, “finance”, “insurance”, “real estate finance”, “securities”, “structured

finance” and “thrifts” and on the other hand the (aggregated) sector “sovereign/public utility”

containing the sectors “public utility” und “sovereign”. This aggregation was made as several

sectors did not have enough observations.
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these bonds have the same LGD at the time of default although they have distinct

debt ratings or distinct seniorities. Other bonds have a different LGD although they

dispose of the same issuer and debt rating and the same seniority. These differences

cannot be explained with the data at hand. Probably they can be traced back to

issuer’s attributes not available in the dataset. For this reason, only issuers with four

or fewer bonds remain in the dataset.13 Additionally, bonds of companies with

obvious cases of fraud like Enron or Worldcom were eliminated from the dataset to

ensure a homogenous pool.

Subsequently, the dataset is adjusted marginally. On the one hand, there is only

one bond with a rating “B2” defaulting in 1996. This bond has a very small LGD

and is removed from the dataset because it could cause a biased estimation of

random effects. On the other hand, four bonds having a bond rating of “Ca” and “C”

in the years 1991, 1992 and 1995 are eliminated from the dataset because they also

have only one or two observations per year. Consequently, there are 952 bonds from

660 issuers remaining in the dataset.

The random effect ft and the error term et(i) are assumed to be independent, with a

standard normal distribution as described in Sect. 8.2. The transformed LGD yt(i) is
tested for an approximately normally distribution. As a result, a normal distribution

of the data can be assumed. This distribution can also be confirmed when the

distribution of yt(i) by year is tested.

In the analysis, the influence of issuer- and bond-specific variables xt�1(i) is

examined as mentioned in Sect. 8.2. In the analyses the following variables are

tested:

l Issuer rating: Moody’s estimated senior rating has 21 grades between “Aaa”

(highest creditworthiness) and “C” (low creditworthiness).14 An aggregation

of the rating categories is tested as well. A possible classification would be the

distinction between investment grade ratings (rating “Aaa” to “Baa3”) and

speculative grade ratings (rating “Ba1” to “C”). Besides this relatively rough

classification the ratings are classified into the categories “Aaa” to “A3”, “Baa1”

to “Baa3”, “Ba1” to “Ba3”, “B1” to “B3”, “Caa”,15 “Ca” and “C”. The issuer

rating has a time lag of 1 year in the analyses.
l Debt rating: Its classification is analogous to the issuer rating and has a time lag

of 1 year. In addition to the classifications mentioned above, the ratings are

classified into the categories “Ba3” to “B3” and “Caa” to “C”.

13In principle, only issuers with one bond could be left in the dataset if the effect of several bonds

per issuer should be eliminated. As this restriction would lead to relatively few observations, only

issuers with five or more bonds are excluded. Hence the dataset is only diminished by 4%.
14For withdrawn ratings, Moody’s uses a class “WR”. Because of the lagged consideration of

rating there are no bonds in the dataset with rating “WR” one year before default.
15Moody’s used to name this rating class with “Caa” until 1997. Since 1998, this class has been

separated into the three rating classes “Caa1”, “Caa2” and “Caa3”. To use the data after 1998, the

latter three ratings have been aggregated in one rating class which is named “Caa” in the following.
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l Difference between issuer and debt rating: the fact that the issuer rating is one,

two, three or more than three notches better than the debt rating is tested on its

impact on the transformed LGD. Additionally, the impact of the fact that the

issuer rating is better or worse than the debt rating is tested. The rating classifi-

cation of an issuer and a bond can differ if the bond finances a certain project

which has a different risk and solvency appraisal compared to the issuer.
l Seniority: Starting with Moody’s classification, the classes “senior secured”,

“senior unsecured”, “senior subordinated”, “subordinated” and “junior subordi-

nated” are distinguished.16 To distinct these seniority classes from the relative

seniority, they are sometimes referred to as absolute seniority.
l Relative seniority: According to Gupton and Stein (2005) the relative impor-

tance of the seniority is surveyed. This variable can be best explained by an

example: If issuer 1 has two bonds – one is secured “subordinated” and the other

“junior subordinated” – and issuer 2 has three bonds – one with seniority “senior

secured”, another with “senior subordinated” and the third bond with seniority

“subordinated” – then the “subordinated” bond from issuer 1 is going to be

served first and possibly has a lower LGD than the bond with seniority “sub-

ordinated” from issuer 2 which is served after the two other bonds from issuer 2.
l Additional backing by a third party: If the bond is secured additionally by a third

party beside the protection by the issuer emitting the bond, then this information

is also used in the analyses.
l Maturity (in years): The maturity of the bond is calculated as the difference of

the maturity date and the default date. It indicates the remaining time to maturity

if the bond would not have defaulted.
l Volume of defaulted bond (in million dollars): The number of outstanding

defaulted bonds times the nominal of this defaulted bond denotes the volume

of the defaulted bond. It quantifies the influence of the volume of one defaulted

bond, not the influence of the volume of defaulted bonds in the market altogether.

Certain companies like insurances are not allowed to hold defaulted bonds. On

the other hand, there are speculative investors who are interested in buying

defaulted bonds. The higher the volume of the defaulted bond, the higher the

supply of defaulted bonds on the market. Therefore it can be more difficult for

the defaulted issuers to find enough buyers or to claim high prices for the

defaulted bond.
l Issuer domicile: The country of the issuer is implicitly considered by the

limitation on American data. This limitation can be important because different

countries may be in different stages of the economic cycle in the same year.

If the data is not limited to a certain country, the macroeconomic condition of all

countries included in the dataset should be considered. Additionally, different

legal insolvency procedures exist in different countries, so that a country’s legal

procedure can influence the level of recovery rates and LGD.

16For a consideration of the hierarchy of seniority classes see Schuermann (2004, p. 10).
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In Fig. 8.1 the average (realised) LGD for bonds in the (aggregated) sector

“industry” per year in the period 1983–2003 are depicted:

As can be seen from Fig. 8.1, the LGD is obviously underlying cyclical varia-

bility. This is why the cyclical variations of LGD are explained with the help of

macroeconomic variables in the vector zt-1. Therefore, a database with more than 60

potential macroeconomic variables is established. It contains interest rates, labour

market data, business indicators like gross domestic product, consumer price index

or consumer sentiment index, inflation data, stock indices, the Leading Index etc.17

In addition, the average default rate per year of the bond market is taken into

account. All variables are included contemporarily and with a time lag of at least 1

year. The consideration of these variables should enable a “point-in-time” model.

8.3.2 Results

Two different model specifications for the (aggregated) sector “industry” are

examined.18 In contrast to model (8.1), another (but equivalent) parameterisation

is used. The models can be instantaneously estimated with the procedure MIXED in

the statistical program SAS. In the next step, the parameter estimates for s and o
can be determined from the estimates for b1 and b2. Table 8.1 summarises the

results.
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Fig. 8.1 Average LGD per year for bonds in the (aggregated) sector “industry”

17A list of potential macroeconomic factors can be found in the appendix.
18Additionally, models for all sectors are estimated containing dummy variables for the different

sectors in addition to the variables mentioned below. The use of a single sector leads to more

homogenous data.
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Model I: ytðiÞ ¼ b0 þ b0xt�1ðiÞ þ b1ft þ b2etðiÞ.

Model II: ytðiÞ ¼ b0 þ b0xt�1ðiÞ þ g0zt�1 þ b1ft þ b2etðiÞ.

The results of models I and II can be interpreted as follows19: If a bond is rated

“Ba3”, “B1”, “B2” or “B3” 1 year before default, it has a significantly smaller LGD

than a bond with rating “Caa”, “Ca” or “C”. In addition to the debt rating, the

seniority also affects LGD. Bonds with seniority “senior unsecured” as well as

bonds secured “senior subordinated”, “subordinated” or “junior subordinated” have

a significantly higher LGD than “senior secured” bonds. When the seniority classes

are compared, it can be stated that “senior unsecured” bonds have a smaller LGD

than “senior subordinated” bonds. Bonds secured “subordinated” or “junior sub-

ordinated” have the highest LGD. Using well secured bonds a creditor can exploit

better securities than a creditor secured with lower ranked bonds resulting in lower

losses. Generally, this result sustains the results published by Moody’s.20

However, not only the (absolute) seniority, but also the relative seniority affects

LGD. If a bond is ranked second or third in terms of collateralisation, the LGD of

this bond is significantly higher than the LGD of a bond secured at first rank. If the

company is going to be commercialised, the latter are served before the bonds

ranking second or third and therefore have to bear fewer losses.

Regarding the coherence between absolute and relative seniority and LGD, it

must be recognised that besides the creditworthiness of the bond, the seniority also

plays a role for the determination of LGD. The fact that in addition to the absolute

seniority, relative seniority also influences LGD is an interesting result. This

coherence is also detected in the models of Gupton and Stein (2002, 2005).

Table 8.1 Parameter estimates and p-values (in parentheses) for models I and II (only bonds of

the (aggregated) sector “industry”)

Model I Model II

AIC 3,224.3 3,222.8

b22 1.7336 (<0.0001) 1.7327 (<0.0001)

b21 0.3421 (0.0052) 0.2859 (0.0064)

Constant �0.3868 (0.1146) �0.8697 (0.0164)

Debt rating “Ba3” to “B3” (t�1) �0.1938 (0.0463) �0.1783 (0.0672)

Seniority “senior unsecured” 0.6194 (0.0004) 0.6064 (0.0005)

Seniority “senior subordinated” 0.7061 (0.0002) 0.6909 (0.0002)

Seniority “subordinated” and “junior subordinated” 1.0487 (<0.0001) 1.0443 (<0.0001)

Relative Seniority “2” and “3” 0.5041 (0.0001) 0.5084 (<0.0001)

Additional backing by a third party �0.2717 (0.0325) �0.2697 (0.0338)

Bond maturity (in years) 0.03407 (0.0020) 0.03546 (0.0013)

Volume of defaulted bonds (in million dollars) 0.001118 (0.0001) 0.001087 (0.0002)

Average default rate (in percent) (t – 1) 0.2186 (0.0358)

19In general, all interpretations according to the quoted model refer to the transformed LGD yt(i).
As yt(i) is the result of a strictly monotonic transformation of LGD all interpretations hold as well

for LGD.
20Hamilton and Carty (1999).
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If in addition to the collateralisation by the direct issuer, the bond is protected by

a third party, these bonds have a significantly lower LGD than bonds without this

additional backing. These additional providers of collateral could fill in for the

defaulted company if the latter does not have a substantial value. Therefore, it can

reduce the loss of these bond creditors.

Another impact on LGD is given by the maturity of the bond. A longer maturity

leads to higher LGDs. This result can possibly be explained by the fact that future

payments are insecure. The recovery rate and LGD are calculated as the market

price 1 month after default. If maturity is longer, higher cash flows are achieved in

the future which are generally more insecure. This is reflected in lower recovery

rates and higher LGDs. Gupton and Stein (2005) negate the influence of maturity on

LGD in their recent paper. In their opinion the maturity does not play a role for

defaulted bonds. Only the risk horizon matters, which is 1 year in their analysis.

However, Gupton and Stein (2005) neglect the uncertainty of future cash flows.

Additionally, the volume of the defaulted bonds influences LGD as a factor of

the supply side. As mentioned above, a higher volume of defaulted bonds leads to a

higher supply and to lower prices for these bonds, i.e. to lower recovery rates and

higher LGDs.21

The incorporation of macroeconomic factors in model II tries to explain the

cyclical variations of LGD. These factors can be interpreted as follows: The

average default rate of the bond market (in percent) with a time lag of 1 year is

taken into account in the model as a possible proxy for the cyclical influence. An

increasing lagged average default rate leads to significantly higher LGDs. This

result is supported by Altman et al. (2003) who detected a positive relationship

between the default rate and the (average) LGD as well.

The cyclical variation in LGD (see Fig. 8.1), can be explained by the fact that

more borrowers and therefore more bonds are defaulting during a recession. More

companies and collaterals have to be commercialised leading on the one hand to a

greater supply of collateral and therefore lower collateral prices. On the other hand,

the demand for these commercialised collaterals declines because the non-defaulted

companies are not able to invest the same amount of money during a recession as

during an expansion. Macroeconomic variables like the lagged default rate try to

explain these cyclical variations.

Apart from the models described above, several other models were tested:

A potential variable is the difference between issuer and debt rating in the year

before default.22 If the issuer rating is better than the debt rating, the LGD of this

bond is expected to be smaller than the LGD of bonds with an issuer rating equal to

or worse than the debt rating. Because issuers with an issuer rating better than the

debt rating dispose of a higher borrower’s creditworthiness, we can expect that

21Altman et al. (2003) also detected a relationship between the average LGD per year and the

volume of defaulted bonds.
22For example the issuer rating could be “Aaa” and the debt rating “A”.
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there is an additional protection of the bond by the issuer. However, this variable

did not influence LGD significantly.

Alongside, the interactions between absolute and relative seniority were tested.

As they are only partially significant they are not included in the model. The

interactions between issuer rating and absolute and relative seniority were included

as well but do not show a significant influence on LGD.

Additionally, a finer sectoral classification is tested to distinguish the impact of

several sectors. This finer classification does not have sufficient observations for all

sectors so a model with this fine classification cannot be estimated.

Moreover, other macroeconomic factors are integrated in the model. They

comprise the GDP (gross domestic product) growth and the “index of leading

indicators” which are included in the models contemporarily and with a time lag

of 1 or 2 years. Furthermore, several macroeconomic variables such as the unem-

ployment rate, the consumer sentiment index, the yield of the consumer sentiment

index and different interest rates are tested with several lags. The average LGD per

year is included with a time lag of 1 year in the model. These variables do not affect

LGD significantly when the default rate 1 year before default is also included in the

models. Altman et al. (2001, 2003) receive similar results. They conclude that

fundamental macroeconomic variables do not have a significant influence on the

average LGD in a multivariate context if the model contains the default rate.

The variance of the error term b2
2 is 1.9266 if a model without explanatory

variables is used. Only the constant term reflecting the average level of the

transformed value of LGD is taken into account in this model. In models I and II

the variance of the error term declines slightly to about 1.7336 and 1.7327,

respectively. This can be attributed to the improved estimation of LGD including

issuer specific and macroeconomic variables and thus to a decreasing prediction

risk.

In model II, the variance of the random time effect b1
2 decreases because

appropriate macroeconomic factors have been integrated compared to model I.

This result indicates that the integration of the default rate leads to a decrease in the

variance of the random effect.

Taking (8.1) into account, the variance of the transformed LGD s2 and the

correlationo for two different borrowers in the same year are examined. A standard

deviation ŝ of 1.4883 for a model without explanatory variables, 1.4407 for model I

and 1.4208 for model II is obtained.23 The correlation ô between the predicted

LGDs for next year is 16.48% in model I. It declines to 14.16% in model II because

of the effect of systematic economic risk factors.24

Finally, it should be mentioned that the variance estimates ŝ2 for models I and II

are still high. This result indicates that there may be further important issuer specific

variables which explain the variation of LGD. Examples are balance sheet variables

not available in Moody’s dataset.

23s2 ¼ b21 þ b22.
24o ¼ b21=s

2.
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8.4 Conclusions

In most empirical analyses concerning LGD, the distribution of LGD is implied to

be constant and LGD is generally estimated using historical averages. Therefore,

the individual values of LGD of issuers within a certain time period as well as the

values of LGD over time should deviate only randomly from a certain mean. Such

an assumption seems to be unrealistic given the fact that in times of a recession, not

only the creditworthiness of the borrowers declines and PDs rise, but that also LGD

is systematically higher.

In this chapter a dynamic approach which generalises other approaches is

presented. LGD is modelled depending on issuer and bond specific as well as

macroecomic factors. As the variables are lagged, the LGDs for the next year can

be predicted on the basis of values that are known at the time the prediction is made.

Reduced uncertainty in the prediction of LGD is important for the determination

of LGD, not only for Basel II but also for internal risk management using credit

portfolio models. At a given state of the economy, more precise predictions about

the economic capital can be made than using historical averages. Furthermore, in a

credit portfolio model, the prediction uncertainty can be taken into account at the

simulation of the predicted loss distribution, e.g. resulting from the estimation of

the parameters b̂ and ĝ.
In a next step, further bond specific performance figures that could not be

reproduced in the dataset at hand will be analysed. This could lead to a further

reduction of prediction uncertainty, which is relatively high in comparison to PD

predictions. If banks have a database which is large enough to estimate individual

LGDs, the model presented in this chapter can be used. Although there may be other

factors influencing LGD in a bank, e.g. type of collateral (financial collaterals, real

estate etc.), the LGD can be estimated individually using an econometric approach.

The “point-in-time” predictions of LGD can also be used to predict downturn LGDs

demanded by Basel II using downturn states of the macroeconomic variables. At

present there are relatively few studies for the determination of recovery rates and

LGD on the basis of individual data. Moreover, the availability of data is restricted.

Therefore, further research is necessary in this area.

Appendix: Macroeconomic Variables

Interest Rate Fed Fund – monthly

Interest Rate Treasuries, constant maturity 6 months, nominal, monthly

Interest Rate Treasuries, constant maturity 1 year, nominal, monthly

Interest Rate Treasuries, constant maturity 5 years, nominal, monthly

Interest Rate Treasuries, constant maturity 7 years, nominal, monthly

Interest Rate Treasuries, constant maturity 10 years, nominal, monthly

Interest Rate Conventional mortgages, fixed rate – monthly

(continued)
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Commercial bank interest rates, 48-month new car, quarterly

Commercial bank interest rates, 24 months personal, quarterly

Commercial bank interest rates, all credit card accounts, quarterly

Commercial bank interest rates, Credit card accounts, assessed interest

Interest Rate, new car loans at auto finance companies, monthly

Interest Rate, bank prime loan, monthly

Civilian Labour Force Level

Employment Level

Unemployment Level

Unemployment rate

Initial Claims for Unemployment Insurance

Challenger Report, Announced Layoffs

Mass Layoffs

Manufacturing Data:

Shipments Total Manufacturing

New Orders Total Manufacturing

Unfilled Orders Total Manufacturing

Inventory Total Manufacturing

Inventory to shipments Total Manufacturing

Capacity Utilization total

Business Bankruptcy Filings

Non-business Bankruptcy Filings

Total Bankruptcy Filings

Dow Jones Industrial Index

S&P500

NASDAQ100

Price Indices:

GDP Implicit Price Deflator (2000 ¼ 100)

Consumer Price Index, All Urban Consumers; U.S. city average, all items

Producer Price Index; U.S. city average, Finished Goods

Gross Domestic Product

Gross Private Domestic Investment

Percent Change From Preceding Period in Real Gross Domestic Product

Public Debt

Tax Revenues

Uni Michigan Consumer Sentiment Index

PMI (Purchase Manager Index, Institute for Supply Management)

Retail Sales total (excl. Food Services)

Revised Estimated Monthly Sales of Merchant Wholesalers

Business Cycle Indicator: Index of Leading Indicators (The Conference Board)

Average crude oil import costs (US$/barrel)

Average default rate of issuers at the bond market
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Chapter 9

Estimating Loss Given Default: Experience

from Banking Practice

Christian Peter

9.1 Introduction

Modern credit risk measurement and management systems depend to a great extend

on three key risk parameters: probability of default (PD), exposure at default

(EAD), and loss given default (LGD). PD describes the probability that the lending

institution will face the default of some obligor or transaction. EAD gives an

estimate of the exposure outstanding at the time of the default, also indicating the

maximum loss on the respective credit products.1 Finally, LGD measures the credit

loss a bank is likely to incur due to an obligor default.

In its advanced internal rating based approach (IRBA), the New Basel Accord

(Basel II) underpins the importance of these key parameters by allowing financial

institutions to apply their own estimates for PD, EAD, and LGD in the computation

of regulatory capital. Since the risk weight of a credit facility is linear in LGD, the

bank’s ability to appropriately estimate LGDs for its portfolios will directly affect

the amount of regulatory capital required under Basel II.

LGD numbers may, however, not only play a significant role in internal credit

risk management and future regulatory reporting, but may also be used in account-

ing. For example, a bank may want to apply modified LGDs in its fair value as well

as impairment computations required for IAS/IFRS.2 Despite all these fields of

application, LGD estimation has gained relatively little attention in the literature.3
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This article approaches LGD estimation from a perspective gained in banking

practice, intending to address not only the estimation problem itself but also to

touch on some aspects of the development process as well as the later application of

these numbers. By doing so the article rather concentrates on practical aspects of

the topic than on statistical details. The article is organized as follows: The first

section discusses the requirements arising from different domains of application for

LGD estimates. Economic loss and LGD are introduced next. The following section

presents a short survey of different approaches for LGD estimation. A model for

workout LGD as well as the design of an LGD model for performing and defaulted

exposures is discussed in the next three sections. Finally, the article closes with

some concluding remarks.

9.2 LGD Estimates in Risk Management

A bank may apply LGD estimates for different domains of application, which often

impose different requirements on the definition of the performance number and its

estimation procedures. Regulatory requirements as defined in BCSB (2004) are

surveyed in Sect. 9.2.1. Afterwards, Sect. 9.2.2 outlines further requirements which

may be raised from risk management and accounting perspective.

9.2.1 Basel II Requirements on LGD Estimates: A Short Survey

BCBS (2004) defines several requirements on LGD estimates eligible for determin-

ing regulatory capital. The following provides a short survey:4

l Scope. Application of foundation IRB approach requires LGD estimates for

retail exposures only (} 331). The advanced IRB approach also allows banks

to use their own estimates for corporate, sovereign, and bank exposures (}} 297
and 298).5

l Default definition (}} 452–457). The reference definition of default given in

BCBS (2004) provides the basis for LGD estimation. When using internal or

external loss data inconsistent with this definition, appropriate adjustments have

to be made.

4See BCBS (2004) for the full text as well as additional rules not mentioned here (for example,

concerning documentation, stress tests, overrides, etc.). The reader should also take the respective

regulations of national supervisors into account.
5For purchased receivables, see }} 364 and 367.
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l Loss definition (} 460). LGD is based on economic loss; see Sect. 9.3 for details.
l LGD estimates (}} 468–471). “A bank must estimate an LGD for each facility

that aims to reflect economic downturn conditions where necessary to capture
the relevant risks” (downturn LGD). The “long-time, default-weighted average
of loss rate given default calculated based on the average economic loss of all
observed defaults [. . .] for that type of facility” provides a lower limit for LGD

estimates. If existent, cyclical variation has to be taken into account. Any

significant dependence “between the risk of the borrower and the collateral
or its provider” as well as the effect of currency mismatches must be consid-

ered in a conservative manner. “LGD estimates must be grounded in historical
recoveries and, where applicable, must not solely be based on the collateral’s
estimated market value”. An institute must fulfil certain requirements on its

collateral management processes for all collateral that is recognized in the

bank’s LGD estimates.

For defaulted exposures, banks have to determine a best estimate LGD, which is

based “[. . .] on the current economic circumstances and facility status”, as well as
a conservative estimate reflecting “[. . .] the possibility that the bank would have to
recognize additional, unexpected losses during the recovery period”.

l Data requirements (}} 472–473). The data basis should ideally cover at least one
economic cycle, but must be no shorter than 7 years for sovereign, bank, and

corporate exposures or 5 years for retail exposures, respectively.
l Assessing the effect of guarantees and credit derivatives (}} 480–489). Banks

are allowed to reflect the effect of guarantees through adjustment of either PD or

LGD estimates. The respective adjustment criteria must be clearly specified,

plausible, and appropriate. The bank must adopt the chosen technique in a

consistent way (both over time and across different types of guarantees). Fur-

thermore, it must assign a rating to each guarantor, fulfilling all minimum

requirements defined for borrower ratings. Except for certain types of obligors,

guarantors, and instruments, the adjustment of PD or LGD is restricted in a way

such that the risk weight of the guaranteed exposure need not be lower than the

risk weight of a comparable direct exposure to the guarantor (no recognition of

double-default effects). There are no restrictions on eligible guarantors. Guar-

antees must fulfil certain standards (for example, evidenced in writing, non-

cancellable on the part of the guarantor, etc.) to be eligible.
l Validation (}} 500–505). “Banks must have a robust system in place to validate

the accuracy and consistency of rating systems, processes and all relevant risk
components”. Comparisons between realized and estimated LGDs must be

performed regularly (at least annually) to demonstrate that realized LGDs are

within the expected range. “Banks must also use other quantitative validation
tools and comparisons with relevant external data sources”. They must demon-

strate that methods do not vary systematically with the economic cycle. Further-

more, the bank must define reaction standards for the case that deviations

between realized and estimated LGDs turn to be significant enough to question

the validity of the estimates.
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9.2.2 LGD Estimates in Risk Management and Other Applications

While Basel II provides the focus of this book, banks may use LGD numbers in

many applications apart from regulatory reporting. Figure 9.1 depicts some of these

applications as well as the various connections between them. A bank’s internal

credit risk reporting and management processes require LGD estimates for different

purposes: Internal reporting (risk bearing ability, performance measurement, etc.),

pricing, the bank’s credit approval authority regulations, and limit management

may be some of these applications.

Accounting can become another field of application for LGD estimates or

derivatives of them. When considering IAS/IFRS, LGD figures may enter fair

value computations and impairment tests. IAS asks banks to disclose fair values

for financial assets and liabilities at least in the notes of the annual statement.7

These numbers can, for example, be computed applying a discounted cash flow

model, with LGD numbers used to adjust cash flows for credit risk.8

Impairment tests provide further possibilities for connecting accounting and

credit risk management processes. General provisions can be computed using a

modified9 LGD number based on the finding that the concepts of incurred loss – as

Regulatory Reporting

Accounting

IAS Fair Value

IAS Impairment

Collateral and Guarantee Information
Accounting Information

Credit Loss Information

Credit Approval Authority 

Performance Reports

Limit Management

NPL Process

Master Data

Credit Portfolio Model

Credit Risk Reports

Internal Reporting

Internal Risk Management

…

...

Pricing

EAD / LGD
Engine

Regulatory Capital
(Tier 1)

Disclosure
(Tier 3 )

Fig. 9.1 LGD estimates – data sources and domains of application6

6NPL is used as an abbreviation for non-performing loan.
7See IAS 39.8, IASB (2005), for a definition of fair value.
8As an alternative to cash flow adjustment, one may apply a discount rate adjustment approach. In

this case, one may refer under certain circumstances to similar risk-adjusted discount rates as used

for LGD estimation; see Sect. 9.6.2.4.
9Some of the necessary modifications are addressed below.
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defined by IAS/IFRS – and expected loss – as used for credit risk measurement – are

quite similar.10 Furthermore, best estimate LGDs as required for regulatory purpose

and specific provisions computed following the rules of IAS/IFRS are both based on

expectations about future cash flows from a defaulted facility, its collateral, and

guarantees. Therefore, one may derive both specific provisions and best estimate

LGDs from the same information base. This will be discussed in more detail in

Sect. 9.7.

A great part of the functionality required for these three domains of application,

i.e. regulatory reporting, internal risk reporting and management, as well as

accounting, is identical. However, there are differences due to diverging intentions –

stability of the bank in case of Basel II and objective reporting of the bank’s assets in

case of IAS/IFRS. This may concern the definition of EAD as well as the definition

of LGD. For example, impairment considers book value as EAD. Fair value

computations may not take future drawings into account, while these are part of

Basel II compliant exposure at default. Risk management, on the other hand, may

recognize future redemption to a larger extent than regulatory requirements allow.

In addition to the impact of different EAD definitions, the loss definition underly-

ing LGDmay slightly vary with the domain of application. The level of conservatism

underlying the estimates will be different due to diverging intentions. Definition of

loss components can differ; for example, internal costs may not be part of IAS

numbers, while Basel II and internal applications will recognize them. Furthermore,

one may decide to consider separate LGDs for different credit events, for example,

political risks in internal models.11 In addition to the 1-year horizon considered in

Basel II, a bank may be interested (at least for some applications, possibly including

regulatory capital) in a dynamic, multi-period projection of risk numbers. Another

potential field of deviations is the assessment of risk mitigation effects.

Dealing with different definitions of EAD and LGD can cause some confusion in

internal communication – despite their different domains of application – and

therefore requires bridging one EAD or LGD number into the other in order to

explain the differences. Furthermore, the complexity of an LGD engine, which

takes all these different requirements into account, can be high, also resulting in

increased costs of development and maintenance. Before stating bank specific

additional requirements, one should therefore carefully check whether the expected

gain in explanatory power rectifies the corresponding effort and costs.

9.3 Definition of Economic Loss and LGD

Basel II requires measuring economic loss as a basis for LGD estimation. “[. . .]
When measuring economic loss, all relevant factors should be taken into account.
This must include material discount effects and material direct and indirect costs

10Due to restricted data availability, differences might be greater in theory than in banking practice.
11This will be necessary if a bank defines its PD ratings as local currency ratings.
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associated with collecting on the exposure. [. . .]” (see BCBS (2004), } 460). The
directive only mentions basic components of economic loss while leaving the exact

definition to the banks.

One may think of economic loss as the change in a facility’s value due to

default,12 i.e.

EcoLossj tDFð Þ ¼ Vj tDF; pð Þ � Vj tDF; npð Þ (9.1)

with V(tDF,(n)p) describing the value of a (non)performing facility j in tDF, the time

of default. Following the current discussion, the value of the performing facility,

Vj(tDF, p), is generally approximated by the amount outstanding at default plus

eventual further drawings after default, i.e. by EAD.13, 14 The residual value of

the defaulted facility, Vj(tDF, np), can be expressed as the net present value of all

recoveries from the exposure diminished by all direct and indirect costs arising

from default. The LGD of a facility j then follows as the ratio of economic loss to

exposure at default, i.e.

LGDj tDFð Þ¼EADj tDFð Þ�NPV RecjðtÞ; t� tDF
� �þNPV CostsjðtÞ; t� tDF

� �
EADj tDFð Þ (9.2)

with NPV(.) the net present value, Recj(t) and Costsj(t) all recoveries and costs

observed at t, respectively. Negative economic loss or LGD indicate a gain. While

negative LGDs are sometimes observed in practice, LGD estimates are generally

required to be greater than or equal to zero. This article will refer to realisations of

LGD as ex-post LGDs, while estimates of loss quotas will also be named ex-ante

LGDs.

Recoveries after default result from facility or collateral sale, guarantees, bank-

rupt’s assets, as well as restructured or cured exposures. Further unexpected sources

of recoveries may sometimes also be observed. While ex-post LGDs may include

all types of recoveries received for a defaulted exposure, the reference dataset

(RDS) for model development should generally not reflect extraordinary recov-

eries, for example stemming from non-eligible collateral or guarantees, in order to

avoid distortion.15

Material direct and indirect costs arising from the handling of a defaulted

exposure are, for example, external and internal labour costs, legal costs, costs for

forced administration, insurance fees, costs for storage, maintenance, repairs of

12Note that differences in default definition will therefore affect economic loss.
13As an alternative, one might define V(t, p) as the net present value of all future recoveries and

costs of the facility in case of no default in t. While theoretically appealing, such a definition can be

difficult to implement in practice. Furthermore, it would also require a respective definition of

EAD as might be done in internal models only.
14See, for instance, Chaps. 10 and 11 for more details on EAD estimation.
15Exemptions may be possible if such extraordinary recoveries are observed on a regular basis.
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assets, etc. Furthermore, one should include ongoing costs, for example, corporate

overhead. Refinancing costs resulting from incongruence of cash flows due to

default may also be considered if material.16 On the other hand, losses of future

earnings (e.g., interest income) are generally not considered as part of economic

loss. With respect to (9.1), one may recognize only additional costs, i.e. the

difference between costs arising from the performing and the defaulted exposure,

respectively. As mentioned above, economic loss and LGD used for IAS purpose

should not include internal costs.

In order to recognize discount effects, all recoveries and costs have to be

discounted. Since workout processes can be time demanding, the chosen discount

rate may significantly affect the resulting economic loss and LGD; see Sect. 9.6.2.4.

9.4 A Short Survey of Different LGD Estimation Methods

The following provides a short survey of main approaches for LGD estimation

currently discussed among academia and practitioners. When classifying different

LGD approaches, a first distinction can be made between subjective and objective

methods. A bank may have insufficient data to rely solely on quantitative methods.

This can occur for low default portfolios, new products, or during the introduction

of LGD methodology. In these situations, the bank may think of subjective methods

primarily based on expert judgment as a valuable source of information. While

there seems to be no special literature on subjective methods in LGD estimation,

techniques known from other fields of application can easily be adopted. Interviews

with experts from different units of the financial institute, comparisons with similar

portfolios, or scenario techniques may help to develop an idea of the loss quotas one

should expect to observe. As far as possible, the bank should incorporate all kinds

of available loss (related) information into subjective methods. Subjective methods

may also prove valuable for a validation of the results obtained from applying one

of the objective methods described next.

Objective methods can be further classified as being either explicit or implicit,

depending on the characteristics of the data sources on which they are based.

Datasets analysed in explicit methods allow for a direct computation of LGDs.

The so-called market LGD approach, a first explicit method, is applied by compar-

ing market prices of bonds or marketable loans shortly after default with their par

values. To compute workout LGDs, it is necessary to discount all recoveries and

costs observed after default to determine the value of the defaulted facility, which is

then compared with the defaulted exposure.

16Incongruence can lead to losses or gains depending on the level of interest rates at the time of

credit granting and default. It is therefore sometimes argued that gains will offset losses due to the

mean reversion property of the interest rate.
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Different from explicit approaches, implicit methods rely on data sources which

do not allow for a direct LGD computation but implicitly contain LGD relevant

information. This information has to be extracted applying appropriate procedures.

Two approaches which have been discussed in banking practice and in the literature

are implied market LGD and implied historical LGD method, respectively.

The idea of the implied market LGD approach is to derive LGD estimates from

market prices of non-defaulted bonds.17 The spreads observed for these instruments

at the market express among other things the loss expectation of the market, which

may be broken down into PD and LGD. While theoretically appealing, it may be

difficult to separate adequately the credit risk component of the spread and break it

down into PD and LGD.

The computation of implied historical LGDs is described in the Basel II frame-

work as one approach to determine LGDs for retail portfolios (see BCBS (2004),

} 465). This approach involves deriving LGDs from realized losses and an estimate

of default probabilities.

Except for implied market LGDs, which may deliver – at least theoretically –

directly (or with minor modifications) estimates for non-performing facilities, all

other concepts considered before at first hand deliver ex-post LGDs. The rest of this

section will consider different approaches for estimating ex-ante LGDs. The main

interest of a bank is generally to derive estimates for workout LGDs, since these

best reflect its losses. Ex-post observations of market LGDs may also be used in

model development; however, doing so may require appropriate adjustments since

market LGDs include components as risk premiums for unexpected losses, which

may not be considered in workout LGDs. Furthermore, required components like

the institute’s specific workout costs are not part of these loss quotas.

As a first, simple approach, one may consider an ex-ante LGD estimation

procedure where LGDs are assigned top-down to exposures based on facility

grades or pool characteristics. Such a procedure requires a segmentation of the

portfolio under consideration into a small number of, in terms of their loss quota,

relatively homogeneous groups of facilities. Statistical analysis as well as expert

judgment provides the basis to identify these segments and to develop the

necessary assignment rules. Since individual characteristics of facilities can

only be recognized to a limited extent in such a two-stage approach,18 one will

expect reasonable performance especially for highly standardized loan programs

or retail portfolios.

For portfolios of less standardized facilities, one may presuppose better perfor-

mance from direct or bottom-up estimation approaches. Higher individual credit

volumes and smaller portfolio sizes will often be other arguments rectifying the

development and application of more sophisticated estimation procedures. The

basic idea of direct estimation techniques is to estimate LGDs based on a model,

17If available, one may also consider market values of loans or credit derivate instruments.
18See CEBS (2005), } 234.
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which takes individual characteristics of each facility, its collateralization, as

well as other important risk factors explicitly into account. As for PD prediction,

empirical statistical or simulation-based models may be applied.

Simulation approaches are often used for specialized lending transactions where

the ability of the borrower to fulfil his obligations primarily depends on the cash

flows generated by the financed object. An individual model of the transaction that

describes the free cash flows generated by the financed object – and therefore the

ability to pay interest and principal – as a function of important risk factors provides

the basis for the simulation. By simulating different scenarios of the transaction’s

progress, an institute will be able to derive estimates for PD, EAD, and LGD.

While such approaches provide great flexibility, costs for modelling a specific

transaction and performing the simulation can be high, depending on the structure

of the simulation tool.

LGD estimates based on empirical statistical models can be generated by

applying a single equation or a component-based approach. While the first approach

intends to describe LGD by a single (for example regression) model, the latter one

consists of a set of submodels each describing a certain component of LGD, e.g. the

recovery rate for a certain collateral type or costs of certain workout activities. LGD

estimates are then generated by appropriately aggregating the results of the esti-

mates for these components. Statistical models for LGD or single LGD components

can also be used in simulations.

Banks may apply different techniques depending on the characteristics of the

respective portfolio segment, its importance with respect to the whole portfolio,

and the availability of loss data. This allows on the one hand measuring LGDs for

different products with customized estimation procedures. On the other hand, how-

ever, it can make a consistent measurement of credit risk over the whole portfolio

more difficult.

9.5 A Model for Workout LGD

Consider the situation that a bank faces after a borrower’s default. While default

itself marks a unique reference point for loss measurement, the workout of a

defaulted credit facility as well as the resulting loss can vary substantially. How-

ever, one will probably observe a certain pattern of typical developments, called

after-default scenarios in this paper. Table 9.1 provides a reasonable set of such

scenarios. Depending on the banks portfolio as well as its workout strategy, the

number and definition of after-default scenarios may slightly differ.

While the loss observed within a certain scenario may be similar for different

(comparable) facilities, it will generally be impossible to know the after-default

scenario in advance. One may therefore consider the loss quota of a facility j,
LGDj, as a random variable following a mixture distribution. With SCj a discrete-

valued random variable describing the occurrence of after-default scenarios and

LGDj(sci) a second, continuous-valued random variable describing the loss of
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a facility depending on the scenario sci and d(.) the indicator function,
19 LGDj can

be defined as20

LGDj ¼
X
i

dsci SCj

� � � LGDj scið Þ (9.3)

Collateral and guarantees will generally have a strong impact on the loss quota

realized for a defaulted facility. Consider a facility, which is secured by n � 1 risk

mitigation instruments.21 Each of these instruments k collateralizes sqk percent of
the exposure. One can now break down the exposure into m� n subexposures, each
collateralized by at least one instrument and an additional part, sq0, which remains

unsecured. The percentage of loss realized on each subexposure sql, 0 � l � m,
may depend on the respective risk mitigation instrument as well as the after-

default scenario currently under consideration. The total loss quota in scenario sci
is therefore given by

LGDj scið Þ ¼
X
0�l�m

sqj;l � LGDj;l scið Þ (9.4)

where LGDj,l(sci) describes the percentage of loss observed on an (un)secured

subexposure of size sqj,l. Since the breakdown in (9.4) is equivalently performed

for each of the after-default scenarios, one may alternatively write

Table 9.1 A set of possible after-default scenarios

Scenario sci Definition and explanationa

Cure The defaulted entity cures after a short time and continues to fulfil its

contractual obligations.

No significant losses; no changes in the structure or conditions of the credit

facilities.

Restructuring The defaulted entity recovers after a restructuring of its facilities. Repossession

and sale of collateral may sometimes be part of the restructuring.

Loss amount may vary; customer relationship maintained.

Liquidation All credit products of the defaulted entity are liquidated, i.e. sale of loans,

collateral (if available), etc.

Loss amount generally higher than observed for restructuring; end of customer

relationship.
aScenarios will generally be defined with respect to the defaulted entity (i.e. for borrower or

guarantors) and may therefore not always correspond with what is observed for a single credit

product

19I.e. dsc(SC) ¼ 1 for SC ¼ sc and dsc(SC) ¼ 0 otherwise.
20To simplify the presentation, time references are left out in (9.3) as well as in most of the

formulas following. It is generally assumed in this article that one intends to predict the loss quota

for a default occurring within a time interval T ¼ [ta, te) given the information up to t0 (the time

where the computation takes place), i.e. LGDj ¼ LGDj(T|t0).
21This article uses the expression “risk mitigation instrument“ (rmi) as a general notion for all kind

of collateral and guarantees.

160 C. Peter



LGDj ¼
X
0�l�m

sqj;l � LGDj;l (9.5)

with

LGDj;l ¼
X
i

dsci SCj

� � � LGDj;l scið Þ (9.6)

With respect to (9.2), LGDj,l(sci) can be expressed as

LGDj;l scið Þ ¼ max 0 ; 1� RRj;l scið Þ þ Costsj;l scið Þ� �
; (9.7)

with RRj,l(sci) and Costsj,l(sci) the percentage of recovery and costs on exposure sql
of facility j in scenario sci.

Equation (9.5) follows the structure of the formula provided in BCBS (2004) for

risk mitigation. The extension of considering after-default scenarios may prove

helpful as a theoretical model as well as for analysing the characteristics of

observed economic loss or model development. The relatively simple structure of

the model, which demonstrates the main idea while hiding most of the complexity

of the underlying statistical models, will also be easy to communicate within the

bank. This may increase acceptance of the estimation procedures, which may

appear as a black box for credit analysts. Ex-ante estimates, however, are often

generated based on a reduced form of the model presented here.

9.6 Direct Estimation Approaches for LGD

The following considers direct estimation approaches for LGD. Setting up such a

procedure requires a description of the components of economic loss, i.e. recoveries

on secured and unsecured exposures as well as costs, in terms of appropriate

explanatory variables with respect to the requirements imposed by different

domains of application, i.e. Basel II, IAS, or internal risk management, respec-

tively. The development process for an LGD estimation procedure can generally be

structured along the following steps:

1. Data collection, pre-processing and analysis

2. Model design and estimation

3. Model validation

Some steps of the development process may have to be repeated several times

before a satisfactory solution is found. Figure 9.2 depicts a typical series of projects a

bank may set up in order to develop an LGD engine. The implementation of a credit

loss database is often the first step. It creates the basis for a systematic collection

of loss data required for model development. The respective project generally

incorporates (or is followed by) activities to transfer (a part of) the bank’s loss history
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from paper files to the database. The LGD estimation model as well as the required

validation procedures and processes can be developed afterwards.

Following the initial project phase, the LGD engine will be subject to regular

enhancement and maintenance activities. Such activities may be triggered, for

example, through the introduction of new products or regulatory changes as well

as the results of the annual validation.

The following concentrates on the first two steps of the development process for

an LGD engine. The presentation starts with a short discussion of some aspects of

data collection, mainly through a description of typical elements of a credit loss

database. Afterwards, different aspects of model development are discussed.

9.6.1 Collecting Loss Data: The Credit Loss Database

One will generally consider the bank’s own past loss experience as the most

valuable information available for the development of an LGD estimation proce-

dure, since it directly reflects the characteristics of the institute’s credit products and

processes (e.g., origination, monitoring, and workout processes). Banks therefore

often set up a credit loss database in order to collect all relevant information

concerning defaulted entities and their credit exposures.

The aggregate of all information concerning a defaulted entity and its exposures

is often called a loss file. A loss file will generally include not only information

about the time after the occurrence of a default but also information about the time

before. Information about the time after default occurrence consists of

LGD Engine

Validation (annual)

Additional requirements
• new products
• new regulation rules
• etc.

Continuous processInitial project phase

Implementation

Development

Test

Further processes
• loss data collection
• etc.

Time

Implementation

Development

Test

Implementation

Development

Test

Implementation

Development

Test

Project Validation Processes

Project LGD Methodology

Project Credit Loss Database

According to
demand

Enhancement & Maintenance of
LGD & Validation Methodology 

Fig. 9.2 Typical structure of an initial phase to set up an LGD engine and the following annual

validation process
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l Possible further drawings after default
l All recoveries related to the defaulted entity, its credit facilities, and risk

mitigation instruments
l All costs arising from the workout process
l Additional information about the workout process (for example, events and

remarks as well as identifiers of restructured facilities and repossessed assets,

which later allows to identify these objects within the bank’s IT-systems)

Further information collected within the credit loss database includes cash flows

before default (or exposure at the time of default), master data, rating history,

collateral values, etc. The later model development and estimation process gener-

ally requires additional information, for example, time series of macroeconomic

variables or version numbers of the applied risk measurement tools (ratings tools,

collateral valuation tools, etc.), which may also be incorporated in the database.

It will often take some time to realize all cash flows from cured or restructured

credit facilities as well as from repossessed assets. Since workout usually ends

much earlier and credit products or assets are then transferred from the workout unit

to another unit within the bank or an external service provider, loss files will often

be closed by the end of the respective workout activities. Cured or restructured

credit facilities as well as repossessed assets are valued by that time and the result

stored as non-cash recovery in the loss file.22

Since the number of loss observations is often small and loss data coming from

the latest defaults also contains the most up-to-date information about current loss

quotas, it appears attractive to include incomplete loss files as early as possible

in the reference dataset for model development. The decision as to whether an

incomplete loss file should be incorporated in the reference dataset will generally be

made on a case-by-case basis and can also depend on the application. A reasonable

decision criterion may often be defined based on the uncertainty still inherent in the

value of economic loss due to the incompleteness of the loss case. Often, the end of

the workout process is a reasonable time to include a loss file into the reference

dataset. A component-based estimation approach may provide possibilities for even

earlier usage of incomplete loss data; for example, by considering incomplete

loss files in the reference dataset of some LGD components only.23 While the use

of incomplete loss files will make loss data available more quickly, this data, still

incorporating estimates, can only be used to a limited extent, which may limit the

benefit.

22However, as mentioned above one should include references into the loss file in order to allow

for a later replacement of non-cash recoveries by the corresponding cash recoveries realized from

the respective cured or restructured facilities. Note that non-cash recoveries are generally esti-

mates of future, uncertain cash flows.
23For example, repossession and sale of collateral might already be finished for a defaulted credit

product. The respective information can then be used to update the estimate of the recovery rate for

the respective collateral type(s) while at the same time the information required to re-estimate the

recovery rate for unsecured exposure might still be incomplete.
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A number of further aspects should be considered during data collection and pre-

processing; the following outlines a few of them:

l Most of the requisite data can generally be found in existing IT-systems, allow-

ing for the automatic collection of loss data. However, manual inputs are

probably necessary during the workout process. These will include most infor-

mation about the workout process, i.e. events, remarks, etc. While remarks allow

entering information in an unstructured way, events provide the possibility of

marking specified states and decisions, milestones, or turning points in order to

structure the workout process for later analysis.24 The extent to which such data

must be added should be specified carefully in order to get informative loss files

without causing too much extra work and costs.
l Since estimation procedures will improve over time, it will often be beneficial to

collect a superset of the loss data currently required for model estimation. The

degree of detail may be different depending on the business line or credit

product. This may, for example, result in more detailed loss data collection for

large corporate than for retail exposures.
l Assuring the quality of loss data can be more time-consuming than expected at

first glance. Simple automatic consistency checks might help to detect irregula-

rities in the data; however, a larger part of the checks requires a deeper under-

standing of the workout processes as well as the loss cases themselves and

therefore has to be done in collaboration with experts from restructuring and

workout units.

9.6.2 Model Design and Estimation

The general structure of an LGD estimation procedure often consists of the follow-

ing three steps:

1. Data collection. Identification and collection of all data required to estimate

LGD.

2. Pre-processing. Transformation of raw data into a form suitable for the estima-

tion of LGD or LGD-related numbers. This may already include estimates for

single LGD components.

3. Generating estimates. Generation of LGD estimates by appropriately assem-

bling the results of pre-processing. In particular, this includes recognizing the

risk mitigation effect of guarantees and collateral. As a by-product, the proce-

dure may also provide other useful information, as for example statistics on the

concentration in risk mitigation instruments, etc.

Figure 9.3 shows the basic structure of an LGD engine as it might be imple-

mented within a bank’s IT-systems. Depending on the IT-infrastructure, institutes

24An example of how this information may be used in LGD estimation is given in Sect. 9.6.2.3.
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may run various engines for different applications or portfolio segments or refer to a

central engine as depicted here. In the later case, a controller may organize the

computation of LGD estimates for different applications.

Regression-type models are generally preferred as a flexible approach for mod-

elling LGD or its components. Such approaches have been considered in several

publications on LGD estimation; see for example Altman et al. (2003) or Chap. 8.

Banks will often “suffer”, at least during the initial years after introducing LGD

estimation procedures, from an insufficient number of loss observations at least for

certain parts of their portfolio. The need to rely on information from various

sources, sometimes following different definitions of default and loss, and also

having different quality characteristics, can make other, more “simple”25 approaches

attractive. Capacity as well as time restrictions or priority settings among different

portfolio segments are additional reasons why banks may start with these

approaches for some portfolios.

Lookup-table based approaches will often provide the basis for LGD estimation

procedures in such situations. The idea here is to tabulate possible values of some

variable of the model, for example, a recovery or cost rate, or the resulting LGD

numbers themselves, together with the respective selection criteria. For instance, a

bank may tabulate recovery rates for unsecured exposures depending on customer

type, facility type, seniority, and region (see also Table 9.2). Given such a table, the

Pre-processing

Data Warehouse

Controller

Online computation
(valuation of single transactions)

Data
Collection

Computation of
LGD

Data Bases
•  Collateral
•  Accounting data
•  Ratings
•  Master data
•  ...

Batch computation
(valuation of portfolios)

Fig. 9.3 Structure of an LGD engine

25While being simple from a pure statistical point of view, setting up a procedure that generates

reasonable LGD predictions based on different types of information will nevertheless often remain

a demanding task.
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bank can easily generate an estimate for the recovery rate of some exposure by

reading the recovery value corresponding to these four characteristics. The devel-

opment of such a table requires first the identification and description of segments

of similar values for the considered variable in terms of appropriate explanatory

variables. Afterwards, a representative value for the variable under consideration

has to be estimated for each segment. Both steps can be supported by expert

judgment or other external information sources if the bank’s reference dataset is

insufficient.

One should expect such models to capture only a part of the (explicable) vari-

ability of LGD numbers observed in practice. For example, it will be difficult to

describe the dynamics with respect to changes in macroeconomic variables. This

can result in higher margins of conservatism and therefore rather conservative LGD

estimates. On the other hand, lookup-table based approaches are more intuitively

understandable, thus supporting internal communication and acceptance within the

bank, which can be advantageous especially during the introduction phase. They

may therefore serve as a starting point for some portfolio segments when introdu-

cing an LGD estimation procedure. It is then a matter of further developments to

successively replace lookup-tables with more sophisticated statistical models wher-

ever sufficient loss data can be made available and one expects significant improve-

ments in the quality of LGD estimates. However, designing an LGD engine in a

way that easily supports the migration from a simple to a more sophisticated

estimation procedure at a later point in time can be complicated and may lead to

increased follow-up costs.

The following sections consider some aspects of the design of an LGD estima-

tion procedure. The first section considers basic explanatory variables for LGD.

Afterwards, approaches to estimate the two main components of LGD, recoveries

and costs, are described. The choice of appropriate discount rates is considered

next. A last section concludes this part with a short discussion on how the Basel II

requirements concerning the conservatism of LGD estimates can be recognized.

It is beyond the scope of this article to describe the whole development procedure in

detail; the following will therefore skip many technical details which may be found

in most statistical textbook.

9.6.2.1 Possible Explanatory Variables for LGD Estimation

To identify appropriate explanatory variables, also named risk factors or risk

drivers, one may start with a list of possible risk factors resulting from expert

judgment, which are then tested during model development for their individual and

joint explanatory power. In practice, the limited number of loss observations will

sometimes make a statistical analysis difficult or even impossible, and may there-

fore restrict the set of risk drivers that can be considered in an LGD model.

Table 9.2 summarizes some possible explanatory variables generally considered

as possible risk drivers when developing LGD estimation procedures. Most of them
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can easily be justified by intuition.26 Furthermore, one will expect some of these

variables to have explanatory power not only for (single components of) LGD

but also for PD and EAD, indicating dependences between these key parameters of

credit risk.

Borrower and credit product characteristics as for example industry, capital

structure, and seniority may explain recovery rates on unsecured exposures in

liquidation scenarios (i.e. from bankrupt’s assets). They may also indicate workout

intensity as a proxy for workout costs. Depending on the regional distribution of

the portfolio, it could be necessary to consider region or country as explanatory

variables.27

Recoveries from collateral will depend on the possibility of repossessing and

selling the respective assets. Depending on the market size and structure observed

for a certain asset class, the bank may have to accept discounts for distressed sale.

Technical characteristics of the respective assets could serve as an indicator for the

level of such discounts and may also explain in part the costs of sale. Analogously,

the value of a guarantee depends on the credit standing of the respective guarantor

as well as on specific warranty clauses. In case the guarantor defaults, recoveries

can be expected to depend to a large degree on the same explanatory variables as

mentioned above for unsecured exposures (i.e. borrower characteristics).

Table 9.2 Examples of possible explanatory variables grouped by categories

Category Explanatory variables

Borrower Customer type (sovereign, private entity, SME, corporate, . . .),
country or region, industry, legal structure and capital structure

of the entity, rating, etc.

Credit facility Seniority (senior, junior, . . .), debt type (loan, bond, . . .),
transaction type (syndicated loan, . . .) and number of financing

entities, exposure, financing purpose, degree of standardization,

collateralization (LTV,. . .), etc.
Collateral Type, current book or market value, value depreciation, age,

mobility (immobile, national or international mobile),

producer, technical characteristics (for example, engine type of

an airplane or gauge of a locomotive), etc.

Guarantee Guarantor (see list of explanatory variables required for borrowers

as provided above), coverage, warranty clauses, etc.

Macroeconomic and other

external factors

GDP growth rate, unemployment rates, interest rates, FX rates,

price indices, legal system and institutions, etc.

Bank internal factors Versions of valuation procedures and tools, workout strategy,

collateralization strategy, etc.

26A comprehensive survey of empirical analyses can be found in Bennett et al. (2005); the

following mentions only a few of them.
27Altman and Kishore (1996) and Acharya et al. (2004) found significant differences in recoveries

of defaulted bonds belonging to different seniority classes. The same authors report significant

differences for only some industry sectors, while Araten et al. (2004) could not find significant

impact of industry (or region) on LGDs observed for loans.
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The macroeconomic situation at default will generally influence LGD, as was

demonstrated by several authors.28 Basel II explicitly asks to take economic cycles

into consideration. Depending on the regional distribution of the institution’s

portfolio and the considered recovery source (e.g., a certain asset type), one may

consider different economic variables. Since default and recoveries from bank-

rupt’s assets and collateral may both depend on the same macroeconomic variables,

an appropriate recognition of these dependences will be important to avoid over-

estimating recoveries.29 Other external factors as jurisdiction and legal system can

also play a role when explaining lengths and costs of workout activities as well as

amount of recoveries.30

As a last group of explanatory variables for LGDs, one should consider bank

internal characteristics. Loss experience as well as LGD estimates will reflect to

a certain degree characteristics of the bank’s internal processes (e.g., origination,

monitoring, and workout processes). For instance, a bank’s workout strategy has

a strong impact on the magnitude of recoveries and costs. Therefore, any change in

the strategy may require modifications in the LGD estimation procedures in order to

recalibrate them. For example, the a modification of a collateral valuation proce-

dure may require a transformation of historical valuations and adjustments in

estimated recovery rates for the respective asset type as well as modifications of

the LGD estimation procedure.31

9.6.2.2 Estimating Recoveries

Recoveries are generally the main driver of LGD. With respect to (9.3)–(9.7), one

may define recovery rates as

RRj;l scið Þ ¼ NPV CFj;l scið Þ� �
sqj;l � EADj

(9.8)

for (un)secured exposures of size sqj,l � EADj observed for a loss case32 j in the

respective after-default scenario sci. sqj,l may be defined in different ways as will be

28Araten et al. (2004) report correlation of unsecured exposures (but not of secured exposures)

with economic cycle. Several authors report dependences found in bond data, see for example

Hamilton et al. (2006) or Altman et al. (2003).
29Several authors have analysed the link between default and LGD; see for example Frye (2000a, b),

Altman et al. (2003), and D€ullmann and Trapp (2004).
30See for example Franks et al. (2004) for an analysis of recovery processes and rates in the U.K.,

France, and Germany. Useful information about doing business in different countries may also be

found at http://www.doingbusiness.org.
31See Sect. 9.6.2.2 for more details. The example also demonstrates why the version number of a

collateral valuation tool may be important information within the credit loss database; see

Sect. 9.6.1.
32A loss case will generally comprise all credit products of a defaulted entity.
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discussed below. NPV(CF) again denotes the net present value of all cash flows

which are observed on the respective exposure. Assume for this section that

recovery rates are determined without taking costs into consideration.

Equation (9.8) can be used to generate lookup-tables based on historical loss

information or may also be computed as part of the estimation procedure. The later

case may be attractive if the bank plans to consider the discount rate as an input

parameter of the estimation procedure.33

Table 9.3 summarizes recovery sources for the after-default scenarios shown in

Table 9.1. Basel II requires assigning LGDs to each facility (see Sect. 9.2.1);

however, in practice, recoveries can be observed on different, often more aggre-

gated levels. These are generally credit entities (i.e. borrower and guarantors),

facilities, and risk mitigation instruments.34 For example, two loans of a defaulted

obligor may be collateralized by the same asset. In this case, the distribution of the

asset’s sales proceeds onto the loans is often ambiguous. Ex-post LGD computation

as well as ex-ante estimation on a loan level therefore require appropriate proce-

dures to allocate recoveries to facilities.

Since guarantees require, at least under Basel II, a slightly different treatment,

the following considers first exposures, which are either unsecured or secured by

collateral. Afterwards, the risk mitigation effect of guarantees is considered in

a separate subsection. A concluding third section outlines additional aspects of

recovery rate estimation.

Unsecured Exposures and Exposures Secured by Collateral

Consider an exposure collateralized by an asset Ai having a reference value Vt(Ai) at

time t. For ex-ante estimation, the reference value will later generally be the result of

the most recent valuation of the asset. Ex-post, one may use either the last valuation

Table 9.3 Recovery sources with respect to different after-default scenarios

Scenario sci Unsecured exposure Secured exposure

Cure Recovery ¼ cured facility

A

Restructuring

(I) no usage of rmi
Recovery ¼ restructured facility

B

(II) usage of rmi Recovery ¼
restructured facility C

Recovery from eligible

collateral or guarantee D

Liquidation Recovery from

bankrupt’s assets E

Recovery from eligible

collateral or guarantee F

33Details of this approach are considered in the next section for collateral recoveries.
34The same holds true for other components of LGD, see for example Sect. 9.6.2.3.
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before default or – if available – a valuation performed after default.35 Given these

information, the recovery rate RRk for a certain collateral type k can be estimated

ex-post as the ratio of the net present values NPV(CF) of all sold assets of type k to
the respective collateral valuations V(A) before default.

Now assume that asset Ai is of collateral type k(i) and that loss experience

indicates a recovery rate RRk(i) for this collateral type or for an exposure collater-

alized by it, respectively. The bank would then expect to realise a recovery of

Vt(Ai)· RRk(i) for the respective reference object, i.e. for a secured exposure or the

asset itself. The reference size in (9.8) is given by sqj,l(i)¼ min{1; Vt(Ai)/EADj}.

Alternatively, one may define the respective reference size in (9.8) with res-

pect to the recovery of asset Ai, i.e. sqj,l(i) ¼ min{1; Vt(Ai) · RRk(i)/EADj}. The

recovery on subexposure sqj,l(i) · EADj will then be 100%. In both cases, one may

proceed similarly for unsecured exposures, considering the respective exposure size

sq0 ¼ max{0; 1� ∑l � 1 sqj,l} as the “asset” value.

The general model described in (9.3)–(9.7) defines LGD as the weighted sum of

LGDs observed in different after-default scenarios on a set of subexposures. Esti-

mation of ex-ante LGDs may follow this line, i.e. first estimate LGDj,l(sci) for each
subexposure in each scenario and afterwards aggregate these numbers to determine

the LGD estimate for the exposure under consideration. However, one may want to

simplify the procedure by aggregating as many of these LGDj,l(sci) estimations as

possible in order to lower computational complexity. Table 9.4 demonstrates two

possible approaches to do so.

The idea of the first approach is to estimate LGDs for a subexposurewithout taking

explicitly into account after-default scenarios. However, recoveries on secured

exposures may not only depend on collateral but also on facility and borrower

characteristics. In principle, this problem can be overcome by partitioning the pool

into homogeneous groups of obligors and estimating parameters for each partition

Table 9.4 Two approaches for estimating recovery rates of (un)secured exposures

Approach 1 Approach 2

Secured exposure Estimate RRk of asset type

k based on recoveries

of A , B , D , and F a

Estimate RRk of asset type k based on

recoveries of D and F a

Unsecured exposure Estimate RR0 based on

recoveries of A , B ,

C , and E a

Estimate RR0 based on recoveries of C ,

and E

Total exposure – Estimate RR0 based on recoveries of A

and Ba

Estimate P A , B and PC , E , the probabilities

of after-default scenarios without or with

usage of risk mitigation instrumentsa

aAll references with respect to Table 9.3

35In order to estimate PD, EAD, and LGD in a consistent way, one will often apply a cohort

approach for all three variables. Therefore the last valuation before default is the more appropriate

reference value.
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separately. A limited number of loss observations often hinder a partitioning in

practice. The approach therefore appears especially appealing for large, homoge-

neous portfolios.

The second approach disaggregates recoveries which depend on asset charac-

teristics and those which do not. In fact, it can be considered as a generalisation of

the first approach. Mainly collateral-independent recoveries of the after-default

scenarios “cure” and “restructuring without rmi usage” are estimated for the whole

exposure while recoveries in scenarios with rmi usage are estimated separately for

secured and unsecured subexposures (as was the case in variant 1). The complexity

of the approach is therefore only slightly higher; however, one has to estimate more

parameters.

Instead of modelling different components for (un)secured exposures and/or

different after-default scenarios, one may also try to describe total recoveries on

an exposure by a single recovery component. This might be done, for example,

by considering the sum of expected asset recoveries as an explanatory variable.

If exposures are secured by only one asset, as will often be the case, one may

also try to incorporate asset values directly as explanatory variables into a

recovery model. Since recovery rates generally depend on the respective asset

type, such models will probably require considering asset type as an additional

explanatory variable. Furthermore, one may face the same problems as already

discussed above.

Explicit consideration of after-default scenarios following the approach outlined

in Sect. 9.5 and discussed in more detail above may be applied in loss data analyses

as well as LGD estimation for defaulted exposures (see Sect. 9.7). Furthermore,

explicit consideration of scenarios can sometimes be useful when combining

different internal and external data sources or when loss data is missing for some

parts of the bank’s portfolio. Incorporating external data into the model may require

different techniques depending on type and data source.

For example, probability of cure depends on the bank’s default definition.

A separate description of the cure scenario may therefore be of interest for LGD

calibration if external data (for example, from a data pooling) is used for estimation

purposes or if the bank itself has changed its default criteria over time.36

As a second example, assume that the bank has a low number of observations for

some portfolio segments. It may then try to derive estimates (for example, consid-

ering after-default scenarios) for these segments by comparing key characteristics

of this portfolio segment with those of other segments where loss observations are

available. Thus, the institute may obtain an idea of the recoveries it can expect on

the respective portfolios. However, subjective methods as previously outlined can

generally only supplement the analysis of external data.

36This may sometimes be the case during the introduction of Basel II compliant processes.
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As a third example, consider the estimation of recovery rates for assets where the

bank does not have own workout experience.37 A possible approach for deriving

recovery rates for collateral (in part) from external data can be stated as follows:

1. Estimate the time series of value depreciation for the specified asset type.

Sources of information on value depreciation can be market data as well as

data from brokers or appraisers.

2. Estimate the time Dt required for repossession or sale. In practice, one may

observe time series of cash flows, for example rents or leasing rates followed

by one or several cash flows from the observed asset sale. While such cash flow

patternsmay theoretically also be recognized in amodel, it will often be sufficient

to assume that the total cash flow arises at one point in time. An exposure-

weighted average time often provides a reasonable reference time. If no recovery

observations are available, one may refer to experience from similar asset types

or rely on expert judgement.

3. Estimate haircutsD for value volatility, distress sale, etc. Again, market data can

often be a main source of information. Experience from repossession or sale of

similar assets may also provide useful information for estimating haircuts. In

addition, one has to determine an appropriate discount factor; see Sect. 9.6.2.4.

Having determined these parameters, recovery estimates can be generated as NPV
(V(tDF þ Dt)·(1�D)). To obtain a better idea of themagnitude of recoveries, onemay

also perform scenario analyses or simulations where the input parameters determined

in the three steps above are varied in order to reflect certain economic scenarios.

Any substantial dependence between the value of an asset and the default

event of the borrower should carefully be taken into account, since they may sub-

stantially decrease the effect of risk mitigation (see also BCBS (2004), } 469). It is
often helpful to distinguish between general and specific dependences. The first

named recognizes “normal” dependences which should be reflected in the recovery

rates discussed so far. The second type addresses an individual characteristic of

a facility-collateral relation, which is generally difficult to detect automatically. It

is therefore often reasonable to give credit analysts the possibility to grade

such dependences manually. These grades can then be used to adjust haircuts on

recovery rates in an appropriate manner.

Exposures Secured by Guarantees or Credit Derivatives38

Since the risk mitigation effect of a guarantee essentially consists of a (partial)

transfer of credit risk to a different entity, one may explicitly model the guarantor’s

37For unsecured exposures, recovery estimates may be derived from market LGDs; see Sect. 9.4.
38The following considers guarantees to simplify the presentation. Credit derivatives can often be

treated in a similar way.
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default probability as a major driver of the guarantee’s value, i.e. recoveries from a

guarantee can be described as39

RRj;l ¼ PD G Bjð Þ � RRDD
j;l þ 1� PD G Bjð Þð Þ � RRSD

j;l (9.9)

with PD(G|B) the conditional probability of default of the guarantor given the

default of the borrower. The parameters RRSD and RRDD are the recovery rates a

bank may observe in case of an isolated default (SD) of the borrower or a double

default (DD) of both the borrower and guarantor. One may extend (9.9) analogously

for cases where an exposure is secured by more than one guarantee (for example, in

case of a counter-guarantee). The size of a secured exposure, sqj,l, can be deter-

mined in a similar way as described for collateral above, taking into account that

the reference value of a guarantee is generally defined as a maximum amount,

Vmax(Gar), and/or a certain percentage sqGar of the exposure.
40

When published first in June 2004, the Basel II Framework restricted risk

mitigation effects of guarantees by requiring that the risk weight resulting from

an exposure secured by a guarantee should not be less than that of a comparable

exposure with the guarantor in place of the borrower. This approach is known as the

substitution approach, indicating the basic idea of replacing the borrower by the

guarantor. It has often been criticized for being too conservative. To understand

why, consider for a moment the borrower as a first guarantor of the contractual cash

flows. The guarantor then in fact provides a counter-guarantee for these cash flows.

Therefore, the bank faces substantial losses only if the guarantor is unable to pay at

the time of the borrower’s default, i.e. in case of a double default. Only if one

assumes perfect dependence between the two defaults, which will generally not be

the case, a substitution mechanism will describe the credit risk appropriately.

With its update in 2005, Basel II now allows for a limited recognition of double

default effects in both IRB approaches. Restrictions are defined on the set of eligible

instruments, obligors, and guarantors as well as on the method and the correlation

parameters.41 A Merton-style default model [see Merton (1974)] is considered to

determine joint default probabilities of guarantor and obligor. Let Yi be the appro-
priately normalized asset value of a borrower or guarantor i at a 1-year horizon,

respectively. With X a systematic risk factor, ZBG a risk factor shared by borrower

39Again, j indicates the facility and l the exposure part secured by the guarantee.
40In practice, the value of a guarantee may depend on further warranty clauses. To mention a few,

guarantees may cover only a subset of the borrower’s obligations, for example only interest rate

payments or redemption. They may also be restricted to protect certain risk classes only (for

example, no political risks). Furthermore, they may (partly) protect residual loss after recovery of

other collateral and the bankrupt’s assets only. This article does not consider the modifications

necessary to adequately value such guarantees. Note that some characteristics mentioned above

may also be incompatible with Basel II requirements for eligible guarantees and can therefore only

be considered in internal models.
41See BCBS (2004), }} 284 (i)–(iii) and 307 (i), (ii).
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and guarantor, and Ei a counterparty-specific risk factor, the asset values of both

entities can be described as

Yi ¼ X � ffiffiffiffi
ri

p þ ZBG � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ri

p �
ffiffiffiffiffiffiffiffi
cBG

p
þ Ei �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ri

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cBG

p
(9.10)

X, ZBG, and Ei are considered as independent random variables following a

standard normal distribution. Furthermore, one assumes that counterparty i defaults
if its asset value, Yi, falls below a threshold ki. Given the default probabilities of

both entities, the joint probability can therefore be computed as

JPD B;Gð Þ ¼ F F�1 PDðBÞð Þ;F�1 PDðGÞð Þ; rBG
� �

(9.11)

With F �1(PD(i)) ¼ ki and rBG ¼ (rB · rG)
0.5 þ cBG · ((1 � rB) · (1 � rG))

0.5

the correlation between borrower and guarantor. Stressed default probabilities are

determined by conditioning on the systematic risk factor X. For technical details see
BCBS (2005) and Heitfield and Barger (2003).

Both the substitution and the double default approach of the Basel II Framework

are defined in a way that is most easily implemented in a two-step procedure.

Firstly, it is necessary to estimate the LGD of borrower and guarantor considering

the risk mitigation effect of collateral (if available) only. Afterwards, risk mitiga-

tion effects of guarantees are recognized in a second step by appropriately modify-

ing the risk-weight of the secured exposure following the substitution rule or

double-default formula.

For internal purposes, banks may want to relax the restrictions of Basel II or

apply their own approach for recognizing double default effects. This can be done,

for example, by computing recovery rates based on (9.9)–(9.11) or, whenever

components of LGD are used as input parameters of some simulation model, by

directly simulating the risk mitigation effect of guarantees within the simulation.42

The required information about the dependence structure (i.e. correlations) may

often be available through the bank’s credit portfolio model. Depending on the level

of conservatism underlying these correlation estimates, one may want to impose

additional margins of conservatism in order to avoid overestimating the effect of

risk mitigation by guarantees. As for collateral, a bank may allow credit analysts to

grade any specific correlation between guarantor and borrower, which may then, for

example, result in a modified value of cBG in (9.10).43 Estimates of the recovery

42In fact, a bank may use both techniques simultaneously for different purposes. For example,

explicit simulation of guarantees may sometimes be too time-consuming so that LGD numbers

already including the risk mitigation effect have to be applied instead.
43It may sometimes be possible to detect certain types of dependences automatically. For example,

knowledge on economic interdependence of different addresses, which might be available in the

institute’s IT-systems (for example, in form of borrower units), can be used to decide whether (or

to what extent) a guarantee is eligible for a facility of a certain borrower.
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rates RRSD and RRDD can be obtained with only slight changes on the procedures

described above for assets.

Further Aspects of Estimating Recovery Rates

Concluding Sect. 9.6.2.2, the following outlines additional aspects of recovery rate

estimation not yet considered.

l Participation effects. Having compensated the lender under a guarantee for any

obligation due by the borrower, the guarantor generally acquires the right to ask

for repayment – paid by the borrower (which is generally not possible due to its

default) or from the recoveries of the borrower’s collateral and bankrupt’s assets.

Furthermore, guarantees may sometimes only protect residual loss after recov-

eries from other risk mitigation instruments, etc. Taking these aspects into

account complicates recovery rate estimation since simply adding the recoveries

of different instruments may lead to distortion. Furthermore, recovery times of

single instruments can change significantly, depending on whether other risk

mitigation instruments also protect the same exposure. A tree representation of

the transaction and its risk mitigation instruments can be helpful in describing

these effects and deriving the respective recovery rates.
l Optimal allocation of risk mitigation instruments. Whenever risk mitigation

instruments are not clearly assigned to single facilities, the bank may want to

optimize the allocation.44 This can be done following simple heuristics or by

solving a (non) linear optimization problem for minimizing risk-weighted assets;

see Beckmann and Papazoglou (2004) and G€urtler and Heithecker (2005).
l Multi-period estimation. An institute may want (at least for some applications)

to generate a multi-period projection of its credit risk numbers. Different tech-

niques like simulation or scenario computation may be applied for this purpose.

As a first step, one may also decide to rely on the conservative assumptions of

Basel II (i.e. applying downturn LGDs as time-independent estimate of future

LGDs).

To derive future recoveries from collateral, one can proceed similarly as

already discussed for estimating recovery rates of assets based on external

data. The depreciation profile of the respective asset type provides the basis

for estimating a time series of the asset’s value. Depending on whether recovery

rates are defined as the net present or nominal value of recoveries, estimates can

be performed directly by multiplying recovery rate with the predicted future

asset value or firstly estimating the time of recovery cash flows. For guarantees,

it is necessary to estimate rating migration and cumulative default probability of

the guarantor up to the (assumed) default time of the borrower. Furthermore, the

44The potential for optimization stems from the joint effect of different risk mitigation instruments,

possible currency mismatches, changes in exposure class due to risk mitigation, etc.
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value of a guarantee in terms of Vmax(Gar) and sqGar may sometimes change

over time.
l Maturity and currency mismatches. Maturity or currency mismatches between

facility and risk mitigation instruments have to be considered in ex-ante esti-

mates. Maturity mismatches may be recognized by computing a time-weighted

average of LGD estimates with and without recoveries of the respective instru-

ment. Currency mismatches are generally recognized by haircuts, which can be

derived from an analysis of the volatility of FX rates. This may also require

taking individual conversion agreements into account.

9.6.2.3 Estimating Costs

Similarly, as described for recoveries, costs can generally be assigned to entities (i.e.

borrower and guarantors), credit products, and risk mitigation instruments (collat-

eral and guarantees). It therefore often makes sense to break down the workout costs

of a facility j arising in an after-default scenario scj into two basic components: (1)

general costsCostsgj(sci), which reflect all costs of the workout process not related to
risk mitigation instruments, and (2) specific costs Costssj,k(sci), which reflect all

costs (on a secured exposure part sqj,l) related to the handling of risk mitigation

instruments; for example, costs arising during from the repossession of an asset.

With respect to (9.7) one then has

Costsj;l scið Þ ¼ Costsgj scið Þ þ
X

k secures sqj;l

Costssj;k scið Þ (9.12)

Alternatively, one may decide to offset any costs attributed to collateral or

guarantees directly from the respective recoveries on secured exposures leading

to RR’ ¼ max{0; RR � Costss}. If a bank plans to use its LGD estimates for IAS/

IFRS purposes as well, the equation should be implemented in a way that allows

separating internal and external costs since only the second are generally allowed

entering the respective IAS calculations.

In practice, measuring direct and especially indirect costs can be difficult. The

required steps will depend on the institute’s cost accounting system, which may not

necessarily suits the requirements of LGD estimation. Internal costs may at least in

part be known only on a level, which is more aggregated than required (for example

for workout or restructuring units but not for defaulted entities), causing extra

complications for model development.45

Analysis of the institute’s workout processes may often serve as a starting point

for modelling the cost component of LGD. This comprises firstly identifying key

activities or processes causing workout related costs, their respective cost units as

45Information on external costs will generally be collected in the CLDB. This assures its

availability.
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well as possible explanatory variables, for all after-default scenarios. A rough

classification according to expected cost amounts might be helpful in guiding

further development. Expert judgment can play an important role at this stage.

While external costs may be assigned directly to processes, further assumptions

are usually required to determine internal costs. Estimates of time required for a

certain activity, the number of persons involved, as well as work intensity (i.e.

percentage of daily or weekly working hours spend on the task) together with the

institute’s cost rate per working hour can provide a basis to derive cost estimates for

workout activities. Ideally, key activities are recorded by appropriate events within

the loss file so that the institute is able to estimate the lengths of its workout

activities from past experience. Cost accounting and expert judgment can deliver

at least a first estimate of the other parameters, whereas a final model may require a

more detailed analysis of a sample of loss cases. Once key costs have been

modelled, residual costs can often be distributed proportionally.

If costs are modelled on a borrower, collateral, or guarantee level, which may

often be appropriate, LGD computation requires breaking them down to the facility

level. This can either be done within the estimation procedure itself, i.e. individu-

ally for each entity and credit facility, or a priori during model development.

Reasonable distribution keys are in both cases the total exposure of an address’

facilities as well as collateral and guarantee values or, alternatively, the number of

the respective objects. More realistic estimates can generally be expected from an

individual cost distribution during the estimation process. However, the computa-

tional effort may be too high with respect to the expected improvement of the

quality of LGD estimates.

9.6.2.4 Determining Discount Rates

Both recovery and cost estimates require net present value computations to take

material discount effects into account. The choice of discount rate(s) will affect the

resulting LGD numbers – especially when recovery periods are long. Different

approaches have been applied and discussed in the literature. Basic characteristics

for a categorization are: historical vs. present rates, single rates vs. interest rate curves

as well as the procedure applied to determine the rates or curves, respectively.

Simple approaches, for example, discounting with the contractual loan rate, the

effective original loan rate,46 or lender’s cost of capital, have been applied in many

articles. From a theoretic point of view, it appears most appropriate to discount each

cash flow using a discount rate that reflects the respective level of risk as well as the

time required for realizing it. Determining an appropriate discount rate curve for

each risk class, however, can be difficult. Maclachlan (2004) suggested a procedure

based on the CAPM that may be useful in this context.

46Since IAS requires the application of the effective original loan rate, a bank may think about

applying this rate in its estimates if LGD numbers are used for IAS purposes as well.
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Discount rates applied in ex-post and ex-ante estimates may differ. Ex-post LGD

numbers are generally computed using historical interest rates observed at the time

of default. Discount rates chosen for ex-ante estimates will depend on the applied

discounted cash flow method. If cash flows are adjusted by margins of conserva-

tism, the risk-adjusted rate should reflect the lower risk profile, i.e. it can sometimes

be (almost) the risk free rate. Discount rates applied in downturn LGD estimates

should also reflect downturn conditions. For a point-in-time LGD estimate, the

current interest rate curves can be relied on to use the most up-to-date information.

Combining current interest rates with past loss experience, however, may lead

to distorted estimates if dependences between interest rate and nominal recoveries

are not considered adequately.

9.6.2.5 Determining the Level of Conservatism for LGD Estimates

The Basel II Framework asks for conservative LGD estimates:

l LGD has to be estimated so as to reflect economic downturn conditions “where
necessary to capture the relevant risk” (BCBS (2004), } 468).

l LGD cannot be less than the long-time default-weighted average (BCBS (2004),

} 468).
l Banks must add a margin of conservatism to their LGD estimates that is related

to the likely range of unpredictable errors (BCBS (2004), } 451).
l Institutes must consider dependences between the risk of the borrower and that

of the collateral as well as the collateral provider. Furthermore, currency mis-

matches have to be considered conservatively (BCBS (2004), } 469).47

The kind of (conditional) LGD expectation defined by Basel II will not always

correspond to the concepts that banks may have defined for their internal risk

measurement. Specifically, the required downturn characteristic can be questioned

for internal application where one generally wants to recognize the economic cycle

in an explicit manner (point-in-time estimate). Depending on the complexity that a

bank is willing to accept in its methods, diverging requirements may lead to

different models or parameterizations of LGD components applied for regulatory

and internal purposes, respectively. One possibility is to apply the concept, pro-

posed in BCBS (2004) for non-performing exposures, to performing positions as

well, i.e. to refer to a best estimate LGD for internal credit risk management48 while

applying a conservative LGD for regulatory purposes. This article will not discuss

this rather institution-specific question in more detail.

If LGD estimates are composed from estimates of their components as discussed

in this article (see Sect. 9.4), each of the models for these components has to fulfil

47Means of fulfilling this requirement were discussed in Sect. 9.6.2.2.
48Volatility of LGD then has to be recognized separately in unexpected loss estimates.

178 C. Peter



the requirements mentioned above. When determining the level of conservatism for

components, the impact on the resulting level of conservatism for the final LGD

estimate should carefully be considered to avoid too conservative estimates.

Downturn conditions can be recognized following different approaches. A first

approach is to identify the subset of loss observations reflecting economic downturn

and to develop estimation procedures based only on this reference (sub) dataset.

Time series of macroeconomic variables may be used to identify the respective time

periods reflecting economic downturn. However, with limited loss observations

available, this approach will often be a rather theoretical option. Alternatively, one

may restrict considerations to the marginal distribution of loss observations for the

considered component, i.e. implicitly recognize economic downturn by choosing an

appropriately conservative quantile. If the bank intends to develop an LGD model,

which explicitly recognizes the impact of economic cycles, a more elegant solution

might be to estimate downturn LGDs by applying this model with downturn

parameters instead of input parameters reflecting the current economic situation.

Margins of conservatism can be derived as percentiles from empirical distribu-

tions, based on appropriate parametric distribution assumptions or, for example,

from applying resampling techniques as bootstrapping. In practice, observed vola-

tilities can be large, leading to large margins even for lower confidence levels.

Practical problems also arise where loss history may not reflect the character-

istics of future losses. If, for example, a bank redesigns its workout processes or

changes its workout strategy, future losses may differ from what has been observed

in the past. Depending on the portfolio it can take several years until the effect of a

structural break may become visible in loss observations. During that time the bank

has the difficult task of recognizing the unknown effect of the modification in its

loss estimates in a conservative manner. Similar problems of data aging may arise

due to changes in laws, etc.

9.7 LGD Estimation for Defaulted Exposures

When estimating LGDs for defaulted facilities, an institute faces a slightly different

situation than for performing exposures. Besides differences in regulatory require-

ments (e.g., the need to generate a best estimate and conservative estimate of LGD;

see Sect. 9.2.1) and possible synergies from collaboration with provisioning pro-

cesses (see Sect. 9.2.2), the bank will often also be able to estimate LGDs for

defaulted entities based on better information. Defaulted exposures are generally

monitored more intensively than performing facilities, resulting in more up-to-date

and often also more precise information about its current status. The bank will also

receive additional information, not available before default. This can be explicit

information, for example decisions taken during the workout process or updates of

market data, or implicit information, as for example time passed after default.

Explicit information generally replaces the estimate for some components of

LGD. One may therefore think of LGD estimates for defaulted exposures as a
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transition from ex-ante LGD estimation to ex-post LGD observation. Update-

procedures can differ depending on whether the bank keeps the time of default as

reference time or considers the current date instead. More interesting for practical

application is generally the second variant, which considers only residual loss, i.e.

EADðtÞ ¼ EAD tDFð Þ �
X

t2 tDF;t½ Þ
cf Rect

LGDðtÞ ¼ 1� NPV CFRec
t ; t � t

� �� NPV CFCosts
t ; t � t

� �� �
EADðtÞ

(9.13)

with cf and CF the realized or expected recovery cash flows and costs. While the

update-scheme itself has a simple structure, its implementation can become com-

plicated. In particular, the update of EAD and LGD requires that the sources of all

cash flows can be automatically identified.

Implicit information, for example, time after default or certain events observed

after default, may be used in estimates of NPL-LGDs by considering (abstract)

states of information as additional explanatory variables or, more generally, state

space models. As an example, consider cure probability as a decreasing function of

time after default in a model following (9.3)–(9.7). While theoretically appealing,

estimating such models requires large reference datasets and relatively homoge-

nous portfolios if not (partly) parameterised by expert judgement. Portfolios of

standardized retail exposures may therefore be the main field of application.

Purely statistical approaches will often not be able to capture all information

available for individual defaulted facilities. For example, recoveries from bank-

rupt’s assets or collateral as well as costs or payment dates can often be estimated

more precisely based on the specific information available for a defaulted entity.

An LGD estimate may therefore be improved by allowing overrides for some of

the model’s input parameters or the purely statistical LGD estimate. This can also

affect the model design.

Since provisioning requires similar information to loss estimation, it may be

reasonable to link the two processes in order to use a consistent set of information,

avoid process redundancies, and let provisions and LGD estimates converge as far

as possible, which may also simplify internal communication of these numbers.

Links may be established in both directions, as depicted in Fig. 9.4: A statistical

LGD model may deliver information concerning the loss distribution of a defaulted

entity or credit product as well as other useful information, for example, expected

collateral recoveries etc. These may serve as a basis or reference for determining

provisions in a provisioning tool. During the provisioning process, the responsible

analyst may then modify or supplement estimation parameters based on her infor-

mation or expectations about the respective loss case.49 These inputs can afterwards

be used to improve LGD estimates.

49For example, she may elect the respective after-default scenario or modify the time structure of

future recovery cash flows.
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Before any input from the provisioning process may enter NPL-LGD estimates,

it is necessary to analyse any differences in the respective valuation approaches

applied by the bank. It should be kept in mind that coupling the two processes can

further complicate the implementation of the estimation process. The decision of

whether and how the two processes should cooperate often depends on the respec-

tive portfolio. For example, loss experience for standardized or retail portfolios will

generally provide a sufficient basis to develop and apply more advanced machine-

driven estimation procedures. In this case, the bank may want to derive its provi-

sions from LGD estimates (but not vice versa). The opposite will probably become

true for customized credit products where expert judgment may prove more valu-

able than limited empirical loss experience.

Due to regulatory requirements, institutes have to determine a best estimate of

loss (LGDBE) as well as a conservative estimate (LGDCE) for Basel II purpose. As

discussed in Sect. 9.6.2.5, some banks may apply a similar scheme for performing

facilities as well. All procedures described so far in this article can be considered to

generate best estimate LGDs (in the sense of the best possible estimate of expected

loss quotas). Conservative estimates may be generated by appropriately stressing the

best estimate. This may be done be stressing input parameters of the estimation

procedure (for example, recovery rates for collateral, workout periods, etc.) or the

resulting estimate. Empirical distributions of historically observed parameter values

(e.g. recovery rates of certain collateral types, etc.) or loss quotas may help to define

stress factors. Sometimes, the same or similar stress factors as already used for

performing loans may be applied for non-performing loans as well. Sometimes, one

may expect stress factors to be smaller after default due to more precise information

about the economic situation of a defaulted entity. However, appropriately stressing

Pre-processing

Data Warehouse

Controller

Provisioning tool

Data Bases
• Collateral
• Accounting data
• Ratings
• Master data
• ...

Data
Collection

• Scenario information
• Adjusted / additional cash flows
• etc

• Estimated recoveries based on past
  loss experience (scenario dependent)
• Recovery information for collateral and
  guarantees 
• etc.

Computation of
• PL-LGD
• NPL-LGD
      best estimate
      conservative

Fig. 9.4 Connection of LGD estimation for nonperforming exposures and provisioning50

50(N)PL-LGD is used as an abbreviation for an LGD of a (non)performing exposure.

9 Estimating Loss Given Default: Experience from Banking Practice 181



human judgment (which may enter when applying procedures as outlined above) in

LGD estimates can be difficult. Depending on its impact on the estimate, one may

simply ignore them in conservative LGD estimates.51

9.8 Concluding Remarks

This article provides a general survey of LGD modelling from a practical point of

view. Due to the scope of the article, various aspects including most technical

details could not be covered. Several aspects of LGD estimation are still topics of

discussion and current research. Two important examples are

l Lack of loss history. Estimating LGD for exposures of portfolios with little or no

defaults is a difficult but common problem. But even for portfolios where loss

data is in principle available, it may not always be representative for the future

due to internal or external changes, for example, modifications in workout

strategy or relevant laws. Some simple approaches to deal with this situation

have been outlined in this article; however, additional research is recommended.
l Validation. While not considered in detail within this article, model validation

forms an important part of LGD methodology. BCBS (2004) requires all banks

applying the advanced IRB approach to validate their rating systems and pro-

cesses on an annual basis. Little has been published on the validation of LGD

models; see for example Bennett et al. (2005). Some methods may be taken from

PD validation, which already provides more advanced concepts52; however,

specific characteristics of LGD estimation approaches will probably require

adjustments or the development of new validation approaches. The lack of

loss data will again complicate the application of quantitative tools for some

portfolio segments. A unification of validation techniques, processes, and reports

for the risk parameters PD, EAD, and LGD appears reasonable to reduce costs

and promote an understanding of the results within the institute; however, little

can be found in the literature on this topic.

Many further, less prominent topics arise from daily work within the conflicting

fields of statistical significance, degree of detail desired for different applications,

and cost-benefit aspects. One may therefore expect and look forward to see further

interesting developments within the field of LGD estimation.

51One may also think about allowing analysts to judge the uncertainty of recoveries as well, giving

them the possibility to influence stress factors, etc. Any degree of freedom in the applied

procedure, however, may not only improve the quality of estimates but also bears the danger of

deterioration and generally also complicates the whole procedure – from implementation and

workflow aspects up to a later validation.
52Cf. Chaps. 14 and 15.
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Chapter 10

Possibilities of Estimating Exposures

Ronny Hahn and Stefan Reitz

10.1 EAD Estimation in Line with the Loss-Parameter-

Estimation of Basel II

10.1.1 Definition of Terms

The exposure at default (EAD) is defined as the expected amount of a receivable

at the time a default happens. In order to describe the borrower-related-risk the

EAD has to be set economically before provisions are considered.1 Provisions

that are utilizable bank-internally only serve to cover the equity in the balance

sheet in case of losses as possible losses already have reduced the risk bearing

capacity of the bank at the moment of risk identification by the realization of

provisions.

This definition shows that in a first step the EAD is determined by the exact time

of default. If observed economically the EAD to be expected depends on the

horizon of default, i.e., it makes a difference of this horizon consists of 1 or of

2 years. According to regulatory prescriptions the EAD must not be lower than the

book value of a balance sheet receivable.2 Therefore a regulatory necessity to

estimate future EADs for such positions is not given.

Credit conversion factors (CCF) have to be estimated for non-balance-sheet

transactions and credit approvals. They describe the percentage rate of credit lines
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(CL) that have not been paid out yet, but that will be utilized by the borrower until the

default happens. Therefore the EAD is defined as:

EAD ¼ CL � CCF:

For credit lines that already have been paid out (balance sheet receivables) the

CCF is defined as 100%. The estimation procedure for credit conversion factors is

further illustrated in Fig. 10.1.

10.1.2 Regulatory Prescriptions Concerning the EAD
Estimation

Regulatory prescriptions concerning estimations of loss parameters and therefore

also the EAD are mainly given in the regulatory rules related to Basel II. Within the

capital provisioning requirements that are defined here, three separate approaches

for the fixing of risk assets are distinguished. In the Standardized Approach (SA)

and the Foundation Internal Ratings-Based Approach (FIRB) there is no freedom as

far as the estimation of the EAD/CCF is concerned. This is due to the fact that the

CCF related to classes of receivables is prescribed by regulatory entities. Specific

minimum requirements on eligible EAD estimates are defined in the Advanced

Internal Ratings-Based Approach (AIRB)3:

l “EAD for an on-balance sheet or off-balance sheet item is defined as the

expected gross exposure of the facility upon default of the obligor. For on-balance

time
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ou
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EAD

CCF

CL

Fig. 10.1 Difference between exposure and credit approval

3Cf. BCBS (2006), }474 seqq.
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sheet items, banks must estimate EAD at no less than the current drawn amount,

subject to recognizing the effects of on-balance sheet netting as specified in the

foundation approach. . .”
l “Advanced approach banks must have established procedures in place for the

estimation of EAD for off-balance sheet items. These must specify the estimates

of EAD to be used for each facility type. Banks’ estimates of EAD should reflect

the possibility of additional drawings by the borrower up to and after the time a

default event is triggered. Where estimates of EAD differ by facility type, the

delineation of these facilities must be clear and unambiguous.”
l “Advanced approach banks must assign an estimate of EAD for each facility.

It must be an estimate of the long-run default-weighted average EAD for

similar facilities and borrowers over a sufficiently long period of time, but

with a margin of conservatism appropriate to the likely range of errors in the

estimate. If a positive correlation can reasonably be expected between the

default frequency and the magnitude of EAD, the EAD estimate must incor-

porate a larger margin of conservatism. Moreover, for exposures for which

EAD estimates are volatile over the economic cycle, the bank must use EAD

estimates that are appropriate for an economic downturn, if these are more

conservative than the long run average. For banks that have been able to

develop their own EAD models, this could be achieved by considering the

cyclical nature, if any, of the drivers of such models. Other banks may have

sufficient internal data to examine the impact of previous recession(s). How-

ever, some banks may only have the option of making conservative use of

external data.”
l “The criteria by which estimates of EAD are derived must be plausible and

intuitive, and represent what the bank believes to be the material drivers of EAD.

The choices must be supported by credible internal analysis by the bank. The

bank must be able to provide a breakdown of its EAD experience by the factors it

sees as the drivers of EAD. A bank must use all relevant and material informa-

tion in its derivation of EAD estimates. Across facility types, a bank must review

its estimates of EAD when material new information comes to light and at least

on an annual basis.”
l “Due consideration must be paid by the bank to its specific policies and strate-

gies adopted in respect of account monitoring and payment processing. The bank

must also consider its ability and willingness to prevent further drawings in

circumstances short of payment default, such as covenant violations or other

technical default events. Banks must also have adequate systems and procedures

in place to monitor facility amounts, current outstandings against committed

lines and changes in outstandings per borrower and per grade. The bank must be

able to monitor outstanding balances on a daily basis.”

Apart from that specific minimal estimation periods are defined concerning

classes of receivables. Regulatory prescriptions clearly show the high qualitative

and quantitative demands banks have to meet when using the AIRB. In practice the

utilization of a bank’s internal model to bring the estimation method for the EAD
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into unison with the other loss parameters, probability of default (PD) and loss

given default (LGD), is independent from the question whether the model is utilized

for internal or for regulatory requirements or for both.

10.1.3 Delimitation to Other Loss-Parameters

Next to a clear definition of the specific parameters and the best possible

data quality a uniform definition of default is most important for a methodo-

logically correct internal estimation of loss parameters for credit risk. The first

primary loss parameter is the PD which describes the probability of default of

a borrower within a predefined period – usually 1 year. The statistical methods for

estimating the PD are described elsewhere in this book in Chaps. 1–3 and 5.

The estimation period of the PD is identical with the estimation period of the

EAD – 1 year. The difference between those two parameters lies in the data basis

that is needed. Concerning the PD estimation the general question is how many of

the original customers (at time t0) will default. Therefore the overall portfolio has
to be considered. Concerning the CCF estimation the data basis is reduced and

only those credit lines where a default took place within the period of observation

(1 year) are included ex post. Within an economic focus and taking amortization

effects into consideration all receivables have to be considered for the EAD

estimation.

LGD, that describes the fraction of the defaulted amount of receivables (EAD)

that finally leads to a loss for the creditor, is the third major component of credit risk

and expected loss EL (EL ¼ EAD � PD � LGD). The LGD estimation, similar to the

CCF estimation, depends on defaults that already have taken place. Only on

the basis of the defaulted receivables it can be measured empirically which part

of the default-volume will lead to an economic loss for the bank. The biggest

difficulty concerning the empirical LGD estimation is the relatively limited data

amount and the long duration of the estimation period. While PD and EAD/CCF

estimation with an estimation horizon of 1 year already requires a very long period

compared to the estimation of market price risk parameters, LGD estimation

periods even reach on average 3–5 years. Experience within banks shows that the

liquidation of defaulted engagements – including the realization of collateral –

takes such long periods. For this reason, a backtest of LGD estimations becomes

increasingly difficult or nearly impossible.

The following Fig. 10.2 shows the relations between EAD-CCF-LGD in a

scheme. The figure shows that LGD always refers to the EAD. Concerning estima-

tions a simple motto might be derived from this fact. Everything that takes place

until the default happens has to be considered in the EAD estimation. All payments

after this event only influence the estimation of LGD.
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10.1.4 Regulatory EAD Estimation for Derivative Products

If we look at derivative products like interest rate swaps, caps, floors, swaptions,

cross currency swaps, equity swaps, or commodity swaps, two kinds of counter-

party risks have to be considered: settlement and pre-settlement risks.
Settlement risks occur if the payments are not synchronous: This is for example

the case if Bank A has paid a EUR cash flow in a cross currency swap to Bank B

before it has received the USD cash flow. So the risk consists in the missing USD

cash flow. If Bank B defaults a loss in the amount of this cash flow would occur.

Settlement risks obviously mostly have a short-term character.

Much more important are the pre-settlement risks. Characteristic for pre-settle-

ment risks is the following situation: Bank A expects in the future a rising interest

rate curve. For hedging its loan portfolio Bank A makes a payer swap with Bank B.

This transaction eliminates the interest rate risk but creates a counterparty risk. If

Bank B defaults during the lifetime of the interest rate swap, Bank A has to look for

a new counterparty to make the same payer swap with this new counterparty. If in

the meantime the interest rate curve has moved up, the replacement with an

identical swap will only be possible by paying an upfront payment to the new

counterparty. Pre-settlement risks have a long term nature because they may occur

during the whole lifetime of the derivative product.

For calculating the EAD for derivative products it has to be noted that the EAD

consists of two parts:

l The current exposure (CE): This is the replacement cost of a derivative transac-

tion if the counterparty defaults immediately, and is given by the actual market

value of the instrument if this market value is positive. If the market value is

negative it is zero: CE ¼ max{market value; 0}.
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Fig. 10.2 Relation between EAD-CCF-LGD
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l The potential future exposure (PFE): This is an estimate for the increase in

market value to a pre-specified time horizon (e.g., 1 year). It should be calculated

using probability analysis based upon a specific confidence interval. So the EAD

is given by: max{market value; 0} þ PFE.

For calculating the PFE for regulatory purposes fixed add-on factors, which have

to be applied to the nominal amount of the contract, are used. Figure 10.3 demon-

strates the calculation of the EAD for derivative products in the regulatory context.

If there is a netting agreement with the counterparty, the negative and positive

market values of all derivative contracts, which are included in the netting agree-

ment, can be offset against each other and the current exposure of all these contracts

is therefore given by:

CE ¼ max
X
i

market valuei; 0

( )
(10.1)

For the potential future exposure a total offsetting of the various PFE’s of the

various contracts is not allowed. A so called “PFE-floor” which is given by 40% of

the sum of the PFE’s of the various derivative contracts must be provided. The

remaining 60% depend on the “market value structure” of the bilateral derivative

portfolio. Overall, the PFE under a netting agreement is given by:

PFE¼ 0;4 �
X
i

PFEiþ0;6 �
X
i

PFEi

( )
�
max

P
i
marketvaluei; 0

� �
P
i

max marketvaluei; 0f g : (10.2)

If there are further collateral agreements then the EAD can be reduced by the

amount of the collateral.

+

time to
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precious metals
(not gold)

commodities

up to 1 year 0% 1% 6% 7%
7%

8%

10%
1 to 5 years 0,5% 5% 8% 12%

over 5 years 1,5% 7,5% 10% 15%

"Current Exposure"
=  max{market value; 0}

EAD

Potential Future Exposure

Fig. 10.3 EAD calculation for derivative products in the regulatory context
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Overall, the following shortcomings of the way how the EAD for derivative

portfolios is calculated can be stated:

l The add-on-factors are static. The actual volatilities and correlations of the

economically relevant risk factors are not taken into account.
l The specific product structure is neglected in the add-on-factors, e.g., for an

interest rate swap and an interest rate cap the add-on-factor is the same as long as

they fall in the same maturity time band.
l There is no offsetting between negative market values and the PFE allowed. So

an interest rate swap with market value 0 and an interest rate swap with a

negative market value will lead to the same EAD.
l There is only a very rough differentiation between the add-on-factors for pro-

ducts with different maturities. For instance, an interest rate swap with a

maturity of 6 years has the same add-on-factor as an interest rate swap with a

maturity of 30 years, although the two products react completely different to

changes in the interest rate curve.
l No amortization effects are recognized. In the described “regulatory proceed-

ing” the cash flows of a product, which are paid before the proposed default point

(e.g., 1 year) should not be considered in the CE.

Banks who use the AIRBmay use more elaborated techniques for calculating the

EAD of derivative portfolios. These techniques will be explained in Sect. 10.2.2.

10.2 Banks’ Own Methods of EAD Estimation

10.2.1 Introduction

The method for EAD estimation depends on the product category. In the case of

credit lines banks will use empirical methods (see Sect. 10.2.2) and for derivative

products their own internal approaches (see Sects. 10.2.3 and 10.2.4).

Under the Internal Model Method (IMM) of Basel II banks are allowed to derive

estimations of EAD for derivatives using their own internal approaches. The key

elements of such approaches are statistical methods for simulating future distribu-

tions of credit exposures resulting from (netted) portfolios of financial instruments.

The benefit from using the IMM instead of other methods such as the Current

Exposure Method or the Standardised Method is the fact that the IMM is more risk-

sensitive since it allows banks to apply very sophisticated and portfolio specific

techniques which improve the measurement of counterparty credit exposure.

10.2.2 Empirical Models for Credit Products

The delimitation between the loss parameters fulfils the main requirement

concerning the creation of an internal empirical data collection model for the EAD.
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It is advisable to contain balance sheet exposures in addition to open lines in an

internal empirical model even if the respective information cannot be integrated into

the regulatory exposure estimation.

In general, variations in the EAD should not be underestimated even in the case

of balance sheet exposures. This will be shown in a short example. Two credits

A and B that are utilized at a level of 100 € and bear an interest rate of 6% shall be

given. For Credit A an annual repayment of 12% and for Credit B a monthly

repayment of 1% are agreed upon. If we assume that both borrowers stop paying

their annual repayments after 11 months, meaning that ninety days after this a

default in accordance with the default definitions of Basel II occurs (Fig. 10.4).

This means for Credit B that at the time of default a total amount of receivables

of 100 € is given. Apart from the 6% interest¼ 6 € for 1 year and the interest for the

90-days-period of about 1.6 € have not been paid. This sums up to a total receiv-

ables amount (EAD) of 107.6 €. For Credit A this means that 11 repayments and

interest payments have been duly effected and that therefore the remaining amount

of receivables remains at 89 €. Interest payments for the 12th month and for the

excess period of 1.75 € have to be added. The total amount of receivables that is to

be demanded from the customer sums up to about 90.75 €. This delimitation is of

prior importance also concerning the LGD estimation. If we assume that the debtor

of Credit A pays back the total receivable amount of 90.75 € and additionally all

costs related to administration, no loss occurs for the bank neither economically nor

concerning the balance sheet. But if we assume the regulatory EAD definition for

balance sheet receivables, the EAD sums up to 100 € and a loss (LGD) of about

10% occurs.

The regulatory approach that the parameter effects (EAD vs. LGD) of cases

A and B cancel out each other can be accepted as far as capital provisioning is

concerned but should not be accepted as far as an economic observation is given.
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Fig. 10.4 Realized cash flows in the example
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This is due to the fact that seen from a risk perspective the parameter PD or default

correlations have to be added. Figure 10.1 therefore has to be adapted concerning

balance sheet receivables as follows (Fig. 10.5).

When constructing empirical models it makes sense to define the EAD in market

values. In Case B the customers pays interests of 6%. If we assume that 1 year

before default an interest rate of 5% is in line with the market for this customer, a

cash-value of more than 100% results. Within an economic observation this claim

to profits is not realizable for the bank. A potential refinancing loss starting from the

date of default has to be considered in the frame of the LGD.

After fixing the mentioned methodological framework for an internal empirical

model its creation is relatively simple. In general, the following requirements have

to be met:

l Storing all EAD and CL related information at least for 1 year and concerning all

accounts, if necessary including market interest rates, conditions, cash flow

structures, etc.
l Segmentation of classes of receivables to create pools for the EAD/CCF estima-

tion, i.e., loans for home construction, current account overdrafts, or guarantees.

The practical experience shows that it is important to differentiate by products

where the credit commitment will be cancelled in the default event (i.e., invest-

ment finance) and products which allow further drawings after default (i.e.,

guarantees).
l Classification according to classes of receivables, ratings, etc.
l Segmentation by the drawn level 1 year before default (10% of line or 90% of

line).

The last two points refer to the necessity of a clear definition of the aggregation

level of the survey. The schemes of those are depicted in the following Fig. 10.6.

time

E
A

D

t0 t1=D

CCF

Fig. 10.5 Development of the exposure related to receivables on the balance sheet
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10.2.3 Exposure Measurement for Derivative Products

In the event that a counterparty in a derivative transaction will default, the position

will be closed out and there will be no future contractual payments. Depending on

the mark-to-market (MtM) value of the transaction at the time of default, two cases

are possible:

l If MtM is positive, a loss is realised. The size of this loss is the MtM value at

default time minus any recovery value.
l If MtM is negative, no loss is made.

The EAD as seen from today is thus a random variable defined by

EAD ¼ max MtM; 0ð Þ:

As only positive MtM values are relevant, it is natural to define the expected

exposure (EE), which is the expected value of max(MtM,0) of a single transaction

or a portfolio of transactions (including netting effects and collaterals).

Within credit risk management an important question is what the worst exposure

could be at a certain time in the future. This question is answered by an exposure

measure called potential future exposure (PFE) which was already mentioned in

Part 1. In terms of statistics, the PFE is an exposure at a certain time in the future

that will be exceeded with a probability of no more than a%. We realize that PFE is

a quantile (the 1 – a% quantile) of the distribution of future MtM values (Fig. 10.7):

In the simplest case, when MtM is a normally N(m, s2) distributed random

variable, we have

EE ¼
ð1

�1
maxðmþ s � x; 0Þ dx ¼

ð1

�m=s

ðmþ s � xÞ � ’ðxÞ dx

¼ m � Fðm=sÞ þ s � ’ðm=sÞ:

Kind of Credit 1

Kind of Credit 2

Kind of Credit 3

…
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Fig. 10.6 Levels of aggregation of the EAD survey

194 R. Hahn and S. Reitz



In reality, MtM distributions of complex derivative portfolios have to be

simulated by a Monte Carlo simulation. This means that all market variables

(including their correlations) that influence future portfolio values have to be

simulated including all portfolio characteristics such as path dependencies, netting

agreements and collateralisation. In principle the following steps have to be carried

out (cf. Gregory 2010 and Cesari 2009):

l Choice of Risk Factors: The set of risk factors typically includes (depending on

the type of transactions in the portfolio) all underlyings and their volatilities: FX

rates, interest rates, credit spreads, equity and commodity prices, or implied

volatilities. These factors may be modelled in a simple one-factor model or a

more complex multi-factor approach, e.g., a multi-factor interest rate model. Of

course there will always be a trade-off between model sophistication and

tractability of the simulation. Whatever model is chosen, the key issue will be

that future multivariate distributions of market parameters are predicted in a

reasonable and efficient way and that the model is well calibrated to current

market data.
l Generation of Scenarios: In order to generate scenarios of the risk factors, a

time grid has to be defined, which includes all future points in time ti, for which
risk factors realisations are needed. The number and spacing of simulation

points depends on the structure of derivatives within the portfolio. In practice,

exposure profiles can be highly discontinuous over time due to maturity dates,

option exercise, cash flow payments and amortisation. The risk of missing

jumps in exposure is called the roll-off risk. The final simulation date tn hat to
be greater than the maturity of the instrument with the longest maturity within

the portfolio. Typical values n for the number of simulation points are within

the range 50–200. The following Fig. 10.8 illustrates a simulated set of MtM

scenarios as well as calculated EE and PFE values (shown in the bottom chart).

0

Expected 
MtM EE

MtM

PFE

Fig. 10.7 EE and PFE

10 Possibilities of Estimating Exposures 195



l Portfolio Valuation: All positions within the portfolio under consideration have

to be revalued in every scenario and at each point in time ti. It is important to

avoid extremely complex valuation models here as the number of instrument

revaluations is enormous. If the number of counterparties is denoted by x and the
(average) number of trades per counterparty by y we have (for n ¼ 100 and

10,000 scenarios per time step) to perform x·y·100·10,000 revaluations – several
billion of revaluations for large portfolios! The need of (crude) analytical

approximations for pricing formulas is obvious.
l Aggregation: As a result of the scenario generation and portfolio revaluation we

will have a (huge) matrix of MtM-values for each single transaction of our

portfolio. For each point in time ti and scenario k all transactions belonging to a

specific netting set (a set of transactions with a counterparty under certain netting

conditions) the exposure Ei,k is defined as

Ei;k ¼ max
Xp
l¼1

PVl;i;k; 0

( )
:

Here, PVl,i,k is the PV of trade l in ti and scenario k, where all the trades with

indices l 2 f1; . . . ; pg belong to one netting set.
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l Consideration of Collateral Effects: For each exposure path, we have to apply

effects from collateral agreements which can reduce the exposure dramatically.

If the credit exposure against a counterparty is uncollateralised, it is necessary to

model the future distribution of risk factors over the full time horizon of all

transactions. In this case, typical long-term assumptions such as mean reversion

and drift have to be carefully considered. In case we have a partial (or full)

collateralisation we will have to model counterparty exposure over much shorter

periods (the remargin frequency). This can be done by VaR-methodologies

know form market risk.
l Calculation of Risk Measures: Using the simulated paths of exposure figures Eik,

a number of different statistical measures can be determined, for example the

expected exposure EEi and the PFEi of a netting set for time ti:

EEi ¼ 1

K
�
XK
k¼1

Ei;k; PFEi ¼ q1�a%ðEi;k : k 2 f1; . . .KgÞ;

Figure 10.9 shows PFEi, EEi and the maximum exposure for (1) a single interest

rate swap and (2) a portfolio of two interest rate swaps.

There are a number of additional exposure measures which play an important

role in EAD estimation. For our purposes we will need the following parameters:

The expected positive exposure (EPE) is defined as the average expected

exposure through time and can be interpreted as a single number representation

of exposure; its formal definition is

EPE :¼
X
ti�1

EEi � Dti:

It is the time weighted sum for all time points less than or equal to 1 year.

In the simulation of future scenarios one typically observes that the number

of remaining trades within a netting set and the number of remaining cash flows

will decrease. As a consequence, the “amortisation effect” starts dominating the

“diffusion effect” at some point ti and so EEj decreases for increasing values of tj.
As a certain percentage of expiring trades are likely to be replaced by new trades

(esp. short-term trades), within Basel II the parameter EPE has been replaced by

the so called effective expected positive exposure (EEPE) that is calculated as

follows:

In the first step the effective expected exposure (EEE) is calculated by the

following recursive definition (valid for ti � 1):

EEEi ¼ maxfEEEi�1; EEig; EEE0 ¼ EE0:

The idea behind this definition is – to avoid the amortisation effect mentioned

above – expiring trades will not reduce the value of the effective EE. For tj > 2 we

define EEEj :¼ EEj.
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After having defined EEE we can calculate the effective EPE (EEPE) in the

same way we derived EPE from EE:

EEPE ¼
X
Dti�1

EEEi � Dti:

This definition minimizes the roll-over risk coming from short term OTC

derivatives or repo style transactions which lead to an underestimation of EPE.

10.2.4 Estimation of EAD for Derivative Products

The IMM approach in Basel II allows banks to estimate EAD using cross-product

netting. This means that within a predefined netting set of transactions, an EE profile
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(including portfolio effects) has to be created and from this the EEPE profile is

calculated as described above. After that, the EAD is defined as

EAD ¼ a � EEPE;

where a is a multiplier, which reflects the granularity and concentration of the

portfolio under consideration. In the (hypothetical) case of a portfolio with infinite

diversification, a will be 1. In reality, portfolios consist of a finite number of

counterparties. Therefore, there are non-zero correlations between exposures and

there might be wrong-way risk (i.e., a non-zero correlation between exposures and

default events) which leads to an a factor larger than 1.

Why do we need the factor a? As we replace the set of all possible future

exposure-paths for each counterparty by a single number (the EPE), we are calcu-

lating the economic capital by replacing random exposure distributions through

non-random EPE figures per counterparty.
It can be shown (cf. Wilde 2001) that in the case of a portfolio with an infinite

number of counterparties with small exposures (infinite diversification), where zero

correlation among exposures and between exposures and default events can be

assumed, the economic capital of the actual portfolio equals the economic capital of

a hypothetical portfolio which consists of non-random exposures of the size EPE

for each counterparty:

economic capital (actual portfolio) ¼
economic capital (portfolio with EPE exposures):

In this context, EPE is an accurate loan-equivalent measure for calculating

economic capital (the term loan equivalent is used for a fixed amount that replaces

a random exposure in the process of capital calculation).

Now, for real portfolios the above mentioned conditions are not satisfied. This

means that the following ratio is larger than 1:

a ¼ economic capital ðreal portfolioÞ
economic capital (portfolio with EPE exposures)

:

The IMM approach in Basel II allows banks to define the factor a by an own

estimation instead of using the fixed value of a ¼ 1.4. There is a floor of a ¼ 1.2

for bank internal estimations of a in order to limit model risk.

A procedure for an estimation of a for a given portfolio could be as follows:

l Consider a portfolio with a given number y of counterparties with an average

probability of default PD and a given asset correlation r.
l Specify a MtM distribution for a given time horizon for each counterparty in

the portfolio.
l Calculate the EPE based on the MtM distribution for each counterparty. The

EPE for the whole portfolio is the sum of the individual EPE values.
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l Calculate the distribution of losses in two cases:

1. Random exposures at the default time point; independent exposures for

different counterparties

2. Fixed individual exposures (EPE-value) for each counterparty at the default

time point

l Compare any economic capital measure (e.g., the 99% quantile of the loss

distribution) in both cases; the ratio of both numbers defines the factor a.
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Chapter 11

EAD Estimates for Facilities with Explicit Limits

Gregorio Moral

11.1 Introduction

The estimation of exposure at default, EAD, for a facility with credit risk, has

received a lot of attention, principally in the area of counterparty risk and has

focused on situations where the variability of the exposure is due to: the existence of

variability in the underlying variables of a derivative; the use of a fixed nominal

amount not expressed in the presentation currency; or the existence of collateral

whose value (variable over time), reduces the exposure. Less attention has been

given to the case of loan commitments with explicit credit limits. In this case, the

source of variability of the exposure is the possibility of additional withdrawals

when the limit allows this. The implementation of Basel II is forcing credit institu-

tions to address this problem in a rigorous, transparent and objective manner.

Moreover, Basel II imposes a set of minimum conditions on the internal EAD

estimates in order to allow the use of these as inputs in the calculation of the

minimum capital requirement. Currently, credit institutions have problems meeting

the requirements of both the data and the methodologies.

This chapter analyses various methods for estimating EAD for facilities with

explicit limits and tries to assess their optimality from both an internal and a

regulatory point of view. It focuses on objective methods, based on a reference

data set (RDS) extracted from observed defaulted facilities, which are frequently

used in practice by banks. Section 11.2 presents the definition of realised conver-

sion factors (realised CFs) that are the basic input in most of the estimation

procedures. Section 11.3 describes several approaches for computing realised

CFs: “Fixed Time Horizon”, “Cohort Approach”, and “Variable Time Horizon”

and summarises their pros and cons. Section 11.4 explores issues that have to be
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addressed before estimating EADs such as: structure and scope of the reference data

set (RDS); data cleaning; treatment of observations with negative or greater than

one CFs; and risk drivers. Section 11.5 focuses on EAD estimates. First, it estab-

lishes the equivalence between EAD estimators and CF estimators under certain

conditions. Second, the most common methods used by banks in practice are

presented as special cases of optimisation problems. It concludes that these methods

are solutions for regression problems with quadratic and symmetric loss functions.

Section 11.6 discusses issues related to the optimality of the estimates and intro-

duces a different kind of loss function, one that is linear and asymmetric. These loss

functions are naturally linked to Basel II capital requirements and they are used to

derive optimal estimators that, consequently, could be more appropriate when the

estimates are used for computing capital requirements under Advanced Internal

Ratings-Based approaches (AIRB). Section 11.7 illustrates issues discussed in the

previous sections and the consequences of using different estimation methods with

a stylised but realistic example. Finally, Sect. 11.8 summarises the current practice

on CF and EAD estimation, highlights problematic aspects, suggests possible

improvements and concludes that traditional methods, based on averages, are less

conservative than those based on quantiles.

11.2 Definition of Realised Conversion Factors

In practice, when estimating the EAD for a non-defaulted facility, f, with an explicit
credit limit,2 there are two main classes of methods in terms of the basic equation

used to link the estimated EAD with the limit:

l In the first class, estimates of the EAD are based on a suitable conversion factor

for the total limit of the facility, EAD( f ) ¼ CCF( f ) · Limit( f ).
l In the second class, estimates of the EAD are based on another factor3 applied to

the undrawn part of the limit, EAD( f ) ¼ Current Exposure( f ) þ LEQ( f ) ·

Undrawn Limit( f ).4

2For example, credit lines which are committed, i.e. the borrower can draw additional amounts

until a limit L(t) is reached.
3In the Revised Framework and the Capital Directive such factors are called Credit Conversion

Factors (CCFs) and Conversion Factors (CFs) respectively. In the drafts of Rules for Implementa-

tion of Basel II in the US the factor used is called LEQ factor and the Guidelines by CEBS uses the

term Conversion Factors (CFs). In this chapter, for clarity, conversion factors that are applied to

the undrawn amount are called Loan Equivalent (LEQ) factors and the term Credit Conversion

Factor, CCF, is reserved for the factor related to the total limit.
4This is the approach required for these types of facilities in the Revised Framework, the Capital

Directive, the drafts of Rules for Implementation of Basel II in the US, and in the CEBS

Guidelines.
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As it is shown in Sect. 11.5, both approaches are equivalent and the problem of

EAD( f ) estimation can be reduced to the estimation of suitable conversion factors

CF( f ) (CCF( f ) or LEQ( f )).
In order to obtain the CF estimates, banks use as basic data, a set of observations

at specific dates prior to the default time, of defaulted facilities. Most of the

estimation methods used are based on certain statistics, related to the increase in

the usage of the facility5 between a reference date and the default date, computed

from the former observations. One of these statistics is called the realised LEQ

factor and is defined below.

Consider a defaulted facility gwith an exposure variable over time, given by E(t)
and a credit limit given by L(t). Figure 11.1 presents the evolution of the exposure.

If the facility has a default date td, given a reference date tr < td, the pair

i ¼ {g, tr}is called index of the observation. If EADi stands for the observed

exposure at default,6 E(td), this can be expressed in terms of the exposure and the

limit of the facility observed at the reference date, assuming that L(tr) 6¼ E(tr), as:

EADi ¼ EðtrÞ þ LEQi � ðLðtrÞ � EðtrÞÞ (11.1)

Where LEQi is given by:

LEQi ¼ EðtdÞ � EðtrÞ
LðtrÞ � EðtrÞ (11.2)

L(t)

E(tr)

EAD = E(td)

E(t)

tr td

Fig. 11.1 Definition of realised LEQ factor

5Throughout this chapter the term “usage” refers to the usage of the facility in euros (sometimes

the terms exposure, drawn amount or utilization are used with the same meaning).
6In this chapter, it is assumed that a precise definition of observed EAD for defaulted facilities,

EADi, has been established previously and that it is applied consistently across facilities and over

time for different internal purposes. To understand why an explicit definition of observed EAD is

necessary see Araten and Jacobs (2001, p. 37), where two situations are cited when the simple

definition of EADi (“final amounts shown at the time of default”) is not adequate: charge-offs or
seizures of collateral occurred just prior to the default date.
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or:

LEQi ¼
EðtdÞ
LðtrÞ �

EðtrÞ
LðtrÞ

1� EðtrÞ
LðtrÞ

¼ eadi � eðtrÞ
1� eðtrÞ (11.3)

Therefore, given an observation, Oi, characterised by a pair i ¼ {g, tr}, with L
(tr) 6¼ E(tr), the former formulae can be used to compute a realised LEQ factor. We

denote the realised LEQ factor associated with the observation Oi by LEQi, and by

LEQ(tr) when the focus is on the reference date tr.
There are three limitations when using this statistic as the basic input for

estimation procedures:

l It is not defined when L(tr) ¼ E(tr). This implies that it is not possible to

estimate directly EAD( f ) based on the value of this statistic for facilities that

at the current date exhibit percent usage, e(tr), equal to one.7

l It is not stable when L(tr) ffi E(tr). This means that realised LEQ factors are not

very informative when percent usage is close to one. As shown in Sect. 11.4.2.2,

the different behaviour of realised LEQ factors, depending on the level of credit

percent usage at the reference date, has important practical consequences.
l It does not take into account changes in the limit over time. In formulae

(11.2) and (11.3) realised LEQ factors have been defined without taking into

account possible changes in the limit of the facility between the reference

date and the default date.8 As it is shown in detail in Sect. 11.4.2.3, this is

only one of the causes that justifies the existence of realised LEQi factors

greater than one.

For these reasons, banks sometimes use other statistics as their basis for estimat-

ing EADs. For example, an obvious possibility is to define realised CCFs similarly

to realised LEQ factors. By using an equation analogous to (11.1) the expression for

this statistic is given by the percent exposure at default:

CCFi ¼ EADi

LðtrÞ ¼ eadi (11.4)

Although this statistic is less used in practice than LEQi for these types of

facilities, it has two advantages:

7This limitation applies when the estimates are used for internal purposes because, in principle,

internal uses do not need to assume that LEQ( f ) � 0, or equivalently, that the EAD( f ) estimate

has to be greater or equal than the current exposure of this facility, E( f ).
8Some banks define realised LEQ factors by using E(td)/L(td), percent usage at default, instead of

eadi ¼ E(td)/L(tr), percent exposure at default, in (11.3). The aim of this definition is to take into

account changes in the credit limit after the reference date and to avoid computing realised LEQ

factors greater than 1. It is straightforward to show that the former definition is consistent with (1)

if EADi is multiplied by the factor L(tr)/L(td).
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l The realised CCF is well defined even when L(tr) ¼ E(tr).
l It is stable even when L(tr) ffi E(tr).

Sometimes it is said that with this statistic, if the facility g had a constant limit

L(g), it is not necessary to specify a reference date. However, as it is shown in

Sect. 11.4, data sets for estimating procedures need to include the values of certain

risk drivers that vary over time and therefore it is necessary to consider an explicit

reference date.

Additional useful statistics are introduced in Sect. 11.5; until then it is assumed

that realised LEQs are used as the basis for the estimation process.

11.3 How to Obtain a Set of Realised Conversion Factors

Given a set of defaulted facilities, there are several approaches frequently employed

by banks to obtain realised conversion factors or other statistics9 that can be used, in

addition with other information, to obtain estimates for the EAD of non defaulted

facilities. All these approaches are based on observations of defaulted facilities

at specific reference dates previous to the default date. Depending on the rule used

for selecting these reference dates we refer to these approaches as: Fixed Time

Horizon, Cohort Approach or Variable Time Horizon.

11.3.1 Fixed Time Horizon

In this approach, first a time horizon, T, is selected and second, for each defaulted

facility with L(td�T) 6¼ E(td�T), a realised LEQ factor is computed by using td�T
as the reference date:

LEQðtd � TÞ ¼ EðtdÞ � Eðtd � TÞ
Lðtd � TÞ � Eðtd � TÞ (11.5)

In practice, T is frequently set to 1 year (Fig. 11.2).

Drawbacks:

l The fixed time horizon, T, is conventional.
l It is not possible to include directly defaulted facilities when the age of the

facility at the date of default is less than T.

9As is shown in Sect. 11.5, in addition to the realised CFs, the percent increase in usage between

the reference date and the default date or the increase in exposure between those dates are statistics

that can be used to estimate CFs or EADs.
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l It does not take into account all the relevant information because for each facility g

defaulted during the observation period, only the observation {g, td � T} is used.
l It does not take into account the possibility that current exposures can default at

any moment during the following year. Implicitly, estimates based on this

approach assume that the default date for each facility that will default over

the following 12 months, will be the end of this period. This assumption could

introduce bias into the estimates.

Advantages:

l Dispersion of reference dates.
l The use of a common horizon, T ¼ td � tr, contributes to the homogeneity of

the realised LEQs.

11.3.2 Cohort Method

First, the observation period10 is divided into intervals of a fixed length (cohorts), for

example 1-year intervals. Second, the facilities are grouped into cohorts according to

the interval that includes their default dates. Third, in order to compute a realised

LEQ factor associated with each facility, the starting point of the time interval that

contains its default date is used as the reference date, {t1,t2, . . . , ti, . . . , tn}:

LEQðtiÞ ¼ EðtdÞ � EðtiÞ
LðtiÞ � EðtiÞ (11.6)

This is illustrated in Fig. 11.3.
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L(td2-T)
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Fig. 11.2 Realised LEQ with the fixed time horizon approach

10The period of time covering the data is the observation period.
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Drawbacks:

l The length of cohorts is conventional
l The reference dates are conventional
l It does not use all the relevant available information because for each facility g

defaulted during the observation period (and included in a cohort with initial

date tj) only the observation {g, tj} is used
l The reference dates are concentrated
l The realised LEQs are less homogenous than those computed by using a fixed

time horizon. The reason is that this approach computes LEQi factors with very

different values for the horizon (td � tr)

Advantages:

l It does take into account the possibility that current exposures can default at any

moment during the following year.

11.3.3 Variable Time Horizon

First, a range for horizon values (e.g., 1 year) for which we are going to compute

LEQi factors is fixed. Second, for each defaulted facility we compute the realised

LEQ factors associated with a set of reference dates, (for example,11 1 month,

2 months, . . . , 12 months before default).

LEQ1

LEQ2 DF2

DF1
td1
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t2t1 t3

DF3LEQ3

td3

td4

LEQ4
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Observation period
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LEQs

Fig. 11.3 Realised LEQ with the cohort approach

11Although with this approach, in theory, it is not necessary to use monthly observations, from now

on it is assumed that the reference dates are the end of each month from the first month before the

default date (td� tr ¼ 1) to 12 months before (td� tr ¼ 12). This choice may be adequate for most

of the product types and, inmany cases, compatible with the information currently available in banks.
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The rationale for this method is to take into account a broader set of possible

default dates than in the other approaches when estimating a suitable LEQ factor for

a non-defaulted facility conditional on the default during the following year.

LEQðtd � jÞ ¼ EðtdÞ � Eðtd � jÞ
Lðtd � jÞ � Eðtd � jÞ ; j ¼ 1; . . . ;12 months (11.7)

In principle,12 twelve realised LEQs could be associated with each defaulted

facility (Fig. 11.4). However, these LEQ factors are clearly not homogenous in the

sense that some of these values are computed by using observations very close to

the default date (i ¼ {g, td� 1}) and others are based on observations 1 year before

default ( j ¼ {g, td � 12}). This means that it is necessary to recognise these

differences via risk drivers. As shown in Sect. 11.4.3, the key point is to take into

account when the bank identified the facilities as non-normal and, consequently for

the purpose of obtaining estimates for facilities in a “normal status”, to use only

observations meeting this requirement. The main reason is that near to default,

borrowers are in general, classified in a non-normal internal class (in the following

the variable that identifies these different internal classes is called “status”). This

means that a facility is subject to close monitoring and, in general, the borrower can

not make additional drawdowns under the same conditions as before. For example,

in retail portfolios during the last 3 months before default, since the first impair-

ment, it is very difficult for the borrower to make further drawdowns and, in

general, only interest and other internal charges are allowed. Therefore, it is neces-

sary to identify when a defaulted facility was labelled as non-normal and only use

the realised LEQs associated with previous dates when estimating LEQ factors to

normal facilities. In practice, for retail portfolios, at least six dates can frequently be

used, and as a maximum, nine dates. On the other hand, for corporate portfolios, the

status of the facilities is closely linked to the internal rating of the borrower, and

therefore there could be cases in which the normal status applies until it is known

that the borrower has defaulted.

In general, it is necessary to take into account the twelve separate LEQi factors

associated with the same facility because the values of the risk drivers can be

different for each reference date.

Advantages:

l It takes into account more observations than the previous methods.

– Those facilities with L(tr) ¼ E(tr), that in the previous methods were not taken

into account, can now be used for those reference dates when L(td�i) 6¼
E(td�i) for some i ¼ 1, . . . ,12.

– Each facility could produce up to twelve LEQi associated with twelve

different observations.

12For example, if a facility is only 4 months old when it defaults, then we will have at most four

associated LEQ factors.
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l In principle, estimate procedures based on these data should produce more stable

(it uses more observations) and accurate (it uses more information) estimates.

Drawbacks:

l Banks have to store more data for each defaulted facility (up to twelve observa-

tions).
l It is necessary to use a variable (status) that contributes to identifying homoge-

nous LEQi factors.

11.4 Data Sets (RDS) for Estimation Procedures

This section discusses the ideal requirements for the reference data set (RDS) which

includes the available information that can be used for estimation procedures. It

focuses on those RDS based on historical information from facilities that defaulted

over an observation period. First, it presents a general structure for this RDS that

facilitates the implementation of estimation procedures and then it enumerates

some fields that should be included in the RDS. Second, it lists certain scope

requirements. Finally, it comments on several adjustments and decisions that

have to be made before the estimation phase.

11.4.1 Structure and Scope of the Reference Data Set

11.4.1.1 Structure

Given the focus on estimation procedures based on observations of defaulted

facilities at certain reference dates, it is useful to have a structure for the reference
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Fig. 11.4 Realised LEQs with the variable time horizon method
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data set adapted to this approach. Consequently, the data structure should contain

the relevant information on the basis of observations Oi which have associated a

unique pair formed by a defaulted facility, g, and a valid reference date, tr < td,
(more specifically, the mentioned pair i ¼ (g, tr) should be the primary key of the

reference data set). Each of these observations, Oi, includes:

l The values of certain static characteristics of g, I(g)
l The values of a set of observable variables related to g at the reference date tr,

that are going to be used as explanatory variables or Risk Drivers, RD(tr)
l The observed EADi and default date td

In summary, a very general structure for the RDS is given by:

RDS ¼ Oi¼ g;trð Þ
� �

; Oi¼ g;trð Þ ¼ ðg; trÞ; IðgÞ;RDðtrÞ;EADi ¼ EðtdÞf g (11.8)

with regard to the fields that contain the information associated with each obser-

vation, in practical implementations, as a minimum, the following data are required:

l Static characteristics, I(g): identifier of facility, NF; type of facility, TF; identi-
fier of portfolio, TP; and identifier of borrower, NB

l Risk drivers, RD: reference date, tr; default date, td; reference exposure, E(tr);
reference limit, L(tr); facility status, S(tr); and rating class or pool, R(tr)

If other potential risk drivers for the EAD were identified, the RDS should

contain fields for the values of these potential RD at the reference date tr. For
example, it is worth considering the inclusion of macroeconomic indicators, MI that

can be used to increase the forward looking character of the estimates and the

predictive ability of the estimators. In symbols:

RD trð Þ ¼ fE; L; S;R; td;MI;Otherg
IðgÞ ¼ ðNF;NB; TF; TP;OtherÞ (11.9)

Risk drivers are discussed in more detail in Sect. 11.4.3.

11.4.1.2 Scope and Other Requirements on the RDS

In addition to a structure for the RDS suitable for the estimation procedures, the

RDS has to meet certain internal and external requirements related to the scope of

the RDS.

l The scope of the RDS has to be defined without ambiguity. As a minimum, it is

necessary:

– To define the type of facilities, type of borrowers and type of portfolios

– To make explicit the definition of default used and the observation period

covered

– To identify and describe the source (or sources) of the data
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l The RDS should include observations for all the facilities that have defaulted

during the observation period and meet the other scope requirements (type of

facilities, portfolios, etc). All the exclusions should be identified and justified
l The definition of default used should be consistent with the ones used for PD and

LGD estimation purposes
l The observation period should be long enough to include observations of facil-

ities defaulted under very different general economic circumstances, ideally

covering an entire economic cycle
l Additionally, to use the estimates in capital requirements under AIRB approaches:

– The definition of default should be consistent with the IRB default definition

– The observation period should cover at least 7 years for corporate portfolios

and five for retail portfolios

– When necessary, the observation period should contain a period with down-

turn conditions

11.4.2 Data Cleaning

As well as other more general issues related to data cleaning (identification and

treatment of outliers, elimination of poor quality data, etc.), before to the estimation

phase it is necessary to make certain decisions that could affect the observations

included in the RDS. Some of these issues are analysed in the next sections.

11.4.2.1 Treatment of Multiple Credit Facilities with a Single Obligor

Although it is clear that realised CFs and the other relevant information included in

the RDS are computed or observed at facility level, under certain circumstances, to

produce sensible estimates, it could be necessary or appropriate to group together,

within the same observation, information from different facilities associated with

the same borrower. There are at least two situations to be considered:

l If there are two or more observations of similar credit facilities with the same

borrower and the same risk drivers’ values, excluding current usages and other

values that are a function of L(t) and E(t), then it could be appropriate to group

these observations in a new observation as13:

h; trð Þ;E h; trð Þ; L h; trð Þ;BðhÞ;RDðh; trÞf g
g; trð Þ;E g; trð Þ; L g; trð Þ;BðgÞ;RDðg; trÞf g

�
) ðhþ g; trÞf g

ðhþ gÞf g ¼ hþ g; trð Þ;E h; trð Þ þ E g; trð Þ; L h; trð Þ þ L g; trð Þ;B;RDðtrÞf g
(11.10)

13This procedure is mentioned in Araten and Jacobs (2001, p. 36).
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l For certain portfolios and facilities, it is common for the maturity to be 1 year.

However, in most cases, the bank approves a new facility (maybe with a

different limit), when the old facility expires. In these circumstances, facilities

default with age less than 12 months and therefore it is not possible to obtain

twelve observations for the RDS. However, if this facility was approved at the

time of the expiration of a non-defaulted facility of the same type with the same

borrower, it could be useful to chain these facilities together. Using this proce-

dure, more observations can be included in the RDS.

Depending on the characteristics of the portfolio, these decisions could be made

on a case by case basis or following a mechanical rule.

11.4.2.2 Treatment of Observations with Negative Realised LEQ Factors
14

As Fig. 11.5 shows, it is possible to obtain negative realised LEQ factors associated

with defaulted facilities.

Arithmetically, negative realised LEQs arise when EADi ¼ E(td) < E(tr). This
situation is especially frequent when td � tr is large and the credit percent usage at

the reference date, e(tr), is close to one, moreover some of these values are very

large in absolute value. It is very important to note that:

l The empirical distributions of realised LEQ factors conditional on the percent

usage at the reference date, e(tr), are very different
l These empirical distributions are highly asymmetrical, especially for percent

usage values close to one.

tdtr

L(t)

E(t)

+

–

E(tr) > EAD

EAD = E(td)

Fig. 11.5 Negative realised LEQ factors

14From a formal point of view, this discussion is similar to that related to realised LGDs. However,

there are substantial differences in the reasons that justify the existence of negative realised values

between both cases.
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To illustrate these points, from definition (11.3) it can be seen that a small

increment of e(tr) affects the realised LEQ factor following:

@LEQi

@eðtrÞ ¼ � 1� eðtdÞ
1� eðtrÞð Þ2 (11.11)

Therefore, the sensitivity of realised LEQ factors to small changes in the percent

usage at the reference date depends critically on the level of e(tr). The smaller is

(1�e(tr))2, the larger tends to be the variability of LEQ conditional on e(tr).
Moreover, if LEQi is expressed in terms of a percent realised exposure at default

eadi proportional to the percent usage at the reference date, from definition (11.3)

the following is obtained:

LEQiðDÞ ¼ eðtrÞ � ð1þ DÞ � eðtrÞ
1� eðtrÞð Þ ¼ D

eðtrÞ
1� eðtrÞ (11.12)

and for large values of e(tr) there is no possibility of large values of D, but it is
possible to find negative large values for D.

The former asymmetries among LEQi for low and large percent usage values and

the existence of more observations with large negative LEQi than with large

positive values have practical importance. The main reason is that, as is shown in

Sect. 11.5, banks frequently use averages of LEQi as estimators for LEQ( f ) and
these sample means are severely affected by both circumstances. The former points

suggest that, as a minimum, these averages should be restricted to those observa-

tions with similar percent usage levels or, in other words, percent usage level should

be a risk driver for LEQ( f ).
As a consequence, it is important to clarify the treatment of those observations

with negative realised LEQ factors. In practice, there are several possibilities:

l Censoring15 the data (the LEQi factors) to impose certain restrictions:

– Some banks change the definition of realised LEQ to force the non-negativity:

LEQi
þ ¼ max[0, LEQi]

– In other cases, banks change the definition of the realised EAD used in LEQi

computations directly (observed EAD): EADi
þ ¼ max[EADi, E(tr)].

As discussed previously, negative LEQi can be associated with valid obser-

vations of defaulted facilities. To justify this practice, banks argue that, ceteris

paribus, this adjustment introduces a conservative bias into the estimates.

15It is necessary to use of this terminology (censoring and truncation) carefully because these

words are not used consistently in the literature. For example, Araten and Jacobs (2001, p. 36),

uses the term truncation for describing what in this paper is referred to as censoring.

The terminology employed in the text follows that used in Working Paper No. 14 BCBS

(2005, p. 66).
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l Truncation: this practice consists of the removal of the observations associated

with negative LEQi factors. It is difficult to find a rationale for the truncation of

observations with negative or zero realised LEQs. In principle, this truncation

could be a practical method to generate a stressed distribution of LEQi factors.

However, this procedure presents at least two important drawbacks:

– The elimination of observations with LEQi � 0 could introduce inconsisten-

cies with the RDS used for obtaining LGD estimates because some of those

observations could be associated with facilities with high realised losses.

– When the estimation method uses sample averages, the LEQ estimates based

on a truncated RDS could be very unstable with changes in the RDS depend-

ing on the number of observations with LEQi factors close to zero.
l Do nothing with the realised LEQ factors (but set a floor to the estimates,16

LEQ( f ) � 0).This is the most natural decision.

As proved in Sect. 11.6.3.1, if the constraint on the estimators given by

LEQ( f ) � 0 is imposed and a specific model for the estimated LEQ based on

minimising the estimation errors (measured in terms of a special loss function) is

adjusted then the same estimates are produced by using the original or the censored

data.

11.4.2.3 Treatment of Observations with Realised LEQ Factors

Greater than One

In principle, given the definition of LEQi factors (11.2) it would be natural to expect

LEQi factors to be less or equal to one in a bank with an adequate control

environment. However, the existence of LEQi factors greater than one is not in all

cases an indicator of a failure in the controls established by the bank to ensure that

credit limits are effective. There are situations in which LEQi factors greater than

one naturally arise. For example:

l In some cases, banks use unadvised limits17 instead of the nominal limits of the

facilities to manage the risk internally. The possibility of additional drawdowns

for the borrower only stops when the exposure is greater than the unadvised limit
l In some products, for example credit cards or current account overdrafts, such

problems are difficult to avoid because there is typically a time lag between the

current exposure and the figure used by the bank to establish controls
l Sometimes the exposure at default includes the last liquidation of interest (and

fees) and this amount is charged to the account even when the limit had been

previously reached.

16As a minimum, this floor is a requirement when the estimates are used for regulatory purposes.
17Frequently, these unadvised limits are computed as a percentage or a fixed amount above the

explicit advised limits.
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The former excesses over the nominal limits are typically small. In these cases, it

would be appropriate to treat these observations as any other cases. However, in

other circumstances there are observations with large realised LEQ factors that are

the result of several causes completely different, such as:

l Changes in the limit after the reference date and previous to the knowledge of

difficulties in the facilities
l Explicit or implicit change of limit at the date of default or when difficulties with

the facility have already arisen
l Inadequate control environment and existence of human errors or frauds that

could be treated as operational risk events.

In spite of the diversity of the former circumstances, some banks cap all the

realised EADs at one. In general, this rule is neither adequate for internal use nor for

regulatory use and, on the contrary, a detailed analysis of the causes behind these

observations is necessary before making acceptable decisions for each situation.

In any case, coherence with the procedures used when calculating realised LGDs is

a prerequisite.

11.4.3 EAD Risk Drivers

In practice, risk drivers (RD) affect the estimates in two different ways. First,

certain qualitative and quantitative characteristics are used to segment the portfolio

under analysis into homogenous classes. Among these risk drivers, different studies

state as a minimum:

l Facility type: the importance of this characteristic is because there is a spectrum

of facilities with explicit limits and different conditions for drawdowns, ranging

from facilities with unconditional limits, to facilities in which each drawdown

requires approval.
l Covenants: frequently the bank can deny additional drawdowns when specific

circumstances occur. The clauses which detail these circumstances are called

covenants.18 Typically, these covenants are related to objective situations that

are indicators of credit deterioration of the borrower such as: downgrades,

drops in profitability or changes in certain key financial ratios below explicit

thresholds.19

Second, once we have identified a class including facilities that, in principle, are

homogenous enough for the proposal of designing a common explanatory EAD

model, it is necessary to select an appropriate set of explanatory (quantitative)

18Sometimes these clauses are called Material Adverse Changes (MAC) clauses. See Lev and

Rayan (2004, p. 14).
19For more details on covenants, see Sufi (2005, p.5).
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variables (risk drivers). Among these quantitative risk drivers, different studies,

based on private data bases, suggest it is convenient to consider as a minimum:

l Commitment size L(tr)
l The drawn and undrawn amounts, E(tr) and L(tr) � E(tr)
l The credit percent usage at the reference date e(tr). As discussed in 11.4.2.2,

this percent usage value has discriminative power with regard to realised LEQ

factors
l The time to default td�tr: ex-post analysis shows that this variable has signifi-

cant explanatory power, at least close to default
l The rating class at the reference time R(tr): this variable is in general relevant,

but different studies have found a significant positive correlation between credit

quality and CF in some cases and a significant negative correlation in others.

It seems that the role of the rating as a relevant risk driver is linked to the type

of portfolio, the dynamic of each rating system and the uses of the rating for

internal purposes
l Status of the facility at the reference date S(tr): most banks, in addition to rating

or scoring systems, have warning systems that focus on early identification of

liquidity problems and other short term borrower difficulties. The basic differ-

ence with the rating is that these warning systems are more dynamic and identify

problems before the rating20 does. As a result of these systems, certain facilities

are classified into certain broad classes, typically: normal status and a few grades

under special vigilance. This means that once a facility has been identified

as linked to a problematic borrower the level of monitoring and, in some

cases; the practical conditions for additional drawdowns are changed.21 Therefore,

the status is a critical risk driver when estimating EAD
l Macro indicators.

For the observations in the RDS, the values of the above listed risk drivers are

in general, known. For a non-defaulted facility, the values of these variables are

computed using the current date t, as the reference date tr. With regard to the time to

default, there is a problem because, for a non defaulted facility, the time to default is

unknown. In the Basel II context, the interest is in EAD estimates subject to the

condition that the facility defaults during a period of 1 year. Therefore, in this

context, the interest is in the influence of this variable when the value ranges from

1 to 12 months.

20The most common relationship between these early warning systems and the ratings is that

certain changes of status trigger the processes for a new evaluation of the borrower rating.
21} 477. “Due consideration must be paid by the bank to its specific policies and strategies adopted
in respect of account monitoring and payment processing. The bank must also consider its ability
and willingness to prevent further drawings in circumstances short of payment default, such as
covenant violations or other technical default events. Banks must also have adequate systems and

procedures in place to monitor facility amounts, current outstandings against committed lines and

changes in outstandings per borrower and per grade. The bank must be able to monitor outstanding

balances on a daily basis.”, BCBS (2004).
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11.5 EAD Estimates

11.5.1 Relationship Between Observations in the RDS
and the Current Portfolio

This section presents different methods of assigning a 1-year EAD estimate to a

non-defaulted facility f at the date t, included in the current portfolio, based on

a subset of a RDS which comprises observations (of defaulted facilities) similar

to f at t. We denote this subset by RDS( f ).
The process of assigning a subset of the RDS to each facility in the portfolio is

called “mapping” and this allows the current portfolio to be classified by grouping

facilities with the same or “similar” RDS( f ). Conversely, some banks segment

the portfolio of current exposures into classes comprising “similar” facilities. This

approach could be reduced to the previous one because after this classification of

exposures, each class C has to be mapped into a RDS(C) which is used to estimate

EAD( f ) for all f included in C.

11.5.2 Equivalence Between EAD Estimates and CF Estimates

Given a non-defaulted facility f and an estimator EAD( f ), if L( f ) 6¼ E( f ), the
estimate can be expressed in terms of a LEQ( f ) factor following the equation:

EADð f Þ ¼ Eð f Þ þ LEQð f Þ � ðLð f Þ � Eð f ÞÞ (11.13)

if LEQ( f ) is given by:

LEQð f Þ ¼ EADð f Þ � Eð f Þ
Lð f Þ � Eð f Þ ¼ eadð f Þ � eð f Þ

1� eð f Þ (11.14)

Additionally, if we are interested in EAD( f ) estimates that satisfy EAD( f ) �
E( f ), then from (11.13):

l If L( f ) > E( f ) then EAD( f ) � E( f ) if and only if LEQ( f ) � 0
l If L( f ) < E( f ) then EAD( f ) � E( f ) if and only if LEQ( f ) � 0

Therefore, without any additional hypothesis, for facilities that verify L( f ) 6¼
E( f ), it has been shown that to estimate EAD( f ), it is sufficient to focus on methods

that estimate suitable conversion factors LEQ( f ) based on the observations

included in the reference data set, RDS( f ) and afterwards to employ (11.13) to

assign individual EAD estimates.

Finally, the simplest procedure to estimate a class EAD is to add the individual

EAD estimates for all the facilities included in the class.
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For example, for certain facility types, some banks assign EADs by using a

previously estimated CCF( f ), and then applying the formula:

EADðf Þ ¼ CCFðf Þ � Lðf Þ (11.15)

This method is sometimes called Usage at Default Method.22 If e( f ) 6¼ 1, this

case can be reduced to the general method, given in (11.13), by assigning a LEQ( f )
factor given by:

LEQðf Þ ¼ CCFðf Þ � Lðf Þ � Eðf Þ
Lðf Þ � Eðf Þ ¼ CCFðf Þ � eðf Þ

1� eðf Þ (11.16)

Conversely, if a LEQ( f ) is available, from (11.16), an expression for an equiva-

lent CCF( f ) can be found, given by:

CCFðf Þ ¼ LEQðf Þ � 1� eðf Þð Þ þ eðf Þ (11.17)

Therefore, the EAD estimation method based on LEQ( f ) and the one based on

CCF( f ) are equivalent, with the exception of those facilities with e( f ) ¼ 1.

In the following sections, several methods that are normally used in practice

by banks to estimate LEQ factors are presented from a unified perspective. This

is used later to analyse the optimality of the different approaches. Additionally, the

formulae most used in practice are derived as special cases of the previous methods

when a specific functional form has been assumed for LEQ( f ).

11.5.3 Modelling Conversion Factors from the Reference
Data Set

This section presents several methods for estimating conversion factors based on

regression problems starting with the following basic equation:

EADðf Þ � Eðf Þ ¼ LEQðf Þ � ðLðf Þ � Eðf ÞÞ (11.18)

These methods try to explain the observed increases in the exposure between the

reference date and the default date and they can be grouped into three approaches

depending on how these increases are measured: as a percentage of the available

amount (focus on realised LEQ factors); as a percentage of the observed limit (focus

on percent increase in usage); or finally in absolute value (focus on increase in

exposure).

22This method is called Momentum Method in CEBS Guidelines (2006, }} 253 and 254).
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Model I. Focus on realised LEQ factors

Dividing (11.18) by L( f ) � E( f ), it is obtained:

eadðf Þ � eðf Þ
1� eðf Þ ¼ EADðf Þ � Eðf Þ

ðLðf Þ � Eðf ÞÞ ¼ LEQðf Þ (11.19)

In this approach, the rationale is to determine a function of the risk drivers LEQ
(RD) which “explains” the LEQi factors associated with RDS( f ), LEQi ¼ (EADi �
Ei)/(Li � Ei), in terms of LEQ(RDi). This can be made starting with an expression

for the error associated with LEQi � LEQ(RDi) and solving a minimisation prob-

lem. In practice, a quadratic and symmetric error function is almost universally

used. As a consequence of this choice, the minimisation problem to solve is given

by (Problem P.I):

Min
LEQ

X
i

LEQi � LEQ RDið Þð Þ2
( )

¼ Min
LEQ

X
i

EADi � Ei

Li � Ei
� LEQ RDið Þ

� �2
( )

(11.20)

Or:

LEQðf Þ¼Min
LEQ

X
i

1

ðLi�EiÞ2
� EADi�Ei�LEQðRDiÞ � ðLi�EiÞð Þ2

( )
(11.21)

Model II. Focus on the increase of the exposure as a percentage of the observed

limit (focus on percent increase in usage).

Dividing the basic (11.18) by L( f ), it is obtained:

EADðf Þ � Eðf Þ
Lðf Þ ¼ LEQðf Þ � Lðf Þ � Eðf Þ

Lðf Þ (11.22)

Therefore, using this approach, the observable amounts to be explained are

(EADi – Ei)/Li and the explanatory values are LEQ(RDi) � (Li – Ei)/Li. Following
the same reasoning as in the previous approach, the minimisation problem to solve

is given by (Problem P.II):

Min
LEQ

X
i

EADi � Ei

Li
� LEQðRDiÞ � ðLi � Ei

Li
Þ

� �2
( )

(11.23)

Or:

LEQðf Þ ¼ Min
LEQ

X
i

1

Li
2
� EADi � Ei � LEQðRDiÞ � ðLi � EiÞð Þ2

( )
(11.24)
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Model III. Focus on increases in the exposure

Directly from the basic equation, it is obtained:

EADðf Þ � Eðf Þ ¼ LEQðf Þ � ðLðf Þ � Eðf ÞÞ (11.25)

In this case, the amounts to explain are EADi� Ei and the explanatory variable is

LEQ(RDi) � (Li – Ei). As in the other cases, the associated minimization problem is

given by (Problem P.III):

LEQðf Þ ¼ Min
LEQ

X
i

EADi � Ei � LEQðRDiÞ � Li � Eið Þð Þ2
( )

(11.26)

From (11.21), (11.24) and (11.26), these problems can be reduced to a more

general (Problem P.IV):

Min
LEQ

X
i

EADi � Ei

oi
� LEQðRDiÞ � Li � Eið Þ

oi

� �2
( )

(11.27)

where oi stands for Li – Ei in Model I, Li in Model II, and 1 in Model III. If F*
denotes the empirical distribution of (EAD � E)/o associated with the observations

included in RDS( f ), the Problem P.IV can be expressed as:

LEQðf Þ ¼ Min
LEQ

E
F�

EAD� E

o
� LEQðRDÞ � L� Eð Þ

o

� �2
* +( )

(11.28)

In the most general case, assuming that (L � E)/o is constant for observations

in RDS( f ), the solution to (11.28) is given by23:

LEQðf Þ ¼ E
F�

EAD� E

o

� �����
RDðf Þ

* +
� oðf Þ
Lðf Þ � Eðf Þ (11.29)

As a consequence, the practical problem is to find out methods to approximate

these conditional expectations.

If a parametric form for LEQ is assumed, the problem becomes:

LEQðf Þ ¼ LEQðâ; b̂; :::Þ;

fâ; b̂; :::g ¼ Min
fa;b;:::g

E
F�

EAD� E

o
� LEQða; b; :::Þ � L� Eð Þ

o

� �2
* +( )

(11.30)

23See Appendix B.
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If the parametric functional form is linear in the parameters, the problem

becomes a linear regression problem.

In summary, traditional methods can be classified as regression models that

focus on the minimization of quadratic errors in the forecasts of: LEQi factors;

EADi in percentage of the limit; or EADi. These methods produce different EAD( f )
estimates based on LEQ( f ) estimates proportional to conditional expectations. At

first glance, the approach that focuses directly on LEQ factors (Model I) seems the

most natural, the method that focuses on percent increases in usage (Model II)

seems more stable than the previous one and, as is shown in detail in Sect. 11.6, the

approach based on EAD increases (Model III), could present advantages when the

estimates are used in regulatory capital computations because of the link between

capital requirements and EAD.

11.5.4 LEQ ¼ Constant

11.5.4.1 Problem P.I: The Sample Mean

In practice,24 banks frequently use, as an estimator for LEQ( f ) at t, the sample mean

of realised LEQi, restricted to those observations i ¼ {g, t} similar to {f, t, RD}.
Assuming that the conversion factor is a constant for observations similar to {f, t},
LEQ(f) ¼ LEQ, and solving the Problem P.I the following is obtained:

LEQ ¼ Min
LEQ2R

X
i

EADi � Ei

ðLi � EiÞ � LEQ

� �2
( )

¼ 1

n

XEADi � Ei

ðLi � EiÞ ¼ 1

n

X
LEQi

(11.31)

In other cases, banks use a sample weighted mean that tries to account for a

possible relationship between size of the exposures (or limits) and LEQ. If in

Problem P.I a weight wi is introduced, and it is assumed that LEQ is constant for

observations similar to {f, t}, then:

LEQ ¼ Min
LEQ2R

X
i

wi
EADi � Ei

ðLi � EiÞ � LEQ

� �2
( )

¼
P

wi � LEQiP
wi

(11.32)

When the reason for incorporating the weighting is to take into account a LEQ

risk driver, this approach is inconsistent. The reason for this is that the weighted

average is the optimum solution only after assuming that LEQ ¼ constant, i.e. no

risk drivers are considered.

24At least this is the case in models applied by some Spanish banks at present (2006).
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11.5.4.2 Problem P.II: The Regression Without Constant

Another method widely used by banks is to use the regression estimator for

the slope of the regression line based on Model II, assuming that LEQ is a constant.

Under these conditions the expression for the regression estimator is given by:

LEQ ¼ Min
LEQ2R

X
i

EADi � Ei

Li
� LEQ � Li � Ei

Li

� �� �2
( )

¼
P EADi � Eið Þ Li � Eið Þ

Li2P Li � Ei

Li

� �2
¼

P
eadi � eið Þ 1� eið ÞP

1� eið Þ2
(11.33)

11.5.4.3 Problem P.III: Sample Weighted Mean

If in P.III it is assumed that LEQ ¼ constant it can be expressed as:

LEQðf Þ ¼ Min
LEQ2R

X
i

Li � Eið Þ2 EADi � Ei

Li � Eið Þ � LEQ

� �2
( )

(11.34)

And the optimum is given by:

LEQ ¼
P

wi � LEQiP
wi

; with wi ¼ Li � Eið Þ2 (11.35)

Therefore, using this approach, a weighted mean naturally arises. However, it

is worth noting that these weights (Li � Ei)
2 are different from those currently

proposed by some banks (based on Li or Ei).

11.5.5 Usage at Default Method with CCF ¼ Constant
(Simplified Momentum Method)

This method is sometimes used by banks that try to avoid the explicit use of realised

negative LEQ factors, or for facilities for which the current usage has no predictive

power on EADs. It estimates the EAD for a non-defaulted facility, EAD(f), by using
(11.15) directly and a rough CCF estimate, for example, the sample mean of the

realised CCFs computed from a set of defaulted facilities C.

EADðf Þ ¼ CCFðCÞ � Lðf Þ (11.36)
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From (11.16) and assuming that CCF ¼ constant, a specific functional form for

LEQ(e( f )) is founded, given by:

LEQðf Þ ¼ CCF � Lðf Þ � Eðf Þ
Lðf Þ � Eðf Þ ¼ CCF� eðf Þ

1� eðf Þ (11.37)

In general, two facilities with the same estimated CCF and with different values

for current percent usage, e(t), will have different LEQ estimates following the

former (11.37).

The main drawback with the procedure based on (11.36) is that experience

shows that, in general, drawn and undrawn limits have strong explanatory power

for the EAD. For this reason, this method (with CCF ¼ constant) does not seem

to meet the requirement of using all the relevant information25 (because it does

not take into account the drawn and undrawn amounts as explanatory variables

in the EAD estimating procedure) for most of the types of facilities that arise in

practice.

11.6 How to Assess the Optimality of the Estimates

To assess the optimality of the different CF estimates associated with a reference

data set and a portfolio, it is necessary to be more precise about some elements in

the basic problem. The first element requiring clarification is the type of estimates

according to the role of macroeconomic risk drivers in the estimation method. The

second element is how to measure the errors associated with the estimates and to

motivate that particular choice. This can be done by introducing a loss function that

specifies how the differences between the estimated values for the EAD and the

actual values are penalised.

11.6.1 Type of Estimates

Focusing on the use of the macroeconomic risk drivers, the following types of

estimates can be distinguished:

l Point in Time estimates (PIT): these estimates are conditional on certain

values of the macroeconomic risk drivers, for example, values close to the

current ones. This allows the estimates to be affected by current economic

25} 476. “The criteria by which estimates of EAD are derived must be plausible and intuitive, and

represent what the bank believes to be the material drivers of EAD. The choices must be supported

by credible internal analysis by the bank. [. . .] A bank must use all relevant and material
information in its derivation of EAD estimates. [. . .]”, BCBS (2004).
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conditions and to vary over the economic cycle. In theory, this is a good

property for the internal estimates banks need for pricing and other manage-

ment purposes. The main problem with PIT estimates is that they are based

on less data than long-run estimates (LR estimates, defined below) and

therefore, in practice, they are less stable than LR estimates and harder to

estimate.
l Long-run estimates (LR): These are unconditional macroeconomic estimates, i.e.

the macroeconomic risk drivers are ignored. The main advantage is that they are

more robust and stable than PIT estimates. These LR estimates are required in

AIRB approaches,26 except for those portfolios in which there is evidence of

negative dependence between default rates and LEQ factors. Currently, these LR

estimates are also used by banks for internal purposes.
l Downturn estimates (DT): these are specific PIT estimates based on macroeco-

nomic scenarios (downturn conditions) in which the default rates for the

portfolio are deemed to be especially high. When there is evidence of the

existence of adverse dependencies between default rates and conversion fac-

tors, this could be the type of estimates that, in theory, should be used in IRB

approaches.27 In practice, the use of DT estimates is difficult because, in

addition to the difficulties associated with PIT estimates, it is necessary to

identify downturn conditions and to have sufficient observations in the RDS

restricted to these scenarios.

In the following, it is assumed that the focus is on long run estimates.

11.6.2 A Suitable Class of Loss Functions

The objective of this section is to determine a type of loss function that meets the

basic requirements for the EAD estimation problem when it is necessary to obtain

EAD estimates adequate for IRB approaches. Therefore, it makes sense to specify

the loss associated with the difference between the estimated value and the real one

in terms of the error in the minimum regulatory capital (computed as the difference

between the capital requirements under both values). By using the regulatory

formula, at the level of the facility, the loss associated with the difference between

26} 475. “Advanced approach banks must assign an estimate of EAD for each facility. It must be an
estimate of the long-run default-weighted average EAD for similar facilities and borrowers over a

sufficiently long period of time, [. . .] If a positive correlation can reasonably be expected between
the default frequency and the magnitude of EAD, the EAD estimate must incorporate a larger

margin of conservatism. Moreover, for exposures for which EAD estimates are volatile over the
economic cycle, the bank must use EAD estimates that are appropriate for an economic downturn,
if these are more conservative than the long-run average.”, BCBS (2004).
27This can be interpreted in the light of the clarification of the requirements on LGD estimates in

Paragraph 468 of the Revised Framework, BCBS (2005a, b).
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the capital requirement under the estimated value of the exposure K(EAD( f )) and
the real one K(EAD), could be expressed as follows28:

L DKðf Þð Þ ¼ L K EADð Þ � KðEADðf ÞÞð Þ
¼ L f PDð Þ � LGD � EAD� EADðf Þð Þð Þ ¼ L f PDð Þ � LGD � D EADðf Þð Þð Þ

(11.38)

Additionally, at least from a regulatory point of view, underestimating the

capital requirement creates more problems than overestimating such a figure. For

this reason, it is appropriate to use asymmetric loss functions that penalises more

an underestimation of the capital requirement than an overestimation of the same

amount. The simplest family of such functions is given by (11.39), where b > a:

L DKð Þ ¼ a � DK iff DK � 0

�b � DK iff DK<0

�
(11.39)

These loss functions quantify the level of conservatism. The larger b/a (relative

loss associated with an underestimation of K), the larger is the level of conservatism
imposed. For example, if a ¼ 1 and b ¼ 2, the loss associated with an underestima-

tion of the capital requirement (DK < 0) is twice the loss for an overestimation of the

same amount.29 The graphic of the loss function is presented in Fig. 11.6.

L=2⋅ΔK

L=ΔK

–ΔK 0 ΔK

Fig. 11.6 Linear asymmetric loss function

28In the following it is assumed that a PD ¼ PD( f ) and an LGD ¼ LGD( f ) have been estimated

previously.
29To the best of my knowledge, the first application of such a loss function in the credit risk context

was proposed in Moral (1996). In that paper the loss function is used to determine the optimal level

of provisioning as a quantile of the portfolio loss distribution.
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By using this specific type of loss function (11.39), and assuming that LGD � 0,

a simpler expression for the error in K in terms of the error in EAD is obtained:

L DKðf Þð Þ ¼ f PDð Þ � LGD � L D EADðf Þð Þð Þ (11.40)

The loss associated with an error in the capital requirement is proportional to the

loss associated with the error in terms of exposure and the units of the loss are the

same as those of the exposure (€).

11.6.3 The Objective Function

Once the loss function has been determined, it is necessary to find the most natural

objective function for the estimation problem.

11.6.3.1 Minimization at Facility Level of the Expectation in the Capital

Requirement Error

If the expected error in the minimum capital requirement at the level of exposure

is used as an objective function, by using (11.40) the following is obtained:

Min
LEQ

E L DKðf Þð Þ½ �f g ¼ f PDð Þ � LGD �Min
LEQ

E L D EADðf Þð Þð Þ½ �f g (11.41)

This means that Problem P.III in Sect. 11.5.3 arises with a different loss

function:

Min
LEQ

E
F�

L EAD� E� LEQðRDÞ � L� Eð Þð Þh i
� �

(11.42)

or in terms of the sample

Min
LEQ

X
i

L EADi � Ei � LEQðRDiÞ � Li � Eið Þð Þ
( )

(11.43)

and a solution is given30 by:

LEQðf Þ ¼ Q
F�

EAD� E;
b

aþ b

����
RDðf Þ

* +
� 1

Lðf Þ � Eðf Þ ; (11.44)

30See Appendix B.
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where Q(x, b/(a þ b)) stands for a quantile of the distribution F(x) such that31

F(Q) ¼ b/(a + b). When a ¼ b, the loss function (11.39) is symmetric and the

former quantile is the median and for values of b/a > 1 the associated quantile is

placed to the right of the median and, therefore, a more conservative estimate of

LEQ( f ) is obtained. It is interesting to note that (11.44), with b > a, penalises
uncertainty.32

An important consequence of using the former loss function L is that the

problems M.I and M.II described in (11.45) and (11.46) are equivalent.33

Problem M.I:

Min
LEQ

X
i

L EADi � Ei � LEQðRDiÞ � Li � Eið Þð Þ
( )

Subject to: 0 � LEQðRDÞ � 1

(11.45)

Problem M.II:

Min
LEQ

X
i

L Min Max EADi;Ei½ �; Li½ � � Ei � LEQðRDiÞ � Li � Eið Þð Þ
( )

Subject to: 0 � LEQðRDÞ � 1

(11.46)

This means that an estimator meeting the constraint 0 � LEQ( f ) � 1 that is

optimal when using the original data is also optimal when using data censored to

show realised LEQ factors between zero and one.

11.6.3.2 Minimization of the Error in the Capital Requirement at Facility

Level for Regulatory Classes

Sometimes, in spite of the existence of internal estimates for LEQ factors at

facility level, it could be necessary to associate a common LEQ with all the

facilities included in a class comprising facilities with different values for the

internal risk drivers. This could occur due to difficulties in demonstrating with

31In practice, it is necessary to be more precise when defining a q-quantile because the distribution
F(x) is discrete. A common definition is: a “q-quantile” of F(x) is a real number, Q(x,q), that
satisfies P[X � Q(x,q)] � q and P[X � Q(x,q)] � 1�q. In general, with this definition there is

more than a q-quantile.
32} 475. “Advanced approach banks must assign an estimate of EAD for each facility. It must be an

estimate [. . .] with a margin of conservatism appropriate to the likely range of errors in the
estimate.”, BCBS (2004).
33The proof follows from the proposition in Appendix A.
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the available data, that discrimination at an internal level of granularity is justi-

fied. In this case, for regulatory use, it is necessary to adopt a less granular

structure for the risk drivers than the existing internal one. Therefore, the problem

of finding an optimal estimator for regulatory use can be solved by using the

regulatory structure for the risk drivers. In other words, the procedure is to

compute new estimates using the same method and a less granular risk driver

structure. In general, the new estimator is not a simple or weighted average of the

former more granular estimates.

11.7 Example 1

This example34 illustrates the pros and cons of using the methods explained in the

former sections for estimating LEQ factors and EADs. The focus is on long run

estimates for the EAD of a facility f in normal status by using as basic risk drivers

the current limit L( f ) and exposure E( f ).

11.7.1 RDS

11.7.1.1 Characteristics

The main characteristics of the reference data set, used in this example, are

described below:

l Source of the RDS: the observations were obtained from a set of defaulted

facilities from a portfolio of SMEs
l Observation period: 5 years
l Product types: credit lines with a committed limit of credit, that is known for the

borrower, given by L(t)
l Exclusions: It does not include all the internal defaults which took place during

the observation period because several filters had been applied previously. As a

minimum, the following facilities were excluded from the data set:

– defaulted facilities with L(td�12) < E(td�12) and

– those with less than 12 monthly observations before the default date
l Number of observations, Oi: #RDS ¼ 417·12 ¼ 5,004 observations, which are

associated with 417 defaulted facilities and dates 1, 2,. . .,12 months before the

default date

34Although this example could be representative for certain SME portfolios comprising credit

lines, it is not a portfolio taken from a bank.
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l Structure of the reference data set: the structure proposed in (11.8) but, for

simplicity, only a basic set of risk drivers is considered:

Oi ¼ i; f ; trð Þ; RDi ¼ LðtrÞ; EðtrÞ; SðtrÞf g; EAD; td; trf g (11.47)

l Status of a facility at the reference date, S(tr): there is no information about the

status of the facilities. The bank has implemented a warning system that classi-

fies the exposures on four broad classes: N ¼ normal monitoring and controls;

V ¼ under close monitoring for drawdowns; I ¼ current exposure greater than

the limit and implies tight controls making additional drawdowns impossible

without a previous approval; D ¼ defaulted, no additional drawdowns are

possible, but sometimes there are increases in the exposures due to the payment

of interest and fees. However, in this example, in order to take into account the

status, S(tr), as a risk driver, observations with S(tr) ¼ N are approximated using

the following procedure:

– First, all the observations with L(tr) < E(tr) are marked as in a non-normal

status

– Second, after analysing the empirical distributions of realised LEQ factors

(and other information) it was decided to consider all the observations with td
� tr less than 5 months as if they were in a non-normal status and to eliminate

all the observations with td � tr ¼ 7 months (see next section).

In practice, the use of the values of the variable status is necessary, because

the early identification of problematic borrowers and the subsequent changes in the

availability of access to the nominal limit have important consequences in the

observed EADs. For this reason, observations up to 5 months before default for

which E(tr) � L(tr) are considered in normal status. In this case, the number of

observations with S(tr) ¼ N is: #RDS(N) ¼ 2,919.

11.7.1.2 Empirical Distributions of Certain Statistics

Distribution of Realised LEQ Factors

Figure 11.7 summarises the empirical variability of the realised LEQ factors

associated with 2,442 observations for which it is possible to compute this

statistic.35

It shows that the distribution is asymmetric with a high number of observations

outside of [0,1] which is the natural range for LEQ factors. The sample mean is

about �525 due to the existence of many observations with large negative values

35Observations associated with, the horizon value, td� tr ¼ 7 were removed from the RDS as it is

explained later on.
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and it highlights one of the main issues when a sample mean is used as the

estimator. The median is 0.97 and this value, in contrast with the former sample

mean value, highlights the advantages of using statistics less dependent on

the extreme values of the distribution for estimation purposes.

Joint Distribution of Realised LEQ Factors and Percent Usage

at the Reference Date

To reduce the variability in the observed realised LEQ factors, it is necessary to

consider a variable that exhibits explanatory power, at least, for the range of

values of realised LEQ factors. For example, the joint empirical distribution

presented in Fig. 11.8 shows that the variable percent usage at the reference

date is important for limiting the variability of realised LEQ factors. Black

points at the top of Fig. 11.8 represent the observations in the space {1 � e(tr),
LEQi}.

Influence of td � tr in the Basic Statistics

Figure 11.9 presents the empirical distributions of realised LEQs associated with

a fixed distance in months between the default and reference dates for td �
tr ¼ 1,. . .,12.
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Fig. 11.7 Histogram of realised LEQ factors
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The distributions associated with td � tr ¼ 1, 2, 3, 4 are very different from

the others. The distribution conditional on td � tr ¼ 7 months is totally anomalous

and the reason for that is an error in the processes that generated these data.

Figure 11.10 presents the empirical distributions of the percent increase in usage

between the reference and the default dates, eadi � e(tr), associated with a fixed

distance in months between the default and reference dates for td � tr ¼ 1,. . .,12.
Again, the differences among the distributions conditional on reference dates near

to default and far from default are obvious and the existence of anomalous values

for the case td � tr ¼ 7 is evident.

Finally, Fig. 11.11 shows the empirical distributions of the increase in exposure,

EADi � E(tr), between the reference and the default dates.
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11.7.2 Estimation Procedures

11.7.2.1 Model II

Original Data and Fixed Time Horizon

Some banks use Model II assuming a constant LEQ, and a fixed time horizon

approach, T ¼ 12 months. This means that they adjust a linear regression model

without an independent term, given by:

EADi

L td � 12ð Þ �
E td � 12ð Þ
L td � 12ð Þ ¼ k � 1� E td � 12ð Þ

L td � 12ð Þ
� �

(11.48)

Therefore, in these cases, the bank’s approach focuses on the minimisation of the

quadratic error in the increase of the exposure expressed in percentage terms of the

limit. The results with this method are summarised below:

By using the original data, the estimated LEQ factor is LEQ ¼ 0.637 and the

adjusted R2 is 0.13. Therefore, the final estimate for the EAD of a facility, f, in
normal status is given by the formula:

EADðf Þ ¼ EðtÞ þ 0:637 � LðtÞ � EðtÞð Þ (11.49)

Figure 11.12 presents, for each observation in the RDS(td�12), the values of

the pairs {1 � e(td�12), eadi � e(td�12)}. The upper shadow zone in

Figs. 11.12–11.14 are associated with points with LEQi > 1.

From analysis of the distribution of these points and the results of the regression

it is clear that, at least:
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Fig. 11.12 Percent increase in usage from tr, to td and percent usage at the reference date

11 EAD Estimates for Facilities with Explicit Limits 233



1. It is necessary to carry out an explicit RDS cleaning process before the estima-

tion phase. For example, it is necessary to analyse the observations associated

with the points above the line y ¼ x and afterwards to make decisions about

which observations have to be removed from the RDS.

2. The degree of adjustment is very low. Most of the points (those with 1� e(tr)
closer to zero) have little influence on the result of the regression model because

of the constraint that there is no independent term.

3. In order to assess the reliability of the estimated LEQ it is necessary to identify

outliers and influential observations and to perform stability tests. In this case,

given the functional form of the model, y ¼ k � x, and the low number of points

associated with large values of 1 � e(tr), these observations are influential
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Fig. 11.13 Linear regression in Model II and censored data

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

1-e(tr)

ea
d i

-e
(t

r)

Fig. 11.14 Linear regression in Model II and variable time approach
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points.36 It is easy to understand that changes in these points affect the result of

the regression and therefore the LEQ estimate.

4. In order to get more stable results, it is necessary to get more observations (for

example by using a variable time horizon approach).

Censored Data and Fixed Time Horizon

Sometimes banks use censored data to force realised LEQ factors to satisfy the

constraint 0 � LEQi � 1. Using censored data, the estimated LEQ factor is 0.7 and

the R2 increase to 0.75. In this case, all the points are in the white triangular region

of Fig. 11.13 and it is clear that the existence of very influential points (those with

large values of 1 � e(r)) introduces instability. Figure 11.13 presents the censored

observations and the regression line.

The EAD estimator is in this case:

EADðf Þ ¼ EðtÞ þ 0:7 � LðtÞ � EðtÞð Þ (11.50)

Original Data and Variable Time Approach

By using a variable time approach, based on observations with tr ¼ td � {12, 11,

10, 9, 8}, the estimated LEQ factor is LEQ ¼ 0.49 and the R2 is 0.06. Figure 11.14

presents, for each observation in the RDS, the pairs {1� e(tr), eadi� e(tr)} and the
regression line associated with this extended data set and Model II.

In Model II, the use of a time variable approach does not increase the degree of

adjustment (which is very low due to the functional form assumed in the model),

but increases the stability of the results.

The EAD estimator in this case is:

EADðf Þ ¼ EðtÞ þ 0:49 � LðtÞ � EðtÞð Þ (11.51)

11.7.2.2 The Sample Mean and the Conditional Sample Mean

If Model I is used and a constant LEQ for facilities “similar” to f is assumed, an

estimate for EAD( f ) is obtained by computing the sample mean of the realised LEQ

conditional on observations in RDS( f ) as the LEQ( f ) estimate and then applying

(11.13). With regard to RDS( f ), in this example, two possibilities are analysed:

36Influential points have a significant impact on the slope of the regression line which, in Model II,

is precisely the LEQ estimate.
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l RDS( f ) ¼ RDS or equivalently to use a global sample mean as estimator.
l RDS( f ) ¼ {Oi such as percent usage ei is similar to e( f )} or equivalently to use

as estimator a function based on different local means depending on e( f ).

Case RDS( f ) ¼ RDS, Use of a Global Sample Mean

If the sample mean of all the realised LEQ factors associated with the observations

in the RDS is computed, the result is a nonsensical figure:

LEQðf Þ ¼ LEQ ¼ 1

n

X
i

LEQi ¼ �578 (11.52)

The problems that arise when using this global average are due to:

1. Instability of certain realised LEQ factors: when 1 � E( f )/L( f ) is small the

realised LEQs are not informative.

2. Very high values for certain observations, in some cases several times L(tr) �
E(tr). The treatment of these observations needs a case by case analysis.

3. Asymmetries in the behaviour of positive and negative realised LEQ factors.

4. Evidence of a non-constant LEQi sample mean depending on the values of

1 � E( f )/L( f ).

Figure 11.15 represents the distribution of the realised LEQ factors and undrawn

amounts as a percentage of the limit, 1 � E( f )/L( f ) and it can help to increase

understanding of the main problems associated with this method:

Figure 11.16 focuses on observations associated with values of realised LEQ

factors less than 2. It is clear that there are observation realised LEQ factors greater

than one, (upper shadow zones in Figs. 11.16 and 11.17) across the range of percent
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usage values, although such observations are much more common when the percent

usage values are large (small values of 1� e(tr)).
For these reasons, before using this procedure, it is necessary to make some

decisions after analysing the observations in the RDS, for example:

l To eliminate from the RDS those anomalous observations with large LEQi factors
l To censor other observations associated with LEQi factors greater than one
l To remove observations with very low values of E( f ) � L( f ) from the RDS,

because their LEQi values are not informative.

In this example, observations with 1 � E(tr)/L(tr) � 0.1 and those with

LEQi � 2 were removed from the reference data set. After these modifications

of the RDS, the new LEQi sample mean is:
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LEQðf Þ ¼ LEQ ¼ 1

m

X
i

LEQi ¼ 0:08 (11.53)

It is clear that this global estimate of 8% is very low for most of the facilities in

the portfolio because of the weight in the global average of the negative realised

LEQ factors associated with observations with low values of 1� e( f ).
An improvement to the former estimate is to eliminate outliers, i.e. observations

associated with very large (in absolute terms) realised LEQ factors. If observations

with LEQ factors below the tenth percentile and above the ninetieth are considered

outliers, the average restricted to the RDS without outliers is about 33% and this

value is stable when the former percentiles are changed.

LEQðf Þ ¼ LEQ ¼ 1

r

X
i

LEQi ¼ 0:33 (11.54)

However, it is clear that local averages are very different and therefore this global

estimate of 33% for the LEQ is not adequate. For this reason, it is necessary to

consider different estimates for the LEQ factor for different values of 1� E( f )/L( f ).

Case RDS( f ) ¼ {Oi Such as Percent Usage ei is Similar to e( f )}

In this case, the RDS(f) comprises all the observations Oi with 1� e(tr) 2 [1� e( f )�
0.2, 1� e(f) + 0.2] and the average of the realised LEQ factors restricted to

observations in the RDS( f ) is used as the estimate of LEQ( f ). To select a functional
form for LEQ( f ), first the estimated values for different 1 � e(tr) values are

computed and second, a regression model is adjusted using 1 � e(tr) as the

explanatory variable, and the local sample mean as the dependent variable. After

rejecting different models and using intervals of width 0.4 an expression for the

“local”37 sample mean of LEQ factors based on aþ b � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e trð Þð Þp

is obtained as:

LEQðf Þ ¼ �0:82þ 1:49 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Eðf Þ=Lðf Þ

p
(11.55)

with an adjusted R2 equal to 0.94. Figure 11.17 represents the realised LEQ

factors, the local averages and the adjusted function (with the constraint LEQ
( f ) � 0).

Therefore an estimator for EAD( f ) of a facility f in normal status is given by:

EADðf Þ ¼ Eðf Þ þMax 0; �0:82þ 1:49 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Eðf Þ=Lðf Þ

p
 �
� Lðf Þ � Eðf Þð Þ

h i
(11.56)

37The “local” condition is to consider only those observations in an interval centred on 1�E( f )/L
( f ) and with length 0.4.
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11.7.2.3 The Median and the Conditional Quantiles

The rationale under Model III is to explain directly the increase in exposure

from the reference date to the default date. Therefore, it is necessary to explain

EADi � E(tr) in terms of LEQ(RDi) � (L(tr) � E(tr)). For simplicity, it is assumed

that RDi ¼ {S(tr), L(tr)� E(tr)} and the focus is on observations with status S(tr)¼
“normal” and the only quantitative variable that is taken into account is the current

undrawn amount L( f ) � E( f ). Moreover, the loss function proposed in (11.39) is

used to determine the optimal estimates and therefore as shown in Sect. 11.6.3.1,

the solution is to approximate the quantileQ[b/(a þ b)] of the distribution of EADi�
E(tr) conditional on those observations which satisfy L(tr) � E(tr) ¼ L( f ) � E( f ).
To approximate that quantile for each value of EAD( f ) � E( f ), the process is

similar to the one explained in the previous section. First, RDS( f ) is defined as all

the observations such as (L(tr) � E(tr)) 2 [(L( f ) � E( f )) � 0.8, (L( f )� E( f )) � 1.2].
Second, for each value of L(tr) � E(tr) the optimal quantile is computed. Third, a

linear regression model that uses L(tr) � E(tr) as the explanatory variable and the

optimal quantile as the dependent variable is adjusted and, finally, the estimator for

LEQ( f ) is obtained by using formula (11.44).

Figure 11.18 represents, for each observation in the RDS with tr ¼ td � {12, 11,
10, 9, 8}, the pairs {L(tr) – E(tr), EADi – E(tr)} in the range of values of L(tr)� E(tr)
given by [0, 17000]€, for which it is considered there exists sufficient number of

observations. The shadow zones in Figs. 11.18 and 11.19 are defined asEADi � L(tr).
The results of the regression model for the local medians (case a ¼ b) and for

the 66.6th percentile (case 2 � a ¼ b) produces the following results:
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Fig. 11.18 Observations in Model III
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Median EADð f Þ � Eð f Þ½ � ¼ 86:8þ 0:76 � Lð f Þ � Eð f Þð Þ
Quantile EADð f Þ � Eð f Þ; 0:666½ � ¼ 337:8þ 0:92 � Lð f Þ � Eð f Þð Þ (11.57)

With adjusted R2 equal to 0.95 and 0.99 respectively. Therefore, the associated

LEQ estimates, obtained dividing (11.57) by L( f ) � E( f ), are almost constant (close

to 0.76 and 0.92 respectively) and have values larger than the previous estimates.

Figure 11.19 represents the local medians (Q50% line) and local 66.6 percentiles

(Q66% line) obtained from the original points, the regression lines associated with

(11.57) (dotted line for the adjusted 66.6 percentiles, thick line for the adjusted local

medians).

11.8 Summary and Conclusions

The following points summarise the current practice on CF and EAD estimates and

highlight some problematic aspects:

l The CF and EAD estimators applied by banks can be derived from special cases

of regression problems, and therefore these estimators are based on conditional

expectations
l Implicitly, the use of these estimators assumes the minimisation of prediction

errors by using a quadratic and symmetric loss function that is neither directly

correlated with the errors in terms of minimum capital requirements nor
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penalises uncertainty. The way in which these errors are measured is crucial

because they are very large
l In most of the cases, the EAD estimates are based on the unrealistic assumption

of a constant LEQ factor mean
l Frequently, the basic statistics for the estimation process are censored to obtain

realised LEQ factors between zero and one
l Banks frequently use “Cohort Approaches” or “Fixed Time Horizon Approaches”

to select the observations included in the estimation process. These approaches do

not take into account all the relevant information because they only focus on a

conventional reference date for each defaulted facility
l With regard to risk drivers, the focus is on the rating at the reference date.

Other approaches and some comments on different aspects:

l For regulatory use, it seems appropriate for the estimators to be solutions to

optimisation problems that use a loss function directly related with errors in

terms of capital requirements
l For example, a logical choice is to use a simple linear asymmetric loss function

applied at the level of facility. This loss function enables banks or supervisors to

quantify the level of conservatism implicit in the estimates
l Using this loss function, the derived estimators are based on conditional quan-

tiles (for example, the median for internal purposes and a more conservative

quantile for regulatory use)
l If the estimates are based on sample means LEQ factors, as a minimum, should

depend on the level of the existing availability of additional drawdowns:

LEQ(1 � e(tr))
l The common practice of censoring the realised LEQ factors to [0, 1], is not

justified and, in general, it is not possible to conclude ex ante if the associated

LEQ estimates are biased in a conservative manner
l However, under certain hypotheses, the use of censored data does not change the

optimal estimator for LEQ
l The estimates should be based on observations at all the relevant reference dates

for defaulted facilities, “Variable Time Approach”
l With regard to risk drivers, if there is a warning system for the portfolio, it is

important to focus on the status of the facility at the reference date rather than on

the rating
l The example presented here suggests that:

– Estimates based on sample means are less conservative than those based on

conditional quantiles above the median

– The CF estimates obtained by using these conditional quantiles, are so large

that the use of downturn estimates in this case might not be a priority.
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Appendix A. Equivalence Between Two Minimisation Problems

Proposition: Consider a set of observations O ¼ xi; yið Þf gi¼1;...;n and the problem
G.I given by:

Minimiseg2G
Xn

i¼1
L yi � gðxiÞð Þ

h i

Subject to f ðxÞ � gðxÞ � hðxÞ
(11.58)

where the error is measured in terms of the function L that satisfies:

Lðxþ yÞ ¼ LðxÞ þ LðyÞ if x � y � 0 (11.59)

then, g is a solution of Problem G.I if and only if it is a solution of Problem G.II
given by:

Minimiseg2G
Xn

i¼1
L Min Max yi; hðxiÞ½ �; f ðxiÞ½ � � gðxiÞð Þ

h i

Subject to f ðxÞ � gðxÞ � hðxÞ
(11.60)

Proof: The set O can be partitioned into three classes O ¼ Oþ ‘
O� ‘

O¼, where:

Oþ ¼ fðxi; yiÞ yi>f ðxiÞj g; O� ¼ fðxi; yiÞ yi<hðxiÞj g (11.61)

For observations in O+:

yi � f xið Þð Þ � f xið Þ � gðxiÞð Þ � 0 (11.62)

Therefore, from (11.59) and (11.62), the error in Problem G.I associated with an

observation in O+ can be expressed in terms of the error in Problem G.II plus an

amount independent of g:

err GI; xi; yið Þ½ � ¼ L yi � g xið Þð Þ ¼ L yi � f xið Þ þ f xið Þ � g xið Þð Þ
¼ L yi � f xið Þð Þ þ L f xið Þ � g xið Þð Þ
¼ L yi � f xið Þð Þ þ L Min Max yi; h xið Þ½ �; f xið Þ½ � � g xið Þð Þ
¼ L yi � f xið Þð Þ þ err GII; xi; yið Þ½ � (11.63)

But the O+ set does not depend on the functiong, therefore for these observa-

tions, and for all g, the error in Problem G.I can be decomposed in a fixed amount,

independent of the g function, given by
P

L yi � f xið Þð Þ, where the index i applies
at the observations in O+ and the error in Problem G.II.

Similarly, for observations inO� , the error in Problem G.I is equal to the error in

Problem G.II plus the fixed amount
P

L h xið Þ � yið Þ.
Finally, for the observations in O¼ the errors in Problem G.I and in Problem G.II

are the same.
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Appendix B. Optimal Solutions of Certain Regression

and Optimization Problems

Let X and Y be random variables with joint distribution given by F(x,y), then we get
in the case of a quadratic loss function

d�ðxÞ ¼ E Y Xjh i ¼ Min
dðxÞ

E
F�

Y � dðXÞð Þ2
D E� �

: (11.64)

In the case of the linear asymmetric loss function, with a > 0 and b > 0:

LðxÞ ¼ a � x iff x � 0

�b � x iff x<0

�
(11.65)

The following is found

d�ðxÞ ¼ Q Y X;
b

aþ b

����
� 

¼ Min
dðxÞ

E
F�

L Y � dðXÞð Þh i
� �

(11.66)

See, for example, Pratt et al. (1995, pp. 261–263).

Therefore, a solution for (11.28) can be obtained from (11.64), and taking into

account:

Y ¼ EAD� E

o
; d X ¼ RDð Þ ¼ LEQðRDÞ � hðRDÞ; where hðRDÞ ¼ L� E

o
(11.67)

Then, d* is given by (11.64) and assuming that h(RD) ¼ h( f ) for observations in
RDS( f ):

d� X ¼ RDð f Þð Þ ¼ E
EAD� E

o
RDj

� 
¼ LEQðRDð f ÞÞ � Lð f Þ � Eð f Þ

oð f Þ (11.68)

The result showed in (11.29) is obtained from the former equation.
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Appendix C. Diagnostics of Regressions Models

Model II (Sect. 11.7.2.1)

l By using original data:

EADi

L td � 12ð Þ �
E td � 12ð Þ
L td � 12ð Þ ¼ 0:64 � 1� E td � 12ð Þ

L td � 12ð Þ
� �

(11.69)

l By using censored data:

EADi

L td � 12ð Þ �
E td � 12ð Þ
L td � 12ð Þ ¼ 0:7 � 1� E td � 12ð Þ

L td � 12ð Þ
� �

(11.70)

l By using a variable time approach:

EADi

L trð Þ �
E trð Þ
L trð Þ ¼ 0:49 � 1� E trð Þ

L trð Þ
� �

(11.71)

Model I (Sect. 11.7.2.2)

l By using Model I, variable time approach:

LEQð f Þ ¼ �0:82þ 1:49 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Eð f Þ=Lð f Þ

p
(11.72)

The diagnostics for this regression model are:
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Model III (Sect. 11.7.2.3)

l By using a variable time approach:

Median EADð f Þ � Eð f Þ½ � ¼ 86:8þ 0:76 � Lð f Þ � Eð f Þð Þ
Quantile EADð f Þ � Eðf Þ; 0:666½ � ¼ 337:8þ 0:92 � Lð f Þ � Eð f Þð Þ (11.73)

With the diagnostics given by:

and for the quantile:

Appendix D. Abbreviations

AIRB Advanced internal ratings-based approach

CCF Credit conversion factor

CF Conversion factor

EAD Exposure at default

EADi ¼ E(td) Realised exposure at default associated with Oi

EAD( f ) EAD estimate for f
eadi Realised percent exposure at default, associated with Oi

E(t) Usage or exposure of a facility at the date t
e(t) Percent usage of a facility at the date t
ei ¼ e(tr) Percent usage associated with the observation Oi¼{g, tr}

f Non-defaulted facility

g Defaulted facility

i ¼ {g, tr} Index associated with the observation of g at tr
IRB Internal ratings-based approach

LEQ Loan equivalent exposure

LEQ( f ) LEQ estimate for f
LEQi Realised LEQ factor associated with the observation Oi

LGD Loss given default

L(t) Limit of the credit facility at the date t
Oi Observation associated with the pair i ¼ {g, tr}
PD Probability of default

Qa ¼ Q(x, a) Quantile associated with the a% of the distribution F(x)
RDS Reference data set

RDS( f ) RDS associated with f
RD Risk drivers

S(tr) Status of a facility at the reference date tr
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t Current date

td Default date

tr Reference date

td � tr Horizon
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Inspección de ECA.

Pratt J, Raiffa H, Schlaifer R (1995), Introduction to Statistical Decision Theory. The MIT Press.

Sufi A (2005), Bank Lines of Credit in Corporate Finance: An Empirical Analysis, University of

Chicago Graduate School of Business.

246 G. Moral



Chapter 12

Validation of Banks’ Internal Rating Systems:

A Supervisory Perspective

Stefan Blochwitz and Stefan Hohl

12.1 Basel II and Validating IRB Systems

12.1.1 Basel’s New Framework (Basel II and Further Work)

“Basel II and further work” is associated with the work undertaken by the Basel

Committee on Banking Supervision (BCBS).1 This aimed to secure international

convergence on revisions to supervisory regulations on capital adequacy standards

of internationally active banks. The main objective of the 1988 Accord2 and its

revision is to develop a risk-based capital framework that strengthens and stabilises

the banking system. At the same time, it should provide for sufficient consistency

on capital adequacy regulation across countries in order to minimize competitive

inequality among international banks. In June 2004, the BCBS issued “Basel II”,

titled “International Convergence of Capital Measurement and Capital Standards:
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Bank for International Settlements
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1The Basel Committee on Banking Supervision is a committee of banking supervisory authorities

that was established by the central bank governors of the Group of Ten countries in 1975. Up to
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Switzerland, the United Kingdom, and the United States. The membership of the Basel Committee

on Banking Supervision was broadened in June 2009. The new members are representatives from

the G20 countries that were not in the Basel Committee before. These are Argentina, Indonesia,
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A Revised Framework”, carefully crafting the balance between convergence and

differences in capital requirements.

In December 2009 the enlarged BCBS issued a consultative document titled

“Strengthening the Resilience of the Banking Sector” as part of its reform package

to address lessons from the financial crisis starting in 2007. The proposals aim at

strengthening global capital and liquidity regulations to promote a more resilient

banking sector in the future. Accordingly, enhancing risk coverage as well as

reducing procyclical amplification of financial shocks throughout the financial

system are among its key objectives. Both may have an impact on issues related

to validation of bank’s internal risk management systems.

For example, one of the proposed future requirements is the use of stressed inputs

for determining bank’s capital requirement for counterparty credit risk. The cycli-

cality in minimum capital requirements over time has always been a key consider-

ation for the BCBS during the design of the Basel II framework. As such, the BCBS

had introduced a number of safeguards to address this issue including the requirement

to use long term data horizons to estimate probabilities of default (PD) and the

introduction of downturn loss-given-default (LGD) estimates.

This paper presents pragmatic views on validating IRB systems. It discusses

issues related to the challenges facing supervisors and banks of validating the

systems that generate inputs into the internal ratings-based approach (IRBA) used

to calculate the minimum regulatory capital for credit risk, based on internal bank

information.

The key role of Banks as financial intermediaries highlights their core compe-

tences as lending, investing and risk management. In particular, analysing and

quantifying risks is a vital part of efficient bank management. An appropriate

corporate structure is vital to successful risk management. Active credit risk

management is indispensable for efficiently steering a bank through the economic

and financial cycles, despite the difficulties stemming from a lack of credit risk data.

A well-functioning credit risk measurement system is the key element in every

bank’s internal risk management process. It is interesting to note that the debate

about the new version of the Basel Capital Accord (Basel II and further work),

which establishes the international minimum requirements for capital to be held by

banks, has moved this topic back to the centre of the discussion about sound

banking. The proper implementation of the IRBA is one key aspect of a lively

debate among bankers, academics and regulators. At the same time a paradigm shift

in credit risk management has taken place.

Previously, credit risk assessment used only the experience, intuition and powers

of discernment of a few select specialists. The new process is more formalised,

standardised and much more objective by bank’s internal rating systems. The

human element has not been entirely discounted, however; now both human

judgement and rating systems each play an equally important role in deciding the

credit risk of a loan.

Since the IRBA approach has been implemented in most of the G10-countries in

the past and will be implemented in almost all G20-countries in the near future, the

debate on the IRBA has shifted its accent. More emphasis is now given to the
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problem of validating a rating system, rather than how to design a rating system.

Both the private sector and banking supervisors need well-functioning rating

systems. This overlap of interests and objectives is reflected in the approach

towards validation of rating systems; even if different objectives imply different

priorities in qualifying and monitoring the plausibility of such systems.

We will discuss some of the challenges faced by banks and supervisors, aware that

we have only scratched the surface. This is followed by a discussion of some of the

responses given by the BCBS. We then will discuss a pragmatic approach towards

validating IRB systems while touching on some issues previously raised. However, we

would like to stress that implementation ofBasel II, and especially the validation of IRB

systems (and similarly AMA models for operational risk) requires ongoing dialogue

between supervisors and banks. This article, including its limitations, offers a concep-

tual starting point to deal with the issues related to the validation of IRB systems.

12.1.2 Some Challenges

The discussion on validation has to start with a discussion of the structure and usage

of internal rating systems within banks. The two-dimensional risk assessment for

credit risk as required in Basel II, aims to quantify borrower risk, via the probability

of default (PD) for a rating grade, and the facility risk by means of the Loss Given

default (LGD). The third dimension is the facility’s exposure at default (EAD).

The broad structure of a bank-internal rating system is shown in Fig. 12.1. First,

the information, i.e. the raw data on the borrower to be rated have to be collected in

accordance with established banking standards. Accordingly, the data is used to

determine the potential borrower’s credit risk. In most cases, a quantitative rating

method which draws on the bank’s previous experience with credit defaults is

initially used to determine a credit score. Borrowers with broadly similar credit

scores, reflecting similar risk characteristics, are typically allocated to a preliminary

risk category, i.e. rating grade. Usually, a loan officer then decides the borrower’s

final rating and risk category, i.e. this stage involves the application of qualitative

information.

A well-working rating system should demonstrate that the risk categories differ

in terms of their risk content. The quantification of risk parameters is based on the

bank’s own historical experience, backed by other public information and to certain

extent, private information. For example, the share of borrowers in a given rating

category who have experienced an occurrence defined as a credit default3 within a

3What constitutes credit default is a matter of definition. For banks, this tends to be the occurrence

of an individual value adjustment, whereas at rating agencies, it is insolvency or evident payment

difficulties. The IRBA included in the new Basel Capital Accord is based on an established

definition of default. Compared with individual value adjustments, the Basel definition of default

provides for a forward-looking and therefore relatively early warning of default together with

a retrospective flagging of payments that are 90 days overdue.
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given time-frame, usually 1 year, will be used for the estimation process. The

described standardisation of ratings allows the use of quantitative models where

sufficient borrower data is available and highlights the need for high-quality, informa-

tive data.

For consumer loans, the BCBS also allows risk assessment on the level of

homogenous retail portfolios that are managed accordingly by the bank on a pool

basis. The challenge for banks is to identify such homogenous portfolios exhibiting

similar risk characteristics. This leads to the importance of using bank-internal data,

which plays a crucial role in both the segmentation process used to find homogenous

portfolios, and the quantification process used for the risk parameters. One of the

techniques used for segmentation and quantification is the utilisation of so-called

“roll rates”,4 where different delinquency stages are defined (for example 30 days,

60 days etc.). Counting the roll rate from one delinquency stage to another and filling

the migration matrix would serve as a basis for estimating the PDs for those

exposures.

There are a couple of issues related to this procedure. Firstly, there is the issue of

segmentation, i.e. do roll rates take into account all relevant risk drivers as required

in the Basel II framework? Secondly, for quantification purposes, how will roll rates

be translated into PDs, more specifically, which delinquency class should be used

(to comply with the Basel II framework), and to what extent can these PDs be

validated? Lastly, in many instances a quicker reaction of current conditions,

sometimes coupled with a longer time horizon, might be needed for purposes of

risk management and pricing, especially for retail exposures. How would such
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Fig. 12.1 Schematic evolution of a rating process and its integration in the bank as a whole
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quantification processes for PDs (and LGDs) be rectified with the application of the

use-test as required in Basel II?

Another issue relates to the modification performed by a credit officer of the

automated rating proposal, i.e. a qualitative adjustment. This may question the

rigidity needed for validation, especially in cases where documentation may be

insufficient, and the information used is more qualitatively based, the latter being a

general problem in credit assessments.

A simple, but important, question is who has the responsibility for validating a

rating system in the context of Basel II, given that the calculation of minimum

regulatory capital is legally binding and set by the supervisors. In addition, a valid

point in this regard is that some requirements, for example, the quantification

process focussing on long-term averages to reduce volatility of minimum regu-

latory capital requirements, are not fully in line with bank practice. This may lead to

a different quantification process, i.e. a second process for the sole purpose of

meeting supervisory standards, or even to a different risk management process as

suggested above in the retail portfolios. In sum, the use-test requirement, the extent to

which an internal rating system is used in daily banking business, will play a crucial

role in assessing compliance with Basel II implementation including the validation of

IRB systems.

Since a bank’s internal rating systems are individual, and in the best case, fully

tailored to the bank’s necessities; validation techniques must be as individual as the

rating system they are used for. As an example, we highlight the so-called Low-

Default-Portfolios. As the IRB framework in Basel II is intended to apply to all

asset classes, there are naturally portfolios which exhibit relatively low or even no

default at all.5 This makes the quantification, required to be grounded in historical

experience, of PDs and LGDs, extremely challenging. Thus, a straightforward

assessment based on historic losses would not be sufficiently reliable for the

quantification process of the risk parameters, but conservative estimates serving

as an upper benchmark may be derived (cf. Chap. 5).

Some of the issues raised in this section have been discussed by the BCBS.

12.1.3 Provisions by the BCBS

The Subgroup on Validation (AIGV)6 of the BCBS’ Accord Implementation Group

(AIG) was established in 2004. The objective of the AIGV is to share and exchange

5See BCBS newsletter No 6, “for example, some portfolios historically have experienced low

numbers of defaults and are generally – but not always – considered to be low-risk (e.g. portfolios

of exposures to sovereigns, banks, insurance companies or highly rated corporate borrowers)”.
6The Validation Subgroup is focusing primarily on the IRB approach, although the principles

should also apply to validation of advanced measurement approaches for operational risk. A

separate Subgroup has been established to explore issues related to operational risk (see BCBS

newsletter No 4.).
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views related to the validation of IRB systems. To the extent possible, the groups

should also narrow gaps between different assessments of the New Framework by

the different supervising agencies represented in the AIGV. The objective of the

validation of a rating system is to assess whether a rating system can – and

ultimately does – fulfil its task of accurately distinguishing and measuring credit

risk. The common view describes the term “validation” as a means to combine

quantitative and qualitative methods. If applied together, it should indicate whether

a rating system measures credit risks appropriately and is properly implemented in

the bank in question.

The BCBS newsletter No. 4, January 2004, informs about the work of the AIGV

in the area of validation in Basel II. The most important information provided was

the relatively simple answer to the question, “what aspects of validation will be

looked at?” Despite the importance of validation as a requirement for the IRB

approach, the New Framework does not explicitly specify what constitutes valida-

tion. Consequently, the Subgroup reached agreement on that question. In the context

of rating systems, the term “validation” encompasses a range of processes and

activities that contribute to assessing whether ratings adequately differentiate risk,

and importantly, whether estimates of risk components (such as PD, LGD, or EAD)

appropriately characterise and quantify the relevant risk dimension.

Starting with this definition, the AIGV developed six important principles (see

Fig. 12.2), on validation that result in a broad framework for validation. The

validation framework covers all aspects of validation, including the goal of valida-

tion (principle 1), the responsibility for validation (principle 2), expectations on

validation techniques (principles 3, 4, and 5), and the control environment for

validation (principle 6). Publishing these principles was a major step in clarifying

the ongoing discussions between banks and their supervisors about validation for at

least three reasons:

1. The principles establish a broad view on validation. Quite often, validation was

seen as being restricted to only dealing with aspects related to backtesting. The

established broad view on validation reinforces the importance of the minimum

requirements of the IRBA, as well as highlighting the importance of risk-

management. The debate around the IRBA was too often restricted to solely

risk quantification or measurement aspects. We think that this balanced perspec-

tive, including the more qualitative aspects of the IRBA, reflects the short-

comings in establishing and validating rating systems, especially given the

data limitations. This clarification also formed the basis for the development

of validation principles for the so-called “Low Default Portfolios (LDPs)” as

proposed in the BCBS newsletter No. 6 from August 2005.

2. The responsibility for validation and the delegation of duties has also been

clarified. The main responsibility lies rightfully with the bank, given the

importance of rating systems in the bank’s overall risk management and capital

allocation procedures. Since validation is seen as the ultimate sanity-check for

a rating system and all its components, this task clearly must be performed by

the bank itself, including the final sign-off by senior management. It should be
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noted that only banks can provide the resources necessary to validate rating

systems.

3. Principles 3–5 establish a comprehensive approach for validating rating systems.

This approach proposes the key elements of a broad validation process, on which

we will elaborate more in the next section.

Principle 1: Validation is fundamentally about assessing the predictive ability
of a bank’s risk estimates and the use of ratings in credit processes
The two step process for ratings systems requires banks to firstly discriminate
adequately between risky borrowers (i.e. being able o discriminate between
risks and its associated risk of loss) and secondly calibrate risk (i.e. being able
to accurately quantify the level of risk). The IRB parameters must, as always
with statistical estimates, be based on historical experience which should form
the basis for the forward-looking quality of the IRB parameters. IRB valida-
tion should encompass the processes for assigning those estimates including
the governance and control procedures in a bank.

Principle 2: The bank has primary responsibility for validation
The primary responsibility for validating IRB systems lies with the banks it-
self and does not remain with the supervisor. This certainly should reflect the
self-interest and the need for banks having a rating system in place reflecting
its business. Supervisors obviously must review the bank’s validation proc-
esses and should also rely upon additional processes in order to get the ade-
quate level of supervisory comfort.

Principle 3: Validation is an iterative process
Setting up and running an IRB system in real life is by design an iterative pro-
cess. Validation, as an important part of this circle, should therefore be an on-
going, iterative process following an iterative dialogue between banks and 
their supervisors. This may result in a refinement of the validation tools used.

Principle 4: There is no single validation method
Many well-known validation tools like backtesting, benchmarking, replica-
tion, etc are a useful supplement to the overall goal of achieving a sound IRB
system. However, there is unanimous agreement that there is no universal tool
available, which could be used across portfolios and across markets.

Principle 5: Validation should encompass both quantitative and qualitative
elements
Validation is not a technical or solely mathematical exercise. Validation must
be considered and applied a broad sense, its individual components like data,
documentation, internal use and the underlying rating models and all proc-
esses which the rating system uses are equally important.

Principle 6: Validation processes and outcomes should be subject to inde-
pendent review
For IRB systems, there must be an independent review within the bank. This
specifies neither the organigram in the bank nor its relationship across de-
partments, but the review team must be independent of designers of the IRB
system and those who implement the validation process.  

Fig. 12.2 The six principles of validation
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12.2 Validation of Internal Rating Systems in Detail

According to the BCBS elaboration on the term “validation”, we consider three

mutually supporting ways to validate bank internal rating systems. This encom-

passes a range of processes and activities that contribute to the overall assessment

and final judgement. More specifically, this can be directly related to the application

of principle 4 and principle 5 of the BCBS newsletter as discussed above.

1. Component-based validation: – analyses each of the three elements – data

collection and compilation, quantitative procedure and human influence – for

appropriateness and workability.

2. Result-based validation (also known as backtesting): – analyses the rating

system’s quantification of credit risk ex post.

3. Process-based validation: – analyses the rating system’s interfaces with other

processes in the bank and how the rating system is integrated into the bank’s

overall management structure.

12.2.1 Component-Based Validation

12.2.1.1 Availability of High-Quality Data

Ensuring adequate data quality is the key task which, for at least two reasons, must

be addressed with the greatest urgency. First, as the rating is based primarily on

individual borrowers’ current data, it can only be as good as the underlying data.

Second, the quantitative component of the rating process requires a sufficiently

reliable set of data, including a cross-sectional basis, which is crucial for calibration

of the risk parameters. Accordingly, both historical data and high-quality recent

data are essential to ensure that a rating system can be set up adequately, and will

also be successful in the future. Clearly, the availability of data, i.e. financial versus

account specific information, and its use for different borrower characteristics, –

wholesale versus consumer – is dissimilar. Activities in consumer finance may

produce more bank-specific behavioural data whereas financial information for

large wholesale borrowers should be publicly available. However, the availability

of reliable and informative data, especially for the mid-size privately owned

borrowers, may frequently not be met for at least several reasons:

l Data compilation and quality assurance incur high costs because they require

both qualified staff and a high-performance IT infrastructure. In addition, these

tasks seem to have little to do with original banking business in its strict sense,

and their usefulness may only become apparent years later. Clearly, proper

investment is needed, adding pressure to costs and competition.
l Similarly, it is a costly exercise in staffing and resource allocation in credit

departments. However, the Basel II efforts may have helped to allocate more

resources to capturing adequate and reliable credit data.
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l In reality, borrowers also are often reluctant to supply the requested data. This

may be because, especially at smaller enterprises, this data is not readily

available. Admittedly, because of the predominant classic “house bank” system

in Germany, this information historically had not been requested. Also, potential

misuse of data and reluctance on the part of firms to provide information on their

own economic situation seems to be a widespread concern. Sometimes, data is

passed on to a very limited number of third parties only.7

l Further concentration in the banking industry is also contributing to the problem.

Owing to the lack of uniform standards for banks, in the event of a merger,

different sets of data have to be synchronized – this adds a new dimension to the

problem and is, again, no quick and easy task to do.

A thorough knowledge of the IT systems underlying the rating approach is

necessary for the proper assessment of data quality; in addition the following may

help to provide a realistic evaluation:

l Ensuring data quality: The sheer existence and quality of bank internal guide-

lines, including tests around them, is an indication of the importance banks place

on good data quality. Whether a bank takes its own guidelines seriously can be

gauged from day-to-day applications. For instance, data quality assurance can

reasonably be expected to be as automated as possible to ensure that a uniform

standard is applied throughout the bank. Also, comparison with external sources

of data seems to be necessary to ensure data plausibility.
l Bank-wide use of the data: The extent to which data are used allows assessing

the confidence that the bank has in its data. This leads to two consequences. On

the one hand, frequent and intensive use of specific data within a bank exposes

inconsistencies which might exist. On the other hand, where larger numbers of

people are able to manually adjust data, the more likely is its potential contami-

nation, unless suitable countermeasures are taken.

12.2.1.2 The Quantitative Rating Models

The second facet of the rating process, in the broadest sense, is the mathematical

approachwhich can be used to standardise the use of data. The aim is to compress data

collected in the first stage to prepare and facilitate the loan officer’s decision on the

credit risk assessment of a borrower. In recent years, the analysis and development of

possible methods has been a focus of research at banks and in microeconomics.

The second stage methods attribute to each borrower, via a rating function fRat, a
continuous or discrete risk measure Z, a rating score, which is dependent on both the

7An indication of this attitude, which is widespread in Germany, is, for example, the approach that

is adopted to the obligation laid down in Section 325 of the German Commercial Code for

corporations to publish their annual accounts. No more than 10% of the enterprises concerned

fulfil this statutory obligation.

12 Validation of Banks’ Internal Rating Systems: A Supervisory Perspective 255



individual features of each borrower X1, X2, ..., XN – also denoted as risk factors –

and free, initially unknown model parameters a1,a2, ..., aM:

Z ¼ fRatða1; � � � ; aM;X1; � � � ;XNÞ:

The value of Z permits the suggested rating to be derived from the quantitative

analysis of the borrower concerned, in that each value of Z is allocated precisely to

one of Y various rating categories. The methods suitable for this kind of quantitative

component can be classified as:

l Statistical methods: This is probably the best known and themost widespread group

of methods. They are used by almost all banks in both corporate and private sector

business. The best known of suchmethods are discriminatory analyses (primarily in

corporate business) and logit regressions (used mainly as scorecards in private

sector business). Generalised regression and classification methods (such as neural

networks) also belong in this category, even if they are rarely used in practice.
l Rule-based systems: Such systems model the way in which human credit experts

reach a decision and are used in corporate business. They comprise a set of

predetermined “if ... then” rules (i.e. expert knowledge). Each enterprise is first

graded according to these rules. The next stage is for the rules matched by the

firm to be aggregated in order to give a risk rating.
l Benchmarking methods: In these methods, observable criteria, such as bond

spreads, are used to compare borrowers with unknown risk content with rated

borrowers with known risk content – the so-called benchmarks.
l Applied economic models: Option price theory models are the most widely

known. They enable, for example, an enterprise’s equity capital to be modelled

as a call option on its asset value and thus the concepts used in option price theory

to be applied to credit risk measurement. The starting point for the development of

these models was the Merton model; KMV has been successful in its further

development offering its Public Firm Model for listed enterprises and a Private

Firm Model for unlisted enterprises (Crosbie and Bohn 2001), now marketed

under the “Moody’s KMV”-label.

Another classification distinguishes between empirical models, where the para-
meters are determined from data of known borrowers by using mathematical or

numerical optimisation methods, and expert methods, where the parameters are

specified by credit experts based on their experience. Basically, the difference lies

in the specification of the model parameters a1,a2, ..., aM.

12.2.1.3 The Model Itself

Transparency, intelligibility and plausibility are crucial for validating the appropri-

ateness of the rating process. Clearly, either with the set of rules for expert systems

or with the underlying model in the case of benchmarking methods and applied

economic models, these requirements seem to be easily fulfilled. The situation
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regarding statistical models is somewhat more complex – as there is no economic

theory underlying these models. However, certain basic economic requirements

should also be incorporated in using statistical models. For example, experience has

shown that many risk factors are invariably more marked among “good” borrowers

than “bad” borrowers. Likewise, if a requirement of risk measure Z is invariably

larger among better borrowers than among worse borrowers, the direct consequence

is that the monotony of the risk factor must also be evident in the monotony of the

risk measure. Therefore, for the i-th risk factor Xi, the following applies:

@Z

@Xi
¼ @fRatða1; � � � ; aM; X1; � � � ;XNÞ

@Xi
>0:

Economic plausibility leads to the exclusion of “non-monotonous” risk factors in

linear models. Non-monotonous risk factors are, for example, growth variables,

such as changes in the balance sheet total, changes in turnover etc. Experience

shows that both a decline and excessively high growth of these variables imply a

high risk. Such variables cannot be processed in linear models, i.e. in models like

Z ¼ a0þa1�X1þ���þaN �XN, because, owing to

@Z

@Xi

¼ ai ¼ const:;

the plausibility criterion in these models cannot be fulfilled for non-monotonous

features.8 Further economic plausibility requirements and sensitivity analysis should

be considered in a causal relationship with economic risk, for example the creditwor-

thiness of an enterprise cannot be derived from the managing director’s shoe size!

The commonly applied statistical standards must be observed for all empirical

models (statistical models, specific expert systems and applied economic models).

Non-compliance with these standards is always an indication of design defects,

which generally exhibit an adverse effect when applied. Without claiming com-

pleteness, we consider the following aspects to be vital when developing a model:

l Appropriateness of the random sample for the empirical model: The appropri-

ateness of the random sample is the decisive factor for all empirical and statisti-

cal models. This is also relevant to applied economic models, as is illustrated by

the KMV models. These models have been based on data on US firms, meaning

that they draw on developments in the US markets only and solely reflect US

accounting standards. Not all data which is important in this system is available

when other accounting standards are used, with the result that when the models

are transferred to other countries, one has to work with possibly questionable

approximations. This has a bearing on certain characteristics of the models such

as lack of ambiguity and the stability of the results.

8Moody’s RiskCalc (Falkenstein et al. 2000) provides one way of processing non-monotonous risk

factors by appropriate transformation in linear models. Another one can be found in Chap. 2.
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l Over-parameterising the model: A mistake, frequently observed, is to include too

many risk factors in the design of a rating system. The reasons for this include an

overly cautious approach when developing the system, i.e. each conceivable risk

factor, or those which credit experts seem to consider obvious, are to be fed into

the system. On the other hand, rating systems are often developed by committees

and these would naturally like to see their particular “babies” (mostly a “favourite

variable” or a special risk factor) reflected in the rating design. Neither approach is

optimal from the statistical perspective as there is an upper limit to the number of

parameters to be calculated, depending on the size of the sample and the model

used. If this rule is breached, errors are made which are called “overfitting”.
l Statistical performance of the estimated model: The performance of the model in

a statistical sense is generally provided as a type-1 or a type-2 error, applying

measures of inequality such as Gini coefficients or entropy measures (Falkenstein

et al. 2000), or other statistical measures which can be determined either for the

sample or the entire population. These variables quantify the rating system’s

ability to distinguish between good and bad borrowers and thus provide important

information about the capability of the rating model with regard to discriminating

between risks. These variables are especially important during the development of

a rating system as they allow comparison of the performance of various models

within the same data set. However, we think that these tools are only of minor

importance for ongoing prudential monitoring. First, owing to the concave form of

the risk weighting function in the new Basel Accord, which provides logical

incentives so that systems which discriminate more finely, are less burdened by

regulatory capital than coarser systems. Second, the absolute size of the probabil-

ity of default is the variable relevant for banking supervision as it is linked to the

size of the regulatory capital.
l Modelling errors, precision and stability: Certain modelling errors are inevitably

part of everymodel because eachmodel can depict only a part of economic reality in

a simplified form. In order to be able to use amodel correctly, one has to be aware of

these limitations. However, in addition to these limitations, which are to a certain

extent a “natural” feature of each model, the modelling errors caused by using an

optimisation or estimation procedure also need to be considered. These estimation

errors can be quantified for the model parameters from the confidence levels of the

model parameters. Given certain distribution assumptions, orwith the aid of cyclical

or rotationmethods, these confidence levels can be determined analytically from the

same data which is used to estimate the parameters (Fahrmeir et al. 1996). If error

calculationmethods frequently used in the natural sciences are applied, it is possible

to estimate the extent towhichmeasurement bias of the individualmodel parameters

affects the credit scoreZ. The stability of amodel can be derived from the confidence

levels of model parameters. Determining the stability of a model seems to be

particularly important, i.e. the responsiveness to portfolio changes. A more critical

issue is model precision. In some methods, model parameters are determined –

though illogically – with a precision that is several orders of magnitude higher than

for the risk parameters.
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12.2.1.4 Role of the Loan Officer-or Qualitative Assessment

Loan officers play an important role in both setting up a rating system as well as

using it in practice. We think that qualitative assessments should be included in the

final rating assignment, by allowing the loan officer to modify the suggested credit

rating provided by the quantitative model.9 This is certainly necessary for expo-

sures above a certain size; retail loans may be dependent on the business activities

and risk management structures in the bank. The sheer size of mass financing of

consumer loans certainly results in less influence for the loan officer, rather, they

rely on correct procedures to check the automated rating proposal and the input

provided by the sales officer. We discuss three important aspects accordingly:

l The loan officer’s powers: Any manual modification of the automated rating

proposal should be contained within a controlled and well-documented frame-

work. The loan officer’s discretion should be set within clearly defined limits

which specify at least the conditions permitting a deviation from the automated

rating proposal and the information that the loan officer used additionally. One

way to look at discretion is the use of a deviation matrix of final and suggested

ratings, showing for each rating category, how many suggested ratings (gene-

rated by the quantitative rating tool) are changed by manual override: more

specifically, the shareMij of borrowers assigned by the quantitative system to the

i-th category which loan officers finally place in category j. In a well-defined,

practicable rating system, a high match between suggested ratings and final

ratings should be expected in most cases, so in each line the values ofMii should

be the largest andMij should decrease the more the final ratings diverge from the

suggestions. Clearly, greater deviations should lead to careful analysis of the

shortcomings of the rating model, either indicating data issues or problems with

the model itself.
l Monitoring the ratings over time: Any rating system must ideally be monitored

continuously and be able to process incoming information swiftly; however,

ratings must be updated at least annually. This does also apply for consumer

loans. However, the focus is on ensuring that loans and borrowers are still

assigned to the correct pool, i.e. still exhibiting the loss characteristics and the

delinquency status of the previously assigned pool. As such, different methodo-

logies may be used, for example by using an account-specific behavioural score.

For wholesale loans, it may be helpful to analyse the frequency distribution of

the time-span between two successive ratings of all borrowers in a specific

portfolio. The expected pattern is shown in Fig. 12.3: most borrowers are re-

evaluated at regular intervals, roughly once every 12 months, but in between, “ad

hoc ratings” are based on information deemed to be important and their fre-

quency increases with the amount of time that has elapsed since the first rating.

Between the two regular re-ratings, a whole group of the same type of borrowers

9The normal transformation of qualitative information like family status, gender, etc into numeri-

cal variables for the assessment of consumer loans would not replace such a qualitative oversight.
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(e.g. enterprises in one sector) may occasionally be re-rated because information

relevant to the rating of this group has been received. It should be possible to

explain any divergent behaviour which, in any case, provides insights into the

quality of the rating process.
l Feedback mechanisms of the rating process: A rating systemmust take account of

both the justified interests of the user – i.e. the loan officer – whose interest is

driven by having a rating process which is lean, easy to use, comprehensible and

efficient. On the other hand, the model developer is interested in a rating model

which is theoretically demanding and as comprehensive as possible. Where

interests conflict, these will need to be reconciled. It is all the more important

that a rating system is checkedwhilst in operationalmode, to ascertainwhether the

model which the process is based on is appropriate and sufficiently understood by

the users. In any case, procedures must be implemented according to which a new

version – or at least a new parameterisation – of the rating model is carried out.

12.2.2 Result-Based Validation

In 1996, the publication of capital requirements for market risk for a bank’s trading

book positions as an amendment to the 1988 Basel Accord, was the first time that a

bank’s internal methodology could be used for purposes of regulatory capital. The

output of bank internal models, the so-called Value-at-Risk (VaR) which is the

most popular risk measure in market risk, is translated into a minimum capital

requirement, i.e. three times VaR. The supervisory challenge for most countries,

certainly Germany, was to establish an appropriate supervisory strategy to finally
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permit these bank internal models for calculating regulatory capital. In addition to

the supervisory assessment of the qualitative market risk environment in a bank,

another crucial element of the strategy was the implementation of an efficient

“top-down” monitoring approach for banks and banking supervisors. The relatively

simple comparison between ex-ante estimation of VaR and ex-post realisation of

the “clean” P&L10 of a trading book position, excluding extraneous factors such as

interest payments, was the foundation for the quantitative appraisal.

The concept for backtesting in the IRBA as introduced in paragraph 501 of the

New Framework is relatively similar. In the IRB approach, according to market

risk, the probability of default (PD) per rating category or, in special cases, the

expected loss (EL) in the case of consumer loans, must be compared with the

realised default rate or losses that have occurred.

Despite the basic features common to market risk and credit risk, there are also

important differences, most importantly the following two. First, the conceptual

nature is different; in market risk the forecasted VaR is a percentile of the “clean”

P&L distribution. This distribution can be generated from the directly observable

profit and losses, and thus the VaR can be directly observed. By contrast, in credit

risk only realised defaults (and losses) according to a specific definition can be

observed directly instead of the forecasted PD (and EL).

A common and widespread approach for credit risk is the application of the law

of large numbers and to infer from the observed default rate, the probability of

default.11 To our knowledge, almost all backtesting techniques for PD (or EL) rely

on this statistical concept. However, a proper application requires that borrowers

are grouped into grades exhibiting similar default risk characteristics.12 This is

necessary even in the case of direct estimates of PD, when each borrower is

assigned an individual PD.

The second main difference relates to the available data history on which the

comparison is based. In market risk, the frequency is at least 250 times a year in the

case of daily data. By contrast, in credit risk there is only one data point per annum

to be assumed. To make it more complex, there is an additional problem arising

from measuring credit default, which is the key variable for the quantification and

therefore the validation. The definition of credit default is largely subjective. The

New Framework suggests retaining this subjective element as the basis of the IRB

10There are different interpretations among different supervisors on this issue.
11Beside the fact, that an application of the law of large numbers would require that defaults are

uncorrelated, there is another subtle violation in the prerequisites for applying the law of large

numbers. It is required that the defaults stem from the same distribution. This requirement cannot

be seen to be fulfilled for different borrowers. To give a picture: The difference for the task of

determining the probability of throwing a six is like approximating this probability either by

throwing the same dice 1,000 times and calculating the ratio of sixes to the total number of throws

or throwing 1,000 dices once and calculating the ratio of sixes to the number of dices thrown.
12We believe that validation of rating systems, i.e. the calibration of PDs is almost impossible

without the grouping of borrowers to grades with the same risk profile; which is also one of the key

requirements of Basel II.
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approach, albeit with a forward-looking focus and a back-stop ratio of 90 days past

due. This may be justified, not least by the fact that a significant number of defaulted

borrowers seem to have a considerable influence on the timing of the credit default.

Correspondingly, the criteria and – more importantly – the applied methodology

are also different. In market risk, the challenge is to provide a clean P&L and to

store the corresponding data. This differs significantly from the necessary compila-

tion of the rating history and credit defaults over time. Depending on the required

reproducibility of the results, considerable time and effort may be needed and it is

difficult to estimate what requirement is most important for what area, thus entai-

ling higher costs for the bank. Owing to the volume of available data points in

market risk, the simplicity and multiplicity of the applicable methods are impres-

sive. This naturally poses an apparently insuperable challenge for credit risk.

A further problem is the impact of a rating philosophy on backtesting. The rating

philosophy is what is commonly referred to as either Point-in-Time (PIT) or

Through-the-Cycle (TTC) ratings. PIT-ratings measure credit risk given the current

state of a borrower in its current economic environment, whereas TTC-ratings

measure credit risk taking into account the (assumed) state of the borrower over a

“full” economic cycle. This means – assuming an underlying two-step-rating

process as described above – a TTC rating system requires (1) constant PDs per

grade over time and (2) a structure that let migrate borrowers on idiosyncratic

effects only, i.e. no migration of borrowers between grades related to cycle effects.

Consequently, a TTC-rating system must ensure that there is virtually no correla-

tion between “grade migration” and the cycle. Similarly, PD estimates for each

rating grade must not change in a way which is correlated with the cycle

An alternative might be to make some adjustments to the basic outputs in order to

achieve an acyclical effect. An example for that is given by the UK-FSA’s scaling

approach.13

PIT and TTC mark the ends of the spectrum of possible rating systems. In

practice, neither pure TTC nor pure PIT systems will be found, but hybrid systems,

which are rather PIT or rather TTC. Agency ratings are assumed to be TTC,

whereas current bank internal systems – at least in most cases in Germany and

many other countries – are looked at as PIT. This is plausible because for the

purpose of managing credit risk a PIT-system, that detects borrowers’ deterioration

early, seems to be more reasonable than a TTC-system.

The increased focus on reducing excess cyclicality in minimum capital require-

ments by supervisors may lead banks to possibly promote the use of TTC ratings

versus PIT ratings. A bank then may decide to explicitly use two different PD

calibrations, one for internal purposes (PIT for example for pricing, margining and

remuneration) and one for regulatory purposes (TTC for example for regulatory

capital). In this case a very important question to be asked is whether this may be

appropriate in the light of the requirement of the use-test. To this end, as long as the

internal processes, i.e. the credit granting process as well as the rating assignment

13Cf. Financial Services Agency (2006, 2009).
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process, stay the same for both calibrations we would suggest that the use-test criteria

may be acceptable. In addition, importance should also be given to the fact that

broader system-wide economic changes on the PD estimate should not be reflected

in the TTC estimates in order to reduce its idiosyncratic risk induced volatility.

The rating philosophy has an important impact on backtesting. In theory, for TTC

systems borrower ratings, i.e. its rating grade, are stable over time, reflecting the

long-term full cycle assessment. However, the observed default rates for the indi-

vidual grades are expected to vary over time in accordance with the change in the

economic environment. The contrary is the case for PIT systems. By more quickly

reacting to changing economic conditions, borrower ratings tend to migrate through

the rating grades over the cycle, whereas the PD for each grade is expected to be

more stable over time, i.e. the PD is more independent from the current economic

environment. The Basel Committee did not favour a special rating philosophy. Both

PIT systems as well as TTC systems are fit for the IRBA. However, it seems to be

reasonable to look at risk parameters as a forecast for their realisations which can be

observed within a 1 year time horizon. This reasoning is reflected in the first

validation principle of the AIGV, where a forward looking element is required to

be included in the estimation of Basel’s risk parameters.

However, validation of TTC-ratings is extremely challenging if it is looked at

from the perspective of backtesting since for TTC ratings the target for PD

calibration reflects an average for the cycle. If statistical testing techniques are to

be applied, then the requirement for the length of a time series will be increased by

the factor of a cycle length in years. Additionally, backtesting requires the integra-

tion of full cycles only. Therefore the accuracy of the risk quantified in TTC ratings

is difficult to evaluate and straightforward backtesting techniques, as sketched out

in many articles of this book, are expected to be of limited value.

In the special case of consumer loans, the estimation and validation of key

parameters is extremely dependent on the approach taken by a bank. A similar

rating system as used for wholesale borrowers, leads to an analogous assessment for

purposes of validation. In contrast, instead of rating each borrower separately, the

BCBS clusters loans in homogenous portfolios during the segmentation process

(see above). This segmentation process should include assessing borrower and

transaction risk characteristics like product type etc., as well as identifying the

different delinquency stages (30 days, 60 days, 90 days etc.). Subsequently, the risk

assessment on a (sub-) portfolio level could be based on its roll rates, transaction

moving from one delinquency stage to another.

The implications of these rather general considerations and possible solutions for

the problems raised here are discussed in detail in Chap. 9.

12.2.3 Process-Based Validation

Validating rating processes includes analysing the extent to which an internal rating

system is used in daily banking business. The use test and associated risk estimates
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is one of the key requirements in the BCBS’ final framework. There are two

different levels of validation. Firstly, the plausibility of the actual rating in itself,

and secondly, the integration of ratings output in the operational procedure and

interaction with other processes:

l Understanding the rating system: It is fundamental to both types of analysis that

employees understand whichever rating methodology is used. The learning

process should not be restricted to loan officers. As mentioned above, it should

also include those employees who are involved in the rating process. In-house

training courses and other training measures are required to ensure that the

process operates properly.
l Importance for management: Adequate corporate governance is crucial for

banks. In the case of a rating system, this requires the responsibility of executive

management and to a certain extent the supervisory board, for authorising the rating

methods and their implementation in the bank’s day-to-day business. We would

expect different rating methods to be used depending on the size of the borrower,14

and taking account of the borrowers’ different risk content and the relevance of the

incoming information following the decision by senior management.
l Internal monitoring processes: The monitoring process must cover at least the

extent and the type of rating system used. In particular, it should be possible to

rate all borrowers in the system, with the final rating allocated before credit is

granted. If the rating is given after credit has been granted, this raises doubts

about the usefulness of internal rating. The same applies to a rating which is not

subject to a regular check. There should be a check at least annually andwhenever

new information about the debtor is received which casts doubt on their ability to

clear their debts. The stability of the rating method over time, balanced with the

need to update the method as appropriate, is a key part of the validation. To do

this, it is necessary to show that objective criteria are incorporated so as to lay

down the conditions for a re-estimation of the quantitative rating model or to

determine whether a new rating model should be established.
l Integration in the bank’s financial management structure: Unless rational credit

risk is recorded for each borrower, it is impossible to perform the proper margin

calculation taking into account standard risk costs. If this is to be part of bank

management by its decision-making and supervisory bodies, a relationship must

be determined between the individual rating categories and the standard risk

costs. However, it must be borne in mind that the probability of default is simply

a component of the calculation of the standard risk costs and, similarly to the

credit risk models, other risk parameters, such as the rate of debt collection and

the size of the exposure in the event of a credit default, the maturity of the loan,

transfer risk and concentration risks should also be recorded. Ultimately the

gross margin, which approximates to the difference between lending rates and

14In the Basel Committee’s new proposals in respect of the IRB approach, small enterprises may,

for regulatory purposes, be treated as retail customers and, unlike large corporate customers, small

and medium-sized enterprises are given a reduced risk weighting in line with their turnover.
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refinancing costs, can act as a yardstick for including the standard risk costs. In

order to determine the concentration risks at portfolio level more appropriately,

it seems essential to use credit risk models and thus to be in a position to allocate

venture capital costs appropriately. Therefore, if net commission income is

added to the gross margin, the operational costs netted out, and also the venture

capital costs taken into account, it is possible to calculate the result of lending

business. It is naturally advisable to include as part of the management of the

bank, all other conventional instruments of credit risk measurement, such as

employee bonus systems, portfolio optimisation.

In principle, the Basel Committee requires these mainly portfolio-based methods

in the second pillar of the new Accord as part of the self-assessment of capital

adequacy required of the banks in the Capital Adequacy Assessment Process

(CAAP). This frequently leads to problems when integrating banks’ own rating

systems into credit risk models purchased from specialist providers. In our view, this

may ultimately increase the complexity for banks and banking supervisors and at the

same time entail considerable competitive distortions if the rating is less objective.

12.3 Concluding Remarks

To set up and to validate bank-internal rating systems is a challenging task and

requires a considerable degree of sensitivity (Neale 2001). Our analysis started with

the comparatively more difficult data situation and the availability of public and

private information in order to quantify credit risk of banks’ borrowers in a

structured way including its subsequent validation. The advantage of the structured

credit risk assessment, when applying an automated rating process, is its objecti-

vity. This is true for the rating method and for the selection of the risk factors in the

rating model, including their effectiveness in generating a rating proposal. The final

integration of the qualitative credit assessment, based on a subjective decision by

the loan officer, is more difficult in the structured assessment.

The final rating outcome comprises an array of individual observations, which

may provide very different results. Ultimately, our suggested approach to validation

takes this complexity into account by highlighting the importance of the rating

process. This interdependence is reflected in the ongoing cycle of setting up and

monitoring the rating system. Individual observations during the monitoring pro-

cess are frequently integrated quickly into a revision of the methodological process.

The validation method is analogous to a jigsaw puzzle. Only if the many

individual pieces are being assembled properly, will the desired result be achieved.

The individual pieces of the puzzle seem unimpressive and often unattractive at first,

but they eventually contribute to the ultimate picture. This may, for example, be an

appropriate description when setting up the system and conducting ongoing checks

on the quality of the data management or the ongoing adjustment of banks’ internal

credit standards. Each piece of the puzzle is crucial, to both component-based and

process-based validation. One crucially important piece is the process-based

12 Validation of Banks’ Internal Rating Systems: A Supervisory Perspective 265



component. All conventional methods of quantitative validation should encompass

the assessment of the rating tool’s economic meaningfulness as well as its compli-

ance with statistical standards.

Transparency and comprehensibility of the chosen methods at each stage of

development, as well as its plausibility, are fundamental requirements of a sound

rating system. The advantage of using empirical statistical approaches is that these

models are comprehensible and that defects or statistical shortcomings can be

detected by simple statistical tests. By contrast, rule-based systems and applied

economic models are more heavily model-dependent and therefore point to model

risk. In the case of benchmarking methods; however, the choice of the peer group

with known risk content is decisive, although the instability of such models, in

particular, can be a problem. Despite the differences, most applied methods can

fulfil all requirements initially, albeit to a differing degree.

The broad use and the interplay of different quantitative plausibility and valida-

tion methods is the basis of a quantitative analysis of the methods used. Backtesting

using a simple retrospective comparison of estimated default probabilities with

actual default rates is crucial, and therefore a decisive element in the validation of

the results.15 Complementary methods are also needed, particularly in the develop-

ment stage of rating models, in order to ensure the plausibility of the selected

methods. These include techniques which underscore the stability and accuracy of

the methods, although caution is required with regard to quantification and espe-

cially with regard to methods used to measure accuracy.

The validation of internal rating systems underscores the importance of using a

formalised process when devising them and in their daily application. This covers

both the formalised keying in of data and the criteria for subjectively “overruling”

the rating proposal. Unless internal ratings are used on a regular basis and in a

structured manner over time, banks and banking supervisors by referring to the

“use-test” will find difficulties in accepting such a rating system.
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Chapter 13

Measures of a Rating’s Discriminative Power:

Applications and Limitations

Bernd Engelmann

13.1 Introduction

A key attribute of a rating system is its discriminative power, i.e., its ability to

separate good credit quality from bad credit quality. Similar problems arise in other

scientific disciplines. In medicine, the quality of a diagnostic test is mainly deter-

mined by its ability to distinguish between ill and healthy persons. Analogous

applications exist in biology, information technology, and engineering sciences.

The development of measures of discriminative power dates back to the early

1950s. An interesting overview is given in Swets (1988).

Many of the concepts developed in other scientific disciplines in different

contexts can be transferred to the problem of measuring the discriminative power

of a rating system. Most of the concepts presented in this article were developed in

medical statistics. We will show how to apply them in a ratings context.

Throughout this chapter, we will demonstrate the application of all concepts on

two prototype rating systems which are developed from the same data base. We

consider only rating systems which distribute debtors in separate rating categories,

i.e., the rating system assigns one out of a finite number of rating scores to a debtor.

For both rating systems, we assume that the total portfolio consists of 1,000 debtors,

where 50 debtors defaulted and 950 debtors survived. Both rating systems assign

five rating scores 1, 2, 3, 4, and 5 to debtors where 1 stands for the worst credit

quality and 5 for the best. Table 13.1 summarizes the rating scores that were

assigned to the surviving debtors by both rating systems.

Table 13.1 tells us precisely the distribution of the non-defaulting debtors on the

two rating systems. For example, we can read from Table 13.1 that there are 40 non-

defaulting debtors who were assigned into rating category 4 by Rating 1 while they

were assigned into rating category 5 by Rating 2. The other numbers are interpreted

analogously. The distribution of the defaulting debtors in the two rating systems
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is given in Table 13.2. Both tables provide all information needed to apply the

concepts that will be introduced in the subsequent sections of this chapter.

We introduce the notation that we will use throughout this chapter. We assume

a rating system which consists of discrete rating categories. The rating categories1

are denoted with R1,. . ., Rk where we assume that the rating categories are sorted in

increasing credit quality, i.e., the debtors with worst credit quality are assigned to

R1 while the debtors with the best credit quality are assigned to Rk. In our example

in Tables 13.1 and 13.2 we have k ¼ 5 and R1 ¼ 1,. . ., R5 ¼ 5. We denote the set

of defaulting debtors with D, the set of non-defaulting debtors with ND, and the set
of all debtors with T. The number of debtors in the rating category Ri is denoted

with N(i) where the subscript refers to the group of debtors. If we discuss a specific

rating we make this clear by an additional argument, e.g., for Rating 1 the number

of defaulters in rating category 4 is ND(4;1) ¼ 5, or the total number of debtors in

rating category 2 is NT(2;1) ¼ 214. Since the event “Default” or “Non-default” of a

debtor is random, we have to introduce some random variables. With S we denote

random distribution of rating scores while the subscript will indicate the group of

debtors the distribution function corresponds to, e.g., SD denotes the distribution of

the rating scores of the defaulting debtors. The empirical distribution of the rating

scores, i.e., the distribution of the rating scores that is realised by the observed

defaults and non-defaults is denoted by Ŝ, where the subscript again refers to the

group of debtors. For example, for Rating 1

Table 13.1 Distribution of the non-defaulting debtors in Rating 1 and Rating 2

Rating 1

1 2 3 4 5 Total

Rating 2 1 90 60 15 10 5 180

2 45 90 30 20 15 200

3 10 35 100 45 20 210

4 5 10 30 100 70 215

5 0 5 10 40 90 145

Total 150 200 185 215 200

Table 13.2 Distribution of the defaulting debtors in Rating 1 and Rating 2

Rating 1

1 2 3 4 5 Total

Rating 2 1 20 5 0 3 0 28

2 4 7 0 0 0 11

3 3 0 2 0 0 5

4 0 0 0 2 2 4

5 0 2 0 0 0 2

Total 27 14 2 5 2

1The terminology rating category or rating score is used interchangeably throughout this chapter.
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ŜDð3;1Þ ¼ 2=50 ¼ 0:04;

ŜNDð2;1Þ ¼ 200=950 ¼ 0:21;

ŜTð5;1Þ ¼ 202=1000 ¼ 0:20:

The cumulative distribution of S is denoted with C, i.e., C(Ri) is the probability
that a debtor has a rating score lower than or equal to Ri. The specific group of

debtors the distribution function is referring to is given by the corresponding

subscript. The empirical cumulative distribution function is denoted by Ĉ, e.g.,
the empirical probability that a non-defaulting debtor’s rating score under Rating

2 is lower than or equal to “4” is given by

ĈNDð4;2Þ ¼ ð180þ 200þ 210þ 215Þ=950 ¼ 0:847:

Finally, we define the common score distribution of two rating systems Rating 1

and Rating 2 by S12. The expression S12(Ri,Rj) gives the probability that a debtor has
rating score Ri under Rating 1 and a rating score Rj under Rating 2. Again the index

D,ND, T refers to the set of debtors to which the score distribution corresponds. The

cumulative distribution is denoted with C12, i.e., C12(Ri,Rj) gives the probability

that a debtor has a rating score less than or equal to Ri under Rating 1 and less than

or equal to Rj under Rating 2. Again, examples are given for the corresponding

empirical distributions using the data of Tables 13.1 and 13.2:

Ŝ12D ð2;2Þ ¼ 7=50 ¼ 0:14;

Ŝ12NDð2;4Þ ¼ 10=950 ¼ 0:0105;

Ĉ12
D ð2;3Þ ¼ ð20þ 5þ 4þ 7þ 3þ 0Þ=50 ¼ 0:78:

Having defined the notation, we give a short outline of this chapter. In Sect. 13.2

we will define the measures, Cumulative Accuracy Profile (CAP) and Receiver

Operating Characteristic (ROC), which are the most popular in practice and show

how they are interrelated. In Sect. 13.3 we will focus on the statistical properties of

the summary measures of the CAP and the ROC. The final section discusses the

applicability and the correct interpretation of these measures.

13.2 Measures of a Rating System’s Discriminative Power

We will define the measures of discriminative power that are of interest to us in this

section. We will focus on the Cumulative Accuracy Profile (CAP) and the Receiver

Operating Characteristic (ROC). These are not the only measures described in the

literature but the most important and the most widely applied in practice. Examples

of measures that are not treated in this article are entropy measures. We refer the
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reader to Sobehart et al. (2000) for an introduction to these measures. Besides the

basic definitions of the CAP and the ROC and their summary measures, we will

show how both concepts are connected and explore some extensions in this section.

13.2.1 Cumulative Accuracy Profile

The definition of the Cumulative Accuracy Profile (CAP) can be found in Sobehart

et al. (2000). It plots the empirical cumulative distribution of the defaulting debtors

ĈD against the empirical cumulative distribution of all debtors ĈT . This is illu-

strated in Fig. 13.1. For a given rating category Ri, the percentage of all debtors with

a rating of Ri or worse is determined, i.e., ĈTðRiÞ. Next, the percentage of defaulted
debtors with a rating score worse than or equal to Ri, i.e.,ĈDðRiÞ, is computed. This

determines the point A in Fig. 13.1. Completing this exercise for all rating cate-

gories of a rating system determines the CAP curve. Therefore, every CAP curve

must start in the point (0, 0) and end in the point (1, 1).

There are two special situations which serve as limiting cases. The first is a rating

system which does not contain any discriminative power. In this case, the CAP

curve is a straight line which halves the quadrant because if the rating system

contains no information about a debtor’s credit quality it will assign x% of the

defaulters among the x% of the debtors with the worst rating scores (“Random

Model” in Fig. 13.1). The other extreme is a rating system which contains perfect

information concerning the credit quality of the debtors. In this case, all defaulting

debtors will get a worse rating than the surviving debtors and the resulting CAP

curve raises straight to one and stays there (“Perfect Forecaster” in Fig. 13.1).

Random Model

Perfect Forecaster

Rating Model

aP

0

0 1

1

aRA

ĈD

ĈD(Ri)

ĈT (Ri ) ĈT

Fig. 13.1 Illustration of cumulative accuracy profiles
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The information contained in a CAP curve can be summarised into a single

number, the Accuracy Ratio (AR) (this number is also known as Gini Coefficient or

Power Statistics). It is given by

AR ¼ aR
aP

; (13.1)

where aR is the area between the CAP curve of the rating model and CAP curve of

the random model (grey/black area in Fig. 13.1) and aP is the area between the CAP
curve of the perfect forecaster and the CAP curve of the random model (grey area in

Fig. 13.1). The ratio AR can take values between zero and one.2 The closer AR is to

one, i.e., the more the CAP curve is to the upper left, the higher is the discriminative

power of a rating model.

We finish this subsection by calculating the CAP curves of Rating 1 and Rating 2.

Since both rating systems have five rating categories, we can compute four points

of the CAP curve in addition to the points (0,0) and (1,1). To get a real curve, the

six points of each CAP curve have to be connected by straight lines. We illustrate

this procedure for Rating 1. Starting at the left, we have to compute ĈTð1;1Þ and
ĈDð1;1Þ, which we get from Tables 13.1 and 13.2 as

ĈTð1;1Þ ¼ 177=1000 ¼ 0:177;

ĈDð1;1Þ ¼ 27=50 ¼ 0:540:

In the next step, we compute ĈTð2;1Þ and ĈDð2;1Þ which results in

ĈTð2;1Þ ¼ ð177þ 214Þ=1000 ¼ 0:391;

ĈDð2;1Þ ¼ ð27þ 14Þ=50 ¼ 0:820:

The remaining points are computed analogously. The procedure for Rating

2 is similar. The resulting CAP curves are illustrated in Fig. 13.2. We see that the

CAP curve of Rating 1 is always higher than the CAP curve of Rating 2, i.e., the

discriminative power of Rating 1 is higher. This is also reflected in the AR values of

both rating models. For Rating 1, we find an AR of 0.523 while for Rating 2, the AR

is calculated as 0.471.

13.2.2 Receiver Operating Characteristic

The concept of the Receiver Operating Characteristic (ROC) was developed in

signal detection theory, therefore the name. It was introduced to rating systems in

Sobehart and Keenan (2001). The concept is illustrated in Fig. 13.3. This figure

2In principle, AR could be negative. This would be the case when the ranking of the debtors by the

rating system is wrong, i.e., the good debtors are assigned to the rating categories of the poor

debtors.
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shows the distributions of the rating scores for defaulting and non-defaulting debt-

ors. It can be seen that the rating system has discriminative power since the rating

scores are higher for surviving debtors. A cut-off value V provides a simple decision

rule to classify debtors into potential defaulters and non-defaulters. All debtors with

a rating score lower than V are considered as defaulters while all debtors with a

rating score higher than V are treated as non-defaulters. Under this decision rule

four scenarios can occur which are summarised in Table 13.3.
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If a debtor with a rating score below V defaults, the rating system’s prediction

was correct. We call the fraction of correctly forecasted defaulters the “hit rate”.

The same is true for non-defaulters with a rating score above V. In this case, a non-
defaulter was predicted correctly. If a non-defaulter has a rating score below V, the
decision was wrong. The rating system raised a false alarm. The fourth and final

case is a defaulter with a rating score above V. In this case the rating system missed

a defaulter and made a wrong prediction.

For a given cut-off value V, a rating system should have a high hit rate and a low

false alarm rate. The Receiver Operating Characteristic curve is given by all pairs

(false alarm rate, hit rate), which are computed for every reasonable cut-off value. It

is clear that the ROC curve starts in the point (0, 0) and ends in the point (1, 1). If the

cut-off value lies below all feasible rating scores both the hit rate and the false alarm

rate is zero. Similarly, if the cut-off value is above all feasible rating scores, the hit

rate and the false alarm rate are equal to one. The concept of the ROC curve is

illustrated in Fig. 13.4 below.

In our setting, the cut-off points V are defined by the rating categories. Therefore,

we get in total k-1 cut-off points. Consider the point B in Fig. 13.4. To compute this

point we define the decision rule: A debtor is classified as a defaulter if he has a
rating of Ri or worse, otherwise he is classified as a non-defaulter. Under this

Random Model

Perfect Forecaster
Rating Model

0
0 1

1

B

AUROC

ĈD

ĈD(Ri)

ĈND (Ri) ĈND

Fig. 13.4 Illustration of receiver operating characteristic curves

Table 13.3 Outcomes of the simple classification rule using the cut-off value V

Default Non-default

Rating score Below cut-off value Correct prediction (hit) Wrong prediction (false alarm)

Above cut-off value Wrong prediction (error) Correct prediction (correct

rejection)
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decision rule, the hit rate is given by ĈDðRiÞ, which is the fraction of all defaulters

with a rating of Ri or worse. Similarly, the false alarm rate is given by ĈNDðRiÞ,
which is the fraction of all non-defaulters with a rating of Ri or worse. The ROC

curve is obtained by computing these numbers for all rating categories.

Again, we have the two limiting cases of a random model and the perfect

forecaster. In the case of a random model where the rating system contains no

discriminative power, the hit rate and the false alarm rate are equal regardless of the

cut-off point. In the case of the perfect forecaster, the rating scores distributions of

the defaulters and the non-defaulters of Fig. 13.3 are separated perfectly. Therefore,

for every value of the hit rate less than one the false alarm rate is zero and for every

value of the false alarm rate greater than zero, the hit rate is one. The corresponding

ROC curve connects the three points (0, 0), (0, 1), and (1, 1) by straight lines.

Similar to the CAP curve, where the information of the curve was summarized in

the Accuracy Ratio, there is also a summary statistic for the ROC curve. It is the

area below the ROC curve (AUROC). This statistic can take values between zero

and one, where the AUROC of the random model is 0.5 and the AUROC of the

perfect forecaster is 1.0. The closer the value of AUROC is to one, i.e., the more the

ROC curve is to the upper left, the higher is the discriminative power of a rating

system.3

We apply the concept of the ROC curve to the example in Tables 13.1 and 13.2.

We proceed in the same way as in the previous subsection, when we computed the

CAP curve. Since we have five rating categories, we can define four decision rules

in total which gives us four points in addition to the points (0, 0) and (1, 1) on the

ROC curve. To get a curve, the points have to be connected by straight lines. We

compute the second point of the ROC curve for Rating 2 to illustrate the procedure.

The remaining points are computed in an analogous way. Consider the decision rule

that a debtor is classified as a defaulter if he has a rating of “2” or worse and is

classified as a non-defaulter if he has a rating higher than “2”. The corresponding hit

rate is computed as

ĈDð2;2Þ ¼ ð28þ 11Þ=50 ¼ 0:78;

while the corresponding false alarm rate is given by

ĈNDð2;2Þ ¼ ð180þ 200Þ=950 ¼ 0:40:

The remaining points on the ROC curve of Rating 2 and Rating 1 are computed

in a similar fashion. The ROC curves of Rating 1 and Rating 2 are illustrated in

Fig. 13.5. Computing the area below the ROC curve, we get a value of 0.762 for

Rating 1 and 0.735 for Rating 2.

3A rating system with an AUROC close to zero also has a high discriminative power. In this case,

the order of good and bad debtors is reversed. The good debtors have low rating scores while the

poor debtors have high ratings.

276 B. Engelmann



We finish this subsection by exploring the connection between AR and AUROC.

We have seen that the CAP curve and the ROC curve are computed in a similar

way. In fact, it can be shown that both concepts are just different ways to represent

the same information. In Appendix A, we proof the simple relation between AR and

AUROC

AR ¼ 2 � AUROC � 1: (13.2)

From a practical perspective, both concepts are equivalent and it is a question

of preference as to which one is used to evaluate the discriminative power of a

rating system. In Sect. 13.3, we will see that AUROC allows for an intuitive

probabilistic interpretation which can be used to derive various statistical proper-

ties of AUROC. By (13.2) this interpretation carries over to AR. However, it is

less intuitive in this case.

13.2.3 Extensions

CAP curves and ROC curves only allow a meaningful evaluation of some rating

function’s ability to discriminate between “good” and “bad” if there is a linear

relationship between the function’s value and the attributes “good” and “bad”. This

is illustrated in Fig. 13.6. The figure shows a situation where the rating is able to

discriminate perfectly between defaulters and survivors. However, the score distri-

bution of the defaulters is bimodal. Defaulters have either very high or very low

score values. In practice, when designing corporate ratings, some balance sheet

variables like growth in sales have this feature.
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A straight forward application of the ROC concept to this situation results in a

misleading value for AUROC. The ROC curve which corresponds to the rating

distribution of Fig. 13.6 is shown in Fig. 13.7. It can be seen that the AUROC

corresponding to the score distribution in Fig. 13.6 is equal to 0.5. In spite of the

rating system’s ability to discriminate perfectly between defaulters and non-defaulters,

its AUROC is the same as the AUROC of a rating system without any discrimina-

tive power. This is due to the non-linearity in the relationship between the rating

score and credit quality of the debtors.

To obtain meaningful measures of discriminatory power also in this situation,

Lee and Hsiao (1996) and Lee (1999) provide several extensions to the AUROC

measure we have introduced in Sect. 13.2.2. We discuss only one of these exten-

sions, the one which could be most useful in a rating context.
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Lee (1999) proposes a simple modification to the ROC concept which delivers

meaningful results for score distributions as illustrated in Fig. 13.6. For each rating

category the likelihood ratio L is computed as

LðRiÞ ¼ SDðRiÞ
SNDðRiÞ : (13.3)

The likelihood ratio is the ratio of the probability that a defaulter is assigned

to rating category Ri to the corresponding probability for a non-defaulter. To

illustrate this concept, we compute the empirical likelihood ratio L̂ which is

defined as

L̂ðRiÞ ¼ ŜDðRiÞ
ŜNDðRiÞ

; (13.4)

for the rating systems Rating 1 and Rating 2. The results are given in Table 13.4.

In the next step, the likelihood ratios are sorted from the highest to the least.

Finally, the likelihood ratios are inverted to define a new rating score.4 In doing so,

we have defined a new rating score that assigns low score values to low credit

quality. The crucial point in this transformation is that we can be sure that after the

transformation, low credit quality corresponds to low score values even if the

original data looks like the data in Fig. 13.6.

We compute the ROC curves for the new rating score. They are given in

Fig. 13.8. Note that there is no difference to the previous ROC curve for Rating

2 because the sorting of the likelihood ratios did not change the order of the rating

scores. However, there is a difference for Rating 1. The AUROC of Rating 1 has

increased slightly from 0.7616 to 0.7721. Furthermore, the ROC curve of Rating 1

Table 13.4 Empirical likelihood ratios for Rating 1 and Rating 2

Rating category

1 2 3 4 5

Rating 1 ŜDðRi;1Þ 0.54 0.28 0.04 0.10 0.04

ŜNDðRi;1Þ 0.16 0.21 0.19 0.23 0.21

L̂ðRi;1Þ 3.42 1.33 0.21 0.44 0.19

Rating 2 ŜDðRi;2Þ 0.56 0.22 0.10 0.08 0.04

ŜNDðRi;2Þ 0.19 0.21 0.22 0.23 0.15

L̂ðRi;2Þ 2.96 1.05 0.45 0.35 0.26

4The inversion of the likelihood ratios is not necessary. We are doing this here just for didactical

reasons to ensure that low credit quality corresponds to low rating scores throughout this chapter.
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is concave everywhere after the transformation. As pointed out by Tasche (2002),

the non-concavity of a ROC curve is a clear sign that the rating model does not

reflect the information contained in the data in an optimal way. With this simple

transformation, the quality of the rating model can be improved.

A practical problem in the construction of rating models is the inclusion of

variables that are non-linear in the credit quality of debtors (e.g., Fig. 13.6). As

pointed out in Chap. 2, these variables can offer a valuable contribution to a rating

model provided that they are transformed prior to the estimation of the rating

model. There are several ways to conduct this transformation. Computing likeli-

hood ratios and sorting them as was done here is a feasible way of producing linear

variables from non-linear ones. For further details and an example with real data,

refer to Engelmann et al. (2003b).

13.3 Statistical Properties of AUROC

In this section we will discuss the statistical properties of AUROC. We focus on

AUROC because it can be interpreted intuitively in terms of a probability. Starting

from this interpretation we can derive several useful expressions which allow the

computation of confidence intervals for AUOC, a rigorous test if a rating model has

any discriminative power at all, and a test for the difference of two rating systems’

AUROC. All results that are derived in this section carry over to AR by applying the

simple relation (13.2) between AR and AUROC.
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Fig. 13.8 ROC curves for the transformed rating scores of Rating 1 and Rating 2
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13.3.1 Probabilistic Interpretation of AUROC

The cumulative distribution function of a random variable evaluated at some value

x, gives the probability that this random variable takes a value which is less than or

equal to x. In our notation, this reads as

CDðRiÞ ¼ PðSD � RiÞ;
CNDðRiÞ ¼ PðSND � RiÞ;

(13.5)

or in terms of the empirical distribution function

ĈDðRiÞ ¼ PðŜD � RiÞ;
ĈNDðRiÞ ¼ PðŜND � RiÞ;

(13.6)

where P(.) denotes the probability of the event in brackets (.).

In Appendix B, we show that AUROC can be expressed in terms of empirical

probabilities as

AUROC ¼ PðŜD < ŜNDÞ þ 1

2
PðŜD ¼ ŜNDÞ: (13.7)

To get further insight, we introduce the Mann-Whitney statistic U as

U ¼ 1

ND � NND

X
ðD;NDÞ

uD;ND;

uD;ND ¼

1; if ŝD < ŝND

1

2
; if ŝD ¼ ŝND

0; if ŝD > ŝND

8>>>><
>>>>:

(13.8)

where ŝD is a realisation of the empirical score distribution ŜD and ŝND is

a realisation of ŜND. The sum in (13.8) is over all possible pairs of a defaulter and

a non-defaulter. It is easy to see that

U ¼ PðŜD < ŜNDÞ þ 1

2
PðŜD ¼ ŜNDÞ; (13.9)

what means the area below the ROC curve and the Mann-Whitney statistic are

measuring the same quantity.

This gives us a very intuitive interpretation of AUROC. Suppose we draw

randomly one defaulter out of the sample of defaulters and one survivor out of

the sample of survivors. Suppose further we should decide from the rating scores
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of both debtors which one is the defaulter. If the rating scores are different, we

would guess that the debtor with the lower rating score is the defaulter. If both

scores are equal we would toss a coin. The probability that we make a correct

decision is given by the right-hand-side of (13.9), i.e., by the area below the

ROC curve.

Throughout this article, we have introduced all concepts and quantities with the

data set given in Tables 13.1 and 13.2. However, the data set of Tables 13.1 and

13.2 is only one particular realisation of defaults and survivals from the underlying

score distributions which are unknown. It is not the only possible realisation. In

principle, other realisations of defaults could occur which lead to different values

for AUROC andU. These different possible values are dispersed about the expected
values of AUROC and U that are given by

E½AUROC� ¼ E½U� ¼ PðSD < SNDÞ þ 1

2
PðSD ¼ SNDÞ: (13.10)

To get a feeling of how far the realised value of AUROC deviates from its

expected value, confidence intervals have to be computed. This is done in the next

subsection.

Finally, we remark that the AR measure can also be expressed in terms of

probabilities. Applying (13.2) we find

E½AR� ¼ PðSD < SNDÞ � PðSD > SNDÞ: (13.11)

The expected value of AR is the difference between the probability that a

defaulter has a lower rating score than a survivor and the probability that a defaulter

has a higher rating score than a survivor. It is not so clear how to give an intuitive

interpretation of this expression.

13.3.2 Computing Confidence Intervals for AUROC

To get a feeling for the accuracy of a measure obtained from a data sample, it is

customary to state confidence intervals to a confidence level a, e.g., a ¼ 95%. In

the first papers on the measurement of the discriminative power of rating systems,

confidence intervals were always computed by bootstrapping.5 These papers mainly

used the measure AR. Bootstrapping requires the drawing of lots of portfolios

with replacement from the original portfolio. For each portfolio, the AR has to

be computed. From the resulting distribution of the AR values, confidence inter-

vals can be computed. The main drawback of this method is its computational

inefficiency.

5Efron and Tibshirani (1998) is a standard reference for this technique.

282 B. Engelmann



A more efficient method is based on the application of well-known properties of

the Mann-Whitney statistic introduced in (13.8). The connection between AR and a

slightly modified Mann-Whitney statistic is less obvious6 than for AUROC which

might be the reason for the inefficient techniques that were used in those early

papers.

From mathematical statistics it is known that an unbiased estimator of the

variance s2U of the Mann-Whitney statistic U in (13.8) is given by

ŝ2U ¼ 1

4 � ðND � 1Þ � ðNND � 1Þ :
�
P̂D 6¼ND þ ðND � 1Þ � P̂D;D;ND

þ ðNND � 1Þ � P̂ND;ND;D � 4 � ðND þ NND � 1Þ � ðU � 0:5Þ2
�
;

(13.12)

where P̂D 6¼ND, P̂D;D;ND, and P̂ND;ND;D are estimators for the probabilities P(SD 6¼SND),
PD,D,ND, and PND,ND,D where the latter two are defined as

PD;D;ND ¼ P SD;1; SD;2 < SND
� �� P SD;1 < SND < SD;2

� �
� P SD;2 < SND < SD;1

� �þ P SND < SD;1; SD;2
� �

;

PND;ND;D ¼ P SND;1; SND;2 < SD
� �� P SND;1 < SD < SND;2

� �
� P SND;2 < SD < SND;1

� �þ P SD < SND;1; SND;2
� �

;

(13.13)

where SD,1 and SD,2 are two independent draws of the defaulter’s score distribution

and SND,1 and SND,2 are two independent draws of the non-defaulter’s score

distribution.

Using (13.12) confidence intervals can be easily computed using the asymptotic

relationship

AUROC � E½AUROC�
ŝU

���������!ND;NND!1
Nð0; 1Þ: (13.14)

The corresponding confidence intervals to the level a are given by

AUROC � ŝUF�1 1þ a
2

� �
;AUROCþ ŝUF�1 1þ a

2

� �� 	
; (13.15)

where F denotes the cumulative distribution function of the standard normal

distribution.

The asymptotic relation (13.14) is valid for large numbers ND and NND. The

question arises how many defaults a portfolio must contain to make the asymp-

totic valid. In Engelmann et al. (2003a, b) a comparison between (13.14) and

6In (13.8) the ½ has to be replaced by 0, and the 0 has to be replaced by�1 to get the corresponding

Mann-Whitney statistic for the AR.
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bootstrapping is carried out. It is shown that for 50 defaults a very good agreement

between (13.14) and bootstrapping is achieved. But even for small numbers like

10 or 20 reasonable approximations for the bootstrapping results are obtained.

We finish this subsection by computing the 95% confidence interval for the

AUROC of our examples Rating 1 and Rating 2. We start with Rating 1. First we

compute P̂D 6¼ND. It is given by the fraction of all pairs of a defaulter and a survivor

with different rating scores. It is computed explicitly as

P̂D6¼ND ¼ 1� P̂D¼ND ¼ 1�
X5
i¼1

ŜDði;1Þ � ŜNDði;1Þ
 !

¼ 1� ð2 � 200þ 5 � 215þ 2 � 185þ 14 � 200þ 27 � 150Þ=ð50 � 950Þ ¼ 0:817

The estimators for PD,D,ND and PND,ND,D are more difficult to compute than for

PD 6¼ND. To estimate PD,D,ND it is necessary to estimate three probabilities, P(SD,1,
SD,2 < SND), P(SD,1 < SND <,SD,2) (which is equal to P(SD,2 < SND <,SD,1)), and
P(SND < SD,1,SD,2). We illustrate the procedure for P(SD,1,SD,2 < SND). The other

probabilities are computed analogously.

A naı̈ve way to compute P(SD,1,SD,2 < SND) is to implement a triple loop, two

loops over all defaulters and one loop over all survivors. For each triple, one has to

check if the scores of both defaulters are less than the score of the survivor. The

probability P(SD,1,SD,2 < SND) is then estimated as the number of triples where this

condition is fulfilled by the total number of all triples. However, this procedure is

very time consuming when the number of survivors is large. It is much more

efficient to exploit the sorting of the debtors in their score values. We get the results

P ŜD;1; ŜD;2 < ŜND
� � ¼X5

i¼2

Ĉ2
D i� 1ð Þ � ŜNDðiÞ;

P ŜD;1 < ŜND < ŜD;2
� � ¼X5

i¼1

ĈD i� 1ð Þ � ŜNDðiÞ � 1� ĈDðiÞ
� �

;

P ŜND < ŜD;1; ŜD;2
� � ¼X4

i¼1

ŜNDðiÞ � 1� ĈDðiÞ
� �2

:

Similar estimation formulas can be derived for P(SND,1,SND,2 < SD), P(SND,1 <
SD < SND,2), and P(SD < SND,1,SND,2). Applying these formulas to the rating system

Rating 1 we get

PðŜD;1; ŜD;2 < ŜND;1Þ ¼ 0:554; PðŜD;1 < ŜND < ŜD;2;1Þ ¼ 0:051;

PðŜND < ŜD;1; ŜD;2;1Þ ¼ 0:044; P̂D;D;ND ¼ 0:497;

PðŜND;1; ŜND;2 < ŜD;1Þ ¼ 0:069; PðŜND;1 < ŜD < ŜND;2;1Þ ¼ 0:046;

PðŜD<ŜND;1; ŜND;2;1Þ ¼ 0:507; P̂ND;ND;D ¼ 0:483:
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Finally, we have all ingredients for (13.12) and compute the variance of U as

ŝ2U ¼ 0:001131. Finally we compute the confidence interval to the level 95% which

results in [0.69573, 0.82754]. A similar calculation for Rating 2 leads to a 95%

confidence interval of [0.66643, 0.80431]. We see that both confidence intervals are

rather broad. This is due to the relatively low number of debtors in our example

rating systems.

13.3.3 Testing for Discriminative Power

The 95% confidence intervals of the AUROC of Rating 1 and Rating 2 are far away

from the value 0.5. This suggests that the discriminative power of both rating systems

is statistically significant. To confirm this we apply a rigorous statistical test.

The null hypothesis of our test is that a rating system does not contain any

discriminative power. Under this null hypothesis, (13.12) can be simplified consid-

erably. If a rating system has no discriminative power, the score distributions of the

defaulters and the survivors are identical. We get the identity

PðSD 6¼ SNDÞ=3 ¼ PðSD;1; SD;2 < SNDÞ ¼ PðSD;1 < SND < SD;2Þ
¼ PðSND < SD;1; SD;2Þ ¼ PðSND;1; SND;2< SDÞ
¼ PðSND;1 < SD < SND;2Þ ¼ PðSD < SND;1; SND;2Þ

(13.16)

This leads to the simplified formula for the variance of the Mann-Whitney

statistic

s2U ¼ PðD 6¼ NDÞ � ð1þ ND þ NNDÞ
12 � ðND � 1Þ � ðNND � 1Þ (13.17)

If we make a two-sided test the p-value of this test given by solving (13.15) for

one minus the confidence level a. This calculation results in

p-value ¼ 2� 2 � F U � 0:5

ŝ

� �
: (13.18)

The application of (13.18) with the variance of (13.17) leads to a p-value of

8.23 � 10�12 for Rating 1. The corresponding value for Rating 2 is 5.36 � 10�10.

This means both rating systems have a highly significant discriminatory power.

This confirms our conjecture at the beginning of this subsection.

13.3.4 Testing for the Difference of Two AUROCs

Throughout this article we always considered two rating models, Rating 1 and

Rating 2. We have seen so far that Rating 1 has a slightly higher AUROC than
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Rating 2. The question arises whether this difference is significant from a statistical

point of view. To answer this question, we discuss a test on the difference of two

AUROCs that was developed by DeLong et al. (1988).

Comparing the confidence intervals of the AUROC of Rating 1 and Rating 2, we

find that they overlap widely. Therefore, we would suppose that there is no signifi-

cant difference between both AUROCs. However, when comparing confidence

levels only, we are neglecting correlations between both AUROCs. To carry out a

rigorous statistical test, we need in addition to the variances of both AUROCs, the

covariance between them.

The estimator for the covariance is more complex than the estimator for the

variance. It is given by

ŝU1;U2
¼ 1

4 � ðND � 1Þ � ðNND � 1Þ P̂12
D;D;ND;ND þ ðND � 1Þ � P̂12

D;D;ND

h

þðNND � 1Þ � P̂12
ND;ND;D � 4 � ðND þ NND � 1Þ � ðU1 � 0:5Þ � ðU2 � 0:5Þ

i
;

(13.19)

where P̂12
D;D;ND;ND, P̂12

D;D;ND, and P̂12
ND;ND;D are estimators for the probabilities

P12
D;D;ND;ND, P

12
D;D;ND, and P12

ND;ND;D which are defined as

P12
D;D;ND;ND ¼ P S1D>S1ND;S

2
D>S2NDÞ þPðS1D<S1ND;S

2
D<S2ND

� �
�P S1D>S1ND;S

2
D<S2ND

� ��PðS1D<S1ND;S
2
D>S2NDÞ;

P12
D;D;ND ¼ P S1D;1>S1ND;S

2
D;2>S2ND

� �
þP S1D;1<S1ND;S

2
D;2<S2ND

� �

�P S1D;1>S1ND;S
2
D;2<S2ND

� �
�P S1D;1<S1ND;S

2
D;2>S2ND

� �
;

P12
ND;ND;D ¼ P S1D>S1ND;1;S

2
D>S2ND;2Þ þPðS1D<S1ND;1;S

2
D<S2ND;2

� �

�P S1D>S1ND;1;S
2
D<S2ND;2

� �
�PðS1D<S1ND;1;S

2
D>S2ND;2Þ;

(13.20)

where the quantities SiD, S
i
D;1, S

i
D;2 are independent draws from the score distribution

of the defaulters. The index i indicates whether the score of Rating 1 or of Rating

2 has to be taken for this defaulter. The meaning of SiND, S
i
ND;1, S

i
ND;2 is analogous

for the score distributions of the of non-defaulters under Rating 1 and Rating 2.

Under the null hypothesis that both AUROCs are equal it is shown in DeLong

et al. (1988) that the test statistic T which is defined as

T ¼ ðU1 � U2Þ2
ŝ2U1

þ ŝ2U2
� 2ŝU1;U2

: (13.21)

is asymptotically w2 distributed with one degree of freedom. This asymptotic

relationship allows us the computation of critical values given a confidence level a.
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We finish this section by computing the p-value of the test for difference of the

two AUROCs of Rating 1 and Rating 2. The variances for both AUROC values

have already been computed in Sect. 13.3.2. It remains to compute the covariance

between both AUROCs. We show explicitly how to compute estimators for

P12
D;D;ND;ND, and P12

D;D;ND. The estimator for P12
ND;ND;D is computed in a similar way

as for P12
D;D;ND.

We start with the computation of P̂12
D;D;ND;ND. To compute this estimator, four

probabilities have to be calculated from the sample. Consider the probability

P S1D > S1ND; S
2
D > S2ND

� �
. A naı̈ve way to calculate this probability would be to

implement a loop over all defaulters and a loop over all survivors. This probability

is then given by the fraction of all pairs where both Rating 1 and Rating 2 assign

a higher rating score to the defaulter. This can be done in a more efficient way by

using the sorting of debtors in score values. The four probabilities needed for the

computation of P̂12
D;D;ND;ND can be calculated by

P Ŝ1D > Ŝ1ND; Ŝ
2
D> Ŝ2ND

� � ¼X5
i¼1

X5
j¼1

Ŝ12NDði; jÞ �
X5
k¼iþ1

X5
l¼jþ1

Ŝ12D ðk; lÞ;

P Ŝ1D < Ŝ1ND; Ŝ
2
D< Ŝ2ND

� � ¼X5
i¼1

X5
j¼1

Ŝ12NDði; jÞ �
Xi�1

k¼1

Xj�1

l¼1

Ŝ12D ðk; lÞ

P Ŝ1D > Ŝ1ND; Ŝ
2
D< Ŝ2ND

� � ¼X5
i¼1

X5
j¼1

Ŝ12NDði; jÞ �
X5
k¼iþ1

Xj�1

l¼1

Ŝ12D ðk; lÞ

P Ŝ1D < Ŝ1ND; Ŝ
2
D> Ŝ2ND

� � ¼X5
i¼1

X5
j¼1

Ŝ12NDði; jÞ �
Xi�1

k¼1

X5
l¼jþ1

Ŝ12D ðk; lÞ

Evaluating these formulas with the data of Table 13.1 leads to

P Ŝ1D > Ŝ1ND; Ŝ
2
D> Ŝ2ND

� � ¼ 0:0747; P Ŝ1D < Ŝ1ND; Ŝ
2
D < Ŝ2ND

� � ¼ 0:5314;

P Ŝ1D > Ŝ1ND; Ŝ
2
D< Ŝ2ND

� � ¼ 0:0357; P Ŝ1D < Ŝ1ND; Ŝ
2
D > Ŝ2ND

� � ¼ 0:0506;

P̂12
D;D;ND;ND ¼ 0:5197

In the next step we consider the estimation of P12
D;D;ND. Again, four probabilities

have to be estimated. A naı̈ve way to estimate for instance, the probability

P S1D;1 > S1ND; S
2
D;2> S2ND

� �
is the implementation of a triple loop, two loops over

the defaulters and one loop over the survivors. This probability is then estimated as

the fraction of all triples where the first defaulter has a higher rating score than the

survivor under Rating 1 and the second defaulter has a higher score than the

survivor under Rating 2. A more efficient procedure is given by the formulas
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P Ŝ1D;1 > Ŝ1ND; Ŝ
2
D;2 > Ŝ2ND

� �
¼
X5
i¼1

X5
i¼1

Ŝ12ND i; jð Þ � 1� ĈD i;1ð Þ� � � 1� ĈD j;2ð Þ� �
;

P Ŝ1D;1 < Ŝ1ND; Ŝ
2
D;2 < Ŝ2ND

� �
¼
X5
i¼1

X5
i¼1

Ŝ12ND i; jð Þ � ĈD i� 1;1ð Þ�ĈD j� 1;2ð Þ;

P Ŝ1D;1 > Ŝ1ND; Ŝ
2
D;2 < Ŝ2ND

� �
¼
X5
i¼1

X5
i¼1

Ŝ12ND i; jð Þ � 1� ĈD i;1ð Þ� � � ĈD j� 1;2ð Þ;

P Ŝ1D;1 < Ŝ1ND; Ŝ
2
D;2 > Ŝ2ND

� �
¼
X5
i¼1

X5
i¼1

Ŝ12ND i; jð Þ � ĈD i� 1;1ð Þ � 1� ĈD j;2ð Þ� �
:

An application of these formulas to the data of Table 13.1 leads to

P Ŝ1D;1 > Ŝ1ND; Ŝ
2
D;2> Ŝ2ND

� �
¼ 0:0389; P Ŝ1D;1 < Ŝ1ND; Ŝ

2
D;2 < Ŝ2ND

� �
¼ 0:4949;

P Ŝ1D;1 > Ŝ1ND; Ŝ
2
D;2< Ŝ2ND

� �
¼ 0:0620; P Ŝ1D;1 < Ŝ1ND; Ŝ

2
D;2 > Ŝ2ND

� �
¼ 0:0790;

P̂12
D;D;ND ¼ 0:3930:

A similar calculation for P12
ND;ND;D leads to P12

ND;ND;D ¼ 0:3534. Taking every-

thing together and evaluating (13.21) leads to T ¼ 0.57704. This corresponds

to a p-value of 0.4475. This means that the difference in the AUROC values of

Rating 1 and Rating 2 is not statistically significant. This result is not surprising

given the low number of debtors.

13.4 Correct Interpretation of AUROC

In this section we want to give some guidelines on how to interpret AUROC

values.7 When discussing rating systems, one is often confronted with the opinion

that a good rating system should have some minimum value for the AUROC.

Sometimes people are happy that their rating system has a higher AUROC than

the rating model of others or a company wants to achieve an AUROC of x% during

the next 5 years for its rating systems.

In this section we explain why all these opinions and goals are unreasonable.

Consider a hypothetical portfolio with identical debtors only, e.g., a portfolio of

companies with identical balance sheets. No rating model has a chance to discrimi-

nate anything in this situation because there is nothing to discriminate. This means

that the AUROC does not depend on the rating model only, but also the portfolio.

7See also Blochwitz et al. (2005).
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This can be proven formally. Hamerle et al. (2003) show that for a portfolio of N
debtors the expected AUROC is given by

E AUROCð Þ¼ 0:5

1�PDP

2

N2
T �PDP

1 �PD1þ2 �PD2þ�� �þNTPDNT
ð Þ�PDP� 1

NT

� �

(13.22)

where debtor i has a default probability PDi and the average default probability of

the portfolio is denoted with PDP. Furthermore, it is assumed that the debtors are

sorted from the worst credit quality to the best.

A further example is provided. Consider two rating systems with two rating

categories for different portfolios. They are given in Table 13.5.

We assume that both rating models are perfect, i.e., they assign the correct

default probability to each debtor. Then we find for the expected AUROC values

E AUROCA½ � ¼ 0:6718;

E AUROCB½ � ¼ 0:7527:

We see that there is a huge difference in the AUROC values in spite of the fact

that both ratings are perfect. This demonstrates that a comparison of AUROC

values for different portfolios is meaningless.

The same applies to a comparison of the AUROC on the same portfolio in

different time points. Because of changes in the portfolio structure over time, i.e.,

changes in the default probabilities of the debtors, the rating model is being

compared on different portfolios. However, this analysis could be helpful in spite

of this. If the AUROC of a rating model worsens over time, one should find out if

this is due to changes in the portfolio structure or if the quality of the rating model

has indeed deteriorated and a new estimation is necessary.

We conclude that a comparison of the AUROC of two rating models is

meaningful only if it is carried out on the same portfolio at the same time. It

does not make sense to compare AUROCs over different portfolios or to try

to achieve a target AUROC. As demonstrated in the example in Table 13.5,

achieving a higher AUROC could require the inclusion of more poor debtors

into the portfolio, a business strategy not every credit institution might want to

follow.

Table 13.5 Two rating

systems on different

portfolios

Rating category

1 2

Rating A Number of debtors 500 500

Default probability 1% 5%

Rating B Number of debtors 500 500

Default probability 1% 20%
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Appendix A. Proof of (13.2)

We introduce the shortcut notation Ĉi
D ¼ ĈD Rið Þ, Ĉi

ND and Ĉi
T have a similar

meaning. Furthermore, we denote the sample default probability by p̂. Note that

Ĉi
T can be written in terms of Ĉi

ND and Ĉi
D as

Ĉi
T ¼ p̂ � Ĉi

D þ 1� p̂ð Þ � Ĉi
ND: (13.23)

By computing simple integrals, we find for AUROC, aR þ 0.5, and aP the

expressions

AUROC ¼
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
ND � Ĉi�1

ND

� �
;

aR þ 0:5 ¼
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
T � Ĉi�1

T

� �
;

aP ¼ 0:5 � 1� p̂ð Þ:

(13.24)

Plugging (13.23) into the expression for aR þ 0:5 and simplifying leads to

aR þ 0:5 ¼
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
T � Ĉi�1

T

� �

¼
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � p̂ � Ĉi
D � Ĉi�1

D

� �þ 1� p̂ð Þ � Ĉi
ND � Ĉi�1

ND

� �� �

¼ 1� p̂ð Þ �
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
ND � Ĉi�1

ND

� �

þ p̂ �
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
D � Ĉi�1

D

� �

¼ 1� p̂ð Þ � AUROCþ 0:5 � p̂ �
Xk
i¼1

Ĉi
D

� �2 � Ĉi�1
D

� �2� �

¼ 1� p̂ð Þ � AUROCþ 0:5 � p̂:
(13.25)

Taking (13.24) and (13.25) together leads to the desired result

AR ¼ aR
aP

¼ 1� p̂ð Þ � AUROC� 0:5ð Þ
0:5 � 1� p̂ð Þ ¼ 2 � AUROC� 1:
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Appendix B. Proof of (13.7)

Using the same shortcut notation as in Appendix A, we get

AUROC ¼
Xk
i¼1

0:5 � Ĉi
D þ Ĉi�1

D

� � � Ĉi
ND � Ĉi�1

ND

� �

¼
Xk
i¼1

0:5 � P ŜD � Ri

� �þ P ŜD � Ri�1

� �� � � P ŜND ¼ Ri

� �

¼
Xk
i¼1

P ŜD � Ri�1

� �þ 0:5 � P ŜD ¼ Ri

� �� � � P ŜND ¼ Ri

� �

¼
Xk
i¼1

P ŜD � Ri�1

� � � P ŜND ¼ Ri

� �þ 0:5 �
Xk
i¼1

P ŜD ¼ Ri

� � � P ŜND ¼ Ri

� �

¼ P ŜD < ŜND
� �þ 0:5 � P ŜD ¼ ŜND

� �

which proves (13.7).
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Chapter 14

Statistical Approaches to PD Validation

Stefan Blochwitz, Marcus R.W. Martin, and Carsten S. Wehn

14.1 Introduction

When developing an internal rating system, besides its calibration, the validation of

the respective rating categories and associated probabilities of default plays an

important role. To have a valid risk estimate and allocate economic capital effi-

ciently, a credit institution has to be sure of the adequacy of its risk measurement

methods and of the estimates for the default probabilities. Additionally, the valida-

tion of rating grades is a regulatory requirement to become an internal ratings based

approach bank (IRBA bank).

We discuss different methods of validating estimates for probabilities of defaults

(PDs). We start by outlining various concepts used to estimate PDs and the assump-

tions in rating philosophies including point-in-time and through-the-cycle appro-

aches, a distinction necessary for a proper validation. Having discussed this, several

common statistical tests used for the validation of PD estimates are introduced. These

tests include the binomial test, the normal test and goodness-of-fit-type tests like the

w2-test. Also, the incorporation of descriptive measures linked to density forecast

methods is discussed. For every test, the question of respective quality is raised.

An alternative approach starts with the one factor model and gives an intui-

tive validation tool, the so-called extended traffic light approach. We conclude with
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a discussion of the approaches introduced, especially with respect to possible

limitations for the use in practice and to their respective usefulness.

14.2 PDs, Default Rates, and Rating Philosophy

The meaning of “Validation of PDs” or backtesting in credit risk can be described

quite simply. In the words of the Basel Committee on Banking Supervision, it is to

“compare realized default rates with estimated PDs for each grade of a rating

system and to assess the deviation between the observed default rates and the

estimated PD,” (cf. Basel Committee on Banking Supervision (2004), } 501).

Here, backtesting is defined as a statistical task which hopefully can be solved

with the existing means and tools. However, performing such backtesting in

practice raises some issues. Before we discuss the statistical means we want to

draw readers’ attention to some more general aspects:

l Recognition of defaults: Validation of PDs is fundamental in the recognition of

defaults. A correct count of defaults is a necessary prerequisite for a correctly

determined default rate, and the measurement of default events is the underlying

concept of risk for determining PDs. A default of a borrower, however, is not

objective event. On the one hand, there is the fact that a reasonable number of

defaulted borrowers seem to have a considerable influence on the timing of the

credit default. On the other hand, there is the observation that declaring a

borrower as defaulted leaves room for judgement. Therefore, the definition of

credit default is to a considerable degree, subjective, and even the new Basel

framework retains this subjective element as the basis of the IRBA. However, a

forward-looking focus and a limit of 90 days past due which is objective, is

implemented into the definition of default, (cf. Basel Committee on Banking

Supervision (2004), }} 452 and 453). The requirement is that the definition of

default – with all its subjective elements – has to be applied consistently to

guarantee that the conclusions drawn from the validation of PDs are correct.
l Inferring from default rates to PDs: A common and widespread approach for

credit risk is the application of the law of large numbers, and to infer from the

observed default rate the probability of default. An application of the law of

large numbers would require that the defaults are independent and occur in the

same distribution. This requirement cannot be seen to be fulfilled for different

borrowers. To tell it in a picture: The difference for the task of determining the

probability of throwing a six is like approximating this probability either by

throwing the same dice 1,000 times and calculating the ratio of sixes to the total

number of throws or throwing 1,000 dices once and calculating the ratio of sixes

to the number of dices thrown. In any case, a proper application requires that

borrowers are grouped into grades exhibiting similar default risk characteristics.

Thus, the validation of PDs in most cases is preceded by grouping the bor-

rowers to grades with the same risk profile (for an exemplary exception, the
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Spiegelhalter statistics, cf. Chap. 15) This is necessary even in the case of direct

estimates of PD, when each borrower is assigned an individual PD.
l PDs in their context: An immediate consequence of the issues raised is that PDs

have a meaning just in a certain context, namely in the portfolio. In our opinion,

there is no such thing as an objective PD which can be measured with a rating

system like temperature can be measured with a thermometer. Let us assume we

rate the same borrower with two different rating systems: One with good

discriminatory power resulting in different grades, which are assumed to be

calibrated perfectly, and the other – very simple system – assigning all borrowers

to the same grade, calibrated with the portfolio PD. Applying these two rating

systems to the same borrower would result in different PDs; either in the PD of

the respective grade or in the portfolio PD. However, both systems can claim to

be right and there is no method of deciding what the “true” PD of that borrower

might be. The example works exactly the same for two rating systems with

similar discriminatory power and the same numbers of grades, providing both

systems are calibrated with two different portfolios. Let us assume there is a

subset of borrowers, which appears in both portfolios. If the remainder of the

respective portfolios is different in terms of risk, then the same borrower in

general will be assigned to grades with different PDs, and again, both systems

can claim to be right.
l Rating philosophy: Rating philosophy is what is commonly referred to as either

point-in-time (PIT) or through-the-cycle (TTC) ratings. PIT-ratings measure

credit risk given the current state of a borrower in its current economic envi-

ronment, whereas TTC-ratings measure credit risk taking into account the

(assumed) state of the borrower over a whole economic cycle. PIT and TTC

mark the ends of the spectrum of possible rating systems. In practice, neither

pure TTC nor pure PIT systems will be found, but hybrid systems, which are

rather PIT or rather TTC. Agency ratings are assumed to be TTC, whereas bank

internal systems – at least in most cases in Germany – are looked at as PIT. The

underlying rating philosophy definitely has to be assessed before validation

results can be judged, because the rating philosophy is an important driver for

the expected range for the deviation between PDs and default rates. Jafry and

Schuermann (2004) have introduced the equivalent average migration as a tool

for assessing rating philosophy. According to Jafry and Schuermann (2004), the

rescaled Euclidean–distance mobility metric is equal to the average migration,

which describes the average number of borrowers migrating from one rating

grade to another grade. This average migration gives an impression at which end

of the spectrum a rating system can be found, if it is 0, then the rating system has

no migration at all – a PIT system in its purest form – if it is 1, then on average,

no borrower stays in a rating grade. To level off credit risk measurement for PIT

systems as well as for TTC systems, the Basel Committee has clarified that

estimation of PDs for regulatory purposes needs to include a forward looking

element (cf. Principle 1 of Newsletter No. 4, Basel Committee on Banking

Supervision 2005a). In practice, this would mean that for regulatory purposes in

respect of risk quantification of their grades, PIT and TTC systems are a bit closer.
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14.3 Tools for Validating PDs

This section is devoted to a brief overview on statistical tests that can be performed

to validate the so-called calibration of a rating system, i.e. the assignment of a

probability of default (PD) to a certain rating grade or score value.

In order to draw the right conclusions, in most cases – due to insufficient obligors

or defaults to obtain reliable statistical implications – a purely statistical validation

of a rating system is not sufficient to ensure the validity of the rating system. It has

to be complemented by alternative qualitative approaches such as, e.g., shadow

rating systems or plausibility checks by credits experts (cf. OeNB/FMA (2004,

pp. 94), or Basel Committee on Banking Supervision 2004 and 2005b).

Furthermore, we implicitly assume that the validation of the rating system’s

discriminatory power and stability is to be also checked by a validation procedure

which should be part of an integrated process covering calibration, discriminatory

power and stability of the rating system (cf. Blochwitz and Hohl (2007), Tasche

(2005, pp. 32), or OeNB/FMA (2004) which also includes some numerical exam-

ples). For various techniques for calibrating rating systems we refer to D€ohler
(2010) and van der Burgt (2007).

We describe the rating system to be validated as follows: Let N denote the total

number of borrowers classified within a portfolio by application of the rating

system. Moreover, Nk denotes the number of obligors in this portfolio which were

associated to the rating grade k 2 {1, . . . , K}. Hence, we have

N ¼
XK

k¼1
Nk:

Finally, let each rating grade be assigned a probability of default forecast PDk.

The statistical tests presented in this section can be classified rather approxi-

mately either by validation period (single- versus multi-period tests) or by the

number of rating grades undergoing the test (single- versus multi-grade tests). By

construction, TTC rating systems are based on much longer time horizons than PIT

rating systems. Therefore, the validation methodologies set out in this section will,

in practice, be more applicable to PIT rather than to TTC rating systems.

14.3.1 Statistical Tests for a Single Time Period

We start by considering tests that are usually applied to a single time period case,

i.e. starting about one and a half years after the first introduction of a rating

system and in the annual validation process that follows.

The most prominent example for this kind of test is the binomial test (as well as

its normal approximation) which is the most often applied single-grade single-

period test in practice. On the other hand, the Hosmer-Lemeshow- or w2-test
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provides an example of a single-period multi-grade test that can be used to check

the adequacy of PD forecasts for several rating grades simultaneously.

14.3.1.1 Binomial Test

To apply the binomial test, we consider one single rating grade over a single time

period, usually 1 year. Therefore, we fix a certain rating grade by

(B.1) choosing a fixed rating grade k 2 {1, . . . , K} throughout this subsection,
and, additionally,

(B.2) assume independence of default events between all credits within the

chosen rating grade k.
The last assumption readily implies that the number of defaults in rating grade

k2 {1, . . . , K} can be modelled as a binomially distributed random variable X with

size parameter n:¼Nk and “success” probability p:¼PDk. Thus, we can assess the

correctness of the PD forecast for one time period by testing the null hypothesis

H0: The estimated PD of the rating category is conservative enough, i.e. the

actual default rate is less than or equal to the forecasted default rate given by the PD

against the alternative hypotheses

H1: The estimated PD of the rating category is less than the actual default rate.

Thereby, the null hypothesis H0 is rejected at a confidence level a whenever

the number of observed defaults d in this rating grade is greater than or equal to the
critical value

da ¼ min d :
XNk

j¼d

Nk

j

� �
PDj

k 1� PDj
k

� �Nk�j � 1� a

( )
:

According to Tasche (2005), the binomial test is the most powerful test among

all tests at a fixed level and the true type I error (i.e. the probability to reject

erroneously the hypothesis of an adequate PD forecast) can be much larger than the

nominal level of the test if default events are correlated.

In fact, assumption (B.2) is not realistic at all and turns out to completely disagree

with all empirical experiences: In practice, default correlations in a range between

0 and 3% do occur. The Basel II framework assumes asset correlation between 12 and

24%. Despite this, we should particularly mention two recent results e.g.: For well

diversified German retail portfolios, indications exist that asset correlations are in a

range between 0 and 5% which in turn would imply that default correlations are even

smaller fractions of these (cf. Hamerle et al. (2004) and Huschens and Stahl 2005).

Therefore, one gets a realistic early warning tool using the binomial test and its

rather complicated expression for the critical number of defaults. Another aspect

worth considering is that one should rely on consistency between the modelling

of correlation for risk measurement within the internally applied credit portfolio

model on the one hand and the validation on the other to derive consistent

confidence intervals.
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14.3.1.2 Normal Approximation to the Binomial Test

One possibility of obtaining an easier (but only approximate) expression for the

number of critical defaults within a fixed rating grade k 2 {1, . . . , K}, is to apply
the central limit theorem: In short, we take advantage of the limiting properties

of the binomial distribution and assume it approaches a normal distribution

in the limit as the number of obligors Nk becomes large (enough). Hence,

we obtain

~da ¼ Nk � PDk þ F�1 að Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nk � PDk � 1� PDkð Þ

p

as a critical value where F�1(�) denotes the inverse of the cumulative standard

normal distribution function.

To apply this asymptotic approximation by the normal distribution, we neces-

sarily have to ensure that the condition (sometimes also called Laplace’s rule of

thumb)

Nk � PDk � 1� PDkð Þ> 9

holds. In most cases of practical importance, the approximation seems to be valid

already for not too large numbers of Nk (while some numerical examples indicate

that even for figures of Nk as low as 50, the approximation works reasonably

well). Note that for low default probabilities and a low numbers of credits in the

individual rating classes, these prerequisites for using the normal approximation

imply implausible high numbers of obligors.

The same approach as the one used to derive the normal approximation to the

binomial test was applied by Stein (2003) to get a lower estimate for the number of

defaults necessary for validating the accuracy of the PD forecasts. Stein (2003) also

discusses the question of sample size [closely related to the finite population
correction by Cochran (1977)] as well as the influence of correlated defaults

which we address in the following subsection, too.

14.3.1.3 A Modified Binomial Test Accounting for Correlated Defaults

The assumption of uncorrelated defaults (B.2) for the binomial test generally yields

an overestimate of the significance of deviations in the realized default rate from the

forecast rate. In particular, this is true for risk underestimates, i.e. cases in which the
realized default rate is higher than the forecasted rate. Therefore, from a purely

conservative risk assessment point of view, overestimating significance is not

critical in the case of risk underestimates. This means that it is entirely possible
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to operate under the assumption of uncorrelated defaults. Clearly, persistent over-

estimates of significance will lead to more frequent recalibration of the rating

model. In addition, this can have negative effects on the model’s stability over

time. It is therefore necessary to determine at least the approximate extent to which

default correlations influence PD estimates.

Similar to the one-factor approach underlying the risk-weight functions of

the IRB approach of Basel II, default correlations can be modelled on the basis

of the dependence of default events on common (systematic) and individual

(specific or idiosyncratic) random factors (cf. Tasche 2003 and 2005). For

correlated defaults, this model also enables us to derive limits for assessing

deviations in the realized default rate from its forecast as significant at certain

confidence levels.

On a confidence level a, the null hypothesisH0 is rejected under the assumptions

(B.1) and (B.2) whenever the number of observed defaults d in rating grade

k2 {1, . . . , K} is greater than or equal to the critical value

da:¼ qþ2q�1

2Nk
� qð1�qÞ
’

ffiffi
r

p
F�1ð1�aÞþF�1ðPDkÞffiffiffiffiffiffiffiffiffiffiffi

rð1�rÞ
p

� � � ð1�2rÞF�1ð1�aÞ� ffiffiffi
r

p
F�1ðPDkÞ

2Nk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1�rÞp

where

q :¼ F�1

ffiffiffi
r

p
F�1ðaÞ þ F�1ðPDkÞffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

and r denotes the default correlation. This adjustment takes into account that due

to unsystematic risk correlation with the systematic risk factor, the respective quan-

tile lies a little further in the tail than without this further uncertainty and thus needs

to be corrected.

Tasche (2005) shows that assumption (B.2) is not robust for higher percentiles,

i.e.: Small deviations from a zero correlation already lead to dramatic changes in

the critical value of the test which is – of course – not a desirable feature of a test.

Furthermore, Tasche (2005) concludes that taking into account dependence by

incorporating a one factor dependence structure generated by a Vasicek dynamic

and Gordy’s granularity adjustment, yield tests of rather moderate power. This is

the case even for such low correlation levels as typical for the problem of corre-

lated defaults.

Clearly, the normal approximation is also applicable in this context and yields an

easier expression for the critical number of defaults.

Up to now, only single rating grades k were validated separately. The next test

by Hosmer and Lemeshow will close this gap by an approach to validating more

than a single rating grade simultaneously.
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14.3.1.4 Goodness-of-Fit Type Tests: x2- or Hosmer-Lemeshow-test

The two-sided Hosmer-Lemeshow-test provides an alternative approach in a single-

period validation environment to check the adequacy of PD forecasts for several

rating grades simultaneously. Recall that PDk denotes the PD forecast for rating

grade k 2 {1, . . . , K}.
For this purpose, let us pose the following assumptions:

(LH.1) The forecasted default probabilities PDk and the default rates pk :¼ dk /Nk

are identically distributed.

(LH.2) All the default events within each of the different rating grades as well as

between all rating grades are independent.

Let us define the statistic

Sw
2

K : ¼
XK
k¼1

ðNk � PDk � dkÞ2
Nk � PDk � ð1� PDkÞ

with dk ¼ pk � Nk denoting the number of defaulted obligors with rating k2 {1, . . . ,K}.
By the central limit theorem, when Nk ! 1 simultaneously for all k2 {1, . . . , K},
the distribution of SK will converge in distribution towards a w2-distribution with K
degrees of freedom because of assumptions (LH.1) and (LH.2).

Again, a limiting distribution is used to assess the adequacy of the PD forecasts

of the rating system by considering the p-value of a w2K-test: The closer the p-value
is to zero, the worse the estimation is. A further problem arises when the PDk

are very small: In this case the rate of convergence to the w2K-distribution may be

very low as well. Furthermore, relying on the p-value enables under certain

circumstances (e.g. comparability of underlying portfolios) a direct comparison of

forecasts with different numbers of rating categories.

The construction of the test is based on the assumption of independence and a

normal approximation again. Therefore, the Hosmer-Lemeshow-test is also likely

to underestimate the true type I error (as the binomial test).

14.3.1.5 Brier Score

Another method to validate a rating system across all rating grades is to calculate

the average quadratic deviation of the forecasted PD and the realized default rates.

Here, in contrast to the preceding statistical tests, it is about an exploratory method.

The resulting score between zero and one is called Brier score (cf. Brier 1950) and

is defined in the context of N debtors associated to the K rating grades by

B ¼ 1

N

XK
k¼1

dkð1� PDkÞ2 þ ðNk � dkÞPD2
k

h i

¼ 1

N

XK
k¼1

Nk pkð1� PDkÞ2 þ ð1� pkÞPD2
k

h i
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where PDk denotes the probability of default assigned to each obligor in rating

grade k and pk ¼ dk/Nk is the observed default rate within the same rating grade (cf.

OeNB/FMA 2004). The closer the Brier score is to zero, the better is the forecast of

default probabilities.

Note that, by definition, the Brier score does not measure directly the difference

of the default probability forecast and the true conditional probability of default.

Hence, the Brier score is in fact not a measure of calibration accuracy alone. Since

the Brier score can be decomposed as

B ¼ pð1� pÞ þ 1

N

XK
k¼1

NkðPDk � pkÞ2� 1

N

XK
k¼1

Nkðp� pkÞ2

(cf. Murphy andWinkler 1992) whereby p ¼ d/N, a separate analysis is in principle
possible:

l The first term describes the variance of the default rate observed over the entire

sample. Here, PD denotes the default frequency of the overall sample. This value

is independent of the rating procedure’s calibration and depends only on the

observed sample itself. It represents the minimum Brier score attainable for this

sample with a perfectly calibrated but also “trivial rating model”, which forecasts

the observed default rate precisely for each obligor, but only comprises one rating
class for the whole sample, i.e. PD ¼ PDk ¼ pk ¼ dk/Nk for all k2 {1, . . . , K}.
In this case the expected Brier score is equal to the variance of the default indicator,

i.e. the first of the three terms in the representation above, B ¼ �B :¼ p � ð1� pÞ.
l The second term represents the average quadratic deviation of forecast and

realized default rates in the K rating classes. A well-calibrated rating model

will show lower values for this term than a poorly calibrated rating model. The

value itself is thus also referred to as the “calibration”.
l The third term describes the average quadratic deviation of observed default

rates in individual rating classes, from the default rate observed in the overall

sample. This value is referred to as “resolution”. While the resolution of the

trivial rating model is zero, it is not equal to zero in discriminating rating

systems. In general, the resolution of a rating model rises as rating classes

with clearly differentiated observed default probabilities are added. Resolution

is thus linked to the discriminatory power of a rating model.

An additional caveat is the different signs preceding the calibration and resolu-

tion terms. These make it more difficult to interpret the Brier score as an individual

value for the purpose of assessing the classification accuracy of a rating model’s

calibration. Moreover, the numerical values of the calibration and resolution terms

are generally far lower than the total variance.

One of the main drawbacks of the Brier score is its performance for small default

probabilities. In this case the “trivial rating model” yields a rather small Brier score.

By “trivial rating model” we mean that all debtors are assigned the realized default

rates p, of the overall sample. In this case, the expected Brier score is equal to the
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variance of the default indicator, i.e. the first of the three terms in the representation

above,

�B ¼ p � ð1� pÞ:
Evidently, for p ! 0 the Brier score also converges to zero. The only possibility

of applying this score in a meaningful way is to compute the Brier score relative to

the “trivial score” �B since the absolute values are very close together for cases with

few defaults.

14.3.2 Statistical Multi-period Tests

While the binomial test and the w2-test are usually restricted to a single-period

validation framework, the normal test and the extended traffic lights approach are

devoted to overcoming the assumption of independence inherent tomost single-period

tests by assuming a dependence structure throughout a time horizon of several years.

14.3.2.1 Normal Test

The normal test for a given rating grade k, is a multi-period test of correctness of a

default probability forecast for a single rating grade. It can be applied under the

assumption that the mean default rate does not vary too much over time and that

default events in different years are independent. Mathematically speaking, the

fundamental assumptions for the normal test are given by

(N) The randomvariablesPDk,t ¼ Dt,k/Nt,k that describe the forecasted probabilities

of default for a single rating grade k 2 {1, . . . , K} over the years t2 {1, . . . , T} are
independent with means mt,k and common variance s2k > 0.

In this case, the central limit theorem can be applied to prove that the standar-

dized sum SNk with

SNk ¼
PT
t¼1

PDk;t � mt;k
� �
sk �

ffiffiffi
T

p

will converge to the standard normal distribution as T ! 1. Since the rate of

convergence is extremely high, even small values of T yield acceptable results.

Consequently, to apply the normal test to the PD forecasts PDk,t and corresponding

observed percentage default rates mt,k, one has to estimate the variance s2k . The
classical estimator

ŝ20;k ¼
1

T � 1
�
XT
t¼1

mt;k � PDk;t

� �2
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is unbiased only if the forecasted PDs exactly match the default rates mt,k. Other-
wise, the classical estimator will be reasonably upwardly biased, hence one should

choose

ŝ2k ¼
1

T � 1
�
XT
t¼1

mt;k � PDk;t

� �2 � 1

T

XT
t¼1

ðmt;k � PDk;tÞ
 !2

2
4

3
5

instead. This alternative estimator ŝ2k is unbiased under the hypothesis of exact

forecasts, too, but less upwardly biased than the classical estimator otherwise.

Now, we can test the null hypothesis

HN: None of the realized default rates in the years t 2 {1, . . . , T} is greater than
its corresponding forecast PDk,t.

Therefore, the null hypothesis HN is rejected at a confidence level a whenever

S N
k > za

where za denotes the standard-normal a-quantile.
Note that cross-sectional dependence is admissible in the normal test. Tasche

(2003, 2005) points out that the quality of the normal approximation is moderate but

exhibits a conservative bias. Consequently, the true type I error tends to be lower

than the nominal level of the test. This means that the proportion of erroneous

rejections of PD forecasts will be smaller than might be expected from the formal

confidence level of the test. Furthermore, the normal test seems even to be, to a

certain degree, robust against a violation of the assumption that defaults are

independent over time. However, the power of the test is moderate, in particular

for short time series (for example 5 years).

14.3.2.2 Extended Traffic Light Approach

Dating back to the approval of market risk models for regulatory purposes, the idea

of using a traffic light approach for model validation seems to be a considerable

exploratory extension to statistical tests. In the Basel Committee on Banking

Supervision (1996), for value at risk outliers produced by market risk models, a

binomial test with green, yellow and red zones is implemented that leads eventually

to higher capital charges against potential risks.

Tasche (2003) picks up the idea of a traffic light approach for the validation of

default probabilities. The basic idea is to introduce probability levels alow ¼ 0.95

and ahigh ¼ 0.999 (note, that the exemplary levels are similar to Basel Committee

on Banking Supervision 1996) with respective critical values clow and chigh,
that assure with the model used, that the ex post observed number of defaults

exceeds the level clow by only a probability of 1 � alow (and for chigh by probability
1 � ahigh respectively). First, the modified binomial test is introduced as above.
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Furthermore, the Vasicek model with asset correlation r, independent standard
normal random variables X, and x1,. . .,xn and a threshold c is given by (see also

Martin et al. 2006).

dk ¼
XNk

i¼1

1ð�1;c�ð ffiffiffi
r

p
X þ

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
xiÞ:

Now, to determine critical values, the choice of asset correlation is of crucial

importance as the critical values are given for a level a by

ccrit ¼ min i : Pðdk � iÞ � 1� af g

Two approaches are introduced, one based on a granularity adjustment and one

based on moment matching, see above. It can be concluded that, for high values of

asset correlation, the respective critical values change clearly.

Blochwitz et al. (2005) propose an alternative approach for implementing a

traffic light based judgment that does not need an explicit specification of asset

correlations emphasizing the accessibility for practitioners. They use a heuristic

approach to the validation of rating estimates and to identify suspicious credit

portfolios or rating grades.

Starting again with assumptions (B.1) and (B.2), the number of defaults can be

determined to be binomially distributed. Using the results given in Sect. 14.3.1.2,

they obtain

pmax ¼ PDk þ F�1ðabinÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PDkð1� PDkÞ

Nk

s

for some given level of confidence abin. A similar consideration for the one-factor

model (cf. Vasicek (1987) among others) with asset correlation r yields

pmax ¼ F
ffiffiffi
r

p
F�1ðaassetÞ þ F�1ðPDkÞffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �
:

The next step is to compare the second order error for the statistics of these two

approaches. Using b� :¼ 1� a� with bbin and basset as the values for the respective
models, they derive:

PDk þ F�1ð1� bbinÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PDkð1� PDkÞ

Nk

s
¼ F

ffiffiffi
r

p
F�1ð1� bassetÞ þ F�1ðPDkÞffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

A comparison shows that for low levels of asset correlation covering many

relevant situations, there is no significant difference in the second order errors.
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Therefore, for good reason, the subsequent considerations can be based on the

normal approximation.

To compare the adequacy of eventually time changing forecasts for probabilities

of default, the application is based on a relative distance between observed default

rates and forecasted probabilities of default. Motivated by the considerations above

and by taking into account the expression

sðPDk;NkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PDkð1� PDkÞ=Nk

p
;

Blochwitz et al. (2005) establish four coloured zones to analyse the deviation of

forecasts and realisations by setting

Green if pk <PDk

Yellow if PDk � pk < PDk þ KysðPDk;NkÞ
Orange if PDk þ KysðPDk;NkÞ � pk <PDk þ KosðPDk;NkÞ
Red if PDk þ KosðPDk;NkÞ � pk.

The parameters Ky and Ko have to be chosen carefully as they strongly influence

the results of the later application to a given data set. Practical considerations lead

to the conclusion that the respective probability for the colours green, yellow,

orange and red to appear should decline. But in contrast, Ko should not be chosen

too large as in the tail of the distribution, asset correlation influences results much

more than in the centre of it. Hence, a proper choice could be Ky ¼ 0.84 and

Ko ¼ 1.64, which corresponds to a probability of observing green of 0.5, observing

yellow with 0.3, orange with 0.15 and red with 0.05.

Being in the comfortable situation to include more than one period into the

evaluation framework, a potential enhancement is the application to a multi period.

Now, a labelling function is given by

L½Lg; Ly; Lo; Lr � ¼ 1000Lg þ 100Ly þ 10Lo þ Lr

A possible weighting function is

O½Lg; Ly; Lo; Lr� ¼ Pg Lg þ Py Ly þ Po Lo þ Pr Lr

with Lg denoting the number of observed green periods, Ly the respective yellow

number and so on and Pg, Py, Po, and Pr the associated probabilities (i.e. 0.5, 0.3,

0.15, and 0.05 respectively).

With the help of the weighting function, it is possible to assign a mixed colour

for more then one observed period. By numerical analysis and by application to

rating agencies’ data, it is concluded that for many relevant cases, the deducted

extended traffic light approach gives clear indications for a review of the forecasts

for probability of defaults.

According to Blochwitz et al. (2004), it is also possible to apply a multi-period

null hypothesis which is in fact a continuation of the null hypothesis as in the
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normal test (HN): Reject the hypothesis at a level b if L[Lg, Ly, Lo, Lr] � cb,
where

cb ¼ maxfcjPðL½Lg; Ly; Lo; Lr� � cÞ< 1� bg:

Numerical studies to check the robustness with respect to the adequacy of

neglecting correlations show that the extended traffic light approach is a useful

tool in the jigsaw of validation.

14.3.2.3 Some Further Readings and Remarks

In Chap. 5 a PD estimation method applicable even for low default portfolios is

suggested. The main idea is to use the most prudent estimation principle, i.e. to
estimate the PD by upper confidence bounds while guaranteeing at the same

time, a PD ordering that respects the differences in credit quality indicated by

the rating grades. Unfortunately, the application of the proposed methodology

for backtesting or similar validation tools would not add much additional

information, as the (e.g. purely expert based) average PDs per rating grade

would normally be well below the quantitative upper bounds proposed using

the most prudent estimation principle.

Other approaches to estimating non-zero PDs for high-quality rating grades

are based upon Markov chain properties of rating migrations matrices [cf.

Schuermann and Hanson (2004) or Jafry and Schuermann (2004)]. Therefore,

a qualitative study of the evolution of these transition matrices across several

years can shed light on possible problems in a rating system. After all, we still

lack reliable statistical validation methods for low default portfolios or high-

quality rating grades.

For further discussions concerning backtesting issues, refer to Frerichs and

L€offler (2003) or B€uhler et al. (2002) and the references therein.

14.3.3 Discussion and Conclusion

All the above mentioned tests focus on comparisons between the forecasted prob-

abilities of default and the afterwards observed default rates. For all statistical tests,

the eventual correlation (i.e. asset or default correlation) between different obligors

plays a crucial role and thus influences the possibilities for the use of the test in

practice. Some tests neglect correlation, for others, it is necessary to specify it. It is

common understanding, that to test correlation itself, the database is insufficiently

comprehensive. Hence, it is highly important to keep in mind the respective

assumptions used by the different tests.

Further work can be done on integrating different rating categories into one test

and with respect to the ranking of statistical tests for their use in practice. In the
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validation process to be established in a bank, the use of the statistical tests and

exploratory means introduced herein can thus only be one piece of the puzzle

among others.

14.4 Practical Limitations to PD Validation

For several reasons, backtesting techniques of PDs, as described here, have their

limitations:

l Precision of measurement: Calibrating a rating system is comparable to measur-

ing a physical property. If – as a rule of thumb in measurement theory – a

standard deviation is taken as a reasonable size of the measurement error, the

figures are rather disappointing. A lower bound for the measurement error of the

k-th rating grade is given by the standard deviation of the uncorrelated binomial

distribution. As a numerical example: Setting Nk ¼ 500 and PDk ¼ 1% yields

s(PDk, Nk) ¼ 0.45%, resulting in a relative error of measurement of 45%, which

is an extraordinary high error compared to physical properties measured. This

argument can be turned as well: If it is assumed, that the PD had been estimated

precisely, then there would have been no surprise in default rates fluctuating with

a standard deviation around the PD.1

l Limited data: Backtesting relies on data. All statistical methods discussed here

need a certain number of defaults to be observed before they can be applied. This

challenge can be illustrated with a numerical example. For investment grade

portfolios with PDs of less than 10 bps, a size of more than 1,000 borrowers is

necessary to observe an average one default per year. These portfolios often are

much smaller in size, and empirical evidence shows in most years no default at

all. In these cases, backtesting would not provide any information, because

neither evidence for a right calibration nor for an insufficient calibration can

be found, because for PDs larger than zero, default rates of zero are observed.

The implication of limited default data on the validation of rating systems and

specifically on backtesting issues, are discussed in the Basel Committee on

Banking Supervision (2005b).
l Impact of stress: Rating systems are designed to work in “normal” times. In

general they are calibrated to a more or less conservative estimated expected

value of the PD for a longer time horizon. However, from time to time,

unforeseeable events – often called “stress” – result in a sudden increase of

default rates, which may be interpreted as a result of a sudden and likewise

unforeseeable increase of PDs caused by that event. Usually, banks utilize credit

risk models and the correlations modelled therein, yielding measures like Credit

Value at Risk (CVar). In the Basel framework, this is implemented in the risk

1Under the settings of the normal approximation of the binomial test in Sect. 14.3.1.2 there is a

more than 15%-chance, that the default rate exceeds the PD by more than a standard deviation.
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weight function, which can be looked at as a kind of stressed PD: The expected

value of the PD is “translated” by this function into a stressed PD, which is

expected to appear once in 1,000 years, see Basel Committee on Banking

Supervision (2005c). If PDs are estimated as expected values, then in periods

of stress, any validation technique of PDs that compares a calibrated long run

average PD to observed default rates will fail, because as a result of the stress to

which the rated borrowers are exposed, the default rates will exceed that type of

PD heavily.

Further, when rating systems are backtested, two aspects need to be balanced:

(1) One period tests make a statement about the current performance of a rating

system’s calibration. However, this statement must be judged carefully, because it

may be misleading for reasons already mentioned. (2) Multi period tests as suggested

in this article provide a more robust statement about a rating system’s performance,

but these tests have another drawback: They need a time series of 4 years at minimum.

In 4 years time, however, a rating system has undergone some revisions, triggered

by the experience a bank has collected by using the rating system. That’s why multi-

period tests may infer using outdated information, and in the extreme, make a

statement on a rating system which has ceased to exist.

Our conclusion is that backtesting techniques as described here have to be carefully

embedded into a comprehensive validation approach of rating systems. Validation of

PDs should be the first element in a top down validation approach, since a successful –

keeping in mind its limits – backtesting is just a necessary prerequisite for a well

functioning rating system. Backtesting may reveal deficiencies in a rating system, but

the final conclusion as to whether the rating system works as designed or not can be

drawn only if the entire rating system is looked at.
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Chapter 15

PD-Validation: Experience from Banking

Practice

Robert Rauhmeier

15.1 Introduction

This chapter deals with statistical hypothesis tests for the quality of estimates of

probabilities of defaults (PDs). The focus is on the practical application of these

tests in order to meet two main targets. Firstly, bank internal requirements have to

be met, assuming that PDs from bank internal rating systems are an essential

element of modern credit risk management. Secondly, under the future regime of

the Basel II framework, regular recurrent validations of bank internal rating systems

have to be conducted in order to get (and retain!) the approval of banking super-

visors for the purpose of calculating the regulatory capital charge.

The theoretical findings are illustrated by an empirical validation study with real

world rating data from bank internal models. We want to illustrate how validation –

or more accurately, statistical backtesting – could be conducted with real world

rating data in banking practice.

We organised this article as follows. In the second section we describe briefly

how rating systems are commonly used in the banking industry. Some basic

notation is introduced in Sect. 15.3. In the fourth section, common statistical tests

like the exact and the approximated binomial test, the Hosmer-Lemeshow test and

the Spiegelhalter test, are discussed. These tests are suitable for testing the absolute

quality of a rating system presuming that the final outcome of the analyzed rating

system is a forecast of default probabilities. For comparing two rating systems – a

further central issue in rating praxis – additional tests are required. In validation

practice, these tests can be used to analyze whether using expert human opinion,

which is usually applied subsequent to the pure machine rating, significantly

improves the quality of the rating. The application of the tests discussed in this

article is limited by assumptions, e.g., independence of the default events or high

The views expressed in this article are those of the author and do not necessarily reflect those of
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numbers of obligors in order to fulfil the central limit theorem. Section 15.5

presents some practical guidance to tackle these challenges by simulation techni-

ques. Additional research on the issue, including which of the suggested tests

performs best under certain portfolio compositions is presented. Furthermore,

results on the analysis regarding the test power (b – error) under practical, near to

reality conditions are shown. In Sect. 15.6, we introduce the concept of creating

backtesting samples from databases found in banking practice. Section 15.7 illus-

trates the theoretical considerations developed in previous sections by real world

rating data and Sect. 15.8 concludes.

15.2 Rating Systems in Banking Practice

15.2.1 Definition of Rating Systems

Firstly, we define the outcome of a rating system. In this article, a rating system

forecasts a 1-year default probability of a (potential) borrower. It is not just a rank

order of creditworthiness, nor an estimate of overall (expected) losses, nor the

prediction of specific default events.1 The latter means that we suppose that defaults

are the realisation of random variables and a rating system consequently can at best

forecast accurate probabilities for an event but not the event itself.2 Secondly, it

needs to be specified what is meant by a default. In this article and especially in the

empirical example we refer to the Basel II default definition.3

15.2.2 Modular Design of Rating Systems

Often, bank internal rating systems are designed in a modular way, which is

sketched in Fig. 15.1. The first module is often called ‘machine rating’, because a

mechanical algorithm generates a first proposal for the borrower’s PD. Typically,

this algorithm is based on statistical models as described in the initial chapters of

this book. Usually this module is composed of a quantitative element, which

consists of hard risk drivers (e.g., balance sheet ratios, legal form, gender, profes-

sion, age) and a qualitative element consisting of soft risk drivers, which have to be

assessed by the loan manager or rating analyst (e.g., management quality, competi-

tiveness of the borrower).

1We use the phrase forecast instead of estimation in order to emphasis that at the time the rating for

a certain borrower is done, the regarding event, namely the default, is in the future.
2We will come to this later in Sect. 15.3.
3See BCBS (2005a), }452 seqq.
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The second module, “expert-guided adjustments”, allows for the adjustments of

the rating by the analyst subject to obligor specific details not or not sufficiently

reflected in the “machine rating”. Usually this is done in a standardised form, for

example, possibly by selecting predefined menu items and evaluating their severity.

This is in contrast to the qualitative part of module 1, where the weights of the

respective risk drivers are fixed by the algorithms and only the value has to be

assessed (for example “good”, “average” or “bad”). In module 2, even the weight of

the risk driver can be determined by upgrading or downgrading in full rating

grades (Sect. 15.2.4). As an interim result, we obtain the stand-alone-rating of the

borrower.

Module 3 “supporter logic” captures effects arising from a potential backing of a

borrower close to default. This module is especially important for rating systems

designed for corporates and banks.4 Here, often expert guided weightings of

borrower ratings and potential supporter ratings are used, flanked with some

reasonable guidelines. Like the first two modules, module 3 is also tightly standar-

dised. These three modules have to be subsequently passed through and will result

in a rule-based proposal for the PD. Since it is impossible to foresee every

eventuality affecting the creditworthiness of a borrower in the model building

process and the ultimate goal of the bank is to forecast the PD as accurately as

possible for each individual borrower, the rating system might allow an override of

the rule based rating. In our modular rating approach this refers to module 4

“manual override”. Overrides should be of exceptional character and must be

well documented, founded and approved by a senior management board. Additionally,

Module 1
Machine
Rating

Module 2
Expert-guided
Adjustments

Module 3
Supporter

Logic

Module 4
Manual
Override

End of rating procedure
Result: Forecast of the Default Probability
for Borrower i expressed in rating grade

Begin of rating
procedure

Fig. 15.1 Modular Design of Rating Systems

4Contrary to the extensive opinion, the term ‘supporter’ has not to be taken literally because the

supporter could even have negative influence on the PD of the borrower. Further on all parties with

strong direct influence on the PD of the borrower should be considered here. Popular is the

influence of the corporate group where the regarding borrower is embedded, but also essential

other (one-sided) dependencies could be taken into account. For example an automobile manufac-

turer might support his most important supplier in case of an imminent default in order to ensure

his own medium-term interests.
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Basel II requires separate monitoring of overrides.5 Therefore, we suggest incor-

porating monitoring of overrides into the annual validation process. Frequent

reasons for overrides could lead to a refinement of the rule-based modules of the

rating system.

It has to be stressed that the detailed design of the sketched modular set-up of a

rating system may strongly vary in practice and even one or more modules will be

omitted if they are irrelevant, impractical or even too cost-intensive in relation to

the expected benefits. A good example here is retail business with credit cards,

where often the machine module is used exclusively.

15.2.3 Scope of Rating Systems

A rating model is a model of the real world process that generates default events.

This process is called “default generating process” (DGP) and can be thought of as a

function of various risk drivers The rating model takes into account only a limited

number of selected key risk drivers of the DGP. Since borrowers of different

portfolio segments follow different DGPs it is a consequence that there have to

be as many different rating systems as portfolio segments to cover the whole

portfolio.6 But all rating systems have the same intrinsic aim, namely to forecast

the 1-year-PD of a borrower as good as possible. With this in mind, the introduced

backtesting methods are applicable in general for all rating systems as long as they

are forecasting 1-year-PDs and realisations of defaults or non-defaults could be

observed. Certainly, there are constraints regarding the number of borrowers (and

the number of associated defaults).7 These constraints affect the significance of the

results of the statistical backtesting, but not the methodology itself.

15.2.4 Rating Scales and Master Scales

It is common banking practice to use rating scales. This means that there is only a

limited number of possible PD forecasts (associated with the corresponding rating

grades) rather than a continuum of PD forecasts. Usually, there is a bank wide rating

scale called a “master scale” which all rating systems are mapped into. An example

of a master scale is illustrated in Table 15.1.

The table is to be interpreted as follows. If the machine rating module, assuming

a logistic regression model is used, produces a forecast PD of 0.95%, then it fits into

5See BCBS (2005a), } 428.
6Strictly speaking every borrower follows its own specific DGP but in practice borrowers follow-

ing similar DGPs can be pooled into portfolio segments.
7See Chap. 5 where low default portfolios are treated.
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the PD range of rating grade 8 and for the sake of keeping things simple, we round

this forecast to 1.05% as it is the (geometrical) mean of the boundaries.

We could interpret this kind of loss of measurement accuracy simply as round-

ing-off difference. Using a master scale has certain advantages. For example, it is

easier to generate reports and figures and for bank internal communication in

general. Moreover, for some people it is easier to think in a few discrete values

instead of a continuous measurement scale. This is especially relevant when adjust-

ments of ratings coming from the pure machine rating within module 2 are com-

pleted by upgrading or downgrading rating grades. But there are obvious pitfalls

accompanying the use of a master scale which arises from solely thinking in rating

grades and neglecting the fact that these grades are just proxies or aliases of forecast

PDs. For instance, downgrading a borrower from grade 4 to grade 8 does not mean a

doubling of the PD. Because of the exponential relationship of grades and

corresponding PDs, this means nearly a tenfold increase in the forecast PD.

As seen in Fig. 15.2, master scales often have the attribute that the PD according

to the rating grades increases roughly exponentially.8 Two reasons may explain

Table 15.1 Illustration of a

master scale
Rating grade PD range PD of grade

1 . . . . . .
. . . . . . . . .
4 . . . 0.11%

. . . . . . . . .
8 0.80–1.40% 1.05%

. . . . . . . . .
14 . . . . . .

0
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35
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D
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Fig. 15.2 Typical Master Scale – exponential run of the curve

8Thinking in a logarithmic world, ln(PD) of the master scale grows almost linearly in the grades.
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this. First, master scales are sometimes inspired by the scale of the rating agencies

and the derived default rates for these grades. Second, banks want (and supervisors

claim, see BCBS (2005a), } 403) to have a meaningful distribution of their

borrowers across their rating grades.

As noted above, a master scale is used group wide. Rating grades of the master

scale mean the same across different portfolios. For example a rating grade 8 means

the same – namely a forecast PD of 1.05% – no matter whether it is assigned to a

large corporate or a retail customer. Additionally we assume that rating grades of

the master scale mean the same across time. A rating grade 8 means the same no

matter if it is assigned in 1998 or 2005. This definition is often referred to as Point-

in-Time (PIT) rating approach.

15.2.5 Parties Concerned by the Quality of Rating Systems

In general we can distinguish three groups of stakeholders of a bank’s internal

rating system as illustrated in Fig. 15.3.

First of all, there is the supervisory authority with the main objective of ensuring

the stability of credit markets and financial markets in general. Therefore, the

solvency of the bank itself has to be assured. Transferring this intention to the

field of testing the quality of rating systems supervisors will accept forecast PDs

that are too high compared to the true PDs. But they will intervene, if the default

risk is significantly underestimated. But supervisory authority tends to follow a

rather conservative approach which is understandable from its position.

The opposite holds for the (possible) borrower, who is interested in low interest

rates and favourable credit conditions. Assuming the price for the credit or at least

the credit accommodation itself depends on the PD (beside the other risk parameters

LGD and EAD), the borrower calls for a low PD assessment. So an underestimation

of his PD is all right for the borrower, but an overestimation of his PD is not

acceptable from his point of view.

Financial
Institution / 

Bank

Assurance of financial 
stability in financial markets

Conservative approach:
“In case of doubt a bank has 
to estimate risk parameters 
in a conservative manner”

Supervisory
Authority

Favourable conditions,
low interest rates

Liberal approach:
“Assess my Risk as low 
as possible”

Optimisation of capital allocation,
pricing, maximisation of profits

Accurate Risk Assessment
(systematic) under- / 
overestimation of risk: 
“bad borrowers” are attracted,
“good borrowers” are lost 

In the long run, banks with the most accurate rating system will prevail at the credit market!

Borrower

Fig. 15.3 Parties concerned by the quality of rating systems
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The third party is the bank itself. Each kind of misjudgement of the creditwor-

thiness harms an optimal capital allocation, a good pricing system, and, in conse-

quence, the maximisation of profits. Therefore, we conclude that neither an

underestimation nor an overestimation of risk is satisfactory. In terms of statistical

test theory, supervisors and borrowers would perform one-sided statistical hypoth-

esis tests whereas the bank prefers two-sided tests.

We introduce some notation in the next section and describe the theoretical

framework.

15.3 Statistical Framework

We have obligors i ¼ 1,. . ., N each with a true, but unfortunately unknown proba-

bility of default pi 2 [0;1]. The main intention of the rating system is to forecast

each pi as accurately as possible. We denote a forecast by p̂i.
We want to start with the description of the theoretical framework of the default

generating process (DGP). Therefore, we mainly refer to the well known model of

categorical regression in its variations, logistic regression or probit regression.

These topics are explained in detail in Chap. 1.

The standard method used to describe a binary outcome variable yi depending on
one or more variables xi is the categorical regression model. The model equation is

pi xið Þ ¼ P yi ¼ 1jxið Þ ¼ F x0ibð Þ (15.1)

The outcome variable yi takes the value yi ¼ 1 if a default is observed and yi ¼ 0

if a non-default is observed. In the vector xi all kinds of risk drivers are included.

These may be financial ratios, obligor specific indicators like age or status of

marriage, macroeconomic risk factors like GDP-growth-rate or interest rates, and

even variables describing trends in industrial sectors. These variables mainly

depend on the specific segment of obligors that is considered and on the data that

is in general available for this segment.9 Note that in (15.1), the probability of

default for obligor i, pi, is the outcome of the model and not the forecast of the

outcome event itself. Therefore, it fits perfectly into our basic understanding what a

rating system should do as described in Sect. 15.1. The probability that obligor i
gets in the status non-default is simply

1� pi xið Þ ¼ P yi ¼ 0jxið Þ ¼ 1� F x0ibð Þ (15.2)

9In more sophisticated models like panel models or hazard rate models (see Chap. 1) the time

index t has to be incorporated beside index i in order to account for the time dependency of the risk

drivers. In rating practice it is often assumed that the risk drivers in x are time-lagged (e.g. xt-1)
explaining the default of borrower i in t. For the reason of keeping things simple we neglect this

time-series component in this chapter.
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The specification of the cumulative distribution function F(.) denotes whether
we assume a logistic model

pi xið Þ ¼ P yi ¼ 1jxið Þ ¼ ex
0
ib

1þ ex0 ib
(15.3)

or a probit model.

pi xið Þ ¼ P yi ¼ 1jxið Þ ¼ F x0ibð Þ (15.4)

where F(.) denotes the cumulative standard normal distribution function. Other

specifications for F(.) exist.
Often x0i b is called linear predictor or simply score. The vector b consists of the

weights for the risk drivers in x used to obtain the score. Because F(.) represents a
cumulative distribution function, a monotonic relationship between x0ib and pi is
assured.

Some conceptional background should explain (15.3) and (15.4), the models of

the categorical regression: Suppose that behind the observable dichotomy of the

depending variable yi, there is a non observable, meaning latent, continuous vari-

able ~yi. The value of ~yi depends on the value of the risk drivers xi. If the latent

variable ~yi falls below the also latent threshold yi the status yi ¼ 1 is observable,

otherwise the status yi ¼ 0 is realised:

yi ¼ 1 , ~yi ¼ x0ibþ ~ei � yi
yi ¼ 0 , ~yi ¼ x0ibþ ~ei > yi

(15.5)

The error term ~ei allows for randomness and is needed to account for idiosyn-

cratic risk factors not covered in xi. The random error term ~ei follows a cumulative

distribution function F(.) and it is found

pi xið Þ ¼ P yi ¼ 1jxið Þ ¼ P ~yi � yið Þ
¼ P ~ei � yi � x0ibð Þ ¼ F yi � x0ibð Þ ¼ F ~yi

� � (15.6)

The latent threshold yi can be combined with the constant b0 in b and we obtain

our starting point equation (15.1). Depending on the cumulative distribution func-

tion that is assumed for ~ei, a logit (15.3) or probit (15.4) model is obtained.

Further on, we will restrict ourselves to the standard normal distribution func-

tion. For example for a borrower i with a rating grade k ¼ 8 – accompanied with a

probability of default pi;k¼8 ¼ 0:0105 – we will acquire

~yi;k¼8 ¼ F�1 0:0105ð Þ ¼ �2:3080:

So ~yi;k is determined by the PDs of the master scale grades.

318 R. Rauhmeier



As a next step, we want to extend the model in order to integrate the possibility

of modelling dependencies in the DGP. A widely used approach is the one-factor

model10 which is also the basis of the Basel II formula for the risk weighted assets.

We split up the error term ~ei in equation (15.5) in the components ei and f and get

yi ¼ 1 , ~yi ¼ x0ibþ ffiffiffi
r

p � f þ
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� ei � yi

yi ¼ 0 , ~yi ¼ x0ibþ ffiffiffi
r

p � f þ
ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� ei > yi

(15.7)

where f ~ N(0,1) and ei ~ N(0,1) are normally distributed random variables with

mean zero and standard deviation one. The random variable ei represents the

idiosyncratic risk and f represent the so called systematic risk. It is assumed that

idiosyncratic risk and systematic risk are independent and idiosyncratic risk is

independent for two different borrowers. Therefore, the integration of the system-

atic factor f, models dependencies in the DGP of two borrowers and r is called the

asset correlation11:

s2i ¼ Var ~yið Þ ¼ ffiffiffi
r

p� �2 þ ffiffiffiffiffiffiffiffiffiffiffi
1� r

p� �2
¼ 1

sij ¼ Cov ~yi; ~yj

� �
¼ ffiffiffi

r
p� �2 ¼ r

rij ¼ Corr ~yi; ~yj

� �
¼

Cov ~yi; ~yj

� �

Var ~yið Þ � Var ~yj

� � ¼ r

(15.8)

Conditional on the realisation f of the common random factor, the (conditional)

default probability becomes

pi xi; fð Þ ¼ P yi ¼ 1jxi; fð Þ ¼ P ~yi � yið Þ
¼ P x0ibþ ffiffiffi

r
p � f þ

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p
� ei � yi

� �

¼ F ei �
yi � x0ib� ffiffiffi

r
p � fffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

¼ F
~yi � ffiffiffi

r
p � fffiffiffiffiffiffiffiffiffiffiffi
1� r

p
 !

(15.9)

Up to now, this detailed annotation may seem to be purely academic, but we will

see its practical benefits in Sect. 15.5 where we extend the (standard) statistical

hypothesis test being introduced in the following section by using this simple but

very useful model variant in order to account for dependent default events.

10See for example Finger (2001).
11The asset correlation can be transformed in default correlations as shown in several papers, see

e.g. BCBS (2005b, Chap. III).
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15.4 Central Statistical Hypothesis Tests Regarding Calibration

As should become apparent, the realisation yi ¼ 1 or yi ¼ 0, respectively, is the

result of a random process (the DGP), which is expressed by including the random

variable ei in our approach. This means that even if the parameters of the modelb are

specified perfectly correct, some unpredictable randomness still remains. Hence it is

clear, that a certain realization of the default event could not be forecast, because this

would imply that the rating system could exactly predict the realization of the

random variable ei. This situation could easily be compared to the well known

random experiment of throwing a dice. Even if you know that a six-sided dice is not

bogus, you cannot predict the result. The best you can specify is the probability of

throwing a certain number, in this example this is 1/6. By analogy, the best a rating

system can do is to forecast the probability of default most exactly for each obligor i.
In the following, sometimes the term “calibration” is used. In our context

calibration means a property of a rating system and not an action. The later

interpretation as action – “to calibrate a model” – means to estimate the parameter

of the (statistical) model, e.g., to estimate by means of OLS or a maximum

likelihood estimator the coefficients in the equation of the logistic regression. But

in this article “calibration” is more in the sense of “to be calibrated”. The phrase

refers to the outcomes of the rating systems and is a property of the rating system.

This means that each forecast probability of default is right: p̂i ¼ pi 8 i. Therefore,
we introduce several approaches how to perform tests on calibration next.

15.4.1 Binomial Test

15.4.1.1 Exact Binomial Test

Someone whose task is to validate the hypothesis whether the PDs predicted by a

rating system are consistent with observed default events, will most likely perform

the well known binomial test, as presented in standard statistical textbooks, as a first

step.

Suppose we have Ng obligors in rating grade g, and all of them have the same

(true but unknown) probability of default pg. If we assume that the realisations are

independent from each other, (we will drop this constraint at a later stage), then the

number of defaults in grade g, Ng,y ¼ 1, follows a binomial distribution with

P Ng;y¼1jNg; pg
� � ¼ Ng

Ng;y¼1

� �
� pNg;y¼1

g � 1� pg
� �Ng�Ng;y¼1 (15.10)

Based on this, we could perform a statistical hypothesis test with the null

hypothesis

H0 : pg ¼ p̂g (15.11)
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and the alternative

H1 : pg 6¼ p̂g (15.12)

where p̂g denotes the forecast derived from the rating system. The test statistic is the

observed number of defaults Ng,y ¼ 1 and we reject the null hypothesis if the

incidence of observing Ng,y ¼ 1 under H0 is too unlikely. What is meant by “too

unlikely” is defined by the confidence level a. Knowing the distribution of Ng,y ¼ 1

under H0 we can calculate these critical region as

Ng;y¼1 � b a 2=ð Þ or Ng;y¼1 � b 1� a 2=ð Þ (15.13)

where b(.)12 is the quantile of the cumulative distribution function of the binomial

distribution B(Ng,pg).
Figure 15.4 illustrates an example with Ng ¼ 350 in rating grade 8. If we will

observe at least 9 defaults or no default at all this is too unlikely under the null

hypothesis. In this case we would reject the correctness of the null hypothesis

knowing that we made a wrong decision with probability of a ¼ 0.05.
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Fig. 15.4 Illustrative binomial test with marked rejection areas

12It has to hold for b a 2=ð Þ: B b a 2=ð ÞjNg;pg
� � � a 2= <B b a 2=ð Þ þ 1jNg;pg

� �
and for b 1� a 2=ð Þ:

1� B b 1� a 2=ð Þ � 1jNg;pg
� � � a 2= < 1� B b a 2=ð Þ � 2jNg;pg

� �
.
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15.4.1.2 Normal Approximation of the Binomial Test

The normal approximation of the exact binomial test is often applied in practice,

using the fact that the exact discrete binomial distribution converges to the normal

distribution for increasing sample sizes. As a rule of thumb, this approximation may

be sound if Ng � pg � 10 and at the same time Ng � pg � (1 � pg)� 10 holds.13 The

number of defaults is normally distributed Ng ~ N(Ng � pg; Ng � pg � (1�pg)) and
the test statistic has to be constructed as

Zbin ¼
Ng � �yg � Ng � pgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ng � pg � 1� pg

� �q � N 0; 1ð Þ (15.14)

and follows a standard normal distribution, where �yg ¼ Ng;y¼1 Ng

	
denotes the

observed default rate in rating grade g. Performing the two-sided hypothesis test,

the critical values can easily be derived as the a/2 and 1� a/2-quantile of the

standard normal distribution.

15.4.2 Spiegelhalter Test (SPGH)

Up to now, we have presented very standard approaches. But these approaches have

a shortfall, namely they are primarily suited for testing a single rating grade but not

several or all rating grades simultaneously.

Spiegelhalter (1986) introduced a further generalisation we call Spiegelhalter

test (SPGH). Originally it was used in the context of clinical statistics and the

validation of weather forecasts.

The starting point is the Mean Square Error (MSE), also known as Brier Score14

MSE ¼ 1

N

XN
i¼1

yi � p̂ið Þ2 (15.15)

representing the squared difference of the default (yi ¼ 1) and non-default (yi ¼ 0)

indicators, respectively, and the corresponding default probability forecast p̂i
15

averaged across all obligors.

Obviously the MSE gets small, if the forecast PD assigned to defaults is high and

the forecast PD assigned to non-defaults is low. Generally speaking, a small value

of MSE indicates a good rating system. The higher the MSE the worse is the

performance of the rating system (keeping other things equal).

13This rule of thumb may vary depending on what statistical text book is consulted.
14See Brier (1950).
15p̂i ¼ p̂g if obligor i is rated in rating grade g.
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The MSE can be interpreted as a weighted average of independent Bernoulli

distributed random variables. Spiegelhalter derived an approach which allows us to

test whether an observed MSE is significantly different from its expected value or

not. Again the hypotheses are

H0 : pi ¼ p̂i 8 i and H1 : not H0 (15.16)

Then under H0 the MSE has an expected value of

EðMSEpi¼p̂iÞ ¼
1

N

XN
i¼1

pi � 1� pið Þ (15.17)

and variance

VarðMSEpi¼p̂iÞ ¼
1

N2

XN
i¼1

1� 2pið Þ2 � pi � 1� pið Þ (15.18)

It is obvious from (15.17) that the expected value of the MSE under the null

hypothesis is greater than zero,16 and a function of the true (but unknown) prob-

abilities of defaults. Therefore the absolute value of the MSE is not a meaningful

performance index of the rating system because its value is constrained by the

quality of the rating system and the portfolio structure i.e., the true but unknown

default probabilities.

Using the central limit theorem, it can be shown that under the null hypothesis

the test statistic

ZS ¼ MSE� EðMSEpi¼p̂iÞ
VarðMSEpi¼p̂iÞ0;5

¼

1

N

XN
i¼1

yi � pið Þ2 � 1

N

XN
i¼1

pi � 1� pið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN
i¼1

1� 2pið Þ2 � pi � 1� pið Þ
s (15.19)

follows a standard normal distribution and the familiar steps coming to a test

decision have to be conducted.

It can be shown that a forecaster (in our case the rating system) minimizes its

expected MSE when he or she forecasts the probability of default for each obligor

equal to its true default probability.17 There is no way of improving the MSE by

modifying the forecast probabilities away from the true probabilities. Thus it can be

16As long as we do not consider the special case of a deterministic DGP, where all true PDs are

zero or one.
17See De Groot and Fienberg (1983).
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stated that the MSE rewards honest forecasting. This is known as a proper scoring

rule.18

As a special case of the SPGH statistic, namely if there is just one single

probability of default in the entire portfolio, then the SPGH statistic ZS is exactly
equal to the Zbin of the approximated binomial test.19

The major advantage of the SPGH test over the binomial test is that with the

former all rating grades can be tested simultaneously on the property of calibration

within one step.20

15.4.3 Hosmer-Lemeshow-x2 Test (HSLS)

The same can be done with an approach introduced by Hosmer and Lemeshow

(1980, 2000). Their test statistic has its origin in the field of categorical regression

and is often used in the process of model finding as a performance measure for

“goodness-of-fit”.

The SPGH test penalizes squared differences between realised event indicators

(default or non-default) and PD forecasts on an individual level.21 In contrast, the

basic idea of the Hosmer-Lemeshow test (HSLS) is to penalize squared differences

of forecast default rates from realised default rates on a group level as could be seen

from numerator terms in (15.20).

w2HL ¼
XG
g¼1

ðNg � �yg � Ng � p̂gÞ2
Ng � p̂g � 1� p̂g

� � ¼
XG
g¼1

Ng �
ð�yg � p̂gÞ2

p̂g � 1� p̂g
� � (15.20)

Originally the groups come from arranging individual forecasts into e.g., ten

centiles or by using the number of covariate patterns in the logistic regression

model. In this context, the groups are defined by the rating grades.22 When using the

HSLS test statistic as a means of backtesting, w2HL is approximately w2-distributed
with G degrees of freedom.23, 24 This can easily be seen because w2HL consists in fact
of G independent squared standard normal distributed random variables if

18See e.g. Murphy and Dann (1985).
19See Appendix A.
20Rauhmeier and Scheule (2005) show that by factorising the MSE more rating properties could be

derived and how they influence Basel II capital.
21See (19).
22Hosmer et al. (1988) allude to some approximation conditions, e.g. that in about 4/5 of all groups

the expected number of defaults should exceed the number of five and in no group the number of

defaults should be smaller than one.
23G denotes the number of rating grades with Ng > 1, i.e. with at least one obligors being rated in

this class.
24When using the HSLS statistic as a measure of fit in the process of model finding, then we say

“in-sample”, because the model estimation sample and the sample on which the measure of fit is
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H0 : pg ¼ p̂g 8 g (15.21)

holds. It can be shown that in an extreme case, when there is just one rating grade at

all, the HSLS test statistic and the (squared) SPGH test statistic and the (squared)

approximated binomial test statistic are identical.

15.4.4 A Test for Comparing Two Rating Systems:
The Redelmeier Test

Up to now we have introduced approaches adequate for testing whether the final

outcomes of the rating system – forecasts of PDs for each obligor – are statistically

in line with their realisations. This is unquestionably the main objective of statisti-

cal backtesting. But, more questions arise when dealing with rating systems in

practice. One might be interested in knowing whether the quality of the rating

system is significantly enhanced when e.g., using so called human expertise in a

module subsequent to the machine rating module. This interest might arise from a

purely statistical perspective, but in banking practice, the rating systems which are

to be implemented and maintained, are cost intensive. These costs may include

salaries for the rating analysts as well as IT-related costs for operating systems and

data storage.

First of all we want to stress that only a comparison of two or more rating systems

by means of the same rating data is meaningful as mentioned in Sect. 15.4.2

and in Chap. 13. This means the same obligors (by name) in the same time period

and with the same default indicator definition have to be used.25 Therefore, while it

is in general not feasible to compare ratings across banks – one should think of

business confidentiality and protection of data privacy – this may be done in the

context of pooling,26 or especially when comparing two rating modules of the same

rating system of a bank. We may primarily attend to the latter.

The basic idea of the approach introduced by Redelmeier et al. (1991) is to

compare two MSEs calculated on the same data basis. A test statistic is derived

which allows us to test whether the deviation of a realised MSE from its expected

value is significantly different of the deviation of another realised MSE of its

expected value derived by an other module on the same data basis. As described

in Sect. 3.2 the module with the lower MSE is the better one.

computed are identically. In this case the distribution is w2 with G � 2 degrees of freedom. When

using the HSLS statistic for backtesting, we say “out-of-sample”, because there is no observation

coexistent in the estimation sample and the validation sample.
25See Chap. 13 and Hamerle et al. (2005).
26Here we mean cooperation of autonomous banks organized in a project structure with the object

of gathering data in order to enlarge the common data basis by merging banks individual data

bases.
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The test statistic27 is

ZR ¼
PN
i¼1

p̂2i;m1 � p̂2i;m2
� �

� 2 p̂i;m1 � p̂i;m2

� � � yi
h i

PN
i¼1

p̂i;m1 � p̂i;m2
� �2 p̂i;m1 þ p̂i;m2

� �
2� p̂i;m1 � p̂i;m2
� �h i
 �0;5 (15.22)

and follows a standard normal distribution under the hypotheses:

H0 : E E MSEm1ð Þ �MSEm1ð Þ � E MSEm2ð Þ �MSEm2ð Þ½ � ¼ 0 and

H1 : E E MSEm1ð Þ �MSEm1ð Þ � E MSEm2ð Þ �MSEm2ð Þ½ � 6¼ 0
(15.23)

Note that it only makes sense to compare two MSE derived from two modules

when each module passes a test of calibration like the SPGH test for example.

Otherwise, comparing two MSE with respect to the property calibration is useless

knowing that at least one of the two modules is not fulfilling the premise to be in

line with the forecasts.

We stress that we do not pay attention to theoretical considerations on statistical

tests regarding discriminatory power as presented in Chap. 13, but we use them in

our empirical analysis in Sect. 15.7.

15.5 The Use of Monte-Carlo Simulation Technique

As mentioned previously, the statistical tests introduced to date are based on crucial

assumptions like independent realisations of defaults and/or a large number of

observations in order to ensure that the central limit theorem holds. Using a

simulation technique, which is sometimes referred to as Monte-Carlo-Simulation,

allows us to drop these limiting assumptions. Fortunately, the basic ideas of the

approaches discussed in Sect. 15.4 could be taken up and be combined with the

default generation process of Sect. 15.3.

Furthermore, these techniques could be used to derive some results on the

analysis regarding the test power (b – error) under practical, near to reality condi-

tions. This is a fundamental concept in order to highlight the chance of a non-

detection of a low quality rating system.

27See Appendix B for details.
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15.5.1 Monte-Carlo-Simulation and Test Statistic: Correction of
Finite Sample Size and Integration of Asset Correlation

The fundamental idea is to derive the distribution of the test statistic (e.g., SPGH ZS,
HSLS w2HL) under the null hypothesis by simulation, that means by replication of a

random experiment several times. If basic assumptions like independent default

events or infinite sample size are not fulfilled, we can implement those circum-

stances in our simulation process and substitute the theoretical test statistic (e.g.,

normal distribution in the case of the SPGH test), by the one obtained by the

simulation. All test decisions are then based on the “new” simulated distribution

of the test statistic. The more simulation runs are used, the more accurately the new

simulated distribution can be determined.

Our approach is very similar to the one in Balthazar (2004) and could be

interpreted as an extension, as his focus was on tests for a single rating grade

whereas we want to use tests for all grades simultaneously.

Firstly, we consider the simulation under H0 : p̂k ¼ pk: The simulation

approach could be best illustrated in eight steps starting with (15.6):

1. Calculate the threshold ~yi;k ¼ F�1 pkð Þ depending on which rating grade the

obligor i is rated into (~yi:k ¼ yi � x0ib). Constitute the asset correlation r before

the start of the simulation.28

2. Generate a realisation of the random variable f ~ N(0,1). This represents the

common factor of the DGP, the systematic risk.

3. For each obligor i ¼ 1,. . ., N in the examined portfolio: generate a realisation of

the random variable ei ~ N(0,1). This represents the idiosyncratic, unsystematic

risk.

4. Calculate the value of ~yi under consideration of r.
5. Calculate whether obligor i defaults in this simulation run according to (15.7).

6. Calculate all the test statistics of interest.

7. Repeat steps two to six, say about 1 Mio times (i.e., 1 Mio simulation runs) and

generate a simulated distribution of the test statistic (based on the simulated

defaults).

8. Having a simulated distribution of the test statistic, the rejection areas of the H0

can be calculated and by comparison with the observed test statistic value, a test

decision could be derived for each test considered.

This approach permits a very flexible application because according to require-

ments, several values for the asset correlation could be analysed with respect to

their impact on the distribution of the test statistic. Secondly, the impact of the

portfolio size may be studied but this is not our focus as in normal backtesting

situations the portfolio is given. Nevertheless, someone might get a feeling for the

28We will discuss this point in detail later.
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variance caused by low numbers of obligors and/or the impact of the supposed asset

correlation r.

15.5.1.1 The Simultaneous Binomial Test (Sim Bin)

The above described eight steps are sufficient to generate the simulated w2-HSLS
test statistic and the simulated SPGH-ZS

29 in order to backtest a whole rating system –

all grades simultaneously – under more practical situations. Considering the exact

binomial test a further challenge arises. Whereas the binomial test by means of the

simulation has been extended for integration of correlation, (the number of defaults

under the simulation scenario divided by the number of obligors in the rating grade

generates the simulated test distribution), there still is the problem of using the results

of the grade-wise conducted binomial tests for the backtesting of all grades simulta-

neously. Our aim is to draw a conclusion for the whole rating system and not just for a

single grade.

The starting point of our consideration is the fact that for a rating system of 14

grades and a binomial test done with a ¼ 0.10, we have to expect that for 1.4

grades, the correct null hypothesis will be rejected. Someone who assumes that a

rating system is “good” only if the statistical test fails for no grade, is off the track.

Therefore, we suggest a two-staged approach within our simulation framework

when the binomial test is used. The two steps are:

1. Generate the rejection areas for each grade individually (maybe regarding some

correlation with help of the Monte-Carlo-simulation) on a certain a – level and

conduct the test decision.

2. Count the number of “grade-wise rejections” per simulation run (introduce a

step 7b in our 8 step approach) and use them to generate the distribution of the

“sum of grade-wise rejections”. When the 1 � asb-percentile of this distribution
is exceeded (i.e., the critical value) by the observed sum of rejections of the

individual grade-wise test, the rating system as a whole would fail the quality

check.30 Note that we perform a one-sided test in this second level. The reason is

that, assuming very low numbers of grade-wise rejections indicates a high

quality of a rating system and too many grade-wise rejections are a signal of a

low quality rating system.

29We have to emphasis that the simulated HSLS test statistic is generally not w2 distributed as well
as the simulated Spiegelhalter test statistic is not standard normal distributed but for convenience

we maintain the termini w2 and ZS.
30We use asb to label the simultaneous binomial test. We point out that the a - level of the

individual tests and the asb - level of the distribution of the sum of the grade-wise rejections

(simultaneous binomial test) need not to be the same value.
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15.5.1.2 Remarks on the Adherence of the a-Level with Using the Exact

Binomial Test

We would like to point out that because of the discreteness of the binomial

distribution, the a – level that is in fact being held is lower than the ascertained a
would suggest. We call this phenomenon “effect of dilution”. Therefore, a binomial

test is in general “too less conservative” as could be seen for example in Fig. 15.4

where the probability of being in the non-rejection area (1–8 defaults) is 96.24%

and therefore the real a – level is 3.76% which is evidently lower as the composed

level of 5%. The (correct) null hypothesis is rejected in much fewer cases than

expected.

This is especially true for samples with a low number of borrowers. The effect

disappears when the exact binomial distribution converges to the normal distribu-

tion with a growing number of borrowers or to any other continuous distribution

generated by simulation as described above.

The effect of dilution intensifies when using the simultaneous binomial test in

stage two as a discrete distribution is also used here (see e.g., Table 15.2).

15.5.1.3 Simulation Study A: Impact of Portfolio Size and Correlation

To demonstrate our theoretical findings above, we perform a small simulation

study. We have three portfolios, each with the same relative distribution over the

grades as shown in Fig. 15.5, but with different absolute size. We start with a small

portfolio, with N ¼ 200 obligors representing for example a portfolio of large

corporates or financial institutions, next we have a portfolio of N ¼ 1,000 acting

Table 15.2 Results from the simulation study A, non-rejection areas, 1 Mio Runs, a ¼ 0.05

Portfolio size SPGH HSLS Identical

decisions

Sim Bina Exact Bin, g ¼ 8

r N Ng¼8 Lower

bound

Upper

bound

Upper

bound

in %b Upper

boundc
Lower

bound

Upper

bound

0.00 200 22 �1.7551 2.1437 34.40 95.74 1 0.0000 0.0455

0.01 �1.8448 2.4306 35.64 95.93 1 0.0000 0.0455

0.10 �2.0505 4.7912 54.98 99.45 1 0.0000 0.0909

0.00 1,000 110 �1.8697 2.0403 33.05 95.48 2 0.0000 0.0364

0.01 �2.5659 3.1637 36.21 96.09 2 0.0000 0.0364

0.10 �4.6298 9.5255 93.89 97.51 2 0.0000 0.0455

0.00 10,000 1,100 �1.9569 1.9665 28.91 95.39 2 0.0046 0.0164

0.01 �6.1455 7.7193 65.90 98.05 2 0.0036 0.0200

0.10 �14.0278 29.2670 527.55 97.50 4 0.0000 0.0391
aIn the first and the second step we used a a ¼ 0.05 regarding the simultaneous binomial test
bIn percent of the 1 million simulation runs
cMarks the upper bound of the non-rejection area. For example in the first row (r ¼ 0.00 and

N ¼ 200), simultaneous binomial test: If 2 or more grade-wise rejections are observed, the rating

system as a whole would be rejected

Exact binomial test for rating grade 8: If a default rate of more than 0.0455 is observed (more than

22 � 0.0455 ¼ 1 default) the null hypothesis can be rejected
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as an example for a portfolio of middle sized corporates and finally we analyse a

portfolio consisting of N ¼ 10,000 obligors which could be seen as a portfolio of

small business clients.

The distribution we applied is bell-shaped31 as could be seen from Fig. 15.5 with

an average probability of default �p ¼ 0:0308 and pg’s according to the master scale

of Sect. 15.2.4 (e.g., pg¼8 ¼ 0.0105). All tests are done with a ¼ 0.05.

In Table 15.2 the results of our simulation study are presented. We show the

lower and upper bound of the SPGH for the three portfolio sizes and furthermore,

for three assumed asset correlations r ¼ 0.00, r ¼ 0.01 and r ¼ 0.10. For the

HSLS it is sufficient that we show only the upper bound because the lower bound is

fixed at zero. We also report in the column titled “Identical decisions” how often the

SPGH and HSLS came to the same test decision as we want to analyse whether

someone has to await different (and therefore confusing) test decisions when

applying both tests. As we can see from our study, in 95 to >99%, the HSLS and

SPGH reach the same test decision.

In general, we can state, that when r increases, the distribution gets broader and

therefore the bounds of the non-rejection areas move outwards. Especially for the

exact binomial test and the simultaneous binomial test, this effect is somewhat

diluted because of the discrete character of these distributions.

When we look at the SPGH under r ¼ 0.00, we clearly see how the approxima-

tion to the standard normal distribution is improved when the number of observa-

tions is increased. For N ¼ 10,000 we get very close to the ZS ¼ F�1(0.025) � �1.96
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Fig. 15.5 Distribution of the borrowers over the rating grades in simulation study A

31Often in banking practice the master scale is constituted in the way that many obligors are rated

in the grades in the middle of the master scale and fewer in the very good or very bad grades.
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(lower bound) and ZS ¼ F�1(0.975) � þ1.96 (upper bound) we expect. The same

is true in principle for the HSLS but the convergence is much slower, as it holds

w(0.95,14) � 23.68.

What is interesting is that in the presence of asset correlation (r > 0.00), an

increased in N leads seemingly not to a convergence of the boundaries to any value.

Instead, when we extend from N ¼ 1,000 to N ¼ 10,000, the non-rejection area

increases dramatically from [�4.6298; þ 9.5255] to [�14.0278; þ 29.2670] by

r ¼ 0.10. The same holds for HSLS and Sim Bin but not for the exact binomial test.

Now, we turn to the Sim Bin as we reported the simulation details in Table 15.3.

As stated already above, we expect using a ¼ 0.05, a number of 0.05�14 ¼ 0.7

grade-wise rejections on average (expected value). Because of the effect of dilution,

this value was not achieved as could be calculated from Table 15.3: For r ¼ 0.01

and N ¼ 10,000, we get 0.57 whereas the effect of dilution is quite higher for

r ¼ 0.00, as we get just 0.49. Therefore, the effect of dilution on step one and step

two is weakened when correlation is taken into account.

We conclude this subject with the proposition that all of the three tests conducted

within our simulation framework are appropriate for means of backtesting. It is

somewhat a question of flavour which test is preferred for banks’ backtesting. We

tend to suggest SPGH because of its “most continuous” distribution generated by

the simulation.

15.5.1.4 Remarks on the Asset Correlation

As can be seen from Table 15.2, the extent of the asset correlation r has a very high

impact on the distributions of the test statistics and therefore finally on the test

decisions itself. We feel it is worthwhile to think twice which asset correlation to

use. Though we do not want to describe how asset correlations can be estimated in

Table 15.3 Simultaneous

binomial test, portfolio size

N ¼ 10,000, a ¼ 0.05

Number of

grade-wise rejections

r ¼ 0.10 r ¼ 0.00

0 86.1791 60.7638

1 5.9460 30.8927

2 1.6888 7.2325

3 0.9566 1.0092

4 0.6389 0.0952

5 0.5221 0.0067

6 0.4445 –

7 0.4462 –

8 0.4679 –

9 0.5172 –

10 0.5810 –

11 0.6455 –

12 0.5681 –

13 0.3122 –
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detail, we discuss some basic considerations regarding the right choice of asset

correlations and its impact on PD validation.

First of all, the asset correlations used in the backtesting of the bank’s internal

rating model should be in line with the asset correlations used in other fields of the

bank wide (credit) risk management systems as in the credit portfolio model. This

guarantees a consistent bank wide risk assessment.

In practice, asset correlations are often not estimated on bank internal data, but

based on empirical studies on external data which serve as a guideline. For

example, Hamerle et al. (2003) report that asset correlations in a point-in-time

rating framework are in a range of roughly 0.01–0.02. This is slightly higher than

assuming no asset correlation at all – the most conservative approach regarding

statistical backtesting – but much lower than the asset correlations used in the Basel

II framework. In the latter, the asset correlation depends on the corresponding

exposure class and varies from r ¼ 0.04 (exposure class: Qualifying Revolving

Retail) over r ¼ 0.15 (Residential Mortgage) up to r ¼ 0.16 (Other Retail),

r ¼ 0.24 (Corporates, Sovereigns and Banks), and even r ¼ 0.30 for High Volatile

Commercial Real Estate. These Basel II asset correlations might not be taken as

best estimators of asset correlations by nature, but rather are assessed by political

regulatory concerns in the light of being conservative.

15.5.2 Assessing the Test Power by Means
of Monte-Carlo-Simulation

15.5.2.1 Theoretical Background

As mentioned above, a further application of the Monte-Carlo-Simulation is the

assessment of the type II error or the pendant, called test power. Our aim is to derive

an approach for getting an idea of how well our tests work with respect to the test

power. In general, the power of a statistical hypothesis test measures the test’s

ability to reject the null hypothesis when it is actually false – that is, to make a

correct decision.

Table 15.4 gives an overview of the possibilities of correct and incorrect

decisions one can make with statistical hypothesis tests.

The type II error (b-error) is defined as the probability of not rejecting H0 when

in fact H1 is right. The power of a statistical hypothesis test is defined as the

probability of not committing a type II error. It is calculated by subtracting the

probability of a type II error from one: power ¼ (1 � b).

Table 15.4 Types of test decisions and its consequences

Test decision

H0 H1

Reality H0 is true Correct decision Type I Error (a-Error)
H1 is true Type II Error (b-Error) Correct decision
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Whereas we can control the a-error by setting a to a specific value (usually 0.01,
0.05, or 0.10), we have no control of the b-error simultaneously. The reason is that

the b-error depends on the hypothesisH1. We will not go into theoretical details, but

demonstrate it with an example.

We refresh the example for the exact binomial test of Sect. 15.4.1.1 with

H0: pg¼8 ¼ 0.0105 and H1: pg¼8 6¼ 0.0105. With this pair of hypotheses, there

are an infinite number of possibly alternative hypotheses. Therefore, we have to

pick out one of these. For example, we can specify H1: pg¼8 ¼ 2�0.0105 ¼ 0.0210.

Thus, we can calculate the possibility of detecting a false H0 when the true PD of

the grade is twice as high as predicted.

The grey bars in Fig. 15.6 mark the distribution underH1. The area outside of the

non-rejection area of H0 (no default and at least 9 defaults) and under the H1-

distribution determines the test power.

In our example, we get a power of 0.3166. In general – ceteris paribus – the

power of a test rises if

l The number of borrowers rises,
l The distance of values under H0 and H1 (here the PDs) rises,
l The a – level is raised.

15.5.2.2 Simulation Study B: What is the “Best Test”?

The concept of assessing the test power is obviously not restricted to the exact

binomial test but applicable to other statistical tests and in particular, the SPGH test

and the HSLS test and even the simultaneous binomial test. Furthermore, the

concept works well in our framework which allows correlations.
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Fig. 15.6 Illustration of a-error and b-error with the exact binomial test
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In the following, we take the simulation framework of Sect. 15.5.1 and add more

steps in order to analyze the test power. Now, steps one to eight have to be done

under H0 and again under H1. Finally the area outside the non-rejection area of H0

has to be calculated under the H1 distribution.
32

The focus is twofold:

l First, we want to analyse how the power reacts under certain conditions such as

varying numbers of borrowers and/or asset correlations.
l Second, we want to analyse which of our tests – SPGH, HSLS or simultaneous

binomial – performs best.

We call test A better than another test B if it has more power (a lower type II

error), with respect to an alternative hypothesis H1, but at the same time holds the

assumed a-level.33, 34

We emphasise that we do not want to carry out a stringent mathematical proof,

but merely provide an initial glance within our simulation framework.

This chapter is strongly orientated towards real banking practice and we con-

tinue this approach in this subsection: We distinguish three modes which may serve

as point alternative hypothesis H1:

l Mode 1: a fraction 1 – q of all borrowers is assumed to be classified in the correct

grade where the fraction q is randomly distributed over all rating grades.
l Mode 2: all borrowers are graded up by s grades
l Mode 3: all borrowers are graded down by s grades35

Whereas Mode 2 and Mode 3 describe a systematic, monotonic error in the

rating system,36 Mode 1 represents a mixture of incorrect ratings and might be the

most realistic problem in backtesting rating systems.

Table 15.5 shows the result of our simulation study. As expected, an increase in

portfolio size leads, ceteris paribus, generally to an increase in power. This is true

for the three tests and for the three modes regarded. Further on, an increase in asset

correlation – leaving the portfolio size constant – decreases the power.

32We assume hereby again that the relative frequency resulting from the 1 million runs is a good

enough approximation for the probability.
33This is similar but - not identical - to the concept of “uniformly most powerful test”. A test is

called a “uniformly most powerful test” to a level a if under a given initial situation it maximizes

the probability of rejecting the H0 on all distributions or parameter values belonging to the

alternative hypothesis H1.
34The latter is fulfilled automatically as we derived the boundaries if the non-rejection area within

the simulation.
35Rating grade 1 (14) has an upper (lower) ‘absorbing boundary’ which means that a borrower in

the first (last) rating grade remains in it and cannot become better (worse).
36Within the master scale we use (see Sect. 15.2.4) the PD from one rating grade to the next worse

grade increases by a factor between 1.75 and 2 depending on the specific grade.
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It is remarkable that when looking at the SPGH already at N ¼ 1,000 and by

r ¼ 0.01 or lower for all three modes, a power near to or over 0.5 is achieved. But the

picture is quite mixed when regarding the HSLS or Sim Bin. These two tests perform

worse in comparison to SPGH especially for Mode 2 and a small portfolio size.

Analysing the relative competitiveness of the SPGH, HSLS and Sim Bin the

picture is not unambiguous. Regarding Mode 1, which stands for an interchange of

obligors’ assessed rating, HSLS seems to be the best choice. SPGH outperforms

when the systematic up-grade by one grade is analysed as an alternative hypothesis.

Even the Sim Bin in some situations has the highest power.

What can we learn from this simulation study about power and what are the

consequences for practical backtesting? We conclude that unfortunately none of the

statistical test we analysed clearly outperforms the others in all circumstances. For

practical issues, all tests should be performed when an assessment of the probability

of non-detecting a low quality rating system is required.

Table 15.5 Results from the simulation study B, power, 1 Mio runs, a ¼ 0.05

r N SPGH HSLS Sim Bin

Mode 1: q ¼ 0.5

0.00 200 0.1746 0.2408 0.1071

0.01 0.1482 0.2345 0.1066

0.10 0.0686 0.1595 0.1071

0.00 1,000 0.7644 0.9987 0.9763

0.01 0.4345 0.9954 0.9763

0.10 0.1001 0.8239 0.9759

0.00 10,000 >0.9999 >0.9999 >0.9999

0.01 0.6839 >0.9999 >0.9999

0.10 0.1111 0.9606 >0.9999

Mode 2: all borrowers graded up by s ¼ 1

0.00 200 0.1927 0.0203 0.0015

0.01 0.1863 0.0200 0.0016

0.10 0.0036 0.0204 0.0016

0.00 1,000 0.7605 0.0291 0.0139

0.01 0.4697 0.0228 0.0138

0.10 0.1369 0.0130 0.0138

0.00 10,000 >0.9999 >0.9999 0.9996

0.01 0.7510 0.6141 0.9996

0.10 0.1543 0.0078 0.9996

Mode 3: all borrowers graded down by s ¼ 1

0.00 200 0.3428 0.1699 0.1568

0.01 0.2836 0.1719 0.1563

0.10 0.1217 0.1385 0.1560

0.00 1,000 0.9119 0.4875 0.4277

0.01 0.5854 0.4275 0.4282

0.10 0.1362 0.1905 0.4295

0.00 10,000 >0.9999 >0.9999 >0.9999

0.01 0.7771 0.8669 >0.9999

0.10 0.1388 0.2212 >0.9999
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What is most important at all is that especially the higher management should be

aware that there is37 a (perhaps significant) probability that in fact H0 is wrong, but

the statistical tools did not reveal this. Our simulation approach can be interpreted

as an instrument to fulfil this purpose.

15.6 Creating Backtesting Data Sets: The Concept

of the Rolling 12-Month-Windows

Up to now we have shown some concepts for statistical backtesting, but when

dealing with real data, the first step is always to create a specific sample on which a

meaningful analysis can be carried out.

In banking practice ratings are performed continually over the year, for instance,

when a new customer must be evaluated, a credit line requires extension, new

information (e.g., financial figures) concerning a borrower already in the portfolio

comes up, or questions of any fields regarding the creditworthiness are recognised.

We propose an approach for creating backtesting samples clearly in line with

l The definition of what a rating is, namely a forecast for the 1-Year-PD.
l What could be found in the IT-database at any point of time we may look into it.
l The general concept a bank manages its credit risks including the calculation of

Basel II risk capital.

From these guidelines, it follows that whenever we look into the rating database

we find the bank’s best assessment of the borrower’s probability of default for the

next year. This is irrespective of how old the rating is at the time we look into the

database. This is because when the bank has an inducement that when there is a

noteworthy change in the creditworthiness of the borrower (its PD), the bank has to

alter the rating immediately.38 This means that a re-rating just once a year, for

example whenever new annual accounts are available, might be not adequate in the

case when other, relevant information regarding the PD in any form is made

available. When there is no change in the rating, it remains valid and predicates

each day the same, namely the forecast of the 1-year-PD from the day we found it in

the database.

In the same way, the second essential variable, the defaults and non-defaults,

have to be collected.

The termination of the backtesting sample is done according to the principle of

reporting date. We call this approach “cutting slices” or “rolling 12-months-window”

(compare to Fig. 15.7).

37This is true even if the hypothesis H0 “The rating system forecasts the PD well”. could not be

rejected at a certain level a.
38See BCBS (2005a), } 411 and } 449.
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We start with the first slice called “Q1/2004”, which begins at January 2004. We

look in the database and find borrower A with rating grade 8. He was rated with

grade 8 a few months before (and gets other ratings after First January 2004), but

has grade 8 at the beginning of January 2004. Within the next 12 months (up to the

end of December 2004) he did not get into default, this was indicated with a☺. He
enters the slice “Q1/2004”, as non-default and rating grade 8 (yA ¼ 0;
p̂g¼8 ¼ 0:0105). The second borrower B enters with grade 10 but as default, because
he defaulted somewhere in the third quarter of 2004 indicated with N (yA ¼ 1;
p̂g¼10). Borrower C was not found in the rating database at January 1, 2004 as he
was rated for the first time just before the beginning of the second quarter 2004.
Therefore he is not contained in slice “Q1/2004”. Borrower D enters with grade 12
as non-default, because the default we observe is past the end of the 12 month period
which ends by December 31, 2004. Borrower E is found in the database with a rating
grade 5 but he ended the business connection with the bank (indicated by L).
Therefore it is impossible to observe if he has defaulted or survived within the 12
month period. This observation for borrower E should be included in the slice “Q1/
2004” as a weighted non-default, where the proportion is calculated as the quota
(number of months it has been observed)/12. A non-consideration or full consider-
ation may cause biases.

In the same way, the following slices have to be constructed. We show the

compositions of the slices as a summary in the left side of Fig. 15.7.
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Fig. 15.7 Concept of the rolling 12-months-windows – the backtesting slices
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For practical issues, ultimo data files can be used best. So for the slice “Q1/

2004”, we use the ultimo data files from December 2003. In Fig. 15.7 we present the

slice on a quarterly basis but sample creation can also be done on a monthly basis.

This has the advantage that some elements of monitoring are fulfilled and nearly no

rating and default is lost. The only exception is when a rating changes within a

month. Therefore, the initial rating was not seen in the ultimo data file. The same is

true when a rating is completed and the rated borrower gets into default before he

has passed his first end of month. We recommend analysing these special cases

separately, for example regarding detection of fraud.

When using the introduced method of rolling 12-month-windows, it is of

concern that the slices greatly overlap. For a tuned (entries and exits are balanced,

dates of rating compilations are evenly distributed all over the year) portfolio of

borrowers with long term business relationship, two subsequent slices may overlap

by about 11/12. As a consequence, we expect that we get often the same test results

for two or more subsequent slices. We will see this in the next section, where we

demonstrate our theoretical considerations by applying them to real world rating

data.

15.7 Empirical Results

15.7.1 Data Description

In this section, we demonstrate the application of our concepts to real rating data.

The data used is part of a rating system introduced in the beginning of 2004 for

small business clients in Germany.39 We analysed slices beginning in February

2004 up to January 2005.40 So for backtesting slice “Jan2005”, we considered the

defaults and non-defaults up to the end of December 2005. Here we can see that for

backtesting a complete vintage of ratings, in fact a period of two years, is needed.

The rating system follows mainly the architecture sketched in Sect. 15.2.2, and is

composed of various parallel sub-models for the machine rating module. These sub-

models differ according to whether there is a tradesman, freelancer/professional41

or a micro corporate to be rated. Micro corporates dominate with about 45% of all

ratings, followed by tradesman (about 30%) and remaining freelancer and profes-

sionals with about 25%.

The basic structure of all sub-models contains approximately a dozen quantita-

tive and qualitative risk drivers as it is usual for this kind of portfolio in banking

39In order to avoid disclosure of sensitive business information, the data base was restricted to a

(representative) sub-sample.
40For the construction of e.g. the slice ‘Feb2004’ we used the ultimo data store of 31st January

2004.
41Like architects, doctors, or lawyers.

338 R. Rauhmeier



practice. Within the second module, “expert guided adjustment”, up or down

grading of the machine rating can be done. For micro corporates a “supporter

logic” module is available.

In our empirical analysis, we want to examine the slices “Feb2004” to “Jan2005”

and in detail the comprehensive slice “Jan2005”. Altogether, more than 26,000

different ratings can be analysed in the slices “Feb2004” to “Jan2005”. Whereas

slice “Feb2004”, consists of little more than a hundred ratings because of the recent

launch of the rating system, the numbers in the slices increase steadily up to more

than 24,000 in “Jan2005”.

Note that with our concept of rolling 12-months-windows, the slices overlap by a

high degree. For example “Jan2005” and “Dec2004” have 88% observations in

common, slices “Jun2004” and “Jul2004” about 75%.

15.7.2 The First Glance: Forecast Versus Realised Default Rates

When talking about the quality of a rating system, we get a first impression by

looking at forecast default rates and realised default rates. Figure 15.8 shows that

realised default rates vary between 2 and 2.5%, whereas the forecast PD under-

estimates the realised default rate slightly for almost all slices.

Furthermore, it can be seen that on average, the final rating is more conservative

than the machine rating. This means that the “expert guided adjustments” and

“supporter logic” on average lead to a downgrade of borrowers. This might be an
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interesting result, because in banking practice the opposite is often assumed. The

line of thought is, rating analysts or loan managers are primarily interested in

selling loans which is easier – because of bank internal competence guidelines or

simply by questions regarding the credit terms – if the machine rating is upgraded

by the expert. The “accurate rating” is often assumed to be of subordinate impor-

tance for the loan manager. Here we have an example, which disproves this

hypothesis. We will see whether this difference of machine rating and final rating

regarding the quality of forecasts is significant or not in Sect. 15.7.4.

15.7.3 Results of the Hypothesis Tests for all Slices

As we are interested in whether the deviation of the final rating from the default rates

is significant, we focus on the SPGH and the HSLS test. Table 15.6 shows the results.

For r ¼ 0.01, the SPGH rejects in no slice the null hypothesis of “being

calibrated”, the HSLS rejects in two slices tightly. For the very conservative

approach with r ¼ 0.00, in some slices the null hypothesis has to be rejected for

Table 15.6 Test decisions by slice, final rating, 1 Mio runs, a ¼ 0.05

Slice r SPGH HSLS

Lower

bound

Upper

bound

Test

statistic

Decision Upper

bound

Test

statistic

Decision

Feb2004 0.00 �1.5063 2.2255 0.2075 No rej. 25.3473 5.7982 No rej.

Mar2004 �1.8380 2.0736 �0.3214 No rej. 27.7315 6.1607 No rej.

Apr2004 �1.8948 2.0137 0.2490 No rej. 21.5598 6.8883 No rej.

May2004 �1.9512 1.9780 0.9859 No rej. 21.3653 10.8339 No rej.

Jun2004 �1.9549 1.9697 2.0617 Rej. 20.8402 17.1008 No rej.

Jul2004 �1.9544 1.9697 1.3236 No rej. 20.6058 33.3231 Rej

Aug2004 �1.9549 1.9673 2.0724 Rej 20.3097 67.6734 Rej

Sep2004 �1.9626 1.9675 2.4033 Rej 20.3765 78.3339 Rej

Oct2004 �1.9570 1.9691 2.1408 Rej 20.5659 68.2907 Rej

Nov2004 �1.9575 1.9604 1.6973 No rej. 20.6235 70.2873 Rej

Dec2004 �1.9592 1.9629 1.0893 No rej. 20.6672 78.3400 Rej

Jan2005 �1.9569 1.9620 0.9927 No rej. 20.9511 96.3306 Rej

Feb2004 0.01 �1.5063 2.3911 0.2075 No rej. 26.5294 5.7982 No rej.

Mar2004 �2.2839 2.9406 �0.3214 No rej. 30.5962 6.1607 No rej.

Apr2004 �3.1715 4.0670 0.2490 No rej. 29.4874 6.8883 No rej.

May2004 �3.9862 5.1376 0.9859 No rej. 35.4975 10.8339 No rej.

Jun2004 �4.7208 6.1255 2.0617 No rej. 43.0297 17.1008 No rej.

Jul2004 �5.5315 7.2272 1.3236 No rej. 53.6896 33.3231 No rej.

Aug2004 �6.2755 8.2214 2.0724 No rej. 65.1878 67.6734 Rej

Sep2004 �6.9194 9.0275 2.4033 No rej. 76.8287 78.3339 Rej

Oct2004 �7.5017 9.7802 2.1408 No rej. 90.2356 68.2907 No rej.

Nov2004 �8.0797 10.5260 1.6973 No rej. 103.8628 70.2873 No rej.

Dec2004 �8.6682 11.2619 1.0893 No rej. 119.0537 78.3400 No rej.

Jan2005 �9.1811 11.9508 0.9927 No rej. 130.8062 96.3306 No rej.
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SPGH and HSLS. The simultaneous binomial tests (results are not shown here

explicitly), shows that even for r ¼ 0.00, the null hypothesis in no slice could be

rejected, indicating a good quality of the rating system, too. Note the different test

decisions of the consulted tests SPGH and HSLS for some slices.

From Table 15.6, we can also see how well the approximation of the SPGH to

the standard normal under H0, works as the number of ratings in the slices increases

for r ¼ 0.00. The same is true for the HSLS, when we take into account that only

10 of 14 grades have a large number of observations42 w2(0.95,10) ¼ 20.48.

Secondly, we might find it impressive how broad the non-rejection area is when

taking correlation into account, even when used for a very low asset correlation of

r ¼ 0.01. Notice that the non-rejection areas for r ¼ 0.01 of SPGH, HSLS and

Sim Bin, get even broader when the number of ratings increases, although the

relative distribution of the borrowers over the grades only changes negligibly. The

same phenomenon was observed in the simulation study A, Table 15.2.

15.7.4 Detailed Analysis of Slice “Jan2005”

Now we turn to a more detailed analysis of slice “Jan2005”, as we can observe up to

now that the rating system passes our quality checks well. The distribution, not

shown here explicitly, of the observations over the rating grades, is roughly bell-

shaped, for example about 900 observations in grade 4, up to 4,500 in grade 8 and

1,000 in grade 12.

We can see in Fig. 15.9 that for three rating grades, the realised default rate is in

the rejection area for the binomial test. Hereby we assumed r ¼ 0.01. The realised

default rate increases in the rating grades as is assumed and therefore confirms our

previous impression of the rating system we obtained from the SPGH and HSLS.

Next we analysed the power of our tests. As could be seen from Table 15.7, the

high number of ratings leads to a high power of all tests in all analysed circum-

stances. When assuming no correlation, the power is >0.9999 for each of the three

tests. When assuming r ¼ 0.01 we get, e.g., for the SPGH in Mode 3, a power of

0.7548. This means that the SPGH – when in fact all borrowers should have got a

rating one grade worse – would have detected this with a probability of about 76%.

42Ratings Grades 1 to 3 of the master scale are intended mainly for sovereigns, international large

corporates and financial institutions with excellent creditworthiness and could only in exceptional

cases be achieved by small business clients. The worst rating grade is assigned to a very low

number of borrowers in the data base, what is comprehensible because the rated portfolio mainly

consists of initial ratings, so potential borrowers with a low creditworthiness are not accepted by

the bank at all and therefore do not get into the rating database.
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To get a complete picture of the quality of the rating system and the regarded

portfolio, we look at its discriminatory power.43 Figure 15.10 displays the ROC-

Curves for the machine rating and the final rating. For both rating modules, no

discrepancies could be observed from the ROCs. We see that the ROC-Curve of

final rating is always atop of the ROC-Curve of the machine rating, indicating an

increase in discriminatory power when human expert assessment is brought into
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Fig. 15.9 Realised default rates and exact binomial test by grades, slice “Jan2005”, 1 Mio Runs,

r ¼ 0.01, a ¼ 0.05

Table 15.7 Analysis of power, final rating, slice “Jan2005”, 1 Mio runs, a ¼ 0.05

r SPGH HSLS Sim Bin

Mode 1: q ¼ 0.5

0.00 >0.9999 >0.9999 >0.9999

0.01 0.7894 >0.9999 >0.9999

Mode 2: all borrowers graded up by s ¼ 1

0.00 >0.9999 >0.9999 >0.9999

0.01 0.6798 0.4888 0.5549

Mode 3: all borrowers graded down by s ¼ 1

0.00 >0.9999 >0.9999 >0.9999

0.01 0.7548 0.8201 0.8227

43For a definition of the measures ROC-Curve and AUROC and their statistical properties, we

refer to Chap. 13.
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account. The AUROC of the final rating is therefore a bit higher (0.7450), than

those of the machine rating (0.7258).

As could be seen from Table 15.8, the AUROC and MSE of the machine rating

and final rating differ significantly. For comparing the MSE, we used the Redel-

meier test described in detail in Sect. 15.4.4.44

To draw an overall result, the rating system passes our quality checks very well.

With the high number of ratings in the analysed portfolio, we would have been able

to detect potential shortcomings, but we did not find any. As the system was

introduced 2 years ago, this was the first backtest that was performed, and the

more highly this good result is to be regarded.
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Fig. 15.10 ROC-curve for final rating and machine rating, slice “Jan2005”

Table 15.8 Machine rating versus final rating

MSE AUROC H0 p-value

Machine rating 0.0230 0.7258 MSEmach.rating ¼ MSEfin.rating <0.0001

Final rating 0.0226 0.7450 AUROCmach.rating ¼ AUROCfin.rating <0.0001

44As it was a prerequisite that the machine rating should pass a test on calibration we conducted the

SPGH and the HSLS. We find that we could not reject the null hypothesis of being calibrated with

r ¼ 0.01, but we have to reject the null hypothesis with r ¼ 0.00.
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15.8 Conclusion

In this chapter we dealt with validation of rating systems, constructed to forecast a

1-year probability of default. Hereby, we focused on statistical tests and their

application for bank internal purposes, especially in the Basel II periphery. We

built up a simulation based framework to take account of dependencies in defaults

(asset correlation), which additionally has the potential to appraise the type II error,

i.e., the non-detection of a bad rating system, for optional scenarios. Hereby, the

well known exact and approximated binomial test and the Hosmer-Lemeshow-

w2 test are used, but we also introduced the less popular Spiegelhalter test and an

approach called simultaneous binomial test, which allow the testing of a complete

rating system and not just each grade separately. As it is important for banks to

compare the quality of modules of their rating system, we also refer to the

Redelmeier test. As for any applied statistical method, building test samples is an

important issue. We designed the concept of “the rolling 12-months-window” to

fulfil the Basel II and bank’s internal risk management requirements as well as

using the bank’s IT-environment (rating database) effectively and is in harmony

with our definition of what a rating should reflect, namely the bank’s most accurate

assessment of the 1-year-PD of a borrower. All concepts are demonstrated with a

very up-to-date, real-life bank internal rating data set in detail.

We focus mainly on statistical concepts for rating validation (backtesting) but it

has to be emphasised that for a comprehensive and adequate validation in the spirit

of Basel II, much more is required. To name a few, these include adherence of

defined bank internal rating processes, accurate and meaningful use of ratings in the

bank’s management systems and correct implementation in the IT-environment.

Appendix A

We show that the SPGH test statistic ZS is equal to the Zbin test statistic of the

approximated binomial test in case where there is only one single PD. This is when

all obligors are rated in the same rating grade g. We start with (15.19) and substitute

p̂i ¼ p̂g respectively pi ¼ pg because we argue under H0:

ZS ¼

1

Ng

XNg

i¼1

yi � pg
� �2 � 1

Ng

XNg

i¼1

pg � 1� pg
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
g

XNg

i¼1

1� 2pg
� �2 � pg � 1� pg

� �
vuut

¼
PNg

i¼1

y2 � 2 � pg�
PNg

i¼1

yþ Ng � pg2 �
PNg

i¼1

pg � 1� pg
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ng � 1� 2pg

� �2 � pg � 1� pg
� �q
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¼
PNg

i¼1

y� 2 � pg�
PNg

i¼1
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PNg
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y� N � pg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ng � pg � 1� pg

� �q

¼ Ng � �y� N � pgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ng � pg � 1� pg

� �q

and get (15.14).

Appendix B

Wewant to derive the test statistic ZR of the Redelmeier test as it is shown in (15.22)

according to Redelmeier et al (1991). We start with the MSE from module 1 as

MSEm1 ¼ 1

N

XN
i¼1

yi � p̂i;m1
� �2 ¼ 1

N

XN
i¼1

yi � 2 � yi � p̂i;m1 þ p̂2i;m1
� �

(15.24)

Because of the randomness of the defaults the MSE will differ from its expected

value

E MSEm1ð Þ ¼ 1

N

XN
i¼1

pi � p̂i;m1
� �2 ¼ 1

N

XN
i¼1

pi � 2 � pi � p̂i;m1 þ p̂2i;m1
� �

(15.25)

The difference of the realized and the expected MSE for module 1 is

dm1 ¼ E MSEm1ð Þ �MSEm1

¼ 1

N

XN
i¼1

yi � 2 � yi � p̂i;m1 � p̂i þ 2 � pi � p̂i;m1
� �

(15.26)
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The same consideration has to be done for module 2:

dm2 ¼ E MSEm2ð Þ �MSEm2

¼ 1

N

XN
i¼1

yi � 2 � yi � p̂i;m2 � p̂i þ 2 � pi � p̂i;m2
� �

(15.27)

To determine whether two sets of judgments are equally realistic we compare the

difference between dm1 and dm2:

dm1 � dm2 ¼ 2

N

XN
i¼1

p̂i;m1 � p̂i;m2
� � � pi � yið Þ (15.28)

As it can be seen from (15.28) the true but unknown PD pi is still required and

has therefore be assessed. A choice might be to set all pi equal to the average of the
corresponding judgments (p̂i;m1,p̂i;m2) (consensus forecast).45 This seems to be a

reasonable choice since we presumed that each module itself has satisfied the null

hypothesis of being compatible with the data. Using the consensus forecast

pi ¼ 0:5 � p̂i;m1 þ p̂i;m2
� �

(15.29)

we get

dm1 � dm2

¼ 2

N

XN
i¼1
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� � � 0:5 � p̂i;m1 � 0:5 � p̂i;m2 � yi

� �
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� �

¼ 1

N

XN
i¼1

yi � 2 � yip̂i;m1 þ p̂2i;m1
� �

� yi � 2 � yi � p̂i;m2 þ p̂2i;m2
� �h i

¼ 1

N

XN
i¼1

yi � p̂i;m1
� �2 � 1

N

XN
i¼1

yi � p̂i;m2

� �2

¼ MSEm1 �MSEm2

(15.30)

It is interesting that in the case we use the consensus forecast for substituting pi
the term dm1 � dm2 is simply the difference of the two realized MSEs.

In the next step we calculate the variance using the fact that the expected value of

dm1 � dm2 is zero under the null hypothesis, see (15.23).

45Other approaches are possible, e.g. one may get the “true” pi’s from an external source.

346 R. Rauhmeier



Var dm1 � dm2ð Þ ¼ Var
2

N

XN
i¼1

p̂i;m1 � p̂i;m2
� � � pi � yið Þ

 !

¼ 4

N2

XN
i¼1

p̂i;m1 � p̂i;m2
� �2 � pi � 1� pið Þ

(15.31)

Finally we get the test statistic

ZR ¼ dm1 � dm2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var dm1 � dm2ð Þp

¼
PN
i¼1

p̂2i;m1 � p̂2i;m2
� �

� 2 p̂i;m1 � p̂i;m2
� � � yi

h i

PN
i¼1

p̂i;m1 � p̂i;m2
� �2 p̂i;m1 þ p̂i;m2

� �
2� p̂i;m1 � p̂i;m2
� �h i
 �0;5

(15.32)
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Chapter 16

Development of Stress Tests for Credit Portfolios

Volker Matthias Gundlach

16.1 Introduction

Advanced portfolio models combined with naive reliance on statistics in credit risk

estimations run the danger of underestimating latent risks and neglecting the peril

arising from very rare, but not unrealistic risk constellations. The latter might be

caused by abnormal economic conditions or dramatic events for the portfolio of

a single credit institute or a complete market. This includes events of a political or

economic nature. To limit the impact of such sudden incidents, the study of fictional

perturbations and shock testing the robustness/vulnerability of risk characteristics

is required. This procedure is known as stress testing. It allows the review and

actualisation of risk strategies, risk capacities and capital allocation. Thus it can

play an important role in risk controlling and management in a credit institute.

This view is shared by the banking supervision, in particular by the Basel Com-

mittee on Banking Supervision of the Bank for International Settlements (BIS).

Consequently, stress testing for credit risk plays a role in the regulatory requirements

of the Revised Framework on the International Convergence of Capital Measure-

ments and Capital Standards (Basel II). Nevertheless, it has not reached the standards

of stress testing for market risk estimations, which has been common practice for

several years (see Breuer and Krenn 1999).

In the following, we describe the purpose and signification of stress testing for

credit risk evaluations. Then we recall the regulatory requirements, in particular of

the Basel II framework. We describe how stress tests work and present some well-

established forms of stress tests, a classification for them and suggestions how to

deal with them. We also include examples for illustration. To conclude, we offer

a concept for an evolutionary way towards a stress testing procedure. This is done

in view of the applicability of the procedure in banks.
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16.2 The Purpose of Stress Testing

Stress testing means (regular) expeditions into an unknown, but important territory:

the land of unexpected events and losses. It requires anticipating risks which could,

but need not arise in the future and results in the determination of possible

unexpected losses. As the latter are of immense relevance for financial institutions,

there is growing interest in this topic. While it is already an intrinsic task to gain

enthusiasm amongst the senior risk management for the rather theoretical values of

unexpected losses, it is even more difficult to achieve acceptance for the quanti-

tative output of stress tests. It makes sense to reduce such evaluations to (relative)

comparisons of the unexpected losses in stress and normal situations.

Moreover, there are various reasons for conducting stress testing due to the

explicit or implicit relation between unexpected loss and economic capital or regu-

latory capital, respectively. Crucial for the understanding of and the approach towards

stress testing, is the definition of unexpected loss. Though it is clear that this quan-

tity should be covered by economic capital, there is no general agreement as to how

to define unexpected loss.

It is quite common to regard the difference between expected loss and the value-

at-risk (VaR) of a given confidence level, or the expected shortfall exceeding the

VaR, as unexpected loss. One of the problems with this approach is that such an

unexpected loss might not only be unexpected, but also quite unrealistic, as its

definition is purely of a statistical nature. Therefore, it is sensible to use stress tests

to underscore which losses amongst the unexpected are plausible or to use the

outcome of stress tests, instead of unexpected loss to determine economic capital.

Though the idea of using stress tests for estimating economic capital seems quite

straight forward, it is only rarely realized, as it requires reliable occurrence prob-

abilities for the stress events. With these, one could use the expected loss under

stress as an economic capital requirement. Nevertheless, stress tests are mainly used

to challenge the regulatory and economic capital requirements determined by

unexpected loss calculations. This can be done as a simple test for the adequacy,

but also to derive a capital buffer for extreme losses exceeding the unexpected

losses, and to define the risk appetite of a bank. For new credit products like credit

derivatives used for hedging against extreme losses it might be of particular

importance to conduct stress tests on the evaluation and capital requirements.

Using stress tests to evaluate capital requirements has the additional advantage

of allowing the combination of different kind of risks; in particular market risk,

credit and liquidity risk, but also operational risk and other risks such as reputa-

tional risk. Because time horizons for market and credit risk transactions are

different, and it is common for banks to use different confidence levels for the

calculation of VaRs for credit and market risk (mainly due to the different time

horizons), joint considerations of market and credit risk are difficult and seldom

used. Realistic stress scenarios influencing various kinds of risk therefore could

lead to extreme losses, which could be of enormous importance for controlling risk

and should be reflected in the capital requirements.
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In any case, there can be strong correlations between the developments of

market, liquidity and credit risk which could result in extreme losses and should

not be neglected. Consequently, investigations into events causing simultaneous

increases in market and credit risk are more than reasonable. An overview over

several types of risk relevant for stress testing can be found in Blaschke et al.

(2001).

The quantitative outcome of stress testing can be used in several places for

portfolio and risk management:

l Risk buffers can be determined and/or tested against extreme losses
l The risk capacity of a financial institution can be determined and/or tested

against extreme losses
l Limits for sub-portfolios can be fixed to avoid given amounts of extreme losses
l Risk policy, risk tolerance and risk appetite can be tested by visualising the risk/

return under abnormal market conditions

Such approaches focusing on quantitative results might be of particular interest

for sub-portfolios (like some country-portfolios), where the historic volatility of the

respective loans is low, but drastic changes in risk relevant parameters cannot be

excluded.

Stress tests should not only be reduced to their purely quantitative features. They

can and should also play a major role in the portfolio management of a bank, as they

offer the possibility of testing the structure and robustness of a portfolio against

perturbations and shocks. In particular they can represent a worthwhile tool to

l Identify potential risks and locate the weak spots of a portfolio
l Study effects of new intricate credit products
l Guide discussion on unfavourable developments like crises and abnormal mar-

ket conditions, which cannot be excluded
l Help monitor important sub-portfolios exhibiting large exposures or extreme

vulnerability to changes in the market
l Derive some need for action to reduce the risk of extreme losses and hence

economic capital, and mitigate the vulnerability to important risk relevant

effects
l Test the portfolio diversification by introducing additional (implicit) correlations
l Question the bank’s attitude towards risk

16.3 Regulatory Requirements

As we have seen in the previous section, the benefits of using stress tests are

manifold for the controlling and portfolio management. Tribute to this fact is also

paid by the Basel II Revised Framework, see Basel Committee on Banking Super-

vision (2004). Here stress testing appears in Pillar 1 (about the minimum capital

requirements) and Pillar 2 (about the supervisory review process) for banks using

the IRB approach. The target of the requirements is improved risk management.
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The requirements in the Basel II Revised Framework are not precise. They can

be summarized as1:

l Task: Every IRB bank has to conduct sound, significant and meaningful stress

testing to assess the capital adequacy in a reasonably conservative way. In parti-

cular, major credit risk concentrations have to undergo periodic stress tests.

Furthermore, stress tests should be integrated in the internal capital adequacy

process, in particular, risk management strategies to respond to the outcome of

stress testing.
l Intention: Banks shall ensure that they dispose of enough capital to meet the

regulatory capital requirements even in the case of stress.
l Requirements: Banks should identify possible events and future changes in

economic conditions, which could have disadvantageous effects on their credit

exposure. Moreover, the ability of the bank to withstand these unfavourable

impairments has to be assessed.
l Design: A quantification of the impact on the parameters probability of default

(PD), loss given default (LGD) and exposure at default (EAD) is required.

Rating migrations should also be taken into account.

Special notes on how to implement these requirements include:

l The use of scenarios like:

� Economic or industry downturn

� Market-risk events

� Liquidity shortage

is recommended.
l Recession scenarios should be considered, worst-case scenarios are not required.
l Banks should use their own data for estimating rating migrations and integrate

the insight of rating migrations in external ratings.
l Banks should build their stress testing also on the study of the impact of smaller

deterioration in the credit environment.

Though the requirements for stress testing are mainly contained in Pillar 1 of

Basel II, the method is a fundamental part of Pillar 2, since it is an important way of

assessing capital adequacy. This explains the lack of extensive regulations for stress

testing in that document as Pillar 2 acknowledges the ability to judge risk and use

the right means for this procedure. As another consequence, not only regulatory

capital should be the focus of stress tests, but also economic capital as the counter-

part of the portfolio risk as seen by the bank.

Not only the BIS (see CGFS 2000, 2001 and 2005) promotes stress testing, but

also some central banks and regulators2 have taken care of this topic (e.g., Deutsche

Bundesbank 2003 and 2004; Fender et al. 2001), in particular regarding the stability

1The exact formulations can be found in }434-}437, }765, }775 and }777 of BIS (2004).
2Regulators are also interested in contagion, i.e. the transmission of shocks in the financial system.

This topic is not part of this contribution.
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of financial systems. They have published statements which can be regarded as

supplements to the Basel II Revised Framework. These publications give a better

impression of the regulatory goals and basic conditions for stress testing, which can

be summarized as:

l Stress tests should consider extreme deviations from normal developments and

hence should invoke unrealistic, but still plausible situations, i.e. situations with

low probability of occurrence.
l Stress tests should also consider constellations which might occur in future and

which have not yet been observed.
l Financial institutions should also use stress testing to become aware of their risk

profile and to challenge their business plans, target portfolios, risk politics, etc.
l Stress testing should not only be addressed to check the capital adequacy, but

also used to determine and question limits for awarding credit.
l Stress testing should not be treated only as an amendment to the VaR-evalua-

tions for credit portfolios, but as a complimentary method, which contrasts the

purely statistical approach of VaR-methods by including causally determined

considerations for unexpected losses. In particular, it can be used to specify

extreme losses in a qualitative and quantitative way.

16.4 Risk Parameters for Stress Testing

The central point of the procedure of stress testing – also seen in Basel II – is the

change in risk parameters. For regulatory capital, these parameters are given by the

probability of default (PD), loss given default (LGD) and exposure at default (EAD).

In this connection, a superior role is in most cases played by the variations of PD, as

LGD and EAD are lasting quantities which – due to their definition – should already

be conditioned to disadvantageous situations, namely the default of the obligor. The

possibilities of stress effects are hence restricted, especially for EAD. The latter

might be worsened by a few exogenous factors such as the exchange rate, but they

should also be partly considered in the usual EAD. The exogenous factors affecting

the EAD might only be of interest if they also have an impact on the other risk

parameters and hence could lead to an accumulation of risky influence.

The possible variances for the LGD depend heavily on the procedure used to

determine this quantity. Thus, deviations which might arise from the estimation

methods, should be determined, as well as parts of the process that might depend on

economic conditions. As the determination of the LGD is conditioned – by definition –

to the unfavourable situation of a default, it should take into account lasting values

for collaterals, and lead to values that can be seen as conservative. Thus, there

should not too many factors be left, that could lead to extreme changes for the LGD.

Mainly the evaluation of collateral could have some influence which cannot be

neglected when stressing the LGD. In particular, it might be possible that factors

affecting the value of the collaterals also have an impact on other risk parameters

and hence should be taken into account.
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For stressing derivative products like credit default swaps (CDS), credit default

obligations (CDOs) and CDO2 it might make sense to investigate the effects on the

LGD. Very often these products contain leverage effects or are opposed to system-

atic risk. These phenomena could be observed for example in the subprime crisis,

when the burst of the real estate bubble in the US had enormous effects on the value

of houses and hence on the LGDs of corresponding credits, leading to even higher

downgrades of LGDs for respective CDSs and CDOs. This might indicate how

complex the evaluation of LGDs can be.

The PD is by far the most popular risk parameter which is varied in stress tests.

There are two main reasons why variations in the PD of an obligor can occur. On

the one hand, the assignment of an obligor to a rating class might change due to

altered inputs for the rating process. On the other hand, the realised default rates of

the rating classes itself might change, e.g., because of modified economic condi-

tions and their impact on the performance of the loans. This allows two options for

the design of the integration of PDs into stress testing: modifications either of the

assignment to rating classes or of the PDs of the rating classes for stress tests.

Altered assignments of rating classes for obligors in stress tests have the advan-

tage that they also allow the inclusion of transitions to non-performing loans. The

change of PDs corresponds to a change of rating class. The possible deviation in

the assignment of rating classes can be promoted by the rating procedure. Thus, the

possibilities of variances and the sensitivity of the input for the rating process should

be investigated in order to get a first estimate for possible deviations. Consequently,

as well as the analysis of historic data for rating transitions, expert opinions on the

rating methodology should be a part of the design process for the stress test.

The modification of PDs for the rating classes, could have its origin in systematic

risk, i.e. in the dependence on risk drivers, one of the main topics in designing stress

tests, as will be discussed below. While it is sensible to estimate the volatility of

PDs in a first step and use the outcome of this procedure for tests on regulatory

capital, the differentiation of the effects of systematic and idiosyncratic risk on PD

deviations should be considered in a second step. This will lead to more advanced

and realistic stress tests, in particular on economic capital.

An analysis of the transition structure for rating classes might also be used to

determine PDs under stress conditions. The advantage of modifying PDs against

modifying the assignment of rating classes is a greater variety for the choices of

changes; the disadvantage is the absence of a modified assignment to the

performing and non-performing portfolio. This has to take place on top of the

modification of PDs.

Estimating economic capital PD, LGD and EAD might not be sufficient to

design stress tests. In addition, parameters used for displaying portfolio effects,

including correlations between the loans or the common dependence on risk drivers

are needed.3 Investigations on historic crises for credit risk show that correlations

3The basis for widely used portfolio models like CreditRiskþ or CreditMetrics, which are used by

banks for estimating the VaR, are provided by factor models. The (abstract) factors are used to
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and risk concentration exhibit huge deviations in these circumstances. In any case,

their variations should be considered in stress tests with portfolio models if possi-

ble. Some advanced models for estimating economic capital might even require

more information, in particular economic conditions.

Portfolio models such as CreditMetrics not only consider the default of loans,

but also the change of value by using migration probabilities. In this case, the

migration probabilities should be stressed in the same way as PDs.

Stressing of risk parameters in tests need not take place for the whole portfolio,

but only for parts of it. Also, the strength of the parameter modification might

depend on sub-portfolios and credit products. Such approaches are used to pay

tribute to different sensitivities of parts of the portfolio to risk relevant influences or

to study the vulnerability of certain (important) sub-portfolios. They can be partic-

ularly interesting for investigations on economic capital with the help of portfolio

models. In these cases, parameter changes for parts of the portfolio need not have a

smaller impact than analogous variations for the whole portfolio due to effects of

concentration risk or diversification, respectively.

16.5 Evaluating Stress Tests

As stress testing should be a part of the internal capital adequacy process, there

should be an understanding of how to use the outcome of stress tests for controlling

and managing portfolio risk. The starting point for this should be the regulatory and

economic capital as output of the underlying stress tests. The first task consists of

checking whether the financial institution holds sufficient capital to also cover the

requirements in the stress situation. As there should be limits, buffers and policies

to guarantee this, the evaluation of stress testing should be also used to review these

tools. Since the latter might be applicable to different portfolio levels (e.g. limits for

sub-portfolios, countries, or obligors) they should be checked in detail.

The concept of stress testing would be incomplete without knowing when action

has to be considered as a result of the outcome of tests. It makes sense to introduce

indicators and thresholds for suggesting when

l To inform management about potential critical developments
l To develop guidelines for new business in order to avoid the extension of

existing risky constellations
l To reduce risk for the portfolio or sub-portfolios with the help of securitisation

and syndication
l To readjust an existing limit management system and the capital buffer for credit

risk
l To re-think the risk policy and risk tolerance

present systematic risk affecting the loans. In these models it makes sense to stress the strength of

the dependence on the factors and the factors themselves.
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Indicators for the call on action could be

l The increase of risk indicators as expected loss, unexpected loss, expected

shortfall over a threshold or by a specified factor
l The increase of capital requirements (regulatory or economic) over a threshold

or by a specified factor
l The solvency ratio of capital and capital requirements under a threshold
l A low solvency level for meeting the economic capital requirements under stress
l A specified quantile of the loss distribution for the portfolio under stress condi-

tions does not lie within a specified quantile of the loss distribution for the

original portfolio
l Expected loss for the portfolio under stress conditions overlaps the standard risk

costs (calculated on the basis of expected loss for the duration of the loans) by a

specified factor or gets too close to the unexpected loss for the unstressed

portfolio
l The risk/return lies above a specified threshold, where risk is measured in terms

of unexpected loss

The interpretation of the outcome of stress tests on economic capital can

easily lead to misapprehensions, in particular if the capital requirement is

estimated on the basis of a VaR for a rather large confidence level. The motiva-

tion for the latter approach is the avoidance of insolvency by holding enough

capital, except for some very rare events. Stress tests might simulate situations

coming quite close to these rare events. Adhering to the large confidence levels

for estimating economic capital, offers the possibility of comparing the capital

requirements under different conditions, but the resulting VaR or economic

capital should not be used to question the solvency. In fact, it should be

considered whether to use adapted confidence levels for stress testing or to

rethink the appropriateness of high confidence levels. One can see the probabil-

ity of occurrence or the plausibility of a stress test as a related problem. We refer

to a detailed discussion on this topic and an approach to resolution to Breuer and

Krenn (2001).

16.6 Classifying Stress Tests

According to regulatory requirements, a bank should perform stress tests on its

regulatory as well as its economic capital. This differentiation of stress tests is not

essential and mainly technical, as the input for determining these two forms of

capital might be quite different as described in the previous section.

Another technical reason for differentiating stress tests is the division into

performing and non-performing loans, as their respective capital requirements

follow different rules. For non-performing loans, loss provisions have to be made.

Thus one has to consider the following cases for stress tests:
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l A performing loan gets downgraded but remains a performing loan – the

estimation of economic capital involves updated risk parameters.
l A performing loan gets downgraded and becomes a non-performing loan –

provisions have to be estimated involving the net exposures calculated with

the LGD.
l A non-performing loan deteriorates – the provisions have to be increased on the

basis of a declined LGD.

As already discussed in the previous section, defaults can be included in stress

tests via a worsened assignment to rating classes. If stress tests focus on PDs rather

than rating classes, then stress rates for the transition of performing to non-

performing loans are required for the same purpose. Ideally, they depend on ratings,

branches, economic states, etc. and are applied to the portfolio after stressing the

PDs. Moreover, the methodology of a bank to determine the volume of the

provision for a defaulted credit should be considered. A typical approach is to

equate the loss amount given the default (i.e. the product of LGD with the exposure)

with the provision.

Typical ways to categorize stress tests can be taken over from market risk. They

are well documented in the literature (CGFS 2005 and Deutsche Bundesbank 2003

and 2004). The most important way to classify stress tests is via the methodology.

One can distinguish stress tests with respect to techniques in statistically and model

based methods, and with respect to conceptual design in sensitivity analysis and

scenario analysis. While the latter is based on modelling economic variances,

sensitivity analysis is statistically founded. The common basis for all these speci-

fications is the elementary requirement for stress tests to perturb the risk para-

meters. These can be the basic risk parameters (EAD, LGD, PD), of the loans as

already mentioned for the tests on the regulatory capital. However, these can also be

parameters used in a portfolio model like asset correlations or dependencies on

systematic risk drivers.

The easiest way to perform stress tests is a direct modification of the risk

parameters and belongs to the class of sensitivity analysis. The goal is to study

the impact of major changes in the parameters on the portfolio values. For this

method, one or more risk parameters are increased (simultaneously) and the

evaluations are made for this new constellation. The increase of parameters should

depend on statistical analysis or/and expert opinion. As these stress tests are not

linked to any event or context and are executed for all loans of a (sub-) portfolio,

without respect to individual properties, we refer to them as flat or uniform stress

tests. Most popular are the flat stress tests for PDs, where the increase of the default

rates can be derived from transition rates between the rating classes. An advantage

of these tests is the possibility of performing them simultaneously at different

financial institutions and aggregating these results to check the financial stability

of a system. This is done by several central banks. Such tests are suited to checking

the space and buffer for capital requirements, but it does not mean any help for

portfolio and risk management.

16 Development of Stress Tests for Credit Portfolios 357



Model based methods for stress testing incorporate observable risk drivers, in

particular, macroeconomic variables for representing the changes of risk parameters.

In the following, we will refer to these risk drivers as risk factors. The respective

methods rely on the existence of a model –mainly based on econometrical methods –

that explains the variations of the risk parameters by changes of such risk factors. One

can distinguish univariate stress tests, which are defined by the use of a single,

isolated risk factor, and multivariate stress tests, where several factors are changed

simultaneously. These tests can be seen as a refinement of those previously

described: stressing the risk factors leads to modified risk parameters which are

finally used for the evaluation of the capital requirements. Note that risk factors can

have quite different effects on risk parameters throughout a portfolio. Changes in the

risk factors can lead to upgrades as well as downgrades of risk parameters. For

example, an increase in price of resources such as oil or energy can have a negative

impact on PDs in the automobile or any other industry consuming lots of energy, but

it could have a positive impact on the PDs in the country trading these resources.

By using univariate stress tests, banks can study specific and especially relevant

impacts on their portfolios. This has the benefit of isolating the influence of an

important observable quantity. Consequently, it can be used to identify weak spots

in the portfolio structure. Thus, univariate stress tests represent another kind of

sensitivity analysis, now in terms of risk factors instead of risk parameters. They

have the disadvantage of possibly leading to an underestimation of risk by neglect-

ing potential effects resulting from possible correlations of risk factors.

This shortcoming is abolished by using multivariate stress tests. The price is the

reliance on additional statistical analysis, assumptions or the establishment of

another model describing the correlation of the risk factors involved. This is done

in a framework known as scenario analysis, where hypothetical, historical and

statistically determined scenarios are distinguished. It results in the determination

of stress values for the risk factors which are used to evaluate stress values for the

risk parameters.

With respect to the design of scenarios, we can discriminate approaches driven

by the portfolio (bottom-up approaches) and driven by events (top-down

approaches). Bottom-up approaches tend to use the results of sensitivity analysis

to identify sensitive dependence on risk factors as starting points. As a conse-

quence, those scenarios are chosen which involve risk factors having the largest

impact. For example, for a bank focusing on real estate, GDP, employment rate,

inflation rate, spending capacity in the countries, it is acting in, will be of more

relevance than the oil price, exchange rates, etc. Thus, it will look for scenarios

involving the relevant risk factors. Top-down approaches start with a chosen

scenario, e.g., the terror attack in New York on September 11, 2001, and require

the analysis of the impact of this scenario on the portfolio. The task in this situation

is to identify those tests which cause the most dramatic and relevant changes.

Historical scenarios are typical examples of top-down approaches. They refer to

extreme constellations of the risk factors which were observed in the past and in the

majority of the cases can be related to historical events and crises. They are

transferred to the current situation and portfolio. This can be seen as a disadvantage
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of this approach, as the transferred values may no longer be realistic. Another

drawback is that generally, it is not possible to specify the probability of the

scenario occurring.

Also, statistically determined scenarios might depend on historical data. They

are based on the (joint) statistical distribution of risk factors. In this approach,

scenarios might be specified by quantiles of such distributions. Whilst it might be

very difficult to produce suitable distributions in particular, joint distributions, the

advantage is that it is possible to evaluate the probability of the scenario occurring

as this is given by the complement of the confidence level used for the quantile. The

existence of such probabilities of occurrence allows the calculation of expected

extreme losses which can be used for the estimation of economic capital. The

crucial point of this approach is the generation of a suitable risk factor distribution.

Only if the latter is chosen compatible with the state of economy, (hence does not

rely too heavily on historic data), can useful conclusions for the management of the

portfolio be derived.

Finally, there are hypothetical scenarios which focus on possible rare events that

might have an important impact on the portfolio, but have not been observed yet in

the form they are considered. The crucial point is the presentation of the conse-

quences of the event on the risk factors. For the estimation of this expert opinion, it

is necessary to accompany the macro-economic modelling of the dependence of the

risk parameters on risk factors. If macroeconomic parameters are not part of the

input for determining the risk parameters which are stressed, there are three steps

required for macro stress tests. Firstly, it is necessary to model the dependence of

the risk parameters on the risk factors. Secondly, it is necessary to choose values for

the risk factors which are representative for stress events. Since it is intended to

reproduce correlations and causal interrelations between risk factors and stress

events, intricate (macro-economic), methods of estimation and validation are

needed. A disadvantage of hypothetical scenarios might be having to specify the

probability of occurrence of such hypothetical scenarios. On the other hand, there is

the major advantage of having forward-looking scenarios which do not necessarily

reflect historical events. Thus, hypothetical scenarios present interesting adjuncts to

VaR-based analysis of portfolio risk and are a worthwhile tool for portfolio

management.

The use of risk factors as in the multivariate scenario analysis has the additional

advantage of allowing common stress tests for credit, market and liquidity risk.

Here, it is necessary to consider factors that influence several forms of risk or

scenarios that involve risk factors for them.

Hypothetical scenarios can also be produced on the basis of expert opinions.

Though this approach might have the disadvantage of being mathematically/statis-

tically not as precise as the one based on macro-economic modelling, it in fact can

have the advantage of understanding the risk profiles of a portfolio. For this it is

important to discuss with experts step by step all the possible effects a scenario

might have. If this is done with all details, a perfect risk profile and a good insight in

portfolio risk can be gained. It is also possible to go an even longer way: one can

start with a so-called risk map describing all potential general risks (e.g. classified
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with respect to their nature like catastrophes, war and terror, loss of financial

stability, etc.) and their main effects. Having identified the main general risks for

the portfolio it is possible to use a so-called risk monitor to zoom into these risks

and identify the effects on the portfolio in more detail. Further analysis with experts

can then result into the determination of hypothetical scenarios.

16.7 Conducting Stress Tests

In the following section we will discuss how the stress tests we have just introduced

in the previous section, can be and are, applied in financial institutions. We try to

provide details how to determine and conduct stress tests, focussing mainly on the

performing part of credit portfolios.

16.7.1 Uniform Stress Tests

The most popular stress tests in banks are uniform stress tests, in particular for the

PDs. The intention is to use increased PDs for the calculation of economic or

regulatory capital. In the easiest case, there is a flat increase rate for all PDs4 of

obligors or/and countries, but in general, the change might depend on rating classes,

branches, countries, regions, etc. We suggest several ways to derive the stress PDs:

1. Analyse the default data with respect to the dependence on rating classes,

branches, countries, regions, etc. This data could originate from the bank’s

own portfolio or from rating agencies. Determine the deviations of the default

rates from the PD. Another way to derive such variations might arise from the

analysis of spreads for respective credit derivatives. The stress PD then can be

determined from the PD by adding the standard deviation, a quantile or other

relevant characteristic of the deviation distribution. It might seem to be a good

idea to use the quantile to determine also a probability of the stress occurring,

but one should question the quality and the relevance of the distribution before

using this approach.

2. Use migration rates (referring to the bank’s own portfolio or coming from rating

agencies), to determine transitions between rating classes. These transitions

might depend on branches, countries, etc. In an intermediate step, stressed

4Such stress tests are often used by central banks to test the stability of the respective financial

systems. In the studies in Deutsche Bundesbank (2003) PDs are increased by 30% and 60%,

respectively. These changes approximately correspond to downgrades of Standard and Poor’s’

ratings by one or two classes, respectively. The latter is seen as conservative in that paper. Banks

should analyse their default data to come up with their own rates of increase, which we expect to be

in the worst case larger than 60%.
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migration matrices can be generated by omitting rating upgrades, by condition-

ing on economic downturns (Bangia et al. (2002)), by uniformly increasing the

downgrade rates at the expense of uniformly decreasing the upgrade rates or on

the basis of a time series analysis. Next, one can derive for every original rating

class, a stressed rating class by evaluating quantiles or any other characteristics

for the transition probabilities. Consequently, it is possible to build the stress

test on the rating classes. Now, the stress test consists of replacing the original

rating class by the stressed rating class. Alternatively, one can replace the

original PD by the PD of the stressed rating class. A different approach uses

the stressed migration rates. Depending on their derivation, they possibly have

to be calibrated to become transition probabilities. Then they can be used to

calculate an expected PD for every rating class, which can play the role of a

stressed PD.

The decision as to which option should be chosen for determining the stress PD

should depend on the data, which is available for statistical analysis. Also, expert

opinions could be a part of the process to generate the stress PDs. In particular, it

makes sense to study the deviations that can be caused by the rating process due to

sensitive dependence on input parameters. This could lead to an additional add-on

when generating the stress PDs.

The preference for stressed PDs or stressed rating classes should depend on the

possibilities of realising the stress tests. Regarding the portfolio model, the depen-

dence of a PD on a branch or country in a rating class could – for example –

represent a problem. A criterion in favour of stressed rating classes is the inclusion

of defaults. Such a stressing might lead to assignments of loans to classes belonging

to the non-performing portfolio. These can be treated respectively, i.e. instead of

the capital requirements, provisions can be calculated. In the case that PDs are

stressed, instead of rating classes, one should first consider the stressing of the PDs

in the portfolio and then the stressing of transition rates to the non-performing part

of the portfolio. In this context, Monte Carlo simulations can be used to estimate

capital requirements for the performing, and provisions for the non-performing part

of the portfolio.

Transition rates to the non-performing portfolio, usually corresponding to

default rates, can be stressed in the same form and with the same methods as the

PDs. The same holds for migration rates between rating classes which are used in

some portfolio models.

Flat stress tests for LGDs could also be based on statistical analysis, in this case

for loss data. The approach to determine and study deviations in loss rates is

analogous to the one for default rates. Expert opinion could play a bigger role.

An example of an interesting stress test could be provided by a significant fall in

real estate prices in some markets.

Uniform stressing of EAD is often not relevant. Deviations of this quantity

mainly depend on individual properties of the loans. Variations of exchange rates

can be seen as the most important influence on the deviations of EAD from the

expected values. It is commendable to investigate this effect separately.
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For uniform stressing of parameters used in portfolio models, it seems to be the

best to rely on expert opinions, as it is very difficult to detect and statistically verify,

the effect of these parameters on the deviations from expected or predicted values

of defaults and losses.

While it is already rather intrinsic to determine suitable parameter values for the

uniform tests involving single parameters, it even becomes more difficult to do this

for several parameters at the same time. Experience derived from historic observa-

tions and expert opinion seems to be indispensable in this situation.

16.7.2 Sensitivity Analysis for Risk Factors

This kind of stress testing is very popular for market risk, where risk factors can

easily be identified, but it can also be seen as basic for scenario analysis. This is due

to the crucial task of recognising suitable risk factors and introducing a valid

macroeconomic model for the dependence of risk parameters on the risk factors

representing the state of the business cycle. Of course, there are obvious candidates

for risk factors like interest rates, inflation rates, stock market indices, credit

spreads, exchange rates, annual growth in GDP, oil price, etc. (Kalirai and Scheicher

(2002)). Others might depend on the portfolio of the financial institute and should

be evident for good risk managers. Using time series for the risk factors on relevant

markets, as well as for the deviations of risk parameters and standard methods of

statistical analysis like discriminant analysis, one should try to develop a macro-

economic model and determine those factors suitable to describe the evolution of

risk parameters. Typically, the impact of stress on the risk parameters or directly on

credit loss characteristics is modelled using linear regression. One of the problems

involves determining the extent to which the risk factors must be restricted, whilst

allowing a feasible model.

Discovering which risk factors have the biggest impact on the portfolio risk in

terms of the VaR or whatever is used for the evaluation of unexpected losses, is

the target and the benefit of sensitivity analysis. Stressing is analogous to the

uniform stress test on risk parameters. Stress values for a single risk factor are

fixed on the basis of statistical analysis or expert opinion. The consequences for

the risk parameters are calculated with the help of the macroeconomic model and

the modified values for the risk parameters are finally used for evaluating capital

requirements. Risk factors which have an impact on several risk parameters and

which also play a role for stress testing market risk, might be of particular

interest.

Sensitivity analysis could also be used to verify the uniform stress testing by

checking whether the range of parameter changes due to sensitivity analysis is

also covered by the flat stress tests. Moreover, it can be seen as a way to pre-select

scenarios: only those historical or hypothetical scenarios which involve risk

factors showing some essential effects in the sensitivity analysis are worth

considering.
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16.7.3 Scenario Analysis

Having specified the relevant risk factors, one can launch historic scenarios,

statistical selection of scenarios and hypothetical scenarios. These different methods

should partly be seen as complementing each other. They can also be used for

specifying, supporting and accentuating the other.

16.7.3.1 Historical Scenarios

Historical scenarios are easy to implement, as one only has to transfer the values of

risk factors corresponding to a historic event to the current situation. In most cases,

it does not make sense to copy the value of the risk factors, but to determine the

change of value (either in absolute or in relative form) which is accompanied by the

insertion of the event and assume it also applies to the actual evaluation.

The following events are most popular for historical scenarios:

l Oil crisis 1973/1974
l Stock market crash (Black Monday 1987, global bond price crash 1994, Asia

1998)
l Terrorist attacks (New York 9/11 2001, Madrid 2004) or wars (Gulf war 1990/

1991, Iraq war 2003)
l Currency crisis (Asian 1997, European Exchange Rate Mechanism crisis 1992,

Mexican Peso crisis 1994)
l Emerging market crisis
l Failure of LTCM5 and/or Russian default (1998)

Though the implications of historical scenario analysis for risk management

might be restricted due its backward looking approach, there are good reasons to

use it. First of all, there are interesting historic scenarios which certainly would not

have been considered, as they happened by accident, i.e. the probability of occur-

rence would have been seen too low to look at them. Examples of this case are

provided by the coincidence of the failure of LTCM and the Russian default or the

1994 global bond price crash. It can be assumed that both events would rarely have

contributed to the VaR at the time of their occurrence, due to the extremely low

probability of joint occurrence for the single incidents.6

5The hedge fund Long-Term Capital Management (LTCM) with huge, but well diversified risk

positions was affected in 1998 by a market-wide uprising of risk boosted by the Russia crisis. This

led to large losses of equity value. Only a joint cooperation of several US-investment banks under

the guidance of the Federal Reserve could avoid the complete default of the fund and a systemic

crisis in the world’s financial system.
6The movements of government bond yields in the US, Europe and Japan are usually seen as

uncorrelated. Hence their joint upward movement in 1994 can be seen as an extremely unlikely

event.
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There is also much to learn about stress testing and scenario analysis from

working with historic scenarios. On the one hand, the latter can be used to check

the validity of the uniform stress tests and sensitivity analysis, on the other hand,

they can be very helpful in designing hypothetical scenarios. Thus, the analysis of

historical scenarios offers the unique possibility of learning about the joint occur-

rence of major changes to different risk factors and the interaction of several types

of risks, e.g., the impact of credit risk events on liquidity risk. For these reasons, we

regard historical scenario analysis as a worthwhile part of establishing a stress

testing framework, but not necessarily as an essential part of managing and

controlling risk.

16.7.3.2 Statistically Determined Scenarios

A special role is played by the analysis of scenarios which are chosen on the basis

of risk factor distributions. These are not directly related to the other types of

scenario analysis. Central to this approach is the use of (joint) risk factor distribu-

tions. While it should not be too difficult for isolated common risk to generate such

distributions on the basis of historic data, a situation involving several factors can

be far more intricate. Nevertheless, distributions generated from historic data

might not be sufficient. It would be much better to use distributions conditioned

to the situation applying at the time of stress testing. This could represent a real

problem.

We would like to point out that only in the case of a reliable factor distribution,

should this approach be used. If expected losses conditioned to a quantile are

evaluated in order to interpret them as unexpected losses and treat them as eco-

nomical capital requirement, then the risk factor distribution should also be

conditioned to the given (economic) situation.

16.7.3.3 Hypothetical Scenarios

Hypothetical scenario analysis is the most advanced means of stress testing in risk

management. It should combine experience in analysing risk relevant events with

expert opinion on the portfolio, as well as the economic conditions and statistical

competency. The implementation of hypothetical scenario analysis is analogous to

the one for historic scenarios. The only difference is provided by the choice of

values for the risk factors. This can be based on or derived from historical data, but

expert opinion might also be used to fix relevant values.

The choice of scenarios should reflect the focus of the portfolio for which the

stress test is conducted and should have the most vulnerable parts of it as the target.

Common scenarios (together with risk factors involved) are provided by the

following:
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l Significant rise in oil price (increased oil price, reduced annual growth in GDP to

describe weakened economic growth, indices describing increased consumer

prices, etc.)
l Major increase of interest rates (indices describing the volatility of financial

markets, increased spreads, reduced annual growth in GDP to describe weak-

ened economic growth, volatility of exchange rates, consumer indices, etc.)
l Drop in global demand (reduced annual growth in GDP, stock market indices,

consumer indices, etc.)
l Emerging market crisis (reduced annual growth in GDP to describe weakened

economic growth, widened sovereign credit spreads, decline in stock prices,

etc.)
l Burst of economic bubbles like the ones on the real estate markets in the US, UK

or Spain in 2007/2008 (reduced annual growth in GDP, drop in exchange rate,

widened sovereign credit spreads, reduced consumer rates, etc.)

Hypothetical scenarios have the additional advantage that they can take into

account recent developments, events, news and prospects. Note that scenarios

involving market parameters like interest rates are well suited for combinations

with stress tests on market and liquidity risk.

16.8 Examples

In the following we will present the outcome of some stress tests on a virtual

portfolio to illustrate the possible phenomena, the range of applications and advan-

tages corresponding to the tests. The portfolio consists of 10,000 loans and exhibits

a volume of 159 billion EUR. The loans are normally distributed over 18 rating

classes (PDs between 0.03% and 20% and a mean of 0.6%) and LGDs (ranging

from 5 to 50% with a mean of 24%). Moreover, they are gamma-distributed with

respect to exposure size (ranging from 2.000 EUR to 100 million EUR with mean 1

million EUR).

To determine economic capital, we employ the well known portfolio model

CreditRiskþ (Gundlach and Lehrbass 2004). We use it here as a six-factor-model,

this means that we incorporate six (abstract) factors corresponding to so-called

sectors (real estate, transport, energy, resources, airplanes, manufacturing) which

represent systematic risk drivers. For our version of CreditRisk+, each obligor j is

assigned exactly to one sector k ¼ k(j). This is done according to a weight wj,

0 � wj � 1. For each sector k there is a corresponding random risk factor Sk, which
is used to modify the PD pj to rj via

rj ¼ pjwjSkðjÞ: (16.1)

The random factors Sk have mean 1 and are gamma-distributed with one para-

meter sk corresponding to the variance of the distribution. Correlations in CreditRisk
+
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are thus introduced via the Sk, i.e. in our CreditRisk+-version, only correlations

between obligors from the same sector are sustained. The strength of the correlations

depends on the weights wj and the variation sk. These parameters can both be

modified in stress tests, though it seems more natural to increase the sk’s.
The loans in the portfolio are randomly distributed over the six sectors, repre-

senting systematic risk, and 13 countries, which play a role in some of the scenarios.

The dependence of the loans on respective systematic risk factors varies between 25

and 75% and is randomly distributed in each sector. The sectorial variation para-

meters sk’s are calculated from the volatilities of the PDs according to some

suggestion from the original version of CreditRisk+ and range between 1.8 and 2.6.

In the stress tests we only take account of the dependence of the risk parameter

PD, on risk factors bi. When modelling this interrelation, we used a simple linear

regression to predict the changes of rating agencies’ default rates for the sector and

country division of the portfolio and transferred this dependence to the PDs pj used
in our model

pi ¼
X

i
xjibi þ uj: (16.2)

Here the uj’s represent residual variables and the indices refer to a classification

of PDs according to sectors and countries. Due to the small amount of data and the

crude portfolio division, we ended with a rather simple model for the PDs with

respect to their assignment to sectors and countries involving only an oil price

index, the S&P 500-Index, the EURIBOR interest rate, the EUR/USD exchange

rate and the GDP of the USA and EU.

We performed several stress tests on the virtual portfolio. The evaluation of

these tests takes place in terms of expected loss, regulatory and economic capital.

For the latter, we calculate the unexpected loss as the difference between VaR for a

confidence level of 99.99% and expected loss. We focus on the outcome for the

whole portfolio, but also report on interesting phenomena for sub-portfolios. The

calculations of regulatory capital are based on the Basel II IRBA approach for

corporates, while the estimations of VaR are done with CreditRisk+. Loss provi-

sions are also considered in some tests. In the case that the assignment of obligors to

rating classes is stressed, non-performing loans and hence candidates for loan

provisions are implicitly given. In other cases, they are determined for each rating

class according to a stressed PD. The volume of the respective portfolio is reduced

respectively.

We have considered the following stress tests, including uniform stress tests,

sensitivity analysis, historical and hypothetical scenario analysis:

1. Flat increase of all PDs by a rate of 50%, (a) with and (b) without loan loss

provisions

2. Flat increase of all PDs by a rate of 100% (a) with and (b) without loss

provisions

3. Uniform upgrade of all rating classes by one

4. Flat increase of all LGDs by 5%
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5. Flat increase of all PDs by a rate of 50% and all LGDs by 5%

6. Flat increase of all sectorial variances sk by a rate of 50%

7. Flat increase of all LGDs by 10% for real estates in UK and USA (burst of real

estate bubble)

8. Drop of stock market index (S&P500-Index) by 25%

9. Rise of oil price by 40%

10. September 11 (drop of oil price by 25%, of S&P-Index by 5.5%, EURIBOR by

25%)

11. Recession USA (drop of S&P-Index by 10%, GDP of USA by 5%, GDP of EU

by 2%, increase of EUR/USD-exchange rate by 20%)

The outcome is summarised in the following table where all listed values are in

million EUR (Table 16.1):

The inclusion of loss provisions does not seem to play a major role in the overall

outcome of stress testing, as the sum of the provisions and the economic capital is

rather small. Nevertheless, the discrimination of economic capital and provisions

(in particular with the comparison of the latter with expected loss), is quite

interesting. Also, the distinction between stressing PDs and stressing the

Table 16.1 Outcome of stress testing on a virtual portfolio

No. Stress test Regulatory

capital

Economic

capital

Expected

loss

Loss

provision

Sectorial increase

of economic capital

0 None (Basis

portfolio)

3,041 1,650 235 0

1a) PD*150% 3,715 2,458 353 0

1b) PD*150% with

provisions

3,631 2,255 320 332

2a) PD*200% 4,238 3,267 470 0

2b) PD*200% with

provisions

4,151 2,996 427 332

3 Rating class þ 1 3,451 1,911 273 376

4 LGD þ 5% 3,676 1,985 283 0

5 LGD þ 5%,

PD*150%

4,490 3,935 567 0

6 Systematic

factor*150%

3,041 3,041 235 0

7 Real estate

bubble

3,106 1,686 240 0 32% for real estates,

45% for UK and

USA

8 Stock price

decline

3,591 2,368 329 0 58% for USA, Western

Europe, Japan

9 Rise of oil price 3,430 2,057 300 0 65% for transport and

airplanes

10 Terror attack

New York

September 11

3,897 2,622 399 0 77% for USA, Western

Europe, Japan

11 Recession USA 3,688 2,307 351 0 68% for USA and

South America,

57% for airplanes
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assignment to rating classes has a rather limited impact on the result of the stress

testing. Furthermore, it is not a surprise that stress testing has a larger impact on

economic capital than on regulatory capital.

The significant diversity of impact on the sectors and countries by the scenario

analysis underscores the importance of this kind of stress testing for detecting weak

spots in the portfolio and for portfolio management. As the portfolio used here is

rather well diversified, the effects would be larger in a real portfolio. Also, the

simultaneous stressing of several risk parameters has major effects. This is under-

lined by the joint increase of PDs and LGDs. Also, the role of parameters describing

systematic risk cannot be overestimated, as is indicated by the test given by the

increase of systematic risk factors. Some of the scenarios lack the exhibition effects

one would expect (like a major deterioration of airplane industry in the historic

scenario concerning the terrorist attacks of September 11), which could not be

indicated by the linear regression, but which could be produced in the design of the

stress test using expert opinion.

16.9 Conclusion

Stress testing is a management tool for estimating the impact on a portfolio of a

specific event, an economic constellation or a drastic change in risk relevant input

parameters, which are exceptional, even abnormal, but plausible and can cause

large losses. It can be seen as an amendment as well as a complement to VaR-based

evaluations of risk. It allows the combinations of statistical analysis and expert

opinions for generating relevant and useful predictions on the limits for unexpected

losses.

Stress testing should not only be seen as a risk management method – though it

can be used in various ways, but also as an means towards analysing risk and risk

relevant constellations. In particular, it should lead to a higher awareness and

sensitivity towards risk. This requires a better knowledge of risk drivers, portfolio

structure and the development of risk concentrations. It cannot be achieved in a

standard way. Instead experience, research and sustained investigations are

required. In particular it makes sense to use an evolutionary approach to overcome

the complexity of requirements for stress testing.

We would like to make the following suggestion as an evolutionary way towards

a reasonable and feasible framework of stress testing. The basis of stress tests is

provided by rich data for defaults, rating transitions and losses. The starting point

for the development of stress tests should be an analysis of the volatilities of these

rates and estimations for bounds on deviations for them. The statistical analysis

should be accompanied by investigations of the reasons for the deviations. It

should be studied which fraction of the deviations arise from the methodology

of the rating processes and which from changes in the economic, political,

etc. environment. Expert opinion should be used to estimate bounds for the

deviations arising from the methodology. Statistical analysis should lead to an
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identification and quantification of the exogenous risk factors having the main

impact on the risk parameters needed to determine capital requirements. The

combination of these two procedures should enable the establishment of uniform

stress testing.

The analysis of default and loss data with respect to estimating deviations from

the risk parameters should be followed by statistical analysis of the dependence of

these deviations on risk factors and an identification of the most relevant factors.

For the latter, first considerations of historic events which are known to have a

large impact on portfolio risk should also be taken into account. These investiga-

tions should culminate in a macroeconomic model for the dependence of risk

parameters on risk factors. With this model sensitivity, analysis for risk factors

can be performed. The outcome of these stress tests can be used to check whether

the uniform stress tests involve sufficient variations of risk parameters to cover

the results of univariate stress tests. As a consequence, the uniform stress tests

might have to be readjusted. Moreover, the sensitivity analysis should also be

used to check whether the chosen risk factors are contributing to drastic changes

in the portfolio. If this not the case, they should be neglected for further stress

tests.

The involvement of relevant risk factors should also be a good criterion for

picking historical and hypothetical scenarios. It makes sense to consider historical

scenarios first in order to benefit from the experience with historical data. This

experience should also include the consideration of the interplay of different kinds

of risks like market, credit, operational, liquidity risk, etc. The design of hypotheti-

cal scenario analysis should be seen as the highlight and culmination point of the

stress testing framework.

Scenario analysis based on statistical analysis is a method which is not

connected too closely with the others. Nevertheless, a lot of preliminary work has

to be done to generate reliable tests of this kind. The main problem is the generation

of probability distributions for the risk factors, in particular joint distributions and

distributions conditioned on actual (economic) situations.

The evolutionary approach towards a feasible framework for stress testing can

be summarized by the chart in Fig. 16.1.

Having established a stress testing framework, we recommend

l Regular uniform stress tests for regulatory and economic capital in order to

provide a possibility for evaluating the changes made to the portfolio in terms of

possible extreme losses, and
l Hypothetical scenario analysis suitable to the actual portfolio structure and the

conditions provided by the economy, politics, nature, etc.

The latter should partly be combined with stress tests on market and liquidity

risk. Also, effects on reputational and other risks should not be neglected.

Furthermore, one should have in mind that a crisis might have a longer horizon

than 1 year, the typical period for evaluations of risk, even in the common stress

scenarios.
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Chapter 17

Risk Management of Loans and Guarantees

Bernd Engelmann and Walter Gruber

17.1 Introduction

In previous chapters, the estimation of the key loan risk parameters was presented.

In Chaps. 1–3, and 5 estimation methods for 1-year default probabilities were

discussed. In typical credit risk applications, however, a 1-year horizon is insuffi-

cient. In Chap. 6 it was shown how to compute multi-year default probabilities with

the help of transition matrices. In Chap. 7 techniques to estimate default probabil-

ities and loss given default rates simultaneously were discussed while Chaps. 8 and

9 presented methods for loss given default estimation.

In recent years, banks have invested considerable effort on building up data bases,

constructing rating systems and estimating the credit risk parameters PD, LGD, and

EAD from the collected data. This work was mainly driven from regulatory con-

siderations. Under the Basel II capital accord banks are allowed to calculate their

regulatory capital from these risk parameters if the estimation procedures fulfil the

quality requirements of supervisors. This might lead to capital reductions compared

to the old framework if the credit quality of a bank’s debtors and the quality of

collateral that is used to back a bank’s loan portfolio is sufficiently high.

In our view, it would be a waste of effort if the estimated risk parameters would be

used mainly for regulatory purposes. In this chapter, we show how they can be used

to price loans and guarantees.We show how the basic pricing formulas can be used to

compute the terms of a loan, how the premium of a guarantee can be determined, and

how the model can be used to calculate general loss provisions in a consistent

and economically meaningful way, i.e. how the model can be used in managing the

risk of credit losses.
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Often loan portfolios and bond portfolios are treated very differently by a bank.

From an economic perspective this does not make sense because the characteristics

of both products are very similar. Both products consist of a stream of deterministic

cash flows that are subject to default risk. The main difference is that bonds are

tradable in contrast to most loans. For this reason we suggest an approach for the

pricing and risk management of loans that is structurally very similar to bonds.

Since it is not possible to observe spreads, e.g. asset swap spreads or CDS spreads,

for most debtors in the loan market, we use default probabilities for the measure-

ment of a debtor’s credit quality instead.

This chapter consists of three sections. In the first section, we explain the

pricing formulas for loans and guarantees and illustrate their use for the most

popular loan structures, bullet loan, instalment loan and annuity loan. In the second

part we explain how to compute the terms of a loan. Our scheme is based on

the RAROC (risk-adjusted return on capital) concept. Further, we show how to

compute general loss provisions for a loan portfolio dynamically. We conclude this

article with a short discussion of our loan pricing framework in the light of the

recent financial crisis.

17.2 Pricing Framework

In this section we explain the pricing formulas and the input data of these formulas.

In the first part we discuss the pricing of loans and in the second part we state the

formulas for guarantees.

17.2.1 Pricing of Loans

We explain the valuation of a loan that is characterized by interest rate payments

that might be either fixed or floating and a deterministic amortization schedule.

A deterministic amortization schedule implies that a loan does not contain any

embedded options like prepayment rights. This case is treated in detail in Chap. 18.

Under this assumption the value of a loan is the discounted expected value of

all future cash flows. The future cash flows consist on the one hand of the interest

rate and amortization payments, on the other on the recovery in the case of a default

of the debtor. We find for the value V of a loan the expression

V ¼
Xn
i¼1

ðzi � ti � Ni þ AiÞ � df ðTiÞ � qðTiÞ

þ
Xn
i¼1

Ri � Ni �
ðTi

Ti�1

df ðtÞ � qðtÞ � qðtþ dtÞð Þ (17.1)
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With T1,. . .,Tnwe denote the future interest rate payment dates of the loan, where

Tn is the repayment date of the loan’s outstanding notional. With zi we denote the
annualized interest rate corresponding to period i which might be either fixed or

floating,1 withAi the amortization payment in period i, with ti the year fraction of the
i-th interest rate period, with df(T) the discount factor corresponding to time T, with
q(T) the survival probability of the debtor up to time T, with Ni the loan’s notional

that is outstanding in period i, and with Ri the recovery rate corresponding to period

i, i.e. the percentage of the notional that can be recovered by the creditor if the debtor
defaults. This recovery rate might be period dependent. Suppose a loan is backed by

collateral and the value of this collateral is assumed constant throughout the lifetime

of the loan. If the loan is amortizing then the percentage of the loan that is

collateralized is increasing in time. Therefore the recovery rate is increasing in time.

The discount factors are computed from an interest rate curve that can be

considered as approximately risk free. Often the swap curve is taken as a reference

curve. This curve is certainly not risk free because it reflects the credit risk in the

interbank market. It is nevertheless a reasonable choice for a reference curve

because it reflects the funding conditions of banks. An additional spread reflecting

the debtor’s credit quality is not included into the discounting in (17.1). The

debtor’s credit quality is included by his time-dependent survival probability only.

The two terms in (17.1) can be interpreted intuitively. The first term is the

discounted expected value of all interest rate and amortization payments. Each

interest rate and amortization payment is discounted according to its payment date

and weighted with the probability of its occurrence, i.e. the survival probability of

the debtor. The second term is a bit more complicated. It models the recovery if the

debtor defaults. In contrast to the interest rate payments the default time is not

known in advance. Therefore, we have to compute the default probability of each

small time interval in the future, weight it with the discounted value of the recovery,

and sum over all future small time intervals. In its exact form this leads to an

integral. It is possible to approximate this integral by an easy to evaluate formula.

We assume that on average a debtor defaults in the middle of each interest rate

period, i.e. at the time t ¼ 0.5ּ(Ti + Ti�1). We discount the recovery from the

period mid and weight the result with the probability that a debtor defaults in the

period. This leads to

Ri �Ni �
ðTi

Ti�1

df ðtÞ � qðtÞ�qðtþdtÞð Þ�Ri �Ni �df 0:5 � ðTiþTi�1Þð Þ � qðTi�1Þ�qðTiÞð Þ

(17.2)

1A floating interest rate is often directly linked to a Libor rate that is fixed at the beginning of each

interest rate period. In this case zi can be computed as a forward rate from the discount curve that is

extracted from the swap market. In other cases, the bank has some freedom to decide about when

to increase or decrease a floating interest rate. Here some assumption has to be made how the

bank’s decision is linked to the forward rates implied from the swap curve.
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In a concrete implementation we have to define T0 ¼ 0. The approximation

(17.2) is easy to implement and very accurate.

We remark that we do not model the complicated process of liquidating a loan’s

collateral explicitly. We assume that at the time of default the creditor will receive

the discounted value of all future payments from liquidating collateral minus the

associated costs with the liquidation process. The complexity of the liquidation

process is therefore reflected in the estimation of the recovery rate Ri, not in the

formulas for loan valuation.

Formulas (17.1) and (17.2) look pretty simple because of the probabilistic

assumptions we have implicitly used without stating them yet. First, we can write

expected discounted values of future cash flows by weighting the cash flows with

the product of discount factor and survival probability of the debtor because of the

assumption that defaults and interest rate dynamics are independent. Second, we

can write the expected recovery in the case of a default as the product of recovery

rate and default probability because we have implicitly assumed that default

probabilities and recovery rates are independent. The first assumption might be

problematic for banks selling mostly floating rate loans because rising interest rates

should lead to an increase in default rates in this context. The second assumption is

also in contradiction to empirical literature (Frye 2000 and 2003) and to the

observation of falling house prices in connection with high default rates during

the recent financial crisis. This should be kept in mind when parameterizing this

simple formula. We will come back to this point in the final section.

For the practical application of (17.1) and (17.2) we have to estimate discount

factors, recovery rates, and survival probabilities. The easiest part is the determina-

tion of discount factors. They are computed from quotes of interbank market

instruments like deposits, interest rate futures, or swaps. These quotes are available

every day and can be accessed by market data providers like Bloomberg or Reuters.

As already outlined before, this interest rate curve is suitable for loan valuation

because the interbank curve serves as the reference for determining the funding

conditions of a bank.

More difficult is the estimation of the survival probability (or equivalently, the

default probability) of a debtor. There are basically three possibilities of estimating

survival probabilities

l Direct estimation of survival probability term structures
l Extrapolation from transition matrices
l Extraction from bond or credit default swap spreads

First, term structures of survival probabilities can be estimated directly. If the

survival probabilities for different rating grades are known for a number of years

and a reasonable parameterization for the shape of this term structure is given, it

might be calibrated for each rating grade separately. Second, term structures of

survival probabilities can be easily extrapolated from 1-year transition matrices

under the assumption of Markovian rating transitions and time-homogeneity. This

is explained in detail in Chap. 6. Finally, in rare cases of debtors with bond

issues outstanding, the term structure of survival probabilities can be inferred

376 B. Engelmann and W. Gruber



from bond or credit default swap spreads. Detailed explanations on the calculation

of survival probabilities from credit default swap spreads can be found in Brigo and

Mercurio (2006).

The final parameter needed is the recovery rate. This parameter typically is

determined from the collateral of a loan. For each type of collateral a separate

recovery rate is estimated from the data of defaulted debtors. From the recovery

rates of each type of collateral and the recovery rate for the unsecured part of the

loan a net recovery rate for the loan will be computed. The basic principles of

estimating recovery rates are explained in more detail in Chap. 11.

We conclude this section with the specification of (17.1) for the three most

common loan types, bullet loan, instalment loan, and annuity loan. The simplest

loan type is the bullet loan with initial notional N. Here no amortization prior to the

repayment of the notional at the loan’s expiry takes place. We have

Ni ¼ N

Ai ¼
0; i< n

N; i ¼ n

�

zi ¼
z; fixed interest rate

fi þ m; floating interest rate

�

where fi is the forward rate corresponding to the i-th interest rate period and m is the

margin (or spread) over Libor the debtor has to pay for the loan if the interest rate is

floating. Compared to the bullet loan, the instalment loan has a fixed amortization

payment in addition to the interest rate payments in every period i. This amortiza-

tion payment is specified by a constant annualized amortization rate a. We find for

the instalment loan

A ¼ 1

k
� a � N

Ni ¼ max 0;N � i� 1ð Þ � Að Þ

Ai ¼
A; i< n

Nn; i ¼ n

�

zi ¼
z; fixed interest rate

fi þ m; floating interest rate

�

where k is the number of interest rate (and amortization) payments per year. Of

course one has to make sure that Ni is always non-negative. For an instalment

loan the amortization payment is constant over its lifetime while the interest rate

payments are reduced due to the reduction in the loan’s outstanding notional.

Therefore, the sum of amortization and interest rate payments is not constant over

the lifetime of an instalment loan. This is the case for an annuity loan. To ensure

that the sum of interest and amortization payments is constant over the loan’s

lifetime the interest rate has to be fixed to a value z. We get for the annuity loan
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K ¼ aþ z

k
� N

Ai ¼ min K � ti � z � Ni;Nið Þ

Ni ¼
N; i ¼ 0

Ni�1 � Ai�1; i> 0

�

where K is the constant sum of interest and amortization payments in each period.

Note that it is not possible to compute Ai and Ni independent of each other for an

annuity loan. Both quantities have to be computed recursively starting from i ¼ 0.

17.2.2 Pricing of Guarantees

In this section, we explain the pricing formulas for guarantees. In a guarantee a

bank or some other financial institution provides insurance against the default of a

debtor of a loan. In the case of a default the guarantor will either pay for the loss of

the loan or take over the loan at par, i.e. buy the loan and pay the outstanding

notional for it. For insuring the loan against defaults the guarantor gets a premium g
which is paid periodically and is proportional to the loan’s outstanding notional. In

this respect a guarantee is very similar to a credit default swap. The only difference

is that the underlying of a credit default swap is one or more bonds of a company or

a state while the underlying of a guarantee is a loan.

The pricing of a guarantee is very similar to the pricing of a loan. Its value is the

expected discounted value of all future cash flows. We take the perspective of a

guarantor who receives premium payments and has to buy the loan at par in the case

of a default. We assume that premiums are paid at the end of each period and that in

case of a default no premium has to be paid for the period where the default

occurred.2

The equivalent to (17.1) for the value G of a guarantee is

G ¼
Xn
i¼1

g � ti � Ni � df Tið Þ � q Tið Þ

�
Xn
i¼1

1� Rið Þ � Ni �
ðTi

Ti�1

df ðtÞ � qðtÞ � q tþ dtð Þð Þ (17.3)

2There might be other conventions in the market concerning premium payments, i.e. the premium

might be paid at the beginning of each period or in the case of a default the premium for the period

where the default occurred has to be paid up to the default time. In this case, the formulas we derive

for the expected present value of premium payments have to be slightly modified to properly

reflect the different convention that is used.
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Here, g is the annualized premium that has to be paid for the guarantee, n is the

number of future periods of the guarantee’s lifetime, Ti are the payment dates of the

premium, Ni is the loan’s outstanding notional in period i, df(T) is the discount

factor and q(T) the survival probability of the loan’s debtor corresponding to time T.
The first term in (17.3) is the expected present value of the premium payments that

are paid if the debtor survives and the second term is the loss of the guarantor

if the debtor defaults. Similar to (17.2) the integral in (17.3) can be simplified

by assuming that on average a debtor defaults in the middle of each period. This

leads to

1� Rið Þ � Ni �
ðTi

Ti�1

df ðtÞ � qðtÞ � q tþ dtð Þð Þ

� 1� Rið Þ � Ni � df 0:5 � Ti þ Ti�1ð Þð Þ � q Ti�1ð Þ � q Tið Þð Þ (17.4)

Again we end up with an easy to implement formula.

17.3 Applications

In this section we outline how to apply the pricing formulas that were derived in

Sects. 2.1 and 2.2 in banking practice. In the next section, we explain a calculation

scheme for a loan’s terms based in RAROC (risk-adjusted return on capital). After

that, we show how to compute general loss provisions for a loan portfolio in an

economically meaningful way. Both applications are illustrated with concrete

numerical examples.

17.3.1 Calculation of a Loan’s Terms

As already outlined above, we explain a scheme for calculating a loan’s terms based

on the performance measure RAROC. RAROC measures the revenues of a loan

in relation to its risk. In our context, risk is defined as the economic capital that

is needed as a buffer against unexpected losses of the loan. Economic capital is

typically measured by the risk contribution of a loan to the total credit risk of a bank

that is typically computed as the value-at-risk or the expected shortfall of a loss

distribution that is generated by a credit risk model. A good introduction to credit

risk modelling is Bluhm et al. (2003). Risk measures like value-at-risk and expected

shortfall and their properties are analyzed in Artzner et al. (1999) and Tasche

(2002), while good references for capital allocation techniques are Kalkbrenner

(2005), Kurth and Tasche (2003), and Kalkbrenner et al. (2004).
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Using a simple one-factor credit risk model, Gordy (2003) has derived an

analytical formula for the economic capital related to a loan exposure which is

also used in the Basel II capital accord (BCBS 2004) for the calculation of

regulatory capital under the internal ratings based approach. Using the exact para-

meterization of Basel II, the economic capital E per loan exposure is computed as

E ¼ 1� Rð Þ � F
1ffiffiffiffiffiffiffiffiffiffiffi
1� r

p � F�1(PD)þ
ffiffiffiffiffiffiffiffiffiffiffi
r

1� r

r
� F�1ðaÞ

� �
� PD

� �
� bðMÞ

bðMÞ ¼ 1þ max 1;min M; 5½ �½ � � 2; 5ð Þ � 0; 11852� 0; 05478 � logðPDÞð Þ2
1� 1; 5 � 0; 11852� 0; 05478 � log(PDÞð Þ2

(17.5)

where PD is the 1-year default probability of the debtor, R the recovery rate

corresponding to a default within 1 year, r is the mean asset correlation among

all debtors of a bank, a the confidence level where the value-at-risk of the loss

distribution is computed, and F the cumulative distribution function of the standard

normal distribution. For r and a it is possible to use own estimations or the values

given in the Basel II accord. The term b is the maturity adjustment that reflects

the increased risk of a loan with a higher maturity. One assumption behind the

derivation of this formula was the absence of concentration risk in the loan

portfolio. If the loan portfolio contains significant concentrations, the formula can

be adjusted by adding an additional factor for granularity. A possible way to

compute this add-on for volume concentration risk is described in Gordy and

L€utkebohmert-Holtz (2007).

A loan’s revenue is computed as the difference of the interest earned and the

costs associated with the loan. If the loan would be riskless and all internal costs and

the funding spread would be zero, the interest rates zi would have to be equal to the
swap rate s corresponding to the loan’s maturity to bear the loan’s funding costs.

This swap rate is computed as

s ¼ 1� df Tnð ÞPn
i¼1

ti � df Tið Þ
(17.6)

Using s as a base rate, the total margin of a loan is defined as m ¼ zeff–s. Here,
zeff is defined as the period-independent fixed (“effective”) interest rate that defines

a fixed-rate loan that has the same value as the loan with interest rates zi. To be more

specific, zeff is defined from the condition

Xn
i¼1

zeff � ti � Ni þ Ai

� � � df Tið Þ � q Tið Þ ¼
Xn
i¼1

zi � ti � Ni þ Aið Þ � df Tið Þ � q Tið Þ

which can be solved explicitly for zeff :
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zeff ¼
Pn
i¼1

zi � ti � Ni � df Tið Þ � q Tið Þ
Pn
i¼1

ti � Ni � df Tið Þ � q Tið Þ

The costs associated with a loan are on the one hand the risk costs to cover the

expected loss of the loan, on the other hand all other costs of the lender (funding

spread, operating costs, internal fees, etc.). The risk costs can be computed from

(17.1) applying the condition V ¼ N. If the discounted expected value of all future

cash flows equals the outstanding notional, it is ensured that expected losses are

covered.

In Sect. 2.1 we considered a bullet loan, an instalment loan, and an annuity loan

as the most popular loan types explicitly. Calculating risk costs for a bullet loan

with a period-independent fixed interest rate leads to

r ¼
1� df Tnð Þ � q Tnð Þ �Pn

i¼1

Ri � df 0:5 � Ti þ Ti�1ð Þð Þ � q Ti�1ð Þ � q Tið Þð Þ�
Pn
i¼1

ti � df Tið Þ � q Tið Þ
� s

For an instalment loan we report the formula for the case of a floating interest

rate

r ¼
N �Pn

i¼1

Ai þ fi � ti � Nið Þ � df Tið Þ � q Tið Þ�
Pn
i¼1

ti � Ni � df Tið Þ � q Tið Þ

�
Pn
i¼1

Ri � Ni � df 0:5 � Ti þ Ti�1ð Þð Þ � q Ti�1ð Þ � q Tið Þð Þ
Pn
i¼1

ti � Ni � df Tið Þ � q Tið Þ

In this case the risk cost r is the spread over Libor that must be charged by a bank

to cover expected losses of the loan.

For an annuity loan it is impossible to calculate the risk costs analytically

because the amortization schedule depends on the level of the fixed interest rate.

Here a zero-search algorithm has to be applied for the calculation of risk costs.

Finally all other cost components must be transformed into an annualized cost

margin per notional. This cost margin is denoted by c. Since internal cost structures
differ from bank to bank there is no general rule how to aggregate cost components

to a cost margin. It might be possible that the largest part of the internal costs has to

be paid as an upfront payment by the debtor, or that no upfront payment is required

and all costs are included into the loan’s interest margin, or that some combination
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of these two extremes is applied. In any case a bank has to ensure that the expected

present value of future cost payments covers all internal and refinancing costs. To

make this clear we take the funding spread sfu a bank has to pay as an example. We

assume that a bank has to pay the funding spread for a loan until the loan’s maturity

regardless if the debtor defaults. Under this assumption the cost margin cfu
corresponding to funding costs can be computed from the equation

Xn
i¼1

Ni � sfu � ti � df Tið Þ ¼
Xn
i¼1

Ni � cfu � ti � df Tið Þ � q Tið Þ

The left hand side is the funding spread that is paid by the bank over the loan’s

lifetime. The right hand side equals the expected present value of the cost margin

payment by the debtor. The cost margin will be paid unless the debtor is in default.

For the cost margin corresponding to funding costs we get the explicit formula

cfu ¼
sfu �

Pn
i¼1

Ni � ti � df Tið Þ
Pn
i¼1

Ni � ti � df Tið Þ � q Tið Þ

Similar formulas have to be derived for other cost components. After that all cost

margins corresponding to all cost components have to be aggregated to the total

cost margin c.
Using the above margin components, we compute the RAROC of a loan as

RAROC ¼ m� r � c

E
(17.7)

RAROC measures the return on economic capital that is realized by selling a

loan for a total margin ofm. Typically, a bank defines a minimum level of the return

on economic capital that must be reached to consider a loan as profitable. This

minimum level is called the hurdle rate h. From the hurdle rate, the minimum

margin that must be gained by a loan investment can be computed as

mmin ¼ r þ h � Eþ c (17.8)

In (17.8) the definition of the minimum margin ensures that a loan is profitable

for a bank. If for some reasons a loan is sold below the minimum margin, the effect

on the realized return on economic capital can be measured by (17.7). The three

components in (17.8) can be interpreted intuitively. The first component is a

compensation for expected losses, the second component is a compensation for

unexpected losses, and the final component is a compensation for all other costs that

are related to a loan.

The RAROC scheme for a loan can also be applied to a guarantee. The only

modification is that the risk costs of a guarantee are computed from the condition
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G ¼ 0 where G is value of the guarantee that was defined in (17.3). All other

parts of the RAROC pricing formula for a loan are identical for a guarantee.

We conclude this section with an illustrative example. We consider an instal-

ment loan with a maturity of 15 years. The loan’s interest rate is 3M Libor plus a

margin, i.e. the loan pays interest quarterly. Further, the annual amortization rate of

the loan is 4%. We assume that a bank computes economic capital according to the

Basel II formulas in (17.5) with the parameterization of Basel II for residential

mortgages. Further, we assume that the bank uses a hurdle rate h of 10% and its

internal and funding costs are properly reflected by a cost margin of 1%. The bank’s

rating system is described by the transition matrix in Fig. 6.7 of Chap. 6, i.e. the

bank uses nine rating grades where the final grade is the default grade. We further

assume that the value of the collateral that is posted by a debtor equals 40% of the

original loan amount. This means that the recovery rate is increasing in time

because of the amortization effects. Finally, we assume a flat zero rate of 5%

with annual compounding to compute discount factors.

To generate the survival probabilities in (17.1) and (17.2) it is necessary tomultiply

the 1-year transition matrix with itself to compute multi-year default probabilities as

described in Chap. 6. We report the resulting multi-year default probabilities over 15

years for each rating grade in Table 17.1. From these default probabilities we can

compute the term structures of survival probabilities that are needed in (17.1) and

(17.2). Since our loan pays interest quarterly we also need survival probabilities at

intermediate points in time. They can be generated by computing transition matrices

corresponding to year fractions as explained in Chap. 6. An alternative could be a

simple interpolation scheme like linear interpolation of the logarithms of the survival

probabilities which approximately leads to the same result.

Table 17.1 Multi-year cumulative default probabilities for each rating grade computed from the

1-year transition matrix in Fig. 6.7 of Chap. 6

Time (years) Rating grade

1 2 3 4 5 6 7 8

1 0.0000 0.0008 0.0009 0.0036 0.0167 0.0496 0.1490 0.2496

2 0.0002 0.0016 0.0022 0.0085 0.0359 0.1010 0.2673 0.4173

3 0.0004 0.0026 0.0040 0.0148 0.0572 0.1516 0.3612 0.5325

4 0.0007 0.0037 0.0063 0.0223 0.0799 0.2001 0.4361 0.6134

5 0.0011 0.0051 0.0091 0.0309 0.1037 0.2455 0.4964 0.6718

6 0.0017 0.0066 0.0125 0.0405 0.1279 0.2875 0.5454 0.7149

7 0.0024 0.0085 0.0164 0.0509 0.1522 0.3261 0.5856 0.7476

8 0.0033 0.0106 0.0209 0.0621 0.1762 0.3614 0.6191 0.7729

9 0.0043 0.0130 0.0259 0.0738 0.1999 0.3936 0.6472 0.7931

10 0.0055 0.0157 0.0314 0.0861 0.2229 0.4230 0.6711 0.8094

11 0.0069 0.0187 0.0374 0.0987 0.2451 0.4498 0.6917 0.8230

12 0.0086 0.0221 0.0439 0.1117 0.2665 0.4743 0.7095 0.8344

13 0.0104 0.0258 0.0508 0.1248 0.2871 0.4966 0.7252 0.8442

14 0.0125 0.0299 0.0581 0.1380 0.3068 0.5172 0.7390 0.8526

15 0.0149 0.0342 0.0658 0.1513 0.3256 0.5360 0.7514 0.8600
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In Table 17.2, we report the minimummargins that must be charged by a bank to

cover all its costs according to (17.8). Since the loans have a floating interest rate,

the minimum margins are the spreads over Libor that must be paid by a debtor. To

see the main drivers of the minimum margin we report all cost components. The

cost margin (corresponding to c in (17.8)) which is not reported in Table 17.2 is

independent of the rating grade and by assumption equal to 1%. In the table, we

report the risk costs (r in (17.8)) and the opportunity costs of capital (h·E in (17.8)).

We see that the risk costs are lower than the capital costs for the good rating grades

while it is vice versa for the poor rating grades. For poor rating grades the expected

loss is already rather high because of the high default probabilities. Therefore, the

surprise component of unexpected losses is relatively low for these rating grades.

17.3.2 Calculation of General Loss Provisions

We start this section by describing a simple framework for managing the risks of

credit losses in our model framework. We explain the general principle without

going deeply into accounting details which depend on the specific accounting

framework that is applied by a bank.

The aim is to manage loan portfolios in a way that ensures that a bank does not

suffer losses even if defaults in the loan portfolio occur. For this, the component of

the interest margin that reflects the expected loss risk of a loan is collected and

stored in an “expected loss account”. When defaults happen, the values of the

defaulted loans are corrected to their expected recovery values. If the estimated

default probabilities and recovery rates are on average close to their realizations,

the sum of the proceeds from liquidating the collateral of defaulted loans plus the

money on the expected loss account are on average close to the present value of the

bonds that were issued to fund the loan.

In this context, “on average” means that during a recession realized default rates

are higher than default probabilities, while during a boom they are lower. There-

fore, booms should be used to fill the expected loss account for the bad times when

it is needed. Furthermore, “on average” means that this approach will only work

Table 17.2 Cost components of the

instalment loan for the calculation of

the loan’s terms in the example for

each rating grade

Rating

grade

Risk costs

(%)

Opp. costs

(%)

Minimum margin

(%)

1 0.0193 0.0469 1.0662

2 0.0594 0.0888 1.1482

3 0.1137 0.1023 1.2161

4 0.3330 0.2864 1.6194

5 1.0146 0.8258 2.8404

6 2.4618 1.5762 5.0380

7 6.1548 2.5831 8.7380

8 10.8426 2.9259 14.7684
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well for large loan portfolios, e.g. in the retail sector. A bank with a highly

specialized business and a relatively low number of loans will have difficulties in

implementing this approach because if the number of loans is small, it is expected

that realized default rates are in general less in alignment with default probabilities

which makes this approach of managing loan loss risks less accurate.

Usually credit losses do not occur by surprise but downgrades of debtors signal

an increase in default probabilities early. If the valuation of a loan is done by (17.1)

changes in the rating of a debtor and changes in interest rates are directly reflected

in an increase or decrease of a loan’s value. This allows the building of loss

provisions for a loan portfolio to make the process of realizing unexpected losses

smooth. For this, the loan portfolio has to be valued in regular intervals and

provisions for losses have to be build. For the calculation of the loss provision

per loan the condition V ¼ N that was used to compute the risk margin in the last

section will be applied. Suppose a loan was sold for an interest rate z if it is a fixed
rate loan or for a margin m over Libor if it is a floating rate loan. We define the

interest rate zr (or the margin mr) that contains the risk costs only by

zr ¼ z� h � E� c

mr ¼ m� h � E� c
(17.9)

If the loan is sold for an interest rate computed by (17.8) then using the interest

rate (17.9) and valuing the loan using (17.1) leads to a loan value V equal to N, the
initial notional. If the loan is valued at a later stage, the changes in interest rates and

in the debtor’s credit quality might lead to risk costs that are not reflected in (17.9).

Therefore, valuing the loan using the interest rate (17.9) and subtracting the

outstanding notional of the loan from the result gives the gain or loss in the

loan’s value. This is a reasonable quantity for building a provision.

We will illustrate this concept with a simple example. We consider a portfolio of

ten instalment loans that were all sold on March 31, 2009. All loans have the

structure of the example loan in Sect. 3.1., i.e. instalment loans with a maturity of 15

years and an amortization rate of 4%. The rating of each debtor and the initial

notional of each loan are reported in Table 17.3.

Table 17.3 Example

portfolio of 15Y instalment

loans

Number of loan Debtor rating Initial notional

1 1 1,000,000

2 2 500,000

3 3 750,000

4 3 750,000

5 3 1,000,000

6 4 750,000

7 4 600,000

8 5 400,000

9 5 750,000

10 5 500,000

17 Risk Management of Loans and Guarantees 385



The loan portfolio has a total notional of seven million. We further assume that

each loan was sold for the minimum margin that was computed in Table 17.2. We

compute the general loss provision for this portfolio at April 01, 2012. We assume

that interest rates at this date are given by a flat zero curve of 4% with annual

compounding. Since the loans have a floating interest rate their interest rate

sensitivity is moderate. Over the 3 years the ratings of some debtors have improved

while the credit quality of other debtors has deteriorated. As in Sect. 3.1 we assume

that the economic capital for each loan is computed by the Basel formula (17.5).

This means that the economic capital changes with the rating. When we compute

the interest rate (17.9) we use the economic capital corresponding to the current

rating. Finally, we assume that the bank’s cost structure did not change and 1% is

still the appropriate cost margin. We report the value of each loan when it is priced

using the interest rate (17.9) together with the outstanding notional in Table 17.4.

If the rating grade remains unchanged as in the case of loan 2 the value of the

loan increases. The reason is that after 3 years the expected loss margin

corresponding to a then 12-year loan is less than the original margin corresponding

to a 15-year loan. This leads to an increase in the loan’s value. In this example,

however, the increase is mild because the expected loss for a debtor in rating grade

2 is rather small.

Overall we see that the credit quality of the portfolio has deteriorated and some

loans are worth considerably less than the outstanding notional when the pricing is

done with the interest rate (17.9). The reason is that both the opportunity cost of

capital and the expected loss margin calculated under the new rating have

increased. In total we find a loss in portfolio value of 147,032. This should be

reported as the general loss provision for this portfolio in the balance sheet of the

bank. This number compares to a total of expected loss margins that have been

earned by the bank over the 3 years after the loan portfolio has been sold of 69,653.3

Table 17.4 Valuation of the loan portfolio of Table 17.3 after interest rates and ratings have

changed three years after the loans in the portfolio were sold

Number of loan Debtor rating Loan value Outstanding notional P & L

1 4 852,043 880,000 �27,957

2 2 440,752 440,000 752

3 7 446,046 660,000 �213,954

4 1 667,668 660,000 7,668

5 2 885,774 880,000 5,774

6 3 680,791 660,000 20,791

7 3 544,633 528,000 16,633

8 7 262,234 352,000 �89,766

9 2 740,948 660,000 80,948

10 3 492,079 440,000 52,079

3We have neglected interest rate effects when computing this number. It is just the sum over the

expected loss margins that were charged by the bank.
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Overall, the expected loss margins earned so far do not cover the deterioration in the

loan portfolio’s value at this point in time.

Finally, we remark that computing the value of a loan by (17.1) using the interest

rate (17.9) is not only useful for the calculation of loss provisions. This is also the

price that should be paid for a loan when it is sold. The reason is that the interest

paid by a loan must cover the desired return on economic capital and the internal

costs of a bank. Therefore, these cost components have to be subtracted from the

total margin of a loan when computing the expected discounted value of its future

cash flows.

17.4 Discussion

In this article we have presented a framework for the risk-adjusted pricing of loans

and guarantees. To conclude this article we want to discuss its usefulness for

practical applications. The recent financial crisis has led to a debate on the quality

of models that are applied by banks. The opinions range from blaming models and

their creators to be a main driver of the crisis to the other extreme that still not

enough models are used properly by banks to measure and monitor the risk’s of its

business.

We take one aspect of the origin of the financial crisis, the lending behaviour of

American banks. Basically loans were granted to home buyers of poor credit quality

because it was believed that house prices cannot fall and in the case of a default the

sale of the house will make up for the loss. We will analyze in the sequel how the

use of a model will affect the business of a bank under these assumptions.

We use again the instalment loan of Sect. 3.1 as an example. This time we

assume that the value of the collateral is equal to the loan’s initial notional and we

assume that if the collateral is liquidated that it cannot be worth more than the

loan’s outstanding notional, i.e. that the recovery rate in (17.1) can never exceed

100%. We compute Table 17.2 again under this assumption.

The results are presented in Table 17.5. Not surprisingly we find that the

minimum margin is basically independent of a debtor’s credit risk. The only diff-

erence comes from the risk of the creditor of losing an interest rate payment.

Table 17.5 Recalculation

of Table 17.2 under the

assumption of a maximum

recovery of 100%

Rating grade Risk costs

(%)

Opp. costs

(%)

Minimum

margin (%)

1 0.0011 0.0000 1.0011

2 0.0017 0.0000 1.0017

3 0.0025 0.0000 1.0025

4 0.0056 0.0000 1.0056

5 0.0142 0.0000 1.0142

6 0.0311 0.0000 1.0311

7 0.0710 0.0000 1.0710

8 0.1202 0.0000 1.1202
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If a debtor defaults the bank has in general unlimited access to the collateral.

This could in principle lead to recovery rates greater than 100% if a default happens

after some amortization payments are made and the assumption that a house price

cannot fall below the initial notional is true. Under this assumption we get the

margins of Table 17.6.

The results in Table 17.6 are counterintuitive. Now the model tells us to favour

debtors with low credit quality, and they even should be paid interest for the loan.

The reason is that under this assumption a default is more profitable than earning

interest over the full lifetime of a loan. The profit comes from the amortization

payments. The bank makes the highest profit if a debtor defaults after he has made

some amortization payments. This profit can be achieved more likely with debtors

of low credit quality. Therefore, they even should get a fee for entering the loan

instead of paying interest.

From an economic point of view Tables 17.5 and 17.6 deliver reasonable results.

However, especially the assumptions underlying Table 17.6 result in a business

model that no one would undertake. In this context a model is just a tool to translate

assumptions about markets into a business model in a transparent way. It is still the

task of a risk manager to judge if the resulting business model is reasonable or if

it is not. The latter case should lead to a questioning of the assumptions underlying

the model.

The assumptions underlying the pricing model (17.1) can be questioned in two

ways. It is known from empirical studies by Fry (2000, 2003) that high default rates

are historically accompanied by low recovery rates, i.e. that the assumption of

independence between default and recoveries is wrong from an empirical point of

view. This is also analyzed in Chap. 7. To improve the pricing model (17.1) one

could either model the correlation between default and recovery explicitly which

would result in a more complicated model or use a more conservative parameteri-

zation, i.e. instead of using an average LGD one should use a conservative estima-

tion of a LGD (“downturn LGD”) to acknowledge this effect.

If we modify the example of Table 17.6 by restricting recovery rates to 100%

and assuming that the collateral is worth 80% of the initial notional in the case of a

default only, which still results in a rather high collateralization, we get the

minimum margins for each rating grade that are reported in Table 17.7. In addition

we compute Table 17.7 for a bullet loan, i.e. we set the amortization rate to zero.

Table 17.6 Recalculation

of Table 17.3 under the

assumption of recovery

rates >100%

Rating grade Risk costs

(%)

Opp. costs

(%)

Minimum

margin (%)

1 �0.0338 0.0000 0.9662

2 �0.0774 0.0000 0.9226

3 �0.1548 0.0000 0.8452

4 �0.3602 0.0000 0.6398

5 �0.7839 0.0000 0.2161

6 �1.3322 0.0000 �0.3322

7 �1.9483 0.0000 �0.9483

8 �2.3547 0.0000 �1.3547
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We see that even under mild assumptions on losses in the case of defaults the

minimum margins for debtors of poor credit quality increase considerably. It is

questionable that a debtor of poor credit quality, which in practice means low

income, could afford a loan under these conditions even if Libor rates are very

low. In the case of Table 17.7 this means that a debtor with a rating of 7 would have

to pay Libor þ 7.13% every year (Libor þ 3.13% interest þ 4% amortization) and

in the case of a bullet loan in Table 17.8 would have to pay Libor + 4.10% which

should be too much for a debtor with low income to buy a home worth a multiple of

his annual salary.

These examples illustrate how even a very simple model can increase the trans-

parency of a business model undertaken by a bank. It forces the bank to declare its

assumptions on defaults and recovery rates and translates them into minimum

margins that have to be charged for a debtor of a certain credit quality. These

assumptions can be verified using empirical data. Further, the consequences of

small deviations from these assumptions can be analyzed. This can help to increase

market discipline and prevent banks from charging margins that do not reflect the

risks of a loan properly.

Beyond this increase in transparency, the use of a model like (17.1) also brings

the treatment of loan portfolios more in line with the treatment of other asset classes

like bonds. Since both asset classes (loans and bonds) are valued using expected

discounted cash flows, the changes in portfolio value of loans and instruments that

are issued to fund the loans can be compared directly and mismatches either in

value or in maturity can be detected easily together with a quantification of the

Table 17.7 Recalculation

of Table 17.3 under the

assumption of a collateral

value of 80% of the initial

notional

Rating grade Risk costs

(%)

Opp. costs

(%)

Minimum

margin (%)

1 0.0018 0.0156 1.0174

2 0.0065 0.0296 1.0361

3 0.0102 0.0341 1.0443

4 0.0341 0.0955 1.1295

5 0.1326 0.2753 1.4079

6 0.3952 0.5254 1.9206

7 1.2725 0.8610 3.1336

8 2.5336 0.9753 4.5089

Table 17.8 Recalculation

of Table 17.7 under the

additional assumption of no

amortization payments

Rating grade Risk costs

(%)

Opp. costs

(%)

Minimum

margin (%)

1 0.0139 0.0156 1.0295

2 0.0352 0.0296 1.0648

3 0.0690 0.0341 1.1031

4 0.1785 0.0955 1.2740

5 0.4690 0.2753 1.7443

6 1.0115 0.5254 2.5369

7 2.2373 0.8610 4.0983

8 3.7580 0.9753 5.7333
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corresponding interest rate risks. Finally, we note that the RAROC valuation

approach we presented is flexible enough to be generalized to illiquid equity

investments, which again allows a bank to get a consistent view on different asset

classes. This generalization is done in Engelmann and Kamga-Wafo (2010).
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Chapter 18

Risk Management of Loans with Embedded

Options

Bernd Engelmann

18.1 Motivation

In Chap. 17 it was outlined how the Basel II risk parameters can be used for the risk

management of loans. It was shown in detail how to apply a risk-adjusted pricing

formula for the calculation of a loan’s terms and of general loss provisions. In the

framework of Chap. 17 a loan was characterized by a pre-defined structure of future

interest rate and amortization payments only. In reality, loans are in general much

more complex products.

Often loans contain embedded options. The most popular example of an embed-

ded option is a prepayment right. Here, a debtor has the right but not the obligation

to bay back certain amounts of a loan in addition to the agreed amortization

schedule. In Germany, often banks allow debtors to bay back 5 or 10% of the initial

notional each year. Furthermore, by law every debtor has the right to pay back the

outstanding notional of a loan after 10 years even if the agreed maturity of the loan

is longer. In the language of option theory these amortization rights are of European

or Bermudan style because it is only possible for a debtor to amortize at a discrete

set of dates. In other countries, prepayment rights are even of American style, i.e. a

debtor can pay back the outstanding notional at any time. Typically no penalty

payment by a debtor is required when he pays back a part or all of the outstanding

notional. Therefore, this right can be of considerable value for a debtor.

In a floating rate loan, it is possible to define upper and lower bounds for the

interest rate that has to be paid by a debtor. These bounds are called cap and floor.

This loan is therefore a mixture of a fixed rate and a floating rate loan. Part of the

risk of fluctuating interest rates has still to be taken by the debtor but this risk is

capped. While the embedded interest rate cap is valuable for a debtor because it

protects him from rising interest rates, the floor is a protection for a bank to ensure

that the interest income cannot become arbitrarily low. Introducing an interest rate
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floor in addition to a cap, therefore, makes the loan cheaper for a debtor. A cap can

be very valuable for a debtor if future interest rate volatility is high.

In addition to prepayment rights or caps and floors on floating interest rates, loan

commitments are often part of a loan. A loan commitment is an option to draw

additional amounts during a loan’s lifetime. It was already treated in Chaps. 10 and

11 in the context of EAD modelling. In practice, a debtor pays interest and

amortization payments for the part of a loan’s total notional that is drawn already

and a commitment fee for the part that is not yet drawn. In times where banks face

liquidity problems or are very risk-averse a loan commitment can be of consider-

able value.

In this chapter we treat prepayment rights in detail because they are the most

common embedded options in loans. The mathematical framework presented below

can be easily modified for caps and floors on variable interest rates. Loan commit-

ments, however, are a different story. Here, in addition to assumptions on interest

rates and a debtor’s credit quality, assumptions have to be made on the funding

conditions of a bank to derive a pricing model for the loan commitment that results

in a commitment fee reflecting all key risks a bank is facing. This is not part of this

chapter.

To derive the key drivers of loan prepayment, we start with a simple example.

We use a similar loan that we have already used for illustration in Chap. 17. It is a

15-year instalment loan with a fixed interest rate and an amortization rate of 4%.

The loan’s collateral is worth 40% of the initial notional. The bank’s rating system

is described by the transition matrix of Fig. 6.7 in Chap. 6 and discount factors are

computed from a flat zero rate of 5% with annual compounding. The minimum

interest rates that have to be charged by a bank for each rating grade using the

framework of Chap. 17 are reported in Table 18.1.

In the calculation of the minimum interest rates of Table 18.1 it was assumed, as

in the examples of Chap. 17, that economic capital is computed according to the

Basel II formulas for residential mortgage loans under the advanced IRB approach

(BCBS 2004). The cost margin is 1% and the hurdle rate 10%.1 Note that risk costs

and opportunity costs of capital are exactly equal to the results in Table 18.2 of

Table 18.1 Minimum

interest rates of the instalment

loan for each rating grade

Rating grade Risk costs

(%)

Opp. costs

(%)

Minimum

rate (%)

1 0.0193 0.0469 5.9751

2 0.0594 0.0888 6.0571

3 0.1137 0.1023 6.1250

4 0.3330 0.2864 6.5283

5 1.0146 0.8258 7.7493

6 2.4618 1.5762 9.9469

7 6.1548 2.5831 14.6469

8 10.8426 2.9259 19.6773

1See Chap. 17 for a precise definition of these quantities.
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Chap. 17. This is no surprise for the opportunity cost of capital because they are

computed in exactly the same way in both cases. Concerning the risk costs one

might have expected a small difference because the loan in Chap. 17 was a floating

interest rate loan while in this chapter we are using a fixed interest rate loan for

illustration. However, since we have used an interest rate curve with a flat zero rate

in both examples, all forward rates are equal to the base swap rate for the loan.

Therefore, the risk costs have to be exactly equal in both cases. Under a realistic

interest rate curve which contains some steepness and curvature small differences

in the risk costs of a floating rate versus a fixed rate loan will be observed because

the risk of losing an interest payment is valued differently depending on the

variability in the forward rates.

We assume that this 15-year loan contains a prepayment option after 10 years.

To get an impression of the risk factors driving prepayment, we compute the

minimum interest rate for the loan again after 10 years assuming that the loan

was sold to a debtor in rating grade 5 initially. During the 10 years interest rates and

the rating of the debtor can change. Concerning interest rate changes, we assume

that only parallel shifts are possible, i.e. that the discount curve after 10 years is still

represented by a flat forward curve. The results under different combinations of

scenarios are summarized in Table 18.2.

In the above table the minimum interest rates using the framework of Chap.

17 for the outstanding 5-year instalment loan under the different scenarios for

rating and interest rates changes are computed. If the minimum interest rate is

below the initial minimum interest rate of the loan (7.7493%), the debtor will

prepay his loan and refinance at the cheaper rate. The cases where the debtor

will prepay are indicated by a “(P)”, the cases where he continues his loan are

marked with a “(C)”.

We see from the results that both the level of interest rates and the rating of a

debtor at the prepayment date have an influence on the prepayment decision. If

interest rates fall sharply but at the same time the debtor’s rating deteriorates it

might be still reasonable to continue the loan besides the reduced interest rates. This

is the case, for instance, for an interest rate reduction of 300 basis points but a

simultaneous downgrade of the debtor to rating grade 8. On the other hand if

interest rates rise prepayment might still be reasonable if at the same time the

debtor’s rating has improved. If interest rates rise by 100 basis points and the

debtor’s rating improves by at least one grade, prepayment is advantageous.

Table 18.2 Minimum interest rate (in %) for the outstanding instalment loan after 10 years

Rate shift (in %) Rating grade

1 2 3 4 5 6 7 8

�3.00 2.91 (P) 2.95 (P) 2.97 (P) 3.14 (P) 3.72 (P) 4.84 (P) 7.48 (P) 10.28 (C)

�2.00 3.92 (P) 3.96 (P) 3.97 (P) 4.15 (P) 4.73 (P) 5.86 (P) 8.53 (C) 11.36 (C)

�1.00 4.93 (P) 4.97 (P) 4.98 (P) 5.16 (P) 5.75 (P) 6.88 (P) 9.58 (C) 12.44 (C)

0.00 5.94 (P) 5.98 (P) 5.99 (P) 6.17 (P) 6.76 (P) 7.91 (C) 10.63 (C) 13.52 (C)

þ1.00 6.95 (P) 6.99 (P) 7.01 (P) 7.18 (P) 7.78 (C) 8.94 (C) 11.68 (C) 14.61 (C)

þ2.00 7.97 (C) 8.01 (C) 8.02 (C) 8.20 (C) 8.80 (C) 9.97 (C) 12.74 (C) 15.70 (C)

þ3.00 8.99 (C) 9.03 (C) 9.04 (C) 9.22 (C) 9.83 (C) 11.00 (C) 13.80 (C) 16.79 (C)
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If nothing happens, i.e. interest rates and the debtor’s rating stay constant, the

debtor will prepay. The reason is that for the outstanding 5-year loan the average

default probability applied in the pricing formula is much lower than for the initial

15-year loan. This results in a lower minimum margin.

Overall, we conclude from the simple example that both interest rate and rating

changes affect the prepayment decision. Therefore, we have to extend the pricing

framework of Chap. 17 by stochastic interest rate and rating changes to include

prepayment rights into the framework. Furthermore, it is known from practice that

debtor do not act as rational as, for instance, interest rate derivatives or bond traders.

They might not prepay even it is advantageous for them. This behaviour of debtors

should also be included into a model.

In the next section, we will explain a pricing framework for loans with prepay-

ment rights. We will explain the necessary mathematical tools on an intuitive level

without going too much into details. Some comments on the theory behind the

pricing framework in the light of derivatives pricing and credit risk modelling

are made and applications of the framework for the risk management of loans

with embedded options are outlined. In Sect. 18.3 the pricing algorithm will be

illustrated with an example. In the final section a short conclusion with possible

extensions of the framework for the risk management of loan portfolios is given.

18.2 Pricing Model

We will derive a pricing model for loans with embedded options in three steps. In

the first step, the modelling of rating transitions will be explained which results in a

rating tree. In the second step, a term structure model for the evolution of interest

rates will be introduced and we will try to explain its basic features in an intuitive

way that is also understandable for readers who are not familiar with interest rate

derivatives pricing theory. This will result in a tree model that is used for pricing

interest rate dependent products. In the final step, we will combine the rating tree

and the interest rate tree to a three-dimensional tree that can be used for pricing

loans with prepayment rights.

18.2.1 Modelling Rating Transitions

Most of the mathematics behind the modelling of rating transitions was already

developed in Chap. 6. Here, we will apply the results developed in Chap. 6 only.

Suppose, we have a financial product that depends on the rating of a debtor at the

times 0 ¼ T0, T1,. . ., Tm. These could be the payment times of a loan or the dates

where prepayment of all or parts of the outstanding notional of a loan is possible. At

time zero the rating of a debtor is known. At times Tk, k 6¼ 0, we can compute the

probabilities that a debtor will be in rating grade i under the assumption that he was

in rating grade j at time Tk�1. These probabilities can be computed from the
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transition matrix corresponding to the time period Tk–Tk�1. This is illustrated with

the rating tree in Fig. 18.1.

In Fig. 18.1, the notation pij(T1|T0) denotes the probability that a debtor migrates

from rating grade i in T0 to rating grade j in T1. In the rating tree it is assumed that

the debtor has an initial rating of 3. Building the tree from T1 to T2 is more

complicated because the rating of the debtor in T1 is not known in T0. Here we

have to specify the transition probabilities for all rating grades (except for the

default grade) separately. All these probabilities can be read from the transition

matrix P(T2–T1) corresponding to the time period T2–T1. The transition probabil-

ities for a migration from grade i in T1 to grade j in T2 can be read from the i-th row
of the matrix P(T2–T1). For the calculation of this matrix we again refer to Chap. 6.

In this way it is possible to describe every possible rating path a debtor can take in

the tree and associate a probability to each path, the product of the transition

probabilities in each time step.

From a practical perspective, a rating tree is not an important tool if it is considered

stand-alone. The reason is that there are hardly financial products in the market that

depend solely on the rating of a debtor. Therefore, a rating tree will be almost always

applied in combination with some other valuation framework. In the context of loan

valuation this will be a short rate tree that will be introduced in the next section.

18.2.2 Modelling Interest Rate Dynamics

In this section we will give an introduction to short rate models, the simplest class of

term structure models which is applied in banks. We start with a short overview of
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Fig. 18.1 Rating tree for a rating system with five rating grades
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interest rate products that are liquidly traded and that are needed for calibrating a

term structure model. After that the Gaussian one-factor model is introduced and its

mathematical properties are explained. We show how the parameters of the model

are determined from market data and how tree algorithms for pricing interest rate

dependent products are constructed in this model.

18.2.2.1 Interest Rate Markets

The most important interest rates in the interbank market are Libor rates and swap

rates. A Libor rate determines the interest rate at which banks lend money to each

other. These interest rates are available for maturities up to 12 months. A swap rate

is the fixed interest rate in a swap, i.e. a contract where counterparties exchange a

fixed rate of interest for a Libor rate. Swap contracts have maturities from 1 year up

to 50 years. These interest rates are quoted on a regular basis in market data systems

like Reuters or Bloomberg. As we have already explained in Chap. 17 these interest

rate are needed to compute the interbank discount curve that can be used as a

reference curve for loan pricing.

On these two interest rates call and put options are traded. In the case of Libor

rates these options are called caps and floors. Options on a swap rate are called

swaptions. The market conventions for these products are a bit different from call

and put options in equity markets. An example of a cap is illustrated in Fig. 18.2.

A cap is not a single option but a series of call options. In the example of a 7Y

cap on a 12M Libor rate of Fig. 18.2 the cap consists of six call options with a strike

price of 4%. Each of these options is called a caplet. Each caplet has an exercise

date and a payment date. At the exercise date the option holder can decide if he

wishes to exercise the option what he will do if the option payoff is positive, i.e. if

Time0 1 2 3 4 5 6 7

2nd payment
if exercised

4th payment
if exercised

6th payment
if exercised

1st payment
if exercised

3rd payment
if exercised

5th payment
if exercised

1st exercise if
12M Libor > 4%

2nd exercise if
12M Libor > 4%

4th exercise if
12M Libor > 4%

6th exercise if
12M Libor > 4%

3rd exercise if
12M Libor > 4%

5th exercise if
12M Libor > 4%

Fig. 18.2 A 7Y cap on a 12M Libor rate with a strike price of 4%
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the Libor rate of this day is greater than 4%. The date where the payment is done if

the option was exercised is 12 months later. The time gap between exercise and

payment corresponds exactly to the tenor of the interest rate. This is different from

equity options where payment is done immediately after exercising an option. In

general notation, the payoff of a caplet with maturity T is

maxð0; f � KÞ � t (18.1)

where f is a Libor rate that is fixed in T, K is the strike price, and t is the tenor of the
Libor rate. The payment time of the payoff, if it is positive, is in T þ t.

An example of a swaption is given in Fig. 18.3. Here, a 5Y receiver swaption on

a 10Y swap with a strike price of 4% is illustrated where we stick to the European

convention of a swap paying the fixed rate annually and the floating rate semi-

annually. In this contract the holder has the right to enter in 5 years into a receiver

swap with a maturity of 10 years. The terminus “receiver swap” means that the

option holder will receive fixed payments in this swap contract.2 Therefore, he will

exercise the option if the market swap rate at the exercise date is below the strike

price of the option contract.

The payoff of a receiver swaption cannot be expressed by a simple formula like

the payoff of a caplet because the profit of exercising a receiver swaption is realized

at every payment date of the fixed rate in the swap. Therefore, this payoff at the

exercise date must be written as the present value of all these profits

Xn
i¼1

ti � df (TiÞ �max (0;K � sÞ (18.2)

where n is the number of fixed rate payments in the swap, T1,. . ., Tn the payment

times, df(T) the discount factor corresponding to time T, ti the year fraction of the

0 5 15

receiving of 4%  annually
if the swaption was exercised

exercise if
swap rate < 4%

payments of the floating leg
if the swaption was exercised

Fig. 18.3 A 5Y receiver swaption on a 10Y swap with a strike price of 4%

2If the option holder pays the fixed rate in the swap the contract is called a payer swaption.
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i-th fixed rate period in the underlying swap, K the strike price, and s the swap rate

that is fixed at the exercise date of the swaption.

For both option contracts, the option premium is determined by the Black 76

formula, a market standard formula for call and put options in many markets (see

Black 1976). It is assumed that at the exercise date the underlying interest rate, the

Libor rate in the case of a cap and the swap rate in the case of a swaption, is

distributed log-normally, i.e. that the logarithm of the interest rate is distributed

normally. This distribution is given by

ln ðyTÞ � Nðln ðy0Þ � 0:5 � s2T; s
ffiffiffi
T

p
Þ

where yT is the value of the interest rate at time T, y0 is its current forward value, and
s its volatility. Note that the standard deviation is proportional to the square root of

T, i.e. the uncertainty of the future value of the interest rate y is increasing with time.

Under this assumption a simple formula can be derived for the option premium of

both contracts by calculating the discounted expected value of each contract’s

payoff.

In the case of the caplet, we get for the premium Vcaplet the expression

Vcaplet ¼ df ðT þ tÞ � t � f � Nðd1Þ � K � Nðd2Þð Þ

d1 ¼ logð f=KÞ þ 0:5 � s2 � T
s � ffiffiffi

T
p

d2 ¼ d1 � s �
ffiffiffi
T

p
(18.3)

where f is the forward of the underlying Libor rate, K the caplet’s strike price, t the
Libor’s tenor, T the caplet’s expiry, df(T þ t) the discount factor corresponding to

the caplet’s payment time, and N(.) is the cumulative distribution function of the

normal distribution. A similar formula exists for the floorlet.

For the premium of a receiver swaption Vreceiver we get

Vreceiver ¼ M � K � Nð�d2Þ � s � Nð�d1Þð Þ

M ¼
Xn
i¼1

ti � df Tið Þ

d1 ¼ logðs=KÞ þ 0:5 � s2 � T
s � ffiffiffi

T
p

d2 ¼ d1 � s �
ffiffiffi
T

p

(18.4)

The notation used in this formula was already explained above. For payer

swaptions an analogous formula exists.

In practice, these options are traded liquidly and prices are determined by supply

and demand. The formulas (18.3) and (18.4) are used as quotation tools. For each

option the volatilities are quoted at which traders are willing to buy or sell an option
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and the formulas are needed to convert volatilities into option prices. The reason is

that for traders it is easier to compare option prices for different maturities and

different strike prices in terms of implied volatilities. The volatilities that reflect

current market prices are quoted in market data systems like Reuters or Bloomberg.

18.2.2.2 The G1 Model

The simplest model class for modelling the term structure of interest rates are short

rate models. The short rate is an artificial mathematical quantity that cannot be

observed in the market. It describes the interest rate that is valid over the next

infinitesimal time period. Illustratively, one can think of the short rate as an

approximation of the overnight rate. Therefore, short rate models describe the

dynamics and the future development of the overnight rate.

If the distribution of the short rate at future times is normal, the corresponding

short rate model is called Gaussian. In its simplest version the short rate is driven by

one stochastic factor and is called a Gaussian one-factor short rate model, the G1

model. Mathematically, the model is described by the dynamics

rðtÞ ¼ xðtÞ þ yðtÞ;
dx ¼ �k � xðtÞ � dtþ sðtÞ � dW;

xð0Þ ¼ 0;

(18.5)

where r is the short rate, x the stochastic factor, y a deterministic time-dependent

function, k a positive constant, s the (possibly time-dependent) volatility of x, and
W a Wiener process.3

For readers who are not familiar with continuous-time stochastic calculus we

illustrate the short rate dynamics (18.5) by its discretized version. Starting from

x ¼ 0 at time t ¼ 0 a path of the short rate can be simulated using uniform time

steps Dt by

rðiDtÞ ¼ xðiDtÞ þ yðiDtÞ;
xðiDtÞ ¼ x ði� 1ÞDtð Þ � k � x ði� 1ÞDtð Þ � Dtþ s ði� 1ÞDtð Þ �

ffiffiffiffiffi
Dt

p
� Z;

(18.6)

where Z a is random number that is normally distributed. The short rate r at each
time point is written as the sum of the stochastic factor x and the function y. The
stochastic factor is driven by two components. The first component is deterministic.

The second component is stochastic and models the randomness of x.

3The G1 model is a mathematical transformation of the Hull and White (1990) model. The

transformed model is more convenient from a mathematical perspective but contains exactly the

same economic content.
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To simulate a path of the short rate one has to simulate normally distributed

random numbers and apply (18.6) iteratively. The parameter s is a measure for

the uncertainty of future values of the short rate. The larger s the more the third

term in (18.6) can fluctuate around zero. Economically one would expect from

overnight rates that they are limited to a certain range of numbers. This is in

contrast to a stock where an unlimited growth over time is in principal possible. If

the overnight rate has a rather high value one would expect it to fall with high

probability in the future. The opposite is true if the overnight rate is on a historical

low value. This property of interest rates is called mean reversion. In (18.6) the

mean reversion property is ensured by the second term involving k. Whenever x is
positive (negative) the second term becomes negative (positive) and generates a

downward (upward) drift.

To price interest rate products, one has to be able to simulate future Libor or

swap rates. Both interest rates are computed from the future discount curve.

Therefore, it suffices to simulate future discount curves. This can be done in a

short rate model by simulating overnight rates and multiplying the resulting

overnight discount factors to get a discount factor corresponding to a larger

time interval for a specific scenario. Taking expectations over a large number of

scenarios results in a future discount curve. To be mathematically more precise, a

future discount curve at time t can be computed conditional on the short rate r(t)
at time t from

df ðTjrðtÞ ¼ rÞ ¼ E exp �
ðT
t

rðtÞdt
� �

jrðtÞ ¼ r

� �
(18.7)

To illustrate the basic principle of product pricing using a short rate model we

take the example of a caplet. To price a caplet in the short rate model (18.5) the

following steps have to be carried out:

1. Simulate a short rate path from time t ¼ 0 to time T using (18.6). This path ends

at time T in the value r(T).
2. Simulate many short rate paths from time T to time T þ t using (18.6). All paths

start in r(T).
3. From all the short rate paths in step 2 compute the discount curve using (18.7)

where the expectation is replaced by an arithmetic average.

4. From the discount curve in step 3 compute the realized Libor rate f

f ¼ 1=df ðT þ tjrðTÞ ¼ rÞ � 1ð Þ=t

5. Compute the discounted payoff for this scenario by

df T þ tjrðTÞ ¼ rð Þ � t �max 0; f � Kð Þ (18.8)

6. Compute the discount factor corresponding to the path in step 1 and multiply it

with the result in (18.8) to discount the payoff back to time t ¼ 0.
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7. Repeat steps 1–6 many times and compute the option price as the average over

all simulated values.

This procedure looks very awkward because nested Monte-Carlo simulations

have to be applied to compute the price of a rather simple instrument. The above

procedure would never be implemented in practice. It should just serve as an

illustration how a short rate model in principle can be used to determine the price

of a financial instrument.

One of the reasons for the popularity of the Gaussian one-factor model is its

analytical tractability. For instance, it is not necessary to compute (18.7) by Monte-

Carlo simulation because an analytical expression exists for this expectation. In the

next two subsections we will explain the missing parts for using this model in

practice, how to calibrate the model parameters and how to implement an efficient

pricing algorithm after the model is calibrated.

We have explained the short rate model on a rather intuitive level. For instance,

we have computed product prices as expectations over simulated scenarios.

Although this procedure seems plausible it is not clear that this leads to reasonable

prices. In derivatives pricing theory it is shown that the absence of arbitrage in

financial markets, i.e. the absence of trading possibilities that deliver risk free

profits without capital investments, imply the existence of a probability measure,

the risk-neutral measure, under which meaningful prices can indeed be computed as

expectations. For details the reader is referred to the books of Hull (2008), Joshi

(2003) and Shreve (2004).

Finally, we comment on the economic interpretation of the model. On a first

glance it may seem strange to model the dynamics of the full term structure by the

dynamics of the overnight rate. From empirical analyses of term structure move-

ments over time it is known that the term structure dynamics can be described with

very good accuracy by three components, parallel shifts, changes in the steepness,

and changes in the curvature of the term structure (Litterman and Scheinkman

1991). The most important component is the parallel movement. Basically, a one-

factor model describes the changes in the level of interest rates. If these level

changes are modelled by a short-term, medium-term, or long-term interest rate

does not play a role. In this sense the modelling of the term structure by a very short

term rate can be justified. Of course, to model more general movements of the term

structure more factors are needed. A good reference for modern interest rate

modelling approaches is Brigo and Mercurio (2006).

18.2.2.3 Calibration of the G1 Model

In the last subsection we have explained the G1 model and outlined its economic

interpretation. To use the model its parameters y(t), k, and s(t) have to be specified

from market data. If we apply (18.7) with t ¼ 0 and r(0) approximately equal to the

current overnight rate, the left hand side of (18.7) is equal to the current discount

curve. This results in a condition for the parameter y(t). In fact, it is possible to derive
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a formula for y(t) that expresses y(t) in terms of the current discount curve and the

(still undetermined) parameters k and s(t)

yðtÞ ¼ f ðtÞ þ e�2�k�t
ðt

0

e2�k�ss2ðsÞds;

f ðtÞ ¼ � @df ðtÞ
@t

=df ðtÞ:
(18.9)

The function f(t) is the instantaneous forward rate, i.e. the forward rate that is

valid from time t over an infinitesimal time period. It can be computed from the

current discount curve as shown in (18.9). This choice of y(t) ensures that zero bond
prices are correct in the G1 model and equal to current discount factors.

It remains to determine the model parameters k and s. These parameters are

calibrated from the prices of liquid options, i.e. caps or swaptions. The basic idea is

to use the model parameters that result in model prices matching given market

prices as close as possible. This leads to an optimization problem

min
k;s

XK
i¼1

Vi;model � Vi;market

� �2
(18.10)

where K is the number of market instruments that are used for calibration, Vi,model is

the model price of the i-th instrument while Vi,market is its market price.

To carry out the calibration efficiently we need pricing formulas for caplets and

swaptions in the G1 model. To derive the necessary pricing formulas we will show

as a first step that in the G1 model both the pricing of caps and the pricing of

swaptions can be reduced to the pricing of options on zero bonds.

We start with a caplet with maturity T and payment time T þ t. The underlying
of the caplet is a Libor rate f(T, t) that is fixed in time T and has a tenor t. By P(t,T)
we denote the price of a zero bond with maturity T at time t. Note that at time t ¼ 0

it holds df(T) ¼ P(0,T). For the caplet we write its price as the expected value of its
discounted payoff. The expectation is taken over possible paths of the short rate

which are determined by its dynamics.

caplet ¼ E exp �
ðTþt

0

rðsÞds
0
@

1
A � t � f T; tð Þ � Kð Þþ

2
4

3
5

¼ E exp �
ðT

0

rðsÞds
0
@

1
A � P T; T þ tð Þ � t � f T; tð Þ � Kð Þþ

2
4

3
5

¼ E exp �
ðT

0

rðsÞds
0
@

1
A � P T; T þ tð Þ � 1

P T; T þ tð Þ � 1� K � t
� �þ2

4
3
5
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¼ E exp �
ðT

0

rðsÞds
0
@

1
A � 1� 1þ K � tð Þ � P T; T þ tð Þð Þþ

2
4

3
5

¼ 1þ K � tð Þ � E exp �
ðT

0

rðsÞds
0
@

1
A � 1

1þ K � tð Þ � P T; T þ tð Þ
� �þ2

4
3
5

¼ put on zero bond

The notation (.)þ is an abbreviation for max(0, .). By expressing the Libor rate in

time T þ t by the corresponding zero bond price we end up with a formula for a put

option on a zero bond. If we know a formula for the price of a put option on a zero

bond in the G1 model we can use the above relation to compute the price of a caplet.

To derive a similar relationship for swaptions is more complicated. We start with

the payoff of a swaption with maturity T0. We replace the discount factors in the

payoff formula (18.2) by zero bond prices P(T0,Ti) because we have to consider the
value of the payoff at maturity T0 to compute the swaption’s price.

payoff ¼ max 0;K � sð Þ �
Xn
i¼1

ti � P T0; Tið Þ

¼ max 0;K �
Xn
i¼1

ti � P T0; Tið Þ � s �
Xn
i¼1

ti � P T0; Tið Þ
 !

¼ max 0;
Xn
i¼1

ti � K � P T0; Tið Þ � 1� P T0; Tnð Þð Þ
 !

¼ max 0;
Xn
i¼1

ci � P T0; Tið Þ � 1

 !
:

(18.11)

In the derivation we have used the formula for the forward swap rate

s ¼ 1� P T0;Tnð ÞPn
i¼1

ti � P T0; Tið Þ

and have introduced the coupons ci

ci ¼ K � t; if i< n� 1

K � tn�1 þ 1; if i ¼ n� 1

	

We have shown that a swaption is equivalent to an option on a coupon bond with

a strike price of 1. This option will be exercised if the condition
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Xn
i¼1

ci � P T0; Tið Þ � 1

is fulfilled.

To proceed with deriving a pricing formula for the swaption we need a pricing

formula for zero bonds. They can be computed from expression (18.7)

P t; TjrðtÞ ¼ rð Þ ¼ A t; Tð Þ � exp �r � B t; Tð Þð Þ (18.12)

The functions A(t,T) and B(t,T) can be expressed in terms of the model para-

meters

A t; Tð Þ ¼ df ðTÞ
df ðtÞ � exp B t; Tð Þ � f ðtÞ � 1

2
� B t; Tð Þ2 � e�2�k�t

ðt

0

e2�k�ss2ðsÞds
0
@

1
A;

B t; Tð Þ ¼ 1

k
� 1� e�k� T�tð Þ

 �

:

We see that the zero bond price in (18.12) is monotonous is the short rate r.
Therefore it is possible to find a unique value r* that fulfils the condition

Xn
i¼1

ci � P T0; Tijr T0ð Þ ¼ r�ð Þ ¼ 1: (18.13)

The value r* of the short rate has to be determined by a zero-search algorithm

like Newton’s method or a bisection algorithm (Press et al. 1992).

Combining relation (18.13) with (18.11) leads to

payoff ¼ max 0;
Xn
i¼1

ci � P T0; Tið Þ � 1

 !

¼ max 0;
Xn
i¼1

ci � P T0; Tið Þ � ci � P T0; Tijr T0ð Þ ¼ r�ð Þ
 !

¼
Xn
i¼1

ci �max 0;P T0; Tið Þ � P T0; Tijr T0ð Þ ¼ r�ð Þð Þ:

We see that similar to the price of a caplet also the price of a swaption can be

written in terms of prices of options on zero bonds because we have rewritten the

payoff of a swaption as the payoff of a portfolio of call options on a zero bond with

strike prices P(T0,Ti|r(T0) ¼ r*). If we know a pricing formula for options on zero

bonds in the G1 model, the prices of caplets and swaptions can be calculated easily.

The price of an option on a zero bond can be computed as an expectation over the

payoff using the formula for a zero bond price (18.12) in connection with the
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distribution of the short rate r at the option’s maturity. This leads to an easy to

evaluate formula for the price VCall of a call option with maturity T on a zero bond

with maturity T þ t

VCall ¼ df T þ tð Þ � NðhÞ � df ðTÞ � N h� sPð Þ;

h ¼ 1

sP
log

df T þ tð Þ
df ðTÞ � K

� �
þ sP

2
;

sP ¼ B 0; T þ tð Þ � B 0;Tð Þð Þ2 � e�2�k�T
ðT

0

e2�k�ss2ðsÞds:

(18.14)

The price of a put option on a zero bond can be computed from the put-call parity

VPut þ df T þ tð Þ ¼ VCall þ K � df ðTÞ

This gives us the final ingredient to carry out the calibration of the G1 model.

It remains to decide which instruments (caps or swaptions) should be used for

calibration. It depends on the product for which the model is needed. As a general

principle, one should use instruments for calibration that are similar to the product

that should be priced. If a loan that contains prepayment rights should be priced,

swaptions are more appropriate for calibration because a prepayment right is

basically an embedded swaption. For a loan with embedded caps and floors on

a floating interest rate, interest rate caps and floors are more suitable for the

calibration of the G1 model.

18.2.2.4 Tree Implementation of the G1 Model

In this subsection we present an efficient implementation of the G1 model by a

trinomial tree. A trinomial tree is a discrete method to price products in the G1

model. In the Monte-Carlo simulation we have used to illustrate the G1 model in

Sect. 18.2.2.1 we already have done a time discretization but the short rate could still

attain any real value in each point of time. In a trinomial tree the set of admissible

values for the short rate is restricted to a finite grid of points in each time step. This

is done in a structured way to construct an efficient algorithm for the calculation

of product prices.

An example of a trinomial tree is shown in Fig. 18.4. We denote each node with

ri,j which is the j-th short rate grid point at the i-th time grid point. Every node ri,j in
the tree has exactly three succeeding nodes ri+1,j, ri+1,j+1, and ri+1,j+2. These nodes

are built in a way that the tree is recombining. This ensures that the number of nodes

does not grow exponentially with the number of time steps. Furthermore, associated

with every node are three probabilities qd,i,j, qm,i,j, and qu,i,j that are needed to

compute product prices as discounted expectations.
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Both the values ri,j of the nodes and the probabilities qd,i,j, qm,i,j, and qu,i,j are
determined by a construction process. The three probabilities are computed in a

way that ensures that the local expected values and variances of the stochastic factor

x are identical to the corresponding values of the continuous-time process (18.5).

The values of the short rate are chosen to ensure that zero bonds with maturities

identical to the time grid points of the trinomial tree are priced correctly.

To be more specific, to construct the tree we have to start with defining a time

grid 0 ¼ t0, t1,. . ., tl. It has to be ensured that all dates that are relevant for product

pricing like coupon payments and exercise dates are included in this grid. Further,

we denote with xi,j the j-th point of the factor grid at time ti. From the dynamics of

the stochastic factor x in (18.5) we get

mi;j ¼ E x tiþ1ð Þjx tið Þ ¼ xi;j
�  ¼ xi;j � exp �k � tiþ1 � tið Þð Þ

v2i;j ¼ Var x tiþ1ð Þjx tið Þ ¼ xi;j
�  � s2 tið Þ

2 � k � 1� exp �2 � k � tiþ1 � tið Þð Þð Þ
(18.15)

where for the calculation of the variance it was assumed that the volatility s is

locally constant.

The standard deviation vi,j of (18.15) is used to construct the grid for x. Intui-
tively, it is clear that the step size Dx of the grid should be proportional to the

standard deviation. A standard choice is

Dx tiþ1ð Þ ¼ max
j

vi;j
ffiffiffi
3

p
: (18.16)

With this choice for the step size the x-grid is constructed as kּDx. The values for
k that are needed to construct the grid at time ti+1 are defined from the mean values

in (18.15) to ensure that the grid covers the value range that is attained with high

probability

Sh
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t 
R
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e

Timet0 t1 t2 t3 t4

qu,0,0

qu,1,2
qm,1,2

qd,1,2

qd,1,1

qd,1,0

qm,1,1

qm,1,0

qu,1,1
qm,0,0

qd,0,0 qu,1,0

Fig. 18.4 Illustration of a trinomial tree for the G1 model
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k ¼ round
mi;j

Dx tiþ1ð Þ
� �

: (18.17)

With this definition of the middle node of the three succeeding nodes at time ti+1
of each node at time ti, we have all ingredients to compute the tree probabilities.

This is done by matching the moments of the continuous and the discrete distribu-

tions of the short rate by solving the set of equations

mi;j ¼ qu;i;j � xiþ1;kþ1 þ qm;i;j � xiþ1;k þ qd;i;j � xiþ1;k�1;

v2i;j ¼ qu;i;j � x2iþ1;kþ1 þ qm;i;j � x2iþ1;k þ qd;i;j � x2iþ1;k�1

� qu;i;j � xiþ1;kþ1 þ qm;i;j � xiþ1;k þ qd;i;j � xiþ1;k�1

� �2
;

1 ¼ qu;i;j þ qm;i;j þ qd;i;j:

It can be shown that the choice of the step size in the x-grid (18.16) leads indeed
to probabilities, i.e. that the quantities qd,i,j, qm,i,j, and qu,i,j are positive (Brigo and

Mercurio 2006).

The values of the short rate tree ri,j can be computed by adding y(ti) to the x-tree
which is computed by (18.9). Since y in (18.9) is derived from a continuous-time

process there will be a small discretization bias when zero bonds are priced with the

tree, i.e. the discount curve will not be matched exactly by the tree. To fit discount

factors exactly one could alternatively compute the correction term y(ti) instead of

using (18.9) by an additional numerical calibration in the tree. The details of this

calculation can be found in Brigo and Mercurio (2006).

After the construction of the tree is finished it can be used for product pricing.

Product prices are computed by iterative expectations. The discretized product

value Vi,j is initialized in time tl. Depending on the specific product this can be

done by initializing Vl,j by the product’s payoff or by the value of a coupon

payment. The preceding values of V are then computed iteratively as discounted

expectations

Vi;j ¼ exp �ri;j � tiþ1 � tið Þ� � � qu;i;j � Viþ1;kþ1 þ qm;i;j � Viþ1;k þ qd;i;j � Viþ1;k�1

� �

where k was defined by (18.17). At every time point ti where either a coupon is paid
or a counterparty of the product has an exercise right, the value of Vi,j has to be

modified appropriately. We will see this in detail in the next section when a pricing

algorithm for a loan with prepayment rights is developed.

Finally, we remark that the trinomial tree is a popular and intuitive but not the

most efficient way of pricing interest rate products. It can be shown that pricing

a product in the G1 model is equivalent to solving a partial differential equation

that is determined from the short rate dynamics (18.5). For partial differential

equations solution algorithms exist that deliver a higher accuracy for less

computational effort than the trinomial tree. Details can be found in Randall

and Tavella (2000).
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18.2.3 A General Loan Pricing Framework

In this section we combine the rating tree of Sect. 18.2.1 and the interest rate tree of

Sect. 18.2.2 to a pricing algorithm for loans with embedded options. By assuming

that interest rate changes are independent from rating changes both models can be

easily combined to a three-dimensional tree. This model was already suggested by

Sch€onbucher (2003) in a different context.

The resulting three-dimensional tree is illustrated in Fig. 18.5. In this example

the tree is built for a rating system with six rating grades where the sixth grade is the

default grade. From every node it is possible to reach eighteen succeeding nodes,

six possible rating changes times three possible changes in the short rate. Because

of the independence assumption of rating changes and interest rate changes the tree

probabilities can be easily computed by multiplying the probabilities of the interest

rate tree with the probabilities of the rating tree. The pricing of a loan in the tree is

carried out analogously to the pricing in the two-dimensional trees by computing

discounted expectations iteratively starting from the most-right nodes.

We explain the pricing of loans with prepayment rights in detail. To model

prepayment some assumptions on the behaviour of debtors and the conditions of

refinancing a loan have to be made:

l We assume that a debtor needs the money that was lent by a bank until the loan’s

maturity. If he is able to get a cheaper loan over the remaining maturity on a

prepayment date he will prepay with a probability pex.
l If a debtor prepays and enters a new loan the opportunity costs of capital and the

internal costs for the new loan are the same as for the old loan (cf. Chap. 17 for

an explanation of these cost components).

R
at

in
g 

G
ra

de

Time

Sh
or

t R
ate

Fig. 18.5 Illustration of the three-dimensional tree that is used for pricing loans with embedded

options
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l If a debtor prepays and enters a new loan, this loan will not have any prepayment

rights.
l All banks have the same opinions on default probabilities and recovery rates.

The exercise probability pex is introduced to model the irrational behaviour of

retail costumers. They do not act perfectly rational like interest rate derivatives or

bond traders and might not prepay even if it is advantageous for them. The

probability pex gives the probability that a debtor will prepay when the conditions

are in his favour.

We explain the steps that are necessary to implement a pricing algorithm for a

fixed-rate bullet loan with prepayment rights in this model in detail. We assume that

a time grid 0 ¼ t0, t1,. . ., tl is constructed that contains all important time points, the

payment times of coupons and the times where prepayment is possible. Further, we

assume that the tree of Fig. 18.5 is constructed using the steps that were explained in

Sects 18.2.1 and 18.2.2. We use the notation N for the loan’s notional, z is the loan’s
fixed interest rate, T1,. . ., Tm are the interest rate payment times, ctot is the sum of

the opportunity cost of capital and the internal cost margin, and ti is the year

fraction of the i-th interest rate period. We compute the price V(u,ri,j,ti) of a fixed-
rate bullet loan with prepayment rights depending on the rating u, the short rate ri,j
and time ti using the algorithm:

1. At tl: Initialize V(u,rl,j,tl) and Vex(u,rl,j,tl) with N.
2. At tl: Add zּtmּN to V(u,rl,j,tl) and (z � ctot)ּtmּN to Vex(u,rl,j,tl).
3. At tl-1: Compute V(u,rl�1,j,tl�1) from the values of V at the succeeding nodes:

V u; rl�1;j; tl�1

� � ¼Xn�1

g¼1

pug tljtl�1ð Þ � V̂ g; rl�1;j; tl�1

� �

þ pun tljtl�1ð Þ � R tl�1ð Þ � N
V̂ g; rl�1;j; tl�1

� � ¼ e�rl�1;j� tl�tl�1ð Þ � qu;l�1;j � V g; rl;kþ1; tl
� ��

þ qm;l�1;j � V g; rl;k; tl
� �þ qd;l�1;j � V g; rl;k�1; tl

� ��

4. Repeat step 3 for Vex.

5. Repeat steps 3 and 4 until time tz ¼ Tm�1 is reached.

6. At Tm�1: Add z tm�1 N to V(u,rz,j,tz) and (z � ctot) tm�1 N to Vex(u,rz,j,tz).
7. At Tm�1: If Tm�1 is a prepayment time replace V(u,rz,j,tz) by

pex � N þ ð1� pexÞ � Vðu; rz;j; tzÞ

if the condition Vex(u,rz,j,tz) > N is fulfilled.

8. Repeat steps 3–7 until t ¼ 0 is reached.

To include prepayment rights into loan structures with amortization schedules like

instalment loans or annuity loans the amortization payments have to be added to the

interest rate payments in the above algorithm. It is also possible (but a bit more

complicated) to extend the pricing algorithm to loans with a floating interest rate.
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The auxiliary variable Vex is used only to determine if prepayment is advanta-

geous. It is computed from the interest margin excluding all cost components

except for the risk costs. If the loan value at the prepayment date is “fair”, i.e. if

the loan’s margin is exactly equal to the then prevailing minimum margin under the

assumptions on costs used in the pricing algorithm, then the condition Vex ¼ N
would be fulfilled. Therefore, prepayment is advantageous if the loan under its

current terms is too expensive under the actual market rates which is reflected in the

condition Vex > N.
We will illustrate this pricing algorithm with a numerical example in the next

section. This section will be concluded with comments on the theoretical properties

of this pricing model. What we have done in the tree algorithm is mixing risk-

neutral probabilities of the interest rate tree that are implied from the market with

real-world probabilities of the rating tree that are based on statistical information.

The underlying theory of derivatives pricing models implies a trading strategy that

allows the perfect hedging of interest rate risk with basic instruments in the interest

rate market. The combination with statistical probabilities results in a model of an

incomplete market, i.e. a model that contains risks that are not tradable and cannot

be hedged.

This has consequences for the risk management of prepayment rights. In principle,

prepayment rights can be hedged by receiver swaptions. The number of receiver

swaptions that are needed for the hedge (the hedge ratio) is determined by the pricing

model. However, if realized default rates are different from default probabilities,

these hedge ratios turn out to be wrong. In this case the hedge might lead to

unexpected losses. Analyzing this model in some detail shows that the risk of

unexpected losses on the hedge of prepayment rights does not lead to an increase

of economic capital for a loan portfolio because for typical loan portfolios the level of

economic capital is dominated by default risks. That means that unexpected losses in

hedges of payment rights are already covered by the economic capital that is needed

as a buffer for unexpected losses due to defaults. The details of these analyses are

worked out in Engelmann (2010).

18.3 Numerical Example

In this section, we will present a numerical example using real market data. We use

the discount curve that is presented in Table 18.3 and the swaption volatility matrix

of Table 18.4.

As an example we consider a bullet loan with a maturity of 15 years. The loan

has a fixed interest rate and a prepayment right after 10 years. The debtor has the

right to fully pay back the loan after 10 years without penalty. The notional of

the loan is 1 million. The loan is secured with collateral worth 400,000. As in the

examples of Chap. 17 the default probabilities are computed from the transition

matrix of Fig. 6.7 in Chap. 6.
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To measure the effect of rating migration on the pricing, we carry out the

algorithm of Sect. 18.2.3 both with the full transition matrix and with the term-

structures of default probabilities that were computed in Table 17.1 of Chap. 17. In

the latter case the algorithm of Sect. 18.2.3 is applied with two rating grades only,

the non-default grade and the default grade. The exercise probability pex in this

algorithm is set to 100%.

There are two ways to extend the RAROC pricing framework of Chap. 17 to

loans with amortization rights. One possibility is increasing the risk costs by

including prepayment risk. This is done by computing the risk costs from the

condition V ¼ N. This condition was also applied in the case without amortization

rights but leads to an increased value of the risk costs when amortization rights are

included. Alternatively, instead of increasing the interest margin a bank could

charge the option premium by an upfront payment. In this case the risk costs are

Table 18.3 Discount curve used in the example for pricing a loan with prepayment rights

Maturity (years) Discount factor Maturity (years) Discount factor

0.0027 0.999978 2.0000 0.955710

0.0833 0.999214 3.0000 0.932863

0.1667 0.997850 4.0000 0.900632

0.2500 0.996469 5.0000 0.866350

0.3333 0.995137 6.0000 0.830990

0.4167 0.993367 7.0000 0.796393

0.5000 0.991578 8.0000 0.762382

0.5833 0.989688 9.0000 0.727801

0.6667 0.987618 10.0000 0.694570

0.7500 0.985465 12.0000 0.631269

0.8333 0.983284 15.0000 0.542595

0.9167 0.981037 20.0000 0.434336

1.0000 0.978903 30.0000 0.318877

Table 18.4 Swaption volatilities used in the example for pricing a loan with prepayment rights

(First column: swaption expiry, First row: tenor of the underlying swap)

1 2 3 4 5 6 7 8 9 10

0.08 0.475 0.376 0.338 0.319 0.311 0.305 0.297 0.291 0.286 0.281

0.17 0.486 0.387 0.350 0.332 0.316 0.305 0.296 0.291 0.286 0.281

0.25 0.484 0.402 0.360 0.332 0.314 0.301 0.293 0.287 0.283 0.279

0.50 0.453 0.367 0.326 0.301 0.284 0.275 0.271 0.268 0.268 0.265

0.75 0.422 0.340 0.302 0.279 0.265 0.257 0.253 0.251 0.250 0.250

1 0.392 0.316 0.283 0.263 0.249 0.241 0.237 0.236 0.235 0.234

1.5 0.312 0.269 0.248 0.233 0.224 0.218 0.216 0.215 0.215 0.215

2 0.261 0.238 0.224 0.214 0.206 0.203 0.201 0.201 0.201 0.202

3 0.210 0.198 0.190 0.186 0.182 0.182 0.182 0.182 0.182 0.182

4 0.180 0.173 0.170 0.168 0.167 0.167 0.167 0.167 0.167 0.167

5 0.162 0.158 0.156 0.156 0.157 0.156 0.155 0.155 0.155 0.156

7 0.144 0.142 0.141 0.140 0.140 0.139 0.139 0.140 0.141 0.142

10 0.131 0.130 0.129 0.129 0.129 0.130 0.131 0.132 0.134 0.136

15 0.130 0.131 0.134 0.137 0.141 0.144 0.148 0.152 0.156 0.159

20 0.165 0.169 0.174 0.179 0.183 0.186 0.189 0.191 0.193 0.194
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computed in the same way as for the otherwise identical loan without amortization

rights. The option premium is determined by pricing the loan using the margin of

formula (17.9) of Chap. 17 and computing the difference to the initial notional.

We start with calibrating the G1 model. Since the loan has one prepayment right

only, a reasonable calibration strategy is to calibrate the model to the 10Y swaption

into a 5Y swap which can be viewed as the underlying option of the loan. Since two

parameters cannot be calibrated from one instrument, we have calibrated k from the

full swaption matrix, i.e. we have solved the minimization problem (18.10) with

time-independent s to determine k.4 After that, we modify s to match the price of

the calibration instrument. We find k ¼ 0.0182 and s ¼ 0.0090.

In the first example we assume that the premium for the prepayment option results

in an increased margin. We compute risk costs for the loan without prepayment right

to get the reference rate reflecting the margin for expected loss only. After that we

compute the risk costs including the prepayment right for the two cases explained

above, using a term structure of default probabilities only versus using the full

transition matrix. The results are presented in Table 18.5. In the second example we

assume that the loan is sold with the risk margin corresponding to an otherwise

identical loan without prepayment right and that the option premium is paid upfront

by the debtor. The resulting option premia are reported in Table 18.6.

From Table 18.5 we see that for the good rating grades the largest proportion of

the risk costs corresponds to the prepayment right. For the poor rating grades it is

vice versa. Here the risk costs are mainly driven by default risk. Further, we see that

migration does not have an effect for the good rating grades. These debtors only face

the risk of downgrades which would make their prepayment option less valuable.

For this reason it does not make a difference if the prepayment right is priced with a

term structure of default probabilities only or with the full transition matrix. The

situation is different for debtors with poor rating grades. They have the change of

upgrades which would increase the value of their prepayment option considerably.

This chance of upgrades leads to a higher risk margin if the pricing is done with the

migration matrix compared to the term structure of default probabilities.

Table 18.5 Risk costs (in %)

for the 15 years loan with and

without prepayment right

after 10 years

Rating

grade

Risk costs (no

prepay. right)

Risk costs (PD

term structure)

Risk costs

(migration matrix)

1 0.038 0.193 0.194

2 0.098 0.247 0.251

3 0.192 0.331 0.339

4 0.493 0.616 0.637

5 1.286 1.397 1.440

6 2.759 2.890 2.964

7 6.084 6.432 6.543

8 10.244 10.986 11.057

4The calibration of k from market data might be rather unstable, i.e. the value of k is fluctuating

strongly with changing market data. For this reason, this parameter is alternatively often estimated

empirically from historical data.
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The picture is similar in Table 18.6 where the option premium is charged upfront

instead of by an increased margin. We see that the effect of rating migration is small

for good rating grades and considerable for the poor rating grades.5 We see that

option premia are not monotonous in the rating grade. Furthermore, we find that the

premium increase under the inclusion of rating migration is also not monotonous in

the rating grade. The option premium is the result of several economic effects. First,

of course, there is a chance for falling interest rates. This effect is the same for all

debtors. Second, for debtors with very low default probabilities the option premium

is basically the premium for interest rate risk. Default risks do not play a role in this

situation. Third, if default probabilities are increased mildly this leads to a greater

chance that a debtor will default before the prepayment date and the prepayment

right will expire worthless. This leads to a decrease in the premium. Fourth, for

debtors with high default probabilities the risk costs will decrease considerably if

they survive until the prepayment date. This has the effect that a debtor will prepay

for sure almost regardless of the interest rates at the prepayment date in this case.

All these effects are included in the option premium.

18.4 Conclusion

In this chapter, we have discussed an algorithm for pricing loans with embedded

options. We have focussed on prepayment rights because these are the most popular

embedded options in loan markets. However, it is also possible to extent the pricing

algorithm to floating rate loans with embedded caps and floors. In a numerical

example we have computed the necessary margin increase or the upfront premium

depending on the way the prepayment right is charged by a bank. We have seen that

option premia can be considerable and that these options should not be neglected

when a loan is sold.

Table 18.6 Prepayment

option premia when the

option premium is charged

upfront

Rating grade Option premium

(PD term structure)

Option premium

(migration matrix)

1 16,917 17,093

2 16,349 16,776

3 15,278 16,169

4 13,309 15,335

5 11,112 14,938

6 10,973 16,529

7 18,998 24,662

8 28,592 30,852

5In fact the option premia for rating grade 1 should be identical because there is no possibility for

an upgrade of the debtor. The difference results from a numerical effect because the interpolation

of default probabilities in the term structure leads to slightly different numbers than the exact

calculation by transition matrices corresponding to year fractions.

18 Risk Management of Loans with Embedded Options 413



The presented algorithm offers further possibilities of extensions. One key

assumption in the algorithm was that the cost structure of a bank remains constant

in time. The recent financial crisis has shown that this is not true. In times of

financial distress the funding conditions of a bank can worsen considerably which

leads to an increase of the margin of a loan. If the loan contains a prepayment right,

however, the debtor might be able to refinance his loan at a lower rate just because

of the reduction in banks’ funding conditions when markets went back to normal.

By modifying the cost assumptions in the algorithm, this effect can be included in

the option premium.

Finally, the algorithm can be used for the risk management of loan portfolios. It

can be used for the calculation of general loss provision that was already outlined in

Chap. 17. Furthermore, it can be used to hedge the embedded options by market

options like interest rate caps and interest rate swaptions. The pricing model will tell

the amount of hedging instruments needed by calculating the so-called greeks (delta,

gamma, vega) based on information about the current market prices of interest rate

options (included in the model parameters of the G1model), the default probabilities

of the debtors, the migration probabilities, and the product structures. In addition, it

offers the possibility to model irrational behaviour of debtors. Therefore, it includes

all information that is needed from an economic perspective and still results in a

tractable model that can be implemented efficiently.
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