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Abstract

Prediction of protein classification is an important topic in molecular biology. This is because it is able to not only provide useful

information from the viewpoint of structure itself, but also greatly stimulate the characterization of many other features of proteins

that may be closely correlated with their biological functions. In this paper, the LogitBoost, one of the boosting algorithms

developed recently, is introduced for predicting protein structural classes. It performs classification using a regression scheme as the

base learner, which can handle multi-class problems and is particularly superior in coping with noisy data. It was demonstrated that

the LogitBoost outperformed the support vector machines in predicting the structural classes for a given dataset, indicating that the

new classifier is very promising. It is anticipated that the power in predicting protein structural classes as well as many other bio-

macromolecular attributes will be further strengthened if the LogitBoost and some other existing algorithms can be effectively

complemented with each other.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Prediction of protein structural class is an important
topic in protein science (see, e.g., a review by Chou,
2000). A series of previous studies have shown that some
correlation between the protein structural class and
amino acid composition does exist. Actually, many
efforts were made to predict the structural classes of
proteins based on their amino acid composition (Bahar
et al., 1997; Cai et al., 2000; Cai and Zhou, 2000; Chou
and Zhang, 1993, 1994, 1995; Chou, 1995; Klein and
Delisi, 1986; Mao et al., 1994; Liu and Chou, 1998;
Zhou, 1998; Zhou and Assa-Munt, 2001). The present
study was initiated in an attempt to introduce a new
e front matter r 2005 Elsevier Ltd. All rights reserved.
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approach, the so-called ‘‘LogitBoost’’ (Friedman et al.,
2000), to predict the protein structural classes.
2. Boosting

Introduced first by Schapire and Singer (1999),
LogitBoost is one of the boosting algorithms developed
in recent years. Boosting was originally proposed to
combine several weak classifiers to improve the classi-
fication performance. Later on, a more capable and
practical boosting algorithm, the so-called ‘‘AdaBoost’’,
was proposed by Freund and Schapire (1997). Ada-
Boost, an abbreviation for Adaptive Boosting, is a meta-
learning algorithm. It tries to build a weak classifier
iteratively on others according to the performance of the
previous weak classifiers. Accordingly, AdaBoost is
driven to focus on the hard samples by giving more
weight on them that could not be correctly classified
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with the previous weak classifiers. Boosting has been
used to solve various classification problems, including
cancer classification (Dettling and Buhlmann, 2003;
Zhou et al., 2002), text classification (Schapire and
Singer, 1999), natural language processing (Haruno
et al., 1999), etc. AdaBoost is able to reduce training
errors exponentially fast as long as the weak classifiers
perform just better than random (Freund and Schapire,
1997). It was observed (Breiman, 1998; Drucker and
Cortes, 1996) that AdaBoost had very good general-
ization (the ability to classify new data). However, like
most other classifiers, AdaBoost also suffered from the
over-fit problem when dealing with very noisy data
(Ratsch et al., 2001). To cope with this situation,
Friedman et al. (2000) found that using LogitBoost
could reduce training errors linearly and hence yield
better generalization.

2.1. Binary LogitBoost

AdaBoost can be considered as fitting an additive
logistic regression model F ð~xÞ ¼

PT
t¼1 atf tð~xÞ to mini-

mize the expectation of an exponential loss function
ELOSSðF Þ ¼ Eðe�yF ð~xÞÞ, which is monotone and smooth
and can be solved effectively (Friedman et al., 2000).
However, the exponential loss function changes expo-
nentially with the classification error, rendering the
AdaBoost algorithm vulnerable while handling noisy
data. To solve the problem, Friedman et al. (2000)
proposed a binomial log-likelihood loss function
LLOSSðF Þ ¼ E½�logð1þ e�yF ð~xÞÞ�, which changes line-
Box 1
The LogitBoost Algorithm.

The Pseudo-Code of LogitBoost

1. Input data set S ¼ fð~x1; y1Þ; . . . ; ð~xN ; yNÞg, where ~xi

T.
2. Initialise the weight wi ¼ 1=Nði ¼ 1; . . . ;NÞ; initializ

pð~xÞ ¼ Pðy ¼ 1jxÞ ¼ 1=2.
3. Repeat t ¼ 1; . . . ;T

a. Compute the weights and working response

wi ¼ pð~xiÞ½1� pð~xiÞ


zi ¼
y �i � pð~xiÞ

wi
; where y�i ¼ ðyi þ 1Þ=2

b. Fit the function f tð~xÞ by a weighted least-square
study we use regression decision tree to fit the

c. Update Fðx Þ  Fðx Þ þ 1
2 f tðx

 Þ and pðxÞ  eF ðxÞ

eF ðxÞþe�

4. Output the final classifier LF ð~xÞ ¼ sign½FðX Þ
.
arly with the classification error and turns out to be less
sensitive to noise and outliers. The optimization can be
achieved by using Newton steps to fit an additive
symmetric logistic model. The pseudo-code of Logit-
Boost is given in Box 1.
The construction of weak classifiers is one of the key

factors affecting the performance of the boosting
algorithms. The weak classifier f tð~xÞ in step 3 should
be able to cope with reweighing of the data and resistant
to over-fit. Decision trees try to divide the input space
into nested regions, usually rectangles, in order to
minimize the least-squares error, which is quite suitable
to the weak classifiers for boosting.
In step 3(a) of Box 1, the hard samples are given

higher weight by putting more weights to the data
potentially falling at the boundary between classes. The
above LogitBoost is a binary classifier, which can only
separate two classes. Here we need to separate four
classes. This can be done as follows.

2.2. Multi-class problems

There are two common strategies to solve the multi-
class problem: one is the one-vs.-others LogitBoost, and
the other the multi-class LogitBoost. However, it is very
difficult for the multi-class LogitBoost to define the hard
samples. Here we adopt the one-vs.-others strategy
(Brown et al., 2000; Ding and Dubchak, 2001) which is
quite straightforward. The entire training dataset is
divided into two sets in turn for each class, with one set
of data belonging to the singled-out class and the rest of
2 X ; yi 2 Y ¼ f�1; 1g. Input number of iterations

e committee function Fð~xÞ ¼ 0 and probabilities

s regression of zi to ~xi using weights wi. In our
data fð~x1; z1Þ; . . . ; ð~xN ; zNÞg using weights wi.

F ðxÞ.
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Table 1

Comparison between LogitBoost and SVMs on the 204 proteins classified into 4 structural classesa

Algorithm All-a All-b a=b aþ b Overall

Re-substitution test

SVMsb 52/52 ¼ 100% 61/61 ¼ 100% 45/45 ¼ 100% 46/46 ¼ 100% 204/204 ¼ 100%

LogitBoost 52/52 ¼ 100% 61/61 ¼ 100% 45/45 ¼ 100% 46/46 ¼ 100% 204/204 ¼ 100%

Jackknife test

SVMsb 39/52 ¼ 75.00% 55/61 ¼ 90.16% 29/45 ¼ 64.44% 30/46 ¼ 63.30% 153/204 ¼ 75.00%

LogitBoost 47/52 ¼ 90.38% 54/61 ¼ 88.52% 36/45 ¼ 80.00% 34/46 ¼ 73.91% 171/204 ¼ 83.82%

aThe dataset used here was taken from Chou (1999).
bNo optimization procedures were taken for the kernels and parameters in the SVMs operation.
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the data (from all the other classes) belonging to another
dataset. Thus if there are k classes, k binary LogitBoost
classifiers are built. Since each LogitBoost generates the
probability of a testing data belonging to the class, k

binary LogitBoost classifiers will output a vector of
classification probability Pð~xÞ ¼ ½p1ð~xÞ; p2ð~xÞ; . . . ; pkð~xÞ�.
The testing data will be predicted to belong to the class
with the highest probability, i.e., CðxÞ ¼ argMaxi½piðxÞ�.
For the current case, the pairwise classes are a-vs.-
others, b-vs.-others, (a=b)-vs.-others and ðaþ bÞ-vs.-
others.
3. Implementation, training and testing

The program for the one-vs.-others LogitBoost was
downloaded from Dettling and Buhlmann (2003).
However, instead of using stumps, the classifica-
tion trees with depth three were used; then turned out
to be much better than stumps because they were
able to generate several unconnected regions for a
category.
The working dataset was taken from Chou (1999) that

contains 204 protein chains, of which 52 are all-a
proteins, 61 all-b proteins, 45 a=b proteins and 46 aþ b
proteins. Their average sequence similarity scores are
21% for all-a, 30% for all-b, 15% for a=b and 14% for
aþ b. Therefore, the majority of the proteins are not
similar to each other in this dataset.
In this study the protein samples are represented by

their amino acid compositions, and hence each input of
the LogitBoost corresponds to a vector or point in a 20-
dimensional space (Chou and Zhang, 1993, 1994; Chou,
1995).
4. Results and discussion

The demonstrations were conducted by two different
approaches, the re-substitution test and the jackknife
test, as reported below.
4.1. Success rate of the re-substitution test

The re-substitution test is used to examine the self-
consistency of a prediction method. During the re-
substitution process, the class for each of the proteins in
the dataset is in turn identified using the rule parameters
derived from the same dataset, the so-called training
dataset. It was observed that by just a few iterations
LogitBoost already achieved the 100% overall success
rate in the self-consistency test (Table 1). The 100%
success rate also indicates that LogitBoost, after under-
going an efficient training process, has grasped the
complicated relationship between the amino acid
composition and the structural class. It should be
pointed out that during the above process the rule
parameters derived from the training dataset include the
information of the query protein later plugged back for
testing itself. This will certainly enhance the success rate
because the same samples are used to derive the rule
parameters and to test themselves. Therefore, the
success rate thus obtained merely represents some sort
of optimal estimation (Chou, 1995; Chou and Zhang,
1994; Zhou, 1998; Zhou and Assa-Munt, 2001). Never-
theless, the re-substitution test is useful because it
reflects the self-consistency. A predictor with a poor
self-consistency certainly cannot be deemed as a good
one. However, to really reflect the power of a predictor,
a cross-validation test by excluding the tested samples
from the training dataset is needed.

4.2. Success rate of the jackknife test

Three different examinations are often used in
statistical prediction for cross-validation in the litera-
ture. They are independent dataset test, sub-sampling
test and jackknife test. Of these three, however, the
jackknife test is deemed as the most rigorous and
objective one [see Chou and Zhang (1995) for a
comprehensive discussion about this, and Mardia et al.
(1979) for the underlying mathematical principle]. For
the cross-validation by jackknifing, each of the proteins
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in the dataset is in turn singled out as a tested sample
and all the rule parameters are calculated based on the
remaining proteins without including the one being
identified. Therefore, both the training dataset and testing
dataset during the jackknifing process are actually open,
and a sample will in turn move from one to the other. The
overall jackknife success rate obtained by the LogitBoost
was 171/204 ¼ 83.82% (Table 1).

4.3. Comparison with support vector machines (SVMs)

As a comparison, the support vector machines
(SVMs) (Vapnik, 1998) were also applied to the same
problem. In this study, the width of the Gaussian RBFs
was selected as that which minimized an estimate of the
VC-dimension. The parameter C that controlled the
error-margin trade-off was set at 150. Because the
current case was a 4-class problem, the ‘‘one-against-
others’’ approach (Ding and Dubchak, 2001) was
adopted to transfer it into a 2-class problem. For
comparison, the success rates by the SVMs for the same
working dataset are also given in Table 1, from which
we can see that the overall jackknife success rate by the
LogitBoost is about 8% higher than that by the SVMs.
5. Conclusion

The LogitBoost is a very powerful classifier. If it can
be effectively complemented with other existing power-
ful algorithms, such as the covariant discriminant
algorithms (Chou et al., 1998; Liu and Chou, 1998;
Chou and Maggiora, 1998; Zhou, 1998; Zhou and Assa-
Munt, 2001), the pseudo-amino acid composition
approach (Chou, 2001, 2005; Pan et al., 2003; Wang
et al., 2004), the SVM approach (Cai et al., 2004a, b), the
functional domain composition approach (Chou and Cai,
2002, 2004c) and the hybridization approach (Chou and
Cai, 2003a, 2004b, d, e, 2005a, c), then our power can be
further strengthened in predicting the structural classes of
proteins and their other important attributes such as
subcellular locations (Chou and Cai, 2003c, 2005a; Chou
and Elrod, 1999b; Pan et al., 2003; Xiao et al., 2005; Zhou
and Doctor, 2003), membrane types (Cai et al., 2003;
Chou and Cai, 2005b; Chou and Elrod, 1999a; Wang
et al., 2004, 2005), enzyme family and subfamily classes
(Chou, 2005; Chou and Cai, 2004b, f; Chou and Elrod,
2003), enzyme active sites (Cai et al., 2004a; Chou and Cai,
2004a), G-protein-coupled receptor classification (Chou
and Elrod, 2002; Elrod and Chou, 2002) and protein
quaternary structure types (Chou and Cai, 2003b).
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