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In this paper, we present a fuzzy k-means clustering algorithm using the cluster cen-

ter displacement between successive iterative processes to reduce the computational 
complexity of conventional fuzzy k-means clustering algorithm. The proposed method, 
referred to as CDFKM, first classifies cluster centers into active and stable groups. Our 
method skips the distance calculations for stable clusters in the iterative process. To 
speed up the convergence of CDFKM, we also present an algorithm to determine the ini-
tial cluster centers for CDFKM. Compared to the conventional fuzzy k-means clustering 
algorithm, our proposed method can reduce computing time by a factor of 3.2 to 6.5 us-
ing the data sets generated from the Gauss Markov sequence. Our algorithm can reduce 
the number of distance calculations of conventional fuzzy k-means clustering algorithm 
by 38.9% to 86.5% using the same data sets.  
 
Keywords: vector quantization, fuzzy k-means clustering, data clustering, knowledge 
discovery, pattern recognition 
 
 

1. INTRODUCTION 
 

Data clustering is used frequently in a number of applications, such as vector quan-
tization (VQ) [1-4], pattern recognition [5], knowledge discovery [6], speaker recogni-
tion [7], fault detection [8], and web/data mining [9]. Among clustering formulations that 
minimize an objective function, fuzzy k-means clustering is widely used and studied [10]. 
The fuzzy k-means clustering algorithm is a special case of the generalized fuzzy k- 
means clustering scheme, where point representatives are adopted and the Euclidean dis-
tance is used to measure the dissimilarity between a vector X and its cluster representa-
tive C. 

The fuzzy k-means clustering (FKM) algorithm performs iteratively the partition 
step and new cluster representative generation step until convergence. The applications 
of FKM can be founded in reference [11], which provided an excellent review of FKM. 
An iterative process with extensive computations is usually required to generate a set of 
cluster representatives. The convergence of FKM is usually much lower than that of hard 
k-means clustering [12]. Some methods are available to speed up hard k-means clustering 
[13-15]. Kanungo et al. [13] developed a filtering algorithm on a kd-tree to speed up the 
generation of new cluster centers. Sorting data points in a kd-tree for k-means clustering 
was also used by Pelleg and Moore [14]. After some iterations of hard k-means clustering, 
most of the centers are converged to their final positions and the majority of data points 
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have few candidates to be selected as their closest centers. Lai et al. [15] exploited this 
characteristic to develop a fast k-means clustering algorithm to reduce the computational 
complexity of k-means clustering. 

To reduce the computational complexity of FKM, Shankar and Pal used multistage 
random sampling to reduce the data size [16]. This method reduced the computational 
complexity by a factor of 2 to 4. Cannon, Dave, and Bezdek used look-up tables for stor-
ing distances to approximate fuzzy k-mean clustering and reduced the computing time by 
a factor of about 6 [17]. It is noted that this method is applicable only for integer-valued 
data in the range of 0 to 255 and the accuracy of a cluster center’s coordinate is up to 0.1. 
Höppner developed an approximate FKM to reduce the computational complexity of 
conventional FKM [18]. This method gave the same membership as that of conventional 
FKM within a given precision and reduced the computing time of conventional FKM by 
a factor of 2 to 4. It is noted that all the above method cannot obtain the same clustering 
result as that of conventional FKM. After some iterations of FKM, it is expected that 
many of the centers are converged to their final positions and many distance calculations 
can be avoided at each partition step. This characteristic is exploited to reduce the com-
putational complexity of fuzzy k-means clustering. 

In this paper, two algorithms are presented to reduce the computing time of fuzzy 
k-means clustering. These two algorithms classify cluster centers (representatives) into 
stable and active groups and the distance calculations are executed only for those active 
cluster representatives during the iterative process. This paper is organized as follows. 
Section 2 describes the fuzzy k-means clustering algorithm. Section 3 presents the algo-
rithms developed in this paper. Some theoretical analyses of the presented algorithms are 
also shown in section 3. Experimental results are presented in section 4 and concluding 
remarks are given in section 5. 

2. FUZZY K-MEANS CLUSTERING ALGORITHM 

The fuzzy k-means clustering algorithm partitions data points into k clusters Sl (l = 1, 
2, …, k) and clusters Sl are associated with representatives (cluster center) Cl. The rela-
tionship between a data point and cluster representative is fuzzy. That is, a membership 
ui,j ∈ [0, 1] is used to represent the degree of belongingness of data point Xi and cluster 
center Cj. Denote the set of data points as S = {Xi}. The FKM algorithm is based on 
minimizing the following distortion: 

J = ,
1 1

k N
m
i j ij

j i
u d

= =
∑∑     (1) 

with respect to the cluster representatives Cj and memberships ui,j, where N is the number 
of data points; m is the fuzzifier parameter; k is the number of clusters; and dij is the 
squared Euclidean distance between data point Xi and cluster representative Cj. It is 
noted that ui,j should satisfy the following constraint: 

,
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∑ = 1, for i = 1 to N.     (2) 
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The major process of FKM is mapping a given set of representative vectors into an 
improved one through partitioning data points. It begins with a set of initial cluster cen-
ters and repeats this mapping process until a stopping criterion is satisfied. It is supposed 
that no two clusters have the same cluster representative. In the case that two cluster cen-
ters coincide, a cluster center should be perturbed to avoid coincidence in the iterative 
process. If dij < η, then ui,j = 1 and ui,l = 0 for l ≠ j, where η is a very small positive num-
ber. The fuzzy k-means clustering algorithm is now presented as follows. 

 
(1) Input a set of initial cluster centers SC0 = {Cj(0)} and the value of ε. Set p = 1.  
(2) Given the set of cluster centers SCp, compute dij for i = 1 to N and j = 1 to k. Update 

memberships ui,j using the following equation: 
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If dij < η, set ui,j = 1, where η is a very small positive number. 
(3) Compute the center for each cluster using Eq. (4) to obtain a new set of cluster rep-

resentatives SCp+1.  

Cj(p) = 1
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(4) If ||Cj(p) − Cj(p − 1)|| < ε for j = 1 to k, then stop, where ε > 0 is a very small positive 
number. Otherwise set p + 1 → p and go to step 2.  

 
The major computational complexity of FKM is from steps 2 and 3. However, the 

computational complexity of step 3 is much less than that of step 2. Therefore the com-
putational complexity, in terms of the number of distance calculations, of FKM is O(Nkt), 
where t is the number of iterations. 

3. PROPOSED METHODS 

In the iterative process of fuzzy k-means clustering, one may expect that the dis-
placements of some cluster centers will be smaller than the threshold ε after few times of 
iterations and others need the much longer times of iterations to be stabilized, where ε > 
0 is a very small positive number. Let the jth cluster centers used in the current and pre-
vious partitions be denoted as Cj and C′j, respectively. Denote the displacement between 
Cj and C′j as Dj. That is, Dj = ||Cj − C′j||. If Dj < ε, then the vector Cj is defined as a stable 
cluster center; otherwise it is called an active cluster center. The cluster associated with 
an active center is called an active cluster. Similarly the cluster having a stable center is 
defined as a stable cluster. The number of stable cluster centers increases as the iteration 
proceeds [19]. 



CHIH-TANG CHANG, JIM Z. C. LAI AND MU-DER JENG 

 

998 

 

3.1 Fuzzy K-means Clustering Algorithm Using Cluster Displacement 
 
Denote the subsets, which consist of active cluster centers and stable cluster centers 

as SCa and SCs, respectively. Let ka,i be the number of clusters in SCa at the ith iteration 
of fuzzy k-means clustering. The value of ka,i decreases as the iteration proceeds in gen-
eral. The performance, in terms of computing time, of the proposed method is better, if 
ka,i decreases more quickly during the process of iteration. The value and creasing rate of 
ka,i depend on data distribution. For a data set with good data separation, ka,i will decrease 
quickly. For an evenly distributed data set, ka,i will decrease slowly. For a real data set, a 
good data separation is usually obtained. In the worst case, ka,i equals k, which is the 
number of clusters. It is noted that centers of clusters in the previous iteration will be 
used to partition the set of data points {Xi} in the current iteration. The FKM algorithm 
stops, if the displacements of all cluster centers are less than ε. That is, if Dj < ε, then 
cluster Sj is a stable cluster and dij (i = 1 to N) will not be recalculated to update ui,j in the 
iterative process. The proposed algorithm will use this property to speed up fuzzy k- 
means clustering. Now, the fuzzy k-means clustering algorithm using cluster displace-
ment (CDFKM) is presented below. 

 
Fuzzy K-means Clustering Algorithm Using Center Displacement 
(1) Input a set of initial cluster centers SC0 and the value of ε. Set p = 1. 
(2) Given the set of cluster centers SC0 = {Cj(0)}, compute dij for i = 1 to N and j = 1 to k. 

Use Eq. (3) to update ui,j. If dij < η, set ui,j = 1. 
(3) Use Eq. (4) to update Cj(p) and calculate Dj = ||Cj(p) − Cj(p − 1)|| for j = 1 to k. Set q 

= 1. 
(4) If Dq < ε, go to step 5; otherwise compute diq for i = 1 to N. 
(5) Set q = q + 1. If q > k go to step 6; otherwise go to step 4. 

Use Eq. (3) to compute ui,j (if dij < η, set ui,j = 1) for i = 1 to N and j = 1 to k.  
(6) Set p = p + 1, use Eq. (4) to update Cj(p), and calculate Dj = ||Cj(p) − Cj(p − 1)|| for j = 

1 to k. If Dj < ε for j = 1 to k, then stop; otherwise set q = 1 and go to step 4. 
 

3.2 Parameter Selection and Computational Complexity Analysis 
 
In this subsection, the effect of ε on ui,j will be investigated. Eq. (3) can be rewritten 

as 

, 1/ 1

1,

1 .

1
i j mk

ij

ill l j

u
d
d

−

= ≠

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

∑
 (5a) 

That is,  
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Let the squared Euclidean distances between data point Xi and cluster centers Cj(p − 
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1) and Cj(p) be d'ij and dij, respectively. In the case of ||Cj(p) − Cj(p − 1)|| < ε, d'ij is used 
to calculate memberships ui,j. Denote u'i,j as the membership of Xi with respect to Cj(p), if 
dij is replaced by d'ij in Eq. (3). Similarly, let ui,j be the membership of Xi with respect to 
Cj(p) for the case that dij is used to calculate memberships. For many applications, m = 2 
is used [10] and is adopted in this paper. In the case of ||Cj(p) − Cj(p − 1)|| < ε, d'ij can be 
estimated by 

di′j ≈ di′j ± O(ε)(di′j)1/2.    (6) 

Eq. (6) implies that if ||Cj(p) − Cj(p − 1)|| < ε, then |d'ij − dij|/(dij)1/2 ≈ O(||Cj(p) − Cj(p 
− 1)||). That is, |d'ij − dij|/(dij)1/2 

equals approximately the displacement of the ith cluster’s 
center. u'i,j is obtained by replacing dij in Eq. (5a) by d'ij given in Eq. (6). That is, 
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for m = 2. For the case of m = 2, Eq. (5b) becomes 
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Substituting the term 
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That is, |u'i,j − ui,j | ≈ O(ε)(dij)−1/2(ui,j − (ui,j)2) ≤ O(ε)(dij)−1/2. In the case of dij < η, it 
implies that ui,j = u'i,j = 1 and |u'i,j − ui,j| = 0. Since η is a very small positive number, it im- 
plies that η << η1/2. In the case of η ≤ dij ≤ ε, one can obtain |u'i,j − ui,j| ≤ O(ε)/η1/2. If ε = η 
is chosen, |u'i,j − ui,j| << 1 will be obtained due to η << η1/2. In this paper, ε = η = 0.00001 
is used. 

The major computational complexity of CDFKM is from steps 4, 6, and 7. To com-  

pute ui,j, 
1/ 1

1

1
mk

ill d

−

=

⎛ ⎞
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∑  for each data point Xi are first calculated and stored. That is, Nk  

multiplications and additions are needed to update ui,j at step 6. To calculate distances 
between all data points and cluster centers, Nk distance calculations are required. Each 
distance calculation requires d multiplications and (2d − 1) additions, where d is the data 
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dimension. That is, Nkd multiplications and Nk(2d − 1) additions are needed to calculate 
distances at step 4. Therefore, it can be concluded that the computational complexities of 
steps 6 and 7 are much less than that of step 4. Let ka be the average number of active clus- 

ter centers at each stage of iteration for CDFKM, where ka = 

1

,
0

( )/ ,
t

a i
i

k t
−

=
∑  t is the number  

of iteration, and ka,i is the number of active clusters at the ith iteration. For a data set with 
good data separation, a small value of ka is expected. For an evenly distributed data set, 
ka may equal k. For the worst case, ka equals k and the proposed method will make no 
improvement over original FKM. The probability of performing distance calculations at 
step 4 is ka/k, where k is the number of clusters. That is, the computational complexity, in 
terms of the number of distance calculations, of CDFKM is O(Nkt) × O(ka/k) = O(Nkat), 
where t is the number of iterations. Since 1 ≤ ka ≤ k, the computational complexity, in 
terms of the number of distance calculations, of CDFKM is upper bounded by O(Nkt). 
 
3.3 Determination of Initial Cluster Centers Using Subsets 

 
The computing time and number of iterations for CDFKM increase as the data size 

increases. The proposed method first uses CDFKM to generate a codebook from subsets 
of S and then adopt this codebook as the initial codebook for CDFKM to partition the 
whole data set S into k clusters. This initial approximation helps to reduce the number of 
iterations for CDFKM. To speed up the convergence of CDFKM, M subsets of the data 
set S are used to estimate the initial cluster centers for CDFKM. Denote these M subsets 
as SBl (l = 1 to M). The data size of SBl is fN, where f < 1 and N is the data points in S. It 
is noted that the data points in SBl are selected randomly from S and SBi ∩ SBj = ∅ (i ≠ 
j), where ∅ is an empty set. The cluster center estimation algorithm (CCEA) first gener-
ates an initial set of cluster centers SC0, which is obtained by selecting randomly k data 
points from SB1, for CDFKM to partition SU, where SU = SB1. This partition process 
will generate a set of cluster centers SC1. Setting SU = SU ∪ SBp, where p = 2 to M, 
CCEA uses SCp-1 as the initial set of cluster centers for CDFKM to generate SCp using 
the data set SU. This process is repeated until the set of cluster centers SCM is obtained. 
Finally, CDFKM uses SCM as the initial set of cluster centers to partition the whole data 
set S. Now, the cluster center estimation algorithm (CCEA) is presented as follows, 

 
Cluster Center Estimation Algorithm 
(1) Randomly select M subsets SBl (l = 1 to M) of size fN from the data set S such that 

SBi ∩ SBj = ∅ (i ≠ j), where f < 1. Set SU = SB1 and p = 0. 
(2) Given a set of initial cluster centers SCp = {Cj} and the data set SU, use CDFKM to 

determine a set of cluster centers SCp+1 = {Cj}.  
(3) Update p = p + 1 and set SU = SU ∪ SBp+1. If p ≤ M, go to step 2. 
(4) Output SCM as the set of initial cluster centers.  
 

The set SC0 is obtained by selecting randomly k data points from the subset SB1. A 
subset of size sN is used by CCEA to obtain an initial set of cluster centers for CDFKM, 
where 0 < s < 1. Note that f is a small positive real number. The value of M is so chosen 
that it is less than (s/f). Using the initial cluster centers determined by CCEA for 
CDFKM, the corresponding algorithm is denoted as modified CDFKM (MCDFKM). 



A FUZZY K-MEANS CLUSTERING ALGORITHM  

 

1001 

 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed algorithms CDFKM and MCDFKM, 
several sets of synthetic data, a set of real images, and a real data set have been used. The 
values of f and ε for MCDFKM are set to be 0.05 and 0.00001, respectively. In the first 
example, the data set has about 50,000 data points. This data set is obtained from real 
images consists of image blocks of 4 × 4 pixels. That is, the set of data points with di-
mension 16 is obtained from three real images: “Peppers,” “Lena,” and “Baboon.” It is 
noted that the block size for each data point is 4 × 4. In example 2, several data sets with 
size 20,000 and dimensions from 8 to 40 are generated. There are 40 cluster centers, 
which are evenly distributed over the hypercube [− 1, 1]d with d ranging from 8 to 40. A 
Gaussian distribution with standard distribution σ = 0.05 along each coordinate is used to 
generate data points around each center, where each coordinate is generated independ-
ently. In example 3, several data sets with size 10,000 and dimensions from 8 to 40 are 
obtained from the Gauss Markov sequence [1] with σ = 10, μ = 0, and a = 0.9, where σ is 
the standard deviation, μ is the mean value of the sequence and a is the correlation coef-
ficient. In example 4, the Statlog (Landsat Satellite) data set consisting of 6,435 data 
points with 36 attributes is used [20]. 

In these examples, the proposed algorithms are compared to the conventional fuzzy 
k-means clustering algorithm in terms of the average number of distance calculations and 
computing time. The average computing time and number of distance calculations are 
calculated for each algorithm with 50 repetitions using different initial cluster centers. 
The initial cluster centers are randomly selected from each data set. Every algorithm uses 
the same initial cluster centers at each repetition. All computing is performed on an 
AMD Dual Opteron 2.0 GHz PC with 2GB of memory. All programs are implemented as 
console applications of Microsoft Visual Studio 6.0 and are executed under Windows XP 
Professional SP3. 

 
Example 1: A data set is generated from three real images. 

In the first example, this data set with d = 16 and N ≈ 50,000 is generated from three 
real images: “Lena,” “Peppers,” and “Baboon.” Tables 1 and 2 give the average execution 
time and number of distance calculations per data point, respectively, for FKM (fuzzy k- 
means clustering algorithm), CDFKM, and MCDFKM. Table 3 presents the average dis-
tortion per data point for these three methods. From Tables 1 and 2, it can be concluded 
that MCDFKM with M = 1 has the best performance, in terms of the computing time and 
number of distance calculations, for k ≤ 32. For k ≥ 64, CDFKM has the least computing 
time and number of distance calculations. Compared to FKM, CDFKM can reduce the 
computing time by a factor of 1.1 to 2.1. From Table 1, it can be found that the computing 
time of MCDFKM increases as the value of M increases. Therefore MCDFKM with M = 
1 is used in the following examples. From Table 3, it can be found that FKM, CDFKM, 
and MCDFKM can obtain the same clustering result.  
 
Example 2: Data sets are generated with cluster centers evenly distributed over the hy-
percube [− 1, 1]d. 

In this example, each data set consists of 20,000 data points. Fig. 1 shows the aver-
age computing time for FKM, CDFKM, and MCDFKM with M = 1, whereas Fig. 2 gives  
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Table 1. The average computing time (in seconds) for FKM, CDFKM, and MCDFKM 
using a data set generated three real images. 

k Method 16 32 64 128 
FKM 509.50 1328.92 2925.56 15355.94 

CDFKM 468.86 1212.73 2329.64 7920.42 
MCDFKM (M = 1) 338.67 894.00 3192.59 7623.59 
MCDFKM (M = 2) 349.08 911.80 3434.36 7791.73 
MCDFKM (M = 3) 394.97 983.69 3678.59 8404.13 
MCDFKM (M = 4) 412.97 1072.31 4069.98 10147.78 
MCDFKM (M = 5) 475.51 1138.83 4390.61 10205.95 
MCDFKM (M = 6) 530.64 1294.08 5385.81 14342.30 

Table 2. The average number of distance calculations per data point for FKM, CDFKM, 
and MCDFKM using a data set generated from three real images. 

k Method 16 32 64 128 
FKM 82577024 210768032 462431360 2415968128 

CDFKM 65275360 173313824 225074624 398747520 
MCDFKM (M = 1) 41237844 98798730 289202130 462964383 
MCDFKM (M = 2) 42805470 106209666 301687848 503016639 
MCDFKM (M = 3) 47960496 112179816 309157617 525194391 
MCDFKM (M = 4) 49906440 118076676 341583657 555601119 
MCDFKM (M = 5) 56393328 123518739 360170358 623380608 
MCDFKM (M = 6) 62447400 136084641 387006372 669698964 

Table 3. The average distortion per data point for FKM, CDFKM, and MCDFKM using 
a data set generated from three real images. 

k Method 16 32 64 128 
FKM 828.68 404.38 200.13 99.76 

CDFKM 828.68 404.38 200.13 99.76 
MCDFKM (M = 1) 828.68 404.38 200.13 99.76 
MCDFKM (M = 2) 828.68 404.38 200.13 99.76 
MCDFKM (M = 3) 828.69 404.38 200.13 99.77 
MCDFKM (M = 4) 828.69 404.38 200.13 99.77 
MCDFKM (M = 5) 828.69 404.38 200.13 99.77 
MCDFKM (M = 6) 828.69 404.38 200.13 99.77 

 

the average number of distance calculations per data point for FKM, CDFKM, and MCD- 
FKM. Fig. 3 shows the average distortion per data point for these three methods. From 
Figs. 1 and 2, it can be found that the proposed method MCDFKM with M = 1 outper-
forms FKM in terms of the computing time and number of distance calculations. From 
Fig. 1, it can also be found find that the computing time of the proposed approach MCD- 
FKM with M = 1 grows linearly with data dimension. Compared to FKM, MCDFKM 
with M = 1 can reduce the computing time by a factor of 2.6 to 3.1. Fig. 3 shows that 
FKM, CDFKM, and MCDFKM with M = 1 can obtain the same clustering result. 
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Fig. 1. The average computing time for data sets from example 2 with N = 20,000 and k = 40. 

 
Fig. 2. The average number of distance calculations per data point for data sets from example 2 with 

N = 20,000 and k = 40. 

 
Fig. 3. The average distortion per data point for data sets from example 2 with N = 20,000 and k = 40. 
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Example 3: Data sets are generated from the Gauss Markov sequence. 
In this example, each data set is obtained from the Gauss Markov source. Figs. 4 

and 7 present the average computing time with k = 128 and 256, respectively. Figs. 5 and 
8 show the average number of distance calculations per data point with k = 128 and 256, 
respectively. Figs. 6 and 9 present the average distortion per data point. From these fig-
ures, it can be found that the computing time of MCDFKM with M = 1 increases linearly 
with the data dimension d. From Figs. 4, 5, 7, and 8, it can be found that MCDFKM with 
M = 1 has the best performance in terms of the computing time and number of distance 
calculations for all cases. Compared with FKM, the proposed method MCDFKM with M 
= 1 can reduce the computing time by a factor of 3.0 to 6.5. From Figs. 5 and 8, it can be 
found that the number of distance calculations of the proposed approach MCDFKM with 
M = 1 is independent of data dimension. Figs. 6 and 9 also confirm that the proposed 
approaches and FKM can obtain the same clustering result. 
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Fig. 4. The average computing time for data sets from example 3 with N = 10,000 and k = 128. 

 
Fig. 5. The average number of distance calculation per data point for data sets from example 3 with 

N = 10,000 and k = 128. 
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Example 4: The Statlog (Landsat Satellite) data set. 
In the fourth example, the Statlog (Landsat Satellite) data set consists of 6,435 data 

points with d = 36 [20]. The value of each coordinate for a data point is in the range of 0 
to 255. The more detailed description regarding this data set can be found in [20]. Tables 
4 and 5 present the computing time and number of distance calculations per data point, 
respectively, for three algorithms to partition this data set into 16, 32, and 64 clusters. 
Table 6 gives the average distortion per data point. From Tables 4 and 5, it can be con-
cluded that MCDFKM with M = 1 has the best performance in terms of computing time 
and number of distance calculations. Compared to FKM, CDFKM can reduce the com-
puting time by a factor of 1.58 to 2.47. From Table 6, it can be found that FKM, CDFKM, 
and MCDFKM can obtain the same clustering result.  

From Examples 1 and 4, it is found that CDFKM has the better performance for real 
data sets. Since real data sets usually have the high cluster separation, it is recommended 
that CDFKM in stead of FKM is used for a data set with high cluster separation. It is 
noted that CDFKM is a fast version of FKM. 

 
Fig. 6. The average distortion per data point for data sets from example 3 with N = 10,000 and k = 

128. 

 
Fig. 7. The average computing time for data sets from example 3 with N = 10,000 and k = 256. 
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Fig. 8. The average number of distance calculation per data point for data sets from example 3 with 

N = 10,000 and k = 256. 

 
Fig. 9. The average distortion per data point for data sets from example 3 with N = 10,000 and k = 

256. 

Table 4. The average computing time (in seconds) for FKM, CDFKM, and MCDFKM 
using the Statlog data set. 

k Method 
16 32 64 

FKM 297.64 916.06 1838.70 
CDFKM 187.81 371.50 802.89 

MCDFKM (M = 1) 143.64 314.49 724.46 

To visualize the clustering result, a data set with N = 1000 and d = 2 is generated. 
This data set has ten cluster centers distributed over the hypercube [− 1, 1]2. A Gaussian 
distribution with standard deviation = 0.15 along each coordinate is used to generate data 
points around each center. This data set is divided into 10 clusters using FKM and 
MCDFKM with M = 1. Fig. 10 presents the clustering results. From Fig. 10, it can be 
found that FKM and MCDFKM with M = 1 can obtain the same clustering result. 
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Table 5. The average number of distance calculations per data point for FKM, CDFKM, 
and MCDFKM using the Statlog data set. 

k Method 16 32 64 
FKM 25743984 79291488 158171072 

CDFKM 9706652 17309091 29728478 
MCDFKM (M = 1) 9855873 18970822 40250065 

Table 6. The average distortion per data point for FKM, CDFKM, and MCDFKM using 
the Statlog data set. 

k Method 16 32 64 
FKM 1368.78 684.39 342.19 

CDFKM 1368.78 684.39 342.19 
MCDFKM (M = 1) 1368.78 684.39 342.19 
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Fig. 10. The clustering results for FKM and MCDFKM with M = 1 using a synthetic data set of size 

1000. 

5. CONCLUSIONS 

In this paper, two novel algorithms are developed to speed up fuzzy k-means clus-
tering through using the information of center displacement between two successive par-
tition processes. A cluster center estimation algorithm is also presented to determine the 
initial cluster centers for the proposed algorithm CDFKM. The computing time of the 
proposed algorithm MCDFKM with M = 1 grows linearly with data dimension Com-
pared to FKM, the proposed algorithm MCDFKM with M = 1 can effectively reduce the 
computing time and number of distance calculations. Compared with FKM, the proposed 
method MCDFKM with M = 1 can reduce the computing time by a factor of 2.6 to 3.1 
for the data sets generated with cluster centers evenly distributed over a hypercube. Ex-
perimental results show that the proposed approaches and FKM can obtain the same 
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clustering result. The proposed methods are used to reduce the computational complexity 
of conventional fuzzy k-means clustering. Therefore the Euclidean distance is used as the 
distortion measure. However, the proposed method can be extended to other distortion 
measure, such as Hamming distance. 
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