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Preface

In an effort to identify some of the most influential algorithms that have been widely
used in the data mining community, the IEEE International Conference on Data
Mining (ICDM, http://www.cs.uvm.edu/∼icdm/) identified the top 10 algorithms in
data mining for presentation at ICDM ’06 in Hong Kong. This book presents these top
10 data mining algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost,
kNN, Naı̈ve Bayes, and CART.

As the first step in the identification process, in September 2006 we invited the ACM
KDD Innovation Award and IEEE ICDM Research Contributions Award winners to
each nominate up to 10 best-known algorithms in data mining. All except one in
this distinguished set of award winners responded to our invitation. We asked each
nomination to provide the following information: (a) the algorithm name, (b) a brief
justification, and (c) a representative publication reference. We also advised that each
nominated algorithm should have been widely cited and used by other researchers
in the field, and the nominations from each nominator as a group should have a
reasonable representation of the different areas in data mining.

After the nominations in step 1, we verified each nomination for its citations on
Google Scholar in late October 2006, and removed those nominations that did not
have at least 50 citations. All remaining (18) nominations were then organized in
10 topics: association analysis, classification, clustering, statistical learning, bagging
and boosting, sequential patterns, integrated mining, rough sets, link mining, and
graph mining. For some of these 18 algorithms, such as k-means, the representative
publication was not necessarily the original paper that introduced the algorithm, but
a recent paper that highlights the importance of the technique. These representative
publications are available at the ICDM Web site (http://www.cs.uvm.edu/∼icdm/
algorithms/CandidateList.shtml).

In the third step of the identification process, we had a wider involvement of the
research community. We invited the Program Committee members of KDD-06 (the
2006 ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining), ICDM ’06 (the 2006 IEEE International Conference on Data Mining), and
SDM ’06 (the 2006 SIAM International Conference on Data Mining), as well as
the ACM KDD Innovation Award and IEEE ICDM Research Contributions Award
winners to each vote for up to 10 well-known algorithms from the 18-algorithm
candidate list. The voting results of this step were presented at the ICDM ’06 panel
on Top 10 Algorithms in Data Mining.

At the ICDM ’06 panel of December 21, 2006, we also took an open vote with all
145 attendees on the top 10 algorithms from the above 18-algorithm candidate list,

vii
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viii Preface

and the top 10 algorithms from this open vote were the same as the voting results
from the above third step. The three-hour panel was organized as the last session of
the ICDM ’06 conference, in parallel with seven paper presentation sessions of the
Web Intelligence (WI ’06) and Intelligent Agent Technology (IAT ’06) conferences
at the same location, and attracted 145 participants.

After ICDM ’06, we invited the original authors and some of the panel presen-
ters of these 10 algorithms to write a journal article to provide a description of each
algorithm, discuss the impact of the algorithm, and review current and further research
on the algorithm. The journal article was published in January 2008 in Knowledge
and Information Systems [1]. This book expands upon this journal article, with a
common structure for each chapter on each algorithm, in terms of algorithm descrip-
tion, available software, illustrative examples and applications, advanced topics, and
exercises.

Each book chapter was reviewed by two independent reviewers and one of the
two book editors. Some chapters went through a major revision based on this review
before their final acceptance.

We hope the identification of the top 10 algorithms can promote data mining to
wider real-world applications, and inspire more researchers in data mining to further
explore these 10 algorithms, including their impact and new research issues. These 10
algorithms cover classification, clustering, statistical learning, association analysis,
and link mining, which are all among the most important topics in data mining research
and development, as well as for curriculum design for related data mining, machine
learning, and artificial intelligence courses.
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1.1 Introduction

C4.5 [30] is a suite of algorithms for classification problems in machine learning and
data mining. It is targeted at supervised learning: Given an attribute-valued dataset
where instances are described by collections of attributes and belong to one of a set
of mutually exclusive classes, C4.5 learns a mapping from attribute values to classes
that can be applied to classify new, unseen instances. For instance, see Figure 1.1
where rows denote specific days, attributes denote weather conditions on the given
day, and the class denotes whether the conditions are conducive to playing golf.
Thus, each row denotes an instance, described by values for attributes such as Out-
look (a ternary-valued random variable) Temperature (continuous-valued), Humidity

1
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2 C4.5

Day Outlook Temperature Humidity Windy Play Golf?

1 Sunny 85 85 False No

2 Sunny 80 90 True No

3 Overcast 83 78 False Yes

4 Rainy 70 96 False Yes

5 Rainy 68 80 False Yes

6 Rainy 65 70 True No

7 Overcast 64 65 True Yes

8 Sunny 72 95 False No

9 Sunny 69 70 False Yes

10 Rainy 75 80 False Yes

11 Sunny 75 70 True Yes

12 Overcast 72 90 True Yes

13 Overcast 81 75 False Yes

14 Rainy 71 80 True No

Figure 1.1 Example dataset input to C4.5.

(also continuous-valued), and Windy (binary), and the class is the Boolean PlayGolf?
class variable. All of the data in Figure 1.1 constitutes “training data,” so that the
intent is to learn a mapping using this dataset and apply it on other, new instances
that present values for only the attributes to predict the value for the class random
variable.

C4.5, designed by J. Ross Quinlan, is so named because it is a descendant of the
ID3 approach to inducing decision trees [25], which in turn is the third incarnation in
a series of “iterative dichotomizers.” A decision tree is a series of questions systemat-
ically arranged so that each question queries an attribute (e.g., Outlook) and branches
based on the value of the attribute. At the leaves of the tree are placed predictions of
the class variable (here, PlayGolf?). A decision tree is hence not unlike the series of
troubleshooting questions you might find in your car’s manual to help determine what
could be wrong with the vehicle. In addition to inducing trees, C4.5 can also restate its
trees in comprehensible rule form. Further, the rule postpruning operations supported
by C4.5 typically result in classifiers that cannot quite be restated as a decision tree.

The historical lineage of C4.5 offers an interesting study into how different sub-
communities converged on more or less like-minded solutions to classification. ID3
was developed independently of the original tree induction algorithm developed by
Friedman [13], which later evolved into CART [4] with the participation of Breiman,
Olshen, and Stone. But, from the numerous references to CART in [30], the design
decisions underlying C4.5 appear to have been influenced by (to improve upon) how
CART resolved similar issues, such as procedures for handling special types of at-
tributes. (For this reason, due to the overlap in scope, we will aim to minimize with
the material covered in the CART chapter, Chapter 10, and point out key differences
at appropriate junctures.) In [25] and [36], Quinlan also acknowledged the influence
of the CLS (Concept Learning System [16]) framework in the historical development
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1.2 Algorithm Description 3

of ID3 and C4.5. Today, C4.5 is superseded by the See5/C5.0 system, a commercial
product offered by Rulequest Research, Inc.

The fact that two of the top 10 algorithms are tree-based algorithms attests to
the widespread popularity of such methods in data mining. Original applications of
decision trees were in domains with nominal valued or categorical data but today
they span a multitude of domains with numeric, symbolic, and mixed-type attributes.
Examples include clinical decision making, manufacturing, document analysis, bio-
informatics, spatial data modeling (geographic information systems), and practically
any domain where decision boundaries between classes can be captured in terms of
tree-like decompositions or regions identified by rules.

1.2 Algorithm Description

C4.5 is not one algorithm but rather a suite of algorithms—C4.5, C4.5-no-pruning,
and C4.5-rules—with many features. We present the basic C4.5 algorithm first and
the special features later.

The generic description of how C4.5 works is shown in Algorithm 1.1. All tree
induction methods begin with a root node that represents the entire, given dataset and
recursively split the data into smaller subsets by testing for a given attribute at each
node. The subtrees denote the partitions of the original dataset that satisfy specified
attribute value tests. This process typically continues until the subsets are “pure,” that
is, all instances in the subset fall in the same class, at which time the tree growing is
terminated.

Algorithm 1.1 C4.5(D)
Input: an attribute-valued dataset D

1: Tree = {}
2: if D is “pure” OR other stopping criteria met then
3: terminate
4: end if
5: for all attribute a ∈ D do
6: Compute information-theoretic criteria if we split on a
7: end for
8: abest = Best attribute according to above computed criteria
9: Tree = Create a decision node that tests abest in the root

10: Dv = Induced sub-datasets from D based on abest

11: for all Dv do
12: Treev = C4.5(Dv)
13: Attach Treev to the corresponding branch of Tree
14: end for
15: return Tree
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4 C4.5

Yes

Yes

YesNo No

Outlook

Humidity Windy

Sunny Rainy
Overcast

>75<=75 FalseTrue

Figure 1.2 Decision tree induced by C4.5 for the dataset of Figure 1.1.

Figure 1.1 presents the classical “golf” dataset, which is bundled with the C4.5
installation. As stated earlier, the goal is to predict whether the weather conditions
on a particular day are conducive to playing golf. Recall that some of the features are
continuous-valued while others are categorical.

Figure 1.2 illustrates the tree induced by C4.5 using Figure 1.1 as training data
(and the default options). Let us look at the various choices involved in inducing such
trees from the data.

� What types of tests are possible? As Figure 1.2 shows, C4.5 is not restricted
to considering binary tests, and allows tests with two or more outcomes. If the
attribute is Boolean, the test induces two branches. If the attribute is categorical,
the test is multivalued, but different values can be grouped into a smaller set of
options with one class predicted for each option. If the attribute is numerical,
then the tests are again binary-valued, and of the form {≤ θ?, > θ?}, where θ

is a suitably determined threshold for that attribute.
� How are tests chosen? C4.5 uses information-theoretic criteria such as gain

(reduction in entropy of the class distribution due to applying a test) and
gain ratio (a way to correct for the tendency of gain to favor tests with many
outcomes). The default criterion is gain ratio. At each point in the tree-growing,
the test with the best criteria is greedily chosen.

� How are test thresholds chosen? As stated earlier, for Boolean and categorical
attributes, the test values are simply the different possible instantiations of that
attribute. For numerical attributes, the threshold is obtained by sorting on that
attribute and choosing the split between successive values that maximize the
criteria above. Fayyad and Irani [10] showed that not all successive values need
to be considered. For two successive values vi and vi+1 of a continuous-valued
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1.2 Algorithm Description 5

attribute, if all instances involving vi and all instances involving vi+1 belong to
the same class, then splitting between them cannot possibly improve informa-
tion gain (or gain ratio).

� How is tree-growing terminated? A branch from a node is declared to lead
to a leaf if all instances that are covered by that branch are pure. Another way
in which tree-growing is terminated is if the number of instances falls below a
specified threshold.

� How are class labels assigned to the leaves? The majority class of the instances
assigned to the leaf is taken to be the class prediction of that subbranch of the
tree.

The above questions are faced by any classification approach modeled after trees and
similar, or other reasonable, decisions are made by most tree induction algorithms.
The practical utility of C4.5, however, comes from the next set of features that build
upon the basic tree induction algorithm above. But before we present these features,
it is instructive to instantiate Algorithm 1.1 for a simple dataset such as shown in
Figure 1.1.

We will work out in some detail how the tree of Figure 1.2 is induced from
Figure 1.1. Observe how the first attribute chosen for a decision test is the Outlook
attribute. To see why, let us first estimate the entropy of the class random variable
(PlayGolf?). This variable takes two values with probability 9/14 (for “Yes”) and
5/14 (for “No”). The entropy of a class random variable that takes on c values with
probabilities p1, p2, . . . , pc is given by:

c∑

i=1

−pi log2 pi

The entropy of PlayGolf? is thus

−(9/14) log2(9/14) − (5/14) log2(5/14)

or 0.940. This means that on average 0.940 bits must be transmitted to communicate
information about the PlayGolf? random variable. The goal of C4.5 tree induction is
to ask the right questions so that this entropy is reduced. We consider each attribute in
turn to assess the improvement in entropy that it affords. For a given random variable,
say Outlook, the improvement in entropy, represented as Gain(Outlook), is calculated
as:

Entropy(PlayGolf? in D) −
∑

v

|Dv|
|D| Entropy(PlayGolf? in Dv)

where v is the set of possible values (in this case, three values for Outlook), D denotes
the entire dataset, Dv is the subset of the dataset for which attribute Outlook has that
value, and the notation | · | denotes the size of a dataset (in the number of instances).

This calculation will show that Gain(Outlook) is 0.940−0.694 = 0.246. Similarly,
we can calculate that Gain(Windy) is 0.940 − 0.892 = 0.048. Working out the above
calculations for the other attributes systematically will reveal that Outlook is indeed
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the best attribute to branch on. Observe that this is a greedy choice and does not take
into account the effect of future decisions. As stated earlier, the tree-growing continues
till termination criteria such as purity of subdatasets are met. In the above example,
branching on the value “Overcast” for Outlook results in a pure dataset, that is, all
instances having this value for Outlook have the value “Yes” for the class variable
PlayGolf?; hence, the tree is not grown further in that direction. However, the other two
values for Outlook still induce impure datasets. Therefore the algorithm recurses, but
observe that Outlook cannot be chosen again (why?). For different branches, different
test criteria and splits are chosen, although, in general, duplication of subtrees can
possibly occur for other datasets.

We mentioned earlier that the default splitting criterion is actually the gain ratio, not
the gain. To understand the difference, assume we treated the Day column in Figure 1.1
as if it were a “real” feature. Furthermore, assume that we treat it as a nominal valued
attribute. Of course, each day is unique, so Day is really not a useful attribute to
branch on. Nevertheless, because there are 14 distinct values for Day and each of
them induces a “pure” dataset (a trivial dataset involving only one instance), Day
would be unfairly selected as the best attribute to branch on. Because information
gain favors attributes that contain a large number of values, Quinlan proposed the
gain ratio as a correction to account for this effect. The gain ratio for an attribute a is
defined as:

GainRatio(a) = Gain(a)

Entropy(a)

Observe that entropy(a) does not depend on the class information and simply takes
into account the distribution of possible values for attribute a, whereas gain(a) does
take into account the class information. (Also, recall that all calculations here are
dependent on the dataset used, although we haven’t made this explicit in the notation.)
For instance, GainRatio(Outlook) = 0.246/1.577 = 0.156. Similarly, the gain ratio
for the other attributes can be calculated. We leave it as an exercise to the reader to
see if Outlook will again be chosen to form the root decision test.

At this point in the discussion, it should be mentioned that decision trees cannot
model all decision boundaries between classes in a succinct manner. For instance,
although they can model any Boolean function, the resulting tree might be needlessly
complex. Consider, for instance, modeling an XOR over a large number of Boolean
attributes. In this case every attribute would need to be tested along every path and
the tree would be exponential in size. Another example of a difficult problem for
decision trees are so-called “m-of-n” functions where the class is predicted by any
m of n attributes, without being specific about which attributes should contribute to
the decision. Solutions such as oblique decision trees, presented later, overcome such
drawbacks. Besides this difficulty, a second problem with decision trees induced by
C4.5 is the duplication of subtrees due to the greedy choice of attribute selection.
Beyond an exhaustive search for the best attribute by fully growing the tree, this
problem is not solvable in general.
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1.3 C4.5 Features

1.3.1 Tree Pruning

Tree pruning is necessary to avoid overfitting the data. To drive this point, Quinlan
gives a dramatic example in [30] of a dataset with 10 Boolean attributes, each of which
assumes values 0 or 1 with equal accuracy. The class values were also binary: “yes”
with probability 0.25 and “no” with probability 0.75. From a starting set of 1,000
instances, 500 were used for training and the remaining 500 were used for testing.
Quinlan observes that C4.5 produces a tree involving 119 nodes (!) with an error rate of
more than 35% when a simpler tree would have sufficed to achieve a greater accuracy.
Tree pruning is hence critical to improve accuracy of the classifier on unseen instances.
It is typically carried out after the tree is fully grown, and in a bottom-up manner.

The 1986 MIT AI lab memo authored by Quinlan [26] outlines the various choices
available for tree pruning in the context of past research. The CART algorithm uses
what is known as cost-complexity pruning where a series of trees are grown, each
obtained from the previous by replacing one or more subtrees with a leaf. The last
tree in the series comprises just a single leaf that predicts a specific class. The cost-
complexity is a metric that decides which subtrees should be replaced by a leaf
predicting the best class value. Each of the trees are then evaluated on a separate
test dataset, and based on reliability measures derived from performance on the test
dataset, a “best” tree is selected.

Reduced error pruning is a simplification of this approach. As before, it uses a
separate test dataset but it directly uses the fully induced tree to classify instances in
the test dataset. For every nonleaf subtree in the induced tree, this strategy evaluates
whether it is beneficial to replace the subtree by the best possible leaf. If the pruned tree
would indeed give an equal or smaller number of errors than the unpruned tree and the
replaced subtree does not itself contain another subtree with the same property, then
the subtree is replaced. This process is continued until further replacements actually
increase the error over the test dataset.

Pessimistic pruning is an innovation in C4.5 that does not require a separate test set.
Rather it estimates the error that might occur based on the amount of misclassifications
in the training set. This approach recursively estimates the error rate associated with
a node based on the estimated error rates of its branches. For a leaf with N instances
and E errors (i.e., the number of instances that do not belong to the class predicted
by that leaf), pessimistic pruning first determines the empirical error rate at the leaf
as the ratio (E +0.5)/N . For a subtree with L leaves and �E and �N corresponding
errors and number of instances over these leaves, the error rate for the entire subtree
is estimated to be (�E + 0.5 ∗ L)/�N . Now, assume that the subtree is replaced by
its best leaf and that J is the number of cases from the training set that it misclassifies.
Pessimistic pruning replaces the subtree with this best leaf if (J + 0.5) is within one
standard deviation of (�E + 0.5 ∗ L).

This approach can be extended to prune based on desired confidence intervals (CIs).
We can model the error rates e at the leaves as Bernoulli random variables and for
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Leaf predicting

most likely class

X1 X2 X3

T1 T2 T3

X

X1 X2 X3

T1 T2

T2

T3

X

Figure 1.3 Different choices in pruning decision trees. The tree on the left can be
retained as it is or replaced by just one of its subtrees or by a single leaf.

a given confidence threshold C I , an upper bound emax can be determined such that
e < emax with probability 1 − C I . (C4.5 uses a default CI of 0.25.) We can go even
further and approximate e by the normal distribution (for large N ), in which case
C4.5 determines an upper bound on the expected error as:

e + z2

2N + z
√

e
N − e2

N + z2

4N 2

1 + z2

N

(1.1)

where z is chosen based on the desired confidence interval for the estimation, assuming
a normal random variable with zero mean and unit variance, that is, N (0, 1)).

What remains to be presented is the exact way in which the pruning is performed.
A single bottom-up pass is performed. Consider Figure 1.3, which depicts the pruning
process midway so that pruning has already been performed on subtrees T1, T2, and
T3. The error rates are estimated for three cases as shown in Figure 1.3 (right). The
first case is to keep the tree as it is. The second case is to retain only the subtree
corresponding to the most frequent outcome of X (in this case, the middle branch).
The third case is to just have a leaf labeled with the most frequent class in the training
dataset. These considerations are continued bottom-up till we reach the root of the tree.

1.3.2 Improved Use of Continuous Attributes

More sophisticated capabilities for handling continuous attributes are covered by
Quinlan in [31]. These are motivated by the advantage shared by continuous-valued
attributes over discrete ones, namely that they can branch on more decision criteria
which might give them an unfair advantage over discrete attributes. One approach, of
course, is to use the gain ratio in place of the gain as before. However, we run into a
conundrum here because the gain ratio will also be influenced by the actual threshold
used by the continuous-valued attribute. In particular, if the threshold apportions the
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instances nearly equally, then the gain ratio is minimal (since the entropy of the vari-
able falls in the denominator). Therefore, Quinlan advocates going back to the regular
information gain for choosing a threshold but continuing the use of the gain ratio for
choosing the attribute in the first place. A second approach is based on Risannen’s
MDL (minimum description length) principle. By viewing trees as theories, Quinlan
proposes trading off the complexity of a tree versus its performance. In particular, the
complexity is calculated as both the cost of encoding the tree plus the exceptions to
the tree (i.e., the training instances that are not supported by the tree). Empirical tests
show that this approach does not unduly favor continuous-valued attributes.

1.3.3 Handling Missing Values

Missing attribute values require special accommodations both in the learning phase
and in subsequent classification of new instances. Quinlan [28] offers a comprehen-
sive overview of the variety of issues that must be considered. As stated therein, there
are three main issues: (i) When comparing attributes to branch on, some of which
have missing values for some instances, how should we choose an appropriate split-
ting attribute? (ii) After a splitting attribute for the decision test is selected, training
instances with missing values cannot be associated with any outcome of the decision
test. This association is necessary in order to continue the tree-growing procedure.
Therefore, the second question is: How should such instances be treated when dividing
the dataset into subdatasets? (iii) Finally, when the tree is used to classify a new in-
stance, how do we proceed down a tree when the tree tests on an attribute whose value
is missing for this new instance? Observe that the first two issues involve learning/
inducing the tree whereas the third issue involves applying the learned tree on new
instances. As can be expected, there are several possibilities for each of these ques-
tions. In [28], Quinlan presents a multitude of choices for each of the above three
issues so that an integrated approach to handle missing values can be obtained by
specific instantiations of solutions to each of the above issues. Quinlan presents a
coding scheme in [28] to design a combinatorial strategy for handling missing values.

For the first issue of evaluating decision tree criteria based on an attribute a, we
can: (I) ignore cases in the training data that have a missing value for a; (C) substitute
the most common value (for binary and categorical attributes) or by the mean of the
known values (for numeric attributes); (R) discount the gain/gain ratio for attribute a
by the proportion of instances that have missing values for a; or (S) “fill in” the missing
value in the training data. This can be done either by treating them as a distinct, new
value, or by methods that attempt to determine the missing value based on the values
of other known attributes [28]. The idea of surrogate splits in CART (see Chapter 10)
can be viewed as one way to implement this last idea.

For the second issue of partitioning the training set while recursing to build the
decision tree, if the tree is branching on a for which one or more training instances
have missing values, we can: (I) ignore the instance; (C) act as if this instance had the
most common value for the missing attribute; (F) assign the instance, fractionally, to
each subdataset, in proportion to the number of instances with known values in each
of the subdataset; (A) assign it to all subdatasets; (U) develop a separate branch of
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10 C4.5

the tree for cases with missing values for a; or (S) determine the most likely value
of a (as before, using methods referenced in [28]) and assign it to the corresponding
subdataset. In [28], Quinlan offers a variation on (F) as well, where the instance is
assigned to only one subdataset but again proportionally to the number of instances
with known values in that subdataset.

Finally, when classifying instances with missing values for attribute a, the options
are: (U) if there is a separate branch for unknown values for a, follow the branch;
(C) branch on the most common value for a; (S) apply the test as before from [28] to
determine the most likely value of a and branch on it; (F) explore all branchs simul-
taneously, combining their results to denote the relative probabilities of the different
outcomes [27]; or (H) terminate and assign the instance to the most likely class.

As the reader might have guessed, some combinations are more natural, and other
combinations do not make sense. For the proportional assignment options, as long
as the weights add up to 1, there is a natural way to generalize the calculations of
information gain and gain ratio.

1.3.4 Inducing Rulesets

A distinctive feature of C4.5 is its ability to prune based on rules derived from the
induced tree. We can model a tree as a disjunctive combination of conjunctive rules,
where each rule corresponds to a path in the tree from the root to a leaf. The antecedents
in the rule are the decision conditions along the path and the consequent is the predicted
class label. For each class in the dataset, C4.5 first forms rulesets from the (unpruned)
tree. Then, for each rule, it performs a hill-climbing search to see if any of the
antecedents can be removed. Since the removal of antecedents is akin to “knocking
out” nodes in an induced decision tree, C4.5’s pessimistic pruning methods are used
here. A subset of the simplified rules is selected for each class. Here the minimum
description length (MDL) principle is used to codify the cost of the theory involved
in encoding the rules and to rank the potential rules. The number of resulting rules
is typically much smaller than the number of leaves (paths) in the original tree. Also
observe that because all antecedents are considered for removal, even nodes near the
top of the tree might be pruned away and the resulting rules may not be compressible
back into one compact tree. One disadvantage of C4.5 rulesets is that they are known
to cause rapid increases in learning time with increases in the size of the dataset.

1.4 Discussion on Available Software Implementations

J. Ross Quinlan’s original implementation of C4.5 is available at his personal site:
http://www.rulequest.com/Personal/. However, this implementation is copyrighted
software and thus may be commercialized only under a license from the author.
Nevertheless, the permission granted to individuals to use the code for their personal
use has helped make C4.5 a standard in the field. Many public domain implementations
of C4.5 are available, for example, Ronny Kohavi’s MLC++ library [17], which is now
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part of SGI’s Mineset data mining suite, and the Weka [35] data mining suite from the
University of Waikato, New Zealand (http://www.cs.waikato.ac.nz/ml/weka/). The
(Java) implementation of C4.5 in Weka is referred to as J48. Commercial implemen-
tations of C4.5 include ODBCMINE from Intelligent Systems Research, LLC, which
interfaces with ODBC databases and Rulequest’s See5/C5.0, which improves upon
C4.5 in many ways and which also comes with support for ODBC connectivity.

1.5 Two Illustrative Examples

1.5.1 Golf Dataset

We describe in detail the function of C4.5 on the golf dataset. When run with the
default options, that is:

>c4.5 -f golf

C4.5 produces the following output:

C4.5 [release 8] decision tree generator Wed Apr 16 09:33:21 2008
----------------------------------------

Options:
File stem <golf>

Read 14 cases (4 attributes) from golf.data

Decision Tree:

outlook = overcast: Play (4.0)
outlook = sunny:
| humidity <= 75 : Play (2.0)
| humidity > 75 : Don't Play (3.0)
outlook = rain:
| windy = true: Don't Play (2.0)
| windy = false: Play (3.0)

Tree saved

Evaluation on training data (14 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

8 0( 0.0%) 8 0( 0.0%) (38.5%) <<
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12 C4.5

Referring back to the output from C4.5, observe the statistics presented toward the
end of the run. They show the size of the tree (in terms of the number of nodes, where
both internal nodes and leaves are counted) before and after pruning. The error over
the training dataset is shown for both the unpruned and pruned trees as is the estimated
error after pruning. In this case, as is observed, no pruning is performed.

The-v option for C4.5 increases the verbosity level and provides detailed, step-by-
step information about the gain calculations. The c4.5rules software uses similar
options but generates rules with possible postpruning, as described earlier. For the golf
dataset, no pruning happens with the default options and hence four rules are output
(corresponding to all but one of the paths of Figure 1.2) along with a default rule.

The induced trees and rules must then be applied on an unseen “test” dataset to
assess its generalization performance. The -u option of C4.5 allows the provision of
test data to evaluate the performance of the induced trees/rules.

1.5.2 Soybean Dataset

Michalski’s Soybean dataset is a classical machine learning test dataset from the UCI
Machine Learning Repository [3]. There are 307 instances with 35 attributes and
many missing values. From the description in the UCI site:

There are 19 classes, only the first 15 of which have been used in prior
work. The folklore seems to be that the last four classes are unjustified
by the data since they have so few examples. There are 35 categorical
attributes, some nominal and some ordered. The value “dna” means does
not apply. The values for attributes are encoded numerically, with the
first value encoded as “0,” the second as “1,” and so forth. An unknown
value is encoded as “?.”

The goal of learning from this dataset is to aid soybean disease diagnosis based on
observed morphological features.

The induced tree is too complex to be illustrated here; hence, we depict the evalu-
ation of the tree size and performance before and after pruning:

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

177 15( 2.2%) 105 26( 3.8%) (15.5%) <<

As can be seen here, the unpruned tree does not perfectly classify the training data
and significant pruning has happened after the full tree is induced. Rigorous evalua-
tion procedures such as cross-validation must be applied before arriving at a “final”
classifier.
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1.6 Advanced Topics

With the massive data emphasis of modern data mining, many interesting research
issues in mining tree/rule-based classifiers have come to the forefront. Some are
covered here and some are described in the exercises. Proceedings of conferences
such as KDD, ICDM, ICML, and SDM showcase the latest in many of these areas.

1.6.1 Mining from Secondary Storage

Modern datasets studied in the KDD community do not fit into main memory
and hence implementations of machine learning algorithms have to be completely
rethought in order to be able to process data from secondary storage. In particular,
algorithms are designed to minimize the number of passes necessary for inducing a
classifer. The BOAT algorithm [14] is based on bootstrapping. Beginning from a small
in-memory subset of the original dataset, it uses sampling to create many trees, which
are then overlaid on top of each other to obtain a tree with “coarse” splitting criteria.
This tree is then refined into the final classifier by conducting one complete scan over
the dataset. The Rainforest framework [15] is an integrated approach to instantiate
various choices of decision tree construction and apply them in a scalable manner
to massive datasets. Other algorithms aimed at mining from secondary storage are
SLIQ [21], SPRINT [34], and PUBLIC [33].

1.6.2 Oblique Decision Trees

An oblique decision tree, suitable for continuous-valued data, is so named because
its decision boundaries can be arbitrarily positioned and angled with respect to the
coordinate axes (see also Exercise 2 later). For instance, instead of a decision criterion
such as a1 ≤ 6? on attribute a1, we might utilize a criterion based on two attributes in
a single node, such as 3a1 − 2a2 ≤ 6? A classic reference on decision trees that use
linear combinations of attributes is the OC1 system described in Murthy, Kasif, and
Salzberg [22], which acknowledges CART as an important basis for OC1. The basic
idea is to begin with an axis-parallel split and then “perturb” it in order to arrive at a
better split. This is done by first casting the axis-parallel split as a linear combination of
attribute values and then iteratively adjusting the coefficients of the linear combination
to arrive at a better decision criterion. Needless to say, issues such as error estimation,
pruning, and handling missing values have to be revisited in this context. OC1 is a
careful combination of hill climbing and randomization to tweaking the coefficients.
Other approaches to inducing oblique decision trees are covered in, for instance, [5].

1.6.3 Feature Selection

Thus far, we have not highlighted the importance of feature selection as an important
precursor to supervised learning using trees and/or rules. Some features could be
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irrelevant to predicting the given class and still other features could be redundant
given other features. Feature selection is the idea of narrowing down on a smaller
set of features for use in induction. Some feature selection methods work in concert
with specific learning algorithms whereas methods such as described in Koller and
Sahami [18] are learning algorithm-agnostic.

1.6.4 Ensemble Methods

Ensemble methods have become a mainstay in the machine learning and data mining
literature. Bagging and boosting (see Chapter 7) are popular choices. Bagging is based
on random resampling, with replacement, from the training data, and inducing one tree
from each sample. The predictions of the trees are then combined into one output, for
example, by voting. In boosting [12], as studied in Chapter 7, we generate a series of
classifiers, where the training data for one is dependent on the classifier from the pre-
vious step. In particular, instances incorrectly predicted by the classifier in a given step
are weighted more in the next step. The final prediction is again derived from an aggre-
gate of the predictions of the individual classifiers. The C5.0 system supports a variant
of boosting, where an ensemble of classifiers is constructed and which then vote to
yield the final classification. Opitz and Maclin [23] present a comparison of ensemble
methods for decision trees as well as neural networks. Dietterich [8] presents a com-
parison of these methods with each other and with “randomization,” where the internal
decisions made by the learning algorithm are themselves randomized. The alternating
decision tree algorithm [11] couples tree-growing and boosting in a tighter manner:
In addition to the nodes that test for conditions, an alternating decision tree introduces
“prediction nodes” that add to a score that is computed alongside the path from the
root to a leaf. Experimental results show that it is as robust as boosted decision trees.

1.6.5 Classification Rules

There are two distinct threads of research that aim to identify rules for classification
similar in spirit to C4.5 rules. They can loosely be classified based on their origins: as
predictive versus descriptive classifiers, but recent research has blurred the boundaries.

The predictive line of research includes algorithms such as CN2 [6] and RIPPER [7].
These algorithms can be organized as either bottom-up or top-down approaches and
are typically organized as “sequential discovery” paradigms where a rule is mined,
instances covered by the rule are removed from the training set, a new rule is induced,
and so on. In a bottom-up approach, a rule is induced by concatenating the attribute
and class values of a single instance. The attributes forming the conjunction of the
rule are then systematically removed to see if the predictive accuracy of the rule is
improved. Typically a local, beam search is conducted as opposed to a global search.
After this rule is added to the theory, examples covered by the rule are removed, and a
new rule is induced from the remaining data. Analogously, a top-down approach starts
with a rule that has an empty antecedent predicting a class value and systematically
adds attribute-tests to identify a suitable rule.
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The descriptive line of research originates from association rules, a popular tech-
nique in the KDD community [1, 2] (see Chapter 4). Traditionally, associations are
between two sets, X and Y , of items, denoted by X → Y , and evaluated by measures
such as support (the fraction of instances in the dataset that have both X and Y ) and
confidence (the fraction of instances with X that also have Y ). The goal of associ-
ation rule mining is to find all associations satisfying given support and confidence
thresholds. CBA (Classification based on Association Rules) [20] is an adaptation
of association rules to classification, where the goal is to determine all association
rules that have a certain class label in the consequent. These rules are then used to
build a classifier. Pruning is done similarly to error estimation methods in C4.5. The
key difference between CBA and C4.5 is the exhaustive search for all possible rules
and efficient algorithms adapted from association rule mining to mine rules. This
thread of research is now an active one in the KDD community with new variants and
applications.

1.6.6 Redescriptions

Redescriptions are a generalization of rules to equivalences, introduced in [32]. As
the name indicates, to redescribe something is to describe anew or to express the
same concept in a different vocabulary. Given a vocabulary of descriptors, the goal of
redescription mining is to construct two expressions from the vocabulary that induce
the same subset of objects. The underlying premise is that sets that can indeed be
defined in (at least) two ways are likely to exhibit concerted behavior and are, hence,
interesting. The CARTwheels algorithm for mining redescriptions grows two C4.5-
like trees in opposite directions such that they are matched at the leaves. Essentially,
one tree exposes a partition of objects via its choice of subsets and the other tree
tries to grow to match this partition using a different choice of subsets. If partition
correspondence is established, then paths that join can be read off as redescriptions.
CARTwheels explores the space of possible tree matchings via an alternation process
whereby trees are repeatedly regrown to match the partitions exposed by the other
tree. Redescription mining has since been generalized in many directions [19, 24, 37].

1.7 Exercises

1. Carefully quantify the big-Oh time complexity of decision tree induction with
C4.5. Describe the complexity in terms of the number of attributes and the
number of training instances. First, bound the depth of the tree and then cast
the time required to build the tree in terms of this bound. Assess the cost of
pruning as well.

2. Design a dataset with continuous-valued attributes where the decision boundary
between classes is not isothetic, that is, it is not parallel to any of the coordinate

© 2009 by Taylor & Francis Group, LLC



16 C4.5

axes. Apply C4.5 on this dataset and comment on the quality of the induced
trees. Take factors such as accuracy, size of the tree, and comprehensibility into
account.

3. An alternative way to avoid overfitting is to restrict the growth of the tree rather
than pruning back a fully grown tree down to a reduced size. Explain why such
prepruning may not be a good idea.

4. Prove that the impurity measure used by C45 (i.e., entropy) is concave. Why is
it important that it be concave?

5. Derive Equation (1.1). As stated in the text, use the normal approximation to
the Bernoulli random variable modeling the error rate.

6. Instead of using information gain, study how decision tree induction would be
affected if we directly selected the attribute with the highest prediction accuracy.
Furthermore, what if we induced rules with only one antecedent? Hint: You
are retracing the experiments of Robert Holte as described in R. Holte, Very
Simple Classification Rules Perform Well on Most Commonly Used Datasets,
Machine Learning, vol. 11, pp. 63–91, 1993.

7. In some machine learning applications, attributes are set-valued, for example, an
object can have multiple colors and to classify the object it might be important to
model color as a set-valued attribute rather than as an instance-valued attribute.
Identify decision tests that can be performed on set-valued attributes and explain
which can be readily incorporated into the C4.5 system for growing decision
trees.

8. Instead of classifying an instance into a single class, assume our goal is to obtain
a ranking of classes according to the (posterior) probability of membership of
the instance in various classes. Read F. Provost and P. Domingos, Tree Induction
for Probability Based Ranking, Machine Learning, vol. 52, no. 3, pp. 199–215,
2003, who explain why the trees induced by C4.5 are not suited to providing
reliable probability estimates; they also suggest some ways to fix this problem
using probability smoothing methods. Do these same objections and solution
strategy apply to C4.5 rules as well? Experiment with datasets from the UCI
repository.

9. (Adapted from S. Nijssen and E. Fromont, Mining Optimal Decision Trees
from Itemset Lattices, Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 530–539, 2007.)
The trees induced by C4.5 are driven by heuristic choices but assume that our
goal is to identify an optimal tree. Optimality can be posed in terms of various
considerations; two such considerations are the most accurate tree up to a
certain maximum depth and the smallest tree in which each leaf covers at least
k instances and the expected accuracy is maximized over unseen examples.
Describe an efficient algorithm to induce such optimal trees.

10. First-order logic is a more expressive notation than the attribute-value repre-
sentation considered in this chapter. Given a collection of first-order relations,
describe how the basic algorithmic approach of C4.5 can be generalized to use
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first-order features. Your solution must allow the induction of trees or rules of
the form:

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

that is, X is a grandparent of Z if there exists Y such that Y is the parent of
X and Z is the parent of Y. Several new issues result from the choice of first-
order logic as the representational language. First, unlike the attribute value
situation, first-order features (such as parent(X,Y)) are not readily given
and must be generalized from the specific instances. Second, it is possible to
obtain nonsensical trees or rules if the variables participate in the head of a rule
but not the body, for example:

grandparent(X,Y) :- parent(X,Z).

Describe how you can place checks and balances into the induction process
so that a complete first-order theory can be induced from data. Hint: You are
exploring the field of inductive logic programming [9], specifically, algorithms
such as FOIL [29].
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2.1 Introduction

In this chapter, we describe the k-means algorithm, a straightforward and widely
used clustering algorithm. Given a set of objects (records), the goal of clustering
or segmentation is to divide these objects into groups or “clusters” such that objects
within a group tend to be more similar to one another as compared to objects belonging
to different groups. In other words, clustering algorithms place similar points in the
same cluster while placing dissimilar points in different clusters. Note that, in contrast
to supervised tasks such as regression or classification where there is a notion of a
target value or class label, the objects that form the inputs to a clustering procedure
do not come with an associated target. Therefore, clustering is often referred to
as unsupervised learning. Because there is no need for labeled data, unsupervised
algorithms are suitable for many applications where labeled data is difficult to obtain.
Unsupervised tasks such as clustering are also often used to explore and characterize
the dataset before running a supervised learning task. Since clustering makes no use
of class labels, some notion of similarity must be defined based on the attributes of the
objects. The definition of similarity and the method in which points are clustered differ
based on the clustering algorithm being applied. Thus, different clustering algorithms
are suited to different types of datasets and different purposes. The “best” clustering
algorithm to use therefore depends on the application. It is not uncommon to try
several different algorithms and choose depending on which is the most useful.

21

© 2009 by Taylor & Francis Group, LLC



22 K-Means

The k-means algorithm is a simple iterative clustering algorithm that partitions
a given dataset into a user-specified number of clusters, k. The algorithm is simple
to implement and run, relatively fast, easy to adapt, and common in practice. It is
historically one of the most important algorithms in data mining.

Historically, k-means in its essential form has been discovered by several re-
searchers across different disciplines, most notably by Lloyd (1957, 1982)[16],1

Forgey (1965) [9], Friedman and Rubin (1967) [10], and McQueen (1967) [17]. A
detailed history of k-means along with descriptions of several variations are given
in Jain and Dubes [13]. Gray and Neuhoff [11] provide a nice historical background
for k-means placed in the larger context of hill-climbing algorithms.

In the rest of this chapter, we will describe how k-meansworks, discuss the limi-
tations of k-means, give some examples of k-means on artificial and real datasets,
and briefly discuss some extensions to the k-means algorithm. We should note that
our list of extensions tok-means is far from exhaustive, and the reader is encouraged
to continue their own research on the aspect of k-means of most interest to them.

2.2 The k-means Algorithm

The k-means algorithm applies to objects that are represented by points in a
d-dimensional vector space. Thus, it clusters a set of d-dimensional vectors, D =
{xi|i = 1, . . . , N }, where xi ∈ �d denotes the i th object or “data point.” As discussed
in the introduction, k-means is a clustering algorithm that partitions D into k clus-
ters of points. That is, the k-means algorithm clusters all of the data points in D
such that each point xi falls in one and only one of the k partitions. One can keep
track of which point is in which cluster by assigning each point a cluster ID. Points
with the same cluster ID are in the same cluster, while points with different cluster
IDs are in different clusters. One can denote this with a cluster membership vector m
of length N , where mi is the cluster ID of xi.

The value of k is an input to the base algorithm. Typically, the value for k is based
on criteria such as prior knowledge of how many clusters actually appear in D, how
many clusters are desired for the current application, or the types of clusters found by
exploring/experimenting with different values of k. How k is chosen is not necessary
for understanding how k-means partitions the dataset D, and we will discuss how
to choose k when it is not prespecified in a later section.

In k-means, each of the k clusters is represented by a single point in �d . Let us
denote this set of cluster representatives as the set C = {cj| j = 1, . . . , k}. These k
cluster representatives are also called the cluster means or cluster centroids; we will
discuss the reason for this after describing the k-means objective function.

1Lloyd first described the algorithm in a 1957 Bell Labs technical report, which was finally published in
1982.
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2.2 The k-means Algorithm 23

In clustering algorithms, points are grouped by some notion of “closeness” or
“similarity.” In k-means, the default measure of closeness is the Euclidean distance.
In particular, one can readily show that k-means attempts to minimize the following
nonnegative cost function:

Cost =
N∑

i=1

(argmin j ||xi − cj||22) (2.1)

In other words, k-means attempts to minimize the total squared Euclidean distance
between each point xi and its closest cluster representative cj. Equation 2.1 is often
referred to as the k-means objective function.

The k-means algorithm, depicted in Algorithm 2.1, clusters D in an iterative
fashion, alternating between two steps: (1) reassigning the cluster ID of all points in
D and (2) updating the cluster representatives based on the data points in each cluster.
The algorithm works as follows. First, the cluster representatives are initialized by
picking k points in �d . Techniques for selecting these initial seeds include sampling
at random from the dataset, setting them as the solution of clustering a small subset
of the data, or perturbing the global mean of the data k times. In Algorithm 2.1, we
initialize by randomly picking k points. The algorithm then iterates between two steps
until convergence.

Step 1: Data assignment. Each data point is assigned to its closest centroid, with
ties broken arbitrarily. This results in a partitioning of the data.

Step 2: Relocation of “means.” Each cluster representative is relocated to the
center (i.e., arithmetic mean) of all data points assigned to it. The rationale
of this step is based on the observation that, given a set of points, the single best
representative for this set (in the sense of minimizing the sum of the squared
Euclidean distances between each point and the representative) is nothing but
the mean of the data points. This is also why the cluster representative is often
interchangeably referred to as the cluster mean or cluster centroid, and where
the algorithm gets its name from.

The algorithm converges when the assignments (and hence the cj values) no longer
change. One can show that the k-means objective function defined in Equation 2.1
will decrease whenever there is a change in the assignment or the relocation steps,
and convergence is guaranteed in a finite number of iterations.

Note that each iteration needs N × k comparisons, which determines the time
complexity of one iteration. The number of iterations required for convergence varies
and may depend on N , but as a first cut, k-means can be considered linear in the
dataset size. Moreover, since the comparison operation is linear in d, the algorithm is
also linear in the dimensionality of the data.

Limitations. The greedy-descent nature of k-means on a nonconvex cost im-
plies that the convergence is only to a local optimum, and indeed the algorithm
is typically quite sensitive to the initial centroid locations. In other words,
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Algorithm 2.1 The k-means algorithm
Input: Dataset D, number clusters k
Output: Set of cluster representatives C , cluster membership vector m

/* Initialize cluster representatives C */
Randomly choose k data points from D

5: Use these k points as initial set of cluster representatives C
repeat

/* Data Assignment */
Reassign points in D to closest cluster mean
Update m such that mi is cluster ID of i th point in D

10: /* Relocation of means */
Update C such that c j is mean of points in j th cluster

until convergence of objective function
∑N

i=1(argmin j ||xi − cj||22)

initializing the set of cluster representatives C differently can lead to very
different clusters, even on the same dataset D. A poor initialization can lead
to very poor clusters. We will see an example of this in the next section when
we look at examples of k-means applied to artificial and real data. The local
minima problem can be countered to some extent by running the algorithm
multiple times with different initial centroids and then selecting the best result,
or by doing limited local search about the converged solution. Other approaches
include methods such as those described in [14] that attempt to keep k-means
from converging to local minima. [8] also contains a list of different methods
of initialization, as well as a discussion of other limitations of k-means.

As mentioned, choosing the optimal value of k may be difficult. If one has knowledge
about the dataset, such as the number of partitions that naturally comprise the dataset,
then that knowledge can be used to choose k. Otherwise, one must use some other
criteria to choose k, thus solving the model selection problem. One naive solution
is to try several different values of k and choose the clustering which minimizes the
k-means objective function (Equation 2.1). Unfortunately, the value of the objective
function is not as informative as one would hope in this case. For example, the cost
of the optimal solution decreases with increasing k till it hits zero when the number
of clusters equals the number of distinct data points. This makes it more difficult to
use the objective function to (a) directly compare solutions with different numbers
of clusters and (b) find the optimum value of k. Thus, if the desired k is not known
in advance, one will typically run k-means with different values of k, and then use
some other, more suitable criterion to select one of the results. For example, SAS
uses the cube-clustering criterion, while X-means adds a complexity term (which
increases with k) to the original cost function (Equation 2.1) and then identifies the k
which minimizes this adjusted cost [20]. Alternatively, one can progressively increase
the number of clusters, in conjunction with a suitable stopping criterion. Bisecting
k-means [21] achieves this by first putting all the data into a single cluster, and then
recursively splitting the least compact cluster into two clusters using 2-means. The
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celebrated LBG algorithm [11] used for vector quantization doubles the number of
clusters till a suitable code-book size is obtained. Both these approaches thus alleviate
the need to know k beforehand. Many other researchers have studied this problem,
such as [18] and [12].

In addition to the above limitations, k-means suffers from several other problems
that can be understood by first noting that the problem of fitting data using a mixture
of k Gaussians with identical, isotropic covariance matrices (� = σ 2I), where I is
the identity matrix, results in a “soft” version of k-means. More precisely, if the soft
assignments of data points to the mixture components of such a model are instead
hardened so that each data point is solely allocated to the most likely component
[3], then one obtains the k-means algorithm. From this connection it is evident that
k-means inherently assumes that the dataset is composed of a mixture of k balls or
hyperspheres of data, and each of the k clusters corresponds to one of the mixture
components. Because of this implicit assumption, k-means will falter whenever
the data is not well described by a superposition of reasonably separated spherical
Gaussian distributions. For example, k-means will have trouble if there are non-
convex-shaped clusters in the data. This problem may be alleviated by rescaling the
data to “whiten” it before clustering, or by using a different distance measure that is
more appropriate for the dataset. For example, information-theoretic clustering uses
the KL-divergence to measure the distance between two data points representing two
discrete probability distributions. It has been recently shown that if one measures
distance by selecting any member of a very large class of divergences called Bregman
divergences during the assignment step and makes no other changes, the essential
properties of k-means, including guaranteed convergence, linear separation bound-
aries, and scalability, are retained [1]. This result makes k-means effective for a
much larger class of datasets so long as an appropriate divergence is used.

Another method of dealing with nonconvex clusters is by pairing k-means with
another algorithm. For example, one can first cluster the data into a large number of
groups usingk-means. These groups are then agglomerated into larger clusters using
single link hierarchical clustering, which can detect complex shapes. This approach
also makes the solution less sensitive to initialization, and since the hierarchical
method provides results at multiple resolutions, one does not need to worry about
choosing an exact value for k either; instead, one can simply use a large value for k
when creating the initial clusters.

The algorithm is also sensitive to the presence of outliers, since “mean” is not a
robust statistic. A preprocessing step to remove outliers can be helpful. Postprocessing
the results, for example, to eliminate small clusters, or to merge close clusters into
a large cluster, is also desirable. Ball and Hall’s ISODATA algorithm from 1967
effectively used both pre- and postprocessing on k-means.

Another potential issue is the problem of “empty” clusters [4]. When running k-
means, particularly with large values of k and/or when data resides in very high
dimensional space, it is possible that at some point of execution, there exists a cluster
representative c j such that all points xi in D are closer to some other cluster repre-
sentative that is not c j . When points in D are assigned to their closest cluster, the j th
cluster will have zero points assigned to it. That is, cluster j is now an empty cluster.
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The standard algorithm does not guard against empty clusters, but simple extensions
(such as reinitializing the cluster representative of the empty cluster or “stealing”
some points from the largest cluster) are possible.

2.3 Available Software

Because of the k-means algorithm’s simplicity, effectiveness, and historical impor-
tance, software to run the k-means algorithm is readily available in several forms. It
is a standard feature in many popular data mining software packages. For example, it
can be found in Weka or in SAS under the FASTCLUS procedure. It is also commonly
included as add-ons to existing software. For example, several implementations of
k-means are available as parts of various toolboxes in MATLAB�. k-means is
also available in Microsoft Excel after adding XLMiner. Finally, several stand-alone
versions of k-means exist and can be easily found on the Internet.

The algorithm is also straightforward to code, and the reader is encouraged to create
their own implementation of k-means as an exercise.
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Figure 2.1 The artificial dataset used in our example; the data is drawn from a
mixture of four Gaussians.
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2.4 Examples

Let us first show an example of k-means on an artificial dataset to illustrate how
k-means works. We will use artificial data drawn from four 2-D Gaussians and
use a value of k = 4; the dataset is illustrated in Figure 2.1. Data drawn from a
particular Gaussian is plotted in the same color in Figure 2.1. The blue data consists
of 200 points drawn from a Gaussian with mean at (−3, −3) and covariance ma-
trix .0625 × I, where I is the identity matrix. The green data consists of 200 points
drawn from a Gaussian with mean at (3,−3) and covariance matrix I. Finally, we
have overlapping yellow and red data drawn from two nearby Gaussians. The yellow
data consists of 150 points drawn from a Gaussian with mean (−1, 2) and covariance
matrix I, while the red data consists of 150 points drawn from a Gaussian with mean
(1,2) and covariance matrix I. Despite the overlap between the red and yellow points,
one would expect k-means to do well since we do have the right value of k and the
data is generated by a mixture of spherical Gaussians, thus matching nicely with the
underlying assumptions of the algorithm.

The first step in k-means is to initialize the cluster representatives. This is illus-
trated in Figure 2.2a, where k points in the dataset have been picked randomly. In this
figure and the following figures, the cluster means C will be represented by a large
colored circle with a black outline. The color corresponds to the cluster ID of that
particular cluster, and all points assigned to that cluster are represented as points of
the same color. These colors have no definite connection with the colors in Figure 2.1
(see Exercise 7). Since points have not been assigned cluster IDs in Figure 2.2a, they
are plotted in black.

The next step is to assign all points to their closest cluster representative; this is
illustrated in Figure 2.2b, where each point has been plotted to match the color of its
closest cluster representative. The third step in k-means is to update the k cluster
representatives to correspond to the mean of all points currently assigned to that clus-
ter. This step is illustrated in Figure 2.2c. In particular, we have plotted the old cluster
representatives with a black “X” symbol and the new, updated cluster representatives
as a large colored circle with a black outline. There is also a line connecting the old
cluster mean with the new, updated cluster mean. One can observe that the cluster
representatives have moved to reflect the current centroids of each cluster.

The k-means algorithm now iterates between two steps until convergence: reas-
signing points in D to their closest cluster representative and updating the k cluster
representatives. We have illustrated the first four iterations of k-means in Figures
2.2 and 2.3. The final clusters after convergence are shown in Figure 2.3d. Note that
this example took eight iterations to converge. Visually, however, there is little change
in the diagrams between iterations 4 and 8, and these pictures are omitted for space
reasons. As one can see by comparing Figure 2.3d with Figure 2.1, the clusters found
by k-means match well with the true, underlying distribution.

In the previous section, we mentioned thatk-means is sensitive to the initial points
picked as clusters. In Figure 2.4, we show what happens when the k representatives are
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Figure 2.2 k-means on artificial data.
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Figure 2.3 k-means on artificial data. (Continued from Figure 2.2.)

initialized poorly on the same artificial dataset used in Figures 2.2 and 2.3. Figures 2.4a
and c show two initializations that lead to poor clusters in Figures 2.4b and d. These
results are considered poor since they do not correspond well to the true underlying
distribution.

Finally, let us examine the performance of k-means on a simple, classic bench-
mark dataset. In our example, we use the Iris dataset (available from the UCI data
mining repository), which contains 150 data points from three classes. Each class rep-
resents a different species of the Iris flower, and there are 50 points from each class.
While there are four dimensions (representing sepal width, sepal length, petal width,
and petal length), only two dimensions (petal width and petal length) are necessary
to discriminate the three classes. The Iris dataset is plotted in Figure 2.5a along the
dimensions of petal width and petal length.

In Figure 2.5b, we show an example of the k-means algorithm run on the Iris
dataset with k = 3, using only the attributes of petal width and petal length. The
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Figure 2.4 Examples of poor clustering after poor initialization; these resultant
clusters are considered “poor” in the sense that they do not match well with the true,
underlying distribution.

k-means algorithm is able to cluster the data points such that each cluster is com-
posed mostly of flowers from the same species.

2.5 Advanced Topics

In this section, we discuss some generalizations, connections, and extensions that have
been made to the k-means algorithm. However, we should note that this section is
far from exhaustive. Research on k-means has been extensive and is still active.
Instead, the goal of this section is to complement some of the previously discussed
issues regarding k-means.
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Figure 2.5 (a) Iris dataset; each color is a different species of Iris; (b) Result of
k-means on Iris dataset; each color is a different cluster; note that there is not
necessarily a correspondence between colors in (a) and (b) (see Exercise 7).

As mentioned earlier, k-means is closely related to fitting a mixture of k isotropic
Gaussians to the data. Moreover, the generalization of the distance measure to all
Bregman divergences is related to fitting the data with a mixture of k components
from the exponential family of distributions. Another broad generalization is to view
the “means” as probabilistic models instead of points in Rd . Here, in the assignment
step, each data point is assigned to the model most likely to have generated it. In the
“relocation” step, the model parameters are updated to best fit the assigned datasets.
Such model-based k-means [23] allow one to cater to more complex data, for
example, sequences described by Hidden Markov models.

One can also “kernelize” k-means [5]. Though boundaries between clusters are
still linear in the implicit high-dimensional space, they can become nonlinear when
projected back to the original space, thus allowing kernel k-means to deal with
more complex clusters. Dhillon et al. [5] have shown a close connection between
kernel k-means and spectral clustering. The K-medoid [15] algorithm is similar to
k-means, except that the centroids have to belong to the dataset being clustered.
Fuzzy c-means [6] is also similar, except that it computes fuzzy membership functions
for each cluster rather than a hard one.

To deal with very large datasets, substantial effort has also gone into further speed-
ing up k-means, most notably by using kd-trees [19] or exploiting the triangular
inequality [7] to avoid comparing each data point with all the centroids during the
assignment step.

Finally, we discuss two straightforward extensions of k-means. The first is a
variant of k-means called soft k-means. In the standard k-means algorithm,
each point xi belongs to one and only one cluster. In soft k-means, this constraint
is relaxed, and each point xi can belong to each cluster with some unknown probability.
Insoft k-means, for each point xi , one maintains a set of k probabilities or weights
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that describe the likelihood that xi belongs to each cluster. These weights are based
on the distance of xi to each of the cluster representatives C , where the probability
that xi is from cluster j is proportional to the similarity between xi and c j . The cluster
representatives in this case are found by taking the expected value of the cluster mean
over all points in the dataset D.

The second extension ofk-meansdeals with semisupervised learning. In the intro-
duction, we made a distinction between supervised learning and unsupervised learn-
ing. In brief, supervised learning makes use of class labels while unsupervised learning
does not. The k-means algorithm is a purely unsupervised algorithm. There also
exists a category of learning algorithms called semisupervised algorithms. Semisu-
pervised learning algorithms are capable of making use of both labeled and unlabeled
data. Semisupervised learning is a useful compromise between purely supervised
methods and purely unsupervised methods. Supervised learning methods typically
require very large amounts of labeled data; semisupervised methods are useful when
very few labeled examples are available. Unsupervised learning methods, which do
not look at class labels, may learn models inappropriate for the application at hand.
When running k-means, one has no control over the final clusters that are discov-
ered; these clusters may or may not correspond well to some underlying concept
that one is interested in. For example, in Figure 2.5b, a poor initialization may have
resulted in clusters which do not correspond well to the Iris species in the dataset.
Semisupervised methods, which can take guidance in the form of labeled points, are
more likely to create clusters which correspond to a given set of class labels.

Research into semisupervised variants ofk-means include [22] and [2]. One of the
algorithms from [2] called seeded k-means is a simple extension to k-means
that uses labeled data to help initialize the value of k and the cluster representatives
C . In this approach, k is chosen to be the same as the number of classes in the labeled
data, while c j is initialized as the mean of all labeled points in the j th class. Note that,
unlike unsupervised k-means, there is now a known correspondence between the
j th cluster and the j th class. After initialization, seeded k-means iterates over
the same two steps as k-means (updating cluster memberships and updating cluster
means) until convergence.

2.6 Summary

The k-means algorithm is a simple iterative clustering algorithm that partitions a
dataset into k clusters. At its core, the algorithm works by iterating over two steps: (1)
clustering all points in the dataset based on the distance between each point and its
closest cluster representative and (2) reestimating the cluster representatives. Limita-
tions of the k-means algorithm include the sensitivity of k-means to initialization
and determining the value of k.

Despite its drawbacks, k-means remains the most widely used partitional clus-
tering algorithm in practice. The algorithm is simple, easily understandable, and

© 2009 by Taylor & Francis Group, LLC



2.7 Exercises 33

reasonably scalable, and can be easily modified to deal with different scenarios such
as semisupervised learning or streaming data. Continual improvements and general-
izations of the basic algorithm have ensured its continued relevance and gradually
increased its effectiveness as well.

2.7 Exercises

1. Using the standard benchmark Iris dataset (available online from the UCI
dataset repository), run k-means to obtain results similar to Figure 2.5b. It is
sufficient to look at only the attributes of “petal width” and “petal length.”

What happens when one uses a value for k other than three? How do different
cluster initializations affect the final clusters? Why are these results potentially
different than the results given in Figure 2.5b?

2. Prove that the value of the k-means objective function converges when k-
means is run.

3. Describe three advantages and three disadvantages of k-means compared to
other clustering methods (e.g., agglomerative clustering).

4. Describe or plot a two-dimensional example where k-means would be un-
suitable for finding clusters.

5. In k-means, after the cluster means have converged, what is the shape of the
cluster boundaries? How is this related to Voronoi tesselations?

6. Does k-means guarantee that points within the same cluster are more similar
than points from different clusters? That is, prove or disprove that, after k-
means has converged, the squared Euclidean distance between two points in
the same cluster is always less than the squared Euclidean distance between
two points from different clusters.

7. Assume one is given a hypothetical dataset D consisting of 10 points.k-means
is run twice on this dataset. Let us denote the cluster IDs of the 10 points in D
as a vector m, where mi , the i th entry in the vector, is the cluster ID of the i th
point in D.

The cluster IDs of the 10 points from the first time k-means is run are
m1 = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3], while the cluster IDs obtained from the second
run of k-means are m2 = [3, 3, 3, 1, 1, 1, 2, 2, 2, 2].

What is the difference between the two sets of cluster IDs? Do the actual
cluster IDs of the points in D mean anything? What does this imply when
comparing the results of different clustering algorithms? What does this imply
when comparing the results of clustering algorithms with known class labels?

8. Create your own implementation of k-means and a method of creating artifi-
cial data drawn from k Gaussian distributions. Test your code on the artificial
data and keep track of how many iterations it takes for k-means to converge.
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9. Using the code generated in the previous exercise, plot the average distance
of each point from its cluster mean versus the number of clusters k. Is the
average distance of a point from its cluster mean a good method of automatically
determining the number of clusters k? Why or why not? What can potentially
happen when the number of clusters k is equal to the number of points in the
dataset?

10. Research and describe an extension to the standard k-means algorithm.
Depending on individual interests, this could include recent work on mak-
ing k-means more computationally efficient, work on extending k-means
to semisupervised learning, work on adapting other distance metrics into
k-means, or many other possibilities.
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Support vector machines (SVMs), including support vector classifier (SVC) and sup-
port vector regressor (SVR), are among the most robust and accurate methods in
all well-known data mining algorithms. SVMs, which were originally developed by
Vapnik in the 1990s [1–11], have a sound theoretical foundation rooted in statisti-
cal learning theory, require only as few as a dozen examples for training, and are
often insensitive to the number of dimensions. In the past decade, SVMs have been
developed at a fast pace both in theory and practice.

3.1 Support Vector Classifier

For a two-class linearly separable learning task, the aim of SVC is to find a hyperplane
that can separate two classes of given samples with a maximal margin which has been
proved able to offer the best generalization ability. Generalization ability refers to
the fact that a classifier not only has good classification performance (e.g., accuracy)
on the training data, but also guarantees high predictive accuracy for the future data
from the same distribution as the training data.

37
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Optimal Hyperplane 
wTx+b = 0 

x2

x1
r *

r *

ρ

Figure 3.1 Illustration of the optimal hyperplane in SVC for a linearly separable
case.

Intuitively, a margin can be defined as the amount of space, or separation, between
the two classes as defined by a hyperplane. Geometrically, the margin corresponds
to the shortest distance between the closest data points to any point on the hyper-
plane. Figure 3.1 illustrates a geometric construction of the corresponding optimal
hyperplane under the above conditions for a two-dimensional input space.

Let w and b denote the weight vector and bias in the optimal hyperplane, respec-
tively. The corresponding hyperplane can be defined as

wT x + b = 0 (3.1)

The desired directionally geometrical distance from the sample x to the optimal
hyperplane [12,13] is

r = g(x)

‖w‖ (3.2)

where g(x) = wT x + b is the discriminant function [7] as defined by the hyperplane
and also called x’s functional margin given w and b.

Consequently, SVC aims to find the parameters w and b for an optimal hyperplane
in order to maximize the margin of separation [ρ in Equation (3.5)] that is determined
by the shortest geometrical distances r∗ from the two classes, respectively, thus SVC
is also called maximal margin classifier. Now without loss of generality, we fix the
functional margin [7] to be equal to 1; that is, given a training set {xi , yi }n

i=1 ∈
Rm × {±1}, we have

wT xi + b ≥ 1 for yi = +1

wT xi + b ≤ −1 for yi = −1
(3.3)
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The particular data points (xi , yi ) for which the equalities of the first or second parts
in Equation (3.3) are satisfied are called support vectors, which are exactly the closest
data points to the optimal hyperplane [13]. Then, the corresponding geometrical
distance from the support vector x∗ to the optimal hyperplane is

r∗ = g(x∗)

‖w‖ =

⎧
⎪⎪⎨

⎪⎪⎩

1

‖w‖ if y∗ = +1

− 1

‖w‖ if y∗ = −1

(3.4)

From Figure 3.1, clearly the margin of separation ρ is

ρ = 2r∗ = 2

‖w‖ (3.5)

To ensure that the maximum margin hyperplane can be found, SVC attempts to
maximize ρ with respect to w and b:

max
w,b

2

‖w‖
s.t. yi

(
wT xi + b

) ≥ 1, i = 1, . . . , n

(3.6)

Equivalently,

min
w,b

1

2
‖w‖2

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n

(3.7)

Here, we often use ‖w‖2 instead of ‖w‖ for the convenience of carrying out the
subsequent optimization steps.

Generally, we solve the constrained optimization problem in Equation (3.7), known
as the primal problem, by using the method of Lagrange multipliers. We construct
the following Lagrange function:

L(w, b, α) = 1

2
wT w −

n∑

i=1

αi
[
yi

(
wT xi + b

) − 1
]

(3.8)

where αi is the Lagrange multiplier with respect to the i th inequality.
Differentiating L(w, b, α) with respect to w and b, and setting the results equal to

zero, we get the following two conditions of optimality:
⎧
⎪⎪⎨

⎪⎪⎩

∂L(w, b, α)

∂w
= 0

∂L(w, b, α)

∂b
= 0

(3.9)
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Then we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w =
n∑

i=1

αi yi xi

n∑

i=1

αi yi = 0

(3.10)

Substituting Equation (3.10) into the Lagrange function Equation (3.8), we can get
the corresponding dual problem:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j xT
i x j

s.t.
n∑

i=1

αi yi = 0

αi ≥ 0, i = 1, . . . , n (3.11)

And at the same time, the Karush-Kuhn-Tucker complementary condition is

αi
[
yi

(
wT xi + b

) − 1
] = 0, i = 1, . . . , n (3.12)

Consequently, only the support vectors (xi , yi ) that are the closest data points to the
optimal hyperplane and determine the maximal margin, correspond to the nonzero
αi s. All the other αi s equal zero.

The dual problem in Equation (3.11) is a typical convex quadratic programming
optimization problem. In many cases, it can efficiently converge to the global optimum
by adopting some appropriate optimization techniques, such as the sequential minimal
optimization (SMO) algorithm [7].

After determining the optimal Lagrange multipliers α∗
i , we can compute the optimal

weight vector w∗ by Equation (3.10):

w∗ =
n∑

i=1

α∗
i yi xi (3.13)

Then, taking advantage of a positive support vector xs , the corresponding optimal
bias b∗ can be written as [13]:

b∗ = 1 − w∗T xs for ys = +1 (3.14)
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3.2 SVC with Soft Margin and Optimization

Maximal margin SVC, including the following SVR, represents the original starting
point of the SVM algorithms. However, in many real-world problems, it may be too
rigid to require that all points are linearly separable, especially in many complex
nonlinear classification cases. When the samples cannot be completely linearly sep-
arated, the margins may be negative. In these cases, the feasible region of the primal
problem is empty, and thus the corresponding dual problem is an unbounded objective
function. This makes it impossible to solve the optimization problem [7].

To solve these inseparable problems, we generally adopt two approaches. The first
one is to relax the rigid inequalities in Equation (3.7) and thus lead to so-called
soft margin optimization. Another method is to apply the kernel trick to linearize
those nonlinear problems. In this section, we first introduce soft margin optimization.
Consequently, relative to the soft margin SVC, we usually name SVC derived from
the optimization problem [Equation (3.7)] the hard margin SVC.

Imagine the cases where there are a few points of the opposite classes mixed together
in the data. These points represent the training error that exists even for the maximum
margin hyperplane. The “soft margin” idea aims to extend the SVC algorithm so
that the hyperplane allows a few of such noisy data to exist. In particular, a slack
variable ξi is introduced to account for the amount of a violation of classification by
the classifier:

min
w,b

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi
(
wT xi + b

) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n (3.15)

where the parameter C controls the trade-off between complexity of the machine and
the number of inseparable points. It may be viewed as a “regularization” parameter
and selected by the user either experimentally or analytically.

The slack variable ξi has a direct geometric explanation through the distance from
a misclassified data instance to the hyperplane. This distance measures the deviation
of a sample from the ideal condition of pattern separability. Using the same method
of Lagrange multipliers that are introduced in the above section, we can formulate
the dual problem of the soft margin as:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j xT
i x j

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C, i = 1, . . . , n (3.16)
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Comparing Equation (3.11) with Equation (3.16), it is noteworthy that the slack
variables ξi s do not appear in the dual problem. The major difference between the
linearly inseparable and separable cases is that the constraint αi ≥ 0 is replaced with
the more stringent constraint 0 ≤ αi ≤ C . Otherwise, the two cases are similar,
including the computations of the optimal values of the weight vector w and bias b,
especially the definition of the support vectors [7,13].

The Karush-Kuhn-Tucker complementary condition in the inseparable case is

αi
[
yi

(
wT xi + b

) − 1 + ξi
] = 0, i = 1, . . . , n (3.17)

and

γiξi = 0, i = 1, . . . , n (3.18)

where γi s are the Lagrange multipliers corresponding to ξi that have been introduced
to enforce the nonnegativity of ξi [13]. At the saddle point at which the derivative of
the Lagrange function for the primal problem with respect to ξi is zero, the evaluation
of the derivative yields

αi + γi = C (3.19)

Combining Equations (3.18) and (3.19), we have

ξi = 0 if αi < C (3.20)

Consequently, we have the optimal weight w∗ as follows:

w∗ =
n∑

i=1

α∗
i yi xi (3.21)

The optimal bias b∗ can be obtained by taking any data point (xi , yi ) in the training
set for which we have 0 < α∗

i < C and the corresponding ξi = 0, and using the data
point in Equation (3.17) [13].

3.3 Kernel Trick

The kernel trick is another commonly used technique to solve linearly inseparable
problems. The issue is to define an appropriate kernel function based on the inner
product between the given data, as a nonlinear transformation of data from the input
space to a feature space with higher (even infinite) dimension in order to make the
problems linearly separable. The underlying justification can be found in Cover’s the-
orem on the separability of patterns; that is, a complex pattern classification problem
cast in a high-dimensional space nonlinearly is more likely to be linearly separable
than in a low-dimensional space [13].
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Let Φ : X → H denote a nonlinear transformation from the input space X ⊂ Rm

to the feature space H where the problem can be linearly separable. We may define
the corresponding optimal hyperplane as follows:

wΦT Φ(x) + b = 0 (3.22)

Without loss of generality, we set the bias b = 0, and simplify Equation (3.22) as:

wΦT Φ(x) = 0 (3.23)

Similar to the linear separable cases, we seek the optimal weight vector wΦ∗ in
the feature space in virtue of the similar Lagrange multiplier method, and obtain:

wΦ∗ =
n∑

i=1

α∗
i yiΦ(xi ) (3.24)

Thus, the optimal hyperplane computed in the feature space is:

n∑

i=1

α∗
i yiΦT (xi )Φ(x) = 0 (3.25)

The term ΦT (xi )Φ(x) represents the inner product of two vectors, Φ(x) and Φ(xi ).
Hence, here we deduce the inner product kernel function:

Definition 3.3.1 (Inner Product Kernel) [7]. Kernel is a function K(x, x′), for all
x, x′ ∈ X ⊂ Rm , satisfied:

K(x, x′) = ΦT (x)Φ(x′) (3.26)

where Φ is a transformation from the input space X to the feature space H.

The significance of the kernel is that we may use it to construct the optimal hy-
perplane in the feature space without having to consider the concrete form of the
transformation Φ, which usually need not be explicitly formulated in the higher di-
mension (even infinite) feature space. As a result, the application of the kernel can
make the algorithm insensitive to the dimension, so as to train a linear classifier in a
space with higher dimension to solve linearly inseparable problems efficiently. This is
done by using K(xi , x) in Equation (3.25) to substitute ΦT (xi )Φ(x); then the optimal
hyperplane is:

n∑

i=1

α∗
i yi K(xi ,x) = 0 (3.27)

As indicated, the kernel trick is an appealing method for simplifying the computa-
tion, by which we can avoid computing the complex feature space directly not only
in the computation of the inner products but also in the design of the classifier.
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However, before implementing the kernel trick, we should consider how to con-
struct a kernel function, that is, a kernel function should satisfy which characteristics.
To answer this question, we first introduce Mercer’s theorem, which characterizes the
property of a function K(x, x′) for when it is considered a true kernel function:

Theorem 3.3.2 Mercer’s Theorem [13] Let K(x, x′) be a continuous symmetric
kernel that is defined in the closed interval a ≤ x ≤ b and likewise for x′. The kernel
K(x, x′) can be expanded in the series

K(x, x′) =
∞∑

i=1

λiϕi (x)ϕi (x′) (3.28)

with positive coefficients, λi > 0 for all i . For this expansion to be valid and for it to
converge, it is necessary and sufficient that the condition

∫ a

b

∫ a

b
K(x, x′)ψ(x)ψ(x′) dx dx′ ≥ 0 (3.29)

holds for all ψ(·) for which

∫ a

b
ψ2(x) dx < ∞ (3.30)

In light of the theorem, we can summarize the most useful characteristic in the
construction of the kernel, which is termed Mercer kernel. That is, for any random
limited subsets belonging to the input space X, the corresponding matrix constructed
by the kernel function K(x, x′)

K = (
K

(
xi , x′

j

))n

i, j=1 (3.31)

is a symmetric and semidefinite matrix, which is called a Gram matrix [7].
Under this requirement, there is still some freedom in how to choose a kernel

function in practice. For example, besides linear kernel functions, we can also define
polynomial or radial basis kernel functions. More studies in recent years have gone into
the research of different kernels for SVC classification and for many other statistical
tests. We will mention these in the following section.

In Section 3.2, we introduced the soft margin SVC to solve linearly inseparable
problems. Compared with the kernel trick, it is obvious that the two approaches actu-
ally solve the problems in different manners. The soft margin slackens the constraints
in the original input space and allows some errors to exist. However, when the prob-
lem is heavily linearly inseparable and the misclassified error is too high, the soft
margin is unworkable. The kernel trick maps the data to a high-dimension feature
space implicitly by the kernel function in order to make the inseparable problems
separable. However, in fact the kernel trick cannot always guarantee the problems to
be absolutely linearly separable due to the complexity of the problems. Therefore,

© 2009 by Taylor & Francis Group, LLC



3.3 Kernel Trick 45

in practice we often integrate them to exert the different advantages of the two tech-
niques and solve the linearly inseparable problems more efficiently. As a result, the
corresponding dual form for the constrained optimization problem in the kernel soft
margin SVC is as follows:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j K(xi , x j )

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C, i = 1, . . . , n (3.32)

Following the similar Lagrange multipliers method, we can obtain the optimal
classifier:

f (x) =
n∑

i=1

α∗
i yi K(xi , x) + b∗ (3.33)

where b∗ = 1 − ∑n
i=1 α∗

i yi K(xi , xs), for a positive support vector ys = +1.

Example 3.3.3 (Illustrative Example) The XOR problem is a typical extremely
linearly inseparabe problem in classification. Here we use it to illustrate the signifi-
cance of the soft margin SVC combined with kernel trick in the complex classification
problems. A two-dimensional XOR dataset can be randomly generated under four
different Gaussian distributions, where “*” and “•” denote the samples in the two
classes, respectively.

As shown in Figure 3.2a, the hard margin SVC in the linear kernel completely
fails in the XOR problem. A linear boundary cannot discriminate the two classes and
can be seen to divide all the samples into two parts. This clearly cannot achieve the
classification objective for the problem. Consequently, we use the soft margin SVC
combined with a radial basis kernel to solve the problem

K(xi , x) = exp

(

−‖x − xi‖2

σ 2

)

We fix the regularization parameter C = 1 and the kernel parameter or bandwidth
σ = 1. The corresponding discriminant boundary is presented in Figure 3.2b. By
using the kernel trick, the boundary is no longer linear, for it now encloses only one
class. By judging the samples inside or outside the boundary, the classifier can be
seen to classify the samples accurately.

Example 3.3.4 Real Application Example SVC algorithm has been widely ap-
plied in many important scientific fields, such as bioinformatics, physics, chemistry,
iatrology, astronomy, and so on. Here we carefully select five datasets in the iatrology
area from the UCI Machine Learning Repository (http://ida.first.fraunhofer.de/
projects/bench/benchmarks.htm) to illustrate real applications of SVC. The five
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Figure 3.2 The discriminant boundaries of SVC in the XOR problem. (a) The hard
margin SVC in the linear kernel. (b) The soft margin SVC in the radial basis kernel.
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TABLE 3.1 Results of the SVC Algorithm for the Five Datasets

Dataset Dimension Training Testing C σ SV Accuracy

B.-cancer 9 200 77 1.519e+01 5.000e+01 138.80 0.7396±4.74
Diabetes 8 468 300 1.500e+01 2.000e+01 308.60 0.7647±1.73
Heart 13 170 100 3.162e+00 1.200e+02 86.00 0.8405±3.26
Thyroid 5 140 75 1.000e+01 3.000e+00 45.80 0.9520±2.19
Splice 60 1000 2175 1.000e+03 7.000e+01 762.40 0.8912±0.66

datasets, respectively, are B.-cancer (breast cancer Wisconsin data), diabetes (Pima
Indians diabetes data), heart (heart data), thyroid (thyroid disease data), and splice
(splice-junction gene sequences data).

The two to four columns of Table 3.1 summarize some characteristics about the
datasets, where Dimension denotes the dimension of the samples, and Training and
Testing denote the numbers of the training and testing samples in each dataset. We
perform independently repeated 100 runs and 20 runs, respectively, for the first four
datasets and splice dataset, which have been offered by the database. Then the av-
erage experimental results of the SVC algorithm have been reported in the five to
eight columns of Table 3.1. C and σ are the optimal regularization and kernel param-
eters selected by the cross-validation. SV is the average number of support vectors.
Accuracy denotes the corresponding classification accuracies and variances.

As shown in Table 3.1, the values of SV are typically less than the numbers of
training samples, which validates the good sparsity of the algorithm. Furthermore, the
high accuracies show the good classification performance; meanwhile, the relatively
low variances show the good stability of SVC in the real applications.

3.4 Theoretical Foundations

In the above sections, we have described the SVC algorithm both in the linearly
separable and inseparable cases. The introduction of the kernel trick further improves
the expression performance of the classifier, which can keep the inherent linear prop-
erty in a high-dimensional feature space and avoid the possible curse of dimension.
In this section, we will discuss the theoretical foundation of the SVC. By the Vapnik-
Chervonenkis (VC) theory [4,5], we will first present a general error bound of a linear
classifier which can guide globally how to control the classifier complexity. We will
then deduce a concrete generalization bound of the SVC to explain the significance
of the maximum margin in the SVC to guarantee the good generalization capacity of
the algorithm.

The VC theory generalizes the probably approximately correct (PAC) learning
model in statistical learning and directly leads to the proposal of the SVMs. It provides
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an analytical generalization bound that can be used for estimating generalization error
by defining a new measure of complexity, known as the VC dimension [14,15].

Concretely, assume that training and testing data are generated according to a fixed
but unknown probability distribution D, we define the error errD(h) of a classification
function h on the D as

errD(h) = D{(x, y) : h(x) �= y} (3.34)

which measures the expected error [7].
PAC models bound the distribution of the generalization error random variable

errD(hs) and the corresponding PAC bound has the form ε = ε(n, H, δ); that is, a
PAC model considers that in the hypothesis hs , the probability of the error in the
training data S satisfies [7]:

Dn{S : errD(hs) > ε(n, H, δ)} < δ (3.35)

If there are |H | hypotheses having large errors in the set S, then the PAC bound is

ε = ε(n, H, δ) = 1

n
ln

|H |
δ

(3.36)

PAC bound presents that the function class H can directly influence the error
bound. VC theory further generalizes the PAC bound to the unlimited function class
and introduces the concept of the VC dimension d. The VC dimension d measures
the maximum number of training data where the function class can still be used to
learn perfectly, by obtaining zero error rates on the training data, for any assignment
of class labels to these points. Then the generalized PAC bound of a linear classifier
can be described as follows:

Theorem 3.4.1 Vapnik and Chervonenkis [7] Let H denote a hypothesis space
whose VC dimension is d. For random probability distribution D on X × {−1, 1},
with probability 1 − δ, the generalization error of random hypothesis h ∈ H on the
training set S is no more than

errD(h) ≤ ε(n, H, δ) = 2

n

(

log
2

δ
+ d log

2en

d

)

(3.37)

under the condition that d ≤ n, n > 2/ε.

In light of the theorem, the first term of Equation (3.37) is the training error, and
the second term is proportional to the VC dimension d. Thus, the theorem shows that
if we can minimize d , we can minimize the future error, as long as the hypothesis h
controls the empirical risk error in a small degree.

Theorem 3.4.1 provides a general error bound of a linear classifier and gives the
global guidance on how to control the classifier complexity. In the following, we will
generalize the bound for the SVC algorithm and deduce the corresponding general-
ization error bound of SVC.
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We first give a formal definition of the margin:

Definition 3.4.2 (Margin) [7]. Consider using a real value function class F to
classify in the input space X, and the threshold value is 0. We define the margin of
the example (xi , yi ) ∈ X × {−1, 1} to the function or hyperplane f ∈ F as:

γi = yi f (xi ) (3.38)

Note that γi > 0 denotes that the example (xi , yi ) is correctly classified. The marginal
distribution of f corresponding to the training set S is the marginal distribution of the
examples in S. The minimum of the marginal distribution is called the margin mS( f )
of f corresponding to the training set S.

Although the VC dimension d is theoretically meaningful, in practice d is some-
times infinite and thus the generalization bound is inapplicable to many real problems.
Consequently, we introduce a similar measure related to the margin in SVC instead
of the traditional VC dimension:

Definition 3.4.3 (Cover of Function Class) [7]. Let F be a real value function
class in X. For a series of input data

S = {x1, x2, . . . , xn}
The γ -cover of F is the limited function set B, such that for all f ∈ F , existing

g ∈ B, there is max1≤i≤n(| f (xi ) − g(xi )|) < γ . N (F, S, γ ) denotes the minimal size
of the cover. The number of data that Fcovers is

N (F, n, γ ) = max
S∈Xn

N (F, S, γ ) (3.39)

Then we use N (F, n, γ ) to reformulate Theorem 3.4.1 for the case that the hypoth-
esis f is such that mS( f ) = γ on the training set S.

Theorem 3.4.4 VC Theorem with Margin [7] Consider a bounded real value func-
tion space F and fix γ ∈ R+. For any probability distribution D on X × {−1, 1}, with
probability 1 − δ, the generalization error of a hypothesis f ∈ F on the training set
S, which has a margin mS( f ) ≥ γ , satisfies

errD( f ) ≤ ε(n, F, δ, γ ) = 2

n

(

log
2

δ
+ log N (F, 2n, γ /2)

)

(3.40)

under the condition that n > 2/ε.

Theorem 3.4.4 shows how to use mS( f ) to bound the generalization error which
can be obtained by the training data. N (F, 2n, γ /2) may be viewed as another form
of the VC dimension, where a larger γ corresponds to a smaller N (F, 2n, γ /2). As
a result, we may draw a conclusion that large margin can ensure good generalization
performance of the classifier for small size samples.

Although Theorem 3.4.4 is a generalization of Theorem 3.4.1, the value N (F, 2n,

γ /2) cannot be efficiently quantified in the real-world problems. Consequently, we
further deduce a more concrete error bound for the specific SVC algorithm:
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Theorem 3.4.5 Generalization Bound of SVC [7] Assume that the input space X is
a hyperball in the inner product space H whose radius is R, X = {x ∈ H : ‖x‖H ≤ R}.
Consider the function class :

 = {
x �→ wT x : ‖w‖H ≤ 1, x ∈ X

}

Fix γ ∈ R+. For a probability distribution D on X × {−1, 1}, with probability 1 − δ,
the generalization error of a hypothesis f ∈  on the training set S, which has the
margin mS( f ) ≥ γ , is no more than

errD( f ) ≤ ε(n, , δ, γ ) = 2

n

(

log
4

δ
+ 64R2

γ 2
log

enγ

4R
log

128n R2

γ 2

)

(3.41)

under the condition that n > 2/ε, 64R2/γ 2 < n.

It is noteworthy that the dimension of the input space does not appear in the bound.
Hence the bound can be used in the infinite dimension space, which denotes that
the bound may overcome the curse of dimension. Furthermore, when the samples
distribute well, the bound may guarantee in a high probability that there is a small
error for random testing samples. In that case, the margin γ can be viewed as a
measure about the quality of the sample distribution, and thus may further measure
the generalization performance of the SVC algorithm [7].

3.5 Support Vector Regressor

Up to this point, we have focused on the SVC method for classification tasks. In
this section, we will consider using SVM to solve nonlinear regression problems,
thus called SVR. Similar to the classification algorithm, we also expect to explore
the main characteristics of the maximum margin method by exploiting nonlinear
functions, which can be obtained using linear learning methods and the kernel trick.
In addition, the corresponding algorithms must be efficient under high dimensions [7].

However, for regression problems, the traditional least-squares estimator may not
be quite feasible in the presence of outliers, resulting in the regressor to perform
poorly when the underlying distribution of the additive noise has a long tail [13].
Thus we need to develop a robust estimator insensitive to small changes in the model;
that is, we seek a so-called ε-insensitive loss function.

Definition 3.5.1 (ε-Insensitive Loss Function) [7]
Let f be a real valued function in X. The ε-insensitive loss function Lε(x, y, f ) is
defined as:

Lε(x, y, f ) = |y − f (x)|ε = max(0, |y − f (x)| − ε) (3.42)

© 2009 by Taylor & Francis Group, LLC



3.5 Support Vector Regressor 51

Note that Lε(x, y, f ) = 0 if the absolute value of the deviation about the estimator
output f (x) from the desired response y is less than ε or equal to zero. It is equal to
the absolute value of the deviation minus ε otherwise.

Now consider a nonlinear regression model

y = g(x) + v (3.43)

where the additive noise term v is statistically independent of the input vector x. The
function g(·) and the statistics of noise v are unknown. All that we have available is
a set of training data

S = {(x1, y1), . . . , (xn, yn)}
and a function class

F = { f (x) = wT x + b, w ∈ Rm, b ∈ R}
The objective is to select appropriate parameters w and b, so as to make f (x)

approximate the unknown target function g(x). The primal problem can be represented
as follows:

min
w,b

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ̂i )

s.t.
(
wT xi + b

) − yi ≤ ε + ξi , i = 1, . . . , n

yi − (
wT xi + b

) ≤ ε + ξ̂i , i = 1, . . . , n

ξi , ξ̂i ≥ 0 i = 1, . . . , n (3.44)

Using the similar method of Lagrange multipliers, the dual problem is:

max
α,α̂

W (α, α̂) =
n∑

i=1

yi (α̂i − αi ) − ε

n∑

i=1

(α̂i + αi ) − 1

2

n∑

i=1

n∑

j=1

(α̂i − αi )(α̂ j − α j )xT
i x j

s.t.
n∑

i=1

(α̂i − αi ) = 0

0 ≤ αi , α̂i ≤ C, i = 1, . . . , n (3.45)

We can further introduce the inner product kernel in the optimization problem
Equation (3.45), and extend the regression algorithm to a feature space so as to make
the nonlinear functions able to be obtained by means of the linear learning machines
in the kernel space.

Compared with SVC, SVR has an additional free parameter ε. The two free pa-
rameters ε and C control the VC dimension of the approximating function

f (x) = wT x =
n∑

i=1

(α̂i − αi )K(xi , x) (3.46)

when we set the bias b = 0. ε and C should be selected by the user and directly
influence the complexity control for regression. How to select ε and C simultaneously
to get a better approximation function is an open research problem.
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3.6 Software Implementations

LibSVM [16] and SVMlight [17] are two of the most famous software about the
implementation of SVM algorithms.

LibSVM provides not only compiler languages used in the Windows system, but
also C++ and Java source codes which are easy to improve, revise, and apply in
other operating systems. Specially, LibSVM has relatively fewer tunable parame-
ters involved in SVM algorithms than other software and provides lots of default
parameters to solve real application problems effectively.

SVMlight is another implementation in C language. It adopts an efficient set se-
lection technique based on steepest feasible descent, and two effective computational
policies “Shrinking” and “Caching” of kernel evaluations. SVMlight mainly includes
two C programs: SVM learn, used for learning training samples and training the cor-
responding classifier, and SVM classifiy, used for classifying testing samples. The
software also provides two efficient estimation methods for assessing the general-
ization performance: XiAlpha-estimates, computed at essentially no computational
expense but conservatively biased, and Leave-one-out testing, almost unbiased.

Furthermore, there are lots of complete machine learning toolboxes, including
SVM algorithms, such as Torch (in C++), Spider (in MATLAB), and Weka (in Java),
which are all available at http://www.kernel-machines.org.

3.7 Current and Future Research

In the past decade, SVMs have been developed at a fast pace both in theory and in
practice. Many future works remain. In this section, we enumerate a few of the major
research directions where major progress is being made and many research problems
are still open.

3.7.1 Computational Efficiency

One of the initial drawbacks of the SVMs is its costly computational complexity
in the training phase, which leads to inapplicable algorithms in the large datasets.
However, this problem is being solved with great success. One approach is to break
a large optimization problem into a series of smaller problems, where each problem
only involves a couple of carefully chosen variables so that the optimization can be
done efficiently. The process iterates until all the decomposed optimization problems
are solved successfully.

A more recent approach is to consider the problem of learning SVMs as that of
finding an approximate minimum enclosing ball of a set of instances [18–21]. These
instances, when mapped to an N -dimensional space, represent a core set that can be
used to construct an approximation to the minimum enclosing ball. Solving the SVMs’
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learning problems on these core sets can produce good approximation solutions in
very fast speed. For example, the core vector machine [18] and the further ball vector
machine [21] can learn SVMs for millions of data in seconds.

3.7.2 Kernel Selection

In the kernel SVMs, the selection of the kernel function is generally required to satisfy
the Mercer’s theorem. Hence, the common kernel functions involve three types, that
is, sigmoid, polynomial, and radial basis functions, which may sometimes limit the
applicability of the kernel trick. Recently, Pekalska et al. provided a novel view to
design a kernel function based on a general proximity relation mapping [22]. The
new kernel function needs neither be satisfied by the Mercer’s conditions nor be
limited to only one feature space, and shows better classification performance than
the common Mercer kernels experimentally. However, the theoretical foundation of
the new generalized kernel needs further research.

Furthermore, another popular approach is multiple kernel learning which consid-
ers more than one kernel; through the combinations one can achieve better results
[23–29]. This is similar to using an ensemble of kernels. By setting the proper objec-
tive functions, better selection of the kernel parameters can be done to allow mixture
kernels.

3.7.3 Generalization Analysis

We are accustomed to using the VC dimension to estimate the generalization er-
ror bound of the kernel machines. However, the bound involves a fixed complexity
penalty which does not depend on the training data, which as a result, cannot be
made universally effective [30]. To solve this problem, Rademacher’s complexity is
introduced as an alternative to evaluate the complexity of a classifier instead of the
classical VC dimension [31–34], which is based on the intuition that we can measure
the capacity (or complexity) of a classifier by its ability to fit random data. It is defined
as follows:

Definition 3.7.1 (Rademacher Complexity) [35]. For the sample S =
{x1, . . . , xn} generated by a distribution D on a set X and a real value function class
F with domain X, the empirical Rademacher complexity of F is the random variable

R̂n(F) = E�

[

sup
f ∈F

∣
∣
∣
∣
∣

2

n

n∑

i=1

σi f (xi )

∥
∥
∥
∥
∥

x1, . . . , xn

]

(3.47)

where � = {σ1, . . . , σn} are independent uniform {±1}-valued (Rademacher) random
variables. The Rademacher complexity of F is

Rn(F) = ES[R̂n(F)] = ES�

[

sup
f ∈F

∣
∣
∣
∣
∣

2

n

n∑

i=1

σi f (xi )

∣
∣
∣
∣
∣

]

(3.48)
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The sup part inside the expectation formula measures the best correlation that can
be found between a function of the class and the random labels. Furthermore, in the
kernel machines, we can obtain an upper bound to the Rademacher complexity:

Theorem 3.7.2 Complexity Analysis [35]. If k : X × X → R is a kernel, and
S = {x1, . . . , xn} is a sample of points from X, then the empirical Rademacher
complexity of the classifier FB satisfies

R̂n(FB) ≤ 2B

n

√
√
√
√

n∑

i=1

k(xi , xi ) = 2B

n

√
tr (K) (3.49)

where B is the bound of the weights w in the classifier.

It is noteworthy that the bound of the Rademacher complexity only involves the
trace of the corresponding kernel matrix, which is determined by the concrete training
data. It is more feasible to use than the traditional VC dimension to control the
complexity of a classifier as well as estimate the generalization performance.

3.7.4 Structural SVM Learning

Margin maximization is the initial motivation of the SVM algorithms [36]. Con-
sequently, SVM (SVC) usually places more focus on the separability between the
classes of samples but does not sufficiently use the prior data distribution information
within classes. The well-known “No Free Lunch” theorem [12] indicates that there
does not exist a pattern classification method that is inherently superior to any other,
or even to random guessing without using additional information. It is the type of
problem, prior information, and the amount of training samples that determine the
form of classifier to apply. In fact, corresponding to different real-world problems,
different classes may have different underlying data structures. A classifier should ad-
just the discriminant boundaries to fit the structures which are vital for classification,
especially for the generalization capacity of the classifier. However, the traditional
SVM does not differentiate the structures, and the derived decision hyperplane lies
unbiasedly right in the middle of the support vectors [36,37], which may lead to a
nonoptimal classifier in the real-world problems.

Recently, some algorithms have been developed to give more concern to the struc-
tural information than the traditional SVM. They provide a novel view to design a
classifier, where the classifier can be sensitive to the structure of the data distribu-
tion. These algorithms are mainly divided into two approaches. The first approach is
through manifold learning. It assumes that the data actually live on a submanifold in
the input space, and the most typical algorithm involves Laplacian support vector ma-
chines (LapSVM) [38,39]. We can construct LapSVM first through a Laplacian graph
in each class. Then we introduce a manifold structure of the data within the corre-
sponding Laplacian matrices into the traditional framework of SVM as an additional
term.
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The second approach is by exploiting clustering algorithms [40] by assuming that
the data contain several clusters that hold the prior distribution information. This
assumption seems more general than the manifold assumption, which has in fact led
to several popular large margin machines. A recent approach is known as structured
large margin machine (SLMM) [37]. SLMM applies clustering techniques to capture
the structural information in the different classes first. It then uses the Mahalanobis
distance as a distance measure from the samples to the decision hyperplanes, instead
of the traditional Euclidean distance, to introduce the involved structure information
into the constraints. Some popular large margin machines, such as support vector
machine minimax probability machine (MPM) [41], and maxi-min margin machine
(M4) [36], can all be viewed as the special cases of SLMM. Experimentally, SLMM
has shown better classification performance. However, since the optimization problem
of SLMM is formulated as sequential second order cone programming (SOCP) rather
than the QP in SVM, SLMM has much higher computational cost in training time as
compared to traditional SVM. Furthermore, it is not easy to be generalized to large-
scale or multiclass problems. Consequently, a novel structural support vector machine
(SSVM) was developed in [42] to exploit the classical framework of SVM rather than
as constraints in SLMM. As a result, the corresponding optimization problem can
still be solved by the QP as in SVM, and keep the solution not only sparsity but also
scalability. Furthermore, SSVM has been shown to be theoretically and empirically
better in generalization than SVM and SLMM.

3.8 Exercises

1. Consider a simple binary classification problem:

c1 : (1, 1)T (−1, 3)T (2, 6)T

c2 : (−1, −2)T (1, −3)T (−5, −7)T

(a) Compute the optimal hyperplane and geometrical margin.
(b) Point out the support vectors.
(c) Using the method of Lagrange multipliers, compute the solution in the dual

space.

2. Consider another binary classification problem:

c1 : (1, 1)T (3, 7)T (5, 9)T

c2 : (−1, −2)T (1, 6)T (2, −1)T

Use a soft margin SVC to construct the optimal hyperplane and compute the
corresponding solution in the dual space.

3. Construct a simple XOR problem similar to Example 3.3.3, and discuss how
the selection of the kernel parameter in the radial basis kernel can influence the
classification performance.
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4. Let K1 and K2 be the kernels in X × X, X ⊆ Rn , a ∈ R+, f (·) be a real value
function in X:

φ : X → Rm

where K3 is a kernel in Rm × Rm , and B is an n × n symmetrical semidefinite
matrix. Prove the following functions are kernel functions:

(a) K(x, z) = K1(x, z) + K2(x, z)
(b) K(x, z) = aK1(x, z)
(c) K1(x, z)K2(x, z)
(d) K(x, z) = f (x) f (z)
(e) K(x, z) = K3(φ(x), φ(z))
(f) K(x, z) = xT Bz

5. Discuss the generalization bounds of SVR derived from the VC theorem.

6. We have discussed the use of SVC for binary classification problems. Discuss
how to extend SVC to solve multiclass classification problems.

7. Discuss the robustness properties of SVM algorithms.

8. Discuss the cases that SVC does not sufficiently use the prior data distribution
information within classes, where the resulting discriminant hyperplane lies
right in the middle of the support vectors.
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62 Apriori

4.1 Introduction

Many of the pattern finding algorithms such as those for decision tree building, clas-
sification rule induction, and data clustering that are frequently used in data mining
have been developed in the machine learning research community. Frequent pattern
and association rule mining is one of the few exceptions to this tradition. Its introduc-
tion boosted data mining research and its impact is tremendous. The basic algorithms
are simple and easy to implement. In this chapter the most fundamental algorithms of
frequent pattern and association rule mining, known as Apriori and AprioriTid [3, 4],
and Apriori’s extension to sequential pattern mining, known as AprioriAll [6, 5],
are explained based on the original papers with working examples, and performance
analysis of Apriori is shown using a freely available implementation [1] for a dataset
in UCI repository [8]. Since Apriori is so fundamental and the form of database is
limited to market transaction, there have been many works for improving compu-
tational efficiency, finding more compact representation, and extending the types of
data that can be handled. Some of the important works are also briefly described as
advanced topics.

4.2 Algorithm Description

4.2.1 Mining Frequent Patterns and Association Rules

One of the most popular data mining approaches is to find frequent itemsets from
a transaction dataset and derive association rules. The problem is formally stated as
follows. Let I = {i1, i2, . . . , im} be a set of items. Let D be a set of transactions,
where each transaction t is a set of items such that t ⊆ I. Each transaction has a
unique identifier, called its TID . A transaction t contains X , a set of some items
in I, if X ⊆ t . An association rule is an implication of the form X ⇒ Y , where
X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X ⇒ Y holds in D with confidence c
(0 ≤ c ≤ 1) if the fraction of transactions that also contain Y in those which contain
X inD is c. The rule X ⇒ Y (and equivalently X ∪Y ) has support1 s (0 ≤ s ≤ 1) inD
if the fraction of transactions in D that contain X ∪ Y is s. Given a set of transactions
D, the problem of mining association rules is to generate all association rules that
have support and confidence no less than the user-specified minimum support (called
minsup) and minimum confidence (called minconf), respectively.

Finding frequent2 itemsets (itemsets with support no less than minsup) is not tri-
vial because of the computational complexity due to combinatorial explosion. Once

1An alternative support definition is the absolute count of frequency. In this chapter the latter definition is
also used where appropriate.
2The Apriori paper [3] uses “large” to mean “frequent,” but large is often associated with the number of
items in the itemset. Thus, we prefer to use “frequent.”
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frequent itemsets are obtained, it is straightforward to generate association rules with
confidence no less than minconf. Apriori and AprioriTid, proposed by R. Agrawal and
R. Srikant, are seminal algorithms that are designed to work for a large transaction
dataset [3].

4.2.1.1 Apriori

Apriori is an algorithm to find all sets of items (itemsets) that have support no less
than minsup. The support for an itemset is the ratio of the number of transactions that
contain the itemset to the total number of transactions. Itemsets that satisfy minimum
support constraint are called frequent itemsets. Apriori is characterized as a level-wise
complete search (breadth first search) algorithm using anti-monotonicity property of
itemsets: “If an itemset is not frequent, any of its superset is never frequent,” which is
also called the downward closure property. The algorithm makes multiple passes over
the data. In the first pass, the support of individual items is counted and frequent items
are determined. In each subsequent pass, a seed set of itemsets found to be frequent
in the previous pass is used for generating new potentially frequent itemsets, called
candidate itemsets, and their actual support is counted during the pass over the data.
At the end of the pass, those satisfying minimum support constraint are collected,
that is, frequent itemsets are determined, and they become the seed for the next pass.
This process is repeated until no new frequent itemsets are found.

By convention, Apriori assumes that items within a transaction or itemset are sorted
in lexicographic order. The number of items in an itemset is called its size and an
itemset of size k is called a k-itemset. Let the set of frequent itemsets of size k be Fk

and their candidates be Ck . Both Fk and Ck maintain a field, support count.
Apriori algorithm is given in Algorithm 4.1. The first pass simply counts item

occurrences to determine the frequent 1-itemsets. A subsequent pass consists of two
phases. First, the frequent itemsets Fk−1 found in the (k − 1)-th pass are used to
generate the candidate itemsets Ck using the apriori-gen function. Next, the database
is scanned and the support of candidates in Ck is counted. The subset function is used
for this counting.

The apriori-gen function takes as argument Fk−1, the set of all frequent (k − 1)-
itemsets, and returns a superset of the set of all frequent k-itemsets. First, in the join
steps, Fk−1 is joined with Fk−1.

insert into Ck

select p.fitemset1, p.fitemset2, . . . , p.fitemsetk−1, q.fitemsetk−1

from Fk−1 p, Fk−1q

where p.fitemset1 = q.fitemset1, . . . , p.fitemsetk−2 = q.fitemsetk−2,
p.fitemsetk−1 < q .fitemsetk−1

Here, Fk p means that the itemset p is a frequent k-itemset, and p.fitemsetk is the
k-th item of the frequent itemset p.

Then, in the prune step, all the itemsets c ∈ Ck for which some (k − 1)-subset is
not in Fk−1 are deleted.
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Algorithm 4.1 Apriori Algorithm

F1 = {frequent 1-itemsets};
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen(Fk−1); //New candidates
foreach transaction t ∈ D do begin

Ct = subset(Ck, t); //Candidates contained in t
foreach candidate c ∈ Ct do

c.count + +;
end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = ∪k Fk ;

The subset function takes as arguments Ck and a transaction t , and returns all the
candidate itemsets contained in the transaction t . For fast counting, Apriori adopts
a hash-tree to store the candidate itemsets Ck . Itemsets are stored in leaves. Every
node is initially a leaf node, and the depth of the root node is defined to be 1. When
the number of itemsets in a leaf node exceeds a specified threshold, the leaf node is
converted to an interior node. An interior node at depth d points to nodes at depth
d + 1. Which branch to follow is decided by applying a hash function to the d-th
item of the itemset. Thus, each leaf node is ensured to contain at most a certain
number of itemsets (to be precise, this is true only when creating an interior node
takes place at depth d smaller than k), and an itemset in the leaf node can be reached
by successively hashing each item in the itemset in sequence from the root. Once the
hash-tree is constructed, the subset function finds all the candidates contained in a
transaction t , starting from the root node. At the root node, every item in t is hashed,
and each branch determined is followed one depth down. If a leaf node is reached,
itemsets in the leaf that are in the transaction t are searched and those found are made
reference to the answer set. If an interior node is reached by hashing the item i , items
that come after i in t are hashed recursively until a leaf node is reached. It is evident
that itemsets in the leaves that are never reached are not contained in t .

Clearly, any subset of a frequent itemset satisfies the minimum support constraint.
The join operation is equivalent to extending Fk−1 with each item in the database and
then deleting those itemsets for which the (k − 1)-itemset obtained by deleting the
(k−1)-th item is not in Fk−1. The condition p.fitemsetk−1 < q.fitemsetk−1 ensures that
no duplication is made. The prune step where all the itemsets whose (k − 1)-subsets
are not in Fk−1 are deleted from Ck does not delete any itemset that could be in Fk .
Thus, Ck ⊇ Fk , and Apriori algorithm is correct.

The remaining task is to generate the desired association rules from the frequent
itemsets. A straightforward algorithm for this task is as follows. To generate rules,
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all nonempty subsets of every frequent itemset f are enumerated and for every such
subset a, a rule of the form a ⇒ ( f − a) is generated if the ratio of support( f ) to
support(a) is at least minconf. Here, note that the confidence of the rule â ⇒ ( f − â)
cannot be larger than the confidence of a ⇒ ( f −a) for any â ⊂ a. This in turn means
that for a rule ( f −a) ⇒ a to hold, all rules of the form ( f − â) ⇒ â must hold. Using
this property, the algorithm to generate association rules is given in Algorithm 4.2.

Algorithm 4.2 Association Rule Generation Algorithm

H1 = ∅ //Initialize
foreach; frequent k-itemset fk, k ≥ 2 do begin

A = (k − 1)-itemsets ak−1 such that ak−1 ⊂ fk ;
foreach ak−1 ∈ A do begin

con f = support( fk)/support(ak−1);
if (con f ≥ mincon f ) then begin

output the rule ak−1 ⇒ ( fk − ak−1)
with confidence = conf and support = support( fk);

add ( fk − ak−1) to H1;
end

end
call ap-genrules( fk, H1);

end

Procedure ap-genrules( fk : frequent k-itemset, Hm : set of m-item
consequents)

if (k > m + 1) then begin
Hm+1 = apriori-gen(Hm);
foreach hm+1 ∈ Hm+1 do begin

con f = support( fk)/support( fk − hm+1);
if (con f ≥ mincon f ) then

output the rule fk − hm+1 ⇒ hm+1

with confidence = conf and support = support( fk);
else

delete hm+1 from Hm+1;
end
call ap-genrules( fk, Hm+1);

end

Apriori achieves good performance by reducing the size of candidate sets. However,
in situations with very many frequent itemsets or very low minimum support, it still
suffers from the cost of generating a huge number of candidate sets and scanning the
database repeatedly to check a large set of candidate itemsets.
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4.2.1.2 AprioriTid

AprioriTid is a variation of Apriori. It does not reduce the number of candidates
but it does not use the database D for counting support after the first pass. It uses a
new dataset Ck . Each member of the set Ck is of the form < TID, {I D} >, where
each I D is the identifier of a potentially frequent k-itemset present in the transaction
with identifier TID except k = 1. For k = 1, C1 corresponds to the database D,
although conceptually each item i is replaced by the itemset {i}. The member of Ck

corresponding to a transaction t is < t.TID, {c ∈ Ck |c contained in t} >.
The intuition for using Ck is that it will be smaller than the database D for large

values of k because some transactions may not contain any candidate k-itemset,
in which case Ck does not have an entry for this transaction, or because very few
candidates may be contained in the transaction and each entry may be smaller than
the number of items in the corresponding transaction. AprioriTid algorithm is given
in Algorithm 4.3. Here, c[i] represents the i-th item in k-itemset c.

Algorithm 4.3 AprioriTid Algorithm

F1 = {frequent 1-itemsets};
C1 = database D;
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen(Fk−1); //New candidates
Ck = ∅;
foreach entry t ∈ Ck−1 do begin

// determine candidate itemsets in Ck contained
// in the transaction with identifier t .TID
Ct = {c ∈ Ck |(c − c[k]) ∈ t .set-of-itemsets ∧

(c − c[k − 1]) ∈ t .set-of-itemsets};
foreach candidate c ∈ Ct do

c.count + +;
if (Ct 
= ∅) then Ck+ = 〈t .TID,Ct 〉;

end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = ∪k Fk ;

Each Ck is stored in a sequential structure. A candidate k-itemset ck in Ck maintains
two additional fields; generator and extensions, in addition to the field, support count.
The generator field stores the IDs of the two frequent (k − 1)-itemsets whose join
generated ck . The extension field stores the IDs of all the (k + 1)-candidates that are
extensions of ck . When a candidate ck is generated by joining f 1

k−1 and f 2
k−1, their

IDs are saved in the generator field of ck and the ID of ck is added to the extension
field of f 1

k−1. The t .set-of-itemsets field of an entry t in Ck−1 gives the IDs of all
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(k − 1)-candidates contained in t.TID. For each such candidate ck−1 the extension
field gives Tk , the set of IDs of all the candidate k-itemsets that are extensions of ck−1.
For each ck in Tk , the generator field gives the IDs of the two itemsets that generated ck .
If these itemsets are present in the entry for t .set-of-itemsets, it is concluded that ck

is present in transaction t.TID, and ck is added to Ct .
AprioriTid has an overhead to calculate Ck but an advantage that Ck can be stored

in memory when k is large. It is thus expected that Apriori beats AprioriTid in earlier
passes (small k) and AprioriTid beats Apriori in later passes (large k). Since both
Apriori and AprioriTid use the same candidate generation procedure and therefore
count the same itemsets, it is possible to make a combined use of these two algo-
rithms in sequence. AprioriHybrid uses Apriori in the initial passes and switches to
AprioriTid when it expects that the set Ck at the end of the pass will fit in memory.

4.2.2 Mining Sequential Patterns

Agrawal and Srikant extended Apriori algorithm to the problem of sequential pattern
mining [6]. In Apriori there is no notion of sequence, and thus, the problem of finding
which items appear together can be viewed as finding intratransaction patterns. Here,
sequence matters and the problem of finding sequential patterns can be viewed as
intertransaction patterns.

Each transaction consists of sequence-id, transaction-time, and a set of items. The
same sequence-id has no more than one transaction with the same transaction-time.
A sequence is an ordered list of itemsets. Thus, a sequence consists of a list of sets
of characters (items), rather than being simply a list of characters. The length of a
sequence is the number of itemsets in the sequence. A sequence of length k is called
a k-sequence. Without loss of generality, the set of items is assumed to be mapped to
a set of contiguous integers, and an itemset i is denoted by (i1i2 . . . im) where i j is an
item. A sequence s is denoted by 〈s1s2 . . . sn〉. A sequence 〈a1a2 . . . an〉 is contained in
another sequence 〈b1b2 . . . bm〉 (n ≤ m) if there exist integers i1 < i2 < · · · < in such
that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . All the transactions with the same sequence-id
which are sorted by transaction-time together form a sequence (transaction sequence).
A sequence-id supports a sequence s if s is contained in its transaction sequence. The
support for a sequence is defined as the fraction of total number of sequence-ids that
support this sequence. Likewise, the support for an itemset i is defined as the fraction
of sequence-ids that have items in i in any one of their transactions. Note that this
definition is different from that used in Apriori. Thus the itemset i and the 1-sequence
〈i〉 have the same support.

Given a transaction database D, the problem of mining sequential patterns is to
find the maximal3 sequences among all sequences that satisfy a certain user-specified
minimum support constraint. Each such maximal sequence represents a sequential
pattern. A sequence satisfying the minimum support constraint is called a frequent
sequence (not necessarily maximal), and an itemset satisfying the minimum support

3Later R. Agrawal and R. Srikant removed this constraint in their generalized sequential patterns (GSP) [32].
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constraint is called a frequent itemset, or fitemset for short. Any frequent sequence
must be a list of fitemsets.

The algorithm consists of five phases: (1) sort phase, (2) fitemset phase, (3) trans-
formation phase, (4) sequence phase, and (5) maximal phase. The first three are
preprocessing phases and the last one is a postprocessing phase.

In the sort phase, the database D is sorted with sequence-id as the major key and
transaction-time as the minor key. In the fitemset phase, the set of all fitemsets is
obtained using Apriori algorithm with the corresponding modification of counting a
support, and is mapped to a set of contiguous integers. This makes comparing two
fitemsets for equality in a constant time. Note that the set of all frequent 1-sequences
are simultaneously found in this phase. In the transformation phase, each transaction
is replaced by the set of all fitemsets that are in that transaction. If a transaction does
not contain any fitemset, it is not retained in the transformed sequence. If a transaction
sequence does not contain any fitemset, this sequence is removed from the transformed
database, but it is still used in counting the total number of sequence-ids. After the
transformation, a transaction sequence is represented by a list of sets of fitemsets.
Each set of fitemsets is represented by { f1, f2, . . . , fn}, where fi is an fitemset. This
transformation is designed for efficiently testing which given frequent sequences are
contained in a transaction sequence. The transformed database is denoted as DT .

The sequence phase is the main part where the frequent sequences are to be enu-
merated. Two families of algorithms are proposed: count-all and count-some. They
differ in the way the frequent sequences are counted. Count-all algorithm counts all
the frequent sequences, including nonmaximal sequences that must be pruned later,
whereas count-some algorithm avoids counting sequences which are contained in a
longer sequence because the final goal is to obtain only maximal sequences. Agrawal
and Srikant developed one count-all algorithm called AprioriAll and two count-some
algorithms called AprioriSome and DynamicSome. Here, only AprioriAll is explained
due to the space limitation.

In the last maximal phase, maximal sequences are extracted from the set of all
frequent sequences. The hash-tree (similar to the one used in the subset function in
Apriori) is used to quickly find all subsequences of a given sequence.

4.2.2.1 AprioriAll

The algorithm is given in Algorithm 4.4. In each pass the frequent sequences from
the previous pass are used to generate the candidate sequences and then their support
is measured by making a pass over the database. At the end of the pass, the support
of the candidates is used to determine the frequent sequences.

The apriori-gen-2 function takes as argument Fk−1, the set of all frequent (k − 1)-
sequences. First, join operation is performed as

insert into Ck

select p.fitemset1, p.fitemset2, . . . , p.fitemsetk−1, q.fitemsetk−1

from Fk−1 p, Fk−1q

where p.fitemset1 = q .fitemset1, . . . , p.fitemsetk−2 = q.fitemsetk−2,
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Algorithm 4.4 AprioriAll Algorithm

F1 = {frequent 1-sequences}; // Result of fitemset phase
for (k = 2; Fk−1 
= ∅; k + +) do begin

Ck = apriori-gen-2(Fk−1); //New candidate sequences
foreach transaction sequence t ∈ DT do begin

Ct = subseq(Ck, t); //Candidate sequences contained in t
foreach candidate c ∈ Ct do

c.count + +;
end
Fk = {c ∈ Ck |c.count ≥ minsup };

end
Answer = maximal sequences in ∪k Fk ;

then, all the sequences c ∈ Ck for which some (k − 1)-subsequence is not in Fk−1 are
deleted. The subseq function is similar to the subset function in Apriori. As in Apriori,
the candidate sequences Ck are stored in a hash-tree to quickly find all candidates
contained in a transaction sequence. Note that the transformed transaction sequence
is a list of sets of fitemsets and all the fitemsets in a set have the same transaction-time,
and no more than one transaction with the same transaction-time is allowed for the
same sequence-id. This constraint has to be imposed in the subseq function.

4.2.3 Discussion

Both Apriori and AprioriTid need minsup and minconf to be specified in advance. The
algorithms have to be rerun each time these values are changed, throwing everything
away that was obtained in previous runs. If no appropriate values for these thresholds
are known in advance and we want to know how the results change with these values
without rerunning the algorithms, the best we can do is to generate and count only
those itemsets that appear at least once in the database without duplication and store
them all in an efficient way. Note that Apriori generates candidates that do not exist
in the database.

Apriori and AprioriTid use a hash-tree to store the candidate itemsets. Another
data structure that is often used is a trie-structure [35, 9]. Each node in the depth k of
the trie corresponds to a candidate k-itemset and stores the k-th item and the support
of the itemset. As two frequent k-itemsets that share the first (k − 1)-itemsets are
siblings below their parent node at the depth k −1 in the trie, the candidate generation
is simply to join the two siblings, and extend the tree to one more depth below the
first frequent k-itemset after pruning. In order to find the candidate k-itemsets that are
contained in a transaction t , each item in the transaction is fed from the root node and
the branch is followed according to the succeeding item until a k-th item is reached.
Many practical implementations of Apriori use this trie-structure to store not only
candidates but also transactions [10, 9].
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If we go a step further, we can get rid of generating candidate itemsets at all. Further,
it is not necessary to enumerate all the frequent itemsets. These topics are discussed
in Section 4.5.

Apriori and almost all other association rule minings use two-phase strategy: first
mine frequent patterns and then generate association rules. This is not the sole way.
Webb’s MagnumOpus uses another strategy that immediately generates a large subset
of all association rules [38].

There are direct extensions of the original Apriori family. Use of taxonomy and in-
corporating temporal constraint are two examples. Generalized association rules [30]
employ a set of user-specified taxonomies, which makes it possible to extract fre-
quent itemsets that are expressed by higher concepts even when use of the base level
concepts produces only infrequent itemsets. The basic algorithm is to add all ances-
tors of each item in a transaction to the transaction and then run Apriori algorithm.
Several optimizations can be added to improve efficiency, one example being that
the support for an itemset X that contains both an item x and its ancestor x̂ is the
same as the support of the itemset X − x̂ , and thus need not be counted. Generalized
sequential patterns [32] place, in addition to the introduction of taxonomies, time
constraints that specify a minimum and/or maximum time period between adjacent
elements (itemsets) in a pattern and relax the restrictions that items in an element of
a sequential pattern must come from the same transaction by allowing the items to be
present in a set of transactions of the same sequence-id whose transaction-times are
within a user-specified time window. It also finds all frequent sequential patterns (not
limited to maximal sequential patterns). GSP algorithm runs about 20 times faster
than AprioriAll, one reason being that GSP counts fewer candidates than AprioriAll.

4.3 Discussion on Available Software Implementations

There are many available implementations of Apriori ranging from free software to
commercial products. Here, we will present only three well-known implementations
which are freely downloadable via Internet.

The first one is an implementation embedded in the most famous open-source
machine learning and data mining toolkit, Weka, provided by the University of
Waikato [40]. Apriori in Weka can be used through Weka’s common graphical user
interface together with many other algorithms that are available in Weka. The im-
plementation includes Weka’s own extensions. For example, minsup is iteratively
decreased from an upper bound Uminsup to a lower bound Lminsup with an interval
δminsup. Further, in addition to confidence the metrics lift, leverage, and conviction are
available to evaluate association rules. Lift and leverage are discussed in Section 4.5.
Conviction [11] is a metric that was proposed to measure the departure from inde-
pendence of an association rule taking implication into account. When using one of
these metrics, its minimal value has to be given as a threshold.
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The second implementation is the one by Christian Borgelt [1], which is distributed
under the terms of the GNU Lesser (Library) General Public License. This imple-
mentation is basically a command line application, and some graphical user interfaces
are separately available. It essentially follows the flow of the original Apriori, but has
its own extensions, too, to make it faster and to reduce its memory use. It employs a
trie called the prefix tree to store both transactions and itemsets for efficient support
counting [10]. The prefix tree is slightly different from the trie explained in Sub-
section 4.2.3. Optionally, the user can choose to use a simple list instead of a prefix
tree to store transactions. Furthermore, this implementation can find not only frequent
itemsets and association rules, but also closed itemsets, and maximal itemsets. Closed
and maximal itemsets are discussed in Section 4.5. In addition, several metrics other
than confidence, such as information gain, are also available in this implementation
to evaluate and select association rules.

The third implementation is the one by Fence Bodon, which is freely distributed
for research purposes [2]. This implementation is also trie-based, similar to Borgelt’s,
but adopts a trie with a simpler structure, and computes only frequent itemsets and
association rules. It works as a command line application, and accepts four arguments.
The first three are mandatory: an input file, including transactions, an output file, and
minsup. The fourth is minconf, which is optional. If minconf is given, association rules
are mined, as well as frequent itemsets; otherwise, it outputs only frequent itemsets.
This implementation is written in C++ to provide object-oriented components which
can be easily reused to develop other Apriori-based algorithms.

4.4 Two Illustrative Examples

4.4.1 Working Examples

We will illustrate the detailed behavior of the aforementioned algorithms using a
small database shown in Table 4.1, where SID and TT mean the sequence-id and
transaction-time, respectively. We use this database in both association rule (frequent
itemset) mining and maximal sequential pattern mining. In the former case SID and
TT are ignored.

4.4.1.1 Frequent Itemset and Association Rule Mining

Suppose that we want to find frequent itemsets under minsup = 0.2 and association
rules with mincon f = 0.6.

Apriori (Algorithm 4.1)
Apriori first scans the whole database and derives a set of frequent 1-itemsets
appearing in at least three transactions, F1 = {a, c, d, f, g}. From this F1,
the apriori-gen function derives a set of candidate frequent 2-itemsets C2 =
{ac, ad, a f, ag, cd, c f, cg, d f, dg, f g}. C2 consists of all possible pairs of elements
of F1 since no pruning is made at this stage.
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TABLE 4.1 A Transaction Database of the
Working Example

TID SID TT Items

001 1 May 03 c, d
002 1 May 05 f
003 4 May 05 a, c
004 3 May 05 c, d, f
005 2 May 05 b, c, f
006 3 May 06 d, f, g
007 4 May 06 a
008 4 May 07 a, c, d
009 3 May 08 c, d, f, g
010 1 May 08 d, e
011 2 May 08 b, d
012 3 May 09 d, g
013 1 May 09 e, f
014 3 May 10 c, d, f

Next, Apriori computes their support by scanning the database using the subset
function, which utilizes a hash-tree. Figure 4.1 briefly illustrates how a hash-tree is
constructed and used. Suppose that the elements of C2 are added into the hash-tree
in lexicographic order, and the maximum number of itemsets allowed to be in a leaf
node is 4. Thus, the number of itemsets in the root (leaf) node exceeds the threshold
when the fifth itemset cd is to be added. Then, the node is converted into an interior

In case that the maximum number of itemsets that can be stored in a node is 4.

(b)  Check which itemsets are included in a transaction

(a) Make a hash-tree

Given Transaction 004

cd

ac ad
af ag

dfcd cf
cg

h(x) h(x)

c d f c d f c d f
h(x)h(x)h(x)

h(a) h(c)

cd dgdf fgcd cf
cg

ac ad
af ag

ac ad
af ag

dgdf fgcd cf
cg

ac ad
af ag

dg fgcd cf
cg

ac ad
af ag

dgdf fgac ad
af ag

h(c) h(d)
h( f )h(a)

h(c) h(d)
h( f )h(a)

h(c) h(d)
h( f )h(a)

h(a)
h(c)

h( f )
h(d)

Figure 4.1 Example of hash-tree.
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one, and each itemset branches into the corresponding new leaf node according to the
hash value given by the function h(x), where x is an item, the first item in each itemset
in this case. We assume that h(x) is given in advance and is common for all nodes.
Since the first four itemsets share the same first item a, they fall into the same leaf
node, while cd falls into a different one. When checking which of the candidates are
included in a transaction, for example, Transaction 004, each item in the transaction
is hashed at the root node. For example, by hashing c in cd f , it reaches the second left
leaf node, and two itemsets cd and c f are found to be subsets of cd f as shown in the
left tree of Figure 4.1(b). Next, by hashing d, d f is found in the third left leaf node
(the middle tree), but by hashing f , no subset of cd f is found in the rightmost leaf
node (the right tree). As a result, the support counts of these itemsets found, cd, c f ,
and d f , are increased by 1. Note that, after all the transactions have been processed,
the frequencies of the candidates a f and ag are found to be 0. This means that Apriori
may generate candidates that do not exist in a given database.

After this support counting, F2 = {cd, c f, d f, dg} is derived. These frequent
2-itemsets in F2 are used as the seeds of frequent 3-itemsets. The itemsets cd and c f
in F2 sharing the first item c are joined and yield a new candidate cd f by apriori-gen
because d f is also included in F2. The itemsets d f and dg are also joined as well,
but the resulting condidate is pruned because its subset f g is not included in F2.
Consequently, C3, a set of candidate frequent 3-itemsets, consists of cd f only. Then,
Apriori counts its support by scanning the database again, and derives F3 = {cd f }.
No candidate frequent 4-itemsets can be generated from this F3 because it contains
only one itemset. Thus, Apriori terminates.

AprioriTid (Algorithm 4.3)
Apriori has to scan the whole database three times to obtain these frequent itemsets,
but AprioriTid (Algorithm 4.3) scans it only once for the first pass, and makes and uses
new datasets C1 and C2 to count the support of candidates in C2 and C3, respectively.
Figure 4.2 illustrates how AprioriTid finds frequent itemsets from these datasets. C2

is generated while counting the support of each candidate in C2, whereas C1 is gen-
erated directly from the given database. Suppose t = 〈001, {{c}, {d}}〉 ∈ C1. Then, a
candidate cd in C2 is added to Ct because t.set-of-itemsets ({{c}, {d}}) contains both
1-itemsets constituting cd. More precisely, cd is added to Ct because it is a union of
two 1-itemsets in t , which means Transaction 001 supports cd. No other candidate
is added to Ct as Transaction 001 does not support any other candidate in C2. Then,
the support count of cd is increased by 1, and 〈001, {{cd}}〉 is added to C2. Similarly,
〈003, {{ac}}〉 is added to C2 because Transaction 003 supports ac ∈ C2, although an
entry corresponding to 〈002, {{ f }}〉 of C1 is not because Transaction 002 does not
support any 2-itemsets. Eventually, C2 has 9 entries, as shown in Figure 4.2, whose
size is smaller than that of the given database. C3 is generated in the same manner
during the support counting of candidates in C3. Since the unique candidate in C3

is cd f , only the three entries of C2, including both cd and c f , whose union is cd f ,
survive in C3. Note that C3 is generated, but actually never used because C4 becomes
empty.

© 2009 by Taylor & Francis Group, LLC



74 Apriori

Database C1
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Figure 4.2 Example of AprioriTid.

Association rules (Algorithm 4.2)
Next, association rules are generated from the found frequent itemsets according to
Algorithm 4.2 for the given mincon f = 0.6. Let us consider frequent 2-itemsets,
cd, c f , d f , and dg, first. It is obvious that only two kinds of rules can be generated
from each itemset. Table 4.2 summarizes the resulting rules and their confidence. The
association rules 1 and 8 are the outputs by Algorithm 4.2 because they satisfy the
mincon f constraint. The procedure ap-genrules is called for each of these satisfactory
rules, but it outputs nothing because it no longer generates other rules from the
2-itemsets.

Then, Algorithm 4.2 tries to generate association rules from the frequent 3-itemset,
cd f . First, it generates three association rules with 1-item consequent as shown in the
left half of Table 4.3. Algorithm 4.2 returns all of them as they satisfy the mincon f
constraint. After that, the procedure ap-genrules is called, taking cd f and {c, d, f }

TABLE 4.2 Association Rules Generated from Frequent
2-Itemsets

No. Rule Confidence No. Rule Confidence

1 c ⇒ d 0.71 5 d ⇒ f 0.44
2 d ⇒ c 0.56 6 f ⇒ d 0.57
3 c ⇒ f 0.57 7 d ⇒ g 0.33
4 f ⇒ c 0.57 8 g ⇒ d 1.0
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TABLE 4.3 Association Rules Generated from Frequent
3-Itemsets

1-Item Consequent 2-Item Consequent

No. Rule Confidence No. Rule Confidence

9 cd ⇒ f 0.60 12 f ⇒ cd 0.43
10 c f ⇒ d 0.75 13 d ⇒ c f 0.33
11 d f ⇒ c 0.75 14 c ⇒ d f 0.43

as its arguments. A set of 2-itemsets {cd, c f, d f } is derived by the function apriori-
gen called within ap-genrules, each of which is used as the consequent of a new
association rule. The resulting three rules are shown in the right half of Table 4.3.
But, none of them can be the outputs because their confidence is less than the specified
mincon f = 0.6. Since 3-item consequents cannot be obtained from cd f , ap-genrules
terminates, and Algorithm 4.2 terminates too because F4 = ∅.

4.4.1.2 Sequential Pattern Mining

Next, we find frequent maximal sequential patterns from the same transaction database
in Table 4.1 by using AprioriAll (Algorithm 4.4) for minsup = 0.3. Figure 4.3
illustrates the flow of the first three phases, that is, sort phase, fitemset phase, and
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Figure 4.3 Transformation from the original database to the transformed database.
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TABLE 4.4 Frequent Sequences and Candidate Sequences
F1 C2 F2 C3 F3 C4 F4

〈1〉 〈11〉 〈12〉 〈21〉 〈13〉 〈31〉 〈11〉 〈12〉 〈111〉 〈112〉 〈113〉 〈114〉 〈124〉 〈142〉 〈1244〉 〈1424〉
〈2〉 〈14〉 〈41〉 〈15〉 〈51〉 〈22〉 〈13〉 〈14〉 〈122〉 〈132〉 〈124〉 〈142〉 〈144〉 〈224〉 〈1424〉 〈2424〉
〈3〉 〈23〉 〈32〉 〈24〉 〈42〉 〈25〉 〈22〉 〈32〉 〈134〉 〈144〉 〈222〉 〈224〉 〈242〉 〈324〉 〈2244〉 〈3424〉
〈4〉 〈52〉 〈33〉 〈34〉 〈43〉 〈35〉 〈24〉 〈42〉 〈242〉 〈322〉 〈324〉 〈342〉 〈342〉 〈244〉 〈2424〉
〈5〉 〈53〉 〈44〉 〈45〉 〈54〉 〈55〉 〈52〉 〈34〉 〈244〉 〈422〉 〈424〉 〈442〉 〈424〉 〈344〉 〈3244〉

〈44〉 〈522〉 〈344〉 〈444〉 〈3424〉

transformation phase on this example. In the sort phase, transactions in the database
are sorted with sequence-id (SID) as the major key and transaction-time (TT) as the
minor key. Then, in the fitemset phase, fitemsets are derived in the similar manner to
Apriori. Note that the support of an fitemset is the number of transaction sequences,
including the itemset, but not the number of transactions including it. Thus, the re-
sulting set of frequent 1-itemsets in this case is {c, d, f }. In the transformation phase,
each transaction sequence is transformed into a list of sets of fitemsets as shown in
the bottom of Figure 4.3 by replacing each transaction in the sequence with a set of
fitemsets the transaction contains. Note that the second transaction is dropped in the
transaction sequence 4 because it consists of only one nonfrequent itemset {a}.

AprioriAll generates a set of candidate sequences C2 from F1 by calling the function
apriori-gen-2. The resulting C2 is shown in Table 4.4. The function apriori-gen-2 is
similar to apriori-gen, but differs in its join operation: The join operation of apriori-
gen-2 generates two new k-sequences from two (k − 1)-sequences whenever they are
joinable, while the join operation of apriori-gen generates only one k-itemset from
two (k − 1)-itemsets. For example, when deriving C2, both two sequences 〈12〉 and
〈21〉 are generated from 〈1〉 and 〈2〉. In addition, 〈11〉 is also generated by joining the
identical sequence 〈1〉. This is necessary to generate a sequence in which multiple
occurrences of an fitemset is allowed.

Counting the support of each candidate sequence is done in the similar way as
Apriori using a hash-tree, and F2, a set of frequent 2-sequences, is derived as shown
in Table 4.4. This F2 is used to generate a set of candidate sequences C3 as well. Note
that from 〈11〉 and 〈12〉, a 3-sequence 〈112〉 is generated by joining them, but not 〈121〉
because its subsequence 〈21〉 is not included in F2. This process consisting of the can-
didate generation and support counting is repeated until no more frequent sequences
are derived. In this example, since no candidate of 5-sequences can be generated from
F4, F5 becomes empty and thus, the iteration terminates. Finally, AprioriAll outputs
〈1424〉, 〈2424〉, 〈3424〉, 〈11〉, 〈13〉, and 〈52〉 as the maximal frequent sequences as
the other frequent sequences are included in one of them.

4.4.2 Performance Evaluation

In this section, we discuss the performance of Apriori with respect to its runtime,
the number of derived association rules and frequent itemsets when minsup, minconf,
and the number of transactions are varied. We used the implementation by Christian
Borgelt [1] for this assessment because it provides options that allow us to simulate a
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Figure 4.4 Runtime for various minsup and minconf values.

naive implementation closest to the original Apriori. Thus, we disabled its functions
of sorting items with respect to their support and of filtering unused items from
transactions.

As a benchmark dataset, we used the Mushroom dataset downloadable from UCI
Machine Learning Repository [8], which contains 8124 cases with 23 nominal at-
tributes including a class attribute. Each case is regarded as a transaction, and each
attribute value of each case is converted into an item by joining it with the correspond-
ing attribute name, for example, “cap-shape=x,” where cap-shape is an attribute name
and x is an attribute value. In 2480 cases, the attribute value of one attribute is miss-
ing. Since we ignored missing values, the transactions corresponding to them have 22
items, while the others have 23 items. Some attribute values have different meanings
for different attributes. For example, “n” means “none” for the attribute “odor,” while
“brown” for “cap-color.” As a result, the number of valid pairs of attribute name and
attribute value, that is, number of distinct items, became 118.

First, we show the runtime of Apriori for various minsup and minconf values
in Figure 4.4. All runtimes shown in this section were measured on a PC running
Windows XP with 2.8 GHz Pentium IV and 4 GB memory. In these experiments,
the maximal number of items per rule is set to 5 for convenience. We also limited
the minimal number of items per rule to 2 in order to prevent a rule with no premise
from being derived. In addition, a prefix tree was not used to store transactions.
From the results, it is obvious that the change of minconf does not affect the runtime
so much, but the runtime exponentially increases as minsup becomes smaller. The
similar tendency is observed in Figure 4.5, showing the relation between minsup
and the number of derived association rules. This is because the number of frequent
itemsets exponentially increases as minsup becomes smaller, as shown in Figure 4.6.
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These results show that minsup, or the antimonotonicity property of itemsets, is very
effective to prune nonfrequent itemsets.

Next, we show the relation between the runtime and the number of transactions
in Figure 4.7. In this evaluation, we copied the original dataset multiple times (up to
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Figure 4.6 Number of frequent itemsets for various minsup values.
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Figure 4.7 Runtime for various sizes of the dataset (minsup = 5).

4 times). Note that the fraction of each item remains the same for all datasets, so
is the number of resulting association rules (frequent itemsets). Figure 4.7 shows
that the runtime linearly increases as the number of transactions becomes larger.
Consequently, under a certain distribution of items, minsup is much more influential
to the runtime than both minconf and the number of transactions in Apriori.

Finally, we briefly mention association rules mined through the experiments, es-
pecially, for convenience, those which have only one item representing the class
attribute in the consequent. The class value is either “edible” (e) or “poisonous” (p).
A typical rule found under minsup = 0.3 and mincon f = 0.9 is “odor = n gill-size
= b ring-number = o ⇒ class = e,” which is the simplest one among those whose
consequent is “class = e,” confidence is 1.0, and support is maximum (0.331). This
rule means a mushroom is edible if its order is none, the size of its gill is broad, and
the number of its rings is one. The attributes “odor” and “gill-size” appear as the first
and the third test nodes, respectively, in the decision tree learned from this dataset by
J48, a decision tree learner available in Weka, under its default setting. A similar rule
“odor = n spore-print-color = w gill-size = b ⇒ class = e” can be derived from the
decision tree and its confidence is 1.0, too, but it is true for only 528 cases, while the
association rule is true for 2689 cases. On the other hand, no rule whose confidence
is 1.0 and consequent is “class = p” was found under this setting because minsup
was too high. When setting minsup = 0.2, 470 such rules were found.

In general we can obtain a small number of association rules in a short runtime for a
high minsup, but many of them could be trivial. To find more interesting rules, we have
to use a smaller minsup, but it leads to an unacceptable runtime and a huge number of
association rules, which in turn would make it harder to find interesting association
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rules. More efficient algorithms and better measures are required to find frequent
itemsets and interesting association rules, which are the topics of the next section.

4.5 Advanced Topics

Since the first proposal of frequent pattern and association rule mining algorithm
by Agrawal and Srikant, there have been many publications on various kinds of im-
provements, extensions, and applications, ranging from efficient scalable data mining
methodologies, to handling a wide diversity of data types, various extended mining
tasks, and a variety of new applications. Some of the important advanced topics are
briefly described in this section. There are good tutorials and surveys for frequent
pattern mining by Han et al. [16] and Goethals [15] that contain a substantial amount
of references.

4.5.1 Improvement in Apriori-Type Frequent Pattern Mining

There have been many attempts to devise more efficient algorithms of frequent itemset
mining in the framework of Apriori algorithm in that they generate candidates. These
include hash-based technique, partitioning, sampling, and using vertical data format.

Hash-based technique can reduce the size of candidate itemsets. Each itemset
is hashed into a corresponding bucket by using an appropriate hash function.
Since a bucket can contain different itemsets, if its count is less than a minimum
support, these itemsets in the bucket can be removed from the candidate sets.
DHP [26] uses this idea.

Partitioning can be used to divide the entire mining problem into n smaller
ones [29]. The dataset is divided into n nonoverlapping partitions such that
each partition fits into main memory and each partition is mined separately.
Since any itemset that is potentially frequent must occur as a frequent itemset
in at least one of the partitions, all the frequent itemsets found this way are
candidates, which can be checked by accessing the entire dataset only once.

Sampling is simply to mine a random sampled small subset of the entire data.
Since there is no guarantee that we can find all the frequent itemsets, normal
practice is to use a lower support threshold. Trade-off has to be made between
accuracy and efficiency.

Vertical data format associates TID with each itemset, whereas Apriori uses
a horizontal data format, that is, frequent itemsets are associated with each
transaction. With the vertical data format, mining can be performed by taking
the intersection of TIDs. The support count is simply the length of the TID set
for the itemset. There is no need to scan the database because TID set carries the
complete information required for computing support. This technique requires,
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Algorithm 4.5 FP-Growth Algorithm: F[I ](FP-tree)

F[I ] = ∅;
foreach i ∈ I that is in D in frequency increasing order do begin

F[I ] = F[I ] ∪ {I ∪ {i}};
Di = ∅;
H = ∅;
foreach j ∈ I in D such that j < i do begin

// ( j is more frequent than i)
Select j for which support (I ∪ {i, j}) ≥ minsup;
H = H ∪ { j};

end
foreach (T id, X ) ∈ D with i ∈ X do
Di = Di ∪ {(T id, {X \ {i}} ∩ H )};

Construct conditional FP-tree from Di ;
Call F[I ∪ {i}](conditional FP-tree);
F[I ] = F[I ] ∪ F[I ∪ {i}](conditional FP-tree);

end

given a set of candidate itemsets, that their TIDs are available in main memory,
which is of course not always the case. However, it is possible to significantly
reduce the total size by using a depth-first search. Eclat [43] uses this strategy.
In the depth-first approach, it is necessary to store at most the TID list of all
k-itemsets with the same first k − 1 items (k − 1 prefix) at depth d with k ≤ d
in the main memory.

4.5.2 Frequent Pattern Mining Without Candidate Generation

The most outstanding improvement over Apriori would be a method called FP-growth
(frequent pattern growth) that succeeded in eliminating candidate generation [17, 18].
It adopts a divide and conquer strategy by (1) compressing the database representing
frequent items into a structure called FP-tree (frequent pattern tree) that retains all
the essential information and (2) dividing the compressed database into a set of
conditional databases, each associated with one frequent itemset and mining each
one separately. It scans the database only twice. In the first scan, all the frequent items
and their support counts (frequencies) are derived and they are sorted in the order
of descending support count in each transaction. In the second scan, items in each
transaction are merged into an FP-tree and items (nodes) that appear in common in
different transactions are counted. Each node is associated with an item and its count.
Nodes with the same label are linked by a pointer called a node-link. Since items
are sorted in the descending order of frequency, nodes closer to the root of the FP-
tree are shared by more transactions, thus resulting in a very compact representation
that stores all the necessary information. Pattern growth algorithm works on FP-tree
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by choosing an item in the order of increasing frequency and extracting frequent
itemsets that contain the chosen item by recursively calling itself on the conditional
FP-tree, that is, FP-tree conditioned to the chosen item. FP-growth is an order of
magnitude faster than the original Apriori algorithm. The algorithm of FP-growth
is given in Algorithm 4.5. F[∅](FP-tree) returns all the frequent itemsets. As noted
easily, the divide and conquer strategy mentioned by Han et al. is equivalent to the
depth-first search without candidate generation. The Di is called i-projected database
and generally much smaller than the FP-tree of the whole database. It is, thus, expected
that Di fits in the main memory even if the latter does not. The idea of pattern growth
can also be applicable to closed itemset mining [27] (see Section 4.5.4) and sequential
pattern mining [28] (see Section 4.5.8).

4.5.3 Incremental Approach

When the database is not stationary and a new batch of transactions keeps being added,
it happens that some items that were frequent become no more frequent (losers) and
some other items that were infrequent become frequent (winners). Rerunning Apriori
or any other frequent pattern mining algorithm each time the database is updated
is not efficient. The FUP algorithm in [12] provides a way to incrementally update
the frequent itemsets using Apriori framework. It works efficiently on the updated
database since the size of the increment database �D is generally much smaller than
the initial database D.

Let Fk , F ′
k be the frequent k-itemsets in D and D ∪ �D, respectively, and Ck be

the candidate frequent itemsets in D ∪ �D. At k-th iteration, Ck can be generated
from F ′

k−1 using apriori-gen function. Any itemset in Fk that contains any one of the
losers of size k − 1 (those which are in Fk−1 but not in F ′

k−1) as its subset are filtered
out from Fk without checking �D. Frequency of the remaining itemsets in Fk are
counted over �D and those frequent in D∪�D are identified (A), and excluded from
Ck because we know that they are frequent. The remaining itemsets are those not in
Fk . Their frequency is counted over �D and those not frequent in �D are removed
from Ck because we know that they are infrequent in D. Frequency of the remaining
elements in Ck are counted over D ∪ �D and the frequent ones are retained (B). F ′

k
is A ∪ B. As can be seen above, FUP has to scan the updated database for each k, but
the size of the Ck is expected to be very small. The experiment shows that it is only
about 2 to 5% of that of rerunning Apriori for the updated database, and FUP runs
2 to 16 times faster than Apriori.

4.5.4 Condensed Representation: Closed Patterns
and Maximal Patterns

An itemset (pattern) X is a maximal itemset if (1) there exists no itemset X ′ such that
X ′ is a proper superset of X . An itemset (pattern) X is a closed itemset if (1) there
exists no itemset X ′ such that X ′ is a proper superset of X and (2) every transaction
containing X also contains X ′. They are frequent if their support is no less than the
minsup. A closed itemset satisfies I (T (X )) = X , where T (X ) = {t ∈ D|X ⊆ t} and
I (S) = ∩t∈St for S ⊆ D. For any two itemsets X and Y , if X ⊂ Y and their support
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is the same, X is not a closed itemset. A closed itemset is a lossless representation,
whereas a maximal itemset is not. Thus, once the closed itemsets are found, all the
frequent itemsets can be derived from them. A rule X ⇒ Y is an association rule
on frequent closed itemsets if (1) both X and X ∪ Y are frequent closed itemsets,
(2) there does not exist a frequent closed itemset Z such that X ⊂ Z ⊂ (X ∪ Y ), and
(3) the confidence of the rule is no less than minconf. The complete set of association
rules can be generated once frequent closed itemsets are found.

CLOSET partitions the database and decomposes the problem into a set of subprob-
lems, each with the corresponding conditional database, and it is known efficient [27].
First, all the frequent items are derived and sorted in the order of descending support
count as f list = 〈i1, i2, . . . , in〉. The j-th subproblem (1 ≤ j ≤ n) is to find the com-
plete set of frequent closed itemsets containing in+1− j but no ik (for n+1− j < k ≤ n).
The in+1− j conditional database is the subset of transactions containing in+1− j , where
all the occurrences of infrequent items, item in+1− j , and items following in+1− j in
the f list are omitted. The corresponding FP-tree is generated and used for search.
Each subproblem is recursively decomposed if necessary. The frequent closed item-
sets are identified from the conditional database using the following properties. If
X is a frequent closed itemset, there is no item appearing in every transaction in
the X -conditional database. If an itemset Y is the maximal set of items appearing in
every transaction in the X -conditional database, and X ∪ Y is not subsumed by some
already found frequent closed itemset with identical support, X ∪ Y is a frequent
closed itemset. As in FP-growth, further optimization is possible.

LCM is another algorithm, known to be the most efficient, to find the closed patterns
(itemsets) [34]. It derives frequent closed itemsets via a closure operation without
generating nonclosed itemsets. A closure of an itemset X , denoted by Clo(X ), is
the unique smallest closed itemset including X , that is, I (T (X )). Without loss of
generality, we assume all items in a transaction database are uniquely indexed by
contiguous natural numbers. Then, X (i) = X ∩ {1, . . . , i} is called the i-prefix of
X , which is the subset of X having only elements no greater than i . The core index
of a closed itemset X , denoted by core i(X ), is the minimum index i such that
T (X (i)) = T (X ). LCM generates, from a frequent closed itemset X , another frequent
closed itemset Y such that Y = Clo(X ∪ {i}) and X (i − 1) = Y (i − 1), where i is an
item that satisfies i 
∈ X and i > core i(X ). Y is called the prefix-preserving closure
extension, or ppc-extension for short, of X . LCM recursively applies this closure
operation to closed itemsets from an empty itemset to larger ones in a depth-first
manner. Completeness and nonredundancy of the enumeration of closed itemsets by
LCM are guaranteed by the following property: If Y is a nonempty closed itemset,
then there is just one closed itemset X such that Y is a ppc-extension of X . Since
LCM generates a new frequent closed itemset Y from T (X ) and a subset of I, its
time complexity to enumerate all frequent closed itemsets for X is O(||T (X )||× |I|),
where ||T (X )|| is the summation of size of each transaction included inT (X ). Let C be
a set of all frequent closed itemsets in D. Then, the time complexity of LCM is linear
in |C| with a factor depending on ||T ||× |I|. In fact, to improve the computation time
and memory use, LCM incorporates three techniques: occurrence deliver, anytime
database reduction, and fast prefix-preserving test. Occurrence deliver constructs
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T (X ∪ {i}) for all i by scanning T (X ) only once instead of scanning it for each i .
Anytime database reduction reduces the size of the database by removing unnecessary
transactions and items from it each time before an iteration starts with the current
closed itemset to reduce both the computation time and memory use. Fast prefix-
preserving test significantly reduces the number of items to be accessed to test the
equality X (i − 1) = Y (i − 1) by checking only items j such that j < i , j 
∈ X (i − 1)
and they are included in the transaction of the minimum size in T (X ∪ {i}) instead
of actually generating a closure when performing a ppc-extention. If an item j is
included in every transaction in T (X ∪ {i}), then j is included in Clo(X ∪ {i}), thus
X (i − 1) 
= Y (i − 1).

4.5.5 Quantitative Association Rules

When the item has a continuous numeric value, current frequent itemset mining algo-
rithms are not applicable unless the values are discretized and appropriate intervals
defined. This is known as quantitative frequent itemset (QFI) mining. The items can
be both categorical and numeric. An example is {〈 Age: [30,39] 〉, 〈 House-owner:
Yes 〉, 〈 Married: Yes 〉}, where an item is represented as 〈 attribute: its value (range) 〉.
QFI mining was initially proposed in the study of mining quantitative association
rules [31], but later density-based subspace clustering has commonly been applied
because a QFI is viewed as an axis-parallel hyper-rectangular containing a cluster
of transactions in a numeric attribute space. SUBCLUE [20] and QFIMiner [36] are
two such examples. QFIMiner finds in O(N log N ) all dense clusters of no less than
minsup in all subspaces formed by both numeric and categorical attributes, where N
is the number of transactions. An optimal value interval for each numeric item in each
frequent itemset is obtained by Apriori-like level-wise algorithm with the antimono-
tonicity property of dense clusters. QFIMiner is shown to be faster than SUBCLUE
and scales very well.

4.5.6 Using Other Measure of Importance/Interestingness

The problem of support-confidence framework is that there is no valid means to
determine appropriate values for minsup and minconf. Especially setting minsup too
high will miss important rules and setting it too low will generate too many rules.
In fact, it is possible that a rule with infrequent itemsets is of great interest for some
applications. Further, this framework fails to capture the notion of correlation. It can
happen that a rule X ⇒ Y which satisfies both minsup and minconf constraints has
no correlation between X and Y , that is, support(X ) × support(Y ) = support(X ∪Y ).

Therefore, an alternative approach is to use other measures that account for im-
portance or interestingness of a rule and select rules that have high score for these
measures. Support and confidence can still be used as a constraint (setting minsup
and minconf to 0 means not to use them at all). These measures include lift, leverage,
redundancy, productivity, and well-known statistical measures such as chi-square,
correlation coefficient, information gain, and so on.

Lift and leverage represent the ratio and the difference between the support and the
support that would be expected if X and Y were independent, respectively. They try
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to find rules with strong correlations between X and Y .

lift(X ⇒ Y ) = confidence(X ⇒ Y )

confidence(∅ ⇒ Y )
= support(X ⇒ Y )

support(X ) × support(Y )
leverage(X ⇒ Y ) = support(X ⇒ Y ) − support(X ) × support(Y )

= support(X ) × (confidence(X ⇒ Y ) − support(Y ))

Redundant rule constraint discards a rule X ⇒ Y if ∃Z ∈ X : support(X ⇒
Y ) = support(X − [Z ] ⇒ Y ). A more powerful constraint is productive constraint.
A rule is said to be productive if its improvement is greater than 0, where the rule’s
improvement is defined as

improvement(X ⇒ Y ) = confidence(X ⇒ Y ) − maxZ⊂X (confidence(Z ⇒ Y )).

The improvement of a redundant rule cannot be greater than 0 and hence a constraint
that rules must be productive discards all redundant rules. Further, it can discard rules
that include items in the antecedent that are independent of the consequent, given the
remaining items in the antecedent.

Statistical measures are useful in finding discriminative patterns (itemsets). How-
ever, these measures do not satisfy the antimonotonicity property, and finding the best
k patterns or rules is not that easy. If a measure is convex with respect to its arguments,
it is possible to estimate its upperbound for supersets of a pattern X (itemset) for a
fixed conclusion Y (normally, a class value) [23] and use this to prune the search
space. Statistical measures mentioned above satisfy this property.

Webb’s KORD algorithm [39] finds k-optimal rules through the space of pairs X
and Y (without fixing Y ) and uses leverage as a measure to optimize using various
pruning strategies.

4.5.7 Class Association Rules

When a transaction t is associated with a class cl, it is natural to use association
rules for classification purpose. The association rules mined for classification pur-
pose are called class association rules (CARs). CARs have the form {〈p1 : q1〉, 〈p2 :
q2〉, . . . , 〈pm : qm〉} ⇒ cl. Here a numeric item has a numeric interval value, whereas
a categorical item has a categorical value. LetDcl be a set of all instances having a class
cl in D. CBA [22], CMAR [21], and CAEP [14] are the representative CAR-based
classification systems. Especially, CAEP introduces a notion of emergent patterns and
uses the strength of all CARs. Let the support of an itemset a byDcl be supportDcl (a) =
|{t ∈ Dcl |a ∈ t}|/|Dcl |. A set of QFIs, FQFI(cl), in which every itemset a satisfies
supportDcl (a) ≥ minsup, is derived for every cl fromDcl . Next, for every a ∈ FQFI(cl),
the growth rate defined by growth rateDcl→Dcl

(a) = supportDcl
(a)/supportDcl

(a) is
calculated for each class cl, where Dcl = D − Dcl represents the opponent in-
stances of cl. When the growth rate of a is not less than its threshold ρ(≥ 1), that
is, growth rateDcl→Dcl

(a) ≥ ρ, a is called an emergent pattern (EP) and is selected
for a rule body where its head is the class cl, that is, a ⇒ cl. Let FEP(cl) be a set
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of all EPs selected from FQFI(cl) under this measure. The underlying principle here
is to select the rule bodies that are strong enough to differentiate the class cl from
the others. The strength of an EP a is measured by the relative difference between
supportDcl (a) and supportDcl

(a): supportDcl (a)/(supportDcl (a) + supportDcl
(a)) =

growth rateDcl→Dcl
(a)/(growth rateDcl→Dcl

(a) + 1). This can be aggregated to de-

fine the aggregate score defined by score(t, cl) = ∑
a⊆t,a∈F E P(cl)

growth rate(a)
growth rate(a) + 1 ∗

supportDcl
(a) which represents the possibility of t to be classified into cl by EPs in

FEP(cl). Since the distribution of the number of EPs is not uniform over cl, instances
may get higher scores for some classes. Another factor, called a base score, which
is defined to be the median of all aggregate scores in {score(t, cl)|t ∈ Dcl}, is intro-
duced to offset this bias, giving the normalized score defined by norm score(t, cl) =

score(t,cl)
base score(cl) . The cl for which the normalized score is maximum is assigned to the
class of t . This was shown to perform very well.

The problem with CAEP is that it discretizes each numeric attribute by an entropy
measure without taking account of the dependency that exists in multiple attributes,
and thus a cluster of instances having the same class can often be fragmented. Natural
solution is to combine QFIMiner and CAEP, which is LSC-CAEP [37, 36].

4.5.8 Using Richer Expression: Sequences, Trees, and Graphs

Mining frequent itemsets started with a simple transaction dataset, but later it has
been generalized to be able to deal with richer expression such as sequences, trees,
and graphs. The pioneering work to mine sequential patterns by Agrawal and Srikant
has already been discussed in Section 4.2.2. PrefixSpan [28] is another representative
algorithm in frequent sequential pattern mining, which is a pattern-growth based
algorithm and adopts a divide and conquer strategy similar to FP-growth to avoid
unfruitful enumeration of smaller candidates to find larger patterns. PrefixSpan, first,
finds sequential patterns consisting of only one item, and then, for each of them, say
ik , extracts a set of sequences containing it, that is, the 〈ik〉-projected database. From
each such projected database, PrefixSpan finds frequent sequential patterns of size 2
having 〈ik〉 as their prefix, and again generates a projected database for each size 2
pattern newly found to find sequential patterns of size 3. This process is recursively
repeated until no more sequential patterns are found.

A tree is characterized by V , a set of vertices, and E , a set of edges. A labeled tree
assigns a set of labels L to either one or both of vertices and edges. An edge connects
a vertex to another one. Every two vertices in a tree are reachable through one or more
edges, but there is no cyclic path. TreeMinerV [44] and FREQT [7] are representative
algorithms to mine subtrees frequently appearing in a collection of trees. They were
independently proposed, but share the same level-wise strategy to enumerate frequent
subtrees, which finds frequent subtrees having k + 1 vertices ((k + 1)-subtrees) from
k-subtrees by adding one edge to every possible position on a specific path called the
rightmost path of each k-subtree with a vertex corresponding to the other end of the
edge. Dryade [33] is a tree mining algorithm that can find frequent closed subtrees. A
closed subtree is a maximal subtree among those having the same frequency. Unlike
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the other tree mining algorithms, Dryade assembles frequent closed subtrees level by
level from a set of basic units called tiles, which are one depth closed subtrees.

A graph is a super class of trees and can have cyclic paths. AGM [19] is the first
algorithm that mines frequent subgraphs from a collection of graphs by a complete
search. It is based on Apriori and generates a candidate subgraph of size k (k-subgraph)
from two known frequent (k − 1)-subgraphs which share the same (k − 2)-subgraph.
Since there is no edge information available between the two (k − 1)-th vertices,
all the possibilities are considered. AGM generates two k-subgraphs from a pair of
(k − 1)-subgraphs, one with an edge between them and the other without an edge
(this is a case where there are no labels defined for edges). Although Apriori-based
approach enables to conduct a systematic complete search of frequent subgraphs, it
has to generate a large number of candidates that do not actually exist in a given
set of graphs. AGM uses adjacency matrix to represent a graph and introduces a
notion of canonical form to solve subgraph isomorphism which is known to be NP-
complete. gSpan [41] is one representative pattern-growth-based subgraph mining
algorithm. It finds frequent subgraphs in a depth-first manner by adding an edge to
each possible position on the rightmost path of a known frequent subgraph. gSpan
takes into account only the edges that actually exist in a given set of graphs, so it
never generates candidates that do not actually exist. GBI [42] and SUBDUE [13]
are greedy algorithms to find frequent subgraphs, which recursively replace every
occurrence of a typical subgraph in a graph with a new vertex. The typicality is
defined by a measure based on frequency, for example, information gain in GBI and
the minimum description length in SUBDUE. DT-ClGBI [25] generates a decision
tree that classifies unknown graphs from a set of training graphs with known classes.
It invokes a graph mining algorithm, Cl-GBI [24], an extension of GBI, at every test
node of the decision tree. The resulting frequent subgraphs are used as attributes of
graphs, and the most discriminative one is chosen to split the set of graphs that reached
the node into two subsets: those which include the subgraph and the others.

4.6 Summary

Experimenting with Apriori-like algorithm is the first thing that data miners try to
do. In this chapter the basic concepts and algorithms of Apriori family (Apriori,
AprioriTid, AprioriAll) were introduced first and then their working mechanisms were
explained with illustrative examples, followed by a performance evaluation of Apriori
using a typical freely available implementation. Since Apriori is so fundamental and
easy to implement, there are many variants of it. The limitation of Apriori approach
is discussed and an overview of recent important advancement in frequent pattern
mining methodologies is provided. There are other topics that cannot be covered in
this chapter. These include use of constraints, colossal patterns, noise handling, and
top-k representatives.
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4.7 Exercises

1. Prove that Apriori can derive all frequent itemsets from a given transaction
database.

2. Prove the following relation:

support(X ∪ Y ∪ Z ) ≥ support(X ∪ Y ) + support(X ∪ Z ) − support(X ),

where X, Y , and Z are itemsets in a database.

3. Given the database shown in Table 4.5, find all frequent itemsets using Apriori
and AprioriTid for minsup = 0.3 and compare their efficiency.

4. Explain the relation between a hash-tree and a trie.

5. Draw an FP-tree for the database shown in Table 4.5 and explain how frequent
itemsets are derived from the FP-tree.

6. Download and install Weka on your computer, and mine association rules by
using Apriori from the Soybean dataset included in the Weka’s package for
various metrics to evaluate association rules using the same minimum threshold
(fix the other parameters). Then, report how the resulting association rules
change according to the metrics.

7. Draw a prefix tree to store the database in Section 4.4 with reference to [10]
and explain how the efficiency of frequency counting can be improved in this
case.

8. In an FP-tree, items in a transaction are sorted in the order of descending support
count, while in a prefix tree for Apriori they are sorted in the order of ascending
support count. Discuss the reason why they adopt the different orders.

9. When a transaction database has a small number of very long transactions,
Apriori-based algorithms take much time to mine frequent itemsets. Explain
the reason why they need so much time and propose an efficient method of
mining closed itemsets from such a database.

TABLE 4.5 Database for Exercise 3

TID Items

T01 Cheese, Milk, Egg
T02 Apple, Cheese
T03 Apple, Bread, Cheese, Orange, Grape
T04 Bread, Egg, Orange
T05 Cheese, Milk, Grape
T06 Apple, Cheese, Egg, Orange
T07 Bread, Cheese, Orange
T08 Cheese, Egg, Grape
T09 Bread, Cheese, Egg, Grape
T10 Bread, Cheese, Grape
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TABLE 4.6 Sequence Database
for Exercise 10

SID Transaction Sequences

S01 〈(bc)(d)(ab)(de f )〉
S02 〈(abc)(c f )(d f )〉
S03 〈(ce f )(d f )(ab)( f )〉
S04 〈(be)(ac)(cd f )〉

10. Given the sequence database shown in Table 4.6, find frequent sequential pat-
terns by AprioriAll for minsup = 0.5.
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Abstract The expectation-maximization (EM) algorithm is a broadly applicable
approach to the iterative computation of maximum likelihood (ML) estimates, useful
in a variety of incomplete-data problems. In particular, the EM algorithm simplifies
considerably the problem of fitting finite mixture models by ML, where mixture
models are used to model heterogeneity in cluster analysis and pattern recognition
contexts. The EM algorithm has a number of appealing properties, including its
numerical stability, simplicity of implementation, and reliable global convergence.
There are also extensions of the EM algorithm to tackle complex problems in various
data mining applications. It is, however, highly desirable if its simplicity and stability
can be preserved.

5.1 Introduction

The expectation-maximization (EM) algorithm has been of considerable interest in
recent years in the development of algorithms in various application areas such as data
mining, machine learning, and pattern recognition [20, 27, 28]. The seminal paper
of Dempster et al. [8] on the EM algorithm greatly stimulated interest in the use of
finite mixture distributions to model heterogeneous data. This is because the fitting of

93

© 2009 by Taylor & Francis Group, LLC



94 EM

mixture models by maximum likelihood (ML) is a classic example of a problem that
is simplified considerably by the EM’s conceptual unification of ML estimation from
data that can be viewed as being incomplete [20]. Maximum likelihood estimation
and likelihood-based inference are of central importance in statistical theory and
data analysis. Maximum likelihood estimation is a general-purpose method with
attractive properties [6, 13, 31]. Finite mixture distributions provide a flexible and
mathematical-based approach to the modeling and clustering of data observed on
random phenomena. We focus here on the use of the EM algorithm for the fitting of
finite mixture models via the ML approach.

With the mixture model-based approach to clustering, the observed p-dimensional
data y1, . . . ,yn are assumed to have come from a mixture of an initially specified
number g of component densities in some unknown proportions π1, . . . , πg , which
sum to 1. The mixture density of y j is expressed as

f (y j ; Ψ) =
g∑

i=1

πi fi (y j ; �i ) ( j = 1, . . . , n) (5.1)

where the component density fi (y j ; �i ) is specified up to a vector �i of unknown
parameters (i = 1, . . . , g). The vector of all the unknown parameters is given by

Ψ = (
π1, . . . , πg−1, �T

1 , . . . , �T
g

)T

where the superscript T denotes vector transpose. The parameter vector Ψ can be
estimated by ML. The objective is to maximize the likelihood L(Ψ), or equivalently,
the log likelihood log L(Ψ), as a function of Ψ, over the parameter space. That is, the
ML estimate of Ψ, Ψ̂, is given by an appropriate root of the log likelihood equation,

∂ log L(Ψ)/∂Ψ = 0 (5.2)

where

log L(Ψ) =
n∑

j=1

log f (y j ; Ψ)

is the log likelihood function for Ψ formed under the assumption of independent
data y1, . . . ,yn . The aim of ML estimation [13] is to determine an estimate Ψ̂ for
each n, so that it defines a sequence of roots of Equation (5.2) that is consistent and
asymptotically efficient. Such a sequence is known to exist under suitable regularity
conditions [7]. With probability tending to one, these roots correspond to local maxima
in the interior of the parameter space. For estimation models in general, the likelihood
usually has a global maximum in the interior of the parameter space. Then typically a
sequence of roots of Equation (5.2) with the desired asymptotic properties is provided
by taking Ψ̂ for each n to be the root that globally maximizes L(Ψ); in this case, Ψ̂ is
the MLE [18]. We shall henceforth refer to Ψ̂ as the MLE, even in situations where it
may not globally maximize the likelihood. Indeed, in the example on mixture models
to be presented in Section 5.4.1, the likelihood is unbounded. However, there may
still exist under the usual regularity conditions a sequence of roots of Equation (5.2)
with the properties of consistency, efficiency, and asymptotic normality [16].
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5.2 Algorithm Description

The EM algorithm is an iterative algorithm, in each iteration of which there are two
steps, the Expectation step (E-step) and the Maximization step (M-step). A brief
history of the EM algorithm can be found in [18]. Within the incomplete-data frame-
work of the EM algorithm, we let y = (yT

1 , . . . ,yT
n )T denote the vector containing

the observed data and we let z denote the vector containing the incomplete data. The
complete-data vector is declared to be

x = (yT , zT )T

The EM algorithm approaches the problem of solving the “incomplete-data” log like-
lihood Equation (5.2) indirectly by proceeding iteratively in terms of the “complete-
data” log likelihood, log Lc(Ψ). As it depends explicitly on the unobservable data z,
the E-step is performed on which log Lc(Ψ) is replaced by the so-called Q-function,
which is its conditional expectation given y, using the current fit for Ψ. More specif-
ically, on the (k + 1)th iteration of the EM algorithm, the E-step computes

Q(Ψ; Ψ(k)) = EΨ(k){log Lc(Ψ)|y}
where EΨ(k) denotes expectation using the parameter vector Ψ(k). The M-step up-
dates the estimate of Ψ by that value Ψ(k+1) of Ψ that maximizes the Q-function,
Q(Ψ; Ψ(k)), with respect to Ψ over the parameter space [18]. The E- and M-steps are
alternated repeatedly until the changes in the log likelihood values are less than some
specified threshold. As mentioned in Section 5.1, the EM algorithm is numerically
stable with each EM iteration increasing the likelihood value as

L(Ψ(k+1)) ≥ L(Ψ(k))

It can be shown that both the E- and M-steps will have particularly simple forms when
the complete-data probability density function is from an exponential family [18].
Often in practice, the solution to the M-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of Ψ that globally
maximizes the function Q(Ψ; Ψ(k)). For such situations, a generalized EM (GEM)
algorithm [8] may be adopted for which the M-step requires Ψ(k+1) to be chosen such
that Ψ(k+1) increases the Q-function Q(Ψ; Ψ(k)) over its value at Ψ = Ψ(k). That is,

Q(Ψ(k+1); Ψ(k)) ≥ Q(Ψ(k); Ψ(k))

holds; see [18].
Some of the drawbacks of the EM algorithm are (a) it does not automatically pro-

duce an estimate of the covariance matrix of the parameter estimates. This disadvan-
tage, however, can easily be removed by using appropriate methodology associated
with the EM algorithm [18]; (b) it is sometimes very slow to converge; and (c) in
some problems, the E- or M-steps may be analytically intractable. We shall briefly
address the last two issues in Section 5.5.
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5.3 Software Implementation

The EMMIX program: McLachlan et al. [22] have developed the program
EMMIX as a general tool to fit mixtures of multivariate normal or t-distributed
components by ML via the EM algorithm to continuous multivariate data. It
also includes many other features that were found to be of use when fitting mix-
ture models. These include the provision of starting values for the application
of the EM algorithm, the provision of standard errors for the fitted parameters
in the mixture model via various methods, and the determination of the number
of components; see below.

Starting values for EM algorithm: With applications where the log likelihood
equation has multiple roots corresponding to local maxima, the EM algorithm
should be applied from a wide choice of starting values in any search for all
local maxima. In the context of finite mixture models, an initial parameter value
can be obtained using the k-means clustering algorithm, hierarchical clustering
methods, or random partitions of the data [20]. With the EMMIX program, there
is an additional option for random starts whereby the user can first subsample
the data before using a random start based on the subsample each time. This is
to limit the effect of the central limit theorem, which would have the randomly
selected starts being similar for each component in large samples [20].

Provision of standard errors: Several methods have been suggested in the EM
literature for augmenting the EM computation with some computation for ob-
taining an estimate of the covariance matrix of the computed ML estimates;
see [11, 15, 18]. Alternatively, standard error estimation may be obtained with
the EMMIX program using the bootstrap resampling approach implemented
parametrically or nonparametrically [18, 20].

Number of components: We can make a choice as to an appropriate value of the
number of components (clusters) g by consideration of the likelihood function.
In the absence of any prior information as to the number of clusters present in
the data, we can monitor the increase in log likelihood function as the value of
g increases. At any stage, the choice of g = g0 versus g = g0 + 1 can be made
by either performing the likelihood ratio test or using some information-based
criterion, such as the Bayesian Information Criterion (BIC). Unfortunately,
regularity conditions do not hold for the likelihood ratio test statistic λ to have
its usual null distribution of chi-squared with degrees of freedom equal to the
difference d in the number of parameters for g = g0+1 and g = g0 components
in the mixture model. The EMMIX program provides a bootstrap resampling
approach to assess the null distribution (and hence the p-value) of the statistic
(−2 log λ). Alternatively, one can apply BIC, although regularity conditions do
not hold for its validity here. The use of BIC leads to the selection of g = g0 +1
over g = g0 if −2 log λ is greater than d log(n).
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Other mixture software: There are some other EM-based software for mixture
modeling via ML. For example, Fraley and Raftery [9] have developed the
MCLUST program for hierarchical clustering on the basis of mixtures of nor-
mal components under various parameterizations of the component-covariance
matrices. It is interfaced to the S-PLUS commercial software and has the op-
tion to include an additional component in the model for background (Poisson)
noise. The reader is referred to the appendix in McLachlan and Peel [20] for
the availability of software for the fitting of mixture models.

5.4 Illustrative Examples

We give in this section two examples to demonstrate how the EM algorithm can be
conveniently applied to find the ML estimates in some commonly occurring situations
in data mining. Both examples concern the application of the EM algorithm for the ML
estimation of finite mixture models, which is widely adopted to model heterogeneous
data [20]. They illustrate how an incomplete-data formulation is used to derive the
EM algorithm for computing ML estimates.

5.4.1 Example 5.1: Multivariate Normal Mixtures

This example concerns the application of the EM algorithm for the ML estimation of
finite mixture models with multivariate normal components [20]. With reference to
Equation (5.1), the mixture density of y j is given by

f (y j ; Ψ) =
g∑

i=1

πiφ(y j ; �i ,Σi ) ( j = 1, . . . , n) (5.3)

where φ(y j ; �i ,Σi ) denotes the p-dimensional multivariate normal distribution with
mean �i and covariance matrixΣi . Here the vectorΨ of unknown parameters consists
of the mixing proportions π1, . . . , πg−1, the elements of the component means �i , and
the distinct elements of the component-covariance matrices Σi . The log likelihood
for Ψ is then given by

log L(Ψ) =
n∑

j=1

log

{
g∑

i=1

πiφ(y j ; �i ,Σi )

}

Solutions of the log likelihood equation corresponding to local maxima can be found
iteratively by application of the EM algorithm.

Within the EM framework, each y j is conceptualized to have arisen from one of
the g components of the mixture model [Equation (5.3)]. We let z1, . . . , zn denote
the unobservable component-indicator vectors, where the i th element zi j of z j is
taken to be one or zero according as the j th observation y j does or does not come
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from the i th component. The observed-data vector y is viewed as being incomplete,
as the associated component-indicator vectors, z1, . . . , zn , are not available. The
complete-data vector is therefore x = (yT , zT )T , where z = (zT

1 , . . . , zT
n )T . The

complete-data log likelihood for Ψ is given by

log Lc(Ψ) =
g∑

i=1

n∑

j=1

zi j {log πi + log φ(y j ; �i ,Σi )} (5.4)

The EM algorithm is applied to this problem by treating the zi j in Equation (5.4)
as missing data. On the (k + 1)th iteration, the E-step computes the Q-function,
Q(Ψ; Ψ(k)), which is the conditional expectation of the complete-data log likelihood
given y and the current estimates Ψ(k). As the complete-data log likelihood [Equa-
tion (5.4)] is linear in the missing data zi j , we simply have to calculate the current
conditional expectation of Zi j given the observed data y, where Zi j is the random
variable corresponding to zi j . That is,

EΨ(k) (Zi j |y) = prΨ(k){Zi j = 1|y}
= τi (y j ; Ψ

(k))

= π
(k)
i φ

(
y j ; �(k)

i ,Σ(k)
i

)/ g∑

h=1

π
(k)
h φ

(
y j ; �(k)

h ,Σ(k)
h

)
(5.5)

for i = 1, . . . , g; j = 1, . . . , n. The quantity τi (y j ; Ψ(k)) is the posterior probabil-
ity that the j th observation y j belongs to the i th component of the mixture. From
Equations (5.4) and (5.5), it follows that

Q(Ψ; Ψ(k)) =
g∑

i=1

n∑

j=1

τi (y j ; Ψ
(k)){log πi + log φ(y j ; �i ,Σi )} (5.6)

For mixtures with normal component densities, it is computationally advantageous
to work in terms of the sufficient statistics [26] given by

T (k)
i1 =

n∑

j=1

τi (y j ; Ψ
(k))

T (k)
i2 =

n∑

j=1

τi (y j ; Ψ
(k))y j

T (k)
i3 =

n∑

j=1

τi (y j ; Ψ
(k))y jy

T
j (5.7)

For normal components, the M-step exists in closed form and is simplified on the
basis of the sufficient statistics in Equation (5.7) as

π
(k+1)
i = T (k)

i1 /n

�(k+1)
i = T (k)

i2 /T (k)
i1

Σ(k+1)
i = {

T (k)
i3 − T (k)

i1
−1
T (k)

i2 T
(k)
i2

T }
/T (k)

i1 (5.8)
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see [20, 26]. In the case of unrestricted component-covariance matrices Σi , L(Ψ) is
unbounded, as each data point gives rise to a singularity on the edge of the param-
eter space [16, 20]. Consideration has to be given to the problem of relatively large
(spurious) local maxima that occur as a consequence of a fitted component having
a very small (but nonzero) generalized variance (the determinant of the covariance
matrix). Such a component corresponds to a cluster containing a few data points either
relatively close together or almost lying in a lower dimensional subspace in the case
of multivariate data.

In practice, the component-covariance matrices Σi can be restricted to being the
same, Σi = Σ (i = 1, . . . , g), where Σ is unspecified. In this case of homoscedas-
tic normal components, the updated estimate of the common component-covariance
matrix Σ is given by

Σ(k+1) =
g∑

i=1

T (k)
i1 Σ(k+1)

i /n (5.9)

where Σ(k+1)
i is given by Equation (5.8), and the updates of πi and �i are as above in

the heteroscedastic case [Equation (5.8)].
The well-known set of Iris data is available at the UCI Repository of machine

learning databases [1]. The data consist of measurements of the length and width
of both sepals and petals of 50 plants for each of the three types of Iris species
setosa, versicolor, and virginica. Here, we cluster these four-dimensional data, ig-
noring the known classification of the data, by fitting a mixture of g = 3 normal
components with heteroscedastic diagonal component-covariance matrices using the
EMMIX program [22]. The vector of unknown parameters Ψ now consists of the
mixing proportions π1, π2, the elements of the component means �i , and the diago-
nal elements of the component-covariance matrices Σi (i = 1, 2, 3). An initial value
Ψ(0) is chosen to be

π
(0)
1 = 0.31, π

(0)
2 = 0.33, π

(0)
3 = 0.36

�(0)
1 = (5.0, 3.4, 1.5, 0.2)T , �(0)

2 = (5.8, 2.7, 4.2, 1.3)T

�(0)
3 = (6.6, 3.0, 5.5, 2.0)T

Σ(0)
1 = diag(0.1, 0.1, 0.03, 0.01) Σ(0)

2 = diag(0.2, 0.1, 0.2, 0.03)

Σ(0)
3 = diag(0.3, 0.1, 0.3, 0.1)

which is obtained through the use of k-means clustering method. With the EMMIX
program, the default stopping criterion is that the change in the log likelihood from
the current iteration and the log likelihood from 10 iterations previously differs by less
than 0.000001 of the current log likelihood [22]. The results of the EM algorithm are
presented in Table 5.1. The MLE of Ψ can be taken to be the value of Ψ(k) on iteration
k = 29. Alternatively, the EMMIX program offers automatic starting values for the
application of the EM algorithm. As an example, an initial value Ψ(0) is determined
from 10 random starts (using 70% subsampling of the data), 10 k-means starts, and 6
hierarchical methods; see Section 5.3 and [22]. The final estimates of Ψ are the same
as those given in Table 5.1.
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TABLE 5.1 Results of the EM Algorithm for Example 5.1

Log
Iteration π

(k)
i �(k)

i
T

Diagonal Elements of Σ(k)
i Likelihood

0 0.310 (5.00, 3.40, 1.50, 0.20) (0.100, 0.100, 0.030, 0.010) −317.98421
0.330 (5.80, 2.70, 4.20, 1.30) (0.200, 0.100, 0.200, 0.030)
0.360 (6.60, 3.00, 5.50, 2.00) (0.300, 0.100, 0.300, 0.100)

1 0.333 (5.01, 3.43, 1.46, 0.25) (0.122, 0.141, 0.030, 0.011) −306.90935
0.299 (5.82, 2.70, 4.20, 1.30) (0.225, 0.089, 0.212, 0.034)
0.368 (6.62, 3.01, 5.48, 1.98) (0.322, 0.083, 0.325, 0.088)

2 0.333 (5.01, 3.43, 1.46, 0.25) (0.122, 0.141, 0.030, 0.011) −306.87370
0.300 (5.83, 2.70, 4.21, 1.30) (0.226, 0.087, 0.218, 0.034)
0.367 (6.62, 3.01, 5.47, 1.98) (0.323, 0.083, 0.328, 0.087)

10 0.333 (5.01, 3.43, 1.46, 0.25) (0.122, 0.141, 0.030, 0.011) −306.86234
0.303 (5.83, 2.70, 4.22, 1.30) (0.227, 0.087, 0.224, 0.035)
0.364 (6.62, 3.02, 5.48, 1.99) (0.324, 0.083, 0.328, 0.086)

20 0.333 (5.01, 3.43, 1.46, 0.25) (0.122, 0.141, 0.030, 0.011) −306.86075
0.304 (5.83, 2.70, 4.22, 1.30) (0.228, 0.087, 0.225, 0.035)
0.363 (6.62, 3.02, 5.48, 1.99) (0.324, 0.083, 0.327, 0.086)

29 0.333 (5.01, 3.43, 1.46, 0.25) (0.122, 0.141, 0.030, 0.011) −306.86052
0.305 (5.83, 2.70, 4.22, 1.30) (0.229, 0.087, 0.225, 0.035)
0.362 (6.62, 3.02, 5.48, 1.99) (0.324, 0.083, 0.327, 0.085)

5.4.2 Example 5.2: Mixtures of Factor Analyzers

McLachlan and Peel [21] adopt a mixture of factor analyzers model to cluster the
so-called wine data set, which is available at the UCI Repository of machine learning
databases [1]. These data give the results of a chemical analysis of wines grown
in the same region in Italy, but derived from three different cultivars. The analysis
determined the quantities of p = 13 consituents found in each of n = 178 wines.
To cluster this data set, a three-component normal mixture model can be adopted.
However, as p = 13 in this problem, the (unrestricted) covariance matrix Σi has 91
parameters for each i (i = 1, 2, 3), which means that the total number of parameters
is very large relative to the sample size of n = 178. A mixture of factor analyzers
can be used to reduce the number of parameters to be fitted. In a mixture of factor
analyzers, each observation Y j is modeled as

Y j = �i + BiU i j + �i j

with probability πi (i = 1, . . . , g) for j = 1, . . . , n, where U i j is a q-dimensional
(q < p) vector of latent or unobservable variables called factors and Bi is a p ×
q matrix of factor loadings (parameters). The factors U i1, . . . ,U in are distributed
independently N (0, Iq ), independently of the �i j , which are distributed independently
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N (0,Di ), where Iq is the q × q identity matrix and Di is a p × p diagonal matrix
(i = 1, . . . , g). That is,

f (y j ; Ψ) =
g∑

i=1

πiφ(y j ; �i ,Σi )

where
Σi = BiB

T
i + Di (i = 1, . . . , g)

The vector of unknown parameters Ψ now consists of the elements of the �i , the Bi ,
and the Di , along with the mixing proportions πi (i = 1, . . . , g − 1).

The alternating expectation conditional-maximization (AECM) algorithm [24] can
be used to fit the mixture of factor analyzers model by ML; see Section 5.5. The
unknown parameters are partitioned as (ΨT

1 ,ΨT
2 )T , where Ψ1 contains the πi (i =

1, . . . , g − 1) and the elements of �i (i = 1, . . . , g). The subvector Ψ2 contains the
elements of Bi and Di (i = 1, . . . , g). The AECM algorithm is an extension of the
expectation-conditional maximization (ECM) algorithm [23], where the specification
of the complete-data is allowed to be different on each conditional maximization
(CM) step. In this application, one iteration consists of two cycles corresponding to
the partition of Ψ into Ψ1 and Ψ2, and there is one E-step and one CM-step for each
cycle. For the first cycle of the AECM algorithm, we specify the missing data to be just
the component-indicator vectors, z1, . . . , zn; see Equation (5.4). The E-step on the
first cycle on the (k + 1)th iteration is essentially the same as given in Equations (5.5)
and (5.6). The first CM-step computes the updated estimate Ψ(k+1)

1 as

π
(k+1)
i =

n∑

j=1

τ
(k)
i j /n

and

�(k+1)
i =

n∑

j=1

τ
(k)
i j y j/

n∑

j=1

τ
(k)
i j

for i = 1, . . . , g. For the second cycle for the updating of Ψ2, we specify the missing
data to be the factors U i1, . . . ,U in , as well as the component-indicator vectors,

z1, . . . , zn . On setting Ψ(k+1/2) equal to (Ψ(k+1)
1

T
,Ψ(k)

2
T

)T , the E-step on the second
cycle calculates the conditional expectations as

EΨ(k+1/2){Zi j (U i j − �i )|y j } = τ
(k+1/2)
i j �(k)

i
T

(y j − �i )

and

EΨ(k+1/2){Zi j (U i j − �i )(U i j − �i )
T |y j }

= τ
(k+1/2)
i j

{
�(k)

i
T

(y j − �i )(y j − �i )
T �(k)

i + Ω(k)
i

}

where
�(k)

i = (
B(k)

i B(k)
i

T + D(k)
i

)−1
B(k)

i
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and
Ω(k)

i = Iq − �(k)
i

T
B(k)

i

for i = 1, . . . , g. The E-step above uses the result that the conditional distribution of
U i j given y j and zi j = 1 is given by

U i j |y j , zi j = 1 ∼ N
(
�T

i (y j − �i ), Ωi
)

for i = 1, . . . , g; j = 1, . . . , n. The CM-step on the second cycle provides the
updated estimate Ψ(k+1)

2 as

B(k+1)
i = V

(k+1/2)
i �(k)

i

(
�(k)

i
T
V

(k+1/2)
i �(k)

i + Ω(k)
i

)−1

and
D(k+1)

i = diag
{
V

(k+1/2)
i − B(k+1)

i H
(k+1/2)
i B(k+1)

i
T }

where

V
(k+1/2)
i =

∑n
j=1 τ

(k+1/2)
i j (y j − �(k+1)

i )(y j − �(k+1)
i )T

∑n
j=1 τ

(k+1/2)
i j

and
H

(k+1/2)
i = �(k)

i
T
V

(k+1/2)
i �(k)

i + Ω(k)
i

As an illustration, a mixture of factor analyzers model with different values of q is
fitted to the wine data set, ignoring the known classification of the data. To determine
the initial estimate of Ψ, the EMMIX program is used to fit the normal mixture
model with unrestricted component-covariance matrices using ten random starting
values (with 70% subsampling of the data). The estimates of πi and �i so obtained
are used as the initial values for πi and �i in the AECM algorithm. The estimate
of Σi so obtained (denoted as Σ(0)

i ) is used to determine the initial estimate of Di ,
where D(0)

i is taken to be the diagonal matrix formed from the diagonal elements of
Σ(0)

i . An initial estimate of Bi can be obtained using the method described in [20].
The results of the AECM algorithm from q = 1 to q = 8 are presented in Table 5.2.
We have also reported the value of minus twice the likelihood ratio test statistic λ

(i.e., twice the increase in the log likelihood), as we proceed from fitting a mixture of q
factor analyzers to one with q +1 component factors. For a given level of the number
of components g, regularity conditions hold for the asymptotic null distribution of
−2 log λ to be chi-squared with d degrees of freedom, where d is the difference
between the number of parameters under the null and alternative hypotheses for the
value of q . It can be seen from Table 5.2 that the apparent error rate of the outright
clustering is smallest for q = 2 and 3. However, this error rate is unknown in a
clustering context and so cannot be used as a guide to the choice of q. Concerning
the use of the likelihood ratio test to decide on the number of factors q, the test of
q = q0 = 6 versus q = q0+1 = 7 is not significant (P = 0.28), on taking −2 log λ to
be chi-squared with d = g(p−q0) = 21 degrees of freedom under the null hypothesis
that q = q0 = 6.
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TABLE 5.2 Results of the AECM Algorithm for Example 5.2

q Log Likelihood Error (%Error) −2 log �

1 −3102.254 2 (1.12) —
2 −2995.334 1 (0.56) 213.8
3 −2913.122 1 (0.56) 164.4
4 −2871.655 3 (1.69) 82.93
5 −2831.860 4 (2.25) 79.59
6 −2811.290 4 (2.25) 41.14
7 −2799.204 4 (2.25) 24.17
8 −2788.542 4 (2.25) 21.32

5.5 Advanced Topics

In this section, we consider some extensions of the EM algorithm to handle problems
with more difficult E-step and/or M-step computations, and to tackle problems of
slow convergence. Moreover, we present a brief account of the applications of the
EM algorithm in the context of Hidden Markov Models (HMMs), which provide a
convenient way of formulating an extension of a mixture model to allow for dependent
data.

In some applications of the EM algorithm such as with generalized linear mixed
models, the E-step is complex and does not admit a close-form solution to the
Q-function. In this case, the E-step may be executed by a Monte Carlo (MC) process.
At the (k + 1)th iteration, the E-step involves

� simulation of M independent sets of realizations of the missing data Z from
the conditional distribution g(z|y; Ψ(k))

� approximation of the Q-function by

Q(Ψ; Ψ(k)) ≈ QM (Ψ; Ψ(k)) = 1

M

M∑

m=1

log Lc(Ψ;y, z(mk ))

where z(mk ) is the mth set of missing values based on Ψ(k)

In the M-step, the Q-function is maximized over Ψ to obtain Ψ(k+1). This variant is
known as the Monte Carlo EM (MCEM) algorithm [33]. As an MC error is introduced
at the E-step, the monotonicity property is lost. But in certain cases, the algorithm
gets close to a maximizer with a high probability [4]. The problems of specifying
M and monitoring convergence are of central importance in the routine use of the
algorithm; see [4, 18, 33].

With the EM algorithm, the M-step involves only complete-data ML estimation,
which is often computationally simple. However, in some applications, such as that
in mixtures of factor analyzers (Section 5.4.2), the M-step is rather complicated.
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The ECM algorithm [23] is a natural extension of the EM algorithm in situations
where the maximization process on the M-step is relatively simple when conditional
on some function of the parameters under estimation. The ECM algorithm takes
advantage of the simplicity of complete-data conditional maximization by replacing
a complicated M-step of the EM algorithm with several computationally simpler
CM steps. In particular, the ECM algorithm preserves the appealing convergence
properties of the EM algorithm [18, 23]. The AECM algorithm [24] mentioned in
Section 5.4.2 allows the specification of the complete-data to vary where necessary
over the CM-steps within and between iterations. This flexible data augmentation and
model reduction scheme is eminently suitable for applications like mixtures of factor
analyzers where the parameters are large in number.

Massively huge data sets of millions of multidimensional observations are now
commonplace. There is an ever increasing demand on speeding up the convergence
of the EM algorithm to large databases. But at the same time, it is highly desirable
if its simplicity and stability can be preserved. An incremental version of the EM
algorithm was proposed by Neal and Hinton [25] to improve the rate of convergence
of the EM algorithm. This incremental EM (IEM) algorithm proceeds by dividing the
data into B blocks and implementing the (partial) E-step for only a block of data at
a time before performing an M-step. That is, a “scan” of the IEM algorithm consists
of B partial E-steps and B full M-steps [26]. It can be shown from Exercises 6 and
7 in Section 5.6 that the IEM algorithm in general converges with fewer scans and
hence faster than the EM algorithm. The IEM algorithm also increases the likelihood
at each scan; see the discussion in [27].

In the mixture framework with observations y1, . . . ,yn , the unobservable
component-indicator vector z = (zT

1 , . . . , zT
n )T can be termed as the “hidden vari-

able.” In speech recognition applications, the z j may be unknown serially dependent
prototypical spectra on which the observed speech signals y j depend ( j = 1, . . . , n).
Hence the sequence or set of hidden values z j cannot be regarded as independent. In
the automatic speech recognition applications or natural language processing (NLP)
tasks, a stationary Markovian model over a finite state space is generally formulated
for the distribution of the hidden variable Z [18]. As a consequence of the dependent
structure of Z, the density of Y j will not have its simple representation [Equa-
tion (5.1)] of a mixture density as in the independence case. However, Y 1, . . . ,Y n

are assumed conditionally independent given z1, . . . , zn; that is

f (y1, . . . ,yn|z1, . . . , zn; �) =
n∏

j=1

f (y j |z j ; �)

where � denotes the vector containing the unknown parameters in these conditional
distributions that are known a priori to be distinct. The application of the EM algorithm
to this problem is known as the Baum–Welch algorithm in the HMM literature. Baum
and his collaborators formulated this algorithm before the appearance of the EM
algorithm in Dempster et al. [8] and established the convergence properties for this
algorithm; see [2] and the references therein. The E-step can be implemented exactly,
but it does require a forward and backward recursion through the data [18]. The M-step
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can be implemented in closed form, using formulas which are a combination of the
MLEs for the multinomial parameters and Markov chain transition probabilities;
see [14, 30].

5.6 Exercises

Ten exercises are given in this section. They arise in various scientific fields in the
contexts of data mining and pattern recognition, in which the EM algorithm or its
variants have been applied. The exercises include problems where the incompleteness
of the data is perhaps not as natural or evident as in the two illustrative examples in
Section 5.4.

1. Böhning et al. [3] consider a cohort study on the health status of 602 preschool
children from 1982 to 1985 in northest Thailand [32]. The frequencies of illness
spells (fever, cough, or both) during the study period are presented in Table 5.3.
A three-component mixture of Poisson distributions is fitted to the data. The
log likelihood function is given by

log L(Ψ) =
n∑

j=1

log

{
3∑

i=1

πi f (y j , θi )

}

where Ψ = (π1, π2, θ1, θ2, θ3)T and

f (y j , θi ) = exp(−θi )θ
y j

i /y j ! (i = 1, 2, 3)

With reference to Section 5.4.1, let

τi (y j ; Ψ(k)) = π
(k)
i f

(
y j , θ

(k)
i

)/ 3∑

h=1

π
(k)
h f

(
y j , θ

(k)
h

)
(i = 1, 2, 3)

denote the posterior probability that y j belongs to the i th component. Show
that the M-step updates the estimates as

π
(k+1)
i =

n∑

j=1

τi (y j ; Ψ(k))/n (i = 1, 2)

θ
(k+1)
i =

n∑

j=1

τi (y j ; Ψ(k))y j/
(
nπ

(k+1)
i

)
(i = 1, 2, 3)

Using the initial estimates π1 = 0.6, π2 = 0.3, θ1 = 2, θ2 = 9, and θ3 = 17,
find the MLE of Ψ.
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TABLE 5.3 Frequencies of Illness Spells for a Cohort Sample
of Preschool Children in Northest Thailand

No. of No. of No. of
Illnesses Frequency Illnesses Frequency Illnesses Frequency

0 120 8 25 16 6
1 64 9 19 17 5
2 69 10 18 18 1
3 72 11 18 19 3
4 54 12 13 20 1
5 35 13 4 21 2
6 36 14 3 23 1
7 25 15 6 24 2

2. The fitting of mixtures of (multivariate) t distributions was proposed by
McLachlan and Peel [19] to provide a more robust approach to the fitting of
normal mixture models. A g-component mixture of t distributions is given by

f (y j ; Ψ) =
g∑

i=1

πi f (y j ; �i ,Σi , νi )

where the component density f (y j ; �i ,Σi , νi ) has a multivariate t distribution
with location �i , positive definite inner product matrix Σi , and νi degrees of
freedom (i = 1, . . . , g); see [19, 29]. The vector of unknown parameters is

Ψ = (π1, . . . , πg−1, �T , �T )T

where � = (ν1, . . . , νg)T are the degrees of freedom for the t distributions, and
� = (�T

1 , . . . , �T
g )T , and where �i contains the elements of �i and the distinct

elements of Σi (i = 1, . . . , g). With reference to Section 5.4.1, the observed
data augmented by the component-indicator vectors z1, . . . , zn are viewed as
still being incomplete. Additional missing data, u1, . . . , un , are introduced into
the complete-data vector, that is,

x = (
yT , zT

1 , . . . , zT
n , u1, . . . , un

)T

where u1, . . . , un are defined so that, given zi j = 1,

Y j |u j , zi j = 1 ∼ N (�i ,Σi/u j )

independently for j = 1, . . . , n, and

U j |zi j = 1 ∼ gamma
(

1
2νi ,

1
2νi

)

Show that the complete-data log likelihood can be written in three terms as

log Lc(Ψ) = log L1c(�) + log L2c(�) + log L3c(�) (5.10)
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where

log L1c(�) =
g∑

i=1

n∑

j=1

zi j log πi

log L2c(�) =
g∑

i=1

n∑

j=1

zi j
{− log 	( 1

2νi ) + 1
2νi log( 1

2νi ) + 1
2νi (log u j − u j ) − log u j

}

and

log L3c(�) =
g∑

i=1

n∑

j=1

zi j
{− 1

2 p log(2π ) − 1
2 log |Σi | − 1

2 u jδ(y j , �i , ; Σi )
}

where
δ(y j , �i ; Σi ) = (y j − �i )

T Σ−1
i (y j − �i )

3. With reference to the above mixtures of t distributions, show that the E-step on
the (k + 1)th iteration of the EM algorithm involves the calculation of

EΨ(k) (Zi j |y) = τ
(k)
i j = π

(k)
i f (y j ; �(k)

i ,Σ(k)
i , ν

(k)
i )

f (y j ; Ψ(k))
(5.11)

EΨ(k) (U j |y, zi j = 1) = u(k)
i j = ν

(k)
i + p

ν
(k)
i + δ(y j , �(k)

i ; Σ(k)
i )

(5.12)

and

EΨ(k) (log U j |y, zi j = 1) = log u(k)
i j +

{
ψ

(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)}

(5.13)

for i = 1, . . . , g; j = 1, . . . , n. In Equation (5.13),

ψ(r ) = {∂	(r )/∂r}/	(r )

is the Digamma function [29]. Hint for Equation (5.12): the gamma distribution
is the conjugate prior distribution for U j ; Hint for Equation (5.13): if a random
variable S has a gamma(α, β) distribution, then

E(log S) = ψ(α) − log β.

Also, it follows from Equation (5.10) that �(k+1), �(k+1), and �(k+1) can be
computed on the M-step independently of each other. Show that the updating
formulas for the first two are

π
(k+1)
i =

n∑

j=1

τ
(k)
i j /n

�(k+1)
i =

n∑

j=1

τ
(k)
i j u(k)

i j y j

/ n∑

j=1

τ
(k)
i j u(k)

i j
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and

Σ(k+1)
i =

∑n
j=1 τ

(k)
i j u(k)

i j (y j − �(k+1)
i )(y j − �(k+1)

i )T

∑n
j=1 τ

(k)
i j

The updates ν
(k+1)
i for the degrees of freedom need to be computed iteratively.

It follows from Equation (5.10) that ν
(k+1)
i is a solution of the equation

{
− ψ

(
1
2νi

) + log
(

1
2νi

) + 1 + 1
n(k)

i

∑n
j=1 τ

(k)
i j

(
log u(k)

i j − u(k)
i j

)

+ ψ

(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)}
= 0

where n(k)
i = ∑n

j=1 τ
(k)
i j (i = 1, . . . , g).

4. The EMMIX program [22] has an option for the fitting of mixtures of multi-
variate t components. Now fit a mixture of two t components (with unrestricted
scale matrices Σi and unequal degrees of freedom νi ) to the Leptograpsus crab
data set of Campbell and Mahon [5]. With the crab data, one species has been
split into two new species, previously grouped by color form, orange and blue.
Data are available on 50 specimens of each sex of each species. Attention here
is focussed on the sample of n = 100 five-dimensional measurements on or-
ange crabs (the two components correspond to the males and females). Run the
EMMIX program with automatic starting values from 10 random starts (using
100% subsampling of the data), 10 k-means starts, and 6 hierarchical methods
(with user-supplied initial values ν

(0)
1 = ν

(0)
2 = 13.193 which is obtained in the

case of equal scale matrices and equal degrees of freedom). Verify estimates of
� are ν̂1 = 12.2 and ν̂2 = 300.0 and the numbers assigned to each component
are, respectively, 47 and 53 (misclassification rate = 3%).

5. For a mixture of g component distributions of generalized linear models
(GLMs) in proportions π1, . . . , πg , the density of the j th response variable
Y j is given by

f (y j ; Ψ) =
g∑

i=1

πi f (y j ; θi j , κi )

where the log density for the i th component is given by

log f (y j ; θi j , κi ) = κ−1
i {θi j y j − b(θi j )} + c(y j ; κi ) (i = 1, . . . , g)

where θi j is the natural or canonical parameter andκi is the dispersion parameter.
For the i th component GLM, denote μi j the conditional mean of Y j and ηi j =
hi (μi j ) = 	T

i x j the linear predictor, where hi (·) is the link function and x j

is a vector of explanatory variables on the j th response y j [20]. The vector
of unknown parameters is Ψ = (π1, . . . , πg−1, κ1, . . . , κg, 	T

1 , . . . , 	T
g )T . Let

zi j denote the component-indicator variables as defined in Section 5.4.1. The
E-step is essentially the same as given in Equations (5.5) and (5.6), with the
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component densities φ(y j ; �i ,Σi ) replaced by f (y j ; θi j , κi ). On the M-step,

the updating formula for π
(k+1)
i (i = 1, . . . , g − 1) is

π
(k+1)
i =

n∑

j=1

τ
(k)
i j /n

where

τ
(k)
i j = π

(k)
i f

(
y j ; θ

(k)
i j , κ

(k)
i

)/ g∑

h=1

π
(k)
h f

(
y j ; θ

(k)
hj , κ

(k)
h

)

The updates κ
(k+1)
i and 	(k+1)

i need to be computed iteratively by solving

n∑

j=1

τ
(k)
i j ∂ log f (y j ; θi j , κi )/∂κ = 0

n∑

j=1

τ
(k)
i j ∂ log f (y j ; θi j , κi )/∂	i = 0 (5.14)

Consider a mixture of gamma distributions, where the gamma density function
for the i th component is given by

f (y j ; μi j , αi ) =
( αi
μi j

)αi y(αi −1)
j exp(− αi

μi j
y j )

	(αi )

where αi > 0 is the shape parameter, which does not depend on the explanatory
variables. The linear predictor is modelled via a log-link as

ηi j = hi (μi j ) = log μi j = 	T
i x j

With reference to Equation (5.14), show that the M-step for a mixture of gamma
distributions involves solving the nonlinear equations

n∑

j=1

τ
(k)
i j {1 + log αi − log μi j + log y j − y j/μi j − ψ(αi )} = 0,

n∑

j=1

τ
(k)
i j (−1 + y j/μi j )αix j = 0

where ψ(r ) = {∂	(r )/∂r}/	(r ) is the digamma function.

6. With the IEM algorithm described in Section 5.5, let Ψ(k+b/B) denote the value
of Ψ after the bth iteration on the (k + 1)th scan (b = 1, . . . , B). In the context
of g-component normal mixture models (Section 5.4.1), the partial E-step on
the (b + 1)th iteration of the (k + 1)th scan replaces zi j by τi (y j ; Ψ(k+b/B))
for those y j in the (b + 1)th block (b = 0, . . . , B − 1; i = 1, . . . , g). With

reference to Equation (5.7), let T (k+b/B)
iq,b+1 denote the conditional expectations of
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the sufficient statistics for the (b + 1)th block (b = 0, . . . , B − 1; q = 1, 2, 3).
For example,

T
(k+b/B)
i1,b+1 =

∑

j∈Sb

τi (y j ; Ψ
(k+b/B)) (i = 1, . . . , g)

where Sb is a subset of {1, . . . , n} containing the subscripts of those y j that
belong to the (b + 1)th block (b = 0, . . . , B − 1). From Equations (5.7) and
(5.8), show that the M-step on the (b + 1)th iteration of the (k + 1)th scan of
the IEM algorithm involves the update of the estimates of πi , �i , and Σi as
follows:

π
(k+(b+1)/B)
i = T (k+b/B)

i1 /n

�
(k+(b+1)/B)
i = T

(k+b/B)
i2 /T (k+b/B)

i1

Σ(k+(b+1)/B)
i = {

T
(k+b/B)
i3 − T (k+b/B)

i1
−1
T

(k+b/B)
i2 T

(k+b/B)
i2

T }
/T (k+b/B)

i1

for i = 1, . . . , g, where

T
(k+b/B)
iq = T

(k+(b−1)/B)
iq − T

(k−1+b/B)
iq,b+1 + T

(k+b/B)
iq,b+1 (5.15)

for i = 1, . . . , g and q = 1, 2, 3. It is noted that the first and second terms on
the right-hand side of Equation (5.15) are already available from the previous
iteration and the previous scan, respectively. In practice, the IEM algorithm
is implemented by running the standard EM algorithm for the first few scans
to avoid the “premature component starvation” problem [26]. In this case, we
have

T (k)
iq =

B∑

b=1

T (k)
iq,b (i = 1, . . . , g; q = 1, 2, 3)

7. With the IEM algorithm, Ng and McLachlan [26] provide a simple guide for
choosing the number of blocks B for normal mixtures. In the case of component-
covariance matrices specified to be diagonal (such as in Example 5.1), they
suggest B ≈ n1/3. For the Iris data in Example 5.1, it implies that B ≈ (150)1/3.
Run an IEM algorithm to the Iris data with B = 5 and the same initial values of
Ψ as in Example 5.1. Verify that (a) the final estimates and the log likelihood
value are approximately the same as those using the EM algorithm, and (b) the
IEM algorithm converges with fewer scans than the EM algorithm and increases
the likelihood at each scan; see the discussion in [27].

8. Ng and McLachlan [28] apply the ECM algorithm for training the mixture of
experts (ME) networks [10, 12]. In ME networks, there are several modules,
referred to as expert networks. These expert networks approximate the distri-
bution of y j within each region of the input space. The expert network maps its
input x j to an output y j , with conditional density fh(y j |x j ; �h), where �h is a
vector of unknown parameters for the hth expert network (h = 1, . . . , M). The
gating network provides a set of scalar coefficients πh(x j ; 
) that weight the
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contributions of the various experts, where 
 is a vector of unknown parameters
in the gating network. The final output of the ME network is a weighted sum
of all the output vectors produced by the expert networks,

f (y j |x j ; Ψ) =
M∑

h=1

πh(x j ; 
) fh(y j |x j ; �h)

Within the incomplete-data framework of the EM algorithm, we introduce the
indicator variables Zhj , where zhj is 1 or 0 according to whether y j belongs or
does not belong to the hth expert. Show that the complete-data log likelihood
for Ψ is given by

log Lc(Ψ) =
n∑

j=1

M∑

h=1

zhj {log πh(x j ; 
) + log fh(y j |x j ; �h)}

and the Q-function can be decomposed into two terms with respect to 
 and
�h (h = 1, . . . , M), respectively, as

Q(Ψ; Ψ(k)) = Q
 + Q�

where

Q
 =
n∑

j=1

M∑

h=1

τ
(k)
hj log πh(x j ; 
)

Q� =
n∑

j=1

M∑

h=1

τ
(k)
hj log fh(y j |x j ; �h)

and where

τ
(k)
hj = πh(x j ; 
(k)) fh

(
y j |x j ; �(k)

h

)/ M∑

r=1

πr (x j ; 
(k)) fr
(
y j |x j ; �(k)

r

)

9. With the ME networks above, the output of the gating network is usually
modeled by the multinomial logit (or softmax) function as

πh(x j ; 
) = exp(vT
h x j )

1 + ∑M−1
r=1 exp(vT

r x j )
(h = 1, . . . , M − 1)

and πM (x j ; 
) = 1/(1 + ∑M−1
r=1 exp(vT

r x j )). Here 
 contains the elements in
vh (h = 1, . . . , M −1). Show that the updated estimate of 
(k+1) on the M-step
is obtained by solving

n∑

j=1

(
τ

(k)
hj − exp(vT

h x j )

1 + ∑M−1
r=1 exp(vT

r x j )

)
x j = 0
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for h = 1, . . . , M − 1, which is a set of nonlinear equations. It is noted that the
nonlinear equation for the hth expert depends not only on the parameter vector
vh , but also on other parameter vectors in 
. In other words, each parameter
vector vh cannot be updated independently. With the IRLS algorithm presented
in [12], the independence assumption on these parameter vectors was used
implicitly. Ng and McLachlan [28] propose an ECM algorithm for which the
M-step is replaced by (M − 1) computationally simpler CM-steps for vh (h =
1, . . . , M − 1).

10. McLachlan and Chang [17] consider the mixture model-based approach to the
cluster analysis of mixed data, where the observations consist of both continu-
ous and categorical variables. Suppose that p1 of the p feature variables in Y j

are categorical, where the qth categorical variable takes on mq distinct values
(q = 1, . . . , p1). With the location model-based cluster approach [20], the p1

categorical variables are uniquely transformed to a single multinomial random
variable U with S cells, where S = ∏p1

q=1 mq is the number of distinct patterns
(locations) of the p1 categorical variables. We let (u j )s be the label for the sth
location of the j th entity (s = 1, . . . , S; j = 1, . . . , n), where (u j )s = 1 if
the realizations of the p1 categorical variables correspond to the sth pattern,
and is zero otherwise. The location model assumes further that conditional on
(u j )s = 1, the conditional distribution of the p − p1 continuous variables is
normal with mean �is and covariance matrix Σi , which is the same for all S
cells. Let pis be the conditional probability that (U j )s = 1 given its mem-
bership of the i th component of the mixture (s = 1, . . . , S; i = 1, . . . , g).
With reference to Section 5.4.1, show that on the (k + 1)th iteration of the EM
algorithm, the updated estimates are given by

π
(k+1)
i =

S∑

s=1

n∑

j=1

δ jsτ
(k)
i js

/
n

p(k+1)
is =

n∑

j=1

δ jsτ
(k)
i js

/ S∑

r=1

n∑

j=1

δ jrτ
(k)
i jr

�(k+1)
is =

n∑

j=1

δ jsτ
(k)
i jsy

∗
j

/ n∑

j=1

δ jsτ
(k)
i js

and

Σ(k+1)
i =

S∑

s=1

n∑

j=1

δ jsτ
(k)
i js

(
y∗

j − �(k+1)
is

)(
y∗

j − �(k+1)
is

)T
/ S∑

s=1

n∑

j=1

δ jsτ
(k)
i js

where δ js is 1 or 0 according as to whether (u j )s equals 1 or 0, y∗
j contains the

continuous variables in y j , and

τ
(k)
i js = π

(k)
i p(k)

is φ
(
y∗

j ; �(k)
is ,Σ(k)

i

)/ g∑

h=1

π
(k)
h p(k)

hs φ
(
y∗

j ; �(k)
hs ,Σ(k)

h

)

for s = 1, . . . , S; i = 1, . . . , g.
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6.1 Introduction

Link-based ranking has contributed significantly to the success of Web search.
PageRank [1, 7] is perhaps the best known link-based ranking algorithm, which
also powers the Google search engine. Due to the huge business success of Google,
PageRank has emerged as the dominant link analysis model on the Web.

The PageRank algorithm was first introduced by Sergey Brin and Larry Page at the
Seventh International World Wide Web Conference (WWW7) in April 1998, with the
aim of tackling some major difficulties with the content-based ranking algorithms
of early search engines. These early search engines essentially retrieved relevant
pages for the user based on content similarities of the user query and the indexed
pages of the search engines. The retrieval and ranking algorithms were simply direct
implementation of those from information retrieval. However, starting from 1996, it
became clear that the content similarity alone was no longer sufficient for search due
to two main reasons. First, the number of Web pages grew rapidly during the middle to
late 1990s. Given any query, the number of relevant pages can be huge. For example,
given the search query “classification technique,” the Google search engine estimates
that there are about 10 million relevant pages. This abundance of information causes
a major problem for ranking, that is, how to choose only 10 to 30 pages and rank
them suitably to present to the user. Second, content similarity methods are easily
spammed. A page owner can repeat some important words and add many remotely
related words in his/her pages to boost the rankings of the pages and/or to make the
pages relevant to a large number of possible queries.

117
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From around 1996, researchers in academia and search engine companies began to
work on the problem. They resort to hyperlinks. Unlike text documents used in tradi-
tional information retrieval, which are often considered independent of one another
(i.e., with no explicit relationships or links among them except in citation analysis),
Web pages are connected through hyperlinks, which carry important information.
Some hyperlinks are used to organize a large amount of information at the same Web
site, and thus only point to pages in the same site. Other hyperlinks point to pages
in other Web sites. Such outgoing hyperlinks often indicate an implicit conveyance
of authority to the pages being pointed to. For example, if your page points to an
outside page, you obviously believe that this outside page contains quality and useful
information to you. Hence, those pages that are pointed to by many other pages are
likely to contain authoritative or quality information. Such linkages should obviously
be used in page evaluation and ranking in search engines. PageRank precisely exploits
such links to provide a powerful ranking algorithm. In essence, PageRank relies on
the democratic nature of the Web by using its vast link structure as an indicator of an
individual page’s quality. It interprets a hyperlink from page x to page y as a vote, by
page x , for page y. Additionally, PageRank looks at more than just the sheer number
of votes or links that a page receives. It also analyzes the page that casts the vote. Votes
cast by pages that are themselves “important” weigh more heavily and help to make
other pages more “important.” This is the rank prestige idea in social networks [9].
In this chapter, we introduce the PageRank algorithm. Along with it, an extension to
the algorithm is also presented, which is called Timed-PageRank. Timed-PageRank
adds the temporal dimension to search to deal with the dynamic nature of the Web
and the aging of Web pages.

6.2 PageRank Algorithm

PageRank produces a static ranking of Web pages in the sense that a PageRank value
is computed for each page off-line, and the value is not dependent on search queries.
In other words, the PageRank computation is purely based on the existing links on
the Web and has nothing to do with each query issued by users. Before introducing
the PageRank formula, let us first state some main concepts.

In-links of page i : These are the hyperlinks that point to page i from other pages.
Usually, hyperlinks from the same site are not considered.

Out-links of page i : These are the hyperlinks that point out to other pages from
page i . Usually, links to pages of the same site are not considered.

The following ideas based on rank prestige [9] are used to derive the PageRank
algorithm.
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1. A hyperlink from a page pointing to another page is an implicit conveyance of
authority to the target page. Thus, the more in-links that a page ireceives, the
more prestige the page i has.

2. Pages that point to page i also have their own prestige scores. A page with a
higher prestige score pointing to i is more important than a page with a lower
prestige score pointing to i . In other words, a page is important if it is pointed
to by other important pages.

According to rank prestige in social networks, the importance of page i (i’s PageRank
score) is determined by summing up the PageRank scores of all pages that point to
i . Because a page may point to many other pages, its prestige score should be shared
among all the pages to which it points.

To formulate the above ideas, we treat the Web as a directed graph G = (V , E),
where V is the set of vertices or nodes, that is, the set of all pages, and E is the set
of directed edges in the graph, that is, hyperlinks. Let the total number of pages on
the Web be n (i.e., n = |V |). The PageRank score of the page i [denoted by P(i)] is
defined by:

P(i) =
∑

( j,i)∈E

P( j)

O j
(6.1)

where O j is the number of out-links of page j . Mathematically, we have a system
of n linear equations [Equation (6.1)] with n unknowns. We can use a matrix to
represent all the equations. As a notational convention, we use bold and italic letters
to represent matrices. Let P be an n-dimensional column vector of PageRank values,
that is,

P = (P(1), P(2), . . . , P(n))T

Let A be the adjacency matrix of our graph with

Ai j =

⎧
⎪⎨

⎪⎩

1

Oi
if (i, j) ∈ E

0 otherwise

(6.2)

We can write the system of n equations with

P = AT P (6.3)

This is the characteristic equation of the eigensystem, where the solution to P is an
eigenvector with the corresponding eigenvalue of 1. Because this is a circular defi-
nition, an iterative algorithm is used to solve it. It turns out that if some conditions
are satisfied (which will be described shortly), 1 is the largest eigenvalue and the
PageRank vector P is the principal eigenvector. A well-known mathematical tech-
nique called power iteration [2] can be used to find P.
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Figure 6.1 An example of a hyperlink graph.

The conditions are that A is a stochastic matrix and that it is irreducible
and aperiodic. However, the Web graph does not meet these conditions. In fact,
Equation (6.3) can also be derived based on the Markov chain. Then some theoret-
ical results from Markov chains can be applied [8], which is where the above three
conditions come from.

In the Markov chain model, each Web page or node in the Web graph is regarded
as a state. A hyperlink is a transition, which leads from one state to another state with
a probability. Thus, this framework models Web surfing as a stochastic process. It
models a Web surfer randomly surfing the Web as a state transition in the Markov chain.

Now let us look at the Web graph and see why all three conditions are not satisfied.
First of all, A is not a stochastic (transition) matrix. A stochastic matrix is the transition
matrix for a finite Markov chain whose entries in each row are nonnegative real
numbers and sum to 1. This requires that every Web page must have at least one
out-link. This is not true on the Web because many pages have no out-links, which
are reflected in transition matrix A by some rows of complete 0’s. Such pages are
called dangling pages (nodes).

Example 6.2.1 Figure 6.1 shows an example of a hyperlink graph.

If we assume that the Web surfer will click the hyperlinks in a page uniformly at
random, we have the following transition probability matrix:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 1/2 0 0 0

1/2 0 1/2 0 0 0

0 1 0 0 0 0

0 0 1/3 0 1/3 1/3

0 0 0 0 0 0

0 0 0 1/2 1/2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4)

For example, A12 = A13 = 1/2 because node 1 has two out-links. We can see that A
is not a stochastic matrix because the fifth row is all 0’s, that is, page 5 is a dangling
page.

We can fix this problem by adding a complete set of outgoing links from each
such page i to all the pages on the Web. Thus, the transition probability of going
from i to every page is 1/n, assuming a uniform probability distribution. That is,
we replace each row containing all 0’s with e/n, where e is n-dimensional vector of
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all 1’s, giving us the following matrix:

Ā =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 1/2 0 0 0

1/2 0 1/2 0 0 0

0 1 0 0 0 0

0 0 1/3 0 1/3 1/3

1/6 1/6 1/6 1/6 1/6 1/6

0 0 0 1/2 1/2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.5)

Below, we assume that the above is done to make A a stochastic matrix.
Second, A is not irreducible, which means that the Web graph G is not strongly

connected.

Definition of strongly connected graphs: A directed graph G = (V , E) is
strongly connected if and only if, for each pair of nodes u, v ∈ V , there is
a path from u to v.

The general Web graph represented by A is not irreducible because for some
pairs of nodes u and v, there is no path from u to v. For example, in Figure 6.1,
there is no directed path from node 3 to node 4. The adjustment in Equation
(6.5) is not enough to ensure irreducibility. This problem and the next problem
can be dealt with using a single strategy (described below).

Finally, A is not aperiodic. A state i in a Markov chain being periodic means
that there exists a directed cycle that the chain has to traverse.

Definition of aperiodic graphs: A state i is periodic with period k > 1 if k is the
smallest number such that all paths leading from state i back to state i have a
length that is a multiple of k. If a state is not periodic (i.e., k = 1), it is aperiodic.
A Markov chain is aperiodic if all states are aperiodic.

Example 6.2.2 Figure 6.2 shows a periodic Markov chain with k = 3. The transition
matrix is given on the left. Each state in this chain has a period of 3. For example, if
we start from state 1, the only path to come back to state 1 is 1-2-3-1 for some number
of times, say h. Thus, any return to state 1 will take 3h transitions. In the Web, there
could be many such cases.

001
100
010 1

1
1
2

1
3A =

Figure 6.2 A periodic Markov chain with k = 3.
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It is easy to deal with the above two problems with a single strategy.

� We add a link from each page to every page and give each link a small transition
probability controlled by a parameter d.

The augmented transition matrix clearly becomes irreducible and also aperiodic. After
this augmentation, we obtain an improved PageRank model:

P =
(

(1 − d)
E
n

+ dAT

)
P (6.6)

where E is eeT (e is a column vector of all 1’s) and thus E is an n × n square matrix
of all 1’s. n is the total number of nodes in the Web graph and 1/n is the probability
of jumping to a random page. Note that Equation (6.6) assumes that A has already
been made a stochastic matrix. After scaling, we obtain

P = (1 − d)e + dAT P (6.7)

This gives us the PageRank formula for each page i :

P(i) = (1 − d) + d
n∑

j=1

A ji P( j) (6.8)

which is equivalent to the formula given in the original PageRank papers [1, 7]:

P(i) = (1 − d) + d
∑

( j,i)∈E

P( j)

O j
(6.9)

The parameter d , called the damping factor, can be set to a value between 0 and 1.
d = 0.85 is used in [1, 7].

The computation of PageRank values of the Web pages can be done using the power
iteration method [2], which produces the principal eigenvector with an eigenvalue
of 1. The algorithm is quite simple (see Figure 6.3). One can start with any initial
assignments of PageRank values. The iteration ends when the PageRank values do
not change much or converge. In Figure 6.3, the iteration ends after the 1-norm of the
residual vector is less than a prespecified threshold ε.

In Web search, we are only interested in the ranking of the pages. Thus, the actual
convergence may not be necessary and fewer iterations are needed. In [1], it is reported
that on a database of 322 million links the algorithm converges to an acceptable
tolerance in roughly 52 iterations.

Since PageRank was presented in [1], researchers have proposed many enhance-
ments to the model, alternative models, and improvements for its computation. The
books by Liu [5] and by Langville and Meyer [4] contain in-depth analyses of
PageRank and several other link-based algorithms, including HIT [3], which is an-
other well-known algorithm.
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PageRank-Iterate(G)

P0 ← e/n

k ← 1

k ← k + 1;

repeat

Pk ← (1 – d )e + d ATPk–1;

until ||Pk – Pk–1||1 < ε

return Pk

Figure 6.3 The power iteration method for PageRank.

6.3 An Extension: Timed-PageRank

One aspect that is not considered by PageRank is the timeliness of search results. The
Web is a dynamic environment. It changes constantly. Quality pages in the past may
not be quality pages now or in the future. The temporal aspect of search is important
as users are often interested in the latest information. Apart from well-established
facts and classics which do not change much over time, most contents on the Web
change constantly. New pages or contents are added and outdated contents and pages
are deleted. However, in practice many outdated pages and links are not deleted. This
causes problems for search engines because such outdated pages can still be ranked
high due to the fact that they have existed on the Web for a long time and have
accumulated a large number of in-links. High-quality new pages with the most up-
to-date information will be ranked low because they have few or no in-links, making
it difficult for users to find the latest information on the Web.

An algorithm called Timed-PageRank given in [6, 10] adds the temporal dimension
to PageRank. The idea of Timed-PageRank is simple. It still follows the random surfer
and Markov chain model in PageRank. However, instead of using a constant damping
factor d , Timed-PageRank uses a function of time f (t) (0 ≤ f (t) ≤ 1) to “penalize”
old links and pages, where t is the difference between the current time and the time
when the page was last updated. f (t) returns a probability that the Web surfer will
follow an actual link on the page. 1 − f (t) returns the probability that the surfer will
jump to a random page. Thus, at a particular page i , the Web surfer has two options:

1. With probability f (ti ), he/she randomly chooses an outgoing link to follow.

2. With probability 1 − f (ti ), he/she jumps to a random page without a link.

The intuition here is that if the page was last updated (or created) a long time ago, the
pages that it points to are even older and are probably out of date. Then the 1 − f (t)
value for such a page should be large, which means that the surfer will have a high
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probability of jumping to a random page. If a page is new, then its 1− f (t) value should
be small, which means that the surfer will have a high probability to follow an out-link
of the page and a small probability of jumping to a random page. For a complete new
page in a Web site, which does not have any in-links at all, the method given uses the
average Timed-PageRank value of the past pages in the Web site. This is reasonable
because a quality site in the past usually publishes quality new pages. The Timed-
PageRank algorithm has been evaluated based on research publication search and has
given promising results. Interested readers, please refer to [6] for additional details.

6.4 Summary

Link-based ranking for search has been instrumental for Web search. PageRank is
the best known algorithm for the purpose. It is practically very effective and also
well-founded theoretically. This chapter provides introductory material only; further
details can be found in [1, 4, 5, 7]. An extension to the PageRank algorithm is also
briefly discussed, which adds the temporal dimension to search. Finally, we should
note that link-based ranking is not the only strategy used in a search engine. Many
other information retrieval and data mining methods and heuristics based on the page
content and user clicks are also employed.

6.5 Exercises

1. Given A below, obtain P by solving Equation (6.7) directly.

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/3 1/3 1/3 0 0

1/2 0 1/2 0 0 0

0 1 0 0 0 0

0 1/4 1/4 0 1/4 1/4

0 1/2 1/2 0 0 0

0 0 0 1/2 1/2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Given A as in problem 1, use the power iteration method to show the first 10
iterations of P.

3. Calculate the squared error on each iteration in problem 2 where the squared
error is defined to be the sum of the squared error on each entry of P.

4. Plot a curve on the squared errors derived from problem 3 using the number of
iterations as the X axis and the squared error as the Y axis. Does the squared
error gradually decrease? After how many iterations do the ranking of the pages
stabilize?
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5. Given the graph G below, what is A?

3 4

6

1

2

5

6. For the graph G given in problem 5, what is P after seven iterations based on
the power iteration method?

7. Pick a URL, and construct a Web graph containing Web pages within three
hops from the starting URL.

8. For the graph derived in problem 7, what is A?

9. For the graph derived in problem 7, use the power iteration method to give the
first seven iterations of P.
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7.1 Introduction

Generalization ability, which characterizes how well the result learned from a given
training data set can be applied to unseen new data, is the most central concept in
machine learning. Researchers have devoted tremendous efforts to the pursuit of tech-
niques that could lead to a learning system with strong generalization ability. One
of the most successful paradigms is ensemble learning [32]. In contrast to ordinary
machine learning approaches which try to generate one learner from training data,
ensemble methods try to construct a set of base learners and combine them. Base
learners are usually generated from training data by a base learning algorithm which
can be a decision tree, a neural network, or other kinds of machine learning algorithms.
Just like “many hands make light work,” the generalization ability of an ensemble
is usually significantly better than that of a single learner. Actually, ensemble meth-
ods are appealing mainly because they are able to boost weak learners, which are
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slightly better than random guess, to strong learners, which can make very accurate
predictions. So, “base learners” are also referred as “weak learners.”

AdaBoost [9, 10] is one of the most influential ensemble methods. It took birth
from the answer to an interesting question posed by Kearns and Valiant in 1988. That
is, whether two complexity classes, weakly learnable and strongly learnable prob-
lems, are equal. If the answer to the question is positive, a weak learner that performs
just slightly better than random guess can be “boosted” into an arbitrarily accurate
strong learner. Obviously, such a question is of great importance to machine learning.
Schapire [21] found that the answer to the question is “yes,” and gave a proof by
construction, which is the first boosting algorithm. An important practical deficiency
of this algorithm is the requirement that the error bound of the base learners be known
ahead of time, which is usually unknown in practice. Freund and Schapire [9] then pro-
posed an adaptive boosting algorithm, named AdaBoost, which does not require those
unavailable information. It is evident that AdaBoost was born with theoretical signif-
icance, which has given rise to abundant research on theoretical aspects of ensemble
methods in communities of machine learning and statistics. It is worth mentioning
that for their AdaBoost paper [9], Schapire and Freund won the Godel Prize, which is
one of the most prestigious awards in theoretical computer science, in the year 2003.

AdaBoost and its variants have been applied to diverse domains with great success,
owing to their solid theoretical foundation, accurate prediction, and great simplicity
(Schapire said it needs only “just 10 lines of code”). For example, Viola and Jones [27]
combined AdaBoost with a cascade process for face detection. They regarded rectan-
gular features as weak learners, and by using AdaBoost to weight the weak learners,
they got very intuitive features for face detection. In order to get high accuracy as well
as high efficiency, they used a cascade process (which is beyond the scope of this chap-
ter). As a result, they reported a very strong face detector: On a 466 MHz machine, face
detection on a 384×288 image costs only 0.067 second, which is 15 times faster than
state-of-the-art face detectors at that time but with comparable accuracy. This face
detector has been recognized as one of the most exciting breakthroughs in computer
vision (in particular, face detection) during the past decade. It is not strange that “boost-
ing” has become a buzzword in computer vision and many other application areas.

In the rest of this chapter, we will introduce the algorithm and implementations, and
give some illustrations on how the algorithm works. For readers who are eager to know
more, we will introduce some theoretical results and extensions as advanced topics.

7.2 The Algorithm

7.2.1 Notations

We first introduce some notations that will be used in the rest of the chapter. Let X
denote the instance space, or in other words, feature space. Let Y denote the set of
labels that express the underlying concepts which are to be learned. For example, we
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let Y = {−1, +1} for binary classification. A training set D consists of m instances
whose associated labels are observed, i.e., D = {(xi , yi )} (i ∈ {1, . . . , m}), while
the label of a test instance is unknown and thus to be predicted. We assume both
training and test instances are drawn independently and identically from an underlying
distribution D.

After training on a training data set D, a learning algorithm L will output a hypoth-
esis h, which is a mapping from X to Y , or called as a classifier. The learning process
can be regarded as picking the best hypothesis from a hypothesis space, where the
word “best” refers to a loss function. For classification, the loss function can naturally
be 0/1-loss,

loss0/1(h | x) = I[h(x) �= y]

where I[·] is the indication function which outputs 1 if the inner expression is true
and 0 otherwise, which means that one error is counted if an instance is wrongly
classified. In this chapter 0/1-loss is used by default, but it is noteworthy that other
kinds of loss functions can also be used in boosting.

7.2.2 A General Boosting Procedure

Boosting is actually a family of algorithms, among which the AdaBoost algorithm
is the most influential one. So, it may be easier by starting from a general boosting
procedure.

Suppose we are dealing with a binary classification problem, that is, we are trying
to classify instances as positive and negative. Usually we assume that there exists
an unknown target concept, which correctly assigns “positive” labels to instances
belonging to the concept and “negative” labels to others. This unknown target concept
is actually what we want to learn. We call this target concept ground-truth. For a binary
classification problem, a classifier working by random guess will have 50% 0/1-loss.

Suppose we are unlucky and only have a weak classifier at hand, which is only
slightly better than random guess on the underlying instance distribution D, say, it
has 49% 0/1-loss. Let’s denote this weak classifier as h1. It is obvious that h1 is not
what we want, and we will try to improve it. A natural idea is to correct the mistakes
made by h1.

We can try to derive a new distribution D′ from D, which makes the mistakes of
h1 more evident, for example, it focuses more on the instances wrongly classified by
h1 (we will explain how to generate D′ in the next section). We can train a classifier
h2 from D′. Again, suppose we are unlucky and h2 is also a weak classifier. Since
D′ was derived from D, if D′ satisfies some condition, h2 will be able to achieve
a better performance than h1 on some places in D where h1 does not work well,
without scarifying the places where h1 performs well. Thus, by combining h1 and
h2 in an appropriate way (we will explain how to combine them in the next section),
the combined classifier will be able to achieve less loss than that achieved by h1. By
repeating the above process, we can expect to get a combined classifier which has
very small (ideally, zero) 0/1-loss on D.
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Input:  Instance distribution D;
              Base learning algorithm L;
              Number of learning rounds T.
Process:
1.        D1 = D.             % Initialize distribution
2.        for t = 1, ··· ,T:
3.              ht = L(Dt);           % Train a weak learner from distribution Dt
4.              єt = Prx~Dt ,y I[ht (x)≠ y];                % Measure the error of ht
5.              Dt+1 = AdjustDistribution (Dt , єt)
6.        end
Output: H(x) = CombineOutputs({ht(x)})

Figure 7.1 A general boosting procedure.

Briefly, boosting works by training a set of classifiers sequentially and combining
them for prediction, where the later classifiers focus more on the mistakes of the
earlier classifiers. Figure 7.1 summarizes the general boosting procedure.

7.2.3 The AdaBoost Algorithm

Figure 7.1 is not a real algorithm since there are some undecided parts such
as Ad just Distribution and CombineOutputs. The AdaBoost algorithm can be
viewed as an instantiation of the general boosting procedure, which is summarized
in Figure 7.2.

Input:  Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
              Base learning algorithm L;
              Number of learning rounds T.
Process:
1.      D1 (i) = 1/m.           % Initialize the weight distribution
2.      for t = 1, ··· ,T:
3.          ht = L(D, Dt);      % Train a learner ht from D using distribution Dt
4.          єt = Prx~Dt ,y I[ht (x)≠ y];         % Measure the error of ht
5.          if єt > 0.5 then break
6.        αt = ½ ln (       );   % Determine the weight of ht

7.        Dt+1 (i) =

8.        end

Output: H(x) = sign (Σt=1αt ht(x))

× { exp(–αt) if ht(xi) = yi
exp(αt)    if ht(xi) ≠ yi

       % Update the distribution, where
% Zt is a normalization factor which

% enables Dt+1 to be distribution

T

1– єt
єt

Dt(i)
Zt

Dt(i)exp(–αt yi ht (xi))
Zt

Figure 7.2 The AdaBoost algorithm.
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Now we explain the details.1 AdaBoost generates a sequence of hypotheses and
combines them with weights, which can be regarded as an additive weighted combi-
nation in the form of

H (x) =
T∑

t=1

αt ht (x)

From this view, AdaBoost actually solves two problems, that is, how to generate the
hypotheses ht ’s and how to determine the proper weights αt ’s.

In order to have a highly efficient error reduction process, we try to minimize an
exponential loss

lossexp(h) = Ex∼D,y[e−yh(x)]

where yh(x) is called as the classification margin of the hypothesis.
Let’s consider one round in the boosting process. Suppose a set of hypotheses as

well as their weights have already been obtained, and let H denote the combined
hypothesis. Now, one more hypothesis h will be generated and is to be combined
with H to form H + αh. The loss after the combination will be

lossexp(H + αh) = Ex∼D,y[e−y(H (x)+αh(x))]

The loss can be decomposed to each instance, which is called pointwise loss, as

lossexp(H + αh | x) = Ey[e−y(H (x)+αh(x)) | x]

Since y and h(x) must be +1 or −1, we can expand the expectation as

lossexp(H + αh | x) = e−y H (x)
(
e−α P(y = h(x) | x) + eα P(y �= h(x) | x)

)

Suppose we have already generated h, and thus the weight α that minimizes the
loss can be found when the derivative of the loss equals zero, that is,

∂lossexp(H + αh | x)

∂α
= e−y H (x)

(−e−α P(y = h(x) | x) + eα P(y �= h(x) | x)
)

= 0

and the solution is

α = 1

2
ln

P(y = h(x) | x)

P(y �= h(x) | x)
= 1

2
ln

1 − P(y �= h(x) | x)

P(y �= h(x) | x)

By taking an expectation over x, that is, solving ∂lossexp(H+αh)
∂α

= 0, and denoting
ε = Ex∼D[y �= h(x)], we get

α = 1

2
ln

1 − ε

ε

which is the way of determining αt in AdaBoost.

1Here we explain the AdaBoost algorithm from the view of [11] since it is easier to understand than the
original explanation in [9].
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Now let’s consider how to generate h. Given a base learning algorithm, AdaBoost
invokes it to produce a hypothesis from a particular instance distribution. So, we only
need to consider what hypothesis is desired for the next round, and then generate an
instance distribution to achieve this hypothesis.

We can expand the pointwise loss to second order about h(x) = 0, when fixing
α = 1,

lossexp(H + h | x) ≈ Ey[e−y H (x)(1 − yh(x) + y2h(x)2/2) | x]

= Ey[e−y H (x)(1 − yh(x) + 1/2) | x]

since y2 = 1 and h(x)2 = 1.
Then a perfect hypothesis is

h∗(x) = arg min
h

lossexp(H + h | x) = arg max
h

Ey[e−y H (x) yh(x) | x]

= arg max
h

e−H (x) P(y = 1 | x) · 1 · h(x) + eH (x) P(y = −1 | x) · (−1) · h(x)

Note that e−y H (x) is a constant in terms of h(x). By normalizing the expectation as

h∗(x) = arg max
h

e−H (x) P(y = 1 | x) · 1 · h(x) + eH (x) P(y = −1 | x) · (−1) · h(x)

e−H (x) P(y = 1 | x) + eH (x) P(y = −1 | x)

we can rewrite the expectation using a new term w(x, y), which is drawn from
e−y H (x) P(y | x), as

h∗(x) = arg max
h

Ew(x,y)∼e−y H (x) P(y|x)[yh(x) | x]

Since h∗(x) must be +1 or −1, the solution to the optimization is that h∗(x) holds
the same sign with y|x, that is,

h∗(x) = Ew(x,y)∼e−y H (x) P(y|x)[y | x]

= Pw(x,y)∼e−y H (x) P(y|x)(y = 1 | x) − Pw(x,y)∼e−y H (x) P(y|x)(y = −1 | x)

As can be seen, h∗ simply performs the optimal classification of x under the distri-
bution e−y H (x) P(y | x). Therefore, e−y H (x) P(y | x) is the desired distribution for a
hypothesis minimizing 0/1-loss.

So, when the hypothesis h(x) has been learned and α = 1
2 ln 1−ε

ε
has been deter-

mined in the current round, the distribution for the next round should be

Dt+1(x) = e−y(H (x)+αh(x)) P(y | x) = e−y H (x) P(y | x) · e−αyh(x)

= Dt (x) · e−αyh(x)

which is the way of updating instance distribution in AdaBoost.
But, why optimizing the exponential loss works for minimizing the 0/1-loss?

Actually, we can see that

h∗(x) = arg min
h

Ex∼D,y[e−yh(x) | x] = 1

2
ln

P(y = 1 | x)

P(y = −1 | x)
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and therefore we have

sign(h∗(x)) = arg max
y

P(y|x)

which implies that the optimal solution to the exponential loss achieves the minimum
Bayesian error for the classification problem. Moreover, we can see that the function
h∗ which minimizes the exponential loss is the logistic regression model up to a factor
2. So, by ignoring the factor 1/2, AdaBoost can also be viewed as fitting an additive
logistic regression model.

It is noteworthy that the data distribution is not known in practice, and the AdaBoost
algorithm works on a given training set with finite training examples. Therefore, all
the expectations in the above derivations are taken on the training examples, and the
weights are also imposed on training examples. For base learning algorithms that
cannot handle weighted training examples, a resampling mechanism, which samples
training examples according to desired weights, can be used instead.

7.3 Illustrative Examples

In this section, we demonstrate how the AdaBoost algorithm works, from an illustra-
tion on a toy problem to real data sets.

7.3.1 Solving XOR Problem

We consider an artificial data set in a two-dimensional space, plotted in Figure 7.3(a).
There are only four instances, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x1 = (0, +1), y1 = +1)

(x2 = (0, −1), y2 = +1)

(x3 = (+1, 0), y3 = −1)

(x4 = (−1, 0), y4 = −1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

This is the XOR problem. The two classes cannot be separated by a linear classifier
which corresponds to a line on the figure.

Suppose we have a base learning algorithm which tries to select the best of the fol-
lowing eight functions. Note that none of them is perfect. For equally good functions,
the base learning algorithm will pick one function from them randomly.

h1(x) =
{ +1, if (x1 > −0.5)

−1, otherwise
h2(x) =

{ −1, if (x1 > −0.5)
+1, otherwise

h3(x) =
{ +1, if (x1 > +0.5)

−1, otherwise
h4(x) =

{ −1, if (x1 > +0.5)
+1, otherwise
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(a) The XOR data (b) 1st round (c) 2nd round (d) 3rd round
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Figure 7.3 AdaBoost on the XOR problem.

h5(x) =
{ +1, if (x2 > −0.5)

−1, otherwise
h6(x) =

{ −1, if (x2 > −0.5)
+1, otherwise

h7(x) =
{ +1, if (x2 > +0.5)

−1, otherwise
h8(x) =

{ −1, if (x2 > +0.5)
+1, otherwise

where x1 and x2 are the values of x at the first and second dimension, respectively.
Now we track how AdaBoost works:

1. The first step is to invoke the base learning algorithm on the original data. h2,
h3, h5, and h8 all have 0.25 classification errors. Suppose h2 is picked as the first
base learner. One instance, x1, is wrongly classified, so the error is 1/4 = 0.25.
The weight of h2 is 0.5 ln 3 ≈ 0.55. Figure 7.3(b) visualizes the classification,
where the shadowed area is classified as negative (−1) and the weights of the
classification, 0.55 and −0.55, are displayed.

2. The weight of x1 is increased and the base learning algorithm is invoked again.
This time h3, h5, and h8 have equal errors. Suppose h3 is picked, of which
the weight is 0.80. Figure 7.3(c) shows the combined classification of h2 and
h3 with their weights, where different gray levels are used for distinguishing
negative areas according to classification weights.

3. The weight of x3 is increased, and this time only h5 and h8 equally have the
lowest errors. Suppose h5 is picked, of which the weight is 1.10. Figure 7.3(d)
shows the combined classification of h2, h3, and h8. If we look at the sign of
classification weights in each area in Figure 7.3(d), all the instances are correctly
classified. Thus, by combining the imperfect linear classifiers, AdaBoost has
produced a nonlinear classifier which has zero error.

7.3.2 Performance on Real Data

We evaluate the AdaBoost algorithm on 56 data sets from the UCI Machine Learning
Repository,2 which covers a broad range of real-world tasks. We use the Weka (will be
introduced in Section 7.6) implementation of AdaBoost.M1 using reweighting with

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
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AdaBoost with decision tree (unpruned)

AdaBoost with decision tree (pruned)AdaBoost with decision stump
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Figure 7.4 Comparison of predictive errors of AdaBoost against decision stump,
pruned, and unpruned single decision trees on 56 UCI data sets.

50 base learners. Almost all kinds of learning algorithms can be taken as base learning
algorithms, such as decision trees, neural networks, and so on. Here, we have tried
three base learning algorithms, including decision stump, pruned, and unpruned J4.8
decision trees (Weka implementation of C4.5).

We plot the comparison results in Figure 7.4, where each circle represents a data set
and locates according to the predictive errors of the two compared algorithms. In each
plot of Figure 7.4, the diagonal line indicates where the two compared algorithms
have identical errors. It can be observed that AdaBoost often outperforms its base
learning algorithm, with a few exceptions on which it degenerates the performance.

The famous bias-variance decomposition [12] has been employed to empirically
study why AdaBoost achieves excellent performance [2, 3, 34]. This powerful tool
breaks the expected error of a learning approach into the sum of three nonnegative
quantities, that is, the intrinsic noise, the bias, and the variance. The bias measures
how closely the average estimate of the learning approach is able to approximate the
target, and the variance measures how much the estimate of the learning approach
fluctuates for the different training sets of the same size. It has been observed [2,3,34]
that AdaBoost primarily reduces the bias but it is also able to reduce the variance.
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Figure 7.5 Four feature masks to be applied to each rectangle.

7.4 Real Application

Viola and Jones [27] combined AdaBoost with a cascade process for face detection.
As the result, they reported that on a 466 MHz machine, face detection on a 384×288
image costs only 0.067 seconds, which is almost 15 times faster than state-of-the-
art face detectors at that time but with comparable accuracy. This face detector has
been recognized as one of the most exciting breakthroughs in computer vision (in
particular, face detection) during the past decade. In this section, we briefly introduce
how AdaBoost works in the Viola-Jones face detector.

Here the task is to locate all possible human faces in a given image. An image is
first divided into subimages, say 24 × 24 squares. Each subimage is then represented
by a feature vector. To make the computational process efficient, very simple features
are used. All possible rectangles in a subimage are examined. On every rectangle,
four features are extracted using the masks shown in Figure 7.5. With each mask,
the sum of pixels’ gray level in white areas is subtracted by the sum of those in dark
areas, which is regarded as a feature. Thus, by a 24×24 splitting, there are more than
1 million features, but each of the features can be calculated very fast.

Each feature is regarded as a weak learner, that is,

hi,p,θ (x) = I[pxi ≤ pθ ] (p ∈ {+1, −1})
where xi is the value of x at the i-th feature.

The base learning algorithm tries to find the best weak classifier hi∗,p∗,θ∗ that
minimizes the classification error, that is,

(i∗, p∗, θ∗) = arg min
i,p,θ

E(x,y)I[hi,p,θ (x) �= y]

Face rectangles are regarded as positive examples, as shown in Figure 7.6, while
rectangles that do not contain any face are regarded as negative examples. Then, the
AdaBoost process is applied and it will return a few weak learners, each corresponds
to one of the over 1 million features. Actually, the AdaBoost process can be regarded
as a feature selection tool here.

Figure 7.7 shows the first two selected features and their position relative to a
human face. It is evident that these two features are intuitive, where the first feature
measures how the intensity of the eye areas differ from that of the lower areas, while
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Figure 7.6 Positive training examples [27].

the second feature measures how the intensity of the two eye areas differ from the
area between two eyes.

Using the selected features in order, an extremely imbalanced decision tree is built,
which is called cascade of classifiers, as illustrated in Figure 7.8.

The parameter θ is adjusted in the cascade such that, at each tree node, branching
into “not a face” means that the image is really not a face. In other words, the false
negative rate is minimized. This design owes to the fact that a nonface image is easier
to be recognized, and it is possible to use a few features to filter out a lot of candidate
image rectangles, which endows the high efficiency. It was reported [27] that 10
features per subimage are examined in average. Some test results of the Viola-Jones
face detector are shown in Figure 7.9.
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Figure 7.7 Selected features [27].

7.5 Advanced Topics

7.5.1 Theoretical Issues

Computational learning theory studies some fundamental theoretical issues of
machine learning. First introduced by Valiant in 1984 [25], the Probably Approx-
imately Correct (PAC) framework models learning algorithms in a distribution free
manner. Roughly speaking, for binary classification, a problem is learnable or strongly
learnable if there exists an algorithm that outputs a hypothesis h in polynomial time

not a face

facenot a face

not a face ...

Figure 7.8 A cascade of classifiers.
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Figure 7.9 Outputs of the Viola-Jones face detector on a number of test images [27].

such that for all 0 < δ, ε ≤ 0.5,

P
(
Ex∼D,y [I [h(x) �= y]] < ε

) ≥ 1 − δ

and a problem is weakly learnable if the above holds for all 0 < δ ≤ 0.5 but only
when ε is slightly smaller than 0.5 (or in other words, h is only slightly better than
random guess).

In 1988, Kearns and Valiant [15] posed an interesting question, that is, whether
the strongly learnable problem class equals the weakly learnable problem class. This
question is of fundamental importance, since if the answer is “yes,” any weak learner
is potentially able to be boosted to a strong learner. In 1989, Schapire [21] proved that
the answer is really “yes,” and the proof he gave is a construction, which is the first
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boosting algorithm. One year later, Freund [7] developed a more efficient algorithm.
Both algorithms, however, suffered from the practical deficiency that the error bound
of the base learners need to be known ahead of time, which is usually unknown in
practice. Later, in 1995, Freund and Schapire [9] developed the AdaBoost algorithm,
which is effective and efficient in practice.

Freund and Schapire [9] proved that, if the base learners of AdaBoost have errors
ε1, ε2, · · · , εT , the error of the final combined learner, ε, is upper bounded as

ε = Ex∼D,yI[H (x) �= y] ≤ 2T
T∏

t=1

√
εt (1 − εt ) ≤ e−2

∑T
t=1 γ 2

t

where γt = 0.5 − εt . It can be seen that AdaBoost reduces the error exponentially
fast. Also, it can be derived that, to achieve an error less than ε, the round T is upper
bounded as

T ≤
⌈

1

2γ 2
ln

1

ε

⌉

where it is assumed that γ = γ1 = γ2 = · · · = γT .
In practice, however, all the operations of AdaBoost can only be carried out on

training data D, that is,
εD = Ex∼D,yI[H (x) �= y]

and thus the errors are training errors, while the generalization error, that is, the error
over instance distribution D

εD = Ex∼D,yI[H (x) �= y]

is of more interest.
The initial analysis [9] showed that the generalization error of AdaBoost is upper

bounded as

εD ≤ εD + Õ

(√
dT

m

)

with probability at least 1 − δ, where d is the VC-dimension of base learners, m is
the number of training instances, and Õ(·) is used instead of O(·) to hide logarithmic
terms and constant factors.

The above bound suggests that in order to achieve a good generalization ability,
it is necessary to constrain the complexity of base learners as well as the number of
learning rounds; otherwise AdaBoost will overfit. However, empirical studies show
that AdaBoost often does not overfit, that is, its test error often tends to decrease even
after the training error reaches zero, even after a large number of rounds, such as
1000.

For example, Schapire et al. [22] plotted the performance of AdaBoost on the
letter data set from UCI Machine Learning Repository, as shown in Figure 7.10 (left),
where the higher curve is test error while the lower one is training error. It can be
observed that AdaBoost achieves zero training error in less than 10 rounds but the
generalization error keeps on reducing. This phenomenon seems to counter Occam’s
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Figure 7.10 Training and test error (left) and margin distribution (right) of AdaBoost
on the letter data set [22].

Razor, that is, nothing more than necessary should be done, which is one of the basic
principles in machine learning.

Many researchers have studied this phenomena, and several theoretical explana-
tions have been given, for example, [11]. Schapire et al. [22] introduced the margin-
based explanation. They argued that AdaBoost is able to increase the margin even
after the training error reaches zero, and thus it does not overfit even after a large
number of rounds. The classification margin of h on x is defined as yh(x), and that
of H (x) = ∑T

t=1 αt ht (x) is defined as

y H (x) =
∑T

t=1 αt yht (x)
∑T

t=1 αt

Figure 7.10 (right) plots the distribution of y H (x) ≤ θ for different values of θ . It
was proved in [22] that the generalization error is upper bounded as

εD ≤ Px∼D,y(y H (x) ≤ θ ) + Õ

(√
d

mθ2
+ ln

1

δ

)

≤ 2T
T∏

t=1

√
ε1−θ

t (1 − ε)1+θ + Õ

(√
d

mθ2
+ ln

1

δ

)

with probability at least 1 − δ. This bound qualitatively explains that when other
variables in the bound are fixed, the larger the margin, the smaller the generalization
error.

However, this margin-based explanation was challenged by Brieman [4]. Using
minimum margin �,

� = min
x∈D

y H (x)

Breiman proved a generalization error bound is tighter than the above one using
minimum margin. Motivated by the tighter bound, the arc-gv algorithm, which is a
variant of AdaBoost, was proposed to maximize the minimum margin directly, by
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updating αt according to

αt = 1

2
ln

(
1 + γt

1 − γt

)
− 1

2
ln

(
1 + �t

1 − �t

)

Interestingly, the minimum margin of arc-gv is uniformly better than that of AdaBoost,
but the test error of arc-gv increases drastically on all tested data sets [4]. Thus, the
margin theory for AdaBoost was almost sentenced to death.

In 2006, Reyzin and Schapire [20] reported an interesting finding. It is well-known
that the bound of the generalization error is associated with margin, the number of
rounds, and the complexity of base learners. When comparing arc-gv with AdaBoost,
Breiman [4] tried to control the complexity of base learners by using decision trees
with the same number of leaves, but Reyzin and Schapire found that these are trees
with very different shapes. The trees generated by arc-gv tend to have larger depth,
while those generated by AdaBoost tend to have larger width. Figure 7.11 (top)
shows the difference of depth of the trees generated by the two algorithms on the
breast cancer data set from UCI Machine Learning Repository. Although the trees
have the same number of leaves, it seems that a deeper tree makes more attribute
tests than a wider tree, and therefore they are unlikely to have equal complexity.
So, Reyzin and Schapire repeated Breiman’s experiments by using decision stump,
which has only one leaf and therefore is with a fixed complexity, and found that the
margin distribution of AdaBoost is actually better than that of arc-gv, as illustrated in
Figure 7.11 (bottom).

Recently, Wang et al. [28] introduced equilibrium margin and proved a new bound
tighter than that obtained by using minimum margin, which suggests that the mini-
mum margin may not be crucial for the generalization error of AdaBoost. It will be
interesting to develop an algorithm that maximizes equilibrium margin directly, and
to see whether the test error of such an algorithm is smaller than that of AdaBoost,
which remains an open problem.

7.5.2 Multiclass AdaBoost

In the previous sections we focused on AdaBoost for binary classification, that is,
Y = {+1, −1}. In many classification tasks, however, an instance belongs to one of
many instead of two classes. For example, a handwritten number belongs to 1 of 10
classes, that is, Y = {0, . . . , 9}. There is more than one way to deal with a multiclass
classification problem.

AdaBoost.M1 [9] is a very direct extension, which is as same as the algorithm shown
in Figure 7.2, except that now the base learners are multiclass learners instead of binary
classifiers. This algorithm could not use binary base classifiers, and requires every
base learner have less than 1/2 multiclass 0/1-loss, which is an overstrong constraint.

SAMME [35] is an improvement over AdaBoost.M1, which replaces Line 5 of
AdaBoost.M1 in Figure 7.2 by

αt = 1

2
ln

(
1 − εt

εt

)
+ ln(|Y| − 1)
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Figure 7.11 Tree depth (top) and margin distribution (bottom) of AdaBoost against
arc-gv on the breast cancer data set [20].

This modification is derived from the minimization of multiclass exponential loss. It
was proved that, similar to the case of binary classification, optimizing the multiclass
exponential loss approaches to the optimal Bayesian error, that is,

sign[h∗(x)] = arg max
y∈Y

P(y|x)

where h∗ is the optimal solution to the multiclass exponential loss.
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A popular solution to multiclass classification problem is to decompose the task into
multiple binary classification problems. Direct and popular decompositions include
one-vs-rest and one-vs-one. One-vs-rest decomposes a multiclass task of |Y| classes
into |Y| binary classification tasks, where the i-th task is to classify whether an
instance belongs to the i-th class or not. One-vs-one decomposes a multiclass task
of |Y| classes into |Y|(|Y|−1)

2 binary classification tasks, where each task is to classify
whether an instance belongs to, say, the i-th class or the j-th class.

AdaBoost.MH [23] follows the one-vs-rest approach. After training |Y| number of
(binary) AdaBoost classifiers, the real-value output H (x) = ∑T

t=1 αt ht (x) of each
AdaBoost is used instead of the crisp classification to find the most probable class,
that is,

H (x) = arg max
y∈Y

Hy(x)

where Hy is the AdaBoost classifier that classifies the y-th class from the rest.
AdaBoost.M2 [9] follows the one-vs-one approach, which minimizes a pseudo-

loss. This algorithm is later generalized as AdaBoost.MR [23] which minimizes a
ranking loss motivated by the fact that the highest ranked class is more likely to be
the correct class. Binary classifiers obtained by one-vs-one decomposition can also
be aggregated by voting or pairwise coupling [13].

Error correcting output codes (ECOCs) [6] can also be used to decompose a
multiclass classification problem into a series of binary classification problems. For
example, Figure 7.12a shows output codes for four classes using five classifiers. Each
classifier is trained to discriminate the+1 and −1 classes in the corresponding column.
For a test instance, by concatenating the classifications output by the five classifiers,
a code vector of predictions is obtained. This vector will be compared with the code
vector of the classes (every row in Figure 7.12(a) using Hamming distance, and the
class with the shortest distance is deemed the final prediction. According to infor-
mation theory, when the binary classifiers are independent, the larger the minimum
Hamming distance within the code vectors, the smaller the 0/1-loss. Later, a unified
framework was proposed for multiclass decomposition approaches [1]. Figure 7.12(b)
shows the output codes for one-vs-rest decomposition and Figure 7.12(c) shows the
output codes for one-vs-one decomposition, where zeros mean that the classifiers
should ignore the instances of those classes.

↓ ↓ ↓ ↓ ↓
y1 = +1 −1 +1 −1 +1

y2 = +1 +1 −1 −1 −1

y3 = −1 −1 +1 −1 −1

y4 = −1 +1 −1 +1 +1

(a) Original code (b) One-vs-rest code (c) One-vs-one code

H1 H2 H3 H4 H5

↓ ↓ ↓ ↓
y1 = +1 −1 −1 −1

y2 = −1 +1 −1 −1

y3 = −1 −1 +1 −1

y4 = −1 −1 −1 +1

H1 H2 H3 H4

↓ ↓ ↓ ↓ ↓
y1 = +1 +1 +1  0   0   0

y2 = –1  0   0  +1 +1  0

y3 =  0  −1  0  −1   0 +1

y4 =  0   0  −1  0  −1 −1

H1 H2 H3 H4 H5

↓
H6

Figure 7.12 ECOC output codes.
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7.5.3 Other Advanced Topics

Comprehensibility, that is, understandability of the learned model to user, is desired
in many real applications. Similar to other ensemble methods, a serious deficiency
of AdaBoost and its variants is the lack of comprehensibility. Even when the base
learners are comprehensible models such as small decision trees, the combination of
them will lead to a black-box model. Improving the comprehensibility of ensemble
methods is an important yet largely understudied direction [33].

In most ensemble methods, all the generated base learners are used in the ensemble.
However, it has been proved that stronger ensembles with smaller sizes can be ob-
tained through selective ensemble, that is, ensembling some instead of all the available
base learners [34]. This finding is different from previous results which suggest that
ensemble pruning may sacrifice the generalization ability [17,24], and therefore pro-
vides support for better selective ensemble or ensemble pruning methods [18, 31].

In many applications, training examples of one class are far more than other classes.
Learning algorithms that do not consider class imbalance tend to be overwhelmed by
the majority class; however, the primary interest is often on the minority class. Many
variants of AdaBoost have been developed for class-imbalance learning [5,14,19,26].
Moreover, a recent study [16] suggests that the performance of AdaBoost could be
used as a clue to judge whether a task suffers from class imbalance or not, based on
which new powerful algorithms may be designed.

As mentioned before, in addition to the 0/1-loss, boosting can also work with other
kinds of loss functions. For example, by considering the ranking loss, RankBoost [8]
and AdaRank [30] have been developed for information retrieval tasks.

7.6 Software Implementations

As an off-the-shelf machine learning technique, AdaBoost and its variants have easily
accessible codes in Java, MATLAB�, R, and C++.

Java implementations can be found in Weka,3 one of the most famous open-source
packages for machine learning and data mining. Weka includes AdaBoost.M1 al-
gorithm [9], which provides options to choose the base learning algorithms, set the
number of base learners, and switch between reweighting and resampling mech-
anisms. Weka also includes other boosting algorithms, such as LogitBoost [11],
MultiBoosting [29], and so on.

MATLAB implementation can be found in Spider.4 R implementation can be found
in R-Project.5 C++ implementation can be found in Sourceforge.6 There are also
many other implementations that can be found on the Internet.

3http://www.cs.waikato.ac.nz/ml/weka/.
4http://www.kyb.mpg.de/bs/people/spider/.
5http://cran.r-project.org/web/packages/.
6http://sourceforge.net/projects/multiboost.
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7.7 Exercises

1. What is the basic idea of Boosting?

2. In Figure 7.2, why should it break when εt ≥ 0.5?

3. Given a training set
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x1 = (+1, 0), y1 = +1)
(x2 = (0, +1), y2 = +1)
(x3 = (−1, 0), y3 = +1)
(x4 = (0, −1), y4 = +1)
(x5 = (0, 0), y5 = −1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

is there any linear classifier that can reach zero training error? Why/why not?

4. Given the above training set, show that AdaBoost can reach zero training error
by using five linear base classifiers from the following pool.

h1(x) = 2I[x1 > 0.5] − 1 h2(x) = 2I[x1 < 0.5] − 1

h3(x) = 2I[x1 > −0.5] − 1 h4(x) = 2I[x1 < −0.5] − 1

h5(x) = 2I[x2 > 0.5] − 1 h6(x) = 2I[x2 < 0.5] − 1

h7(x) = 2I[x2 > −0.5] − 1 h8(x) = 2I[x2 < −0.5] − 1

h9(x) = +1 h10(x) = −1

5. In the above exercise, will AdaBoost reach nonzero training error for any
T ≥ 5? T is the number of base classifiers.

6. The nearest neighbor classifier classifies an instance by assigning it with the
label of its nearest training example. Can AdaBoost boost the performance of
such classifier? Why/why not?

7. Plot the following functions in a graph within range z ∈ [−2, 2], and observe
their difference.

l1(z) =
{

0, z ≥ 0

1, z < 0
l2(z) =

{
0, z ≥ 1

1 − z, z < 1

l3(z) = (z − 1)2 l4(z) = e−z

Note that, when z = y f (x), l1, l2, l3, and l4 are functions of 0/1-loss, hinge loss
(used by support vector machines), square loss (used by least square regression),
and exponential loss (the loss function used by AdaBoost), respectively.

8. Show that the l2, l3, and l4 functions in the above exercise are all convex
(l is convex if ∀z1, z2 : l(z1 + z2) ≥ (l(z1) + l(z2))). Considering a binary
classification task z = y f (x) where y = {−1, +1}, find that function to which
the optimal solution is the Bayesian optimal solution.

9. Can AdaBoost be extended to solve regression problems? If your answer is yes,
how? If your answer is no, why?
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10. Run experiments to compare AdaBoost using reweighting and AdaBoost using
resampling. You can use Weka implementation and data sets from UCI Machine
Learning Repository.
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8.1 Introduction

One of the simplest and rather trivial classifiers is the Rote classifier, which memorizes
the entire training data and performs classification only if the attributes of the test
object exactly match the attributes of one of the training objects. An obvious problem
with this approach is that many test records will not be classified because they do
not exactly match any of the training records. Another issue arises when two or more
training records have the same attributes but different class labels.

A more sophisticated approach, k-nearest neighbor (kNN) classification [10,11,21],
finds a group of k objects in the training set that are closest to the test object, and
bases the assignment of a label on the predominance of a particular class in this
neighborhood. This addresses the issue that, in many data sets, it is unlikely that one
object will exactly match another, as well as the fact that conflicting information about
the class of an object may be provided by the objects closest to it. There are several
key elements of this approach: (i) the set of labeled objects to be used for evaluating
a test object’s class,1 (ii) a distance or similarity metric that can be used to compute

1This need not be the entire training set.
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the closeness of objects, (iii) the value of k, the number of nearest neighbors, and (iv)
the method used to determine the class of the target object based on the classes and
distances of the k nearest neighbors. In its simplest form, kNN can involve assigning
an object the class of its nearest neighbor or of the majority of its nearest neighbors,
but a variety of enhancements are possible and are discussed below.

More generally, kNN is a special case of instance-based learning [1]. This includes
case-based reasoning [3], which deals with symbolic data. The kNN approach is also
an example of a lazy learning technique, that is, a technique that waits until the query
arrives to generalize beyond the training data.

Although kNN classification is a classification technique that is easy to understand
and implement, it performs well in many situations. In particular, a well-known result
by Cover and Hart [6] shows that the classification error2 of the nearest neighbor rule
is bounded above by twice the optimal Bayes error3 under certain reasonable assump-
tions. Furthermore, the error of the general kNN method asymptotically approaches
that of the Bayes error and can be used to approximate it.

Also, because of its simplicity, kNN is easy to modify for more complicated classifi-
cation problems. For instance, kNN is particularly well-suited for multimodal classes4

as well as applications in which an object can have many class labels. To illustrate the
last point, for the assignment of functions to genes based on microarray expression
profiles, some researchers found that kNN outperformed a support vector machine
(SVM) approach, which is a much more sophisticated classification scheme [17].

The remainder of this chapter describes the basic kNN algorithm, including vari-
ous issues that affect both classification and computational performance. Pointers are
given to implementations of kNN, and examples of using the Weka machine learn-
ing package to perform nearest neighbor classification are also provided. Advanced
techniques are discussed briefly and this chapter concludes with a few exercises.

8.2 Description of the Algorithm

8.2.1 High-Level Description

Algorithm 8.1 provides a high-level summary of the nearest-neighbor classification
method. Given a training set D and a test object z, which is a vector of attribute values
and has an unknown class label, the algorithm computes the distance (or similarity)

2The classification error of a classifier is the percentage of instances it incorrectly classifies.
3The Bayes error is the classification error of a Bayes classifier, that is, a classifier that knows the underlying
probability distribution of the data with respect to class, and assigns each data point to the class with the
highest probability density for that point. For more detail, see [9].
4With multimodal classes, objects of a particular class label are concentrated in several distinct areas of
the data space, not just one. In statistical terms, the probability density function for the class does not have
a single “bump” like a Gaussian, but rather, has a number of peaks.
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Algorithm 8.1 Basic kNN Algorithm
Input : D, the set of training objects, the test object, z, which is a vector of

attribute values, and L , the set of classes used to label the objects
Output : cz ∈ L , the class of z
foreach object y ∈ D do
| Compute d(z, y), the distance between z and y;

end
Select N ⊆ D, the set (neighborhood) of k closest training objects for z;
cz = argmax

v∈L

∑
y∈N I (v = class(cy));

where I (·) is an indicator function that returns the value 1 if its argument is true and
0 otherwise.

between z and all the training objects to determine its nearest-neighbor list. It then
assigns a class to z by taking the class of the majority of neighboring objects. Ties
are broken in an unspecified manner, for example, randomly or by taking the most
frequent class in the training set.

The storage complexity of the algorithm is O(n), where n is the number of training
objects. The time complexity is also O(n), since the distance needs to be computed
between the target and each training object. However, there is no time taken for
the construction of the classification model, for example, a decision tree or sepa-
rating hyperplane. Thus, kNN is different from most other classification techniques
which have moderately to quite expensive model-building stages, but very inexpensive
O(constant) classification steps.

8.2.2 Issues

There are several key issues that affect the performance of kNN. One is the choice
of k. This is illustrated in Figure 8.1, which shows an unlabeled test object, x, and
training objects that belong to either a “+” or “−” class. If k is too small, then the
result can be sensitive to noise points. On the other hand, if k is too large, then
the neighborhood may include too many points from other classes. An estimate of
the best value for k can be obtained by cross-validation. However, it is important to
point out that k = 1 may be able to perform other values of k, particularly for small
data sets, including those typically used in research or for class exercises. However,
given enough samples, larger values of k are more resistant to noise.

Another issue is the approach to combining the class labels. The simplest method is
to take a majority vote, but this can be a problem if the nearest neighbors vary widely
in their distance and the closer neighbors more reliably indicate the class of the object.
A more sophisticated approach, which is usually much less sensitive to the choice
of k, weights each object’s vote by its distance. Various choices are possible; for
example, the weight factor is often taken to be the reciprocal of the squared distance:
wi = 1/d(y, z)2. This amounts to replacing the last step of Algorithm 8.1 with the
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Figure 8.1 k-nearest neighbor classification with small, medium, and large k.

following:

Distance-Weighted Voting: cz = argmax
v∈L

∑

y∈N

wi × I (v = class(cy)) (8.1)

The choice of the distance measure is another important consideration. Commonly,
Euclidean or Manhattan distance measures are used [21]. For two points, x and y,
with n attributes, these distances are given by the following formulas:

d(x, y) =
√
√
√
√

n∑

k=1

(xk − yk)2 Euclidean distance (8.2)

d(x, y) =
√
√
√
√

n∑

k=1

|xk − yk | Manhattan distance (8.3)

where xk and yk are the kth attributes (components) of x and y, respectively.
Although these and various other measures can be used to compute the distance

between two points, conceptually, the most desirable distance measure is one for
which a smaller distance between two objects implies a greater likelihood of having
the same class. Thus, for example, if kNN is being applied to classify documents, then
it may be better to use the cosine measure rather than Euclidean distance. Note that
kNN can also be used for data with categorical or mixed categorical and numerical
attributes as long as a suitable distance measure can be defined [21].

Some distance measures can also be affected by the high dimensionality of the
data. In particular, it is well known that the Euclidean distance measure becomes less
discriminating as the number of attributes increases. Also, attributes may have to be
scaled to prevent distance measures from being dominated by one of the attributes.
For example, consider a data set where the height of a person varies from 1.5 to 1.8 m,
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the weight of a person varies from 90 to 300 lb, and the income of a person varies
from $10,000 to $1,000,000. If a distance measure is used without scaling, the income
attribute will dominate the computation of distance, and thus the assignment of class
labels.

8.2.3 Software Implementations

Algorithm 8.1 is easy to implement in almost any programming language. However,
this section contains a short guide to some readily available implementations of this
algorithm and its variants for those who would rather use an existing implementation.
One of the most readily available kNN implementations can be found in Weka [26].
The main function of interest is IBk, which is basically Algorithm 8.1. However, IBk
also allows you to specify a couple of choices of distance weighting and the option
to determine a value of k by using cross-validation.

Another popular nearest neighbor implementation is PEBLS (Parallel Exemplar-
Based Learning System) [5,19] from the CMU Artificial Intelligence repository [20].
According to the site, “PEBLS (Parallel Exemplar-Based Learning System) is a
nearest-neighbor learning system designed for applications where the instances have
symbolic feature values.”

8.3 Examples

In this section we provide a couple of examples of the use of kNN. For these examples,
we will use the Weka package described in the previous section. Specifically, we used
Weka 3.5.6.

To begin, we applied kNN to the Iris data set that is available from the UCI Machine
Learning Repository [2] and is also available as a sample data file with Weka. This data
set consists of 150 flowers split equally among three Iris species: Setosa, Versicolor,
and Virginica. Each flower is characterized by four measurements: petal length, petal
width, sepal length, and sepal width.

The Iris data set was classified using the IB1 algorithm, which corresponds to the
IBk algorithm with k = 1. In other words, the algorithm looks at the closest neighbor,
as computed using Euclidean distance from Equation 8.2. The results are quite good,
as the reader can see by examining the confusion matrix5 given in Table 8.1.

However, further investigation shows that this is a quite easy data set to classify
since the different species are relatively well separated in the data space. To illustrate,
we show a plot of the data with respect to petal length and petal width in Figure 8.2.
There is some mixing between the Versicolor and Virginica species with respect to

5A confusion matrix tabulates how the actual classes of various data instances (rows) compare to their
predicted classes (columns).

© 2009 by Taylor & Francis Group, LLC



156 kNN: k-Nearest Neighbors

TABLE 8.1 Confusion Matrix for Weka kNN
Classifier IB1 on the Iris Data Set

Actual/Predicted Setosa Versicolor Virginica

Setosa 50 0 0
Versicolor 0 47 3
Virginica 0 4 46

their petal lengths and widths, but otherwise the species are well separated. Since
the other two variables, sepal width and sepal length, add little if any discriminating
information, the performance seen with basic kNN approach is about the best that can
be achieved with a kNN approach or, indeed, any other approach.

The second example uses the ionosphere data set from UCI. The data objects in this
data set are radar signals sent into the ionosphere and the class value indicates whether
or not the signal returned information on the structure of the ionosphere. There are 34
attributes that describe the signal and 1 class attribute. The IB1 algorithm applied on
the original data set gives an accuracy of 86.3% evaluated via tenfold cross-validation,
while the same algorithm applied to the first nine attributes gives an accuracy of 89.4%.
In other words, using fewer attributes gives better results. The confusion matrices are
given below. Using cross-validation to select the number of nearest neighbors gives an
accuracy of 90.8% with two nearest neighbors. The confusion matrices for these cases
are given below in Tables 8.2, 8.3, and 8.4, respectively. Adding weighting for nearest
neighbors actually results in a modest drop in accuracy. The biggest improvement is
due to reducing the number of attributes.

Pe
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Figure 8.2 Plot of Iris data using petal length and width.
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TABLE 8.2 Confusion Matrix for Weka kNN Classifier
IB1 on the Ionosphere Data Set Using All Attributes

Actual/Predicted Good Signal Bad Signal

Good Signal 85 41
Bad Signal 7 218

8.4 Advanced Topics

To address issues related to the distance function, a number of schemes have been
developed that try to compute the weights of each individual attribute or in some other
way determine a more effective distance metric based upon a training set [13, 15].
In addition, weights can be assigned to the training objects themselves. This can
give more weight to highly reliable training objects, while reducing the impact of
unreliable objects. The PEBLS system by Cost and Salzberg [5] is a well-known
example of such an approach.

As mentioned, kNN classifiers are lazy learners, that is, models are not built explic-
itly unlike eager learners (e.g., decision trees, SVM, etc.). Thus, building the model
is cheap, but classifying unknown objects is relatively expensive since it requires the
computation of the k-nearest neighbors of the object to be labeled. This, in general,
requires computing the distance of the unlabeled object to all the objects in the la-
beled set, which can be expensive particularly for large training sets. A number of
techniques, e.g., multidimensional access methods [12] or fast approximate similar-
ity search [16], have been developed for efficient computation of k-nearest neighbor
distance that make use of the structure in the data to avoid having to compute distance
to all objects in the training set. These techniques, which are particularly applicable
for low dimensional data, can help reduce the computational cost without affecting
classification accuracy. The Weka package provides a choice of some of the multi-
dimensional access methods in its IBk routine. (See Exercise 4.)

Although the basic kNN algorithm and some of its variations, such as weighted
kNN and assigning weights to objects, are relatively well known, some of the more
advanced techniques for kNN are much less known. For example, it is typically
possible to eliminate many of the stored data objects, but still retain the classification
accuracy of the kNN classifier. This is known as “condensing” and can greatly speed
up the classification of new objects [14]. In addition, data objects can be removed to

TABLE 8.3 Confusion Matrix for Weka kNN Classifier
IB1 on the Ionosphere Data Set Using the First Nine Attributes

Actual/Predicted Good Signal Bad Signal

Good Signal 100 26
Bad Signal 11 214
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TABLE 8.4 Confusion Matrix for Weka kNN
Classifier IBk on the Ionosphere Data Set Using
the First Nine Attributes with k = 2

Actual/Predicted Good Signal Bad Signal

Good Signal 103 9
Bad Signal 23 216

improve classification accuracy, a process known as “editing” [25]. There has also
been a considerable amount of work on the application of proximity graphs (nearest
neighbor graphs, minimum spanning trees, relative neighborhood graphs, Delaunay
triangulations, and Gabriel graphs) to the kNN problem. Recent papers by Toussaint
[22–24], which emphasize a proximity graph viewpoint, provide an overview of work
addressing these three areas and indicate some remaining open problems.

Other important resources include the collection of papers by Dasarathy [7] and
the book by Devroye, Gyorfi, and Lugosi [8]. Also, a fuzzy approach to kNN can be
found in the work of Bezdek [4]. Finally, an extensive bibliography on this subject is
also available online as part of the Annotated Computer Vision Bibliography [18].

8.5 Exercises

1. Download the Weka machine learning package from the Weka project home-
page and the Iris and ionosphere data sets from the UCI Machine Learning
Repository. Repeat the analyses performed in this chapter.

2. Prove that the error of the nearest neighbor rule is bounded above by twice the
Bayes error under certain reasonable assumptions.

3. Prove that the error of the general kNN method asymptotically approaches that
of the Bayes error and can be used to approximate it.

4. Various spatial or multidimensional access methods can be used to speed up
the nearest neighbor computation. For the k-d tree, which is one such method,
estimate how much the saving would be. Comment: The IBk Weka classification
algorithm allows you to specify the method of finding nearest neighbors. Try
this on one of the larger UCI data sets, for example, predicting sex on the
abalone data set.

5. Consider the one-dimensional data set shown in Table 8.5.

TABLE 8.5 Data Set for Exercise 5

x 1.5 2.5 3.5 4.5 5.0 5.5 5.75 6.5 7.5 10.5
y + + − − − + + − + +

© 2009 by Taylor & Francis Group, LLC



References 159

(a) Given the data points listed in Table 8.5, compute the class of x = 5.5
according to its 1-, 3-, 6-, and 9-nearest neighbors (using majority vote).

(b) Repeat the previous exercise, but use the weighted version of kNN given
in Equation (8.1).

6. Comment on the use of kNN when documents are compared with the cosine
measure, which is a measure of similarity, not distance.

7. Discuss kernel density estimation and its relationship to kNN.

8. Given an end user who desires not only a classification of unknown cases, but
also an understanding of why cases were classified the way they were, which
classification method would you prefer: decision tree or kNN?

9. Sampling can be used to reduce the number of data points in many kinds of
data analysis. Comment on the use of sampling for kNN.

10. Discuss how kNN could be used to perform classification when each class can
have multiple labels and/or classes are organized in a hierarchy.
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9.1 Introduction

Given a set of objects, each of which belongs to a known class, and each of which
has a known vector of variables, our aim is to construct a rule which will allow us
to assign future objects to a class, given only the vectors of variables describing the
future objects. Problems of this kind, called problems of supervised classification,
are ubiquitous, and many methods for constructing such rules have been developed.
One very important method is the naı̈ve Bayes method—also called idiot’s Bayes,
simple Bayes, and independence Bayes. This method is important for several reasons,
including the following. It is very easy to construct, not needing any complicated
iterative parameter estimation schemes. This means it may be readily applied to huge
data sets. It is easy to interpret, so users unskilled in classifier technology can un-
derstand why it is making the classification it makes. And, particularly important, it
often does surprisingly well: It may not be the best possible classifier in any given
application, but it can usually be relied on to be robust and to do quite well. For
example, in an early classic study comparing supervised classification methods, Tit-
terington et al. (1981) found that the independence model yielded the best overall
result, while Mani et al. (1997) found that the model was most effective in predicting

163

© 2009 by Taylor & Francis Group, LLC



164 Naı̈ve Bayes

breast cancer recurrence. Many further examples showing the surprising effectiveness
of the naı̈ve Bayes method are listed in Hand and Yu (2001) and further empirical
comparisons, with the same result, are given in Domingos and Pazzani (1997). Of
course, there are also some other studies which show poorer relative performance
from this method: For a comparative assessment of such studies, see Jamain and
Hand (2008).

For convenience, most of this chapter will describe the case in which there are
just two classes. This is, in fact, the most important special case as many situations
naturally form two classes (right/wrong, yes/no, good/bad, present/absent, and so
on). However, the simplicity of the naı̈ve Bayes method is such that it permits ready
generalization to more than two classes.

Labeling the classes by i = 0, 1, our aim is to use the initial set of objects which
have known class memberships (known as the training set) to construct a score such
that larger scores are associated with class 1 objects (say) and smaller scores with
class 0 objects. New objects are then classified by comparing their score with a
“classification threshold.” New objects with a score larger than the threshold will be
classified into class 1, and new objects with a score less than the threshold will be
classified into class 0.

There are two broad perspectives on supervised classification, termed the diagnostic
paradigm and the sampling paradigm. The diagnostic paradigm focuses attention on
the differences between the classes—on discriminating between the classes—while
the sampling paradigm focuses attention on the individual distributions of the classes,
comparing these to indirectly produce a comparison between the classes. As we show
below, the naı̈ve Bayes method can be viewed from either perspective.

9.2 Algorithm Description

Beginning with the sampling paradigm, define P(i |x) to be the probability that an
object with measurement vector x = (x1, . . . , x p) belongs to class i , f (x |i) to be the
conditional distribution of x for class i objects, P(i) to be the probability that an object
will belong to class i if we know nothing further about it (the “prior” probability of
class i), and f (x) to be the overall mixture distribution of the two classes:

f (x) = f (x |0)P(0) + f (x |1)P(1)

Clearly, an estimate of P(i |x) itself would form a suitable score for use in a clas-
sification rule. We would need to choose some suitable threshold probability to act
as the classification threshold to yield a classification. For example, it is very com-
mon to use a threshold of 1/2, so that each new object is assigned to the class it is
estimated as most likely to have come from. More sophisticated approaches take into
account the relative severities of different kinds of misclassifications when choosing
the threshold.
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A simple application of Bayes theorem yields P(i |x) = f (x |i)P(i)/ f (x), and to
obtain an estimate of P(i |x) from this, we need to estimate each of the P(i) and each
of the f (x |i).

If the training set is a simple random sample drawn from the overall population
distribution f (x), the P(i) can be estimated directly from the proportion of class i
objects in the training set. Sometimes, however, the training set is obtained by more
complicated means. For example, in many problems the classes are unbalanced, with
one being much larger than the other (e.g., in credit card fraud detection, where only
1 in 1,000 transactions may be fraudulent; in rare disease detection, where the ratio
may be even more extreme; and so on). In such cases, the larger of the two classes is
often subsampled. For example, perhaps only 1 in 10 or 1 in 100 of the larger class
will be used in the training set. If this is the case, then it is necessary to reweight the
simple observed proportion in the training set to yield an estimate of P(i). In general,
if the observations are not drawn as a simple random sample from the training set,
some thought will need to go into how best to estimate the P(i).

The core of the naı̈ve Bayes method lies in the method for estimating the
f (x |i). The naı̈ve Bayes method assumes that the components of x are indepen-
dent within each class, so that f (x |i) = ∏p

j=1 f (x j |i)—hence the alternative name
of “independence Bayes.” Each of the univariate marginal distributions, f (x j |i),
j = 1, . . . , p; i = 0, 1, is then estimated separately. By this means, the p dimen-
sional multivariate problem is reduced to p univariate estimation problem. Univariate
estimation is familiar and simple, and requires smaller training set sizes to obtain
accurate estimates than does the estimation of multivariate distributions.

If the marginal distributions f (x j |i) are discrete, with x j taking only a few values,
one can estimate each of the f (x j |i) by simple multinomial histogram-type estimators.
Because this is so straightforward, this is a very common approach to the naı̈ve
Bayes estimator, and many implementations adopt this approach. Indeed, it is so
straightforward that many implementations partition any continuous variables (age,
weight, income, and so on) into cells so that a multinomial histogram-type estimator
can be constructed for all of the variables. At first glance, this strategy might seem to
be a weak one. After all, it means that any notion of continuity between neighboring
cells of the histogram has been sacrificed. It also requires the cells to be wide enough
to contain sufficient data points that accurate probability estimates can be obtained.
On the other hand, it can be regarded as providing a very general nonparametric
estimate of the univariate distribution, so avoiding any distributional assumptions.
In particular, it is a nonlinear transformation, so that, for example, the relationship
between estimates of f (x j |i) does not need to be monotonic in x j .

At a cost of more computational expense (in particular, at the cost of losing the
simple counting procedure which underlies histogram-type estimates), one can fit
more elaborate models to the univariate marginals. For example, one can assume
particular parametric forms for the distributions (e.g., normal, lognormal, and so on)
and estimate their parameters by standard and very familiar estimators, or one can
adopt more sophisticated nonparametric estimators, such as kernel density estimation.
While these do sacrifice the speed of the histogram approach, this is less important
in the modern world in which all the calculations will be done by machine. Having
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said that, there is another reason why one might prefer to use the histogram approach
based on forcing all the variables to be discrete—that of interpreting the results. We
discuss this below.

The assumption of independence at the core of the naı̈ve Bayes method is clearly a
strong one. It is unlikely to be true for most real problems. (How often does a diagonal
covariance matrix arise from real data in practice?) A priori, then, one might expect
the method to perform poorly precisely because of this improbable assumption lying
at its core. However, the fact is that it often does surprisingly well in real practical
applications. Reasons for this counterintuitive result are discussed below.

So far we have approached the naı̈ve Bayes method from the sampling paradigm,
describing it as being based on estimating the separate class conditional distributions
using the simplifying assumption that the variables in each of these distributions were
independent. However, the elegance of the naı̈ve Bayes method only really becomes
apparent when we note that we can obtain classifications equivalent to the above if we
use any strictly monotonic transformation of P(i |x), transforming the classification
threshold in a similar way. To see this, note that if T is a strictly monotonic increasing
transformation then

P(i |x) > P(i |y) ⇔ T (P(i |x)) > T (P(i |y))

and, in particular, P(i |x) > t ⇔ T (P(i |x)) > T (t). This means that if t is the classifi-
cation threshold with which P(i |x) is compared, then comparing T (P(i |x)) with T (t)
will yield the same classification results. (We will assume only monotonic increasing
transformations, though the extension to monotonic decreasing transformations is
trivial.)

One such monotonic transformation is the ratio

P(1|x)/(1 − P(1|x)) = P(1|x)/P(0|x) (9.1)

Using the naı̈ve Bayes assumption that the variables within each class are indepen-
dent, so that the distribution for class i has the form f (x |i) = ∏p

j=1 f (x j |i), the ratio
P(1|x)/(1 − P(1|x)) can be rewritten:

P(1|x)

1 − P(1|x)
= P(1)

∏p
j=1 f (x j |1)

P(0)
∏p

j=1 f (x j |0)
= P(1)

P(0)

p∏

j=1

f (x j |1)

f (x j |0)
(9.2)

The log transformation is also monotonic (and combination of monotonic functions
yields monotonic functions) so that another alternative score is given by

ln
P(1|x)

1 − P(1|x)
= ln

P(1)

P(0)
+

p∑

j=1

ln
f (x j |1)

f (x j |0)
(9.3)

If we define w j (x j ) = ln( f (x j |1)/ f (x j |0)) and k = ln{P(1)/(P(0))} we see that
Equation (9.3) takes the form of a simple sum

ln
P(1|x)

1 − P(1|x)
= k +

p∑

j=1

w j (x j ) (9.4)
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of contributions from the separate variables. Since the score S = k + ∑p
j=1 w j (x j )

is a direct estimate of (a monotonic transformation of) P(1|x), it is based on the
diagnostic paradigm. The ease of interpretation now becomes apparent: The naı̈ve
Bayes model is simply a sum of transformed values of the raw x j values.

In cases when each variable is discrete, or is made to be discrete by partitioning it
into cells, Equation (9.4) takes a particularly simple form. Suppose that variable x j

takes a value in the k j th cell of the variable, denoted x
(k j )
j . Then w j (x

(k j )
j ) is simply

a logarithm of a ratio of proportions: the proportion of class 1 points which fall into
the k j th cell of variable x j divided by the proportion of class 0 points which fall into

the k j th cell of variable x j . These w j (x
(k j )
j ) are called weights of evidence in some

applications: w j (x
(k j )
j ) shows the contribution the j th variable makes toward the total

score, or the evidence in favor of the object belonging to class 1 that is provided by
the j th variable. Such weights of evidence are useful in identifying which variables
are important in assigning any particular object to a class. (This is vital in some
applications, such as credit scoring in personal banking, where the law requires that
reasons must be given if an application for a loan is declined.)

9.3 Power Despite Independence

The assumption of independence of the x j within each class implicit in the naı̈ve
Bayes model might seem unduly restrictive. After all, as noted above, variables are
rarely independent in real problems. In fact, however, various factors may come into
play which means that the assumption is not as detrimental as it might seem (Hand
and Yu, 2001).

Firstly, the complexity of p-univariate marginal distributions is far lower than that
of a single p-variate multivariate distribution. This means that far fewer data points
are needed to obtain a given accuracy under the independence model than are needed
without this assumption. Put another way, the available sample will lead to an esti-
mator with smaller variance if one is prepared to restrict the model form by assuming
independence of the variables within classes. Of course, if the assumption is not true,
then there is a risk of bias. This is a manifestation of the classic bias/variance trade-off,
which applies to all data analysis modeling, and is not specific to the naı̈ve Bayes
model.

To decrease the risk of bias arising from the assumption of independence, a simple
modification of the basic naı̈ve Bayes model has been proposed. To understand the
reasoning behind this modification, consider the special case in which the marginal
distributions of all the variables are the same, and the extreme in which the variables
are perfectly correlated. This means that, for any given class, the probability that the
x j th variable takes a value r is the same for all variables. In this perfectly correlated
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case, the naı̈ve Bayes estimator is

P(1|x)

P(0|x)
= P(1)

P(0)

[
f (xk |1)

f (xk |0)

]p

while the true odds ratio is

P(1|x)

P(0|x)
= P(1)

P(0)

f (xk |1)

f (xk |0)

for any k ∈ {1, . . . , p}. We can see from this that if f (xk |1)/ f (xk |0) is larger than 1, the
presence of correlation will mean that the naı̈ve Bayes estimator tends to overestimate
P(1|x)/P(0|x), and if f (xk |1)/ f (xk |0) is less than 1, the presence of correlation will
mean that the naı̈ve Bayes estimator tends to underestimate P(1|x)/P(0|x). This
phenomenon immediately suggests modifying the naı̈ve Bayes estimator by raising
the f (xk |1)/ f (xk |0) ratios by some power less than 1, to shrink the overall estimator
toward the true odds. In general, this yields the improved naı̈ve Bayes estimator

P(1|x)

P(0|x)
= f (x |1)P(1)

f (x |0)P(0)
= P(1)

P(0)

p∏

j=1

[
f (x j |1)

f (x j |0)

]β

with β < 1. β is typically chosen by searching over possible values and choosing that
which gives best predictive results by means of a method such as cross-validation.
We can also see that this leads to a shrinkage factor appearing as a coefficient of the
w j (x j ) terms in Equation (9.4).

A second reason why the assumption of independence is not as unreasonable as
might at first seem is that often data might have undergone an initial variable selection
procedure in which highly correlated variables have been eliminated on the grounds
that they are likely to contribute in a similar way to the separation between classes.
Think of variable selection methods in linear regression, for example. This means
that the relationships between the remaining variables might well be approximated
by independence.

A third reason why the independence assumption may not be too detrimental is that
only the decision surface matters. While the assumption might lead to poor estimates
of probability or of the ratio P(1|x)/P(0|x), this does not necessarily imply that
the decision surface is far from (or even different from) the true decision surface.
Consider, for example, a situation in which the two classes have multivariate normal
distributions with the same (nondiagonal) covariance matrix, and with the vector of
differences between the means lying parallel to the first principal axis of the covariance
matrix. The optimal decision surface is linear and is the same with the true covariance
matrices and under the independence assumption.

Finally, of course, the decision surface produced by the naı̈ve Bayes model can in
fact have a complicated nonlinear shape: The surface is linear in the w j (x j ) but highly
nonlinear in the original variables x j , so that it can fit quite elaborate surfaces.
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9.4 Extensions of the Model

We have seen that the naı̈ve Bayes model is often surprisingly effective. It also has the
singular merit of being very easy to compute, especially if the discrete variable version
is used. Coupled with the ease of understanding and interpretation of the model,
perhaps especially in terms of the simple points-scoring perspective in Equation (9.4),
these factors explain why it is so widely used. However, its very simplicity, along with
the fact that its core assumption often appears unrealistic, has led many researchers
to propose extensions of it in an attempt to improve its predictive accuracy.

We have already seen one of these above, to ease the independence assumption
by shrinking the probability estimates. Shrinking has also been proposed to improve
the simplistic multinomial estimate of the proportions of objects falling into each
category in the case of discrete predictor variables. So, if the j th discrete predictor
variable, x j , has cr categories, and if n jr of the total of n objects fall into the r th
category of this variable, the usual multinomial estimator of the probability that a
future object will fall into this category, n jr/n, is replaced by (n jr + c−1

r )/(n + 1).
This shrinkage, which is also sometimes called the Laplacian correction, also has a
direct Bayesian interpretation. It can be useful if the sample size and cell widths are
such that there may not be very many objects in a cell.

Perhaps the most obvious way of easing the independence assumption is by intro-
ducing extra terms in the models of the distributions of x in each class, to allow for
interactions. This has been attempted in a large number of ways, but all of them nec-
essarily introduce complications, and so sacrifice the basic simplicity and elegance
of the naı̈ve Bayes model. In particular, if an interaction between two of the variables
in x is to be included in the model, then the estimate cannot be based merely on the
univariate marginals.

Within the i th class, the joint distribution of x is

f (x |i) = f (x1|i) f (x2|x1, i) f (x3|x1, x2, i) . . . f (x p|x1, x2, . . . , x p−1, i) (9.5)

and this can be approximated by simplifying the conditional probabilities. The extreme
arises with f (x j |x1, . . . , x j−1, i) = f (x j |i) for all j , and this is the naı̈ve Bayes
method. Obviously, however, models between these two extremes can be used. If the
variables are discrete, one can estimate appropriate models, with arbitrary degrees of
interaction included, by using log-linear models. For continuous variables, graphical
models and the literature on conditional independence graphs are appropriate. An
example which is appropriate in some circumstances is the Markov model

f (x |i) = f (x1|i) f (x2|x1, i) f (x3|x2, i), . . . , f (x p|x p−1, i) (9.6)

This is equivalent to using a subset of two-way marginal distributions instead of
merely the univariate marginal distributions in the naı̈ve Bayes model.

Yet other extensions combine naı̈ve Bayes models with tree methods (e.g., Langley,
1993), for example splitting the overall population into subsets on the basis of the
values the objects take on some of the variables and then fitting naı̈ve Bayes models
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to each subset. Such models are popular in some applications, where they are known
as segmented scorecards. The segmentation is a way to allow for interactions which
would cause difficulties if a single overall independence model was fitted.

Another way of embedding naı̈ve Bayes models in higher-level approaches is by
means of multiple classifier systems, for example, in a random forest or via boosting.

There is a very close relationship between the naı̈ve Bayes model and another
very important model for supervised classification: the logistic regression model.
This was originally developed within the statistical community, and is very widely
used in medicine, banking, marketing, and other areas. It is more powerful than the
naı̈ve Bayes model, but this extra power comes at the cost of necessarily requiring a
more complicated estimation scheme. In particular, as we will see, although it has the
same attractively simply basic form as the naı̈ve Bayes model, the parameters (e.g.,
the w j (x

(k j )
j )) cannot be estimated simply by determining proportions, but require an

iterative algorithm.
In examining the naı̈ve Bayes model above, we obtained the decomposition

Equation (9.2) by adopting the independence assumption. However, exactly the same
structure for the ratio results if we model f (x |1) by g(x)

∏p
j=1 h1(x j ) and f (x |0) by

g(x)
∏p

j=1 h0(x j ), where the function g(x) is the same in each model. If g(x) does
not factorize into a product of components, one for each of the raw x j , we are not
assuming independence of the x j . The dependence structure implicit in g(x) can be
as complicated as we like—the only restriction being that it is the same in the two
classes; that is, that g(x) is common in the factorizations of f (x |1) and f (x |0). With
these factorizations of the f (x |i), we obtain

P(1|x)

1 − P(1|x)
= P(1)g(x)

∏p
j=1 h1(x j )

P(0)g(x)
∏p

j=1 h0(x j )
= P(1)

P(0)
.

∏p
j=1 h1(x j )

∏p
j=1 h0(x j )

(9.7)

Since the g(x) terms cancel, we are left with a structure identical to Equation (9.2),
although the hi (x j ) are not the same as the f (x j |i) (unless g(x) ≡ 1). Note that in this
factorization it is not even necessary that the hi (x j ) be probability density functions.
All that is needed is that the overall products g(x)

∏p
j=1 hi (x j ) are densities.

The model in Equation (9.7) is just as simple as the naı̈ve Bayes model, and takes
exactly the same form. In particular, by taking logs we end up with a points-scoring
model as in Equation (9.4). But the model in Equation (9.7) is more flexible than
the naı̈ve Bayes model because it does not assume independence of the x j in each
class. Of course, this considerable extra flexibility of the logistic regression model
is not obtained without cost. Although the resulting model form is identical to the
naı̈ve Bayes model form (with different parameter values, of course), it cannot be
estimated by looking at the univariate marginals separately: An iterative procedure
must be used. Standard statistical texts (e.g., Collett, 1991) give algorithms for esti-
mating the parameters of logistic regression models. Often an iterative proportional
weighted least squares method is used to find the parameters which maximize the
likelihood.

The version of the naı̈ve Bayes model based on the discretization transformation of
the raw x j can be generalized to yield other extensions. In particular, the more general
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class of generalized additive models (Hastie and Tibshirani, 1990) take exactly the
form of additive combinations of transformations of the x j .

The naı̈ve Bayes model is tremendously appealing because of its simplicity, ele-
gance, robustness, as well as the speed with which such a model can be constructed,
and the speed with which it can be applied to produce a classification. It is one of the
oldest formal classification algorithms, and yet even in its simplest form it is often
surprisingly effective. A large number of modifications have been introduced, by the
statistical, data mining, machine learning, and pattern recognition communities, in
an attempt to make it more flexible, but one has to recognize that such modifications
are necessarily complications, which detract from its basic simplicity.

9.5 Software Implementations

The simplicity of the naı̈ve Bayes algorithm means that, in its basic form, it has been
very widely implemented, and many free versions are available on the Web. The
open-source Weka implementation (http://www.cs.waikato.ac.nz/ml/weka/) allows
the individual variables to be modeled by normal distributions, by kernel estimates,
or by splitting them into discrete categories.

Perhaps it is worthwhile making a cautionary comment. The term Bayesian has sev-
eral different interpretations, and its now common use in the phrase “naı̈ve Bayes clas-
sifier” can mislead the unwary. In particular, “Bayesian networks” are more general
classes of models, which include the naı̈ve Bayes model as a special case, but which
generally also allow various interactions to be included in the model. An example of
the sorts of confusion this can lead to is described in Jamain and Hand (2005).

9.6 Examples

9.6.1 Example 1

To illustrate the principles of the naı̈ve Bayes method, consider the artificial data set
shown in Table 9.1. The aim is to use these data as a training set to construct a rule
which will allow prediction of variable D for future customers, where D is default on
a bank loan (the last column, labeled 1 for default and 0 for nondefault). The variables
which will be used for the prediction are columns 1 to 3: time with current employer,
T , in years; size of loan requested, S, in dollars; and H , whether the applicant is a
homeowner (1), rental tenant (2), or “other” (3). In fact, the naı̈ve Bayes method is a
common approach to credit default problems of this kind, although typically in such
applications the training set will contain hundreds of thousands of accounts and will
use many more variables, and the naı̈ve Bayes method will be used as leaves in a
segmented scorecard of the kind described above.
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TABLE 9.1 Data for Example 1

Time with Emp, T Size of Loan, S Homeowner, H Default, D

5 10,000 1 0
20 10,000 1 0

1 25,000 1 0
1 15,000 3 0

15 2,000 2 0
6 12,000 1 0
1 5,000 2 1

12 8,000 2 1
3 10,000 1 1
1 5,000 3 1

Time with employer is a continuous variable. For each of the two classes separately,
we could estimate the distribution f (T |i), i = 0, 1 using a kernel method or some
assumed parametric form (lognormal would probably be a sensible choice for such a
variable), or we could use the naı̈ve Bayes approach in which the variable is split into
cells, estimating the probability of falling in each cell by the proportion of cases from
class i which fall in that cell. We shall take this third approach and, to keep things as
simple as possible, will split T into only two cells, whether or not the customer has
been with the employer for 10 or more years. This yields probability estimates

f̂ (T < 10|D = 0) = 4/6, f̂ (T ≥ 10|D = 0) = 2/6

f̂ (T < 10|D = 1) = 3/4, f̂ (T ≥ 10|D = 1) = 1/4

Similarly, we shall do the same sort of thing with size of loan, splitting it into just
two cells (purely for convenience of explanation) according to the intervals ≤ 10,000
and > 10,000. This yields probability estimates

f̂ (S ≤ 10000|D = 0) = 3/6, f̂ (S > 10000|D = 0) = 3/6

f̂ (S ≤ 10000|D = 1) = 3/4, f̂ (S > 10000|D = 1) = 1/4

For the nondefaulter class, the homeowner column yields three estimated proba-
bilities:

f̂ (H = 1|D = 0) = 4/6, f̂ (H = 2|D = 0) = 1/6, f̂ (H = 3|D = 0) = 1/6

For the defaulter class, the respective probabilities are

f̂ (H = 1|D = 1) = 1/4, f̂ (H = 2|D = 1) = 2/4, f̂ (H = 3|D = 1) = 1/4

Suppose now that a new application form is received, from an applicant who has
been with his or her (this phrasing is chosen deliberately: It is illegal to use sex as
a predictor for making loan decisions such as this.) employer for less than 10 years
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(T < 10), is seeking a loan of $10,000 (S ≤ 10000), and is a homeowner (H = 1).
This leads to an estimated value of the ratio P̂(1|x)/P̂(0|x) of

P(1|x)

P(0|x)
= P(1)

P(0)

p∏

j=1

f̂ (x j |1)

f̂ (x j |0)
= P(1)

P(0)
× f̂ (T |1) f̂ (S|1) f̂ (H |1)

f̂ (T |0) f̂ (S|0) f̂ (H |0)

= 4/10

6/10
× 3/4 × 3/4 × 1/4

4/6 × 4/6 × 3/6 × 4/6
= 0.422

Since P(1|x) = 1−P(0|x), this is equivalent to P(1|x) = 0.296 and P(0|x) = 0.703.
If the classification threshold is 0.5 [i.e., if we decide to classify a customer with
vector x to class 1 if P(1|x) > 0.5 and to class 0 otherwise], then this customer will
be classified as likely to belong to class 0—the nondefaulter class. This customer
would be a good bet for making a loan to.

9.6.2 Example 2

An important and relatively new application domain for the naı̈ve Bayes method is
spam filtering. Spams are unsolicited and typically unwanted emails, often direct
marketing of some kind and frequently offering dubious financial or other oppor-
tunities. Some of them are so-called phishing exercises. The principle behind them
is that even a low response rate is profitable if (a) the cost of mailing the emails is
negligible and (b) enough are sent. Since they are sent out automatically to millions
of email addresses, one may receive many hundreds of these daily. With this num-
ber, even to move the cursor and physically hit the delete button would consume
significant amounts of time. For this reason researchers have developed classification
rules called spam filters, which examine incoming emails, and assign them to spam
or not-spam classes. Those assigned to the spam class can be deleted automatically,
or sent to a holding file for later examination, or treated in any other way deemed
appropriate.

Naı̈ve Bayes models are very popular for use as spam filters, going back to the
early seminal work by Sahami et al. (1998). In their simplest form, the variables in
the model are binary variables corresponding to the presence or absence, in the email,
of each word. However, the naı̈ve Bayes model also permits the ready addition of other
binary variables corresponding to the presence or absence of other syntactic features
such as punctuation marks, currency units ($, £, €, and so on), combinations of words,
whether the source of the email was an individual or a list, and so on. In addition, other
nonbinary variables are useful as further predictors, for example, the type of domain
of the source, the percentage of nonalphanumeric characters in the subject heading,
and so on. It will be clear from the above that the potential number of variables is
very large. Because of this, a feature selection step is typically undertaken (recall
the discussion of why the naı̈ve Bayes model may do well, despite its underlying
independence assumption).

One important aspect of spam filtering is the imbalance in the severity of the
misclassification costs. Misclassifying a legitimate email as spam is much more se-
rious than the reverse. Both this and the relative size of the two classes play roles in
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determining the classification threshold. In their experiments, Sahami et al. (1998)
chose a threshold of 0.999 with which to compare P(spam | x).

One strength of the naı̈ve Bayes model is that it can just as easily be applied to
count variables as to binary variables. The multivariate binary spam filter described
above is easy to extend to more elaborate models for the distributions of the values
of the variables. We have already referred to the use of multinomial models ear-
lier, in which continuous variables are partitioned into more than two cells (and the
homeowner variable in the artificial data of Example 1 was a case of a trinomial
variable). Experiments suggest that, at least for spam filtering, the multinomial ap-
proach using frequencies of word appearances in the emails is superior to using mere
presence/absence variables. Metsis et al. (2006) carried out a comparative analysis
of different versions of the naı̈ve Bayes model, in which the marginal variables are
treated in different ways, applying the methods to some real email data sets.

9.7 Advanced Topics

The chief attraction of the naı̈ve Bayes model is its extreme simplicity, permitting easy
(univariate) estimation and straightforward interpretation via the weights of evidence.
The first of these properties is also associated with robustness, provided the estimates
of the marginal distributions are robust. In particular, if the marginal distributions are
categorical, then each cell needs to contain sufficient data points to yield accurate
estimates. With this in mind, researchers have explored optimal partitioning of each
variable. The approach, most in tune with the straightforward naı̈ve Bayes estimator,
is to examine each variable separately—perhaps splitting into equal quantiles (this is
generally superior to splitting into equal length cells). A more sophisticated approach
will choose the cells based on the relative number from each class in each cell. This
can also be done by considering each variable separately. Finally, one can partition
each cell taking into account the overall fit to the distribution in each (or both) classes,
but this moves away from the simple marginal approach. Investigations of some of
these issues are described in Hand and Adams (2000).

Missing data are a potential problem in all data analysis. Classification methods
which cannot handle incomplete data are at a disadvantage. When the data are missing
completely at random, then the naı̈ve Bayes model copes without any difficulty:
Valid estimates are obtained by simply estimating the marginal distributions from the
observed data. If the data are informatively missing, however, then more complex
procedures are needed. This is an area meriting further research.

More and more problems involve dynamic data, and data sets which sequentially
accrue. The naı̈ve Bayes method can be adapted very readily to such problems, by
virtue of its straightforward estimation.

So-called “small n, large p” problems have become important in certain areas, such
as bioinformatics, genomics, and proteomics, especially in the analysis of microarray
data. These are problems characterized by the fact that the number of variables is
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much larger than the sample size. Such problems pose difficulties; for example, the
covariance matrix will be singular, leading to overfitting. To tackle such problems,
it is necessary to make some kinds of assumptions or (equivalently) to shrink the
estimators in some way. One approach to such problems in the context of supervised
classification is to use the naı̈ve Bayes method. This has its in-built assumption of
independence, which acts to protect against overfitting. More elaborate versions of
this idea combine naı̈ve Bayes models with more sophisticated classifiers, trying to
strike the best balance.

9.8 Exercises

1. Using a package such as the open-source package R, generate samples of size
100 from each of the two classes. Class 1 is bivariate normal, with zero means
and identity covariance matrix. Class 2 is bivariate normal, with mean vector
(0, 2) and diagonal covariance matrix with leading diagonal (1, 2). Fit a naı̈ve
Bayes model to these data, based on assuming (correctly) that the marginal
distributions are normal. Plot the decision surface to see that it is not linear.

2. The tables below show the bivariate distributions from samples for two classes,
where the variables each have three categories. Show that the two variables are
independent in each of the two classes. Taking the classification threshold as
1/2, calculate the decision surface for a naı̈ve Bayes classifier and show that it
is nonlinear.

144 144 144

144 144 144

144 144 144

9 90 9

90 900 90

9 90 9

3. For the data from Exercise 2, calculate the weights of evidence for the categories
of each variable, so that the naı̈ve Bayes classifier can be expressed as a weighted
sum.

4. The tables below show the bivariate distributions from samples for two classes,
where the variables each have three categories. Show that the two variables are
not independent in each of the two classes. Taking the classification threshold
as 1/2, fit a naı̈ve Bayes classifier to these data and show that nevertheless its
decision surface is optimal.
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27 30 27

30 2700 30

27 30 27

432 48 432

48 432 48

432 48 432

5. Using data simulated from multivariate normal distributions, compare the rel-
ative performance of a naı̈ve Bayes classifier and a simple linear discriminant
classification rule as the (assumed common) correlation between the variables
increases.

6. Using a suitable data set from the UCI Machine Learning Repository, with
continuous variables which are partitioned into discrete cells, investigate the
effect of changing the number and width of the cells in each variable.

7. Using the same data set as in Exercise 6, compare the models produced by the
naı̈ve Bayes classifier and logistic regression.

8. A common way to extend the naı̈ve Bayes classifier in some applications is
to partition the data into segments, with separate naı̈ve Bayes classifiers con-
structed for each segment. Clearly such partitioning will be most effective if
its splits allow for interactions which the naı̈ve Bayes classifier would not pick
up. Develop guidelines to assist people in making such splits.

9. The idea of modeling the distribution of each class by assuming independence
extends immediately to more than two classes. For more than two classes write
down appropriate classification models in the weights of evidence format.

10. One of the particular attractions of the naı̈ve Bayes classifier is that it permits
very simple estimation. Develop updating rules which allow the classifier to be
sequentially updated as new data arrive.
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The 1984 monograph, “CART: Classification and Regression Trees,” coauthored by
Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone (BFOS), repre-
sents a major milestone in the evolution of artificial intelligence, machine learning,
nonparametric statistics, and data mining. The work is important for the compre-
hensiveness of its study of decision trees, the technical innovations it introduces, its
sophisticated examples of tree-structured data analysis, and its authoritative treatment
of large sample theory for trees. Since its publication the CART monograph has been
cited some 3000 times according to the science and social science citation indexes;
Google Scholar reports about 8,450 citations. CART citations can be found in almost
any domain, with many appearing in fields such as credit risk, targeted marketing, fi-
nancial markets modeling, electrical engineering, quality control, biology, chemistry,
and clinical medical research. CART has also strongly influenced image compression
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via tree-structured vector quantization. This brief account is intended to introduce
CART basics, touching on the major themes treated in the CART monograph, and to
encourage readers to return to the rich original source for technical details, discus-
sions revealing the thought processes of the authors, and examples of their analytical
style.

10.1 Antecedents

CART was not the first decision tree to be introduced to machine learning, although
it is the first to be described with analytical rigor and supported by sophisticated
statistics and probability theory. CART explicitly traces its ancestry to the auto-
matic interaction detection (AID) tree of Morgan and Sonquist (1963), an automated
recursive method for exploring relationships in data intended to mimic the itera-
tive drill-downs typical of practicing survey data analysts. AID was introduced as a
potentially useful tool without any theoretical foundation. This 1960s-era work on
trees was greeted with profound skepticism amidst evidence that AID could radically
overfit the training data and encourage profoundly misleading conclusions (Einhorn,
1972; Doyle, 1973), especially in smaller samples. By 1973 well-read statisticians
were convinced that trees were a dead end; the conventional wisdom held that trees
were dangerous and unreliable tools particularly because of their lack of a theoretical
foundation. Other researchers, however, were not yet prepared to abandon the tree
line of thinking. The work of Cover and Hart (1967) on the large sample properties
of nearest neighbor (NN) classifiers was instrumental in persuading Richard Olshen
and Jerome Friedman that trees had sufficient theoretical merit to be worth pursu-
ing. Olshen reasoned that if NN classifiers could reach the Cover and Hart bound
on misclassification error, then a similar result should be derivable for a suitably
constructed tree because the terminal nodes of trees could be viewed as dynami-
cally constructed NN classifiers. Thus, the Cover and Hart NN research was the
immediate stimulus that persuaded Olshen to investigate the asymptotic properties of
trees. Coincidentally, Friedman’s algorithmic work on fast identification of nearest
neighbors via trees (Friedman, Bentley, and Finkel, 1977) used a recursive partition-
ing mechanism that evolved into CART. One predecessor of CART appears in the
1975 Stanford Linear Accelerator Center (SLAC) discussion paper (Friedman,1975),
subsequently published in a shorter form by Friedman (1977). While Friedman was
working out key elements of CART at SLAC, with Olshen conducting mathemat-
ical research in the same lab, similar independent research was under way in Los
Angeles by Leo Breiman and Charles Stone (Breiman and Stone, 1978). The two
separate strands of research (Friedman and Olshen at Stanford, Breiman and Stone
in Los Angeles) were brought together in 1978 when the four CART authors for-
mally began the process of merging their work and preparing to write the CART
monograph.
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10.2 Overview

The CART decision tree is a binary recursive partitioning procedure capable of pro-
cessing continuous and nominal attributes as targets and predictors. Data are handled
in their raw form; no binning is required or recommended. Beginning in the root
node, the data are split into two children, and each of the children is in turn split into
grandchildren. Trees are grown to a maximal size without the use of a stopping rule;
essentially the tree-growing process stops when no further splits are possible due to
lack of data. The maximal-sized tree is then pruned back to the root (essentially split
by split) via the novel method of cost-complexity pruning. The next split to be pruned
is the one contributing least to the overall performance of the tree on training data (and
more than one split may be removed at a time). The CART mechanism is intended
to produce not one tree, but a sequence of nested pruned trees, each of which is a
candidate to be the optimal tree. The “right sized” or “honest” tree is identified by
evaluating the predictive performance of every tree in the pruning sequence on inde-
pendent test data. Unlike C4.5, CART does not use an internal (training-data-based)
performance measure for tree selection. Instead, tree performance is always measured
on independent test data (or via cross-validation) and tree selection proceeds only af-
ter test-data-based evaluation. If testing or cross-validation has not been performed,
CART remains agnostic regarding which tree in the sequence is best. This is in sharp
contrast to methods such as C4.5 or classical statistics that generate preferred models
on the basis of training data measures.

The CART mechanism includes (optional) automatic class balancing and auto-
matic missing value handling, and allows for cost-sensitive learning, dynamic feature
construction, and probability tree estimation. The final reports include a novel at-
tribute importance ranking. The CART authors also broke new ground in showing
how cross-validation can be used to assess performance for every tree in the pruning
sequence, given that trees in different cross-validation folds may not align on the
number of terminal nodes. It is useful to keep in mind that although BFOS addressed
all these topics in the 1970s, in some cases the BFOS treatment remains the state-of-
the-art. The literature of the 1990s contains a number of articles that rediscover core
insights first introduced in the 1984 CART monograph. Each of these major features
is discussed separately below.

10.3 A Running Example

To help make the details of CART concrete we illustrate some of our points using an
easy-to-understand real-world example. (The data have been altered to mask some of
the original specifics.) In the early 1990s the author assisted a telecommunications
company in understanding the market for mobile phones. Because the mobile phone
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TABLE 10.1 Example Data Summary Statistics

Attribute N N Missing % Missing N Distinct Mean Min Max

AGE 813 18 2.2 9 5.059 1 9
CITY 830 0 0 5 1.769 1 5
HANDPRIC 830 0 0 4 145.3 60 235
MARITAL 822 9 1.1 3 1.9015 1 3
PAGER 825 6 0.72 2 0.076364 0 1
RENTHOUS 830 0 0 3 1.7906 1 3
RESPONSE 830 0 0 2 0.1518 0 1
SEX 819 12 1.4 2 1.4432 1 2
TELEBILC 768 63 7.6 6 54.199 8 116
TRAVTIME 651 180 22 5 2.318 1 5
USEPRICE 830 0 0 4 11.151 10 30

MARITAL = Marital Status (Never Married, Married, Divorced/Widowed)
TRAVTIME = estimated commute time to major center of employment
AGE is recorded as an integer ranging from 1 to 9

was a new technology at that time, we needed to identify the major drivers of adoption
of this then-new technology and to identify demographics that might be related to
price sensitivity. The data consisted of a household’s response (yes/no) to a market
test offer of a mobile phone package; all prospects were offered an identical package
of a handset and service features, with one exception that the pricing for the package
was varied randomly according to an experimental design. The only choice open to
the households was to accept or reject the offer.

A total of 830 households were approached and 126 of the households agreed to
subscribe to the mobile phone service plan. One of our objectives was to learn as
much as possible about the differences between subscribers and nonsubscribers. A
set of summary statistics for select attributes appear in Table 10.1. HANDPRIC is the
price quoted for the mobile handset, USEPRIC is the quoted per-minute charge, and
the other attributes are provided with common names.

A CART classification tree was grown on these data to predict the RESPONSE
attribute using all the other attributes as predictors. MARITAL and CITY are cate-
gorical (nominal) attributes. A decision tree is grown by recursively partitioning the
training data using a splitting rule to identify the split to use at each node. Figure 10.1
illustrates this process beginning with the root node splitter at the top of the tree.

The root node at the top of the diagram contains all our training data, including 704
nonsubscribers (labeled with a 0) and 126 subscribers (labeled 1). Each of the 830
instances contains data on the 10 predictor attributes, although there are some missing
values. CART begins by searching the data for the best splitter available, testing each
predictor attribute-value pair for its goodness-of-split. In Figure 10.1 we see the
results of this search: HANDPRIC has been determined to be the best splitter using a
threshold of 130 to partition the data. All instances presented with a HANDPRIC less
than or equal to 130 are sent to the left child node and all other instances are sent to
the right. The resulting split yields two subsets of the data with substantially different
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Figure 10.1 Root node split.

response rates: 21.9% for those quoted lower prices and 9.9% for those quoted the
higher prices. Clearly both the root node splitter and the magnitude of the difference
between the two child nodes are plausible. Observe that the split always results in
two nodes: CART uses only binary splitting.

To generate a complete tree CART simply repeats the splitting process just
described in each of the two child nodes to produce grandchildren of the root. Grand-
children are split to obtain great-grandchildren and so on until further splitting is
impossible due to a lack of data. In our example, this growing process results in a
“maximal tree” consisting of 81 terminal nodes: nodes at the bottom of the tree that
are not split further.

10.4 The Algorithm Briefly Stated

A complete statement of the CART algorithm, including all relevant technical details,
is lengthy and complex; there are multiple splitting rules available for both classifica-
tion and regression, separate handling of continuous and categorical splitters, special
handling for categorical splitters with many levels, and provision for missing value
handling. Following the tree-growing procedure there is another complex procedure
for pruning the tree, and finally, there is tree selection. In Figure 10.2 a simplified
algorithm for tree growing is sketched out. Formal statements of the algorithm are
provided in the CART monograph. Here we offer an informal statement that is highly
simplified.

Observe that this simplified algorithm sketch makes no reference to missing values,
class assignments, or other core details of CART. The algorithm sketches a mechanism
for growing the largest possible (maximal) tree.
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BEGIN:  Assign all training data to the root node 
        Define the root node as a terminal node 

SPLIT:
New_splits=0
FOR every terminal node in the tree: 
   If the terminal node sample size is too small or all instances in the 
   node belong to the same target class goto GETNEXT 
   Find the attribute that best separates the node into two child nodes 
   using an allowable splitting rule 
   New_splits+1
GETNEXT:
NEXT 

Figure 10.2 Simplified tree-growing algorithm sketch.

Having grown the tree, CART next generates the nested sequence of pruned sub-
trees. A simplified algorithm sketch for pruning follows that ignores priors and costs.
This is different from the actual CART pruning algorithm and is included here for
the sake of brevity and ease of reading. The procedure begins by taking the largest
tree grown (Tmax) and removing all splits, generating two terminal nodes that do not
improve the accuracy of the tree on training data. This is the starting point for CART
pruning. Pruning proceeds further by a natural notion of iteratively removing the
weakest links in the tree, the splits that contribute the least to performance of the tree
on test data. In the algorithm presented in Figure 10.3 the pruning action is restricted
to parents of two terminal nodes.

DEFINE:  r(t)= training data misclassification rate in node t 
         p(t)= fraction of the training data in node t 
         R(t)= r(t)*p(t) 
         t_left=left child of node t 
         t_right=right child of node t 
         |T| = number of terminal nodes in tree T 

BEGIN:   Tmax=largest tree grown
         Current_Tree=Tmax 
         For all parents t of two terminal nodes 
           Remove all splits for which R(t)=R(t_left) + R(t_right) 
         Current_tree=Tmax after pruning 

PRUNE:   If |Current_tree|=1 then goto DONE 
         For all parents t of two terminal nodes 
         Remove node(s) t for which R(t)-R(t_left) - R(t_right) 
             is minimum 
Current_tree=Current_Tree after pruning 

Figure 10.3 Simplified pruning algorithm.
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The CART pruning algorithm differs from the above in employing a penalty on
nodes mechanism that can remove an entire subtree in a single pruning action. The
monograph offers a clear and extended statement of the procedure. We now discuss
major aspects of CART in greater detail.

10.5 Splitting Rules

CART splitting rules are always couched in the form

An instance goes left if CONDITION, and goes right otherwise

where the CONDITION is expressed as “attribute X i <= C ” for continuous at-
tributes. For categorical or nominal attributes the CONDITION is expressed as mem-
bership in a list of values. For example, a split on a variable like CITY might be
expressed as

An instance goes left if CITY is in {Chicago, Detroit, Nashville) and goes right
otherwise

The splitter and the split point are both found automatically by CART with the op-
timal split selected via one of the splitting rules defined below. Observe that because
CART works with unbinned data the optimal splits are always invariant with respect
to order-preserving transforms of the attributes (such as log, square root, power trans-
forms, and so on). The CART authors argue that binary splits are to be preferred
to multiway splits because (1) they fragment the data more slowly than multiway
splits and (2) repeated splits on the same attribute are allowed and, if selected, will
eventually generate as many partitions for an attribute as required. Any loss of ease
in reading the tree is expected to be offset by improved predictive performance.

The CART authors discuss examples using four splitting rules for classification
trees (Gini, twoing, ordered twoing, symmetric gini), but the monograph focuses
most of its discussion on the Gini, which is similar to the better known entropy
(information-gain) criterion. For a binary (0/1) target the “Gini measure of impurity”
of a node t is

G(t) = 1 − p(t)2 − (1 − p(t))2

where p(t) is the (possibly weighted) relative frequency of class 1 in the node. Spec-
ifying G(t) = −p(t) ln p(t) − (1 − p(t)) ln(1 − p(t)) instead yields the entropy rule.
The improvement (gain) generated by a split of the parent node P into left and right
children L and R is

I (P) = G(P) − qG(L) − (1 − q)G(R)
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Here, q is the (possibly weighted) fraction of instances going left. The CART authors
favored the Gini over entropy because it can be computed more rapidly, can be readily
extended to include symmetrized costs (see below), and is less likely to generate “end
cut” splits—splits with one very small (and relatively pure) child and another much
larger child. (Later versions of CART have added entropy as an optional splitting rule.)
The twoing rule is based on a direct comparison of the target attribute distribution in
two child nodes:

I (split) =
{

.25(q(1 − q))u
∑

k

|pL (k) − pR(k)|
}2

where k indexes the target classes, pL() and pR() are the probability distributions
of the target in the left and right child nodes, respectively. (This splitter is a mod-
ified version of Messenger and Mandell, 1972.) The twoing “improvement” mea-
sures the difference between the left and right child probability vectors, and the
leading [.25(q(1 − q)] term, which has its maximum value at q = .5, implicitly
penalizes splits that generate unequal left and right node sizes. The power term u is
user-controllable, allowing a continuum of increasingly heavy penalties on unequal
splits; setting u = 10, for example, is similar to enforcing all splits at the median
value of the split attribute. In our practical experience the twoing criterion is a su-
perior performer on multiclass targets as well as on inherently difficult-to-predict
(e.g., noisy) binary targets. BFOS also introduce a variant of the twoing split criterion
that treats the classes of the target as ordered. Called the ordered twoing splitting
rule, it is a classification rule with characteristics of a regression rule as it attempts to
separate low-ranked from high-ranked target classes at each split.

For regression (continuous targets), CART offers a choice of least squares (LS, sum
of squared prediction errors) and least absolute deviation (LAD, sum of absolute
prediction errors) criteria as the basis for measuring the improvement of a split. As with
classification trees the best split yields the largest improvement. Three other splitting
rules for cost-sensitive learning and probability trees are discussed separately below.

In our mobile phone example the Gini measure of impurity in the root node is
1− (.84819)∧2− (.15181)∧2; calculating the Gini for each child and then subtracting
their sample share weighted average from the parent Gini yields an improvement
score of .00703 (results may vary slightly depending on the precision used for the
calculations and the inputs). CART produces a table listing the best split available
using each of the other attributes available. (We show the five top competitors and
their improvement scores in Table 10.2.)

TABLE 10.2 Main Splitter Improvement = 0.007033646

Competitor Split Improvement

1 TELEBILC 50 0.006883
2 USEPRICE 9.85 0.005961
3 CITY 1,4,5 0.002259
4 TRAVTIME 3.5 0.001114
5 AGE 7.5 0.000948
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10.6 Prior Probabilities and Class Balancing

Balancing classes in machine learning is a major issue for practitioners as many data
mining methods do not perform well when the training data are highly unbalanced.
For example, for most prime lenders, default rates are generally below 5% of all
accounts, in credit card transactions fraud is normally well below 1%, and in Internet
advertising “click through” rates occur typically for far fewer than 1% of all ads
displayed (impressions). Many practitioners routinely confine themselves to training
data sets in which the target classes have been sampled to yield approximately equal
sample sizes. Clearly, if the class of interest is quite small such sample balancing
could leave the analyst with very small overall training samples. For example, in an
insurance fraud study the company identified about 70 cases of documented claims
fraud. Confining the analysis to a balanced sample would limit the analyst to a total
sample of just 140 instances (70 fraud, 70 not fraud).

It is interesting to note that the CART authors addressed this issue explicitly in
1984 and devised a way to free the modeler from any concerns regarding sample
balance. Regardless of how extremely unbalanced the training data may be, CART
will automatically adjust to the imbalance, requiring no action, preparation, sampling,
or weighting by the modeler. The data can be modeled as they are found without any
preprocessing.

To provide this flexibility CART makes use of a “priors” mechanism. Priors are
akin to target class weights but they are invisible in that they do not affect any
counts reported by CART in the tree. Instead, priors are embedded in the calculations
undertaken to determine the goodness of splits. In its default classification mode
CART always calculates class frequencies in any node relative to the class frequencies
in the root. This is equivalent to automatically reweighting the data to balance the
classes, and ensures that the tree selected as optimal minimizes balanced class error.
The reweighting is implicit in the calculation of all probabilities and improvements and
requires no user intervention; the reported sample counts in each node thus reflect the
unweighted data. For a binary (0/1) target any node is classified as class 1 if, and only if,

N1(node)

N1(root)
>

N0(node)

N0(root)

Observe that this ensures that each class is assigned a working probability of 1/K
in the root node when there are K target classes, regardless of the actual distribution
of the classes in the data. This default mode is referred to as “priors equal” in the
monograph. It has allowed CART users to work readily with any unbalanced data,
requiring no special data preparation to achieve class rebalancing or the introduction
of manually constructed weights. To work effectively with unbalanced data it is suffi-
cient to run CART using its default settings. Implicit reweighting can be turned off by
selecting the “priors data” option. The modeler can also elect to specify an arbitrary
set of priors to reflect costs, or potential differences between training data and future
data target class distributions.
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TILLABLE

AGE AGE

CITY

TILLABLE

HANDPRIC

PAGER

TILLABLE

HANDPRIC

Figure 10.4 Red Terminal Node = Above Average Response. Instances with a value
of the splitter greater than a threshold move to the right.

Note: The priors settings are unlike weights in that they do not affect the reported
counts in a node or the reported fractions of the sample in each target class. Priors do
affect the class any node is assigned to as well as the selection of the splitters in the
tree-growing process.

(Being able to rely on priors does not mean that the analyst should ignore the topic
of sampling at different rates from different target classes; rather, it gives the analyst
a broad range of flexibility regarding when and how to sample.)

We used the “priors equal” settings to generate a CART tree for the mobile phone
data to better adapt to the relatively low probability of response and obtained the tree
schematic shown in Figure 10.4.

By convention, splits on continuous variables send instances with larger values
of the splitter to the right, and splits on nominal variables are defined by the lists
of values going left or right. In the diagram the terminal nodes are color coded to
reflect the relative probability of response. A red node is above average in response
probability and a blue node is below average. Although this schematic displays only
a small fraction of the detailed reports available it is sufficient to tell this fascinating
story: Even though they are quoted a high price for the new technology, households
with higher landline telephone bills who use a pager (beeper) service are more likely
to subscribe to the new service. The schematic also reveals how CART can reuse an
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attribute multiple times. Again, looking at the right side of the tree, and considering
households with larger landline telephone bills but without a pager service, we see
that the HANDPRIC attribute reappears, informing us that this customer segment is
willing to pay a somewhat higher price but will resist the highest prices. (The second
split on HANDPRIC is at 200.)

10.7 Missing Value Handling

Missing values appear frequently in the real world, especially in business-related
databases, and the need to deal with them is a vexing challenge for all modelers.
One of the major contributions of CART was to include a fully automated and ef-
fective mechanism for handling missing values. Decision trees require a missing
value-handling mechanism at three levels: (a) during splitter evaluation, (b) when
moving the training data through a node, and (c) when moving test data through a
node for final class assignment. (See Quinlan, 1989 for a clear discussion of these
points.) Regarding (a), the first version of CART evaluated each splitter strictly on its
performance on the subset of data for which the splitter is not missing. Later versions
of CART offer a family of penalties that reduce the improvement measure to reflect
the degree of missingness. (For example, if a variable is missing in 20% of the records
in a node then its improvement score for that node might be reduced by 20%, or alter-
natively by half of 20%, and so on.) For (b) and (c), the CART mechanism discovers
“surrogate” or substitute splitters for every node of the tree, whether missing values
occur in the training data or not. The surrogates are thus available, should a tree trained
on complete data be applied to new data that includes missing values. This is in sharp
contrast to machines that cannot tolerate missing values in the training data or that
can only learn about missing value handling from training data that include missing
values. Friedman (1975) suggests moving instances with missing splitter attributes
into both left and right child nodes and making a final class assignment by taking a
weighted average of all nodes in which an instance appears. Quinlan opts for a variant
of Friedman’s approach in his study of alternative missing value-handling methods.
Our own assessments of the effectiveness of CART surrogate performance in the
presence of missing data are decidedly favorable, while Quinlan remains agnostic on
the basis of the approximate surrogates he implements for test purposes (Quinlan).
In Friedman, Kohavi, and Yun (1996), Friedman notes that 50% of the CART code
was devoted to missing value handling; it is thus unlikely that Quinlan’s experimental
version replicated the CART surrogate mechanism.

In CART the missing value handling mechanism is fully automatic and locally
adaptive at every node. At each node in the tree the chosen splitter induces a binary
partition of the data (e.g., X1 <= c1 and X1 > c1). A surrogate splitter is a single
attribute Z that can predict this partition where the surrogate itself is in the form of
a binary splitter (e.g., Z <= d and Z > d). In other words, every splitter becomes
a new target which is to be predicted with a single split binary tree. Surrogates are
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TABLE 10.3 Surrogate Splitter Report Main
Splitter TELEBILC Improvement = 0.023722

Surrogate Split Association Improvement

1 MARITAL 1 0.14 0.001864
2 TRAVTIME 2.5 0.11 0.006068
3 AGE 3.5 0.09 0.000412
4 CITY 2,3,5 0.07 0.004229

ranked by an association score that measures the advantage of the surrogate over the
default rule, predicting that all cases go to the larger child node (after adjustments
for priors). To qualify as a surrogate, the variable must outperform this default rule
(and thus it may not always be possible to find surrogates). When a missing value is
encountered in a CART tree the instance is moved to the left or the right according
to the top-ranked surrogate. If this surrogate is also missing then the second-ranked
surrogate is used instead (and so on). If all surrogates are missing the default rule
assigns the instance to the larger child node (after adjusting for priors). Ties are broken
by moving an instance to the left.

Returning to the mobile phone example, consider the right child of the root node,
which is split on TELEBILC, the landline telephone bill. If the telephone bill data
are unavailable (e.g., the household is a new one and has limited history with the
company), CART searches for the attributes that can best predict whether the instance
belongs to the left or the right side of the split.

In this case (Table 10.3) we see that of all the attributes available the best predictor
of whether the landline telephone is high (greater than 50) is marital status (never-
married people spend less), followed by the travel time to work, age, and, finally, city
of residence. Surrogates can also be seen as akin to synonyms in that they help to
interpret a splitter. Here we see that those with lower telephone bills tend to be never
married, live closer to the city center, be younger, and be concentrated in three of the
five cities studied.

10.8 Attribute Importance

The importance of an attribute is based on the sum of the improvements in all nodes
in which the attribute appears as a splitter (weighted by the fraction of the training
data in each node split). Surrogates are also included in the importance calculations,
which means that even a variable that never splits a node may be assigned a large
importance score. This allows the variable importance rankings to reveal variable
masking and nonlinear correlation among the attributes. Importance scores may op-
tionally be confined to splitters; comparing the splitters-only and the full (splitters
and surrogates) importance rankings is a useful diagnostic.
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TABLE 10.4 Variable Importance (Including Surrogates)

Attribute Score

TELEBILC 100.00 ||||||||||||||||||||||||||||||||||||||||||
HANDPRIC 68.88 |||||||||||||||||||||||||||||
AGE 55.63 |||||||||||||||||||||||
CITY 39.93 ||||||||||||||||
SEX 37.75 |||||||||||||||
PAGER 34.35 ||||||||||||||
TRAVTIME 33.15 |||||||||||||
USEPRICE 17.89 |||||||
RENTHOUS 11.31 ||||
MARITAL 6.98 ||

TABLE 10.5 Variable Importance (Excluding Surrogates)

Variable Score

TELEBILC 100.00 ||||||||||||||||||||||||||||||||||||||||||
HANDPRIC 77.92 |||||||||||||||||||||||||||||||||
AGE 51.75 |||||||||||||||||||||
PAGER 22.50 |||||||||
CITY 18.09 |||||||

Observe that the attributes MARITAL, RENTHOUS, TRAVTIME, and SEX in
Table 10.4 do not appear as splitters but still appear to have a role in the tree. These
attributes have nonzero importance strictly because they appear as surrogates to the
other splitting variables. CART will also report importance scores ignoring the sur-
rogates on request. That version of the attribute importance ranking for the same tree
is shown in Table 10.5.

10.9 Dynamic Feature Construction

Friedman (1975) discusses the automatic construction of new features within each
node and, for the binary target, suggests adding the single feature

x × w

where x is the subset of continuous predictor attributes vector and w is a scaled dif-
ference of means vector across the two classes (the direction of the Fisher linear dis-
criminant). This is similar to running a logistic regression on all continuous attributes
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in the node and using the estimated logit as a predictor. In the CART monograph, the
authors discuss the automatic construction of linear combinations that include feature
selection; this capability has been available from the first release of the CART soft-
ware. BFOS also present a method for constructing Boolean combinations of splitters
within each node, a capability that has not been included in the released software.
While there are situations in which linear combination splitters are the best way to
uncover structure in data (see Olshen’s work in Huang et al., 2004), for the most
part we have found that such splitters increase the risk of overfitting due to the large
amount of learning they represent in each node, thus leading to inferior models.

10.10 Cost-Sensitive Learning

Costs are central to statistical decision theory but cost-sensitive learning received
only modest attention before Domingos (1999). Since then, several conferences have
been devoted exclusively to this topic and a large number of research papers have
appeared in the subsequent scientific literature. It is therefore useful to note that
the CART monograph introduced two strategies for cost-sensitive learning and the
entire mathematical machinery describing CART is cast in terms of the costs of
misclassification. The cost of misclassifying an instance of class i as class j is C(i, j)
and is assumed to be equal to 1 unless specified otherwise; C(i, i) = 0 for all i . The
complete set of costs is represented in the matrix C containing a row and a column
for each target class. Any classification tree can have a total cost computed for its
terminal node assignments by summing costs over all misclassifications. The issue in
cost-sensitive learning is to induce a tree that takes the costs into account during its
growing and pruning phases.

The first and most straightforward method for handling costs makes use of weight-
ing: Instances belonging to classes that are costly to misclassify are weighted upward,
with a common weight applying to all instances of a given class, a method recently
rediscovered by Ting (2002). As implemented in CART, weighting is accomplished
transparently so that all node counts are reported in their raw unweighted form. For
multiclass problems BFOS suggested that the entries in the misclassification cost ma-
trix be summed across each row to obtain relative class weights that approximately
reflect costs. This technique ignores the detail within the matrix but has now been
widely adopted due to its simplicity. For the Gini splitting rule, the CART authors
show that it is possible to embed the entire cost matrix into the splitting rule, but only
after it has been symmetrized. The “symGini” splitting rule generates trees sensitive
to the difference in costs C(i, j) and C(i, k), and is most useful when the symmetrized
cost matrix is an acceptable representation of the decision maker’s problem. By con-
trast, the instance weighting approach assigns a single cost to all misclassifications
of objects of class i . BFOS observe that pruning the tree using the full cost matrix is
essential to successful cost-sensitive learning.
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10.11 Stopping Rules, Pruning, Tree Sequences,
and Tree Selection

The earliest work on decision trees did not allow for pruning. Instead, trees were
grown until they encountered some stopping condition and the resulting tree was
considered final. In the CART monograph the authors argued that no rule intended
to stop tree growth can guarantee that it will not miss important data structure
(e.g., consider the two-dimensional XOR problem). They therefore elected to grow
trees without stopping. The resulting overly large tree provides the raw material from
which a final optimal model is extracted.

The pruning mechanism is based strictly on the training data and begins with a
cost-complexity measure defined as

Ra(T ) = R(T ) + a|T |

where R(T ) is the training sample cost of the tree, |T | is the number of terminal nodes
in the tree and a is a penalty imposed on each node. If a = 0, then the minimum
cost-complexity tree is clearly the largest possible. If a is allowed to progressively
increase, the minimum cost-complexity tree will become smaller because the splits
at the bottom of the tree that reduce R(T ) the least will be cut away. The parameter
a is progressively increased in small steps from 0 to a value sufficient to prune away
all splits. BFOS prove that any tree of size Q extracted in this way will exhibit
a cost R(Q) that is minimum within the class of all trees with Q terminal nodes.
This is practically important because it radically reduces the number of trees that
must be tested in the search for the optimal tree. Suppose a maximal tree has |T |
terminal nodes. Pruning involves removing the split generating two terminal nodes
and absorbing the two children into their parent, thereby replacing the two terminal
nodes with one. The number of possible subtrees extractable from the maximal tree
by such pruning will depend on the specific topology of the tree in question but
will sometimes be greater than .5|T |! But given cost-complexity pruning we need
to examine a much smaller number of trees. In our example we grew a tree with 81
terminal nodes and cost-complexity pruning extracts a sequence of 28 subtrees, but
if we had to look at all possible subtrees we might have to examine on the order of
25! = 15,511,210,043,330,985,984,000,000 trees.

The optimal tree is defined as that tree in the pruned sequence that achieves min-
imum cost on test data. Because test misclassification cost measurement is subject
to sampling error, uncertainty always remains regarding which tree in the pruning
sequence is optimal. Indeed, an interesting characteristic of the error curve (misclas-
sification error rate as a function of tree size) is that it is often flat around its minimum
for large training data sets. BFOS recommend selecting the “1 SE” tree that is the
smallest tree with an estimated cost within 1 standard error of the minimum cost (or
“0 SE”) tree. Their argument for the 1 SE rule is that in simulation studies it yields a
stable tree size across replications whereas the 0 SE tree size can vary substantially
across replications.

© 2009 by Taylor & Francis Group, LLC



194 CART: Classification and Regression Trees

Figure 10.5 One stage in the CART pruning process: the 17-terminal-node subtree.
Highlighted nodes are to be pruned next.

Figure 10.5 shows a CART tree along with highlighting of the split that is to be
removed next via cost-complexity pruning.

Table 10.6 contains one row for every pruned subtree obtained starting with the
maximal 81-terminal-node tree grown. The pruning sequence continues all the way
back to the root because we must allow for the possibility that our tree will demonstrate
no predictive power on test data. The best performing subtree on test data is the SE
0 tree with 40 nodes, and the smallest tree within a standard error of the SE 0 tree
is the SE 1 tree (with 35 terminal nodes). For simplicity we displayed details of the
suboptimal 10-terminal-node tree in the earlier dicussion.

10.12 Probability Trees

Probability trees have been recently discussed in a series of insightful articles elu-
cidating their properties and seeking to improve their performance (see Provost and
Domingos, 2000). The CART monograph includes what appears to be the first detailed
discussion of probability trees and the CART software offers a dedicated splitting rule
for the growing of “class probability trees.” A key difference between classification
trees and probability trees is that the latter want to keep splits that generate two termi-
nal node children assigned to the same class as their parent whereas the former will
not. (Such a split accomplishes nothing so far as classification accuracy is concerned.)
A probability tree will also be pruned differently from its counterpart classification
tree. Therefore, building both a classification and a probability tree on the same data in
CART will yield two trees whose final structure can be somewhat different (although
the differences are usually modest). The primary drawback of probability trees is that
the probability estimates based on training data in the terminal nodes tend to be biased
(e.g., toward 0 or 1 in the case of the binary target) with the bias increasing with the
depth of the node. In the recent ML literature the use of the Laplace adjustment has
been recommended to reduce this bias (Provost and Domingos, 2002). The CART
monograph offers a somewhat more complex method to adjust the terminal node
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TABLE 10.6 Complete Tree Sequence for CART Model: All Nested Subtrees
Reported

Tree Nodes Test Cost Train Cost Complexity

1 81 0.635461 +/- 0.046451 0.197939 0
2 78 0.646239 +/- 0.046608 0.200442 0.000438
3 71 0.640309 +/- 0.046406 0.210385 0.00072
4 67 0.638889 +/- 0.046395 0.217487 0.000898
5 66 0.632373 +/- 0.046249 0.219494 0.001013
6 61 0.635214 +/- 0.046271 0.23194 0.001255
7 57 0.643151 +/- 0.046427 0.242131 0.001284
8 50 0.639475 +/- 0.046303 0.262017 0.00143
9 42 0.592442 +/- 0.044947 0.289254 0.001709

10 40 0.584506 +/- 0.044696 0.296356 0.001786
11 35 0.611156 +/- 0.045432 0.317663 0.002141
12 32 0.633049 +/- 0.045407 0.331868 0.002377
13 31 0.635891 +/- 0.045425 0.336963 0.002558
14 30 0.638731 +/- 0.045442 0.342307 0.002682
15 29 0.674738 +/- 0.046296 0.347989 0.002851
16 25 0.677918 +/- 0.045841 0.374143 0.003279
17 24 0.659204 +/- 0.045366 0.381245 0.003561
18 17 0.648764 +/- 0.044401 0.431548 0.003603
19 16 0.692798 +/- 0.044574 0.442911 0.005692
20 15 0.725379 +/- 0.04585 0.455695 0.006402
21 13 0.756539 +/- 0.046819 0.486269 0.007653
22 10 0.785534 +/- 0.046752 0.53975 0.008924
23 9 0.784542 +/- 0.045015 0.563898 0.012084
24 7 0.784542 +/- 0.045015 0.620536 0.014169
25 6 0.784542 +/- 0.045015 0.650253 0.014868
26 4 0.784542 +/- 0.045015 0.71043 0.015054
27 2 0.907265 +/- 0.047939 0.771329 0.015235
28 1 1 +/- 0 1 0.114345

estimates that has rarely been discussed in the literature. Dubbed the “Breiman ad-
justment,” it adjusts the estimated misclassification rate r × (t) of any terminal node
upward by

r × (t) = r (t) + e/(q(t) + S)

where r (t) is the training sample estimate within the node, q(t) is the fraction of
the training sample in the node, and S and e are parameters that are solved for as a
function of the difference between the train and test error rates for a given tree. In
contrast to the Laplace method, the Breiman adjustment does not depend on the raw
predicted probability in the node and the adjustment can be very small if the test data
show that the tree is not overfit. Bloch, Olshen, and Walker (2002) discuss this topic
in detail and report very good performance for the Breiman adjustment in a series of
empirical experiments.
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10.13 Theoretical Foundations

The earliest work on decision trees was entirely atheoretical. Trees were proposed as
methods that appeared to be useful and conclusions regarding their properties were
based on observing tree performance on empirical examples. While this approach
remains popular in machine learning, the recent tendency in the discipline has been
to reach for stronger theoretical foundations. The CART monograph tackles theory
with sophistication, offering important technical insights and proofs for key results.
For example, the authors derive the expected misclassification rate for the maximal
(largest possible) tree, showing that it is bounded from above by twice the Bayes
rate. The authors also discuss the bias variance trade-off in trees and show how
the bias is affected by the number of attributes. Based largely on the prior work of
CART coauthors Richard Olshen and Charles Stone, the final three chapters of the
monograph relate CART to theoretical work on nearest neighbors and show that as
the sample size tends to infinity the following hold: (1) the estimates of the regression
function converge to the true function and (2) the risks of the terminal nodes converge
to the risks of the corresponding Bayes rules. In other words, speaking informally,
with large enough samples the CART tree will converge to the true function relating
the target to its predictors and achieve the smallest cost possible (the Bayes rate).
Practically speaking, such results may only be realized with sample sizes far larger
than in common use today.

10.14 Post-CART Related Research

Research in decision trees has continued energetically since the 1984 publication of
the CART monograph, as shown in part by the several thousand citations to the mono-
graph found in the scientific literature. For the sake of brevity we confine ourselves
here to selected research conducted by the four CART coauthors themselves after
1984. In 1985 Breiman and Friedman offered ACE (alternating conditional expecta-
tions), a purely data-based driven methodology for suggesting variable transforma-
tions in regression; this work strongly influenced Hastie and Tibshirani’s generalized
additive models (GAM, 1986). Stone (1985) developed a rigorous theory for the style
of nonparametric additive regression proposed with ACE. This was soon followed by
Friedman’s recursive partitioning approach to spline regression (multivariate adaptive
regression splines, MARS). The first version of the MARS program in our archives
is labeled Version 2.5 and dated October 1989; the first published paper appeared as
a lead article with discussion in the Annals of Statistics in 1991. The MARS algo-
rithm leans heavily on ideas developed in the CART monograph but produces models
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that are readily recognized as regressions on recursively partitioned (and selected)
predictors. Stone, with collaborators, extended the spline regression approach to haz-
ard modeling (Kooperberg, Stone, and Truong, 1995) and polychotomous regression
(1997).

Breiman was active in searching for ways to improve the accuracy, scope of ap-
plicability, and compute speed of the CART tree. In 1992 Breiman was the first to
introduce the multivariate decision tree (vector dependent variable) in software but
did not write any papers on the topic. In 1995, Spector and Breiman implemented
a strategy for parallelizing CART across a network of computers using the C-Linda
parallel programming environment. In this study the authors observed that the gains
from parallelization were primarily achieved for larger data sets using only a few
of the available processors. By 1994 Breiman had hit upon “bootstrap aggregation”:
creating predictive ensembles by growing a large number of CART trees on boot-
strap samples drawn from a fixed training data set. In 1998 Breiman applied the idea
of ensembles to online learning and the development of classifiers for very large
databases. He then extended the notion of randomly sampling rows in the training
data to random sampling columns in each node of the tree to arrive at the idea of
the random forest. Breiman devoted the last years of his life to extending random
forests with his coauthor Adele Cutler, introducing new methods for missing value
imputation, outlier detection, cluster discovery, and innovative ways to visualize data
using random forests outputs in a series of papers and Web postings from 2000
to 2004.

Richard Olshen has focused primarily on biomedical applications of decision trees.
He developed the first tree-based approach to survival analysis (Gordon and Olshen,
1984), contributed to research on image compression (Cosman et al., 1993), and has
recently introduced new linear combination splitters for the analysis of very high
dimensional data (the genetics of complex disease).

Friedman introduced stochastic gradient boosting in several papers beginning in
1999 (commercialized as TreeNet software) which appears to be a substantial ad-
vance over conventional boosting. Friedman’s approach combines the generation of
very small trees, random sampling from the training data at every training cycle,
slow learning via very small model updates at each training cycle, selective rejection
of training data based on model residuals, and allowing for a variety of objective
functions, to arrive at a system that has performed remarkably well in a range of real-
world applications. Friedman followed this work with a technique for compressing
tree ensembles into models containing considerably fewer trees using novel methods
for regularized regression. Friedman showed that postprocessing of tree ensembles to
compress them may actually improve their performance on holdout data. Taking this
line of research one step further, Friedman then introduced methods for reexpressing
tree ensemble models as collections of “rules” that can also radically compress the
models and sometimes improve their predictive accuracy.

Further pointers to the literature, including a library of applications of CART, can
be found at the Salford Systems Web site: http://www.salford-systems.com.
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10.15 Software Availability

CART software is available from Salford Systems, at http://www.salford-
systems.com; no-cost evaluation versions may be downloaded on request. Executables
for Windows operating systems as well as Linux and UNIX may be obtained in
both 32-bit and 64-bit versions. Academic licenses for professors automatically grant
no-cost licenses to their registered students. CART source code, written by Jerome
Friedman, has remained a trade secret and is available only in compiled binaries
from Salford Systems. While popular open-source systems (and other commercial
proprietary systems) offer decision trees inspired by the work of Breiman, Friedman,
Olshen, and Stone, these systems generate trees that are demonstrably different from
those of true CART when applied to real-world complex data sets. CART has been
used by Salford Systems to win a number of international data mining competitions;
details are available on the company’s Web site.

10.16 Exercises

1. (a) To the decision tree novice the most important variable in a CART tree should
be the root node splitter, yet it is not uncommon to see a different variable listed
as most important in the CART summary output. How can this be? (b) If you
run a CART model for the purpose of ranking the predictor variables in your
data set and then you rerun the model excluding all the 0-importance variables,
will you get the same tree in the second run? (c) What if you rerun the tree
keeping as predictors only variables that appeared as splitters in the first run?
Are there conditions that would guarantee that you obtain the same tree?

2. Every internal node in a CART tree contains a primary splitter, competitor
splits, and surrogate splits. In some trees the same variable will appear as both
a competitor and a surrogate but using different split points. For example, as a
competitor the variable might split the node with x j <= c, while as a surrogate
the variable might split the node as x j <= d. Explain why this might occur.

3. Among its six different splitting rules CART offers the Gini and twoing splitting
rules for growing a tree. Explain why an analyst might prefer the results of the
twoing rule even if it yielded a lower accuracy.

4. For a binary target if two CART trees are grown on the same data, the first
using the Gini splitting rule and the second using the class probability rule,
which one is likely to contain more nodes? Will the two trees exhibit the same
accuracy? Will the smaller tree be contained within the larger one? Explain the
differences between the two trees.

5. Suppose you have a data set for a binary target coded 0/1 in which 80% of the
records have a target value of 0 and you grow a CART tree using the default
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PRIORS EQUAL setting. How will the results change if you rerun the model
using a WEIGHT variable w with w = 1 when the target is 0 and w = 4 when
the target is 1?

6. When growing CART trees on larger data sets containing tens of thousands of
records or more, one often finds that tree accuracy declines only slightly as the
tree is grown much larger than its optimal size. In other words, on large data
sets a too-large CART tree appears to overfit only slightly. Why is this the case?

7. A CART model is not just a single tree but a collection of nested trees, each of
which has its own performance characteristics (accuracy, area under the ROC
curve). Why do the CART authors suggest that the best tree is not necessarily
the most accurate tree but could well be the smallest tree in the tree sequence
within some tolerance interval of the most accurate tree? How is the tolerance
interval calculated?

8. For cost-sensitive learning, when different mistakes are associated with differ-
ent costs, the CART authors adjust the priors to reflect costs, which is essentially
a form of reweighting the data. When do adjusted priors perfectly reflect costs
and when do they only approximate the costs? How does the symmetric gini
splitting rule help to reflect costs of misclassification?

9. The CART authors decided on a grow-then-prune strategy for the selection of an
optimal decision tree rather than following an apparently simpler stopping rule
method. Explain how XOR-type problems can be used to defeat any stopping
rule based on a goodness of split criterion for one or more splits.

10. If a training data set is complete (contains no missing values in any predictor),
how can a CART tree grown on such data guarantee that it can handle missing
values encountered in future data?
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