Springer Series in Statistics

Bertrand Clarke
Ernest Fokoué
Hao Helen Zhang




Springer Series in Statistics

Advisors:
P. Bickel, P. Diggle, S. Fienberg, U. Gather,
I. Olkin, S. Zeger

For other titles published in this series go to,
http://www.springer.com/series/692



Bertrand Clarke - Ernest Fokoué - Hao Helen Zhang

Principles and Theory
for Data Mining
and Machine Learning

@ Springer



Bertrand Clarke
University of Miami

120 NW 14th Street

CRB 1055 (C-213)
Miami, FL, 33136
bclarke2 @med.miami.edu

Hao Helen Zhang

Department of Statistics

North Carolina State University
Genetics

P.O.Box 8203

Raleigh, NC 27695-8203

USA

hzhang2 @stat.ncsu.edu

ISSN 0172-7397
ISBN 978-0-387-98134-5

DOI 10.1007/978-0-387-98135-2

Ernest Fokoué

Center for Quality and Applied Statistics
Rochester Institute of Technology

98 Lomb Memorial Drive

Rochester, NY 14623
ernest.fokoue @ gmail.com

e-ISBN 978-0-387-98135-2

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009930499

(©) Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The idea for this book came from the time the authors spent at the Statistics and
Applied Mathematical Sciences Institute (SAMSI) in Research Triangle Park in North
Carolina starting in fall 2003. The first author was there for a total of two years, the
first year as a Duke/SAMSI Research Fellow. The second author was there for a year
as a Post-Doctoral Scholar. The third author has the great fortune to be in RTP per-
manently. SAMSI was — and remains — an incredibly rich intellectual environment
with a general atmosphere of free-wheeling inquiry that cuts across established fields.
SAMSI encourages creativity: It is the kind of place where researchers can be found at
work in the small hours of the morning — computing, interpreting computations, and
developing methodology. Visiting SAMSI is a unique and wonderful experience.

The people most responsible for making SAMSI the great success it is include Jim
Berger, Alan Karr, and Steve Marron. We would also like to express our gratitude to
Dalene Stangl and all the others from Duke, UNC-Chapel Hill, and NC State, as well
as to the visitors (short and long term) who were involved in the SAMSI programs. It
was a magical time we remember with ongoing appreciation.

While we were there, we participated most in two groups: Data Mining and Machine
Learning, for which Clarke was the group leader, and a General Methods group run
by David Banks. We thank David for being a continual source of enthusiasm and
inspiration. The first chapter of this book is based on the outline of the first part of
his short course on Data Mining and Machine Learning. Moreover, David graciously
contributed many of his figures to us. Specifically, we gratefully acknowledge that
Figs. 1.1-6, Figs. 2.1,3,4,5,7, Fig. 4.2, Figs. 8.3,6, and Figs. 9.1,2 were either done by
him or prepared under his guidance.

On the other side of the pond, the Newton Institute at Cambridge University provided
invaluable support and stimulation to Clarke when he visited for three months in 2008.
While there, he completed the final versions of Chapters 8 and 9. Like SAMSI, the
Newton Institute was an amazing, wonderful, and intense experience.

This work was also partially supported by Clarke’s NSERC Operating Grant
2004-2008. In the USA, Zhang’s research has been supported over the years by two



vi Preface

grants from the National Science Foundation. Some of the research those grants sup-
ported is in Chapter 10.

We hope that this book will be of value as a graduate text for a PhD-level course on data
mining and machine learning (DMML). However, we have tried to make it comprehen-
sive enough that it can be used as a reference or for independent reading. Our paradigm
reader is someone in statistics, computer science, or electrical or computer engineering
who has taken advanced calculus and linear algebra, a strong undergraduate probabil-
ity course, and basic undergraduate mathematical statistics. Someone whose expertise
in is one of the topics covered here will likely find that chapter routine, but hopefully
find the other chapters are at a comfortable level.

The book roughly separates into three parts. Part I consists of Chapters 1 through 4:
This is mostly a treatment of nonparametric regression, assuming a mastery of linear
regression. Part I consists of Chapters 5, 6, and 7: This is a mix of classification, recent
nonparametric methods, and computational comparisons. Part III consists of Chapters
8 through 11. These focus on high dimensional problems, including clustering, di-
mension reduction, variable selection, and multiple comparisons. We suggest that a
selection of topics from the first two parts would be a good one semester course and a
selection of topics from Part III would be a good follow-up course.

There are many topics left out: proper treatments of information theory, VC dimension,
PAC learning, Oracle inequalities, hidden Markov models, graphical models, frames,
and wavelets are the main absences. We regret this, but no book can be everything.

The main perspective undergirding this work is that DMML is a fusion of large sectors
of statistics, computer science, and electrical and computer engineering. The DMML
fusion rests on good prediction and a complete assessment of modeling uncertainty
as its main organizing principles. The assessment of modeling uncertainty ideally in-
cludes all of the contributing factors, including those commonly neglected, in order to
be valid. Given this, other aspects of inference — model identification, parameter esti-
mation, hypothesis testing, and so forth — can largely be regarded as a consequence of
good prediction. We suggest that the development and analysis of good predictors is
the paradigm problem for DMML.

Overall, for students and practitioners alike, DMML is an exciting context in which
whole new worlds of reasoning can be productively explored and applied to important
problems.

Bertrand Clarke

University of Miami, Miami, FL
Ernest Fokoué

Kettering University, Flint, MI
Hao Helen Zhang

North Carolina State University,
Raleigh, NC
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Chapter 1

Variability, Information, and Prediction

Introductory statistics courses often start with summary statistics, then develop a
notion of probability, and finally turn to parametric models — mostly the normal —
for inference. By the end of the course, the student has seen estimation and hypothesis
testing for means, proportions, ANOVA, and maybe linear regression. This is a good
approach for a first encounter with statistical thinking. The student who goes on takes
a familiar series of courses: survey sampling, regression, Bayesian inference, multi-
variate analysis, nonparametrics and so forth, up to the crowning glories of decision
theory, measure theory, and asymptotics. In aggregate, these courses develop a view of
statistics that continues to provide insights and challenges.

All of this was very tidy and cosy, but something changed. Maybe it was computing.
All of a sudden, quantities that could only be described could be computed readily
and explored. Maybe it was new data sets. Rather than facing small to moderate sam-
ple sizes with a reasonable number of parameters, there were 100 data points, 20,000
explanatory variables, and an array of related multitype variables in a time-dependent
data set. Maybe it was new applications: bioinformatics, E-commerce, Internet text
retrieval. Maybe it was new ideas that just didn’t quite fit the existing framework. In
a world where model uncertainty is often the limiting aspect of our inferential proce-
dures, the focus became prediction more than testing or estimation. Maybe it was new
techniques that were intellectually uncomfortable but extremely effective: What sense
can be made of a technique like random forests? It uses randomly generated ensembles
of trees for classification, performing better and better as more models are used.

All of this was very exciting. The result of these developments is called data mining
and machine earning (DMML).

Data mining refers to the search of large, high-dimensional, multitype data sets, espe-
cially those with elaborate dependence structures. These data sets are so unstructured
and varied, on the surface, that the search for structure in them is statistical. A famous
(possibly apocryphal) example is from department store sales data. Apparently a store
found there was an unusually high empirical correlation between diaper sales and beer
sales. Investigation revealed that when men buy diapers, they often treat themselves
to a six-pack. This might not have surprised the wives, but the marketers would have
taken note.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 1
in Statistics, DOI 10.1007/978-0-387-98135-2_1, (©) Springer Science+Business Media, LLC 2009
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Machine learning refers to the use of formal structures (machines) to do inference
(learning). This includes what empirical scientists mean by model building — proposing
mathematical expressions that encapsulate the mechanism by which a physical process
gives rise to observations — but much else besides. In particular, it includes many tech-
niques that do not correspond to physical modeling, provided they process data into
information. Here, information usually means anything that helps reduce uncertainty.
So, for instance, a posterior distribution represents “information” or is a “learner” be-
cause it reduces the uncertainty about a parameter.

The fusion of statistics, computer science, electrical engineering, and database man-
agement with new questions led to a new appreciation of sources of errors. In narrow
parametric settings, increasing the sample size gives smaller standard errors. However,
if the model is wrong (and they all are), there comes a point in data gathering where
it is better to use some of your data to choose a new model rather than just to con-
tinue refining an existing estimate. That is, once you admit model uncertainty, you can
have a smaller and smaller variance but your bias is constant. This is familiar from
decomposing a mean squared error into variance and bias components.

Extensions of this animate DMML. Shrinkage methods (not the classical shrinkage,
but the shrinking of parameters to zero as in, say, penalized methods) represent a trade-
off among variable selection, parameter estimation, and sample size. The ideas become
trickier when one must select a basis as well. Just as there are well-known sums of
squares in ANOVA for quantifying the variability explained by different aspects of
the model, so will there be an extra variability corresponding to basis selection. In
addition, if one averages models, as in stacking or Bayes model averaging, extra layers
of variability (from the model weights and model list) must be addressed. Clearly,
good inference requires trade-offs among the biases and variances from each level of
modeling. It may be better, for instance, to “stack” a small collection of shrinkage-
derived models than to estimate the parameters in a single huge model.

Among the sources of variability that must be balanced — random error, parameter
uncertainty and bias, model uncertainty or misspecification, model class uncertainty,
generalization error — there is one that stands out: model uncertainty. In the conven-
tional paradigm with fixed parametric models, there is no model uncertainty; only
parameter uncertainty remains. In conventional nonparametrics, there is only model
uncertainty; there is no parameter, and the model class is so large it is sure to con-
tain the true model. DMML is between these two extremes: The model class is rich
beyond parametrization, and may contain the true model in a limiting sense, but the
true model cannot be assumed to have the form the model class defines. Thus, there
are many parameters, leading to larger standard errors, but when these standard errors
are evaluated within the model, they are invalid: The adequacy of the model cannot be
assumed, so the standard error of a parameter is about a value that may not be mean-
ingful. It is in these high-variability settings in the mid-range of uncertainty (between
parametric and nonparametric) that dealing with model uncertainty carefully usually
becomes the dominant issue which can only be tested by predictive criteria.

There are other perspectives on DMML that exist, such as rule mining, fuzzy learning,
observational studies, and computational learning theory. To an extent, these can be
regarded as elaborations or variations of aspects of the perspective presented here,
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although advocates of those views might regard that as inadequate. However, no book
can cover everything and all perspectives. Details on alternative perspectives to the one
perspective presented here can be found in many good texts.

Before turning to an intuitive discussion of several major ideas that will recur through-
out this monograph, there is an apparent paradox to note: Despite the novelty ascribed
to DMML, many of the topics covered here have been studied for decades. Most of
the core ideas and techniques have precedents from before 1990. The slight paradox is
resolved by noting that what is at issue is the novel, unexpected way so many ideas,
new and old, have been recombined to provide a new, general perspective dramatically
extending the conventional framework epitomized by, say, Lehmann’s books.

1.0.1 The Curse of Dimensionality

Given that model uncertainty is the key issue, how can it be measured? One crude
way is through dimension. The problem is that high model uncertainty, especially of
the sort central to DMML, rarely corresponds to a model class that permits a finite-
dimensional parametrization. On the other hand, some model classes, such as neural
nets, can approximate sets of functions that have an interior in a limiting sense and
admit natural finite-dimensional subsets giving arbitrarily good approximations. This
is the intermediate tranche between finite-dimensional and genuinely nonparametric
models: The members of the model class can be represented as limiting forms of an
unusually flexible parametrized family, the elements of which give good, natural ap-
proximations. Often the class has a nonvoid interior.

In this context, the real dimension of a model is finite but the dimension of the model
space is not bounded. The situation is often summarized by the phrase the Curse of Di-
mensionality. This phrase was first used by Bellman (1961), in the context of approx-
imation theory, to signify the fact that estimation difficulty not only increases with
dimension — which is no surprise — but can increase superlinearly. The result is that
difficulty outstrips conventional data gathering even for what one would expect were
relatively benign dimensions. A heuristic way to look at this is to think of real functions
of x, of y, and of the pair (x,y). Real functions f, g of a single variable represent only
a vanishingly small fraction of the functions & of (x,y). Indeed, they can be embedded
by writing k(x,y) = f(x) + g(y). Estimating an arbitrary function of two variables is
more than twice as hard as estimating two arbitrary functions of one variable.

An extreme case of the Curse of Dimensionality occurs in the “large p, small n”
problem in general regression contexts. Here, p customarily denotes the dimension
of the space of variables, and n denotes the sample size. A collection of such data is
(¥i,X14,...,Xp;) for i = 1,...n. Gathering the explanatory variables, the x; ;s, into an
n x p matrix X in which the ith row is (xy ;,...,x, ;) means that X is short and fat when
p >> n. Conventionally, design matrices are tall and skinny, n >> p, so there is a rel-
atively high ratio n/p of data to the number of inferences. The short, fat data problem
occurs when n/p << 1, so that the parameters cannot be estimated directly at all, much



4 1 Variability, Information, and Prediction

less well. These problems need some kind of auxiliary principle, such as shrinkage or
other constraints, just to make solutions exist.

The finite-dimensional parametric case and the truly nonparametric case for regres-
sion are settings in which it is convenient to discuss some of the recurrent issues in
the treatments here. It will be seen that the Curse applies in regression, but the Curse
itself is more general, applying to classification, and to nearly all other aspects of mul-
tivariate inference. As noted, traditional analysis avoids the issue by making strong
model assumptions, such as linearity and normality, to get finite-dimensional behav-
ior or by using distribution-free procedures, and being fully nonparametric. However,
the set of practical problems for which these circumventions are appropriate is small,
and modern applied statisticians frequently use computer-intensive techniques on the
intermediate tranche that are designed to minimize the impact of the Curse.

1.0.2 The Two Extremes

Multiple linear regression starts with n observations of the form (¥;, X;) and then makes
the strong modeling assumption that the response ¥; is related to the vector of explana-
tory variables X; = (X ;,...,X, ;) by

Yi =B Xi+& = Po+BiXi+...BpXpite,

where each random error & is (usually) an independent draw from a normal distribu-
tion with mean zero and fixed but unknown variance. More generally, the &;s are taken
as symmetric, unimodal, and independent. The X;s can be random, or, more com-
monly, chosen by the experimenter and hence deterministic. In the chapters to follow,
instances of this setting will recur several times under various extra conditions.

In contrast, nonparametric regression assumes that the response variable is related to
the vector of explanatory variables by

Yi=f(Xi) +e&,

where f is some smooth function. The assumptions about the error may be the same
as for linear regression, but people tend to put less emphasis on the error structure
than on the uncertainty in estimates f of f. This is reasonable because, outside of
large departures from independent, symmetric, unimodal g;s, the dominant source of
uncertainty comes from estimating f. This setting will recur several times as well;
Chapter 2, for instance, is devoted to it.

Smoothness of f is central: For several nonparametric methods, it is the smoothness
assumptions that make theorems ensuring good behavior (consistency, for instance) of
regression estimators f of f possible. For instance, kernel methods often assume f is
in a Sobolev space, meaning f and a fixed number, say s, of its derivatives lie in a
Hilbert space, say L,(£2), where the open set 2 C R” is the domain of f.
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Other methods, like splines for instance, weaken these conditions by allowing f to be
piecewise continuous, so that it is differentiable between prespecified pairs of points,
called knots. A third approach penalizes the roughness of the fitted function, so that the
data help determine how wiggly the estimate of f should be. Most of these methods
include a “bandwidth” parameter, often estimated by cross-validation (to be discussed
shortly). The bandwidth parameter is like a resolution defining the scale on which
solutions should be valid. A finer-scale, smaller bandwidth suggests high concern with
very local behavior of f; a large-scale, higher bandwidth suggests one will have to be
satisfied, usually grudgingly, with less information on the detailed behavior of f.

Between these two extremes lies the intermediate tranche, where most of the action in
DMML is. The intermediate tranche is where the finite-dimensional methods confront
the Curse of Dimensionality on their way to achieving good approximations to the
nonparametric setting.

1.1 Perspectives on the Curse

Since almost all finite-dimensional methods break down as the dimension p of X;
increases, it’s worth looking at several senses in which the breakdown occurs. This
will reveal impediments that methods must overcome. In the context of regression
analysis under the squared error loss, the formal statement of the Curse is:

e The mean integrated squared error of fits increases faster than linearly in p.

The central reason is that, as the dimension increases, the amount of extra room in the
higher-dimensional space and the flexibility of large function classes is dramatically
more than experience with linear models suggests.

For intuition, however, note that there are three nearly equivalent informal descriptions
of the Curse of Dimensionality:

e In high dimensions, all data sets are too sparse.

e In high dimensions, the number of possible models to consider increases superex-
ponentially in p.

e In high dimensions, all data sets show multicollinearity (or concurvity , which is
the generalization that arises in nonparametric regression).

In addition to these near equivalences, as p increases, the effect of error terms tends
to increase and the potential for spurious correlations among the explanatory variables
increases. This section discusses these issues in turn.

These issues may not sound very serious, but they are. In fact, scaling up most pro-
cedures highlights unforeseen weaknesses in them. To dramatize the effect of scaling
from two to three dimensions, recall the high school physics question: What’s the first
thing that would happen if a spider kept all its proportions the same but was sud-
denly 10 feet tall? Answer: Its legs would break. The increase in volume in its body
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(and hence weight) is much greater than the increase in cross-sectional area (and hence
strength) of its legs. That’s the Curse.

1.1.1 Sparsity

Nonparametric regression uses the data to fit local features of the function f in a flexi-
ble way. If there are not enough observations in a neighborhood of some point x, then
it is hard to decide what f(x) should be. It is possible that f has a bump at x, or a dip,
some kind of saddlepoint feature, or that f is just smoothly increasing or decreasing at
x. The difficulty is that, as p increases, the amount of local data goes to zero.

This is seen heuristically by noting that the volume of a p-dimensional ball of radius
r goes to zero as p increases. This means that the volume of the set centered at x in
which a data point x; must lie in order to provide information about f(x) has fewer and
fewer points per unit volume as p increases.

This slightly surprising fact follows from a Stirling’s approximation argument. Recall
the formula for the volume of a ball of radius r in p dimensions:

P2 pp

Vi(p) = Toatl) (1.1.1)

When p is even, p = 2k for some k. So,
InV,(p) = kin(zr?) — In(k!)

since I'(k+ 1) = k!. Stirling’s formula gives k! =~ v/2mkk*1/2¢%. So, (1.1.1) becomes

1 1
InV,(p) = =3 In(27) — 5 Ink-+ k{1 +In(rr?)] — kInk.

The last term dominates and goes to —eoo for fixed r. If p = 2k + 1, one again gets
V.(p) — 0. The argument can be extended by writing I'(p/2+ 1) =T ((k+1)+1/2)
and using bounds to control the extra “1/2”. As p increases, the volume goes to zero
for any r. By contrast, the volume of a cuboid of side length r is 77, which goes to 0,
1, or o depending on r < 1, r =1, or r > 1. In addition, the ratio of the volume of the
p-dimensional ball of radius r to the volume of the cuboid of side length r typically
goes to zero as p gets large.

Therefore, if the x values are uniformly distributed on the unit hypercube, the expected
number of observations in any small ball goes to zero. If the data are not uniformly dis-
tributed, then the typical density will be even more sparse in most of the domain, if a
little less sparse on a specific region. Without extreme concentration in that specific
region — concentration on a finite-dimensional hypersurface for instance — the increase
in dimension will continue to overwhelm the data that accumulate there, too. Essen-
tially, outside of degenerate cases, for any fixed sample size n, there will be too few
data points in regions to allow accurate estimation of f.
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To illustrate the speed at which sparsity becomes a problem, consider the best-case
scenario for nonparametric regression, in which the x data are uniformly distributed in
the p-dimensional unit ball. Figure 1.1 plots r” on [0, 1], the expected proportion of
the data contained in a centered ball of radius r for p = 1,2,8. As p increases, r must
grow large rapidly to include a reasonable fraction of the data.

1.0

0.6

Expected Proportion

0.0
I

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Side Length

Fig. 1.1 This plots r”, the expected proportion of the data contained in a centered ball of radius r in
the unit ball for p = 1,2, 8. Note that, for large p, the radius needed to capture a reasonable fraction
of the data is also large.

To relate this to local estimation of f, suppose one thousand values of are uniformly
distributed in the unit ball in R”. To ensure that at least 10 observations are near x
for estimating f near x, (1.1.1) implies the expected radius of the requisite ball is
r=+/.01. For p =10, r = 0.63 and the value of r grows rapidly to 1 with increasing p.
This determines the size of the neighborhood on which the analyst can hope to estimate
local features of f. Clearly, the neighborhood size increases with dimension, imply-
ing that estimation necessarily gets coarser and coarser. The smoothness assumptions
mentioned before — choice of bandwidth, number and size of derivatives — govern how
big the class of functions is and so help control how big the neighborhood must be to
ensure enough data points are near an x value to permit decent estimation.
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Classical linear regression avoids the sparsity issue in the Curse by using the linearity
assumption. Linearity ensures that all the points contribute to fitting the estimated sur-
face (i.e., the hyperplane) everywhere on the X -space. In other words, linearity permits
the estimation of f at any x to borrow strength from all of the x;s, not just the x;s in a
small neighborhood of x.

More generally, nonlinear models may avoid the Curse when the parametrization does
not “pick off” local features. To see the issue, consider the nonlinear model:

RY ifxeB, ={x:|x—x| <r}
f(x) o ﬁo*f‘z;]:l ﬂjx]' ifx e Bg.

The ball B, is a local feature. This nonlinear model borrows strength from the data
over most of the space, but even with a large sample it is unlikely that an analyst
can estimate f near xo and the radius r that defines the nonlinear feature. Such cases
are not pathological — most nonlinear models have difficulty in some regions; e.g.,
logistic regression can perform poorly unless observations are concentrated where the
sigmoidal function is steep.

1.1.2 Exploding Numbers of Models

The second description of the Curse is that the number of possible models increases
superexponentially in dimension. To illustrate the problem, consider a very simple
case: polynomial regression with terms of degree 2 or less. Now, count the number of
models for different values of p.

For p = 1, the seven possible models are:

E(Y) = Po, E(Y) = Bix1, E(Y) = Boxi,
E(Y) = Bo+ Bix1, E(Y) = Bo + Box}, E(Y) = Bix; + Box?,
E(Y) = Bo+ Bix1 + Bzx%.

For p = 2, the set of models expands to include terms in x, having the form x;, x% and
x1x3. There are 63 such models. In general, the number of polynomial models of order
at most 2 in p variables is 2¢ — 1, where a = 1 +2p+ p(p — 1) /2. (The constant term,
which may be included or not, gives 2! cases. There are p possible first order terms,
and the cardinality of all subsets of p terms is 2”. There are p second-order terms of the
form x?, and the cardinality of all subsets is again 27. There are C(p,2) = p(p—1)/2
distinct subsets of size 2 among p objects. This counts the number of terms of the
form x;x; for i # j and gives 27(P=1)/2 terms. Multiplying and subtracting 1 for the
disallowed model with no terms gives the result.)

Clearly, the problem worsens if one includes models with more terms, for instance
higher powers. The problem remains if polynomial expansions are replaced by more
general basis expansions. It may worsen if more basis elements are needed for good
approximation or, in the fortunate case, the rate of explosion may decrease somewhat
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if the basis can express the functions of interest parsimoniously. However, the point
remains that an astronomical number of observations are needed to select the best
model among so many candidates, even for low-degree polynomial regression.

In addition to fit, consider testing in classical linear regression. Once p is moderately
large, one must make a very large number of significance tests, and the family-wise
error rate for the collection of inferences will be large or the tests themselves will
be conservative to the point of near uselessness. These issues will be examined in
detail in Chapter 10, where some resolutions will be presented. However, the practical
impossibility of correctly identifying the best model, or even a good one, is a key
motivation behind ensemble methods, discussed later.

In DMML, the sheer volume of data and concomitant necessity for flexible regression
models forces much harder problems of model selection than arise with low-degree
polynomials. As a consequence, the accuracy and precision of inferences for conven-
tional methods in DMML contexts decreases dramatically, which is the Curse.

1.1.3 Multicollinearity and Concurvity

The third description of the Curse relates to instability of fit and was pointed out by
Scott and Wand (1991). This complements the two previous descriptions, which focus
on sample size and model list complexity. However, all three are different facets of the
same issue.

Recall that, in linear regression, multicollinearity occurs when two or more of the
explanatory variables are highly correlated. Geometrically, this means that all of the
observations lie close to an affine subspace. (An affine subspace is obtained from a
linear subspace by adding a constant; it need not contain 0.)

Suppose one has response values Y; associated with observed vectors X; and does a
standard multiple regression analysis. The fitted hyperplane will be very stable in the
region where the observations lie, and predictions for similar vectors of explanatory
variables will have small variances. But as one moves away from the observed data,
the hyperplane fit is unstable and the prediction variance is large. For instance, if the
data cluster about a straight line in three dimensions and a plane is fit, then the plane
can be rotated about the line without affecting the fit very much. More formally, if the
data concentrate close to an affine subspace of the fitted hyperplane, then, essentially,
any rotation of the fitted hyperplane around the projection of the affine subspace onto
the hyperplane will fit about as well. Informally, one can spin the fitted plane around
the affine projection without harming the fit much.

In p-dimensions, there will be p elements in a basis. So, the number of proper sub-
spaces generated by the basis is 27 — 2 if IR” and 0 are excluded. So, as p grows, there
is an exponential increase in the number of possible affine subspaces. Traditional mul-
ticollinearity can occur when, for a finite sample, the explanatory variables concentrate
on one of them. This is usually expressed in terms of the design matrix X as detX'X
near zero; i.e., nearly singular. Note that X denotes either a matrix or a vector-valued



10 1 Variability, Information, and Prediction

outcome, the meaning being clear from the context. If needed, a subscript i, as in
X, will indicate the vector case. The chance of multicollinearity happening purely by
chance increases with p. That is, as p increases, it is ever more likely that the variables
included will be correlated, or seem to be, just by chance. So, reductions to affine
subspaces will occur more frequently, decreasing |detX’X|, inflating variances, and
giving worse mean squared errors and predictions.

But the problem gets worse. Nonparametric regression fits smooth curves to the data. In
analogy with multicollinearity, if the explanatory variables tend to concentrate along
a smooth curve that is in the family used for fitting, then the prediction and fit will
be good near the projected curve but poor in other regions. This situation is called
concurvity . Roughly, it arises when the true curve is not uniquely identifiable, or
nearly so. Concurvity is the nonparametric analog of multicollinearity and leads to
inflated variances. A more technical discussion will be given in Chapter 4.

1.1.4 The Effect of Noise

The three versions of the Curse so far have been in terms of the model. However, as
the number of explanatory variables increases, the error component typically has an
ever-larger effect as well.

Suppose one is doing multiple linear regression with ¥ = X B + €, where € ~ N(0, 6°1);
i.e., all convenient assumptions hold. Then, from standard linear model theory, the
variance in the prediction at a point x given a sample of size n is

Var[f'|x] = o (1+x" (X"X) 'x), (1.1.2)

assuming (X7 X) is nonsingular so its inverse exists. As (X7 X) gets closer to singu-
larity, typically one or more eigenvalues go to 0, so the inverse (roughly speaking)
has eigenvalues that go to oo, inflating the variance. When p >> n, (X”X) is singu-
lar, indicating there are directions along which (X7 X) cannot be inverted because of
zero eigenvalues. If a generalized inverse, such as the Moore-Penrose matrix, is used
when (X7X) is singular, a similar formula can be derived (with a limited domain of
applicability).

However, consider the case in which the eigenvalues decrease to zero as more and more
explanatory variables are included, i.e., as p increases. Then, (X Tx ) gets ever closer
to singularity and so its inverse becomes unbounded in the sense that one or more
(usually many) of its eigenvalues go to infinity. Since x7 (X TX)~!x is the norm of x
with respect to the inner product defined by (X7 X)~!, it will usually tend to infinity
(as long as the sequence of xs used doesn’t go to zero). That is, typically, Var[{'|x]
tends to infinity as more and more explanatory variables are included. This means the
Curse also implies that, for typically occurring values of p and n, the instability of
estimates is enormous.
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1.2 Coping with the Curse

Data mining, in part, seeks to assess and minimize the effects of model uncertainty to
help find useful models and good prediction schemes. Part of this necessitates dealing
with the Curse.

In Chapter 4, it will be seen that there is a technical sense in which neural networks
can provably avoid the Curse in some cases. There is also evidence (not as clear) that
projection pursuit regression can avoid the Curse in some cases. Despite being remark-
able intellectual achievements, it is unclear how generally applicable these results are.
More typically, other methods rest on other flexible parametric families, nonparamet-
ric techniques, or model averaging and so must confront the Curse and other model
uncertainty issues directly. In these cases, analysts reduce the impact of the Curse by
designing experiments well, extracting low-dimensional features, imposing parsimony,
or aggressive variable search and selection.

1.2.1 Selecting Design Points

In some cases (e.g., computer experiments), it is possible to use experimental design
principles to minimize the Curse. One selects the xs at which responses are to be mea-
sured in a smart way. Either one chooses them to be spread as uniformly as possible,
to minimize sparsity problems, or one selects them sequentially, to gather information
where it is most needed for model selection or to prevent multicollinearity.

There are numerous design criteria that have been extensively studied in a variety of
contexts. Mostly, they are criteria on X’ X from (1.1.2). D-optimality, for instance,
tries to maximize detX TX . This is an effort to minimize the variance of the parameter
estimates, f3;. A-optimality tries to minimize trace(X” X)~!. This is an effort to mini-
mize the average variance of the parameter estimates. G-optimality tries to minimize
the maximum prediction variance; i.e., minimize the maximum of x” (X7 X)~'x from
(1.1.2) over a fixed range of x. In these and many other criteria, the major downside
is that the optimality criterion depends on the model chosen. So, the optimum is only
optimal for the model and sample size the experimenter specifies. In other words, the
uncertainty remaining is conditional on n and the given model. In a fundamental sense,
uncertainty in the model and sampling procedure is assumed not to exist.

A fundamental result in this area is the Kiefer and Wolfowitz (1960) equivalence the-
orem. It states conditions under which D-optimality and G-optimality are the same;
see Chernoff (1999) for an easy, more recent introduction. Over the last 50 years, the
literature in this general area has become vast. The reader is advised to consult the
classic texts of Box et al. (1978), Dodge et al. (1988), or Pukelsheim (1993).

Selection of design points can also be done sequentially; this is very difficult but poten-
tially avoids the model and sample-size dependence of fixed design-point criteria. The
full solution uses dynamic programming and a cost function to select the explanatory
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values for the next response measurement, given all the measurements previously
obtained. The cost function penalizes uncertainty in the model fit, especially in regions
of particular interest, and perhaps also includes information about different prices for
observations at different locations. In general, the solution is intractable, although
some approximations (e.g., greedy selection) may be feasible. Unfortunately, many
large data sets cannot be collected sequentially.

A separate but related class of design problems is to select points in the domain of
integration so that integrals can be evaluated by deterministic algorithms. Traditional
Monte Carlo evaluation is based on a Riemann sum approximation,

[ rwax~ if(an(si),

where the S; form a partition of S C R”, A(S;) is the volume of S;, and the evaluation
point X; is uniformly distributed in ;. The procedure is often easy to implement, and
randomness allows one to make uncertainty statements about the value of the integral.
But the procedure suffers from the Curse; error grows faster than linearly in p.

One can sometimes improve the accuracy of the approximation by using nonrandom
evaluation points x;. Such sets of points are called quasi-random sequences or low-
discrepancy sequences. They are chosen to fill out the region S as evenly as possi-
ble and do not depend on f. There are many approaches to choosing quasi-random
sequences. The Hammersley points discussed in Note 1.1 were first, but the Halton
sequences are also popular (see Niederreiter (1992a)). In general, the grid of points
must be fine enough that f looks locally smooth, so a procedure must be capable of
generating points at any scale, however fine, and must, in the limit of ever finer scales,
reproduce the value of the integral exactly.

1.2.2 Local Dimension

Nearly all DMML methods try to fit the local structure of a function. The problem is
that when behavior is local it can change from neighborhood to neighborhood. In par-
ticular, an unknown function on a domain may have different low-dimensional func-
tional forms on different regions within its domain. Thus, even though the local low-
dimensional expression of a function is easier to uncover, the region on which that
form is valid may be difficult to identify.

For the sake of exactitude, define f : R” — IR to have locally low dimension if there
exist regions R,R,,... and a set of functions g, g»,... such that JR; ~ R” and for
X ER;, f(x) = gi(x), where g; depends only on ¢ components of x for ¢ < p. The sense
of approximation and meaning of < is vague, but the point is not to make it precise
(which can be done easily) so much as to examine the local behavior of functions from
a dimensional standpoint.
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As examples,

3xy ifx;+x <7 m
flx)= x% ifx;+x>7 and f(x)= 2 oy lg, (x)
X1 +x if x; =x9, k=1

are locally low-dimensional because they reduce to functions of relatively few vari-
ables on regions. By contrast,

f(x)=Po+ i Bjxjfor B;#0 and  flx)= ﬁxj
j=1 j=1

have high local dimension because they do not reduce anywhere on their domain to
functions of fewer than p variables.

Fig. 1.2 A plot of 200 points uniformly distributed on the 1-cube in IR?, where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

As a pragmatic point, outside of a handful of particularly well-behaved settings, suc-
cess in multivariate nonparametric regression requires either nonlocal model assump-
tions or that the regression function have locally low dimension on regions that are not
too hard to identify.

Since most DMML methods use local fits (otherwise, they must make global model
assumptions), and local fitting succeeds best when the data have locally low dimension,
the difficulty is knowing in advance whether the data have simple, low-dimensional
structure. There is no standard estimator of average local dimension, and visualization
methods are often difficult, especially for large p.
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To see how hidden structure, for instance a low-dimensional form, can lurk unsus-
pected in a scatterplot, consider g-cubes in IR”. These are the g-dimensional bound-
aries of a p-dimensional cube: A I-cube in IR? is the perimeter of a square; a 2-cube
in IR3 consists of the faces of a cube; a 3-cube in IR? is the entire cube. These have
simple structure, but it is hard to discern for large p.

Figure 1.2 shows a 1-cube in R?, tilted 10 degrees from the natural axes in each coor-
dinate. Since p = 3 is small, the structure is clear.
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Fig. 1.3 A plot of 200 points uniformly distributed on the 1-cube in R', where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

In contrast, Fig. 1.3 is a projection of a 1-cube in R'?, tilted 10 degrees from the natural
axes in each coordinate. This is a visual demonstration that in high dimensions, nearly
all projections look Gaussian, see Diaconis and Freedman (1984). This shows that even
simple structure can be hard to see in high dimensions.

Although there is no routine estimator for average local dimension and no standard
technique for uncovering hidden low-dimensional structures, some template methods
are available. A template method is one that links together a sequence of steps but
many of the steps could be accomplished by any of a variety of broadly equivalent
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techniques. For instance, one step in a regression method may involve variable se-
lection and one may use standard testing on the parameters. However, normal-based
testing is only one way to do variable selection and one could, in principle, use any
other technique that accomplished the same task.

One way to proceed in the search for low local dimension structures is to start by
checking if the average local dimension is less than the putative dimension p and, if it
is, “grow” sets of data that can be described by low-dimensional models.

To check if the local dimension is lower than the putative dimension, one needs to have
a way to decide if data can locally be fit by a lower-dimensional surface. In a perfect
mathematical sense, the answer is almost always no, but the dispersal of a portion
of a data set in a region may be tight enough about a lower-dimensional surface to
justify the approximation. In principle, therefore, one wants to choose a number of
points at least as great as p and find that the convex hull it forms really only has ¢ < p
dimensions; i.e., in the leftover p — ¢ dimensions, the convex hull is so thin it can
be approximated to thickness zero. This means that the solid the data forms can be
described by ¢ directions. The question is how to choose g.

Banks and Olszewski (2004) proposed estimating average local dimension in structure
discovery problems by obtaining M estimates of the number of vectors required to
describe a solid formed by subsets of the data and then averaging the estimates. The
subsets are formed by enlarging a randomly chosen sphere to include a certain number
of data points, describing them by some dimension reduction technique. We specify
principal components, PCs, even though PCs will only be described in detail in Chapter
8, because it is popular. The central idea of PCs needed here is that it is a method that
produces vectors from explanatory variable inputs in order of decreasing ability to
explain observed variability. Thus, the earlier PCs are more important than later PCs.
The parallel is to a factor in an ANOVA: One keeps the factors that explain the biggest
portions of the sum of squared errors, and may want to ignore other factors.

The template is as follows.

Let {X;} denote n data points in IR”.

O Select a random point x;, in or near the convex hull of X;,...,X, for m =
1,....M.

O Find a ball centered at x}, that contains exactly k points. One must choose k > p;
k = 4p is one recommended choice.

O Perform a principal components regression on the k points within the ball.

O Let ¢, be the number of principal components needed to explain a fixed percent-
age of the variance in the ¥; values; 80% is one recommended choice.

The average ¢ = (1/M)3M_, ¢, estimates the average local dimension of f. (This
assumes a locally linear functional relationship for points within the ball.) If ¢ is large
relative to p, then the regression relationship is highly multivariate in most of the space;

no method has much chance of good prediction. However, if ¢ is small, one infers there
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are substantial regions where the data can be described by lower-dimensional surfaces.
It’s just a matter of finding them.

Note that this really is a template because one can use any variable reduction technique
in place of principal components. In Chapter 4, sliced inverse regression will be intro-
duced and in Chapter 9 partial least squares will be explained, for instance. However,
one needn’t be so fancy. Throwing out variables with coefficients too close to zero
from goodness-of-fit testing is an easily implemented alternative. It is unclear, a priori,
which dimension reduction technique is best in a particular setting.

To test the PC-based procedure, Banks and Olszewski (2004) generated 10 * 27 points
at random on each of the 2779 Z > sides of a g-cube in IR”. Then independent

N(0,.25I) noise was added to each observation. Table 1.1 shows the resulting esti-
mates of the local dimension for given putative dimension p and true lower-dimensional
structure dimension g. The estimates are biased down because the principal compo-
nents regression only uses the number of directions, or linear combinations, required
to explain only 80% of the variance. Had 90% been used, the degree of underestima-
tion would have been less.

503
4.25 4.23

3.49 3.55 3.69

2.75 2.90 3.05 3.18

2.04 2.24 2.37 2.50 2.58

1.43 1.58 1.71 1.80 1.83 1.87

80 88 92 96 95 95 .98
=1 2 3 4 5 6 7

— N WA O IR

Table 1.1 Estimates of the local dimension of g-cubes in IR” based on the average of 20 replications
per entry. The estimates tend to increase up to the true ¢ as p increases.

Given that one is satisfied that there is a locally low-dimensional structure in the data,
one wants to find the regions in terms of the data. However, a locally valid lower-
dimensional structure in one region will typically not extend to another. So, the points
in a region where a low-dimensional form is valid will fit well (i.e., be good relative
to the model), but data outside that region will typically appear to be outliers (i.e., bad
relative to the model).

One approach to finding subsamples is as follows. Prespecify the proportion of a sam-
ple to be described by a linear model, say 80%. The task is to search for subsets of size
.8n of the n data points to find one that fits a prechosen linear model. To begin, select &,
the number of subsamples to be constructed, hoping at least one of them matches 80%
of the data. (This k can be found as in House and Banks (2004) where this method is
described.) So, start with k sets of data, each with ¢+ 2 data points randomly assigned
to them with replacement. This is just enough to permit estimation of g coefficients
and assessment of goodness of fit for a model. The g can be chosen near ¢ and then
nearby values of g tested in refinements. Each of the initial samples can be augmented
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by randomly chosen data points from the large sample. If including the extra observa-
tion improves the goodness of fit, it is retained; otherwise it is discarded. Hopefully,
one of the resulting d sets contains all the data well described by the model. These
points can be removed and the procedure repeated.

Note that this, too, is a template method, in the sense that various goodness-of-fit mea-
sures can be used, various inclusion rules for the addition of data points to a growing
“good” subsample can be formulated, and different model classes can be proposed.
Linear models are just one good choice because they correspond locally to taking a
Taylor expansion of a function on a neighborhood.

1.2.3 Parsimony

One strategy for coping with the Curse is the principle of parsimony. Parsimony is the
preference for the simplest explanation that explains the greatest number of observa-
tions over more complex explanations. In DMML, this is seen in the fact that simple
models often have better predictive accuracy than complex models. This, however, has
some qualifications. Let us interpret “simple model” to mean a model that has few
parameters, a common notion. Certainly, if two models fit equally well, the one with
fewer parameters is preferred because you can get better estimates (smaller standard
errors) when there is a higher ratio of data points to number of parameters. Often,
however, it is not so clear: The model with more parameters (and hence higher SEs)
explains the data better, but is it better enough to warrant the extra complexity?

This question will be addressed further in the context of variance bias decompositions
later. From a strictly pragmatic, predictive standpoint, note that:

1. If the true model is complex, one may not be able to make accurate predictions at
all.

2. If the true model is simple, then one can probably improve the fit by forcing selec-
tion of a simple model.

The inability to make accurate predictions when the true model is complex may be due
to n being too small. If n cannot be increased, and this is commonly the case, one is
forced to choose oversimple models intelligently.

The most common kind of parsimony arises in variable selection since usually there
is at least one parameter per variable included. One wants to choose a model that only
includes the covariates that contribute substantially to a good fit. Many data mining
methods use stepwise selection to choose variables for the model, but this breaks down
for large p — even when a multiple regression model is correct. More generally, as
in standard applied statistics contexts, DMML methods try to eliminate explanatory
variables that don’t explain enough of the variability to be worth including to improve
a model that is overcomplex for the available data. One way to do this is to replace a
large collection of explanatory variables by a single function of them.
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Other kinds of parsimony arise in the context of shrinkage, thresholding, and roughness
penalties, as will be discussed in later chapters. Indeed, the effort to find locally low-
dimensional representations, as discussed in the last section, is a form of parsimony.
Because of data limitations relative to the size of model classes, parsimony is one of
the biggest desiderata in DMML.

As a historical note, the principle of parsimony traces back at least to an early logician
named William of Ockham (1285-13497?) from Surrey, England. The phrase attributed
to him is: “Pluralitas non est ponenda sine neccesitate”, which means “entities should
not be multiplied unnecessarily”. This phrase is not actually found in his writings but
the attribution is fitting given his negative stance on papal power. Indeed, William
was alive during the Avignon papacy when there were two popes, one in Rome and
one in Avignon, France. It is tempting to speculate that William thought this level of
theological complexity should be cut down to size.

1.3 Two Techniques

Two of the most important techniques in DMML applications are the bootstrap and
cross-validation. The bootstrap estimates uncertainty, and cross-validation assesses
model fit. Unfortunately, neither scales up as well as one might want for massive
DMML applications — so in many cases one may be back to techniques based on the
central limit theorem.

1.3.1 The Bootstrap

The bootstrap was invented by Efron (1979) and was one of the first and most powerful
achievements of computer-intensive statistical inference. Very quickly, it became an
important method for setting approximate confidence regions on estimates when the
underlying distribution is unknown.

The bootstrap uses samples drawn from the empirical distribution function, EDF. For
simplicity, consider the univariate case and let Xj,..., X, be a random sample (i.e., an
independent and identically distributed sample, or IID sample) from the distribution
F. Then the EDF is

Fy(x) = e x) (%),
=1

S| =

14

where Ig(x) is an indicator function that is one or zero according to whether x € R or
x ¢ IR, respectively. The EDF is bounded between 0 and 1 with jumps of size (1/n) at
each observation. It is a consistent estimator of F, the true distribution function (DF).
Therefore, as n increases, F, converges (in a sense discussed below) to F'.
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To generalize to the multivariate case, define F;,(x) as the multivariate DF that for
rectangular sets A assigns the probability equal to the proportion of sample points
within A. For a random sample X, ..., X, in IR, this multivariate EDF is

where R; = (—oo,Xj1] X ... x (—o0,Xjp| is the set formed by the Cartesian product of
all halfspaces determined by the components of X;. For nonrectangular sets, a more
careful definition must be given using approximations from rectangular sets.

For univariate data, F converges to F in a strong sense. The Glivenko-Cantelli theorem
states that, for all € > 0,

P |limsup |£,(x) — F(x)| < &| = 1 as. (1.3.1)
X

This supremum, sometimes called the Kolmogorov-Smirnov distance, bounds the
maximal distance between two distribution functions. Note that the randomness is in
the sample defining the EDF. Convergence of EDFs to their limit is fast. Indeed, let
€ > 0. Then the Smirnov distributions arise from

2

lim P (v/nsup, R (F (x) — £, (x)) <€) =1—¢* (1.3.2)

n—oo

and, from the other side,

lim P (V/isup, R (£ (¥) = F(x)) < &) = 1 = e (1.3.3)

Moreover, £, also satisfies a large-deviation principle; a large-deviation principle gives
conditions under which a class of events has probability decreasing to zero at a rate
like ¢*" for some o > 0. Usually, the events have a convergent quantity that is a fixed
distance from its limit. For the EDF, it converges to F' in Kolmogorov-Smirnov distance
and, for € > 0 bounding that distance away from 0, the Kiefer-Wolfowitz theorem is
that 3o > 0 and N so that for Vn > N

P (sup, R|Fn(x) — F(x)| > €) <e ™" (1.3.4)

Sometimes these results are called Sanov theorems. The earliest version was due to
Chernoff (1956), who established an analogous result for the sample mean for distri-
butions with a finite moment generating function on a neighborhood of zero.

Unfortunately, this convergence fails in higher dimensions; Fig. 1.4 illustrates the key
problem, namely that the distribution may concentrate on sets that are very badly
approximated by rectangles. Suppose the bivariate distribution for (X;,X,) is con-
centrated on the line from (0,1) to (1,0). No finite number of samples (X ;,X2;),
i =1,...,n, covers every point on the line segment. So, consider a point x = (x,x3)
on the line segment that is not in the sample. The EDF assigns probability zero to the
region (—eo,x1] X (—eo,x2], so the limit of the difference is F(x), not zero.
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Fig. 1.4 The limsup convergence of the Glivenko-Cantelli theorem does not hold for p > 2. This
figure shows that no finite sample from the (degenerate) bivariate uniform distribution on (0,1) to
(1,0) can have the supremal difference going to zero.

Fortunately, for multivariate data, a weaker form of convergence holds, and this is
sufficient for bootstrap purposes. The EDF converges in distribution to the true F,
which means that, at each point x in IR” at which F is continuous,

lir{nﬁn (x) =F(x).

Weak convergence, or convergence in distribution, is written as £, = F. Convergence
in Kolmogorov-Smirnov distance implies weak convergence, but the converse fails.
Although weaker, convergence in distribution is enough for the bootstrap because it
means that, as data accumulate, the EDF does go to a well-defined limit, the true DF,
pointwise, if not uniformly, on its domain. (In fact, the topology of weak convergence
is metrizable by the Prohorov metric used in the next proposition.)

Convergence in distribution is also strong enough to ensure that estimates obtained
from EDFs converge to their true values. To see this, recognize that many quantities to
be estimated can be recognized as functionals of the DF. For instance, the mean is the
Lebesgue-Stieltjes integral of x against F'. The variance is a function of the first two
moments, which are integrals of x> and x against F. More exotically, the ratio of the
7th moment to the 5th quantile is another functional. The term functional just means it
is a real-valued function whose argument is a function, in this case a DF. Let T = T (F)
be a functional of F, and denote the estimate of T(F) based on the sample {X;} by
T =T({X;}) = T(F,). Because F;, = F, we can show T = T and the main technical
requirement is that 7 depend smoothly on F.
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Proposition: If 7 is continuous at F, then T is consistent for T.

Proof: Recall the definition of the Prohorov metric. For a set A and € > 0, let
A = {yld(»,A) < e},
where d(y,A) = inf,cad(y,z) and d(y,z) = |y — z|. For probabilities G and H, let
v(G,H) = inf{e > 0|VA,G(A) < H(A®) +€}.

Now, the Prohorov metric is Proh(G,H) = max[v(G,H),v(H,G)]. Prohorov showed
that the space of finite measures under Proh is a complete separable metric space and
that Proh(F,,F) — 0 is equivalent to F,, — F in the sense of weak convergence. (See
Billingsley (1968), Appendix III).

Since T is continuous at F, for any &€ > 0 there is a 6 > 0 such that Proh(F,G) < 6
implies |T(F) — T(G)| < €. From the consistency of the EDF, we have Proh(F, F;) —
0. So, for any given 1) > 0 there is an Ny, such that n > Ny, implies Proh(F,F,) < &
with probability larger than 1 — 1. Now, with probability at least 1 — 1, when n > Ny,
Proh(F,F,) < & and therefore [T —T| < e. O

Equipped with the EDF, its convergence properties, and how they carry over to func-
tionals of the true DF, we can now describe the bootstrap through one of its simplest
incarnations, namely its use in parameter estimation. The intuitive idea underlying the
bootstrap method is to use the single available sample as a population and the estimate
f=1t(x1, -+ ,x,) as the fixed parameter, and then resample with replacement from the
sample to estimate the characteristics of interest. The core idea is to generate bootstrap
samples and compute bootstrap replicates as follows:

Given a random sample x = (x1,--- ,x,) and a statistic f = 7(xy,- -+, X,),
For b =1to B:
O Sample with replacement from x to get x*” = (xj?, -+ x:P).

) Compute 8 =¢(xi, .-, xi?).

The size of the bootstrap sample could be any number m, but setting m = n is typical.
The number of replicates B depends on the problem at hand.

Once the B values T1,...,T5 have been computed, they can be used to form a histogram;
for instance, to approximate the sampling distribution of 7. In this way, one can eval-
uate how the sampling variability affects the estimation because the bootstrap is a way
to set a confidence region on the functional.

The bootstrap strategy is diagrammed in Fig. 1.5. The top row has the unknown true
distribution F. From this one draws the random sample X1, ...,X,, which is used to
form the estimate 7' of T and the EDF F,. Here, T is denoted T'({X;},F) to empha-
size the use of the original sample. Then one draws a series of random samples, the
X;*s, from the EDF. The fourth row indicates that these bootstrap samples are used to
calculate the corresponding estimates, indicated by T'({X;}, F'), to emphasize the use
of the ith bootstrap sample, of the functional for the EDF. Since the EDF is a known
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Fig. 1.5 The bootstrap strategy reflects the reflexivity in its name. The relationship between the true
distribution, the sample, and the estimate is mirrored by the relationship between the EDF, resamples
drawn from the EDF, and estimates based on the resamples. Weak convergence implies that as n
increases the sampling distribution for the EDF estimates goes to the sampling distribution of the
functional.

function, one knows exactly how much error there is between the functional evaluated
for the EDF and its estimate. And since one can draw as many bootstrap samples from
the EDF as one wants, repeated resampling produces the sampling distribution for the
EDF estimates.

The key point is that, since £, = F, the distribution of T({Xi*},l:"n) converges weakly
to the distribution of T ({X;}, F), the quantity of interest, as guaranteed by the propo-
sition. That means that a confidence region set from the sampling distribution in the
fourth row of Fig. 1.5 converges weakly to the confidence region one would have set in
the second row if one could know the true sampling distribution of the functional. The
convergence result is, of course, asymptotic, but a great deal of practical experience
and simulation studies have shown that bootstrap confidence regions are very reliable,
Efron and Tibshirani (1994).

It is important to realize that the effectiveness of the bootstrap does not rest on
computing or sampling per se. Foundationally, the bootstrap works because £, is
such a good estimator for F. Indeed, (1.3.1) shows that F;, is consistent; (1.3.2) and
(1.3.3) show that £, has a well-defined asymptotic distribution using a \/n rate, and
(1.3.4) shows how very unlikely it is for £, to remain a finite distance away from its
limit.
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1.3.1.1 Bootstrapping an Asymptotic Pivot

As a concrete example to illustrate the power of the bootstrap, suppose {X;} is a ran-
dom sample and the goal is to find a confidence region for the studentized mean. Then
the functional is

) - va (SR,

where X and s are the sample mean and standard deviation, respectively, and g is the
mean of F. To set a confidence region, one needs the sampling distribution of X in the
absence of knowledge of the population standard deviation ¢. This is

Pr [\/ﬁxsu St}

for # € R. The bootstrap approximation to this sampling distribution is

X*—X
P, [\/ﬁ . gz} (1.3.5)

fort € R, where X* and s* are the mean and standard deviation of a bootstrap sample
from F,, and X is the mean of Fn. That is, the sample mean X, from the one available
sample, is taken as the population mean under the probability for £,. The probability
in (1.3.5) can be numerically evaluated by resampling from F;,.

Aside from the bootstrap, one can use the central limit theorem, CLT, to approximate
the distribution of functionals 7'({X;}, F) by a normal distribution. However, since the
empirical distribution has so many nice properties, it is tempting to conjecture that the
sampling distribution will converge faster to its bootstrap approximation than it will to
its limiting normal distribution. Tempting — but is it true? That is, as the size n of the
actual sample increases, will the actual sampling distribution of T be closer on average
to its bootstrap approximation or to its normal limit from the CLT?

To answer this question, recall that a pivot is a function of the data whose distribution
is independent of the parameters. For example, the studentized mean

()

is a pivot in the class of normal distributions since this has the Student’s-z distribution
regardless of the value of u and o. In the class of distributions with finite first two
moments, T ({X;},F) is an asymptotic pivot since its asymptotic distribution is the
standard normal regardless of the unknown F'.

Hall (1992), Chapters 2, 3, and 5, showed that bootstrapping outperforms the CLT
when the statistic of interest is an asymptotic pivot but that otherwise the two proce-
dures are asymptotically equivalent.

The reasoning devolves to an Edgeworth expansion argument, which is, perforce,
asymptotic. To summarize it, recall little-oh and big-oh notation.
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e The little-oh relation written g(n) = o(h(n)) means that g(n) gets small faster than
h(n) does; i.e., for any € > 0, there is an M so that for n > M

8(n)/h(n) <e.
e If little-oh behavior happens in probability, then write 0, (h(n)); i.e.,
lim P[|g(n)/h(n)| <€e]=1V £>0.
n—soco

e The big-oh relation written g(n) = ¢(h(n)) means that there is an M > 0 so that,
for some B, g(n)/h(n) < Bforn> M.

e If big-oh behavior happens in probability, then write &, (h(n)); i.e.,

—%  p oo

lim limsup IP {‘EEZ? SB} =1.

Under reasonable technical conditions, the Edgeworth expansion of the sampling dis-
tribution of the studentized mean is

Py {\/'7 <Xu> = t] =) +n ' PpO)9(0) +. 0 pi()0(1) +o(n ),

N

where @ (1) is the DF of the standard normal, ¢ (¢) is its density function, and the p;(r)
functions are related to the Hermite polynomials, involving the jth and lower moments
of F. See Note 1.5.2 for details. Note that the -oh notation here and below is used to
describe the asymptotic behavior of the error term.

For functionals that are asymptotic pivots with standard normal distributions, the Edge-
worth expansion gives

G(t) = P[T({Xi},F) <1]
= o) +n 2pi()p(t)+ O ).

But note that the Edgeworth expansion also applies to the bootstrap estimate of the
sampling distribution G(¢), giving

G (r) = P[T({X/}, F) <t|{Xi}]
= @) +nPpi(1)9 (1) + Op(n7"),

where

v A X*—X
T e = vi( S8,
and p;(¢) is obtained from p; () by replacing the jth and lower moments of F in its
coefficients of powers of ¢ by the corresponding moments of the EDF. Consequently,
one can show that p (1) — pi(t) = €,(n~'/?); see Note 1.5.3. Thus
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G (1) = G(t) =n 2o (@) [p1 (1) = p1 (1) + Op(n™") = G, (n7")  (1.3.6)

since the first term of the sum is @), (n~!) and big-oh errors add. This means that using

a bootstrap approximation to an asymptotic pivot has error of order n~!.

By contrast, the CLT approximation uses @(t) to estimate G(z), and

G(t) = @(1) =~ pi()9(1) + O (n")
=omn'?).

So, the CLT approximation has error of order n~1/2 and thus is asymptotically worse
than the bootstrap.

The CLT just identifies the first term of the Edgeworth expansion. The bootstrap ap-
proximation improves on the CLT approximation by including the extra p; ¢ //n term
in the Edgeworth expansion (1.3.6) for the distribution function of the sampling dis-
tribution. The extra term ensures the leading normal terms match and improves the
approximation to &'(1/n). (If more terms in the Edgeworth expansion were included
in deriving (1.3.6), the result would remain ¢'(1/n)). Having a pivotal quantity is es-
sential because it ensures the leading normal terms cancel, permitting the difference
between the ¢(n~'/?) terms in the Edgeworth expansions of G and G to contribute an
extra 1 /n’l/ 2 factor. Without the pivotal quantity, the leading normal terms will not
cancel so the error will remain order &(1/n'/?).

Note that the argument here can be applied to functionals other than the studentized
mean. As long as T has an Edgeworth expansion and is a pivotal quantity, the derivation
will hold. Thus, one can choose 7 to be a centered and scaled percentile or variances.
Both are asymptotically normal and have Edgeworth expansions; see Reiss (1989). U-
statistics also have well-known Edgeworth expansions. Bhattacharya and Ranga Rao
(1976) treat lattice-valued random variables, and recent work on Edgeworth expan-
sions under censoring can be found in Hwang (2001).

1.3.1.2 Bootstrapping Without Assuming a Pivot

Now suppose the functional of interest T({X;},F) is not a pivotal quantity, even
asymptotically. It may still be desirable to have an approximation to its sampling dis-
tribution. That is, in general we want to replace the sampling distribution

Pr[T({Xi}, F) <1]
by its bootstrap approximation
Py [T({X7}.F) <1]

for t € R. The bootstrap procedure is the same as before, of course, but the error de-
creases as &'(1/+/n) rather than as ¢(1/+/n). This will be seen from a slightly different
Edgeworth expansion argument.
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First, to see the mechanics of this argument, take 7' to be the functional U ({X;}.F) =
X — 1. The bootstrap takes the sampling distribution of

U =U(X),E) = V(X" —X)

as a proxy when making uncertainty statements about U = X — u. Although U is not
a pivotal quantity, U /s is. However, for the sake of seeing the argument in a familiar
context of a studentized mean, this fact will not be used. That is, the argument below
is a template that can be applied anytime a valid Edgeworth expansion for a statistic
exists, even though it is written for the mean.

The Edgeworth expansion for the sampling distribution of U is

H(t) = Pp[U <1t

nir(55) <0
= ®(t)s)+n""Ppi(t/s)+On).

Similarly, the Edgeworth expansion for the sampling distribution of U™ is

H*(1) = P[U" <1|{X;}]
= (/s ) +n " Ppi(t/s)o(t/s) + O(n 7).

A careful asymptotic argument (see Note 1.2) shows that

PI/s) = pr(y/s") = Op(n~")?),
s—s" = ﬁ’p(nfl/z).

Thus the difference between H and H* is

H(t)—H*(t) = ®(1/5) — D(1/57) (13.7)
+ 0P [pi(t/5)0(t/s) — pi(t/s*)9(t/s)] + Op(nh).

The second term has order &, (n~") but the first has order &, (n~/?).

Obviously, if one really wanted the bootstrap for a studentized mean, one would not use
U but would use U /s and apply the argument from the previous section. Nevertheless,
the point remains that, when the statistic is not an asymptotic pivot, the bootstrap and
the CLT have the same asymptotics because estimating a parameter (such as ¢) only
gives a 0'(1/+/n) rate.

The overall conclusion is that, when the statistic is a pivot, the bootstrap is superior,
when it can be implemented, and otherwise the two are roughly equivalent theoreti-
cally. This is the main reason that the bootstrap is used so heavily in data mining to
make uncertainty statements.

Next, observe that if s did not behave well, U /s would not be an asymptotic pivot. For
instance, if F' were from a parametric family in which only some of the parameters,
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say U, were of interest and the rest, say 7y, were nuisance parameters on which o
depended, then while s would remain pivotal under F, , it would not necessarily be
pivotal under the mixture [ F, yw(dy). In this case, the data would no longer be IID
and other methods would need to be used to assess the variability of X as an estimator
for u. For dependent data, the bootstrap and Edgeworth expansions can be applied in
principle, but their general behavior is beyond the scope of this monograph. At best,
convergence would be at the &(1/+/n) rate. More realistically, pivotal quantities are
often hard to find for discrete data or for general censoring processes. Thus, whether
or not an Edgeworth expansion can be found for these cases, the bootstrap and the CLT
will perform comparably.

1.3.2 Cross-Validation

Just as the bootstrap is ubiquitous in assessing uncertainty, cross-validation (CV) has
become the standard tool for assessing model fit in a predictive accuracy sense. CV
was invented by Stone (1959) in the context of linear regression. He wanted to balance
the benefit of using as much data as possible to build the model against the false op-
timism created when models are tested on the same data that were used to construct
them.

The ideal strategy to assess fit is to reserve a random portion of the data, fit the model
with the rest, and then use the fitted model to predict the response values in the hold-
out sample. This approach ensures the estimate of predictive accuracy is unbiased and
independent of the model selection and fitting procedures. Realistically, this ideal is
nearly impossible to achieve. (The usual exceptions are simulation experiments and
large databases of administrative records.) Usually, data are limited, so analysts want
to use all the data to build and fit the best possible model — even though it is cheating
a little to use the same data for model evaluation as for model building and selection.

In DMML, this problem of sample reuse is exacerbated by the fact that in most prob-
lems many models are evaluated for predictive accuracy in an effort to find a good one.
Using a fresh holdout sample for each model worth considering would quickly exhaust
all available data.

Cross-validation is a compromise between the need to fit and the need to assess a
model. Many versions of cross-validation exist; the most common is the K-fold cross-
validation algorithm:

Given a random sample x = (xj,- -+ ,x,):

[J Randomly divide the sample into K equal portions.
O Fori=1,...,K, hold out portion i and fit the model from the rest of the data.
O Fori=1,...,K, use the fitted model to predict the holdout sample.

O Average the measure of predictive accuracy over the K different fits.
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One repeats these steps (including the random division of the sample) for each model to
be assessed and looks for the model with the smallest error. The measure of predictive
accuracy depends on the situation — for regression it might be predictive mean squared
error, while for classification it might be the number of mistakes. In practice, it may
not be possible to make the sample sizes of the portions the same; however, one does
this as closely as possible. Here, for convenience, set n = ¢K, where / is the common
size of the portions.

The choice of K requires judgment. If K = n, this is called “leave-one-out” or “loo” CV
since exactly one data point is predicted by each portion. In this case, there is low bias
but possibly high variance in the predictive accuracy, and the computation is lengthy.
(The increased variance may be due to the fact that the intersection between the com-
plements of two holdout portions has n — 2 data points. These data points are used,
along with the one extra point, in fitting the model to predict the point left out. Thus,
the model is fit twice on almost the same data, giving highly dependent predictions;
dependence typically inflates variance.) On the other hand, if K is small, say K = 4,
then although the dependence from predictor case to predictor case is less than with
loo, the bias can be large. Commonly, K is chosen between 5 and 15, depending on n
and other aspects of modeling.

One strategy for choosing K, if enough data are available, is to plot the predictive mean
squared error as a function of the size of the training sample (see Fig. 1.6). Once the
curve levels off, there is no need to increase the size of the portion of the data used for
fitting. Thus, the complement gives the size of the holdout portion, and dividing n by
this gives an estimate of the optimal K.

Error

¥
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Fig. 1.6 This graph levels off starting around 200, suggesting the gains per additional data point are
small after that. Indeed, one can interpret this as suggesting that the remaining error is primarily from
reducing the variance in parameter estimation rather than in model selection.
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To see the bias—variance trade-off in choosing K, consider regression. Start with the
sample {Y;,X;}" | and randomly partition it into v subsets Sy,...,S, of size £. Let
=0 (+) be the regression function fit using all the data except the observations in Sy.

The predictive squared error (PSE) for f(=%)(-) on Sy is

psE, = ¥ (/- V(%) 1)

Sk

Summing over all K subsets gives the CV estimate of the PSE for f:

K K R 2
g()= Y PsE= 33 (f 00 )
k=1 k

=15

Minimizing g over K gives the best K for cross-validation.

The function g(K) has a bias—variance decomposition. By adding and subtracting the
terms (1/n) ¥5_; X, F9(X;) and ¥ in the double sum for g(K), one can expand to
get

(The three cross-products are zero, as in the usual ANOVA decomposition.) The first

term is the empirical variance \m for f and the covariates together. The second
term is the bias between the means of the predictions and the responses. The last term
is a variance of the response. Thus, optimizing g over K achieves a trade-off among
these three sources of error.

1.3.2.1 Generalized Cross-Validation

Cross-validation is not perfect — some dependency remains in the estimates of pre-
dictive error, and the process can absorb a lot of computer time. Many data mining
techniques use computational shortcuts to approximate cross-validation.

For example, in many regression models, the estimates are linear functions of the ob-
servations; one can write y = Hy, where H = (hi,j)an- In multiple linear regression,
H = X(X'X)~'X’. Similar forms hold for kernel and spline regressions, as will be
seen in Chapters 2, 3, and 10. For such linear estimates, the mean squared error of the
cross-validation estimator is

3 - F )P =Y [yl_f(x)} : (1.3.8)
i=1 i
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where f(=9)(x;) is the estimate of f at x; based on all the observations except (y;,X;)
(i.e., the loo cross-validation estimate at x;).

Equation (1.3.8) requires only one calculation of f, but finding the diagonal elements
of H is expensive when n or p is large. Often it is helpful, and not too far wrong, to ap-
proximate A; by tr(H)/n. This approximation is generalized cross-validation (GCV);
provided not too many of the &;;s are very large or very small this is a computation-
ally convenient and accurate approximation. It is especially useful when doing model
selection that necessitates repeated fits. See, for instance, Craven and Wahba (1979).

1.3.2.2 The Twin Problem and SEs

Sometimes a data set can contain cases, say {(¥;,,X;, } and {(Y;,,X;, }, that are virtu-
ally identical in explanatory variable measurements and dependent variable measure-
ments. These are often called twins. If there are a lot of twins relative to n, leave-
one-out CV may give an overly optimistic assessment of a model’s predictive power
because in fitting the near duplication the model does better than it really should. This
is particularly a problem in short, fat data settings.

This is the exact opposite of extrapolation, in which the values of the sample are not
representative of the region where predictions are to be made. In fact, this is “intrap-
olation” because the values of the sample are overrepresentative of the region where
predictions are to be made. The model cannot avoid overfitting, thereby reducing pre-
dictive power.

Two settings where twin data are known to occur regularly are drug discovery and
text retrieval. Pharmaceutical companies keep libraries of the compounds they have
studied and use them to build data mining models that predict the chemical structure
of biologically active molecules. When the company finds a good molecule it promptly
makes a number of very similar “twin” molecules (partly to optimize efficacy, partly
to ensure an adequately broad patent). Consequently, its library has multiple copies
of nearly the same molecule. If cross-validation were applied to this library, then the
hold-out sample would usually contain one or more versions of a molecule, while
the sample used for fitting contains others. Thus, the predictive accuracy of the fitted
model will seem spuriously good; essentially the same data are being used to both fit
and assess the model.

In the text retrieval context, the TREC program at the National Institute of Standards
and Technology, Voorhees and Harman (2005) makes annual comparisons of search
engines on an archive of newspaper articles. These search engines use data mining
to build a classification rule that determines whether or not an article is “relevant”
to a given search request. But the archive usually contains nearly identical variants
of stories distributed by newswire services. Therefore cross-validation can have the
same basic text in both the fitting and assessment samples, leading to overestimation
of search engine capability.

A related problem is that the data are randomly allocated to the sets Si. This means
that the CV errors are themselves random; a different allocation would give different
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CV errors. The implication is that, for model selection, it is not enough to choose the
model with the smallest cross-validatory error; the model with the smallest error must
have an error so much smaller than that of the model with the second smallest error
that it is reasonable to identify the first model as better. Often, it is unclear what the
threshold should be. The natural solution would be to find an SE for the CV errors and
derive thresholds from it. There are many ways to do this, and several effective ad hoc
rules for choosing a model based on CV errors have been proposed. However, none
have been universally accepted.

1.3.2.3 CV, GCYV, and other model selection procedures

CV and GCV are only two model selection procedures. Many others are available. In
general, the asymptotic performance of a model selection procedure (MSP) depends
strongly on whether there is a fixed, finite-dimensional model in the set of models the
MSP is searching.

Indeed, there is an organized theory that characterizes the behavior of MSPs in a va-
riety of contexts; see Shao (1997) for a thorough treatment. Li (1986, 1987) also pro-
vides good background.

The basic quantity that serves as a general criterion for one unified view of model
selection is

Sn Gr

GIC, (m) = 321, 5 GuPnlm) (1.3.9)
n n

in which m indicates a model ranging over the set A, of models, S,(m) = ||y, —

Q,(m)||? is the squared distance between the data vector and the estimate of the
mean vector for model m (from n outcomes), 62 estimates o2, pn(m) is the di-
mension of model m, and A is a constant controlling the trade-off between fit and
variability.

Shao (1997) distinguishes three classes of MSPs of the form (1.3.9) in the linear
models context. He observes that GIC;, Mallows’ C,,, Akaike’s information criterion,
leave-one-out CV, and GCV form one class of methods of the form (1.3.9), which are
useful when no fixed, finite-dimensional model can be assumed true. A second class of
methods of the form (1.3.9) is formed by GIC;, when 4, — oo and delete-d GCV when
d/n— 1. These methods are useful when a true fixed dimension model can be assumed
to exist. The third class contains methods that are hybrids between methods in the first
two classes, for instance, GIC; with A > 2 and delete-d GCV with d/n — 7 € (0,1).
The key criteria distinguishing the three classes are expressed in terms of the consis-
tency of model selection or the weaker condition of asymptotic loss efficiency (the
loss of the model selected converges to the minimal value of the loss in probability).
Along with detailed proofs for a wide variety of settings, Shao (1997) also provides an
extensive collection of references.
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1.4 Optimization and Search

DMML methods often require searches, and a variety of search procedures are com-
monly used. Indeed, one can argue that DMML as a whole is a collection of statisti-
cally guided search procedures to facilitate good predictive performance. Univariate
search is a search for the value of a unidimensional real value, usually but not always
assumed to vary continuously over an interval. This arises for instance when finding
the best value of a bin width for smoothing or the best K for K-fold CV. Multivari-
ate search is much the same, but multidimensional. The goal is to find the vector that
maximizes some function, such as the likelihood or a goodness-of-fit statistic. This
is harder because, unlike real numbers, vectors usually have a partial ordering rather
than a full ordering. Combinatorial search is the problem of having a finite number of
variables each of which can assume one of finitely many values and then seeking the
optimal assignment of values to variables. This arises in variable selection when one
must decide whether or not to include each variable. More general search procedures
do not take account of the specific structure of the problem; these are “uninformed”
searches. List and tree searches are general and often arise in model selection.

This section reviews some of the main strategies for each of these cases. In practice,
one often creates hybrid techniques that combine more than one strategy. A full dis-
cussion of these methods is beyond the scope of this monograph.

1.4.1 Univariate Search

Suppose the goal is to maximize a univariate function g(A) to find

A* =arg max g(A).

There are several elementary ways to proceed.

Newton-Raphson iteration: If g(4) is unimodal and not too hard to differentiate, the
Newton-Raphson method can be used to find a root; i.e., to solve g'(A) = 0. Keeping
terms to first order, Taylor expanding gives

g8(ho+&) ~g(ho) +¢& (ho)e.

This expression estimates the € needed to land closer to the root starting from an initial
guess Ay. Setting g(Ao + &) = 0 and solving for € gives &y = —(g(Ao))/(g' (X)), which
is the first-order adjustment to the root’s position. By letting A; = A + &, calculating
anew g1, and so on, the process can be repeated until it converges to a root using &, =
—(g(A4))/ (&' (A4)). Unfortunately, this procedure can be unstable near a horizontal
asymptote or a local extremum because the derivative is near zero. However, with a
good initial choice Ay of the root’s position, the algorithm can be applied iteratively to
obtain a sequence
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An1 =2 = (8(2n))/ (&' (M),
which converges.

If g(4) is multimodal, then randomly restarting the procedure is one way to explore
the surface the function defines. The idea is to put diffuse distribution on the domain
of A, generate a random starting point from it and “hill-climb” to find a local mode.
Hill-climbing means approximating the gradient and taking a step in the direction of
function increase. This can be done by a Newton-Raphson procedure that approxi-
mates the gradient, by a Fibonacci search (to be described shortly), or by many other
methods. Once the top of the “hill” is found, one draws another starting point and
repeats. After several runs, the analyst has a good sense of the number and location
of the modes. Note that this procedure can be applied to functions that are not easily
differentiable, provided the hill-climbing does not require derivatives.

Bracket search: If g is not differentiable but is unimodal, and not too difficult to
evaluate, one strategy is to find values to bracket A*. Once it is bracketed, the searcher
can successively halve the interval, determining on which side of the division A* lies,
and quickly converge on a very accurate estimate.

Several methods for finding the brackets exist. A popular one with good theoretical
properties is Fibonacci search, see Knuth (1988). Start the search at an arbitrary Ay,
and form the sequence of “test” values Ay = Ao+ F'(k), where F (k) is the kth Fibonacci
number. At some point, one overshoots and g(A;) is less than a previous value. This
means the value of A* is bracketed between A;_; and A;. (If the initial A gives a
sequence of evaluations that decreases, then use A, = A9 — F (k) instead.)

Diminishing returns: Sometimes the goal is not to find a maximum per se but rather
a point at which a trend levels off. For example, one could fit a sequence of regression
models using polynomials of successively higher degree. In this case, lack of fit can
only decrease as the degree increases, so the task is to find the point of diminishing
returns. The standard method is to plot the lack of fit as a function of degree and look
for the degree above which improvement is small. Often there is a knee in the curve,
indicating where diminishing returns begin. This indicates a useful trade-off between
omitting too many terms and including too many terms; it identifies the point at which
the benefit of adding one more term, or other entity, abruptly drops in value.

1.4.2 Multivariate Search

In multivariate search for A" = argmax g(A), many of the same techniques apply. If
partial derivatives exist, one can find the solution analytically and verify it is an opti-
mum. If the function is multimodal, then random restart can be useful, even when it is
hard to differentiate. One can even generalize a Fibonacci search to find hyperrectan-
gles that bracket A”.

However, in multivariate search, the most popular method is the Nelder-Mead algo-
rithm Nelder and Mead (1965). This has a relatively low computational burden and
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works well whenever g(A) is reasonably smooth. Conceptually, Nelder-Mead uses
preprocessing to find the right domain on which to apply Newton-Raphson. The basic
idea is as follows. To find A* € ]Rd, choose a simplex in R? that might contain A”, and
evaluate g(A) at each of its d + 1 vertices. Hopefully, one of the vertices v; will give
a smaller value than the others. Reflect v; through the d — 1 dimensional hyperplane
defined by the other d vertices to give v} and find g(v;). Then repeat the process. A
new worst vertex will be found at each step until the same vertex keeps being reflected
back and forth. This suggests (but does not guarantee) that the simplex contains a local
mode. At this point, the local mode can be found by Newton-Raphson hill-climbing
from any of the vertices. Actual implementation requires the size of the initial sim-
plex and the distance to which the worst vertex is projected on the other side of the
hyperflat. These technical details are beyond our present scope.

Some researchers advocate simulated annealing for optimization Kirkpatrick et al.
(1983). This is popular, in part, because of a result that guarantees that, with a suf-
ficiently long search, simulated annealing will find the global optimum even for very
rough functions with many modes in high dimensions. See, for instance, Andrieu et al.
(2001) and Pelletier (1998).

The main idea behind simulated annealing is to start at a value A and search randomly
in a region D around it. Suppose the search randomly selects a value A ™. If g(A") <
2(Ap), then set A; = A" and relocate the region on the new value. Otherwise, with
probability 1 — p, set A; = Ao and generate a new A" that can be tested. This means
there is a small probability of leaving a region that contains an optimum. It also means
that there is a small probability of jumping to a region that contains a better local
minimum. As the search progresses, p is allowed to get smaller, so the current location
becomes less and less likely to change by chance rather than discovered improvement.
For most applications, simulated annealing is too slow; it is not often used unless the
function g is extremely rough, as is the case for neural networks.

1.4.3 General Searches

Searches can be characterized as general and specific or uninformed versus informed.
The difference is whether or not there is extra information, unique to the application
at hand, available to guide the search. There is some subjectivity in deciding whether
a search is informed or not because a search might use generic features of the given
problem that are quite narrow. The benefit of an uninformed search is that a single
implementation can be used in a wide range of problems. The disadvantage is that the
set of objects one must search for a solution, the searchspace, is often extremely large,
and an uninformed search may only be computationally feasible for small examples.

The use of one or more specific features of a problem may speed the search. Sometimes
this only finds an approximately optimal solution; often the “specific feature” is a
heuristic, making the algorithm preferentially examine a region of the search space.
Using a good heuristic makes an informed search outperform any uninformed search,
but this is very problem-specific so there is little call to treat them generally here.
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An important class of searches is called constraint satisfaction. In these cases, the solu-
tion is a set of values assigned to a collection of variables. These are usually informed
because uninformed methods are typically ineffective. Within this class, combinatorial
searches are particularly important for DMML.

1.4.3.1 Uninformed Searches

List search: The simplest search strategy is list search. The goal is to find an element
of the searchspace that has a specific property. This is a common problem; there are
many solutions whose properties are well known. The simplest algorithm is to examine
each element of the list in order. If n is the number of items on the list, the complexity
(number of operations that need to be performed) is &'(n) because each item must be
examined and tested for the property. Often one speaks of &(n) as a “running time”
assuming the operations are performed at a constant rate. Linear search is very slow;
in fact, €'(n) is very high but the algorithm is fully general — no preprocessing of the
list is involved.

Binary search: Binary search, by contrast, rules out half the possibilities at each step,
usually on the basis of a direction, or ordering on the list. Bracket search is an instance
of this. Binary search procedures run in &'(logn) time, much faster than list searches.
Sometimes a very large sorted list can be regarded as nearly continuous. In these cases,
it may be possible to use an interpolation procedure rather than a binary criterion.

Note that binary search requires the list be sorted prior to searching. Sorting procedures
ensure a list has an order, often numerical but sometimes lexicographical. Other list
search procedures perform faster but may require large amounts of memory or have
other drawbacks.

Tree search: Less general than list search is tree search; however, it is more typical.
The idea is to search the nodes of a tree whether or not the entire tree has been explic-
itly constructed in full. Often, one starts at the root of the tree and searches downward.
Each node may have one or more branches leading to child nodes, and the essence
of the algorithm is how to choose a path through child nodes to find a solution. One
extreme solution is to search all child nodes from a given node and then systematically
search all their child nodes and so forth down to the terminal nodes. This is called
breadth first. The opposite extreme solution, depth first, is to start at a node and then
follow child nodes from level to level down to the terminal nodes without any back-
tracking. It is rare that a search is purely depth first or breadth first; trade-offs between
the extremes are usually more efficient.

1.4.4 Constraint Satisfaction and Combinatorial Search

The point of constraint satisfaction is to find an assignment of values to a set of vari-
ables consistent with the constraint. In the definition of the problem, each variable



36 1 Variability, Information, and Prediction

has an associated range of permissible values. Usually, any assignment of permissible
values to variables consistent with the constraints is allowed and there will be many
assignments of values to variables that meet the constraint.

Often, one wants to optimize over the set of solutions, not just enumerate them. Tree
searches can be used to find solutions, but usually they are inefficient because the or-
der of processing of the variables causes an exponential increase in the size of the
searchspace. In such cases, one can attempt a combinatorial search; this is a term that
typifies the hardest search problems, involving large searchspaces necessitating effi-
cient search strategies. However, the time required to find a solution can grow expo-
nentially, even factorially, fast with the size of the problem as measured by the number
of its most important inputs, often the number of variables, but also the number of
values that can be assigned to the variables. For instance, if there are p variables, each
of which assumes k values, there are k” possibilities to examine.

In the general case, the time for solution is intractable, or NP-complete. However,
there are many cases where it is easy to determine if a candidate solution meets the
constraints. Sometimes these are called NP-problems.

Suppose the goal is to find K solutions from the k” possibilities. One approach is a
branch and bound technique that will recur in Chapter 10. The idea is to organize all
the subsets of these k” possibilities into sets of common size, say 7, and then form a
lattice based on containment. That is, level i in the lattice corresponds to all sets of
cardinality i, and the edges in the (directional) lattice are formed by linking each set to
its immediate subsets and supersets; this is the branching part. Once any lattice point is
ruled out, so are all of its supersets; this is the bounding part. Now, search algorithms
for the K solutions can be visualized as paths through the lattice, usually starting from
sets at lower levels and working up to higher levels.

In the variable selection context of Chapter 10, p may be large and one wants to discard
variables with little or no predictive power. The lattice of all subsets of variables has
2?7 subsets. These can be identified with the 27 vertices of the unit hypercube, which
can be regarded as a directed lattice. A clever search strategy over these vertices would
be an attractive way to find a regression model. The Gray code is one procedure for
listing the vertices of the hypercube so that there is no repetition, each vertex is one
edge away from the previous vertex, and all vertices in a neighborhood are explored
before moving on to a new neighborhood. Wilf (1989) describes the mathematical
theory and properties of the Gray code system.

In the lattice context, the simulated annealing strategy would move among sets in the
lattice that contain a full solution to the problem, attempting to find exact solutions
by a series of small changes. If there is no solution in the search space, this kind of
search can continue essentially forever. So, one can fail to get a solution and not be
able to conclude that no solution exists. A partial correction is to repeat the search
from different starting points until either an adequate solution is found or some limit
on the number of points in the search space is reached. Again, one can fail to get a
solution and still be unable to conclude that no solution exists.

Alternatively, one can seek solutions by building up from smaller sets, at lower levels.
The usual procedure is to extend an emerging solution until it is complete or leads to
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an endpoint past which there can be no solutions. Once an endpoint has been hit, the
search returns to one of its earlier decision points, sometimes the first, sometimes the
most recent, and tests another sequence of extensions until all paths are exhausted. If
this is done so that the whole space is searched and no solution is found, then one can
conclude that the problem is unsolvable.

An extension of tree search is graph search. Both of these can be visualized as searches
over the lattice of subsets of possibilities. Graph searches, whether on the lattice of
possibilities or on other search spaces, rest on the fact that trees are a subclass of graphs
and so are also characterized as depth first or breadth first. Many of the problems
with graphical search spaces can be solved using efficient search algorithms, such
as Dijkstra’s or Kruskal’s. There are also many classes of search problems that are
well studied; the knapsack problem and the traveling salesman problem are merely
two classes that are well understood. Both are called NP-complete because they do
not admit polynomial time solutions. A standard reference for classes of NP-complete
problems and their properties is Garey and Johnson (1979).

1.4.4.1 Search and Selection in Statistics

Bringing the foregoing material back to a more statistical context, consider list search
on models and variable selection as a search based on ideas from experimental design.

First, with list search, there is no exploitable structure that links the elements of the
list, and the list is usually so long that exhaustive search is infeasible. So, statistically,
if one tests entries on the list at random, then one can try some of the following: (1)
Estimate the proportion of list entries that give results above some threshold. (2) Use
some modeling to estimate the maximum value on the list from a random sample of list
entries. (3) Estimate the probability that further search will discover a new maximum
within a fixed amount of time. (4) Use the solution to the secretary problem. These are
routine, but one may not routinely think of them.

Another strategy, from Maron and Moore (1997), is to “race” the testing. Essentially,
this is based on pairwise comparisons of models. At first, one fits only a small random
fraction of the data (say a random 1%) to each model on the list. Usually this is suffi-
cient to discover which model is better. If that small fraction does not distinguish the
models, then one fits another small fraction. Only very rarely is it necessary to fit all
or most of the data to select the better model. Racing can extend one’s search by about
100-fold.

Variable selection can be done using ideas from experimental design. One method is
due to Clyde (1999). View each explanatory variable as a factor in an experimental
design. All factors have two levels, corresponding to whether or not the explanatory
variable is included in the model. Now, consider a 27~ * fractional factorial experiment
in which one fits a multiple regression model with the included variables and records
some measure of goodness of fit. Obviously, ¥ must be sufficiently large that it is
possible to perform the computations in a reasonable amount of time and also to limit
the effect of multiple testing.
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Possible measures of goodness of fit include: (1) adjusted R2, the proportion of vari-
ance in the observations that is explained by the model, but with an adjustment to
account for the number of variables in the model; (2) Mallows’ C,, a measure of pre-
dictive accuracy that takes account of the number of terms in the model; (3) MISE, the
mean integrated squared error of the fitted model over a given region (often the hy-
perrectangle defined by the minimum and maximum values taken by each explanatory
variable used in the model); (4) the square root of the adjusted R? since this transforma-
tion appears to stabilize the variance and thereby supports use of analysis of variance
and response surface methodology in the model search. Weisberg (1985), pp. 185-190
discusses the first three and Scott (1992), Chapter 2.4, discusses MISE.

Treating the goodness-of-fit measure as the response and the presence or absence of
each variable as the factor levels, an analysis of variance can be used to examine which
factors and factor combinations have a significant influence on the “observations”. Sig-
nificant main effects correspond to explanatory variables that contribute on their own.
Significant interaction terms correspond to subsets of variables whose joint inclusion
in the model provides explanation. In multiple linear regression, these results are im-
plicit in significance tests on the coefficients. However, this also helps find influential
variables for the nonparametric regression techniques popular in data mining (e.g.,
MARS, PPR, neural nets; see Chapter 4).

1.5 Notes

1.5.1 Hammersley Points

To demonstrate the Hammersley procedure, consider a particular instance. The bivari-
ate Hammersley point set of order k in the unit square starts with the integers from 0 to
2k 1. Write these in binary notation, put a decimal in front, and denote the ith number
by a; for i = 1,...,2%. From each g;, generate a b; by reversing the binary digits of a;.
For example, with k = 2, the a; are .00, .01, .10, .11 (in base 2), or 0, 1/4, 1/2, 3/4.
Similarly, the b; are .00, .10, .01, .11, or 0, 1/2, 1/4, 3/4. Define the Hammersley points
as x; = (a;, b;); this gives (0, 0), (1/4, 1/2), (1/2, 1/4), and (3/4, 3/4).

To extend this construction to higher dimensions, represent an integer j between 0 and
b* — 1 by its k-digit expansion in base b:

j=ao+ab+...+ap b
The radical inverse of j in base b is

. 1 1 1
W (J) ZQOZ +a1b*2+...—|—ak,1ﬁ,

The integer radical inverse representation of j is
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bk‘l’b(j) = a1 +...Farh 2 faght

This is the mirror image of the digits of the usual base b representation of j.

The Hammersley points use a sequence of yps, where the bs are prime numbers. Let
2 =01 < by < ...Dbe the sequence of all prime numbers in increasing order. The Ham-
mersley sequence with n points in p dimensions contains the points

x; = (27%1 (@), Wb, (1), W, (i)) ;

where i =0,...,n— 1. The points of a Hammersley point set can be pseudorandomized
by applying a permutation to the digits of i before finding each coordinate.

It can be verified pictorially that {xi,...,x,} fills out the space evenly and therefore
is a good choice. In particular, the point set is uniform, without clumping or preferred
directions. This is accomplished by the Hammersley sequence by using different prime
numbers at different stages.

There are a variety of formal ways to measure how well a set of points fills out a
space. In general, Hammersley points, see Niederreiter (1992b), are a design that max-
imizes dispersion and minimizes the discrepancy from the uniform distribution in the
Kolmogorov-Smirnov test. Wozniakowski (1991) proved that a modification of Ham-
mersley points avoids the Curse in the context of multivariate integration for smooth
functions (those in a Sobolev space), see Traub and Wozniakowski (1992). Moreover,
the computations are feasible, see Weisstein (2009). Thus, for high-dimensional in-
tegration, one can use Wozniakowski’s points and guarantee that the error does not
increase faster than linearly in p, at least in some cases. Unfortunately, this result is
not directly pertinent to multivariate regression since it does not incorporate errors
from model selection and fitting.

1.5.2 Edgeworth Expansions for the Mean

The characteristic function (Fourier transform) of a random sum S,, = Z';:] Y;is

Xn(t) =E[e"] = x(t/v/n)",

where y is the characteristic function (CS) of Y;. A Taylor expansion of Iny (¢) atr =0
gives

Iny (1) = Kkyit 4w (it)> + 3.(it)> + ... (1.5.1)

The coefficients k; are the cumulants of ¥;. To simplify the discussion, assume the
standardization Y = (X —u)/o.

Taylor expand the exponential in the integrand of an individual y, and take logarithms
to get another series expansion:
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1
Iny () =In [1 +E(Y)it + 5]E(Yz)(iz)2 +.. } : (1.5.2)

By equating the right-hand sides in (1.5.1) and (1.5.2), one sees

zt’—ln

HMS

1+ Z J )(it)f'] : (1.5.3)

j=1

Taylor expanding the logarithm shows that the jth cumulant is a sum of products of
moments of order j or less and conversely.

When E(S,) = 0, one has x; = 0, and when Var(S,) = 1, one has k, = 1. Using this
and transforming back to y, from y gives

1 1 ; 1
)(n(t)—exp |:—2t +3’ 2 ( ) +. +W (lt) +. :|

P 1 1
—=e¢ f/zexp|: I I/ZK’;(ZI) =+ .. +m (lt) + .. :|

Taylor expanding the exponential term-by-term and grouping the results in powers of
1/+/n shows there are polynomials r;(ir) of degree 3 with coefficients depending on
K3, ..., Kj2 such that

2 ry (it ro (it r3y(it
an(t) =2 {1+ :11(/2)+ zn(])+ 23(/2)+...]. (1.5.4)

Next, we set up an application of the inverse Fourier transform (IFT). Write R;(x) for
the IFT of rj(it)e’tz/z. That is, R; is the IFT of r;, weighted by the normal, where r; is
a polynomial with coefficients given by the k coefficients. Since the IFT of the N(0, 1)
distribution is e /2 (A.4) gives

Ri(x) Ry(x) Ris(x)

P(S, <x)=®(x)+ Y . 3

(1.5.5)

This is almost the Edgeworth expansion; it remains to derive an explicit form for the
R;s in terms of the Hermite polynomials.

An induction argument on the IFT (with the induction step given by integration by
parts) shows

L T ed[(—D) o)) = (it)e ",

where D is the differential operator dd—x. By linearity, one can replace the monomial in
—D by any polynomial and it will appear on the right-hand side. Take r;(—D), giving

[ emaln(-p)@) = ryine .

So the (forward) Fourier transform shows



1.5 Notes 41

Riw) = [ e ine ™ = ry(-D)d(),

which can be used in (1.5.5). Let H;_1(x) denote the Hermite polynomial that arises
from the jth signed derivative of the normal distribution:

(—D) @(x) = Hj_1(x)¢(x).

So rj(—D)®(x) is a sum of Hermite polynomials, weighted by the coefficients of
rj, which depend on the cumulants. To find R;, one must find the 7;s, evaluate the
Hermite polynomials and the cumulants, and do the appropriate substitutions. With
some work, one finds Ry (x) = —k3(x? — 1)¢(x), Ra(x) = —[kux(x? —3) /24 + k3 (x* —
10x + 15)]¢ (x) etc. Writing Rj(x) = g;(x)9(x) shows that the Edgeworth expansion
for the distribution of the standardized sample mean is

X))o (x
P(S, <x) = O(x) + % (1.5.6)
+ qZ(x’)j)(x) +...+qf(;j>.2(x) +o(nj1/2). (1.5.7)

Note that in (1.5.7) there is no explicit control on the error term; that requires more
care with the Taylor expansion of the CF, see Bhattacharya and Ranga Rao (1976),
Petrov (1975). Also, (1.5.7) is pointwise in x as n — oo. It is a deterministic expansion
for probabilities of the random quantity S,,. Thus, for finite n, it is wrong to regard an
infinite Edgeworth expansion as necessarily having error zero at every x. The problem
is that the limit over n and the limit over j cannot in general be done independently.
Nevertheless, Edgeworth expansions tend to be well behaved, so using them cavalierly
does not lead to invalid expressions very often.

1.5.3 Bootstrap Asymptotics for the Studentized Mean

Hall (1992), Sections 2.4 and 2.6, details the mathematics needed to find the Edgeworth
expansion for the studentized mean. He shows that the expansion

P ((Xs—u) SX> = ‘P(XHW (1.5.8)
P2(x)9(x) I7j(x)¢(x)+0< 1 >

+T+.”+ nil2 m

exists, but the p; terms are different from the g terms derived previously. In particular,
the studentized mean is asymptotically equivalent to the standardized mean, but only
up to order &,(1/n). In fact,

X—p X-p_ (s—0)X-p) (15.9)
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and both factors in the numerator are O,(1//n). So although the first term in their
Edgeworth expansions is the same (normal), later terms are not.

For an IID sample of size n from F, let T;, denote the studentized sample mean. Also,
for an IID sample of size n from £, (a bootstrap sample), let T, be the studentized
mean. Then the Edgeworth expansions are

_ pi(1)9(t) 1
P(T,<t)=®(1)+ T +ﬁ<n>

cn pi(1)o() 1
P(7T; 1) = @)+ 20 +ﬁ<n).

Note that p} and p; are polynomials in the same powers of ¢ with coefficients that are
the same function of the cumulants of F and £}, respectively. And recall from (1.5.3))
that the cumulants are determined by the moments.

Bootstrap asymptotics for the studentized mean require three technical points about
convergence rates:

A pi() = pi(t) = Gy(1/ V),

B. p1(y/s) = p1(y/s") = Op(1y/n),

C. s—s"=0,(1yn).

The first is needed in (1.3.6); B and C are needed in (1.3.8).

If the moments of £, converge to the moments under F at the desired rate, then A
follows. So, we need that

Vil (Fy) = w(F)] = Op(1), (1.5.10)

where k indicates the order of the moment. Expression (1.5.10) follows from the CLT;
the convergence is in F.

Next, we show C. Write

n _ _ 1/2 n . _ 1/2
\/ﬁ(ss*)\/ﬁl(n_lﬁxz) ( X2 x“) ] (1.5.11)

n—1

in which the superscript * indicates the moment was formed from bootstrap samples
rather than the original sample. The convergence is in F, but note that s* is from a boot-
strap sample drawn from £, as determined by the original sample. The conditional
structure here matters. The bootstrap samples are taken conditional on the original
sample. So, moments from a bootstrap sample converge, conditionally on the original
sample, to the original sample, which itself converges unconditionally to the popula-
tion mean. Another way to see this is to note that, for any function g, Ez [¢(X)] = g(X)

and Er[g(X)] = 1. More formally, for € > 0, we have, conditional on X", that for any
function Z* converging in distribution in £, to a constant, say 0,

g(X") =" (|Z| > €) — 0.
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Now, Ex»g(X") is bounded by 1 and converges to 0 pointwise, so the dominated con-
vergence theorem gives its convergence to 0 unconditionally. This is convergence in
probability, which implies convergence in distribution in the “joint” distribution of
F x F, which reduces to F. Now, moments such as X** for k = 1,2, ... are choices
of g, and the convergence of functions of moments, like standard deviations, can be
handled as well.

Now, s is a function of the first and second moments from the actual sample which
converge at a 0'(y/n) rate to 4 = U (F) and pp(F) by the CLT. The first and second
moments in s* converge at rates &(y/n) to i (Fy) and up(F;,) in F, conditional on
the original data by a conditional CLT. So, the unconditional CLT gives that the first
and second moments in s* converge at rate &(y/n) to u;(F) and u,(F) in F. Since
the moments converge, a delta method argument applies to functions of them such
as s and s*. (The delta method is the statement that if X is N(0,1/n), then g(X) is
N(g(0),(g'(0))?/n), which follows from a Taylor expansion argument.) Now, (1.5.11)
is 0)(1) giving C.

With these results, B follows: The polynomials p;(y/s) and p;(y/s) have the same
powers, and each power has a coefficient that is a function of the cumulants of £,
and F, respectively. By (1.5.3), these coefficients are functions of the moments of
Fy, and F, so the multivariate delta method applies. A typical term in the difference

p1(y/s) — p1(y/s*) has the form

iy (V) k y\*
a(Er(X),...,Ep(x5)) (;) — a(Bp(X),... . Ep(X5)) (;) . (15.12)
where k is the number of moments and ¢ is the power of the argument. As in the proof
of A, for fixed y, the moments under ¥}, converge to the moments under F in probability
at a y/n rate, as does s* to s (and as both do to ©). So the delta method gives a /n rate
for the term. There are a finite number of terms in the difference p;(y/s) — p1(y/s*),
so their sum is &(1/+/n).

1.6 Exercises

Exercise 1.1. Consider a sphere of radius r in p dimensions. Recall from (1.1.1) that
the volume of such a sphere is given by

P2 P
V, ==
V)= Fpas 1y
1. Write the expression for V,.(2).

2. Let € > 0 and r > € and consider the following game. You throw a coin of radius
€ onto a table on which a circle of radius r has been drawn. If the coin lands inside
the circle, without touching the boundary, then you win. Otherwise you lose. Show
that the probability you win is
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PWmNWM:<1—EY.

r

3. Using this show that, in p dimensions, the fraction of the volume V,(p) for the

portion (r —¢€,r) is
P
5:1—@—5).
r

Exercise 1.2. The website http://www.no-free-lunch.org/ is home to a
long list of contributions discussing the No-Free-Lunch Theorem (NFLT) introduced
in Wolpert and Macready (1995). Applied to the field of combinatorial optimization,
the NFLT states that

... all algorithms that search for an extremum of a cost function perform exactly the same, when
averaged over all possible cost functions. In particular, if algorithm A outperforms algorithm B
on some cost functions, then loosely speaking there must exist exactly as many other functions
where B outperforms A.

In other words,

over the set of all mathematically possible problems, each search algorithm will do on average
as well as any other. This is due to the bias in each search algorithm, because sometimes the
assumptions that the algorithm makes are not the correct ones.

Ho and Pepyne (2002) interpret the No Free Lunch Theorem as meaning that

a general-purpose universal optimization strategy is theoretically impossible, and the only
way one strategy can outperform another is if it is specialized to the specific problem under
consideration.

In the supervised machine learning context, Wolpert (1992) presents the NFLT through
the following assertion:

This paper proves that it is impossible to justify a correlation between reproduction of a train-
ing set and generalization error off of the training set using only a priori reasoning. As a result,
the use in the real world of any generalizer which fits a hypothesis function to a training set
(e.g., the use of back-propagation) is implicitly predicated on an assumption about the physical
universe.

1. Give a mathematical formalism for the NFLT.

2. Visit the website and read the contributions on this topic.

3. How large is the range of formalisms for the NFLT? Do some seem more reasonable
than others?

4. Construct arguments for or against this result.

Exercise 1.3. Write the Kth order term in a multivariate polynomial in p dimensions
as

P D P
2 2 2 Qiyiy-igXiy Xiy i - (1.6.1)
i1=lip=1 ix=1
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Show that (1.6.1) can expressed in the form

i iK1

P
2D X GigeigXin Xy i (1.6.2)

i1=1 i2=1 l[(=l
Hint: Use the redundancy in some of the a,;,...;, s in (1.6.1) to obtain (1.6.2).

Exercise 1.4. Let 7 = {(X;,Y;),i = 1,--- ,n} be an IID sample of size n arising from
an underlying function f. Consider a loss function ¢(-, -) and an estimator f, of f based
on 2. Explain how the bootstrap can be used the estimate the generalization error

]E [‘e(YneWafAn(XnEW))] :

Hint: First clearly identify what aspect of the expression creates the need for tech-
niques like resampling, then explain how bootstrapping helps provide an approximate
solution to the problem.

Exercise 1.5. Let 0 be a parameter for which an estimate is sought. The standard two-
sided 100(1 — o) % confidence interval for 0 is given by

[én _QIfa/Za én _qa/Z]a

where g, is the a-quantile of 6, — 6. Note that calculating the confidence interval rests
on knowing compute the quantiles, which requires knowing the distribution of 6, — 6.
In practice, however, the distribution of 6, — 0 is unknown.

1. Explain how the bootstrap can be used to generate an interval with approximate
confidence 1 — o.

2. Simulate n = 100 IID observations from X; ~ N(9,22), and consider estimating
from Xy, -, X100-
a. Give an exact 95% confidence interval for .

b. Use the bootstrap to give a 95% confidence interval for u.

Exercise 1.6. Let 2 = {(X;,Y;),i = 1,--- ,n} be an IID sample of size n arising from
a simple linear regression through the origin,

Yi = Bxi+¢&.

Inferential tasks related to this model require knowledge of the distribution of /n( Bn —
B). Often, the noise terms &s are taken as IID N(0,62) so that /n(fB, — B) is dis-
tributed as a N (0,0%/ 3% | (x; —%)?). In practice, however, this distribution is not
known, and approximate techniques are used to obtain summary statistics.

1. Describe a bootstrap approach to making inferences about f3.

2. Consider v/n(f; — B,). the bootstrap approximation of /n(f, — B). Since the boot-
strap is consistent, the consistency of both bias and variance estimators holds. That
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is,

]E[ n] - ﬁ

and R
V) p
Var(f3,)

a. Simulate from ¥; = 27x; + ¢;, where x; € [—1, 1] and & ~ N(0,.5%).
b. Estimate f3.

c. Develop and discuss a computational verification of the consistency of the boot-
strap bias and variance.

Exercise 1.7. Let 2 = {(X;,Y;),i = 1,--- ,n} be an IID sample of size n arising from
the nonparametric regression model

Y - f(xl)+£lv

where f is an underlying real-valued function of a real variable defined on a domain
2. Suppose a nonparametric smoothing technique is used to construct an estimate
f of f. Write fn = (F(x1), f(x1),-- . f(x))T = (fi, f2,--+, fu)T to be the vector of
evaluations of the estimator at the design points. Most smoothers that will be studied
in Chapters 2 and 3 are linear in the sense that

f.=Hy,

where H = (h,'7 j)nX,, is a square matrix whose elements #; ; are functions of both the
explanatory variables x; and the smoothing procedure used. Note that the A;;s are the
ith diagonal elements of H. Show that for linear smoothers

LR s e

i=1

Hint: Recognize thaty — f, = (I— H)y and that f, = f f:l) + fiei, where e; is the unit
vector with only the ith coordinate equal to 1.

Exercise 1.8. The World Wide Web is rich in statistical computing resources. One
of the most popular with statisticians and machine learners is the package R. It is
free, user-friendly, and can be download from http://www.r-project.org.
The software package MATLAB also has a wealth of statistical computing resources,
however, MATLAB is expensive. A free emulator of MATLAB called OCTAVE can be
downloaded from the web. There are also many freely available statistical computing
libraries for those who prefer to program in C.

1. Download your favorite statistical computing package, and then install it and get
acquainted with its functioning.
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2. Implement the cross-validation technique on some simple polynomial regressions
to to select the model with the lowest prediction error. For instance, set

Y =1-2x+4x +e¢,

where € ~ N (0, 1), to be a true model. Let x € [—1, 1] and suppose the design points
x; are equally spaced.

a. Generate n = 200 data points (x;,y;).

b. Perform cross-validation to compute the estimate of the prediction error for each
of the following candidate models: M1:Y = o+ Bix+e, M2:Y = Bo+ Bix+
Box>+&,M3:Y = Bo+ Brx+ Pox® + Bsx> +&, M4 : Y = By + Brx+ Box? + Bax® +
[34x4 + €.

¢. Which model does the technique select? Are you satisfied with the performance?
Explain.

Exercise 1.9. Consider a unimodal function g defined on an interval [a,b]. Suppose
your goal is to find the point x* in [a, b] where g achieves its maximum. The Fibonacci
approach for finding x* consists of constructing successive subintervals [a,, by] of [a, D]
that zero in ever closer on x*. More specifically, starting from [ag, bg] = [a, D], succes-
sive subintervals [ay, b,] are constructed such that

Qpl —p =by —bpy1 = pn(bn _an)~

The gist of the Fibonacci search technique lies in using the classical Fibonacci se-
quence as a device for defining the sequence {p, }. Recall that the Fibonacci sequence
is defined as the sequence Fi,F>, F3,--- suchthatVn >0

Fn+l =F+F_.
By convention, F_; =0 and Fp = 1.

1. Show that, for n > 2,

Foobyrr —Fy1 by = (_1)’1~
2. Show that
1

l—|—\/§ n+1 l—\/§ n+1
"5 2 2 '

3. From the definition of the Fibonacci sequence above, one can define another se-
quence, Py, P2, , Pk, Where

Fr Fr Fi nii F
P1:1_77 p2:1_7,"'7pn—1_7n+7"' — .
Fret1 F Feni2 )23

a. Show that, foreachn=1,--- |k,

0<pa<1/2.
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b. Show that, foreachn=1,--- k—1,

Pn
1—p,

Pnt1=1-—

c. Reread the description of the Fibonacci search technique, and explain how this
sequence of p, applies to it.

Exercise 1.10. Consider using
gk+1) — g(k) _ o (0) [H(O(k))] g®)

where

-1
(k) — i (k) _ (k) (k)
o arg g%‘o‘f (9 o {H(Q )} g > ,

g®) =V £(6®) is the gradient, and H(6*)) is the Hessian matrix of f evaluated at the
current point ) to find the minimum of a twice-differentiable functionf (). This is
called the modified Newton’s algorithm because the updating scheme in the original
Newton’s algorithm is simply

glk+1) — k) _ [H(em)] gt

)

which clearly does not have the learning rate al®. Apply the modified Newton’s algo-
rithm to the quadratic function:

f(6)= %GTQB —60"h where 0=0Q' >0.

Recall that, for quadratic functions, the standard Newton’s method reaches the point
6 such that V£(6*) = 0 in just one step starting from any initial point 6(°).
1. Does the modified Newton’s algorithm possess the same property?

2. Justify your answer analytically.

Exercise 1.11. Consider Rosenbrock’s famous banana valley function
Fx1,x2) = 100(xs — x7)* + (1 —x1)%.
Using your favorite software package (MATLAB, R, or even C):

1. Plot f, and identify its extrema and their main characteristics.

2. Find the numerical value of the extremum of this function. You may use any of the
techniques described earlier, such as Newton-Raphson or modified Newton (Exer-
cise 1.10).

3. Consider the following widely used optimization technique, called gradient de-
scent/ascent, which iteratively finds the point at which the function f(6) reaches
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its optimum by updating the vector 6 = (x;,x2) . The updating formula is
o+ — g — gy r(g*)),

where V£(0®)) is the gradient and o¥) is a positive scalar known as the step size
or learning rate used to set the magnitude of the move from %) to 0*+1)_1In the
version of gradient descent known as steepest descent, a® is chosen to maximize
the amount of decrease of the objective function at each iteration,

a® = arg minf(6% — aVr(6®)).
a>0

Apply it to the banana valley function, and compare your results to those from 1
and 2.

Exercise 1.12. Let £(-,-) be a loss function and let frg:i) (X;) be an estimate of a func-
tion f using the deleted data; i.e., formed from the data set {(x;,y;) | i=1,---,n} by
deleting the i data point.

1. Show that the variance of the leave-one-out CV error is

Cov(£(¥;, 0 (X)), £v;, 70 (X)),

M=
P

1 & A(—i) 1
Var(n ':1€(Yi’fn—1 (X,))) = 2

j i=1i=1

2. Why would you expect

Cov(e(¥,, £70(x0)), 00v;, £ (%))

to be typically large? Hint: Even though the data points are mutually independent,
does it follow that functions of them are?

3. Now consider the bias of leave-one-out CV: Do you expect it to be low or high?
Give an intuitive explanation.

Exercise 1.13. One limitation of K-fold CV is that there are many ways to partition
n data points into K equal subsets, and K-fold CV only uses one of them. One way
around this is to sample k data points at random, use them as a holdout set for test-
ing. Sampling with replacement allows this procedure, called leave-k-out CV, to be
repeated many times. As suggested by the last Exercise, leave-one-out CV can be un-
stable so leave-k-out CV for k > 2, may give better performance.

1. How would you expect the variance and bias of leave-k-out CV to behave? Use this
to suggest why it would be preferred over leave-one-out CV if k > 2.

2. How many possible choices are there for a random sample of size k from 2?

n

3. Let £(-,-) be a loss function and set g = <k

> . What does the formula
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1< 1 #-0)
NN oy, x‘) (1.6.3)
compute? In (1.6.3), &, denotes a sample of size k drawn from Z.

4. Briefly explain the main advantage leave-k-out CV has over the K-fold CV.

5. What is the most obvious computational drawback of the leave-k-out CV formula
in item 3? Suggest a way to get around it.

Exercise 1.14. It will be seen in Chapter 2 that the best possible mean squared error
(MSE) rate of the nonparametric density estimator in p dimensions with a sample of

size n is
0 <n74/<4+p>) .

1. Compute this rate for d = 1 and n = 100.

2. Construct an entire table of similar MSE rates for d = 1,2,5,10,15 and n =
100, 1000, 10000, 100000.

3. Compare the rates for (d = 1,n = 100) and (d = 10,n = 10000), and provide an
explanation in light of the Curse of Dimensionality.

4. Explain why density estimation is restricted to d = 2 in practice.

Exercise 1.15. Let 77 = {hy,hy,--- ,h,} be a set of basis functions defined on a do-
main 2. Consider the basis function expansion

f) = ﬁ‘,lﬁjhj(x)

widely used for estimating the functional dependencies underlying a data set ¥ =

{(x17y1)7"' 7(Xn7yn)}-

1. Provide a detailed explanation of how the Curse of Dimensionality arises when the
set of basis functions is fixed, i.e. the A;s are known prior to collecting the data and
remain fixed throughout the learning process.

2. Explain why the use of an adaptive set of basis functions — i.e., possibly rechoosing
the list of A;s at each time step — has the potential of evading the Curse of Dimen-
sionality.

Exercise 1.16. It has been found experimentally that leave-one-out CV also referred
to as LOOCYV is asymptotically suboptimal. In the context of feature selection, for
instance, it could select a suboptimal subset of features even if the sample size was
infinite.

Explore this fact computationally and provide your own insights as to why this is the
case. Hint: Set up a simulation study with p explanatory variables. Consider the case
of a truly p-dimensional function and also consider the case where the p dimensions
arise from one single variable along with its transforms like x and x*, and xP. For
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example, contrast the genuinely three-dimensional setup using x|, x>, and x3 with the
setup using xi, x%, and xi’ + 2x%. Compare the two and see whether LOOCYV does or
does not yield a suboptimal set of variables. Imagine, for instance, x| and x? in the
interval [—1,1] or [0,1], and note that in this interval the difference may be too small
to be picked up by a naive technique.

Exercise 1.17. It is commonly reported in Machine Learning circles that Ronald Ko-
havi and Leo Breiman independently found through experimentation that 10 is the best
number of “folds” for CV.

1. Consider an interesting problem and explore a variety of “folds” on it, including
of course the 10-fold CV. You may want to explore benchmarks problem like the
Boston Housing data set in multiple regression or the Piman Indian diabetes data set
in classification, since the best performances of learning machines for these tasks
can be found on the Web — at the University of California-Irvine data set repository,
for example. Is it clear in these benchmark problems that the 10-fold CV yields a
better model?

2. Explore the properties of the different folds through a simulation study. Consider
regression with orthogonal polynomials, for instance under different sample sizes,
and different model complexities. Then perform CV with k smaller than 10, k = 10,
and k larger than 10 folds.

a. Do you notice any regularity in the behavior of the estimate of the prediction
error as a function of both the number of folds and the complexity of the task?

b. Is it obvious that smaller folds are less stable than larger ones?

¢. Whether or not you are convinced by the 10-fold CV, could you suggest a way
of choosing the number of folds optimally?

Exercise 1.18. Let .7 = {hy,h,,--- ,h,} be a set of basis functions defined on a do-
main 2 . Consider the basis function expansion

F0) =3 By

j=1
and the data set 2 = {(x1,y1)," -, (Xn,¥n) }-

1. Explain what the concept of generalization means in this context. Particularly dis-
cuss the interrelationships among model complexity, sample size, model selection
bias, bias—variance trade-off, and the choice of 7. Are there other aspects of func-
tion estimation that should be included?

2. Provide a speculative (or otherwise) discussion on the philosophical and technical
difficulties inherent in the goal of generalization.

3. How can one be sure that the estimated function based on a given sample size is
getting close to the function that would be obtained in the limit of an infinite sample
size?
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Exercise 1.19. Cross-validation was discussed earlier as a technique for estimating
the prediction error of a learning machine. In essence, the technique functions in two
separate steps.

1. Indicate the two steps of cross-validation.
2. Discuss why having two separate steps can be an impediment to the learning task.

3. Cross-validation and generalized cross-validation are often used in regularized
function estimation settings as a technique for estimating the tuning parameter. Al-
though GCV provides an improvement over CV in terms of stability, the fact that
both are two-step procedures makes them less appealing than any procedure that
incorporates the whole analysis into one single sweep. In the Bayesian context,
the tuning parameter that requires GCV for its estimation is incorporated into the
analysis directly through the prior distribution.

a. In the regression context, find the literature that introduces the treatment of the
tuning parameter as a component of the prior distribution.

b. Explain why such a treatment helps circumvent the problems inherent in CV and
GCV.

Exercise 1.20. Consider once again the task of estimating a function f using the data
set Z = {(x1,y1), ", (Xn,yn) }- Explain in your own words why there isn’t any single
“one size fits all model” that can solve this problem.

Hint: A deeper understanding of the No Free Lunch Theorem should provide you with
solid background knowledge for answering this question. To see how, do the following:

e Find two problems and call the first one A and the second B. For example, let A be
a prediction problem and B be a hypothesis-testing problem.

e Our question is whether or not there is a strategy, call it §*, that does optimally well
on both A and B. What one knows in this context is that there is a strategy P that is
optimal for A but that performs poorly on B and a strategy 7 that is optimal for B
but performs poorly on A.

1. Search the literature to find what P and T are. Be sure to provide the authors and
details of their findings on the subject.

2. Is there a way to combine P and T to find some S* that performs optimally on
both A and B?

3. If the answer to question 2 is no, can you find in the literature or construct your-
self two qualitatively different tasks and one single strategy that performs opti-
mally on both of them?



Chapter 2

Local Smoothers

Nonparametric methods in DMML usually refers to the use of finite, possibly small
data sets to search large spaces of functions. Large means, in particular, that the ele-
ments of the space cannot be indexed by a finite-dimensional parameter. Thus, large
spaces are typically infinite-dimensional — and then some. For instance, a Hilbert space
of functions may have countably many dimensions, the smallest infinite cardinal num-
ber, Xo. Other spaces, such as the Banach space of bounded functions on [0, 1] under
a supremum norm, L[0, 1], have uncountably many dimensions, X, under the con-
tinuum hypothesis. Spaces of functions containing a collection of finite-dimensional
parametric families are also called nonparametric when the whole space equals the
closure of the set of parametric families and is infinite-dimensional. By construction,
it is already complete. Usually, the dimension of the parametric families is unbounded,
and it is understood that the whole space is “reasonable” in that it covers a range of
behavior believed to contain the true relationship between the explanatory variables
and the dependent variables.

This is in contrast to classical nonparametrics including ranking and selection, permu-
tation tests, and measures of location, scale and association, whose goal is to provide
good information about a parameter independent of the underlying distributions. These
methods are also, typically, for small sample sizes, but they are fundamentally intended
for finite-dimensional parametric inference. That is, a sample value of, say, Spearman’s
p or Kendall’s 7 is an estimator of its population value, which is a real number, rather
than a technique for searching a large function space. Moreover, these statistics often
satisfy a CLT and so are amenable to conventional inference. Although these statistics
regularly occur in DMML, they are conceptually disjoint from the focus here.

Roughly speaking, in DMML, nonparametric methods can be grouped into four cate-
gories. Here, by analogy with the terms used in music, they are called Early, Classi-
cal, New Wave, and Alternative. Early nonparametrics is more like data summariza-
tion than inference. That is, an Early nonparametric function estimator, such as a bin
smoother, is better at revealing the picture a scatterplot is trying to express than it is
for making inferences about the true function or for making predictions about future
outcomes. The central reason is that no optimization has occurred and good properties
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cannot necessarily be assumed. So, even if the bin smoother is good for inference and
prediction, that cannot be determined without further work.

This central limitation of Early methods is corrected by Classical methods. The key
Classical methods in this chapter are LOESS, kernels, and nearest neighbors. LOESS
provides a local polynomial fit, generalizing Early smoothers. The idea behind kernel
methods is, for regression, to put a bump at each data point, which is achieved by op-
timization. A parameter is chosen as part of an optimization or inference to ensure the
function being fit matches the scatterplot without over- or underfitting: If the match is
too close, it is interpolation: if it is too far, one loses details. In kernel methods, the
parameter is the bandwidth, or &, used for smoothing. Finite data sets impose severe
limits on how to search nonparametric classes of functions. Nearest-neighbor meth-
ods try to infer properties of new observations by looking at the data points already
accumulated that they resemble most.

LOESS is intermediate between Early and Classical smoothers; kernel methods and
nearest neighbors are truly Classical. Another Classical method is splines, which are
covered in Chapter 3. Chapter 4 provides an overview of many of the main techniques
that realistically fall under the heading of New Wave nonparametrics; some of these —
generalized additive models for instance — are transitions between Classical and truly
New Wave. The key feature here is that they focus on the intermediate tranche of
modeling. Alternative methods, such as the use of ensembles of models, are taken up
in Chapter 6; they are Alternative in that they tend to combine the influences of many
models or at least do not focus exclusively on a single true model.

While parametric regression imposes a specific form for the approximating function,
nonparametric regression implicitly specifies the class the approximand must lie in,
usually through desirable properties. One property is smoothness, which is quantified
through various senses of continuity and differentiability. The smoothest class is linear.
Multiple linear regression (MLR) is one ideal for expressing a response in terms of
explanatory variables. Recall that the model class is

Y=PBo+BiXi+...+B,X,+¢, (2.0.1)

where the €s are IID N (0,02), independent of xp,...,x,, and usually have normal
distributions. The benefits of multiple regression are well known and include:

e MLR is interpretable — the effect of each explanatory variable is captured by a single
coefficient.

e Theory supports inference for the f§;s, and prediction is easy.

e Simple interactions between X; and X are easy to include.

e Transformations of the X;s are easy to include, and dummy variables allow the use
of categorical information.

e Computation is fast.
The structure of the model makes all the data relevant to estimating all the parameters,

no matter where the data points land. However, in general, it may be unreasonable to
permit x;s far from some other point x to influence the value of Y (x). For instance,



2.1 Early Smoothers 55

X is meaningful for estimating the f;s in (2.0.1) but may not be useful for estimating
Y (x) if the right-hand side is a general, nonlinear function of X, as may be the case in
nonparametric settings. Nevertheless, nonparametric regression would like to enjoy as
many of the properties of linear regression as possible, and some of the methods are
rather successful.

In fact, all the Early and Classical methods presented here are local. That is, rather
than allowing all data points to contribute to estimating each function value, as in
linear regression, the influence of the data points on the function value depends on the
value of x. Usually, the influence of a data point x; is highest for those xs close to it
and its influence diminishes for xs far from it. In fact, many New Wave and Alternative
methods re local as well, but the localization is typically more obvious with Early and
Classical methods.

To begin, a smoothing algorithm takes the data and returns a function. The output is
called a smooth ; it describes the trend in Y as a function of the explanatory variables
Xi,...,Xp. Essentially, a smooth is an estimate f of f in the nonparametric analog of
(2.0.1),

Y = f(x) +¢, (2.0.2)

in which the error term ¢ is IID, independent of f and x, with some symmetric, uni-
modal distribution, sometimes taken as N(0, 62).

First let p = 1, and consider scatterplot smooths. These usually generalize to p =2
and p = 3, but the Curse quickly renders them impractical for larger dimensions. As
a running example for several techniques, assume one has data generated from the
function in Fig. 2.1 by adding N(0,.25) noise. That is, the function graphed in Fig.
2.1 is an instance of the f in (2.0.1), and the scatter of Y's seen in Fig. 2.2 results
from choosing an evenly spaced collection of x-values, evaluating f(x) for them, and
generating random &s to add to the f(x)s. Next, pretend we don’t know f and that the
&s are unavailable as well. The task is to find a technique that will uncover f using
only the y;s in Fig. 2.2.

This chapter starts with Early methods to present the basics of descriptive smoothers.
Early, simple smoothing algorithms provide the insight, and sometimes the building
blocks, for later, more sophisticated procedures. Then, the main Classical techniques,
LOESS, kernel and nearest neighbors in this chapter and spline regression in the next,
are presented.

2.1 Early Smoothers

Three Early smoothers were bin, running line, and moving average smoothers. For
flexibility, they can be combined or modified by adjusting some aspects of their con-
struction. There are many other Early smoothers, many of them variants on those pre-
sented here, and there is some ambiguity about names. For instance, sometimes a bin
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True

Fig. 2.1 This graph shows the true function f(x) that some of the smoothing techniques presented
here will try to find.

>

Fig. 2.2 This graph shows the simulated data generated using evenly spaced values of x on [—1,5],
the f from Fig. 2.1, and € = N(0,.25), IID. For several techniques, the smoothers’ performances will
be compared using these data as the y;s.

smoother is called a regressogram, see Tukey (1961), and sometimes a moving average
smoother is called a nearest neighbors smoother, see Fix and Hodges (1951).

In bin smoothing, one partitions IR into prespecified disjoint bins; e.g., for p = 1, one
might use the integer partition {[i,i+1),i € 2}. The value of the smooth in a bin is the
average of the Y-values for the x-values inside that bin. For example, Fig. 2.3 shows
the results of applying the integer partition above to the data in our running example.
Clearly, summarizing the data by their behavior on largish intervals is not very effective
in general. One can choose smaller intervals to define the bins and get, hopefully,
a closer matching to f. Even so, however, most people consider bin smoothing to
be undesirably rough. However, bin smoothers are still often used when one wants
to partition the data for some purpose, such as data compression in an information-
theoretic context. Also, histogram estimators for densities are bin smoothers; see Yu
and Speed (1992).
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Fixed Bin Width

Fig. 2.3 This graph shows the bin smoother for an integer partition of the data in Fig. 2.2. It is always
discontinuous, and the steps do not in general track the function values particularly well.

To improve bin smoothing, one might use variable-sized bins containing a fixed num-
ber of observations rather than fixed-width bins with a variable number of observations.
This smoother is called a moving average; usually the bins are required to contain the
nearest x-values — this is called a k-nearest-neighbor smoother, discussed in Section 4.
However, other choices for the xs are possible. One could, for instance, take the closest
x-values only on one side (making an allowance for the left boundary) or from more
distant regions believed to be relevant. Moreover, instead of averaging all the closest
data points with equal weights, one can weight the data points closer to x more than to
those farther away. These are called weighted average smoothers. If the median is used
in place of the mean for the sake of robustness, one gets the running median smoother
of Tukey (1977).

Weighted or not, moving average smoothers tend to reflect the local properties of a
curve reasonably well. They don’t tend to look as coarse as bin smoothers, but they are
still relatively rough. Figure 2.4 shows a moving average in which each variable bin
contains the three nearest x-values. If one increases the number of observations within
the bin above three, the plot becomes smoother.

A further improvement is the running line smoother. This fits a straight line rather than
an average to the data in a bin. It can be combined with variable bin widths as in the
moving average smoother to give better local matching to the unknown f. As before,
one must decide how many observations a bin should contain, and larger numbers give
smoother functions. Also, one can fit a more general polynomial than a straight line;
see Fan and Gijbels (1996). Figure 2.5 shows the smooth using a linear fit tends to be
rough. However, it is typically smoother than the bin smoother for the same choice of
bins as in Fig. 2.4.

In all three of these smoothers, there is flexibility in the bin selection. Bins can be
chosen by the analyst directly or determined from the data by some rule. Either way, it
is of interest to choose the bins to ensure that the function is represented well.

In the context of running line smoothers, Friedman (1984) has used cross-validation
(see Chapter 1) to select how many xs to include in variable-length bins.
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Moving Avg: 3pts per Nbhd

Fig. 2.4 This graph shows the moving average smoother for 3-nearest-neighbor bins and the data in
Fig. 2.2. It is always discontinuous, but gives adequate local matching. Note that the values on the
bins are often so close as to be indistinguishable in the figure.

Running Lines

Fig. 2.5 This graph shows the running-line smoother for the 3-nearest-neighbor bins and the data in
Fig. 2.2. It is smoother than the curves in Figs. 2.3 and 2.4 because it is a more flexible family, at the
cost of less severe summarization inside the bins.

SuperSmoother chooses among three different numbers of observations: n/2, n/5, and
n/20. Except near the endpoints of the domain of xs, the values f(x) are found using
half of the closest observations on each side of x; this forced symmetry is different
from merely using, say, the nearest n/2 xs, in which more or less than (1/2)(n/2)
may be to one side of x. The choice among the three options is made by finding f; (x),
f>(x), and f3(x) for the three options and then using leave-one-out cross-validation to

determine which has the smallest predictive mean squared error.

Note that the smoothers exhibited so far are linear in an important sense. In squared
error, it is well known that the best predictor for Y from X is f(x) = E(Y|X = x).
So, the smooths developed so far can be regarded as estimators of E(Y|X) in (2.0.2).
Different from the linearity in (2.0.1), a smooth in (2.0.2) is linear if and only if
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Jx) =

L

Wi(x)yi = La(x)y, (2.1.1)

-

1

in which the W;s are weights depending on the whole data set (y;,x;)"_; and L,(x) is
a linear operator on y with entries defined by the W;s . In this notation, the choice of
bins is implicit in the definition of the W;s. For fixed bins, for instance, W;(xo) only
depends on the xs in the bin containing xy. In this form, it is seen that f = L,y means
that Var(f(x)) = Var(L,(x)y) = L,(x)Var(y)L,(x), which is 62L,(x)L,(x)T for IID
N(0,0?) errors.

Just as there are many other Early smoothers, there are even more linear smoothers;
several will be presented in the following sections. Linear smoothers have a common
convenient expression for the MSE, bias, and variance. In particular, these expressions
will permit the optimizations typical of Classical methods. This will be seen explicitly
in the next section for the case of kernel estimators, which are linear. For these and
other smoothers, expression (2.1.1) implies that averages of linear smoothers are again
linear, so it may be natural to combine linear smoothers as a way to do nonparametric
regression better.

2.2 Transition to Classical Smoothers

Early smoothers are good for data summarization; they are easy to understand and
provide a good picture. Early smoothers can also be computed quickly, but that has
become less important as computational power has improved.

Unfortunately, because their structure is so simplified, Early smoothers are generally
inadequate for more precise goals such as estimation, prediction, and inference more
generally. Some of the limitations are obvious from looking at the figures. For in-
stance, Early smoothers do not optimize over any parameter, so it is difficult to control
the complexity of the smooth they generate. Thus, they do not automatically adapt to
the local roughness of the underlying function. In addition, there is no measure of bias
or dispersion. Unsurprisingly, Early smoothers don’t generalize well to higher dimen-
sions.

A separate point is that Early smoothers lack mathematical theory to support their use,
so it is unclear how well they quantify the information in the data. Another way to
say this is that often many, many smooths appear equally good and there is no way to
compare them to surmise that one curve, or region of curves, is more appropriate than
another. Practitioners are often comfortable with this because it reflects the fact that
more information — from data or modeling assumptions — is needed to identify the right
curve. Indeed, this indeterminacy is just the sort of model uncertainty one anticipates
in curve fitting. On the other hand, it is clearly desirable to be able to compare smooths
reliably and formally.

At the other end of the curve-fitting spectrum from the Early smoothers of the last
section is polynomial interpolation. Motivated perhaps by Taylor expansions, the initial
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goal was to approximate a function over its domain by a single polynomial. Recall that
polynomials are just a basis for a function space; they can be orthogonalized in the L?
inner product to give the Legendre polynomials. Thus, more generally, the goal was to
use basis expansions to get a global representation for a function. The extreme case of
this is interpolation, where the approximand equals the function on the available data.

In fact, global polynomial interpolation does not work well because of an unexpected
phenomenon: As the degree increases, the oscillations of the approximand around the
true function increase without bound. That is, requiring exact matching of function
values at points forces ever worse matching away from those points. If one backs off
from requiring exact matching, the problem decreases but remains. This is surprising
because Taylor expansions often converge uniformly. What seems to be going on is
that forcing the error term too small, possibly to zero, at a select number of points in
polynomials of high enough degree (necessary for the error term to get small) creates
not just a bad fit elsewhere but a bad fit resulting from ever-wilder oscillations. This
is another version of bias—variance trade-off. Requiring the bias to be too small forces
the variability to increase. In practice, estimating the coefficients in such an expansion
will give the same problem.

2.2.1 Global Versus Local Approximations

There exists a vast body of literature in numerical analysis that deals with the approx-
imation of a function from a finite collection of function values at specific points, one
of the most important results being the following.

Weierstrass Approximation Theorem: Suppose f is defined and continuous on [a, b].
For each € > 0, there exists a polynomial g(x), defined on [a,b], with the property that

lf(x) —g(x)| <&, Vx € [a,b]. O (2.2.1)

This theorem simply states that any continuous function on an interval can be ap-
proximated to arbitrary precision by a polynomial. However, it says nothing about the
properties of g or how to find it.

Unsurprisingly, it turns out that the quality of an approximation deteriorates as the
range over which it is used expands. This is the main weakness of global polynomial
approximations. To see how global approximation can break down, consider univariate
functions. Let 2" = [—1,1] and f(x) : 2" — R be the Runge function

1

= 2.2.2
1+ 25x2 ( )

f(x)

Let xi,x2, - ,x, € Z°, be uniformly spaced points

2
i:_l — 1 ) ':17”'7 .
X +(i )n—l i n
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C. D. Runge showed that if f is interpolated on the x;s by a polynomial g (x) of degree
< k, then as k increases, the interpolant oscillates ever more at the endpoints —1 and
1. This is graphed in Fig. 2.6.

Fig. 2.6 The solid curve is the Runge function. As the dashes in the other curves get smaller, the order
of the polynomial gets larger, representing the 5th-, 7th-, and 9th-degree polynomials. As the degree
increases, the oscillations of the interpolant at the endpoints are seen to increase as well.

But it’s worse than Fig. 2.6 shows: The interpolation error tends to infinity at the end-
points as the degree k increases; i.e.,

i — = oo, 223
Jim (Ifii’il | f(x) — gk (x) |> (2.2.3)
That is, as k increases, the interpolating polynomial (quickly) gets much bigger than the
function it is interpolating; see Exercise 2.3. Although Runge’s phenomenon has now
been seen only for one function, it clearly demonstrates that high-degree polynomials

are generally unsuitable for interpolation. After all, there is nothing unusual about the
shape of f.

There is a resolution to Runge’s phenomenon. If global approximation won’t work
well, then patch together a sequence of local approximations that will be more sensitive
to the local features of the underlying function, especially near the endpoints. One way
to do this is by using splines — a special class of local polynomials — to be discussed in
Chapter 3. Comparing Fig. 2.6 to Fig. 2.3, 2.4 and 2.5 suggests that local polynomials
(splines) will outperform global polynomial interpolation on the Runge function f.
It will be seen later that piecewise fitting the spline does make it a great improvement
over global polynomials. (Any decent spline approximation to Runge’s function in Fig.
2.6 is indistinguishable from Runge’s function up to the resolution of the printer.)

Quantifying the sense in which using low-degree local polynomials with enough pieces
does better than high-degree global polynomials requires some definitions. Let f :
Z — R, and consider the function space .% = R? under the supremum norm; i.e.,
for f € F, |||l = sup,c4-|f(x)|. The space .Z is so vast that searching it is simply
unreasonable. So, consider a linear subspace ¢ C .# of dimension k with a basis %.
The space of polynomials of degree less than or equal to & is a natural choice for ¢.
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Let T be an operator, for instance an interpolant, acting on functions f € .%. If, for
f€F, TF € ¥, then a measure of the worst-case scenario is defined by the norm on
T inherited from || - ||, given by

ISl

ALy (2.2.4)
T2 1 flles

[Tl = sup
The operator norm in (2.2.4) is a generalization of the largest absolute eigenvalue for
real symmetric matrices; it is the biggest possible ratio of the size of 7' f compared with
the size of f. The larger ||T||. is, the bigger the difference between some function f
and its interpolant can be. Note that although this is expressed in the supremum norm
Il - ||, the properties of the norms used here hold for all norms; later, when a Hilbert

space structure is assumed, the norm will be assumed to arise from an inner product.
If T is linear in the sense of (2.2.4),

[Tl = sup |[Tfllee-
Iflle=1

(In general, the norm || - || does not arise from an inner product, so linear spaces
equipped with || - || become Banach spaces rather than Hilbert spaces.)

In terms of (2.2.4), if T is the polynomial interpolant, expression (2.2.3) means that
||T||co = oo. In other words, there is a sequence of functions f; such that the norm
|T il of the interpolant is getting much larger than the norm || f; || of the function,
as is visible in Fig. 2.6. In fact, there are many such sequences f;.

One popular interpolant is the nth Lagrange polynomial g,, seen to be unique in the
following.

Theorem (Lagrange interpolation): If xo,x,---,x, are n+ 1 distinct points and f
is a function whose values at these points are yo = f(x0),y1 = f(x1), s yn = f(%n)s
respectively, then there exists a unique polynomial g(x) = g,(x) of degree at most n
with the property that

vi = g(x;) foreachi=0,1, - .n,

where
8(x) = yolo(x) +y1€1(x) + -+ yuln(x)
= iIZloyi&(x) (2.2.5)
with
0i(x) = (x —x0) (x —x1) -+ (x=xi-1) (X = Xi41) -+ (X — %)
(Xi”*xo)(xi*xl)"'(xi*xifl)(xi*xi+1)"'(xz‘*xn)
X—Xxj

= 2.2.6
jzltléi XX 220

foreachi=0,1,--- ,n.
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Because of the uniqueness of the interpolating polynomial, one can use a slightly dif-
ferent norm to provide a theoretical quantification of the quality of an interpolation.
Specifically, one can represent the interpolating polynomial using the Lagrange inter-
polation basis [€g, ¢}, - ,£,] so that

Tf(x) =" yili(x)
i=0
and then define a new norm

n
IT]le= sup Y |6:(x)].
x€Z i=1

Equipped with this norm, one can easily compare different interpolation operators. In
the Runge function case (2.2.2), choosing n = 16 uniformly spaced points in [—1,1]
in (2.2.5) gives that ||T ||, for interpolating operators can be found straightforwardly:
| Tpoty || ¢ = 509.05 for the polynomial interpolant and ||7;pine ||¢ &~ 1.97 for the cubic
spline interpolant. The difference is huge. Moreover, it can be shown that, as » in-
creases, ||Tyoiy||e = O(exp(n/2)), while ||T||, ~ 2 regardless of n, see Exercise 3.1.

Naturally, it is desirable not only to match a specific polynomial but to ensure that the
procedure by which the matching is done will be effective for a class of functions. After
all, in practice the function to be “matched” is unknown, apart from being assumed to
lie in such a class. So, consider a general class ¢. Since T f € ¢, the norm || f — T f ||
cannot be less than the distance

dist(f, %) = i £ — gl
j4S%
from f to &. Also, since ||T|| is the supremum over all ratios ||7 f||e /|| f |-, We have
ITflleo <N Tlllf e, fE€F,

when T has a finite norm. By the definition of interpolation, Tg = g for all g € ¢, so
restricted to &, T would have a finite norm. On the other hand, if T is a linear operator,
then T has a finite norm if and only if it is continuous (in the same norm, || - ||), and it
is natural to write

f-Tf=f—g+Tg-Tf=(f—g) +T(g—f)

Therefore

If =T Hlle < 1S = glleo + [T llllg = flleo = (LT [|eo) 1S — &=

for any g € 4. Choosing g to make ||f — g||~ as small as possible gives the Lebesgue
inequality: For f € .7,

dist(f,%) < ||f =T fll-o < (14T )dist(f, ).
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This means that when the norm ||T'||.. of an interpolation operator is small, the inter-
polation error ||f — T ||~ is within an interpretable factor of the best possible error.
From this, it is seen that there are two aspects to good function approximation:

O The approximation process 7' should have a small norm ||7'||«.
O The distance dist(f,%¥) of f from ¢ should be small.

Note that these two desiderata are stated with the neutral term approximation. Inter-
polation is one way to approximate, more typical of numerical analysis. In statistics,
however, approximation is generally done by function estimation. In statistical terms,
these two desiderata correspond to another instance of bias—variance trade-off. Indeed,
requiring a “small norm” is akin to asking for a small bias, and requiring a small dis-
tance is much like asking for a small variance. As a generality, when randomness is
taken into account, local methods such as kernel and cubic spline smoothers will tend
to achieve these goals better than polynomials.

2.2.2 LOESS

In the aggregate, the limitations of Early smoothers and the problems with global
polynomials (or many other basis expansions) motivated numerous innovations to deal
with local behavior better. Arguably, the most important of these are LOESS, kernel
smoothing, and spline smoothing. Here, LOESS (pronounced LOW-ESS) will be pre-
sented, followed by kernel methods in the next section and splines in the next chapter.

Overall, LOESS is a bridge between Early and Classical smoothers, leaning more to
Classical: Like Early smoothers, it is descriptive and lacks optimality, but like Classi-
cal smoothers it is locally responsive and permits formal inferences. Locally weighted
scatterplot smoothing (i.e., LOESS) was developed by Cleveland (1979) and Cleve-
land and Devlin (1988). More accurately, LOESS should be called locally weighted
polynomial regression. In essence, LOESS extends the running line smooth by using
weighted linear regression in the variable-width bins. A key strength of LOESS is its
flexibility because it does not fit a closed-form function to the data. A key weakness of
LOESS is its flexibility because one does not get a convenient closed-form function.

Informally, the LOESS procedure is as follows. To assign a regression function value
to each x in the domain, begin by associating a variable-length bin to it. The bin for
x is defined to contain the g observations from the points in the data x,...,x, that
are closest to x. On this bin, use the g data points to fit a low-degree polynomial by
locally weighted least squares. The closer an x; in the bin is to x, the more weight
it gets in the optimization. After finding the coefficients in the local polynomial, the
value of the regression function ¥ (x) is found by evaluating the local polynomial from
the bin at x. It is seen that LOESS can be computationally demanding; however, it is
often satisfactorily smooth, and for reasonable choices of its inputs g and the weights,
tracks the unknown curve without overfitting or major departures. As will be seen in
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later sections, this kind of method suffers the Curse of Dimensionality. However, for
low-dimensional problems, local methods work well.

There are three ways in which LOESS is flexible. First, the degree of the polynomial
model can be any integer, but using a polynomial of high degree defeats the purpose.
Usually, the degree is 1, 2, or 3. In actuality, there is no need to limit the local func-
tions to polynomials, although polynomials are most typical. Any set of functions that
provides parsimonious local fits will work well. Second, the choice of how to weight
distances between x and Xx; is also flexible, but the tri-cube weight (defined below) is
relatively standard. Third, the number of data points in the bins ranges from 1 to n, but
n/4 < q/n <1/2is fairly typical.

More formally, recall that weighted least squares finds
B =arg min Y wilY; -X!B)>, (2.2.7)
BeR’ ;5

in which w; is a weight function, often derived from the covariance matrix of the g&;s.
This B is used in the model

E(Y)(x)=x"B (2.2.8)

for inference and prediction.

By contrast, LOESS replaces the w; with a function w(x) derived from the distances
between the x;s and x for the g x;s closest to x and set to zero for the n — g x;s furthest
from x. To see how this works for a value of x, say x; from the data set (for conve-
nience), write d; = ||x; — x;|| using the Euclidean norm and sort the d;s into increasing
order. Fix o to be the fraction of data included in a bin so that ¢ = max (| an|,1). Now,
d, is the gth smallest distance from any x; to x;. To include just the g closest points in
a bin, one can use the tri-cube weight for any x;:

3 3

> . (2.2.9)

Now, given these weights, the weighted polynomial fit using the x;s in the bin of cardi-
nality g around x; can be found by the usual weighted least squares minimization. The
resulting function gives the LOESS fit at x; and the procedure works for any x # xi.

X — X
d‘]

Wi(Xk) = (| x| <dy) <1 B

It is seen that the [3;s obtained at one x are in general different from the f3;s obtained
for a different x. Moreover, LOESS uses weighted linear regression on polynomials;
(2.2.7) is like a special case of LOESS using linear functions and one bin, g = n. Thus,
the corresponding p for LOESS, say p*, is not the same as the p in (2.2.7); p* depends
on the choice of local functions and n. It’s as if (2.2.7) became

A

B(x)=arg min > w;(x)(yi— f(x,x:,8)), (2.2.10)
B*cR” i=1
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in which w;(x) is the weight function with local dependence and f is the local poly-
nomial, parametrized by B*, for the bin containing the x;s associated to x. Note that
B depends continuously on x, the point the regression is fitting. The resulting B(x)
would then be used in the model

—

E(Y)(x) = f(x,B(x)), 2.2.11)

in which the dependence of f on the data x; is suppressed because it has been used to
obtain B(x) The expression in (2.2.11) is awkward because the LOESS “model” can
only be expressed locally, differing from (2.2.8), which holds for all x € R”. How-
ever, the regression function in (2.2.11) is continuous as a function of x, unlike earlier
smoothers.

The statistical properties of LOESS derive from the fact that LOESS is of the form
(2.1.1). Indeed, if we write

n

fx) =Y Wi(x)yi,
i=1
so that the estimate f(x) is a linear function L, of the y;s, with fitted values ; = f(x;),
we get
y=Lyy.

The residual vector is & = (I,xn — Ly)Y, SO Iyxn — L, plays the same role as the pro-
jection operator in the usual least squares formulation, although it is not in general
symmetric or idempotent, Cleveland and Devlin (1988), p. 598.

Theorems that characterize the behavior of LOESS estimators are straightforward to
establish. Here, it will be enough to explain them informally. The key assumptions are
on the distribution of Y, typically taken as normal, and on the form of the true function
S, typically assumed to be locally approximable by the polynomial f.

Indeed, for local linear or quadratic fitting, one only gets true consistency when fr
is linear or quadratic. Otherwise, the consistency can only hold in a limiting sense
on neighborhoods of a given x on which fr can be well approximated by the lo-
cal polynomial. Under the assumption of unbiasedness, the usual normal distribu-
tion theory for weighted least squares holds locally. That is, under local consis-
tency and normality, $ and & are normally distributed with covariances ¢>L) L, and
02 (Lyxn — L,,)T(Inx,, —L,). Thus, the expected residual sum of squares is

E(&"8) = o?trace(Lyxn — Ln) " (Lyxn — La),

giving the natural estimate & = € Te Jtrace(Lyxn —Lu) " (Iuixn — Ly ). Using the normality
in (2.0.2) gives

n
— .2 )
Var(g(x)) = 6>, Wi(x)*
i=1
Again, as in the usual normal theory, the distribution of a quadratic form such as ge'
can be approximated by a constant times a y? distribution, where the degrees of free-
dom and the constant are chosen to match the first two moments of the quadratic form.
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As noted in Cleveland and Devlin (1988), setting 8; = trace(Ixn — Ly) (Inxn — Ln) T

and & = trace[(Lyxn — Ly) (Lyxn — Ly) T]?, the distribution of 626 /(8,62) is approxi-

mately 75;2 /5, and the distribution of ( f(x) — f(x))/&(x) is approximately 7 52/5,° Used
1

together, these give confidence intervals, pointwise in x, for fr(x) based on f(x).

Figure 2.7 gives an indication of how well this approach works in practice. For ap-
propriate choices, LOESS is a locally consistent estimator, but, due to the weighting,
may be inefficient at finding even relatively simple structures in the data. Indeed, it is
easy to see that, past 4, the LOESS curve misses the downturn in the true curve. If
there were more data to the right, LOESS would pick up the downturn, so this can be
regarded as an edge effect. However, the fact that it is so strong even for the last sixth
of the domain is worrisome. Careful adjustment of ¢ and other inputs can improve the
fits, but the point remains that LOESS can be inefficient (i.e., it may need a lot of data
to get good fit). Although LOESS was not intended for high-dimensional regression,
and data sparsity exacerbates inefficiency as p increases, LOESS is often used because
normal theory is easy. Of course, like other methods in this chapter, LOESS works best
on large, densely sampled, low-dimensional data sets. These sometimes occur, but are
hardly typical.

loess

Fig. 2.7 This graph shows the LOESS smoother for the data in Fig. 2.2 for a normal weighting
function, polynomials of order 2, and ¢ = .75n. The large ¢ makes the graph much smoother than the
Early smoothers, but the fit can be poor for unfortunate choices.

2.3 Kernel Smoothers

The first of three truly Classical methods to be presented here is kernel smoothers.
However, to do this necessitates some definitions and concepts that run throughout
nonparametric function estimation. Although substantial, this is the typical language
for nonparametrics.
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The problem is to recover an entire function from a random sample of observations
X1,71),-+,(Xn,Yy), where ¥; = f(X;) + & and E(g;) = 0. Under squared error loss,
the goal is to find an estimator f(x) of f(x) = E(Y|X = x). There are a variety of
obvious questions: What do we know, or think we know, about the distribution of X?
How are the ¢;s distributed and how are they related to the ¥;s? What is a good choice
for f, and how good is it?

The first subsection introduces how the quality of f, sometimes denoted f, to empha-
size the sample size, is assessed and describes the modes of convergence of f, to f.
The second and following subsections explain the kernel methods for forming fs in
several settings, giving their basic properties, including rates of convergence. The dis-
cussion will focus on the univariate case, although extensions to low-dimensional X's
are similar. High-dimensional Xs suffer the Curse.

2.3.1 Statistical Function Approximation

There are a variety of modes of convergence, some more appropriate than others in
some contexts. At the base, there is pointwise convergence. Let < f,, > be a sequence
of functions defined on a common domain 2" C R. The sequence < f, > converges
pointwise to f(-) if

lim f,(x) = f(x)

n—c0
for each x € 2. This can also be expressed as
Ve >0, 3N, Vn > N such that | f,,(x) — f(x)| < €
for each x € 2. Note that this is just the usual notion of convergence for real numbers

that happen to be function values at x.

Extending from individual xs to sets of xs is where the complications begin. First,
pointwise convergence is not the same as convergence of integrals. This can be seen
in standard examples. For instance, consider the sequence of functions f,(x) = nx
(1 —x2)". It can be seen that

lim f£,(x) = lim nx(1 —x%)" =0,

Nn—oo n—o0
but
1

1
li dx=1i .
s 0 Ju(x)dx ngrolozm_z 2

Since the integral of the limiting function over the domain is different from the limit of
the sequence of integrals, it follows that pointwise convergence is not a strong mode.

Uniform convergence on a set is clearly stronger than pointwise convergence on that
set. Formally, let < f,, > be a sequence of functions all defined on a common domain
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2 C R. The sequence < f, > converges uniformly to f(x) if
Ve>0,3N,Vxe ZVn>N |f,(x)— f(x)| <e.

Uniform convergence means that the error between f,, and f can be made arbitrarily
small uniformly over 2. A fortiori uniform convergence implies pointwise conver-
gence, but the converse fails. (Consider f,,(x) = x" on [0, 1], for example.) Uniform
convergence also implies that integrals converge.

Theorem: Let f,, be a sequence of continuous functions defined on a closed interval
[a,b]. If f, converges uniformly to f(x) on [a,b], then

b b
lim [ fu(x)dx = / F(x)dx.

n—oo

In a measure-theoretic context, the monotone convergence theorem, the dominated
convergence theorem, and Egorov’s theorem together mean that pointwise conver-
gence almost gives convergence of integrals and each of the two modes is almost
equivalent to uniform convergence. In this context, behavior at specific points is not
important because functions are only defined up to sets of measure zero.

In an inner product space, uniform convergence is expressed in terms of the norm || - ||
derived from the inner product. A sequence f, in an inner product space converges to
f if and only if

Ve > 0, 3N, such thatVn > N|| f, — f|| < .

The x does not appear in the definition since the norm is on the function as an entity,
not necessarily dependent on specific points of its domain.

A sequence < f,, > in an inner product space is Cauchy if
Ve >0, 3N, such that Vn,m > N || f, — fu| < €.

In most common topological spaces, sequences converge if and only if they are
Cauchy. A space in which every Cauchy sequence converges in its norm to a mem-
ber of the space (i.e., the space is closed under Cauchy convergence) is complete. A
complete linear space together with a norm defined on it is called a Banach space. A
closed Banach space in which the norm arises from an inner product is called a Hilbert
space. Finite-dimensional vector spaces R” and the space of square-integrable func-
tions L? are both Hilbert spaces. Under | - ||, a linear space such as %[0, 1] is usually
Banach but not Hilbert.

Turning to more statistical properties, squared error is used more often than other no-
tions of distance, such as || - || for instance, especially when evaluating error pointwise
in x. However, different measures of distance have different properties. Euclidean dis-
tance is the most widely used because in finite dimensions it corresponds well to our
intuitive sense of distance and remains convenient and tractable in higher dimensions.
Starting with this, recall that, for good prediction, the MSE of the predictor must be
small. If the goal is to predict ¥,;,, from X ,,,,, having already seen (X1,Y1), ..., (X, Y,),
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the mean squared error gives the average of the error for each X: For function estima-
tion, the mean squared error (MSE) of f at any x is

R A 2
MSE[f(x)] = B[ (F(x) - £(x))]
As before, this breaks down into two parts. The bias of f at x is

Bias(f(x)) = E(f(x)) — f(x);

the variance of f at x is
Var(£(x)) = E [(7(0) - E(f()))]:
and the MSE can be decomposed:
MSE[f(x)] = Var(f(x)) + Bias(f(x))>.

Naively, the minimum-variance unbiased estimator is the most desirable. After all, if
f is pointwise unbiased (i.e., Bias(f(x)) = 0 for each x € .2), then one is certain that
enough data will uncover the true function. However, sometimes unbiased estimators
don’t exist and often there are function estimators with smaller variance and small bias
(that goes to zero as n increases) with smaller MSE.

Another measure of distance that is more appropriate for densities is the mean absolute
error (MAE). The mean absolute error of f at x is

MAE[f(x)] = E[|f(x) - f(x)]].

Unlike the MSE, the MAE does not allow an obvious decomposition into meaning-
ful quantities such as variance and bias. It also poses severe analytical and computa-
tional challenges. However, applied to densities, it corresponds to probability (recall
Scheffe’s theorem) and is usually equivalent to the total variation distance. Indeed,
is weakly pointwise consistent for f when f(x) converges to f(x) in probability (i.e.,
f(x) —p f(x) for each x), and £ is pointwise consistent for f when

vxe 2 E(f(x) = fx).

For the remainder of this section, the focus will be on the global properties of f on
the whole domain 2~ of f rather than on pointwise properties. This means that all the
assessments are in terms of f and f, with no direct dependence on the values x.

A general class of norms comes from the Lebesgue spaces, L, given by

s, = (e -serar) .

for f — f. For the norm to be well defined, there are two key requirements: f must be
defined on 27, and the integral must exist.
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Three special cases of L, norms are p = 1,2,e. The L norm, also called integrated
absolute error (IAE) is

IAE[/ / 1700) = f()]dx.

The L, norm, also called integrated squared error (ISE) is

ISE[f] = / x))%dx.

The L. norm, also called supremal absolute error (SAE) is

SAE[f] = sup |7(x) —f(x)]-

xeZ

The Csiszar ¢ divergences are another general class of measures of distance. Instead
of being defined by expectations of powers, Csiszar ¢ divergences are expectations of
convex functions of density ratios. The power divergence family is a subset of Csiszar
¢ divergences. Two of the most important examples are the Kullback-Leibler distance,
or relative entropy, given by

L. = [, deorog (1) ax,

and the Hellinger distance, given by

i = ([ (7o) as)

These distances are not metrics. However, they do typically have convex neighbor-
hood bases and satisfy some metric-like properties. In addition, the Kullback-Leibler
distance represents codelength, and the Hellinger distance represents the closest pack-
ing of spheres. (Another ¢ divergence is the y-squared distance, which represents
goodness of fit.) Overall, select members of the Csiszar ¢ divergence class have inter-
pretations that are usually more appropriate to physical modeling than L, norms have.
Whichever distance is chosen, the consistency of f is studied from a global perspective
by trying to obtain

/%.E (L(f(x)7f(x)))dx ~0,

where L(f(x), f(x)) indicates the distance chosen as the loss function.

Among these global measures, focus usually is on the ISE. It is more mathemat-
ically tractable than the others because the loss function is squared error, glVlng
L(f(x), f(x)) = (f(x) — f(x))%. Consequently, a full measure of the quality of f is
often formed by combining the MSE and the ISE into the integrated mean squared
error (IMSE) which turns out to equal the mean integrated squared error (MISE). To
see this, define the integrated squared bias (ISB),



72 2 Local Smoothers
ISBI7) = [ (E(7()— £(0)"dx,

and the integrated variance (IV),

VI = [ Nar(7(0)dx= [ E[(7) - (7).

Now, the IMSE is

IMSELf] = | () = f()?) d
= IV(f) +ISB(f).

Assuming a Fubini theorem, the integrated mean squared error is

MSELf] = ( [ ()~ 1(0)%ar )
= MISE(/)

the MISE. Unfortunately, as suggested by the Runge function example, global unbi-
asedness generally does not hold. So, in practice, usually both IV(f) and ISB(f) must
be examined.

Continuing the definitions for squared error, f is mean square consistent (or L, consis-
tent) for f if the MISE converges to 0. Formally, this is

/y E ((f(x) - f(x))*) dx — 0.

The expectation in the integral can be removed, in which case the expression is a
function of the data after integrating out the x. This reduced expression can still go to
zero in probability as n increases, or with probability one, giving familiar notions of
weak and strong consistency, respectively.

Next, to respect the fact that X is a random variable, not just a real function, it is im-
portant to take into account the stochasticity of X through its density p(x). So, redefine
the MISE to be

MISE(f) = [ E((f(x) = £()%) plo)d.
If a weight function w(x) is included in the ISE, then writing

ai(F.1) = [ (F@) = )P plawix)ds

gives that the MISE is the expectation of dj with respect to X. That is,

MISE(f) = du(f. f) = E(di(}, f)].
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The notation dy is a reminder that the MISE is a distance from f to f resulting from
another distance dj.

Very often MISE is intractable because it has no closed-form expression. There are two
ways around this problem. Theoretically, one can examine the limit of MISE as n — oo.
This gives the asymptotic mean integrated squared error (AMISE). Alternatively, for
computational purposes, a discrete approximation of d; based on a sample Xi,---, X,
can be used. This is the average squared error (ASE),

n

ASE(f.f) =da(f.f) = = X, (F(X:) — F(Xi)*w(X;). 2.3.1)

N

S

i=1

The ASE is convenient because, being discrete, d4 avoids numerical integration. In-
deed, as a generality, the main quantities appearing in nonparametric reasoning must
be discretized to be implemented in practice. (Expressions like (2.3.1) are empirical
risks, and there is an established theory for them. However, it will not be presented
here in any detail.)

2.3.2 The Concept of Kernel Methods and the Discrete Case

In this subsection, the setting for kernel methods is laid out. The basic idea is to smooth
the data by associating to each datum a function that looks like a bump at the data
point, called a kernel. The kernel spreads out the influence of the observation so that
averaging over the bumps gives a smooth. The special case of deterministic choices
of the x;s is dealt with here in contrast to (i) the Runge function example, (ii) the
stochastic case, which involves an extra normalization, and (iii) the spline setting to be
developed later.

2.3.2.1 Key Tools

The central quantity in kernel smoothing is the kernel itself. Technically, a kernel K is
a bounded, continuous function on R satisfying

Vv K(v) >0 and/K(v)dv:l.
To make this more intuitive, K usually is required to satisfy the additional conditions
/vK(v)dv =0 and /sz(v)dv < oo,

For multivariate Xs, one often takes multiples of p copies of K, one for each x; in X,
rapidly making the problem difficult. For notational convenience, define
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1 %
K(v) = - K (7) .
(V) o\

Here, K}, is the rescaled kernel and # is the bandwidth or smoothing parameter. It is
easy to see that if the support of K is supp(K) = [—1,+1], then supp(K;,) = [—h, +h].
Also, K}, integrates to 1 over v for each h. It will be seen later that kernel smoothers
are linear in the sense of (2.1.1) because K is the basic ingredient for constructing the
weights {W;(x)}"_,. The shape of the weights comes from the shape of K, while their
size is determined by A.

Clearly, there are many possible choices for K. Some are better than others, but not
usually by much. So, it is enough to restrict attention to a few kernels. The following
table shows four of the most popular kernels; graphs of them are in Fig. 2.8.

Kernel name Equation Range
Epanechnikov KWv) = %(1 —?) —-1<v<1
_ 15 212
Biweight K(v):ﬁ(lfv) —-1<v<1
Triangle KWv)=(1-1]) —-1<v<1
. 1 7‘)2/2
Gaussian (normal) K(v)=——¢ —co LY < oo

Three of the kernels in the table above are zero outside a fixed interval. This restriction
helps avoid computational numerical underflows resulting from the kernel taking on
very small values. In terms of efficiency, the best kernel is the Epanechnikov. The least
efficient of the four is the normal.

It turns out that continuity of a function is not a strong enough condition to permit
statements and proofs of theorems that characterize the behavior of kernel estimators.
A little bit more is needed. This little bit more amounts to continuity with contraction
properties akin to uniform continuity but with a rate on € as a function of §. Thus, key
theorems assume Holder continuity and Lipschitz continuity of the underlying function
f as well as of the other functions (such as kernels) used to estimate it.

Let g be a univariate function with compact domain 2~ C R. Lipschitz continuity
asks for a uniform linear rate of contraction of the function values in terms of their
arguments. That is, the function g is Lipschitz continuous if

36 >0 suchthat |g(u)—g(v)| < dlu—v|

for all u,v € 2°. A more general version of this criterion allows upper bounds that
are not first order. A univariate function g on a compact domain 2~ C R is o-Holder
continuous for some 0 < o < 1 if

364 >0 suchthat |g(u)—g(v)| < 8 lu—v|*
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(a) Epanechikov (b) Biweight

08 04 02 0 o0z 04 08 o8 1

(c) Triangle Lo (Zd) Gaussian’
Fig. 2.8 The graphs of the four kernels from the table show how they spread the weight of a data

point over a region. Only the normal has noncompact support — and it is least efficient.

for all u,v € Z". Clearly, an o-Holder continuous function with oo = 1 is Lipschitz
continuous. It is easy to see that on compact sets these two conditions are readily
satisfied by most well-behaved functions. Functions that do not satisfy them often have
uncontrolled local oscillations.

2.3.2.2 Kernel Smoothing for Deterministic Designs

Assume (x1,y1), -, (xn,ys) is generated by the model ¥; = f(x;)+¢, i=1,---,n

where g1, - , &, are IID (0,62) and the design points are equidistant in [0, 1]; i.e
i—1
‘xj:l/l*17 l:1727" )1

Let f:[0,1] — R be the underlying function to be estimated, and choose a fixed
kernel K symmetric about zero; i.e., K(—v) = K(v).

The Priestley-Chao (PC) kernel estimate of f (see Priestley and Chao (1972)) for a
deterministic design is

1 X —X;
nth,,x x,)Y; = Z ( )Y (2.3.2)
=1

}’l
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where x € [0, 1] and {h, } is a sequence of positive real numbers converging to zero at
rate o(1/n); that is, nh, — oo as n — oo. In the presence of Lipschitz continuity, the
behavior of the AMSE at an arbitrary point x is controlled by the proximity of x to a
design point. In this chapter, proofs of theorems are merely sketched since full formal
proofs are readily available from the various sources cited.

Theorem (Gasser and Miiller, 1984): Suppose K has compact support and is Lips-
chitz continuous on supp(K). If f is twice continuously differentiable, then the asymp-
totic mean squared error at x € [0,1] is

AMSE(f(x)) = Wif”(whh%&m@, (2.3.3)

where S(K) = [K?(t)dt and pp(K) = [1>K(t)dt.
Proof: Recall that the MSE can be decomposed into bias and variance, namely
MSE(f(x)) = Var(f(x)) +Biasz(f(x)).

The first ingredient for obtaining the bias is

1 & X —X;
E K Y;
[nhnlz; ( ha ) ’]

1 & X —X;
K E[Y;].
nhy, & ( hy ) i

1

E(f(x))

Now, with A, — 0 as n — oo, the summation over i can be approximated by an integral

over x, namely . /hinK (xh—nv>f(v)dv+0 (i)

The change of variable r = (x — v) /h,, gives v = x — h,t, dv = —h,dt, and

B(f(0) = [

(e=1)/hn

) e — )i+ 0 <’11) .

Taylor expanding f(-) at x gives

F—hat) = F3) — It () + 52 () 4

Since K is supported on (—1, 1), the Taylor expansion can be substituted into the inte-
gral to give

E(f(x)) = /711 K(1) [p(x) —hntf/(x) + %hﬁtzf”(x) + .. :| dt

= 1) [ K@)t = o ) /tK(z)dt—k%hﬁf”(x) [k,
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By definition, / K(v)dv=1and / VK(V)dv =0, 50
E((x)) = /00 + 592"(0) [ PRy 4o
Defining uy(K) = [t*K(t)dt, the bias is given by
B (0) ~ 100 = 3P0+ 00)+ 0 (1),

and the asymptotic squared bias, as claimed, is

(k2 (K) £ (x))?

ht.
4 n

ASBIf(x)] =

For the variance, the same approximation of a sum by an integral and the same change

of variable as above leads to
2
o 5 1
= K-(t)dt|+0O
nhy, {/ ®) } + (nhn>

for small enough %,. With S(K) = [ K>(t)dt, the asymptotic variance is

) 1 [1a —x
Var(f(x)) = s l” Y h—[(2 (xh a ) Var(Y;)
n i—1 M n

AVIF ) = o %SK).

also for small £, giving the result claimed. [J
An immediate consequence of (2.3.3) is the pointwise consistency of f.

Corollary: If 1, — 0 and nh,, — oo as n — oo, then

AMSE(f(x)) — 0.

Therefore

~

J(x) — f(x),
P

and f is asymptotically consistent, pointwise in x. [J

The expression for AMSE(f(x)) provides a way to estimate the optimal bandwidth,
along with the corresponding rate of convergence to the true underlying curve. Since
this procedure is qualitatively the same for stochastic designs, which are more typical,
this estimation is deferred to the discussion in the next section.
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2.3.3 Kernels and Stochastic Designs: Density Estimation

For stochastic designs, assume (X,Y),- -, (X,,Y,) are IID R x R-valued random vec-
tors with E(]Y|) < oo and that

Yi:f(Xi)+8i7 i:1725"'7n5

where X, - -, X, have common density p(x) and the g, -- - , &, are IID N(0, 62), inde-
pendent of X7, ---,X,. The goal, as before, is to estimate the regression function

F(x) = E(Y[X =)

from the data. However, this is different from the Priestley-Chao problem because
the design of the x;s is not fixed. Intuitively, the estimator f must be responsive to
whatever value of X occurs and so the weight assigned to a specific x must be random
and generalize the constant nh,, in (2.3.2).

The Nadaraya-Watson (NW) kernel estimate of f is given by

2oy — Zimi Kn(x = Xi)Y:
f)="0—— (2.3.4)
Ry AT
The denominator is a density estimate, so the NW estimate of f is often expressed in
terms of the Parzen-Rosenblatt kernel density estimate p(x) of p(x) by writing

1 yn
AN o Xy Kn(x— X;)Y;
T =50

)

where

plx) = 1.ZKh(x—Xi). (2.3.5)

In effect, the randomness in X makes the estimation of f(x) essentially the same as
estimating the numerator and denominator of the conditional expectation of ¥ given
X=ux:
_ Jypxy(xy)dy _ [ypxy(x,y)dy

px(x) S pxy(xy)dy
The consistency of the NW smoother rests on the consistency of the Parzen-Rosenblatt
density estimator.

E(Y|X =x)

Expectations of kernel estimators are convolutions of the kernel with p(x); i.e.,
E(p(x)) = (Kp* p)(x). This can be seen by writing the definitions

LS Bk (x— X)) = E(Ky(x— X1))

E(p(x))

i=1

= / w(x—v)p(v)dv = (Ky* p)(x).
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This last expression shows that the kernel estimator p(x) of p(x) is a convolution op-
erator that locally replaces each point by a weighted average of its neighbors.

An extension of the technique of proof of the last theorem gives consistency of the

kernel density estimator for stochastic designs. Obtaining the consistency of the NW

smoother using this technique is done in the next theorem.

Theorem: Let K be a kernel satisfying ‘l‘im vK(v) = 0. Then, for any x at which the
V| —ro0

density p(x) is defined, we have
p(x) == p(x)

if i — 0 and 7k — oo as n — oo. The optimal bandwidth is 4Pt = & (n*%), and
the AMISE decreases at rate n~ /5.

Proof (sketch): First, we sketch the bias. The change of variable t = (x —v)/h gives
v =x— ht and dv = —hdt, so the expectation of p(x) is

lK x—X
h h

_ /ab liK(th)p(v)dv_ )Ch:]((t)p(xht)dl‘-

E(p(x)) = E

Taylor expanding p(-) at x gives
1
ple—hr) = plx) = hep () + SH2Cp"(x) + -

As a special case, if the kernel K is supported on (—&,&), then

B(500) = [

K(r) {P(X) —htp/(x)—i—;h2t2p”(x)+...] dt
- p(x)/K(f)dt—hpl(x)/tK(t)dt—l—%th”(x)/t2K(t)d[+...

So, using /K(v)dv =1and /vK(v)dv =0 gives

B(p(0)) = p(a) + 3" (x) [ K@)+

As aresult, setting (i (K) = [1?>K(t)dt gives an expression for the bias,

B(p() - ) = s K040 () +0 (1),

Now, setting S(p") = [ (p" (x))?dx, squaring, and ignoring small error terms gives
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AISB[p] = Mm. (2.3.6)

For the variance,

Varlp(x)] = [(; / K2<r>p<x—hr>dr> —E(ﬁ(x»z]

= o KO o0 =0 302 04| ()

_ nlhp(x)/Kz(t)dt+ﬁ(nlh) ﬁ(i). ”

If 7 — 0 and nh — oo as n — oo, then the asymptotic variance of p(x) becomes

1

AV[p()] = —p

(0)S(K),
where S(K) = [ K?(t)dt, and the corresponding asymptotic integrated variance is

1
AIV[p] = — S(K). (2.3.7)

Using (2.3.6) and (2.3.7), the expression for the AMISE for p is

AMISE(p) = 7(“2(K)f//(x))2h4+ H—IhS(K),

from which one gets the convergence in mean square, and hence in probability, of p(x)
to p(x). Also, it is easy to see that solving

IAMISE(p)

a0

yields hoPt = & (n—%), which in turn corresponds to AMISE(p) = O (n—%). O

In parametric inference, after establishing consistency for an estimator, one tries to
show asymptotic normality. This holds here for p(x). Indeed, by writing the kernel
density estimator p(x) in the form of a sum of random variables

T8 (x=X) 14
ﬁ(x)th<xh >Zzi’

i3 nia

the Lyapunov central limit theorem gives its asymptotic distribution. Thus, if 7 — 0
and nh — oo as n — oo,

M(ﬁ(x) E(ﬁ(x))> 4 N(0,02),
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where 62 = (nh)Var[p(x)] = p(x) [ K2(t)dt. Later, it will be seen that h = &/(n~'/?)
achieves a good bias-variance trade-off, in which case

. d 1
M(p(X) —p(X)> =N <2uz(K)p”(X),S(K)p(X)> :
where S(K) = [K?(t)dt and up(K) = [t*K(t)dt. When the bias is of smaller order
than the standard deviation, the distribution of v/ni(p(x) — p(x)) coincides with that
of vnh(p(x) —E(p(x))), which is more appealing because the estimator p is available.

2.3.4 Stochastic Designs: Asymptotics for Kernel Smoothers

There are two core results for kernel smoothers. First is consistency, and second is
an expression for the AMISE, since variance alone is not enough. Both results are
based on analyzing a variance-bias decomposition and extend the result from the last
subsection on the consistency of the kernel density estimator. The last theorem will
be used for both the numerator and denominator of the NW kernel estimator for f,
pulling them together with Slutzky’s theorem. Recall that Slutzky’s theorem gives the
behavior of sequences of variables under convergence in distribution and probability.
Thus, let a be a constant, X be a random variable, and {X,} and {¥,} be sequences

of random variables satisfying X, LA X and Y, 2, 4. Then (1) Y, X, 4, aX and (2)
X, +Y, -5 X +a

To see how this gets used, write the NW estimator as a fraction,

so that g(x) = f(x)p(x). The content of the last theorem was that when & — 0 and nk —
oo, the denominator p(x) of f(x) is a consistent estimate of p(x). Similar techniques to
deal with g are at the core of consistency of the kernel smoother as seen in the proof
of the following.

Theorem: Let K be a kernel satisfying ‘l‘im vK(v) =0, and suppose X gives a stochas-

V|—ro0

tic design with p(x) consistent for p(x). If E(Y?) < co, then for any x at which p(x)
and f(x) are continuous and p(x) > 0,

F) 5 f(x)
ifh — O0and nh — o0 asn — oo,

Proof (sketch): The central task is to verify that, under the same conditions as the last
theorem,



82 2 Local Smoothers

4(x) — q(x) = f(x)p(x).

p

To see this, it is enough to show that the MSE of §(x) for g(x) goes to zero. Since the
MSE is the “squared bias plus variance”, it is enough to show that their sum goes to
zero under the conditions in the theorem.

First, we address the bias of §(x). The change of variable r = (x — u) /h gives
) - f(X)

1 & 1 & x—X;
=2/ B x5 v :E[nhz’(< i
> du*/K (x—ht)p(x— ht)dt. (2.3.8)

/hK<xZu

For convenience, (2.3.8) can be rewritten as

E(q(x)

/ K (1) q(x—hi)d (2.3.9)

which is of the same form as E(p(x)). Assuming that g(x) = f(x)p(x) is twice contin-
uously differentiable, and Taylor expanding as before in E(p(x)), the bias is

E() — g0 = 2O 12 4 o02) = 6 (1) + o) = 0 (1)

where iy (K) = [t?K(t)dt and ¢ (x) is
q"'(x) = (f(x)p(x))" = f"(x)p(x) +2f (x)p"(x) + p" (x) f (x).

Using an argument similar to the one above, the variance of §(x) is

LS L (55 ] = e (5) ] - Limany

l:l

) 2<h> + P @lplu)du— + (BG))

n

- L[k (0'2 e he))pl— he)di =+ (E(@())?
Dp

_ (T +W)px) +f2(x /K2 dt—l—o(nlh)

1 1 1
(8o (3)
Note that f(-) and p(-) are evaluated at x because, as h — 0, f(x —hr) and p(x — ht)

converge to f(x) and p(x). Also, 1/n = o0(1/nh).

From the expressions for the bias and variance, the MSE of §(x) is [0(h?)]* +
O (1/(nh)). As aresult, if » — 0 and nh — oo as n — oo, then

Var(g(x)) = Var
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2
4(x) =5 g(x), implying that  G(x) 2 g(x).

Since p(x) 2 p(x), Slutzky’s theorem completes the proof:

The main step in the proof was consistency of §(x) for g(x). As in the last subsec-
tion, asymptotic normality for §(x) holds for individual xs: The Lyapunov central limit
theorem can be applied directly. In this case, if 7 — 0 and nh — oo as n — oo,

V(460 - E(d0) ) - N(O, (04 P)pl) [ K%r)dr) .

Parallel to p(x) and §(x), it would be nice to have an asymptotic normality result for
f(x). Unfortunately, since the kernel smoother f(x) is a ratio of two random variables,
direct central limit theorems cannot be used to find its asymptotic distribution. Another,
more elaborate technique must be used. Moreover, in general it is not the pointwise
behavior in x but the overall behavior for X measured by AMISE that is important. An
expression for AMISE will also lead to values for & = h,. Both results — asymptotic
normality for f(x) and an expression for AMISE — are based on the same bias-variance
trade-off reasoning.

For intuition and brevity, consider the following heuristic approach. (Correct mathe-
matics can be found in the standard references.) Start by writing

(x

=

~

J&x) = fx) =

~

20y £ ZLAx—@Ax
()= £0) = i) = 5P @310)

X

S

Having established results about both §(x) = f(x)p(x) and p(x), asymptotic results for
F(x) — f(x) can now be obtained using (2.3.10). It is seen that the difference between

f(x) — f(x) and its “linearized” form ﬁx)c}(x) - %ﬁ(x) is 0 (1/\/}%)

The bias Ef(x) — f(x) is approximately

q(x) — f)p(x) | _ E(@) — FOE(PK)) _ [E() | [EGW) .
J e PG -5 [ @)
R E(g()) — f(x assuming tha H(x)) ~ p(x

Adding and subtracting f(x)p(x) and using E(p(x)) =~ p(x) leads to
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h2

= S 1a(K) [£7(0) + 21" () (P'()/p(x))]

by using ¢"(x) = (F(X)p(x))" = 1" (¥)p(x) + 2/ (x)p/(x) + p" () (x). Next, an ap-
proximation for the variance can be found similarly. It can be easily verified that

() E(@GW) {é(X) ﬁ(X)]E(qA(X))Hp(X)].

q
plx)  E(p(x))

px)  p(x) E(p(x))

zj(X)

p(x)
proximately the same as the variance of

Using 2., 1, and pretending Ef(x) = E4(x) /Ep(x), the desired variance is ap-

Now rewrite G,(x) in terms of p(x) and §(x) as

—ﬂ”Fm—Mmm]

Gn(x) = L [é<x> —E(QA()C)) p(X)

=N [ﬁ(x) -E(p(x)| +1r

q(x) —E(@(X))] 7

where ¥ = —f(x)/p(x) and % = 1/p(x). Using the asymptotic normal distributions
of p(x) —E(p(x)) and g(x) — E(g(x)) stated earlier, the delta method gives that G, (x)
is also asymptotically normally distributed and identifies the variance.

For completeness, the delta method is the content of the following.

Theorem: Let < Y, > be a sequence of random variables satisfying /n(¥, — ) KA
N(0,02). Given a differentiable function g and a fixed value of 8 with g’(8) # 0,

Valg(t) —g(8)] - N(0,6%[¢'(6))%). O

Now, it is seen that the variance of G,(x) is
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nhVar[G, (x)] = [ +2n 1%/ (x) + B (f*(x) + 67)]p(x)S(K)

x))? X
ggx;;z Z;Ex; p(lx)f<x)+ (p(i))z(fz(x)JFGz) p(x)S(K)
o’ S(K
- m ( )a

in which the results for the variance of p(x), §(x) have been used along with the cor-
responding result for their correlation derived by the same reasoning, which gives the
term with 27y 75 f (x).

Now, putting together the bias and variance expressions gives the two desired theo-
rems. First, we have the asymptotic normality of the NW estimator.

Theorem: Let K be a bounded, continuous kernel that is symmetric about zero
(thus [tK(¢)dt = 0). Assume f(x) and p(x) are twice continuously differentiable and
E(|Y;|**®]X; = x) < oo for all x for some & > 0. Set 1 = O(n~'/%). Then, for all x with
p(x) > 0, the limiting distribution of f(x) is

Vih(f(x) = £(x)) < N(B(x).V (x)) @3.11)
with asymptotic bias
B(x) = (f"(x) +2f’(x)2((;))) 2 (K) (2.3.12)
and asymptotic variance
0%S(K)
V(x)= 2.3.13
(=25 23.13)

where 1 (K) = [t*K(t)dt and S(K) = [ K>(t)dt.
Proof: The proof is an application of the Lyapunov central limit theorem since the

Lyapunov condition (the 2+ & conditional moment) is satisfied. (]

Finally, the key result of this subsection can be stated. The global measure of accuracy
of the NW estimator is the AMISE(f), and it admits an asymptotic expression as a
function of A, n, and several other fixed quantities determined from f and K.

Theorem: Assume the noise &; to be homoscedastic with variance 2. Then, for & — 0
and nh — oo as n — oo, the AMISE(f) of the NW estimator is

4 . '(x)\?
AMISE(f) = hz(,ug(K))z/ (f”(x)+2f’(x)l;((x))> dx
028(K) 1
L oS /mdx, (2.3.14)

where pp(K) = [t?K(t)dt and S(K) = [K?(t)dt. The optimal bandwidth 7Pt de-
creases at rate n 3 , which corresponds to an n’% rate of decrease of the AMISE.
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Proof: The derivation of the expression of AMISE(f) follows directly from the previ-
ous heuristics. To find /°Pt, write the AMISE as

AMISE(f) = Cau2 (K)h* +CyS(K)n~'h ™!,

1 1 /
where Cy = o / ——dx and Cg = f/ (f”(x) + 2f’(x)p(x)) dx are constants. By
| p(x) 2 p(x)
. OAMISE(F) o - . . e
solving ——,= =0, it is straightforward to see that the bandwidth that minimizes

the AMISE above is

)

opt 9% /3 S(K) 1/3 -1/5
=] lew) "
B 1y (K)

with the corresponding optimal AMISE given by

AMISE®Pt = C/>C2 (415 1 445 [S(K) S [y (K) 3450 (23.15)

Note that all the expressions for the measure of accuracy of estimators encountered
so far depend on the smoothing parameter (bandwidth) &, hence the central role of
estimating 4 in theory and in practice. Expression (2.3.15) for the optimal AMISE
depends on the two kernel constants > (K) and S(K). This latter fact will be used later
in the argument for determining the optimal kernel as a measure of accuracy of the
estimator. Extensions of the results here to use derivatives of f of higher order result
in faster rates, as will be seen in the next subsection.

2.3.5 Convergence Theorems and Rates for Kernel Smoothers

Although studied in separate subsections, the difference between PC and NW as re-
gression estimators is small in the sense that NW generalizes PC. That is, if X were
uniformly distributed to correspond to equispaced points x; and K (u) = I, <(1/2)} (4)
were used as a kernel, then p in (2.3.5) would become # in the limit of large n. In fact,
the key difference between PC and NW is that NW is a convex version of the same
weights as used in PC by normalization. This is why the two kernel smoothers (PC
and NW) along with the kernel density estimator have expressions for certain of their
MSEs that are of the form Cy4* +C,(1/nh), where the constants C; and C depend on
the local behavior of f, the properties of K, and o2 see (2.3.3), (2.3.6), (2.3.7), and
(2.3.14).

Looking at the technique of proof of these results for MSE, it is seen that the properties
of the kernels and the order of the Taylor expansion are the main hypotheses. Indeed,
assuming [ vK(v)dv = 0 made the contribution of the first derivative p’ zero in (2.3.6)
so that the second derivative was needed in the expression. It is possible to generalize
the generic form of the MSEs by making assumptions to ensure lower-order terms
drop out. Since it is only the terms with an even number of derivatives that contribute,
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one can obtain a general form C14>¢ +C,(1/nh) and therefore an optimal #°Pt = h,, =
1/ n!/(24+1) "where d is the number of derivatives assumed well behaved and the C;s
are new but qualitatively similar.

Rates of this form are generic since they come from a variance-bias decomposition
using properties of kernels and Taylor expansions; see Eubank (1988), Chapter 4. To
see how they extend to derivatives of f, consider the natural estimator for the kth
derivative, k < d, of f in the simplest case, namely the PC kernel smoother. This is the
kth derivative f®)(x) of the PC estimator f(x),

Ak - 1 1t k .X*Xi .
FO0) = — oy DK = s (2.3.16)

i=1
see Eubank (1988), Chapter 4.8 for more details. The result for the PC estimator is the
following; it extends to the NW as well.
Proposition: Consider the deterministic design and the estimate f(*)(x) of ¥ (x),
where x € 2° C R as defined in (2.3.16). Let S® (K) = [ [K®)(¢1)]%dt and pi¥ (K) =
[ 12K ®)(1)dt, and assume:
1. K e €* with support [—1,1] and KU (—1) = K (1) =0, j=0,--- ,k— 1.
2. fWe%?ie., f® is k times continuously differentiable.
3. V(g)=oc*fori=1,2,---,n.
4. X, = ﬁ fori=1,2,---,n.
5. h—0and nh*t! — coasn — oo,
Then

2 [ (K) £2) ()2
:nhczyikﬂs(k)(K)Jr i [(k+2)172 !

AMSE (70 (x))

Proof: This follows the same reasoning as was used to get (2.3.3). O

Given that all these kernel-based function estimators are so similar in their behavior
— in terms of the rates for pointwise AMISE as well as the averaged AMISE - it
is possible to state generic rates for the estimators and their sense of errors. Hardle
(1990) observes that the rate of convergence depends on four features:

1. Dimension of the covariate X, here p;

2. Object to be estimated; e.g., f <k>, the kth derivative of f;

3. Type of estimator used;

4. Smoothness of the function f.

When the dimension of X is p > 2, it is understood that the appropriate kernel is the
product of the univariate kernels for the components X;, j =1,...,p of X.

To be more formal, observe that parametric techniques typically produce convergence
rates of order O(n_l/ 2), whereas nonparametric estimation is slower, with convergence
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rates of order n~" for some r € (0,1/2) for the function class .# = €'%%(Z"). This is
the smoothness class of d times continuously differentiable functions f on 2~ such
that the dth derivative f(9)(x) of f(x) is globally c-Holder continuous. The rate is
defined by r = r(p,k,d, o); the constant in the rate depends on the form of error used
and other aspects of the estimator such as the kernel, o, and derivatives of f. How
large n must be for the rate to kick in is an open question. Clearly, the slower the rate,
the more complicated the estimand, so the more data will be needed, pushing the n
needed to observe the rate further out. Moreover, under appropriate uniformity criteria
on the values of x and n, the pointwise rates can be integrated to give the corresponding
AMISE rates.

Hardle (1990) gives an expression for r that establishes its dependence on the four
qualitative features above.

Theorem: Let f be d times continuously differentiable. Assume that f (@) is or-Holder
continuous for some o, and let K > 0 be a nonnegative, continuous kernel satisfying

/K(v)dv =1, /vK(v)dv =0, and /|v|2+aK(v)dv < oo,

Then, based on IID samples (X;,Y1),---, (X,,Y,) € R? x R, kernel estimates of f()
have optimal rates of convergence n~", where

L 2d—kta)
- 2(d+a)+p’

Proof (sketch): The proof uses the variance-bias decomposition, Taylor expansions,
properties of the kernel, and so forth, as before. A detailed presentation of the proof
can be found in Stone (1980), see also Stone (1982). Other authors include Ibragimov
and Hasminksy (1980), Nussbaum (1985), and Nemirovsky et al. (1985).

For the case p = 1, the proposition shows the variance of f*(x) is

(72

= pp2kd

Var (7 (x)) SW(K)

and the bias is

A

ELfY ()] = £ (x) = Carapf © D (xnd ek,
The leading term of the mean squared error of f (%) is such that

0.2

AMSE(f(k)(x)) = kT

SO (K) + [Capop 9 (x)2RTER),

Taking the partial derivative of AMSE(f®)(x)) with respect to & and setting it to zero
yields
1
2k+1 0-25([() 2d+o)+1
2(d + o= k) n[Cay o 62 (x)]?

The mean squared error obtained using h°Pt is therefore approximately

hopt —
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2(d+o—k)

2(2k+1 { 25( ):|2(d+a)+l
_— . g

AMSEy ~ Co[Curqie/ 2 ()] 2T | =—

Corollary: Suppose IID samples (X;,Y1),- -, (Xs,¥s) € R? X R are used to form the
kernel smoothing estimate f of a Lipschitz-continuous function f. Thenx =1,d =1,
and k = 0, and the rate of convergence is

_ 4
n 4t

For the univariate regression case considered earlier, this corollary gives the rate
n~4/5)_ as determined in (2.3.14) and (2.3.15). O

The expression provided in the last theorem for finding the rate of convergence of
kernel smoothers has the following implications:

e As (d+ o) increases, the rate of convergence r increases. Intuitively, this means
that smooth functions are easier to estimate.

e As k increases, the rate of convergence r decreases, meaning that derivatives are
harder to estimate.

e As p increases, the rate of convergence r decreases, which is simply the Curse of
Dimensionality discussed at length in Chapter 1.

One of the most general results on the convergence of the NW estimator is due to
Devroye and Wagner (1980). Their theorem is a distribution-free consistency result.

Theorem (Devroye and Wagner, 1980): Let (X;,Y;), -+, (X,,Y,) be an R” x R-
valued sample, and consider the NW estimator

A o 2?:1Kh(x*Xi)Yi
IO =S K%

for f(x) =E(Y|X =x). fE(|[Y]?) <o ,q> 1, hy —, 0, and nhl, —, oo, and if (i)
K is a nonnegative function on IR? bounded by k* < oo; (ii) K has compact support; and
(iii) K(u) > BIg(u) for some B > 0 and some closed sphere B centered at the origin
with positive radius, then

£{ [ Imn(x) - m(a) ()} — 0. ©

Although the results of these theorems are highly satisfying, they only hint at a key
problem: The risk, as seen in AMISE ( ), increases quickly with the dimension of
the problem. In other words, kernel methods suffer the Curse of Dimensionality. The
following table from Wasserman (2004) shows the sample size required to obtain a
relative mean square error less than 0.1 at O when the density being estimated is a
multivariate normal and the optimal bandwidth has been selected.
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Dimension Sample size
1 4
2 19
3 67
9 187,000
10 842,000

Wasserman (2004) expresses it this way: Having 842,000 observations in a ten-
dimensional problem is like having four observations in a one-dimensional problem.
Another way to dramatize this is to imagine a large number of dimensions; 20,000
is common for many fields such as microarray analysis. Suppose you had to use the
NW estimator to estimate f (x) when p = 20,000 and data collection was not rapid.
Then, humans could well have evolved into a different species rendering the analysis
meaningless, before the NW estimator got close to the true function.

2.3.6 Kernel and Bandwidth Selection

There are still several choices to be made in forming a kernel estimator: the kernel itself
and the exact choice of h = h,,. The first of these choices is easy because differences
in Ks don’t matter very much. The choice of % is much more delicate, as will be borne
out in Section 2.5.

2.3.6.1 Optimizing over K

Observe that the expression for the minimal AMISE in (2.3.15) depends on the two
kernel constants L (K) and S(K) through

V(K)B(K) = [S(K)] 2 (K) = { / Kz(t)dtr { / tzK(t)dt} .

The obvious question is how to minimize over K. One of the major problems in seek-
ing an optimum is that the problems of finding an optimal kernel K* and an optimal
bandwidth # are coupled. These must be uncoupled before comparing two candidate
kernels. The question becomes: What are the conditions under which two kernels can
use the same bandwidth (i.e., the same amount of smoothing) and still be compared to
see which one has the smaller MISE?

The concept of canonical kernels developed by Marron and Nolan (1988) provides a
framework for comparing kernels. For the purposes of the sketch below, note that the
standardization V (K) = B(K) makes it possible to optimize MISE as a function of K.
So, the original goal of minimizing V (K)B(K) becomes
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minimize / K2 (t)dt
subject to
M / K@)di=1, (i) K@)=K(~1), and (iii) w(K)=1.
Using Lagrange multipliers on the constraints, it is enough to minimize
/ K2(0)di + { / K(0)di — 1] Yo [ / CK(dt—1).

Letting AK denote a small variation from the minimizer of interest gives

2 / K(O)AK(1)d+ A { / AK(t)dt] o { / 2AK(1)dt| =0,

which leads to
2K(t) + M + 012 =0.

It can be verified that the Epanechnikov kernel, defined by

3
K(t):Z(l—tz) for —1<r<1,

satisfies the conditions and constraints above, and is therefore the optimum.

Although the Epanechnikov kernel emerges as the optimum under (2.32), there are
other senses of optimality that result in other kernels; see Eubank (1988). Neverthe-
less, it is interesting to find out how suboptimal commonly used kernels are relative
to Epanechnikov kernels. Hardle (1990) addresses this question by computing the ef-
ficiency of suboptimal kernels, with respect to the Epanechnikov kernel K*, based on
V(K)B(K). The natural ratio to compute is

V(K)B(K) F
) 9

oK)= [y

and some values for it for certain kernels are provided in the table below.

Kernel name Expression Range V(K)B(K) D(K*,K)

Epanechnikov K(v) = (3/4)(1 —v?) —1<v<1 9/125 1
o 15 242

Biweight  K(v)=1-(1-V)" —1<v<1 25/343 10061

Triangle K(v)=(1—|v|) —-1<v<1 2/27 1.0143

Gaussian ~ K(v)=e "/2/\V2r —w<v<e  1/4m  1.0513
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The table above makes it clear that if minimizing the MISE by examining V (K)B(K)
is the criterion for choosing a kernel, then nonoptimal kernels are not much worse
than the Epanechnikov kernel. Indeed, in most applications there will be other sources
of error, the bandwidth for instance, that contribute more error than the choice of
kernel.

2.3.6.2 Empirical Aspects of Bandwidth Selection

The accuracy of kernel smoothers is governed mainly by the bandwidth 4. So, write
d.(h) in place of d(f, f). This givesd; for the ISE, dj for the ASE, and dy for the
MSE. The first result, used to help make selection of # more data driven, is the sur-
prising observation that the ASE and ISE are the same as the MSE in a limiting sense.
Formally, let H, be a set of plausible values of i defined in terms of the dimension
p of the covariate X, and the sample size n. For the theorem below, H,, is the inter-
val H, = [n%~ /4 n=9], with 0 < § < 1/(2d). In fact, one can put positive constants
into the expressions defining the endpoints while retaining the essential content of the
theorem; see Hardle (1990), Chapters 4 and 5 and also Eubank (1988), Chapter 4 and
Marron and Hérdle (1986).

Theorem: Assume that the unknown density p(x) of the covariate X and the kernel
function K are Holder continuous and that p(x) is positive on the support of the w(x).
If there are constants Cy, k = 1,...,e so that IE(Y"|X = x) < Gt < oo, then for kernel
estimators

p [9a(R) — d ()

nern du(h)
|di(h) — dp(h)]

netn du(h)

—0 a.s.,

— 0 as.l

This theorem gives insight about optimal bandwidth, but identifying a specific choice
for h remains.

The importance of choosing & correctly has motivated so many contributions that it
would be inappropriate to survey them extensively here. It is enough to note that none
seem to be comprehensively satisfactory. Thus, in this subsection, it will be enough to
look at one common method based on CV because a useful method must be given even
if it’s not generally the best. It may be that a systematically ideal choice based on p,
the data, K, and the other inputs to the method (including the true unknown function)
just does not exist apart from local bandwidth concepts discussed briefly in Section
2.4.1 and indicated in Silverman’s theorem in Section 3.3.2.

Clearly, the bandwidth should minimize an error criterion over a set of plausible values
of h. For instance, consider selecting the bandwidth that achieves the minimum of
dy(h) = MISE(f,) over Hp; i.e., let

h=arg }{Ielgl dy(h).



2.3 Kernel Smoothers 93

In this expression, it is pragmatically understood that H,, just represents an interval to
be searched and that H,, shrinks to zero. Note that d;(h) and dj(h) cannot be computed
but that dj (h) can be computed because it is the empirical approximation to MISE.

The theorem above assures dj (k) is enough because, for § > 0,

da(h) as.

du(t)

uniformly for & € H,,. Therefore, the minimizer of dy (%) is asymptotically the same as
the minimizer of dy(h), the desired criterion. By writing

n

) =, SR+

w(X;) f2(X;) —2C(h),

M=

1

where C(h) = L3 w(X;) fu(X;) f(X;), it is easy to see that the middle term does not
depend on & and so does not affect the minimization. Dropping it leaves

h=arg I?elgl da(h) =~ arg 12}_2 ( gw 2C(h)> (2.3.17)
Note that, to get the approximation, C(h) is replaced by C(k), in which ¥; is used in
place of f(X;). That is,

cn="13

Zw

On the right hand side of (2.3.17), complete the square by adding and subtracting
1 a2 w(X )Y which does not depend on 4. The resulting objective function is

n

7(h) =~ 3 w(Xo) (Y — fo(X:))>.

s
This leads to defining

hy = arg zIelgl n(h). (2.3.18)

It is important to note that /1, and / are different since they are based on slightly dif-
ferent objective functions when  is finite, even though they are asymptotically equiv-
alent; i.e., h~hyina limiting sense. After all, the objective function for hy is derived
to approximate bias’ + variance while 7 is the “pure” bandwidth, effectively requiring
knowledge of the unknown f. It is easy to imagine optimizing other objective functions
that represent different aspects of bias and variance.

Despite the apparent reasonableness of (2.3.18), the bandwidth & is not quite good
enough; it is a biased estimate of argmindy (h). Indeed, using ¥; in the construction
of f,(X;) means that |Y; — f,(X;)| will systematically be smaller than |Y; — f(X;)]; i.e.,
7 (h) will typically underestimate d4 (). So, one more step is required.
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This is where CV comes in. It permits removal of the ¥; from the estimate used to
predict Y;. That is, the bias can be removed by using the optimal bandwidth

hey = arg minCV (h),

where
n

CV(h) = ; w(X;)(Y; — ff” (X:))?

and f,ffi) is the estimator of f obtained without the ith observation. Intuitively, each
term in the sum forming CV (k) is the prediction of a response not used in forming the
prediction. This seems fundamental to making CV (k) less prone to bias than (k).

There is a template theorem available from several sources (Hardle 1990 is one) that
ensures the CV-generated bandwidth works asymptotically as well as bandwidths se-
lected by using dy (h) directly.

Theorem: Let H, be a reasonable interval, such as [n~1/¢ n~%]. Suppose f, K, p(x),
and the moments of € are well behaved. Then, the bandwidth estimate /¢y is asymp-
totically optimal in the sense that

da(hey) as.,

inf da (h
h]enH,, Ah)

for n— oo,

Although flcv is now well defined and optimal in certain cases, CV is computationally
onerous. The need to find n estimates of f),(-) becomes prohibitive even for moder-
ately large sample sizes. Fortunately, the burden becomes manageable by rewriting the
expression for CV (h) as

CV(h) = i vi(Yi — n(X3))?,
i=1

where
)

K(0)
1K (x‘;xj)

In this form, the estimate f}, is found only once; the rest of the task consists of searching
for the minimum of CV (k) over H,,.

vi=|1—

To conclude this subsection, the role of the weight function w(-) in ASE, see (2.3.1) or
(2.3.17), bears comment. Recall that outliers and extreme values are different. Outliers
are anomalous measurements of ¥ and extreme values are values of X far from the
bulk of X measurements. Extreme values, valid or not, are often overinfluential, and
sometimes it is desirable to moderate their influence. Choice of w is one way to do
this. That is, if necessary in a particular application, one can choose w to stabilize ()
to prevent it from being dominated by an extreme point, or outlier. The stability is in
terms of how sensitive the choice of # is to small deviations in the data. Roughly, one
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can choose w to be smaller for those values of X; that are far from a measure of location
of the X, such as X, provided the values of X are clustered around their central value,
say X. When a Y; is “far” from where it “should” be the problem is more acute and
specialized, requiring techniques more advanced than those here.

2.3.7 Linear Smoothers

It was observed in (2.1.1) that a linear form was particularly desirable. In this section it
is seen that the NW estimator (and PC estimator) are both linear because the smooth-
ing they do gives a weighted local average f to estimate the underlying function f.
The Wj(x)s for j = 1,...,n are a sequence of weights whose size and form near x are
controlled by % from the (rescaled) kernel K. By their local nature, kernel smoothers
have weights W (x) that are large when x is close to X; and that are smaller as x moves
away from X.

It can be checked that the NW kernel smoother admits a linear representation with

Wj(x) = Kalxm %)

n

> Kin(x—X;)

i=1

However, the linearity is only for fixed /; once & becomes dependent on any of the
inputs to the smoother, such as the data, the linearity is lost.

Let W = (Wj;) with W;; = W;(x;). Then, (2.1.1) can be expressed in matrix form as

f=wy, (2.3.19)
where
Jf(m) Wi(xr) Wa(xy) - W(xr) V1
.| fx2) Wi(x2) Wa(xz) -+ Wa(x2) V2
f= . , W= . : : : ,and y=
Flo) Wi () Walx) -~ W) "

It will be seen that spline smoothers, like LOESS and kernel smoothers, are linear in
the sense of (2.1.1).

One immediate advantage of the linear representation is that important aspects of f can
be expressed in interpretable forms. For instance,

Var(f) = Var(Wy) = WVar(y)W'.
In the case of IID noise with variance 62, this reduces to

Var(f) = c>°WWT, (2.3.20)

generalizing the familiar form from linear regression.
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2.4 Nearest Neighbors

Consider data of the form (Y;,X;) for i = 1,...,n, in which the Xs and the Ys can
be continuous or categorical. The hope in nearest-neighbor methods is that when co-
variates are close in distance, their ys should be similar. The idea is actually more
natural to classification contexts, but generalizes readily to regression problems. So,
the discussion here goes back and forth between classification and regression. In its
regression form, nearest neighbors is a Classical method in the same spirit as kernel
regression.

In first or 1-nearest neighbors classification, the strategy for binary classification is to
assign a category, say 0 or 1, to Y,,.,, based on which old set of covariates x; is closest
to Xpey the covariates of Y,,,. Thus, the 1-nearest-neighbor rule for classification of
Yo based on Xpew = (X1 new, ...,xp7,,ew) looks for the set of covariates x5 that has
already occurred that is closest to X, and assigns its y-value. Thus, Ve = Yeiosest-
More generally, one looks at the k closest x;s to x,,,, to define the k nearest neighbor
rule, k-NN. Thus, find the & sets of covariates closest to x,,,, that have already occurred,
and assign the majority vote of their y values to be ;.. More formally, if x;,,....x;,
are the k closest sets of covariates to X, in some measure of distance on IR”, then

(1/k) X5, yi; = (1/2) implies setting $e = 1.
The same procedure can be used when Y is continuous. This is called k-NN regression
and the k nearest (in x) y-values are averaged.

The main free quantities are the value of k and the choice of distance. It is easiest to
think of & as a sort of smoothing parameter. A small value of kK means using few data
points and accepting a high variance in predictions. A high value of k means using
many data points and hence lower variance at the cost of high bias from including a lot
of data that may be too far away to be relevant. In principle, there is an optimal value
of k that achieves the best trade-off.

Good values of k are often found by cross-validation. As in other settings, divide the
sample into, say, ¢ subsets (randomly drawn, disjoint subsamples). For a fixed value
of k, apply the k-NN procedure to make predictions on the ¢th subset (i.e., use the
¢ — 1 subsets as the data for the predictions) and evaluate the error. The sum of squared
errors is the most typical choice for regressions; for classification, the most typical
choice is the accuracy; i.e., the percentage of correctly classified cases. This process
is then successively applied to each of the remaining ¢ — 1 subsets. At the end, there
are / errors; these are averaged to get a measure of how well the model predicts future
outcomes. Doing this for each & in a range permits one to choose the k with the smallest
error or highest accuracy.

Aside from squared error on the covariates, typical distances used to choose the near-
est neighbors include the sum of the absolute values of the entries in x — x” or their
maximum (sometimes called the city block or Manhattan distance).
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Given k and the distance measure, the k-NN prediction for regression is

N 1
Ynew(xnew) =7 z Yia

€K (Xnew)

where K (X, ) is the set of covariate vectors in the sample closest to X,

In the general classification setting, suppose there are K classes labeled 1,..., K and
Xpew 18 given. For j = 0,1, let Cj(xuew) be the data points x; among the k values of x
closest to X, that have y; = j. Then the k nearest-neighbor assignment is the class j
having the largest number of the k data points’ x;s in it,

Ynew(xnew) = argmax{j | #(é] (xnew))}~

To avoid having to break ties, k is often chosen to be odd.

An extension of k-NN regression, or classification, is distance weighting. The idea is
that the x closest to an x,,,, should be most like it, so its vote should be weighted higher
than the second closest x; or the 3rd closest x;, and so on to the kth closest. Indeed,
once the form of the weights is chosen, k can increase so that all the data points are
weighted giving a sort of ensemble method over data points. In effect, a version of this
is done in linear smoothing, see (2.1.1).

Let x(j) se,y be the ith closest data point to Xy,. Given a distance d, weights w; for
i=1,...,k can be specified by setting

ed (xnew ’x(i) .new)

Wi(xnewvx(i),new) -

Z?:l ed(xnew »x(i).new)~
Now, Z 1 Wi(Xnew; X(i) new) = 1. For classification, one takes the class with the maxi-
mum weight among the k nearest-neighbors. For regression, the predictor is

Vnew = z Wi(xnfw’x(i)a”EW)yx(i)-"e“"
i=1

in which VX (i) e is the value of the ith closest data point to X,.,,. In either case, it is con-
ventional to neglect weights and associate an assessment of variance to the predicted

value from

_ R
Var(ynew = ki Z y—= )’x< i), nen
i=1

2.4.0.1 Some Basic Properties

Like kernel methods, nearest neighbors does not really do any data summarization:
There is no meaningful model of the relationship between the explanatory variables
and the dependent variable. It is a purely nonparametric technique so k-NNs is not
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really interpretable and so not as useful for structure discovery or visualization as later
methods.

Second, another problem with k-NNss is that it is sensitive to predictors that are useless
when their values are close to those in an x;,,,. This is the opposite of many New Wave
methods (like recursive partitioning and neural networks), which often exclude irrele-
vant explanatory variables easily. To work well, k.-NNs needs good variable selection
or a distance measure that downweights less important explanatory variables.

Third, on the other hand, k-NNs has the robustness properties one expects. In partic-
ular, when data that can safely be regarded as nonrepresentative are not present, the
removal of random points or outliers does not affect predictions very much. By con-
trast, logistic regression and recursive partitioning can change substantially if a few,
even only one, data point is changed.

Overall, k-NNs is useful when a reliable distance can be specified easily but little
modeling information is available. It suffers the Curse on account of being little more
than a sophisticated look-up table.

Perhaps the biggest plus of k-NNss is its theoretical foundation, which is extensive since
k-NNs was one of the earliest classification techniques devised.

One theoretical point from the classification perspective is decision-theoretic and will
be pursued in Chapter 5 in more detail. Let L;; be the loss from assigning the jth
class when the kth class is correct. The expected loss or misclassification risk is R; =
S#L, LixP(k|x), where W (k|x) is the posterior probability of class k given x. Now, the
best choice is

.opt .

S =arg min R;(x),
which reduces to the modal class of the posterior distribution on the classes when
the cost of misclassification is the same for all classes. In this case, the risk is the
misclassification rate and one gets the usual Bayes decision rules in which one can use
estimates W (j|x). It is a theorem that the classification error in k = 1 nearest-neighbor
classification is bounded by twice the Bayes error; see Duda et al. (2000). Indeed, when
both k and n go to infinity, the k nearest-neighbor error converges to the Bayesian error.

An even more important theoretical point is the asymptotics for nearest-neighbor meth-
ods. Let f;(x) = E(Y;|x); in classification this reduces to f(x) =P(j|x) =P(¥; = 1|x).
Clearly, the “target” functions f; satisfy

Jj(x) =arg min E((Y;— f(x))*]x),

where 0 < f;(x) < 1and Y; f;(x) = 1. One way to estimate these functions is by using

the NW estimator
A . Zl'.':lKKh(x—Xi)

filw) = SE I,
WS KX
where 7 > 0 is a smoothing parameter and the kernel K is absolutely integrable.

An alternative to the NW estimator based on k-NN concepts is the following. Suppose
the f;s are well behaved enough that they can be locally approximated on a small
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neighborhood R(x) around x by an average of evaluations. Then,

> fit¥

mmngu

fi(x) =

where R(x) is a uniformly spread out collection of points in a region R(x) around x.
Then, approximating again with the data gives an estimate. Let

fj(x :#(R( )) XlezR‘z )y xl

in which R(x) = {x;|x; € R(x)}. In the classification case, this reduces to

0= ey U < RO = 1),

Note that R(x) contains all the points close to x. There may be more than k of them if
R(x) is fixed and n increases.

Heuristically, to ensure that f j converges to f; on the feature space, it is enough to
ensure that these local approximations converge to their central value f;(x) for each x.
This means that as more and more data points accumulate near X, it is important to be
more and more selective about which points to include in R(x) when taking the local
average. That is, as n gets large, #(R(x)) must get large and, most importantly, the sum
must be limited to the k closest points x; to x. The closest points get closer and closer to
x as n increases. This is better than including all the points that are close (i.e., within a
fixed distance of x) because it means that the k closest points are a smaller and smaller
fraction of the n data points available.

However, it turns out that fixing k£ will not give convergence: k must be allowed to
increase, albeit slowly, with n so that the points near x not only get closer to x but
become more numerous as well. Thus, to ensure f;(x) = lim,_...fj(x), both n — o
and k — oo are necessary. An extra condition that arises is that the points in the sum for
a given x mustn’t spread out too much. Otherwise, the approximation can be harmed if
it becomes nonlocal. So, a ratio such as k/n — oo also needs to be controlled. Finally, it
can be seen that if the f ;s converge to their target fs the limiting form of the nearest-
neighbor classifier or regression function achieves the minimum risk of the Bayes rule.

Exactly this sort of result is established in Devroye et al. (1994). Let (X,Y}),...,
(X,,Y,) be independent observations of the p x 1 random variable (X,Y), and let i
be the probability measure of X. The ¥;s are the responses, and the X ;s are the fea-
ture vectors. The best classifier, or best regression function, under squared error loss is
f(x) =E(Y|X = x). Write the k&-NN estimate of f(x) as

fn(x) = z‘/vni(x;xlw-an)Yi;

i=1

it is a linear smoother in which W,;(x;X") is 1/k when X; is one of the kth near-
est neighbors of x among the Xy,...,X, and zero otherwise. Clearly, >, W,; = 1.
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The desired result follows if
h= [ 1@~ ®)ldux) — 0

without knowing u.
Theorem (Devroye et al., 1994): Let Y be bounded, |Y| < M. Then,

limk=c and limE:07

n—oo n—oo n

taken together, imply that Ve > 0, 9N, so that n > Ny ensures

2
P(J, > &) <e "0,

where c is a constant related to the minimal number of cones centered at the origin of
angle /6 required to cover the feature space. A converse also holds in the sense that
the conclusion is equivalent to J, — 0 in probability or with probability 1. [J

The proof of such a general result is necessarily elaborate and is omitted.

It is worth noting that nearest neighbors suffers the Curse as dramatically as the other
techniques of this chapter. Indeed, as p increases, the best value for k, k°P* goes to
zero because of the curious fact that, as p increases, the distance between points be-
comes nearly constant; see Hall et al. (2008). This means that knowing any number
of neighbors actually provides no help; in binary classification terms, it means that
the classifier does no better than random guessing because noise swamps the signal.
In fact, any time the convergence rates decrease with increasing dimension, the Curse
follows. The implication of this is that variable selection methods are essential.

2.5 Applications of Kernel Regression

To conclude the present treatment of regression, it is worthwhile to see how the meth-
ods work in practice. Two computed examples are presented next. The first uses sim-
ulated data to help understand the method. The second uses real data to see how the
method helps us understand a physical phenomenon. An important source for data for
testing machine learning procedures is http: //www.ics.uci.edu/~mlearn/
MLRepository.html.

2.5.1 A Simulated Example

Before comparing kernel regression and LOESS computationally, note that user-
friendly computer packages, contributed by researchers and practitioners from around
the world, are readily available. In the statistical context, most of the packages are
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written in R, although a decent percentage are in Matlab and pure C. Here, the ex-
amples are based on the R language unless indicated otherwise. For those readers
who are still new to the R environment, a good starting point is to visit http:
//www.r-project.org/, download both the R package and the manual.

For starters, the function for implementing LOESS is a built-in R function (no down-
load needed). Simply type help(loess) from the R prompt to see how to input ar-
guments for obtaining LOESS function estimation. The function loess can also be
used to compute the NW kernel regression estimate, even though there exists yet an-
other function written exclusively for the NW regression, namely ksmooth. Again, use
help(ksmooth) to see how to use it. Among other functions and packages, there is the
R package locfit provided by Catherine Loader, which can be obtained from the web-
site http://www.locfit.info/ or directly installed from within R itself. locfit
allows the computation of the majority of statistics discussed here in nonparametric
kernel regression: estimation of the bandwidth, construction of the cross validation
plot, and flexibility of kernel choice, to name just a few. Use library(locfit) to load the
package and help(locfit) to see the way arguments are passed to it.

Another package of interest is lokern, which has both a global bandwidth form through
its function glkerns and a local bandwidth form through lokerns. Recall that by de-
fault the NW uses a single (global) bandwidth % for all the neighborhoods. However,
for some functions, a global bandwidth cannot work well, making it necessary to de-
fine different local bandwidths for each neighborhood. The idea is that the bandwidth
h is treated as a function A(x) and a second level of nonparametric function estima-
tion is used to estimate x(x). Usually, it is a simple estimator such as a bin smoother
which assigns a value of & to each bin of x-values, but in lokerns it is another kernel
estimate. Deciding when to use a local bandwidth procedure and when a global band-
width is enough is beyond the present scope; it seems to depend mostly on how rapidly
the function increases and decreases. The package lokern uses polynomial kernels, de-
faulting to two plus the number of derivatives, but concentrates mostly on bandwidth
selection. The output automatically uses the optimal /.

A reasonable first example of kernel regression computation is with simulated data.
Let the function underlying the observations be
(3

1+ 2x2(sign(x) + 1)

fx)

with x € [—m, 7).

Suppose n = 100 equally spaced training points are generated from [—7, 7] and de-
noted x, and the corresponding response values denoted y are formed as y; = f(x;) + &,
where the independent noise terms &; follow a zero-mean Gaussian distribution with
standard deviation 0.2. Since the signal-to-noise ratio is pretty high, good estimation
is expected. To see what happens, use the package lokern since it returns an optimal
bandwidth along with the estimates of variances and fits. So, call glkerns(x, y) to get
the fit using a global bandwidth and lokerns(x, y) to get the fit with local bandwidths:

glkfit <- glkerns(x, y) # fit with global kernel
lokfit <- lokerns(x, y) # fit with local kernel
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The variance of the noise term in this case is estimated by the function glkerns to be
02 ~ 0.044, which is gratifyingly close to the true value 0.04. The global bandwidth
returned by glkerns is h =~ 0.456, but the fit under global bandwidth does not seem to
differ substantially from the fit under local bandwidth, see the top panel in Fig. 2.9. It
is important to note that the curves are formed by joining the estimated function values
at each sampled data point by straight lines. This provides an illusion of continuity in
the estimate that is not really justified: It only makes sense to estimate function values
at points where there really data unless some more sophisticated routine is used with
concomitantly stronger assumptions.

To explain the 2 LOESS plots in Fig. 2.9 and why a kernel package like glkerns would
generate them it is important to look at the structure of equations (2.2.7), (2.2.9), and
(2.2.10). In effect, LOESS is a kernel method. The tri-cube weight (2.2.9) is a de
facto compact support kernel, and d, plays the same role as 4 in terms of representing
how concentrated each component in the estimator is. Moreover, locally optimizing in
(2.2.9) gives a weighted least squares estimator of the same form as the NW estimator.
(Indeed, recall that B; = ¥(x; — %) (v; — )/ . (x; — X)? is a one-dimensional least squares
minimization. This is a covariance divided by a variance and for data centered at their
means is of the same form as the NW estimator or the local form of LOESS.)

Given this, it makes sense that the fraction of data included in a bin could be regarded
as an analog to the bandwidth 4. Indeed, if ¢ is the number of data points to be included
in a bin, then the fraction is & = ¢g/n and is an analog to the bandwidth. Typically
25 < a <.5. So, using the value h = 0.4561029 from the earlier fit (as if it were
relevant) and degree 2 (the maximum loess accepts) for the polynomial, the function
loess produced the middle fit in Fig. 2.9. As before, the curve looks continuous only
because the points at which estimates are made are joined by straight lines.

Confidence bands can be found from the normal-based expressions in Section 2.2.2.
These are pointwise confidence intervals, not really a confidence region in function
space. Again, the confidence interval for each function value f(x;) is found; the upper
endpoints are joined with straight lines, as are the lower endpoints. The LOESS fit
along with these 2 SD confidence bands is the bottom panel in Fig. 2.9. (Confidence
bands for the NW estimator will be seen in the next subsection.)

2.5.2 Ethanol Data

To see how kernel methods fare in practice, consider a well-known data set gathered
in the context of the study of exhaust emissions, called ethanol.

In the ethanol data set plotted in Fig. 2.10, the variable NOXx represents the exhaust
emissions from a single-cylinder engine and is the response variable. The two predictor
variables are E (the engine’s equivalence ratio) and C (compression ratio). From Fig.
2.10, it can be seen that there are five levels for C and that the shapes of the points in
each of the five planes are roughly similar, suggesting a one dimensional analysis will
suffice. Thus, collapsing all the points into the NOx and E planes gives the scatterplot



2.5 Applications of Kernel Regression 103

Kernel Regression with both Global and local bandwidth
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Fig. 2.9 Kernel regression estimation. The top plot shows the true function with two NW estimates,
under global and local bandwidth selection. It is seen that they are pretty close. The middle plot shows
the true function with a LOESS fit, which is, to the eye, only a little worse. The bottom plot shows
what a practitioner would get with LOESS: the fitted curve and the 2SD confidence bands.
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Fig. 2.10 3D scatterplot of the ethanol data set. It is easy to see that the data points for fixed values
of C appear to form a ridge.

of data to be smoothed, as seen on the left-hand panel of Fig. 2.11. Moreover, from
the right-hand panel of Fig. 2.11, the variability in C seems to be independent of the
value of C, suggesting it is not very important and can be neglected. It will therefore
be enough to focus on the relationship between NOXx and E.
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Fig. 2.11 Ethanol data scatter for the two predictor variables; the left-hand panel shows the data used
in the numerical work, and the right-hand panel suggests that C is not important.

It now makes sense to model the response NOX as a univariate function of a single
predictor variable E. For the NW estimator, it is enough to find the optimal bandwidth
and find the sum of kernels at each point. First, it turns out that using GCV to search
the interval [0.1,0.7] for values of & gives an optimal bandwidth £, of around 0.4
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as can be seen from the left-hand panel is Fig. 2.12. The left hand panel in Fig. Fig.
2.12 shows the NW curve with #,,. Clearly, the curve tracks the data, but arguably
not very well: In the middle, it underestimates, while at the two ends it has a tendency
to overestimate. Note that although the NW curve is potentially defined for all points,
not just those at which data were collected, in fact the functional form of the NW
curve is used only at the data points. As in the simulated case, the values at the data
points are joined by straight lines. The reason is that on intermediate points the NW
estimator would be making a point prediction whose variance could not be assessed
without more sophisticated techniques.

vaev
3.04 3.05
L L
NOX

3.03
L

3.02
L

Fig. 2.12 NW best fit for NOx as a function of E, along with GCV plot suggesting the best /.

Figure 2.13 shows typical results from non-optimal values of A, for which the NW es-
timator generally produces worse fits. Indeed, for small /4, the fit is erratic, as expected
from theory, and the error tends to inflate the estimate of the variance of the noise term.
At the other end, large A, the fit is too smooth and hence has a high bias.

Another aspect that might be of concern is the effect of the kernel. However, a poly-
nomial kernel of order two is used by default, and the difference in fit from one kernel
to another is small. It usually contributes less to the overall variability than the errors
contributed from other sources, such as variability in the response or the variability
implicit in s. Although not shown, the choice of the kernel here does not affect the fit
substantially.

Finally, it is helpful to have some assessment of the overall variability of the fitted
curve. There are two senses in which this can be done. First, formulating the NW esti-
mator as a linear smoother as in Section 2.3.7 makes it easy to write down an expres-
sion for its variance at the sampled x;s. Indeed, from (2.3.20) it is enough to estimate
o because W is fully specified from its definition once & has been chosen. Under a
normality assumption and the pretense that bias doesn’t matter, it is possible to find
confidence limits using the variance from (2.3.20) in which 02 is estimated as usual
by the residual sum of squares over the degrees of freedom (recall that the degrees of
freedom in this nonparametric context is estimated using the trace of some function of
the smoothing matrix). Doing this at the x;s, joining the upper and lower confidence
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Fig. 2.13 Bad examples: the two extreme NW fits of the ethanol data. The left-hand panel shows a
fit that has low bias but high variance. The right-hand panel shows a fit that has low variance but high
bias.

limits with straight lines, and choosing a normal threshold of, say, 1.96 would give
curves qualitatively like those in Fig. 2.14a plotted on either side of the estimated
curve. In fact, the left-hand panel in Fig. 2.14 was generated by the lokern package,
which does not use a normal approximation but rather a sophisticated approach to ob-
tain a threshold more exact than 1.96. See Sun and Loader (1994) for more details on
this advanced topic. The signal-to-noise ratio for the ethanol data is pretty high, so it
is unclear how much improvement these techniques can give.

In greater generality, it would be desirable to use equations (2.3.11), (2.3.12), and
(2.3.13) over all real values of x. However, while it is easy enough to get point pre-
dictions for xs not in the sample, and in principle a bootstrap technique might be used
to estimate B(x) and V(x), it is extremely difficult to get variances for the predictions.
In practice, (2.3.12) and (2.3.13) are ignored in favor of (2.3.20), and the normality of
(2.3.11) is only invoked at the sampled x;s.

A second way to assess overall variability is to find MSE bands for the fitted curve. In-
stead of a confidence interpretation, these admit a prediction interpretation. Examining
the MSE by looking at pointwise bias and variance separately in a function estimation
context is deferred to the end of Chapter 3. Here, it is enough to look at the MSE as a
whole by using the variance estimate already obtained at the sampled x;s and adding
an estimate of bias to it. Clearly, the estimate of the bias requires a resampling tech-
nique such as the bootstrap for the bias. The procedure used here is to find the base
NW curve using all the data, draw n independent bootstrap samples from the data to
form n bootstrap estimates of the curve, and then take the average of their n distances
from the base curve. The right-hand panel in Figure 2.14 shows the resulting bootstrap
estimates of the curves f+ 2MSE plotted around the fitted base curve. As ever, the illu-
sion of continuity arises from joining the values at the sampled x;s with straight lines.
The bands are seen to be rough, or excessively wiggly, most likely due to the variance
of the bootstrap estimates. The MSE bands are much wider than the confidence bands
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and the two have different interpretations (confidence versus prediction) but the widths
of the bands vary similarly in the two cases.

Fig. 2.14 On the left-hand panel, confidence bands for the NW estimator for the Ethanol data plotted
with the fitted curve. On the right-hand panel, raw MSE bands for the NW estimator for the Ethanol
data plotted with the fitted curve.

2.6 Exercises

Exercise 2.1. Let Y be a response variable with E(Y) = u and E(Y?) < oo, and let X
be an explanatory variable. The model is

Y= f(X)+e.

where the noise term € has a distribution such that the signal-to-noise ratio allows the
signal to be recovered.

1. Deduce that, for a fixed x,
f) =E(Y[X =x)
minimizes the quadratic risk E[(Y — £(X))?].

2. For a parametric model such as simple linear regression, the empirical counterpart
of the quadratic risk E[(Y — f(X))?] is the least squares deviation

n

Ry(Bo,Br) =Y, (yi— (Bo+ ix))?,

i=1

from which the estimates of Sy and B, are obtained to form the desired approximat-
ing function. Least squares estimates are, however, sensitive to outliers.
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a. Show why least squares estimates are sensitive to outliers.

b. One of the measures commonly used to circumvent the outlier problem is to
change the loss function from the squared error loss £(u,v) = (u—v)? to the
absolute deviation loss ¢(u,v) = |u — v|, so that the empirical risk is

Ri(BouBr) = 3 Iy — (Bo+ Pux)].
i=1

c. Why is Ry less sensitive to outliers than R,?
d. Why is R not used as much as its desirable properties suggest it should be?

e. Suggest a way to estimate the desired parameters when R; is used. Can you
make any statement about their asymptotic properties such as consistency and
asymptotic normality?

Exercise 2.2. Consider using the polynomial

gp(x) = ﬁ0+ﬁ1x+ﬁ2x2+~'+ﬂp,1xl’_l + By”

to approximate a function underlying a random sample {(x;,y;),i = 1,2,---,n} under
squared error loss.

1. Show that the coefficients By, Bi,---, B, that minimize the squared error loss are
given by the solution to the set of linear equations

)4
N SeiBr =Tx 2.6.1)
=0

fork=0,1,---,p, where

[
™M
&

n
k
Sk = inv T}c
i=1

2. Consider the “homogeneous” equations corresponding to the “nonhomogeneous”
system (2.6.1); i.e.,

P
Y Ser1Bi =0. (2.6.2)
=0

Write (2.6.2) in matrix form and verify the determinant is nonzero.

3. Assume that all the x;s are uniformly distributed in the interval [0, 1].

a. Show that

p
S~ ——.
R

b. Deduce that the homogeneous system is now
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1
BB =0 ith Bj=—7——.
ﬁ ) Wi Jjk j—|—k—|—1

It can be shown that the determinant of B for a polynomial of degree p,

1

det(B) = | ——
=[5

‘ jvk:Oa1727"'7p7

is

_pllp+ ) (2p—1)!

P13t (p—1)13

Tabulate the values of H), for p =1,2,3,---,9, and comment on what happens

to the value of the determinant as p increases. (The ambitious student can try to
derive H,, as well.)

T

c. What does this mean for polynomial curve fitting?

Exercise 2.3. Consider a function f defined on the interval [—1,41]. If f is interpo-
lated on a set of knots x;s in [—1,+1] by a polynomial gi(x) of degree < k, then as
k increases, the interpolant oscillates ever more at the endpoints —1 and 1 for a large
class of functions.

1. Show that the interpolation error tends to infinity at the endpoints as the degree k
increases; i.€.,

Jim (rfii’il | f(x) — gx(x) |> = oo,

2. What is the intuitive justification for such a limitation? In general, can you identify
where on the domain this bad behavior typically occurs and for which functions it
occurs?

3. How can you fix this?

Exercise 2.4. Consider the Runge function defined on the interval [—1,+1]. Using
either Matlab or R (or your favorite package), do the following:

1. Generate equally spaced points in the interval along with their Runge function val-
ues.

2. Estimate the coefficients of the interpolating polynomial for various degrees (start
from 1 and go to something really large such as 8, 9, 10, or even 11).

3. Tabulate your results, indicating the coefficient in the column and the degree of the
polynomial in the row, so that the cell contains the estimated value of the coefficient
for that degree of polynomial. (Since the number of coefficients increases with the
degree of the polynomial, your table should be triangular).

4. Comment on what you notice in light of the theoretical assertion made regarding
the limitations of the polynomial in curve fitting seen in exercise (2.3).

Exercise 2.5. Generate n values x; fori = 1,...,n by setting x; = i/n. Then, let ¥y, ..., Y,
be IID draws from a Bernoulli(p) for some p € (0,1). Thus, treated as a data set, the
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collection (x;,y;) fori=1,...,nis just noise. Now, instead of defining a model, consider
two predictive schemes. The first is Scheme A which is the 1-nearest-neighbor method.
The second is Scheme B which will be the trivial predictor always predicting zero.

1. What are the expected mean square training error and the expected mean square
leave-one-out CV error for Scheme A?

2. What are the expected mean square training error and the expected mean square
leave-one-out CV error for Scheme B?

Exercise 2.6. Consider a data set x; for i = 1, ...,n where the x;s are unidimensional and
distinct. Suppose n is even — take n = 100 for definiteness — and that exactly half the x;s
are positive and exactly half are negative. To explore the properties of leave-one-out
CV and nearest-neighbors, try the following.

1. Can you specify the x;s so that the leave-one-out CV error for 1-nearest-neighbors
is 0 % ? Explain.

2. Can you specify the x;s so that the leave-one-out CV error for 1-nearest-neighbors
is 100 % but for 3-nearest-neighbors in 0 % ? Explain.

Exercise 2.7. It is a theorem that as the amount of training data increases, the er-
ror rate of the 1-nearest-neighbor classifier is bounded by twice the Bayes optimal
error rate. Here one proof of the theorem is broken down into steps so you can
prove it for binary classification of real inputs. (An alternative proof can be found
at http://www.ismll.uni-hildesheim.de/lehre/ml-08w/skript/
nearest.pdf.) Let x; for i = 1,...,n be the training samples with corresponding
class labels y; = 0, 1. Think of x; as a point in p-dimensional Euclidean space. Let
py(x) = p(x|Y = y) be the true conditional density for points in class y. Assume
0<py(x)<land @ =P(Y =1) € (0,1).

1. Write the true probability g(x) = P(Y = 1|X = x) that a data point x belongs to class
1. Express g(x) in terms of py(x), p1(x), and 6.

2. Upon receipt of a datum x, the Bayes optimal classification assign the class

arg max P(Y =y|X =x)
y

to maximize the probability of correct classification. Under g(x), what is the prob-
ability that x will be misclassified using the Bayes optimal classifier?

3. Recall that the 1-nearest-neighbor classifier assigns x to the class of its closest train-
ing point x. Given x and its x’, what is the probability, terms of g(x) and g(x'), that
x will be misclassified?

4. Suppose that in the limit of large n, the number of training examples in both classes
goes to infinity in such as way as to fill out the space densely. This means that
the nearest neighbor X' = x/(n) of x satisfies g(x') — g(x) as n increases. Using
this substitution in item 3, express the asymptotic error for the 1-nearest-neighbor
classifier at x in terms of the limiting value g(x).
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5. Now show that the asymptotic error obtained in item 4 is bounded by twice the
Bayes optimal error obtained in item 2.

6. Why doesn’t the asymptotic bound hold for finite n as well? What goes wrong?

Exercise 2.8. Let {(x;,Y;),i=1,--- ,n} be a data set and let w;(x) = K((x; —x)/h) be a
weight function. One way to Justlfy the NW estimator is by the following optimization.
Consider finding the ¢ = f,(x) that minimizes the weighted sum of squared errors

1. Show that the minimum is achieved for

A " oowi(x)Y;
C:fn()C) _ 21;1 l( ) l'
iy wilx)
This means that the NW estimator is the local constant kernel estimator.

2. Consider trying to improve the local constant kernel estimator to a local polynomial
kernel estimator. To do this, write the Taylor expansion on a neighborhood of x,

c c
gx(usc) :co+cl(x7u)+2—2‘(x7u)2+-~+p—lj(x—u)p.

In this form, the goal is to find the & = (¢y,éy,---,&,) " that minimizes a sum of
squares modified by a local weight w;,

ZW, (Y — gr(xise))?.

a. Why does ¢ now depend on x?

b. Show that f,(x) = g.(x;&) = & (x). Why is this different from the local constant
kernel regressor?

c. To establish linearity, derive the expression for fn (x) in matrix form; i.e., define
an appropriate L, (x) so that

d. Deduce the expression of f, (x) for the local linear kernel regression estimator
forp=1.

e. Suggest how to estimate the derivative f(x) of f,(x).

Exercise 2.9 (Statistical comparison of local constant and local linear estimators).
Let ¥; = f(X;) + €&, where g is mean zero with variance 62, and let K be a kernel
function. The variance for both the local constant and the local linear kernel regression
estimators of a function f(x) based on a design with density function p(x) is
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n::}g)éi) /tzl((t)dtJr Op (n;ln> )

1. Explain why the expression of the variance is the same for both estimators.

2. Show that the bias for the local linear estimator is given by
1 g
Ehﬁ " (x) / 2K (t)dt + Op(h2).

3. The bias for the NW estimator is
1 f'(x)p' (x)
2 =f" e /tthdt Op(h?
n (Zf (x)+ p(x) ( ) =+ P( n)7

as can be inferred from (2.3.12), or derived from (2.3.9). (It is a good exercise to do
this derivation.)

4. Based on the expressions of the bias for both estimators, what are the strengths and
the weaknesses of the two kernel methods?

Exercise 2.10. Let X, X>, - -, X, be drawn IID from a distribution with density p and
let p, be the kernel density estimator using the boxcar kernel:

_1 1
K(x):{l 7 <x<j3

0 otherwise.
1. Show that
. 1 x—h/2
E(pn(x)) = %/ p(y)dy
X+h/2
and

x—h/2 x—h/2 2
Var(pu(x)) = # [ /x 2 p(y)dy — ( /x 2 p(y)dy) ] :

2. Show that if # — 0 and nh — o as n — oo, then
. P
Pn(x) — p(x).

Exercise 2.11. Consider the following kernels encountered earlier in kernel smooth-
ing: (1) the uniform kernel K(u) = 1/2 for —1 < u < 1, (2) the triangular kernel
K(u) = 1 — |u| for —1 < u < 1, the quartic kernel K(u) = (15/16)(1 — u*)* for
—1 < u < 1, the Epanechnikov kernel K (i) = (3/4)(1 —u?) for —1 < u < 1, and
the Gaussian kernel K (1) = (27'5)’% exp(—0.5u%) for —eo < u < oo,

1. To contrast the optimal bandwidths for for local constant regression evaluated at a
point x under AMSE optimality for different kernels, show that the AMSE-optimal
bandwidth using the Epanechnikov kernel is (10/3)'/> times the AMSE-optimal
bandwidth for the uniform kernel.
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2. Again, fix x but now compare minimal AMSE’s rather than bandwidth. Show that
the minimal AMSE at x using the Epanechnikov kernel is 94.3% of the minimal
AMSE at x using the uniform kernel.

3. Redo the first two items, but use the normal kernel in place of the uniform kernel.
Which kernel gives the most efficient estimator? How important is this?

4. Let f be a regression function and suppose f”(x) is overestimated by a factor of
1.5. If local constant regression were used to estimate f(x), what effect would this
have on the estimate of the optimal bandwidth? To be specific, suppose f”(x) =
o = 1. Now, using the Epanechnikov kernel, find the AMSE at x using the optimal
bandwidth and the estimated bandwidth.

Exercise 2.12. Let Y = f(X) + &, where € is mean zero with variance 2. Let the es-
timator f of f be linear. That is, given a collection of outcomes {(x1,y1),--- , (Xp,yn)}
the vector f = (f(x1),---,f(x,) can be written as f = Sy, where S is a smoothing
matrix. Define v; = trace(S) and v, = trace(S"S) and let

n
s = Y (i

n— 2v1 +w 5

1. Show that

E

-

(yi—ﬂxi))Z] =o*(n—2vi+v2)+f1(I-5)T(I-9)f.

i=1

2. Comment on the properties of s as an estimator of 6.

Exercise 2.13. The goal of this exercise is to perform a computational comparison
of the bias and the variance associated with NW smoothing, and local polynomial
smoothing. To do this, compute empirical bias and empirical variance based on m =
1000 data sets - - - , Dy, each of size n = 199, simulated from the model ¥; = f(x;) +
g with

1
flx)=—x+ \ﬁsin(l—oﬂz/xz), x€0,3], (2.6.3)
where €1, €, - - , &, are IID N(0,.22).

1. Consider the (deterministic) fixed design with equidistant points in [0, 3].

a. For each data set &;, compute the NW and the local polynomial estimates at
every point in ;.

b. At each point x;, compute the empirical bias Biami)} and the empirical vari-
ance Var{f(x;)}, where

Bias{f(x)} =
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and

— 1 m

Var{f(x;)} = —— 3 (FY9 () — f(x))%

m—lj‘:1

c. Plot these quantities against x; for each estimator. (Plotting is straightforward
with the command matplot along with apply to get the means and the variances
if the values needed are stored in a matrix.)

d. Provide a thorough analysis of what the plots suggest.

Hint: Here is some R code that may help.

## Generate n=101 equidistant points in [-1,1]
m <- 1000

n <- 101

x <- seqg(-1,1, length=n)

# Initialize the matrix of fitted values
fvnw <- fvlp <- fvss <- matrix (0, nrow = n, ncol = m)

# Fit the data and store the fitted values
for (j in 1:m){

## Simulate y-values

y <- f(x) + rnorm(length(x))

## Get the estimates and store them

fvnw[,j] <- ksmooth(x, y, kernel = "normal",
bandwidth=0.2, x.points = x)Sy

fvlipl[,j] <- predict(loess(...), newdata = x)
fvss[,j] <- predict(smooth.spline(...), x=xX)Sy}

Exercise 2.14. Repeat Exercise 2.13, this time with a design that has nonequidistant
points. The following R commands can be used to generate the design points:

set.seed(79)
X <- sort(c(0.5, -1 + rbeta(50,2,2), rbeta(50,2,2)))

Use span = 0.3365281 for loess and spar = 0.7162681 for smooth.spline to get
the same degrees of freedom.

Exercise 2.15. Consider the Mexican hat function
f(x) = (1 —x%)exp(—0.5x?), x € [-2rm,2m].

This function is known to pose a variety of estimation challenges. Construct a simu-
lation study like the one described in Exercise 2.13 to explore the difficulties inherent
in the study of this function. Consider both the statistical challenges and the computa-
tional ones.
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Exercise 2.16. The definition of linearity for smoothers, (2.1.1), was that the vector §
of fitted values can be written as § = Sy, where S is the smoothing matrix depending
on the x;s and the smoothing technique. In this definition, it is usually assumed that the
outcomes (x1,y1),-- -, (xn,y,) were drawn independently from the model ¥ = f(x) +¢&
where € is mean zero with Var(g;) = 62.

1. Show that

n

Y Cov($i,yi) = trace(S)o>.

i=1
2. Recall that in linear regression Y = Xf3 + € and the vector § of fitted values comes
from the projection matrix H; i.e., § = X(X " X)~ !Xy = Hy.
a. Compute trace(H).

b. Show that the same identity holds for H in place of S; i.e., XF | Cov(i,yi) =

trace(H)o?.

c. What does this suggest about the degrees of freedom of linear smoothers?
Exercise 2.17 (Computationally efficient cross validation for linear smoothers).
Consider independent outcomes (x1,y;),- -, (X4, y,) drawn from the model ¥ = f(x) +
€ with Var(e) = o2. As in Exercise 2.16, or (2.1.1), if a smoother is linear, it can be
represented by a matrix S so that the vector ¥ of fitted values is § = Sy. The smoothing
matrix S often depends delicately on the smoothing parameter / (as well as on the x;s

and the smoothing procedure itself). Often 4 is estimated by CV. That is, & is chosen
to minimize the leave-one-out objective function

n

CV(h) =3, ({)’i ~ (xi)}z) : (2.6.4)

i=1

Here, frfi? is the estimator of f based on the deleted data; i.e., after leaving out one of
the x;’s.

1. Show that, for linear smoothers,
cvin =y (=St )
B i=1 1— S”(h) ’

where S;;(h) is the ith diagonal element of S.

2. Show that, for the traditional linear model,

no(yi— xTB 2
CV = L],
Z{ 1—hy

where £;; is the ith diagonal element of H.

3. In what senses can you argue that the expressions in items 1 and 2 improve on
(2.6.4) as an objective function?
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Exercise 2.18. Recall that linearity for a smoother is defined in (2.1.1) and that a
moving-average smoother is defined in Section 2.1. Suppose a data set of the form
(Xl ayl)a B (Xnvyn)) is available.

1. Verify that a moving-average smoother is linear by finding L4 so that (2.1.1) is
satisfied.

2. Write the kernel regression smoother in the same notation, identifying its matrix
LER,

3. Can L4 or LM4 fail to be symmetric?
4. Can LMA or LMA have eigenvalues strictly greater than 1?
Hint: To address items 3 and 4, it may help to generate a small data set and see what the

smoothing matrices look like. Note that this exercise can be done for other smoothers
as well, such as bin smoothing.

Exercise 2.19 (This exercise is aimed at showing that using CV or GCYV to choose
the bandwidth / overfits; i.e., the / is too small). Let f be the tooth function

9 2 2
X)=x+ exp |[—4°(2x—1)7|, x€0,1].
fx) s P[4 (2 1] [0,1]
Generate independent outcomes (x;,y;),i = 1,---,n from the model Y = f(x) + € € is

N(0,6?) for a reasonable choice of o, say ¢ = .2. Use the NW estimator to get an
estimate f”. The R command is ksmooth().

1. Plot the simulated data and the fitted curve from the NW estimator. Explain how to
perform the computations to find the overfit caused by CV and GCV.

2. For contrast, try the same procedure using the Akaike criterion in place of CV and
GCV;i.e.,
1 + trace(Sp)/n

1 — {trace(Sy) +2}/n’

AIC.(h) = nlog 62 (h) +n

where
n

67 () =n""Y (vi— f(x:))*.

i=1
Use the AIC on the same data to fit a new NW curve and compare your results to
those from item 1.



Chapter 3
Spline Smoothing

In the kernel methods of Chapter 2, the estimator of a function is defined first and
then a measure of precision is invoked to assess how close the estimator is to the true
function. In this chapter, this is reversed. The starting point is a precision criterion, and
the spline smoother is the result of minimizing it. Before presenting and developing
the machinery of smoothing splines, it is worthwhile to introduce interpolating splines.
This parallels the discussion of Early smoothers and the considerations leading to local
smoothers, thereby giving insight into the formulation of smoothing splines. Like the
kernel-based methods of the last chapter, splines suffer from the Curse of Dimension-
ality. Nevertheless, there is a parallel theory for multivariate splines. Eubank (1988),
Chapter 6.2.3 touches on it with some references. Such Laplacian smoothing splines
are neglected here, as are partial splines, which generalize splines to include an extra
nonparametric component.

3.1 Interpolating Splines

First, a spline is a piecewise polynomial function. More formally, let a = x; < xp <
-++ < xy = b be ordered design points, and partition the interval 2" = [a, b] into sub-
intervals [x;,xi11), i =1,2,--- ,n— 1. When each piece of a spline is a polynomial of
degree d, the corresponding spline is said to be a spline of order d. Thus, generically,
a spline of order d is of the form

s1(x),  x € [x1,x2);
$2(x),  x€[x2,x3);

Sn—1(x), X € [Xn—1,Xn],

where each s;(x) is a polynomial of degree d.

Splines have long been used by numerical analysts as a technique for constructing
interpolants of functions underlying data because they avoid Runge’s phenomenon

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 117
in Statistics, DOI 10.1007/978-0-387-98135-2_3, (©) Springer Science+Business Media, LLC 2009
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arising with high-degree polynomials. However, in general, the spline of degree d that
interpolates a data set is not uniquely defined. Consequently, additional degrees of
freedom must be specified to get uniqueness. Unlike splines, global polynomial inter-
polation often yields a unique interpolant.

Bin smoothers and running line smoothers can be regarded as special cases of low-
order splines. For instance, let (x1,y1),(x2,y2),- -, (x4, yn) be a set of observations.
The simplest spline is of zero order and corresponds to a piecewise constant function
defined by

s(x) = yi, Xi <x < Xiq1.
Zero-order splines are step functions, essentially bin smoothers, and not continuous.
Setting d = 1 gives linear interpolating splines, somewhat like running line smoothers.

A linear interpolating spline s; is given by

X — X

si(x) = yi+ (yie1 —yi) [ } , o X <x<Xig1-

Xit1 — X

This means data points are graphically connected by straight lines. Now,

[
si(xi) = yi+ Vit1 —yi) {H} =y

Xi+1 —Xi
and
Xi—Xi_
si—1(xi) = yie1 + (i = yi-1) [xz_le] = yi-
1 —
Hence,

si(xi) = sit1(xi), i=1,---,n—1.

So, first-order splines are continuous at each data point, unlike zero-order splines.
However, the first derivative of a linear spline is a zero-order spline and so not contin-
uous. The loss of continuity is one rung higher on the ladder of differentiability. (Tech-
nically, the low-order polynomials used in LOESS are also splines, although they do
not have any continuity requirements at the design points.)

Linear splines can be quite good. Figure 3.1 shows the result of linear spline interpo-
lation on the function f(x) = (sinx)/x for x € [—10,10]. For comparison, the corre-
sponding graph for noisy data is also plotted. It is the second graph that reveals spline
performance for statistical function estimation with noisy responses. The next level of
splines is quadratic. However, cubic splines have very appealing properties for statis-
tical function estimation. So, the focus is usually on them.

Let a =x; <xp < --- <x, = b be ordered design points. Given observations (x;,y;)
for i = 1,...,n, the cubic interpolating spline function corresponding to this design is
s € C?, a twice continuously differentiable function with each polynomial of degree
three, s;(x), defined on the subinterval [x;,x;11), i = 1,--- ,n — 1. In other words, the
function s(x) is a cubic interpolating spline on the interval 2" = [a,b] if
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(a) Deterministic Linear Spline Interpola- (b) Linear Spline Interpolation On Noisy
tion data

Fig. 3.1 The plot on the left shows the linear spline interpolant for a nonnoisy (deterministic) response
case. The plot on the right shows the linear spline interpolant applied to data with noisy response
variables. The curve on the right is more “wiggly” or “rough”, due to noise.

e s matches the data (i.e., s(x;) = y;, i=1,---,n);
e sis continuous (i.e., si—1 (x;) = si(x;), i =2, ,n—1);

e sis twice continuously differentiable, in particular

O s}, (x) = si(x;), i =2,--- ,n— 1 (first derivative continuity);

O s, (x) =s/(xi),i=2,--- ,n—1 (second derivative continuity);

e each piece s;(x) of s is a cubic polynomial in each subinterval [x;,x;1):
5i(x) = Bai(x = x;)* + Bai(x = x)” + Bri(x—xi) + Boi  x € [xi, xip].

The dimension of spaces of splines can be evaluated. Observe that each cubic poly-
nomial piece s;(x) of s(x) requires four conditions for its construction apart from the
specification of the design points x;, i = 1,...,n. As a result, a total of 4(n — 1) condi-
tions are needed to determine the n — 1 cubic polynomial pieces of s(x). The interpo-
lation requirement provides n of these; the continuity constraints for the Oth, 1st, and
2nd derivatives at the x;s for i =2, ...,n — 1 each provide n — 2 more. These four kinds
of requirements for a cubic spline interpolant provide a total of

n+n—2+4n—-24n-2=4n—-6=4n—-1)-2
constraints. On the other hand, it is easy to see that there are 4(n — 1) real numbers that
must be specified, apart from the design points x;, for the n — 1 pieces: Each of n — 1
cubics has four coefficients. So, to specify a spline function uniquely, two more condi-

tions are required. Since the behavior of the spline function at its endpoints is, so far,
relatively free, pinning down the behavior of s” at x; and x,, finishes the specification.
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It turns out that conditions on the second derivative at the endpoints work well, so
s"(x1) =5"(x,) =0

can be imposed, and the resulting functions are called natural cubic splines.

The obvious question is how much the cubic spline interpolant improves on the linear
spline interpolant. The improvement can be exemplified by using the same function,
f(x) = (sinx) /x for x € [—10,10], as before. In Fig. 3.2, it is obvious that, in the ab-
sence of noise in the response, the cubic interpolant recovers the underlying function
nearly perfectly. However, the subfigure on the right shows that noise complicates
things. Despite the smoothness of the cubic spline interpolant pieces themselves, the
overall spline is still very rough or wiggly. This is due to the noise, and the spline fails
to capture the more slowly varying trend characteristic of the true function. From a sta-
tistical perspective, the smoothness of the estimate alone is therefore not satisfactory.
The roughness from the rapid fluctuations due to the error must be reduced to recover
the underlying function from noisy data.

T T T T T T T T T T
-10 -5 0 5 10 -10 -5 o 5 10

(a) Deterministic Cubic Spline Interpolation (b) Cubic Spline Interpolation On Noisy data

Fig. 3.2 In both the plots, the dashed curve is the (sinx)/x function and the solid curve represents the
cubic interpolating spline. The plot on the left shows the cubic spline for the nonnoisy (deterministic)
case; the plot on the right shows it when the response is noisy.

A natural way to measure roughness, incorporate it into the smoothing procedure,
and thereby get smoothing that is more representative of the underlying function is
to penalize it. This can be done readily using norms on derivatives. Let f € C? be a
twice continuously differentiable function defined on 2" = [a,b] C R. A measure of
roughness is given by the total curvature penalty of a function f,

1= [ " as
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For estimation purposes, J(f) is a good measure of the oscillation of the function for
which interpolation is being carried out. After all, the second derivative forces con-
stant and linear dependence of f on x to zero, but higher-order fluctuations remain. Of
course, a natural question is why we use this roughness penalty rather than something
else. Wouldn’t the square of any sum of derivatives be a suitable penalty? In fact, many
other penalty terms can be used to derive estimates with moderate fluctuations. Green
and Silverman (1994) discuss the choice of roughness penalty in more detail.

The way a roughness measure such as J gets used in regularized optimizations such as
splines is through penalized least squares. Observe that when there is no restriction on
the form of f, the traditional least squares criterion automatically interpolates (passes
through all the points). Due to response noise and other sources of variation, this leads
to unacceptably high variability. Restricting the class of functions — not by imposing a
form as in the parametric context, but by specifying properties such as smoothness that
these functions should have — is a natural way to resolve the problem since it typically
permits optimization over a nonparametric set of alternatives.

For smoothing splines, the function space is determined by penalizing the sum of
squared errors by the total curvature (roughness) for f € 2. That is, the cubic spline
smoother is (implicitly) defined as

f=arg min E;(f) 3.1.1)
fejfz(%')
where
1< 2 b 1/ 2
() =5 X (=S )P+ [ () de (3.12)

i=1
and J#?[a,b] is the Sobolev space defined by
H = A7 a,b] = {f:la,b] > R: fand f' are absolutely continuous

and /ub [ (1))Pdr < oo}.

In this formulation, given a A, one minimizes (3.1.2). It will be seen that the result
is a cubic spline with coefficients that best fit the data; this is a generalization of the
linear regression. It’s as if the terms in a regression function are basis elements of a
spline space and their coefficients correspond to the basis expansion of the unknown
f- The benefit of splines is that they track local behavior well, like LOESS, but have
continuity properties while avoiding the poor behavior of global polynomials.

The class of regularized risk problems exemplified by (3.1.2) generalizes to other
measures of risk (i.e., not just squared error) and to other penalty functions (i.e., not
just regularizers expressible in terms of an inner product). Many instances of these
— LASSO, Bridge, CART, GLMs, SVMs and so on — will be encountered in later
chapters. In all these cases the optimization is merely an extra constraint to enable
estimation of the coefficients in the regression function.
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The smoothing parameter A helps achieve the balance between two antithetic goals: (a)
goodness of fit of f to the observations (X1,Y;),---,(X,,Y,) and (b) smoothness of
in the sense that smoothness captures the trends in the data that vary more slowly than
the error terms. Intuitively, A controls the trade-off between bias expressed through
the empirical risk Eemp(f) = 2 3| (¥; — £(X;))? and variance expressed by J(f), the
roughness of the function. Figure 3.3 shows how A controls this trade-off.

(a) Less Smoothing (b) Optimal smoothing (¢) Too much smoothing

Fig. 3.3 Panel (a) shows that with less smoothing (small A1) the fitted curve is rougher, while more
smoothing in panel (b) makes the fitted curve track the shape of the true function well, and too much
smoothing (large 4) in panel (c) makes the fitted curve too close to a straight line. CV was used to
find the optimal value A = 0.545 used in panel (b); A = 0.1 for panel (a) and A = 0.9 for panel (c).

Another interpretation of (3.1.2) is as a regularized empirical risk, so that A summa-
rizes the trade-off between residual error and local variation. For small values of A,
the criterion E, (f) is dominated by the residual sum of squares Eemp(f) and the cor-
responding curve in Fig. 3.3(a) tends to interpolate the data. For large values of A, the
criterion E, (f) is dominated by J(f) and the corresponding curve in Fig. 3.3(c) dis-
plays very little curvature (roughness) since J(f) is forced to be small. In the limiting
case of A close to infinity, the curve in Fig. 3.3(c) would simply be a straight line be-
cause J(f) would be forced to zero. It is reasonable therefore to expect an intermediate
value of A to be most desirable as in Fig. 3.3(b).

Note that A in (3.1.2) for splines plays the same role as & for kernel methods. Indeed,
in both cases there is a concept of risk — MISE for kernel methods, (3.1.2) for splines —
in which a parameter controls the tradeoff between bias and variability. The qualitative
behavior of these risk functionals is similar and is seen in Fig. 3.4.

It turns out that minimizing Ej (f) in (3.1.2) is a particular instance of a much larger
class of problems. Some of these occur naturally in the context of Reproducing Ker-
nel Hilbert spaces (RKHSs), Hilbert spaces equipped with a 2-argument function that
reproduces elements of the space in terms of the inner product. Indeed, it will be seen
that RKHSs are the natural setting for spline methods in general. The optimality of
cubic spline smoothers transfers readily to the RKHS framework, in which the gener-
alization of (3.1.2) is to minimize
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-— Optimal Smoothing ~ ————

Less smoothing More smoothing

Fig. 3.4 Qualitative behavior of the dependence of bias versus variance on a trade-off parameter such
as A or h. For small values, the variability is too high; for large values the bias gets large.

E(f)=

n

b
(V=R +4 [ (L) ePa, (3.13)

S| =

i=1

where the F;s are continuous linear functionals and L is a linear differential operator of
order d > 1, say

d—1
(L)) = F D)+ 3 wile) fO (), (3.1.4)
Jj=0

in which the weight functions w(-) are real-valued and continuous. With this general-
ization, the minimization in (3.1.3) is over f in the Sobolev space,

H =) = {f: X —R:fY,j=0,1,---,d—1 are absolutely continuous,

and. /y 1D (1))2dr < oo} .

Expression (3.1.2) corresponds to F;(f) = f(x;) and Lf = f” in (3.1.3). In various
applications, different choices of F; and L are required to capture the functional depen-
dencies underlying the data. This will be taken up briefly later. Indeed, it will be argued
that without prior information to help restrict the search space, the whole smoothing
problem becomes ill-posed in Hadamard’s sense. For now, however, the focus is on the
traditional way smoothing splines are computed in practice.

3.2 Natural Cubic Splines

Let s be a natural cubic spline with knots at x; < --- < x,,. The representation of s
from Green and Silverman (1994) in terms of second derivatives provides insights into
how to compute a natural cubic spline (NCS) in practice. To see this, first write the
vector of function values of s at its knots as § = (sy, 52, - - ,s,,)T, where s; = s(x;). The
dual use of s as a spline and as a vector will not be confusing because the context will
make clear which is meant. Next, let y = (71, ..., %) be the vector of second derivatives
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of s at its knots. That is, y; = 5" (x;) for i = 1,--- ,n. For NCSs, s”(x1) = 5" (x,) = 0,
so 71 = ¥, = 0. Taken together, the vectors s and ¥ specify s completely, however,
the values of s; and 9; must be restricted to ensure there is an NCS s corresponding
to them. Of course, in many applications, setting the second derivatives to zero at
the endpoints is not “natural” at all and so is not used. However, when all of these
derivative constraints can be used, the extra structure is striking.

For instance, these restrictions can be expressed in terms of two “band” matrices. First,
let = x;11 —x; fori=1,--- ,n— 1 be the distance between successive design points.
Denote the first band matrix by A = (g; j), where i = 1,...nand j =2,...,n— 1, so that
Ais nx (n—2). The entries in A are defined to be
_ o1 L s—1 —1 sl
aj-1j=90;"y, ajj=-6_,-06", and aj;=0;",

for j=2,---,n—1, and otherwise a;; = 0 for |i — j| > 2. Clearly, A is a band matrix
in the sense that there is a band of nonzero values along the main diagonal. That is, A
looks like

[a;, O v - 0
ayy ary 0 oo e 0
av azy ay 0 - 0
A = . . . . . .
0o - - 0 an—2n-3 Apn—2n—-2 An—2 n—1
0 oo oo enn 0 Gutn2 Gptn1
[0 - 0 lpp1

To forestall frustration, it is important to note that A is not indexed in the usual way: A
starts with aj» in the upper left corner.

The second band matrix, B, is (n —2) x (n—2), symmetric, and has entries b; ; for
i,j=2,---,n— 1 defined by

1
bii:§(6i71+5i) i=2,---,n—1,

1 .
bijiv1=biy1,;= 651' i=2,---,n—-2,

and b;; = 0 for |i — j| > 2. Note that the elements are defined by differences in various
x;s. Like A, B is not indexed in the usual way: B starts with by;. It turns out that B is
strictly positive definite, so B~! exists. Now, define

K=AB 'AT.

The main result, due to Green and Silverman (1994), that gives the “compatibility”
conditions a spline must satisfy is the following.

Theorem (Green and Silverman, 1994): The vectors s and ¥ specify a natural cubic
spline s if and only if

ATs =By (3.2.1)
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is satisfied. If (3.2.1) is satisfied, then the roughness penalty J(s) will satisfy
b
/ [s" (x)]*dx = y"By = s"Ks.

This theorem dramatizes the fact that splines, natural cubic or otherwise, are not the
same as all local polynomials on the partition of an interval [a,b]. Indeed, the collection
of all local polynomials of degree d or less will have dimension (d + 1)(n — 1) for
n— 1 intervals defined by n partition points. The dimension of splines is much lower
because forcing continuity up to, say, second-order derivatives severely restricts the
class of functions. It is important to note that splines of degree d have a leading term
in x of degree d with a nonzero coefficient. The preceding theorem represents all those
constraints on the collection of local polynomials. It can be seen that the constraints
represented by (3.2.1) lead to the uniqueness of the NCS interpolant, as stated in the
next theorem.

Theorem (Uniqueness of NCSs): Suppose n > 2 and x; < --- < x,,. Given any set of
responses yi,- -, Yy, there is a unique natural cubic spline interpolant s with knots at
the x;s satisfying

s(x;) =i, i=1,---,n0

Given these results, the NCSs exist and are uniquely characterized. The most important
result is that they are optimal in a roughness sense.

Proposition: Among all interpolating, twice differentiable functions, NCSs minimize
the total curvature of the function. In other words, if s(x) is an NCS and z(x) denotes
any other function in €2, then

b b
/ (s"(1)%dr < / Z'(1)2dt, where s"(a)=s"(b)=0.
a a

Proof: The proof amounts to a verification that for any other twice continuously dif-
ferentiable interpolating function z(z),

/ " "0 — / " (& (0)dr <.

a a

Consider the following expansion:

b b b b
[ w=2apa= [ @pas [ @ora-2 [ 0@
a Ja a a
b b b
- / ('(0))dr — / (s (1)) %dt —2 / () (1) — 5" (1)) dt.
a a a

Since the left-hand side is nonnegative, it is enough to show that the last term on the
right-hand side is zero.

Consider h(t) = z(r) — s(¢). Using integration by parts and the fact that 5" (¢) is piece-
wise constant (i.e., s/ () = ;) for #; <t < t;;| one can examine
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b
— (W (1) —Ly%mmmt

a

ZM@M@—M@M@—Z/MMWWmm
= s"(b)H' (b) - Z Oilh(tiv1) — h(1i)].

The endpoint conditions are s” (a) = s’ (b) = 0, and continuity of s(z) and z(¢) implies
h(ti+1) = h(z;) for all i. Thus, all the terms in Q are 0. O

3.3 Smoothing Splines for Regression

Up to this point, the focus has been on interpolation. However, it is clear that interpo-
lation is not satisfactory from a statistical perspective because noise in the data causes
rapid local fluctuations in the interpolant. So, turning to smoothing splines for regres-
sion, it is time to prove that the optimal solution to the penalized least squares objective
function in (3.1.1) is a cubic smoothing spline. This can be shown using vectors ¥ and
s and matrices A, B, and K.

Recall that the objective function is

1 n
==Y (Y- f(x1)) +x/ () 2,
n i=1
where the (fixed) knots x| < --- < x;, have random responses Y, - - - ,Y,. The penalized

least squares error E) (f) can be rewritten as

Ex(f)=(X—£)T(Y-D)+AfKf
= fTU+AK)f—2YTf4+YTY. (3.3.1)

Because I + AK is strictly positive definite, (3.3.1) has a unique minimum over f cor-
responding to

f=U+AK)"'Y. (3.3.2)
It is easy to show that this is indeed a minimum simply by noticing that

I’E;(f) _

2(I+AK),
ofTof ( )
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which is positive definite. More formally, the optimality of the NCS smoother can now
be stated.

Theorem (Optimality of NCSs for smoothing): Suppose n > 3, and consider the
knots x; < --- < x, € [a,b] with corresponding random response values Y;,- - - ,Y,. Let
A be a strictly positive smoothing parameter, and let f be the natural cubic spline with
knots at the points x| < --- < x;, for which

f=U+2K)7"Y.
Then, f is the minimizer of Ej (f) over the class €2[a, b],

Vf e € ab], E;(f) <Ei(f),

with equality only if £ and f are identical.
Proof: Omitted. J

Despite this theorem, the expressions that allowed derivation of the existence, unique-
ness, and optimality of NCS-based smoothers are not easy to deal with computation-
ally. Since a cubic spline is just a piecewise function whose pieces are polynomials of
degree three, one way to find a cubic smoothing spline for regression would start by
expressing s(x) as

n—1
s(x) = Bo+ Prx+ B’ + Bax’ + Y Oi(x —x)3,
=

=

where

- u, ifu>0;
710, otherwise.

Justification for this representation will become clear from the connection between
smoothing splines and RKHSs. Also, by plugging this expression for s(x) into the ex-
pression for the penalized least squares, it becomes clear that the notation and the com-
putation usually become unwieldy. Indeed, the matrices derived from this representa-
tion are often ill-conditioned, causing the construction of the smoother to be unstable.
As a consequence, using regression splines to construct cubic spline smoothers is usu-
ally avoided in practice. An alternative representation is provided by basis B-splines;
their appeal is their simplicity of interpretation and the fact that the ensuing matrices
are banded, typically leading to more computationally stable estimation procedures.

3.3.0.1 Cubic Spline Smoothers Through Basis B-Splines

Unlike the two representations mentioned earlier, basis B-splines turn out to provide a
great advantage of both simplicity and computational stability. The ith B-spline basis
function of degree j is usually defined by the Cox-de Boor recursion formula
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1, x <x<xig1;
Bio(x) =1 =" >
i0(x) { 0, otherwise,

B; j(x) = <H> Bij-1(x)+ (xiﬂ - > Bit1,j—1(x). (3.3.3)

Xig-j—1 —Xi Xitj —Xi

As written, this recursion is for natural splines; i.e., s” (xg) = s”(x,,) = 0 for the cubic
case. However, it extends to include free values at the boundary; see Zhou et al. (1998).

Clearly, for given j, B; j(x) is computed from two B-spline basis functions of degree
Jj— 1, each of which is computed from two B-spline basis functions of degree j—2, and
so on. Therefore, B; j(x) is constructed recursively starting from degree 0 and giving
step functions on the subintervals of [a,b]. For j = 1, it can be verified that the splines
are “triangles” on adjacent subintervals and zero elsewhere. The index i ranges from 1
to n— 1 and the index j ranges from O to d, but from the second term in (3.3.3) it is
seen that i 4 j < n. Thus, for fixed j, there are n — j linearly independent elements that
span the space of splines of degree j. The elements B, ; define the dth order (natural)
B-spline basis because all the splines at iteration j are polynomials of degree j. To
find the dth order B-spline basis, one ends up finding dn functions along the way in
the recursion but it is only the last iteration for d that forms the basis elements. When
the knots are equidistant, B-splines are uniform; otherwise they are nonuniform. With
uniform (natural) B-splines, the whole machinery is considerably simplified.

For convenience, the doubly indexed B-spline basis elements B; ; can be reindexed to
Bi(x), in which the d is understood, for i = 1,...,n —d. Since the B-splines of a given
order d form a basis for the collection of splines of that order, smoothing is achieved by
expressing the cubic spline as a linear combination of basis elements. There are n —d
basis elements; however, this was determined by counting knots with multiplicity one
(i.e., assuming they are distinct). More commonly, the left- and right-hand knots are
counted with multiplicity d, adding 2d more spline functions. Note that B;; is nonzero
on (x;,xiy41), so the effect is to include in the basis all the higher-order polynomial
splines as long as there is a region on which they are strictly positive. Doing this gives
the B-spline basis expansion

n+d

f(x) =" BiBi(x) (3.3.4)
i=1

for some collection 8 = (i, ..., By+q) of coefficients. This can be compactly expressed
by defining the matrix U with elements u; = B;(x;), and the vector f with elements

f= ) fx),, f(xa)T, so that
f=UB. (3.3.5)

Now, the original problem of minimizing (3.3.1) or (3.1.2) can be reformulated as

B =arg arg;nin (y—UB) (y—UB) +AB"VB, (3.3.6)
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where the elements v;; of the matrix V are
b /! /!
Vij :/ B (x)Bj (x)dx
a

From simple matrix algebra, it is easy to see that the minimization in (3.3.6) can be
solved from

in which a = xp and b = x,,.

aﬁ (y—UB)"(y—UB)+ABTVB} = —2U" (y—UB) +2AVp =0,

which leads to

B=UTu+av) UTy. (3.3.7)

Incidentally, using (3.3.7) in (3.3.5) shows that } from cubic splines is linear in the
sense of (2.1.1). That is, for fixed A, there is a weight matrix W? such that

F=why, (3.3.8)

which can be rewritten as
)= 3w )y, 33.9
Jxi) = 2 W; (%)Y, (3.3.9)

where (W (x;), Wi (x;), -+, W} (x;))T is the ith row of a matrix W* and

wWh=UuUuTu+av)~luT.

3.3.1 Model Selection for Spline Smoothing

As with the bandwidth /4 in kernel methods, the smoothing parameter A plays a cen-
tral role and there is a small industry devoted to developing techniques to estimate it.
Here, for completeness, one simple method is described as a parallel to the method for
obtaining /1 in the last section.

Again, the method is CV. Given A, the expression is

2 Y f)L l )27

i=1

_!

:.

where fx ( ;) is the spline smoothing estimator for the given A without using ob-
servation i. Unfortunately, CV is computationally very intensive and hence sometimes
impractical, even for moderate sample sizes. The GCV criterion mentioned in Chapter
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1 is more computationally feasible. By using the linear form of the spline smoother
from (3.3.8), one can verify that the GCV criterion finds the value of A that minimizes

2
MASE(A),

n

GCV(A) = [trace (I — W(M)

where the mean average square error is

1
7ZY f)L )

i=1

MASE(A

3

intended to approximate MASE = E(ASE(h)|x;,x2,...,x,). The ASE(h) is an average,
but still has stochasticity in it; the MASE is the mean value of ASE. See Eubank (1988)
and Wahba (1990) for more sophisticated techniques for choosing A and the order of
the spline basis.

3.3.2 Spline Smoothing Meets Kernel Smoothing

A local approach to bandwidth selection only mentioned in the Ethanol example at
the end of the last chapter was writing & = h(x) and then estimating the bandwidth
function itself nonparametrically. This would be akin to saying that no fixed bandwidth
was a good choice because the degree of smoothing was a local property. In some
regions, bias might be a bigger problem, while in others variance might be dominant,
corresponding to too much or too little smoothing relative to a single fixed bandwidth.
Essentially, this enlarges the minimization from a search over constants /4 to functions
h(x), giving a stronger minimum and improving the function estimation. For an in
depth review on kernel smoothing with variable kernels, see Hardle (1990), Fan and
Gijbels (1996), and Green and Silverman (1994), among others.

A surprising insight, due to Silverman (1984) (see also Eubank (1988), Chapter 6 for
discussion) is that, in the enlarged minimization permitting & = h(x), spline smooth-
ing and kernel smoothing are much the same. That is, the linear transformation of
Y1,...,Y, done by spline smoothing in (3.3.8) corresponds to appropriately weighting
the individual kernel’s contributions in the NW estimator (i.e., choosing the linear
transformation in (2.3.19) the right way).

To state an informal version of Silverman (1984)’s result, let p(x) be the density gen-
erating the design points Xi, ..., X, and choose the kernel

Ks(u) = 5 —lu/fmn(\'[' 4). (3.3.10)

Consider {X;,X2, -+, X, } C [a,b] and a point x; away from the boundary.

Theorem (Silverman, 1984): Suppose A — 0 for n — o, and choose
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o) = (np}EX))W'

Then, with WJ-M) (x;) defined as in equation (3.3.8),

) 1 1 (x,'—Xj>
W. ) & K. 3.3.11
;) p(X;) h(X;) "\ h(X;) ( )

when n — . [

Silverman’s theorem states that, asymptotically, spline smoothers yield NW estimates
with a variable bandwidth £ (x) that depends on both the global smoothing parameter
A and the local density p(x) around x. The rate of 1/4 used in 4 for A /(np(x)) is nec-
essary for the equivalence in (3.3.11); the issue may be that A should not go to zero
too fast or else there will be too little smoothing. The kernel in (3.3.10) arises from a
Fourier transform of a damping function; see Eubank (1988), Chapter 6.3.1. The kernel
does not have compact support and has a different shape from the optimal Epanech-
nikov kernel. The limitation that x; be away from the boundary can be overcome but is
more technical than needed here.

Since Silverman (1984), other authors have started from spline smoothing, reformu-
lating it as kernel smoothing with variable bandwidth. For instance, Huang (2001),
building on work of Terrell (1990), shows how kernel smoothing can be obtained un-
der the roughness-penalty framework. Indeed, the de facto equivalence of splines and
kernels for large classes of functions invites speculation that there could be a more
general (and richer) theory for statistical curve estimation.

3.4 Asymptotic Bias, Variance, and MISE for Spline Smoothers

In principle, (3.3.8) could be used to adapt the asymptotics for kernel methods to the
present case of splines. However, explicit, direct rates of convergence for the bias-
variance tradeoff and MISE achieved by splines are available from Zhou et al. (1998).
This subsection is largely based on their work; formally only the deterministic design
case will be stated, but the random design case leads to the same asymptotic forms.

Recall the natural B-spline basis described in (3.3.3) for a fixed degree d, indexed to
consist of n + d elements B;(-), corresponding to n subintervals and degree d splines,
in (3.3.4) leading to the matrix U in (3.3.5). Following Zhou et al. (1998), there is no
need to restrict to natural splines, so the free values at the endpoints mean the spline
basis will have more elements. Set 0 = xo < ... < x, = 1 for [a,b] = [0, 1], so the natural
spline basis of order d has d + n elements because the multiplicity used in (3.3.3) at
zero and one is d.

Next, set § = x; —x;_1 and let F",,() be the empirical distribution, assumed to get close
to a distribution F in Kolmogorov-Smirnov distance, where F has strictly positive
density f. Now, for a fixed design, the asymptotic bias and variance can be stated.
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Theorem (Zhou et al., 1998): Suppose that

. <M
min 6;
1<i<n

1
max |6 — 6i_1| =0 <n> and

1<i<n

n

for some M > 0, where 6 = max §;. Also assume the design points {x;}}_, are deter-

1<i<n
ministic but

sup 16,0~ F)] =0 7).

x€[0,1]

Let f(x) be the spline regression estimator for f € €'[0, 1] based on the fixed design
x; fori=1,...,n. Then, for any x € (x;_1,xi],

E[f(x)] = f(x) = b(x) +0(8)

and , 1
Varl )] = 20T WG (00 +o (5 ).
where
(@) x)6¢ X —X;
b(x) = _f C(Z')Sz Cy ( 5 ) and G(f) _ /01 U(x)UT(x)f(X)de

In the above, C,(+) is the dth Bernoulli polynomial defined recursively by
X
Co(x)=1 and G(x) :/o iCi—1(z)dz+bi,

where b; =i fol Jo Ci—1(z)dzdx is the ith Bernoulli number. [J

As noted by Zhou et al. (1998), the assumptions of the theorem and the expressions
for both the asymptotic bias and the asymptotic variance reveal that n controls the
trade-off between the bias and the variance associated with f(x). But observe that the
theorem assumes the knots are chosen to be the design points. In fact, one can choose
the knots to be #; for i = 1,...,k and let the x;s be design points i = 1,...,n, and then
ensure convergence in the argument x. In this more general version, Zhou et al. (1998)
show that when k = Cn!/(24+1) for some constant C > 0, the bias and variance have

asymptotic rates
max |b(x)| = O(n~4/24+1)

x€[0,1]
and
max Var[f(x)] = O(n~24/d+1)),
x€[0,1]
As aresult,

F(x) = f(x) = Op(n~¥4+D)  uniformly for x € [0, 1].

The consequence of this (see Zhou et al. (1998)) is that, for any probability p,



3.4 Asymptotic Bias, Variance, and MISE for Spline Smoothers 133
1

IMSE(f) = sup E[f(x) —f(x)]zdu(x) — 0(n72d/(2d+1)>7
fec(d,s)/0

where C(d,8) = {f € €[0,1] : | f(9)| < &} for some & > 0. This agrees with the best
rates one can get from kernels and in fact is optimal. Nonparametric optimality will be
discussed in Chapter 4.

Turning at last to asymptotic normality, also for the fixed-design case, Zhou et al.
(1998) establish the following.

Theorem (Zhou et al., 1998): Suppose that the assumptions of the theorem hold.
Assume in addition that the error terms {g;}7 , are independently and identically
distributed with mean 0 and common variance 6> and that the number of knots is
k > Cn'/(24+1) for some constant C > 0. Then, for any fixed x € [0, 1],

~

f@ - (FR+b) 4, vy o
Var[f (x)]

Since b(x) tends to zero uniformly in x at the same rate as 4/ Var[£(x)], it is possible
that the scaled bias does not go to zero asymptotically. However, Zhou et al. (1998),
Theorem 4.2, shows that the scaled bias only distorts the confidence region by modi-
fying the critical value.

Zhou et al. (1998) also provide results analogous to the above for the case where
the design is stochastic. Basically, for the random design, E[f(x)] is replaced by
E[f(x)|x1, - ,x,], while Var[f(x)] is replaced by Var[f(x)|x1,--- ,x,]. The key is that
the asymptotic quantities now depend on the distribution F(x) and the distribution of
the knots, unlike the deterministic design case.

3.4.1 Ethanol Data Example — Continued

To illustrate the performance of smoothing splines, consider again the ethanol data
set from Section 2.4.2 and model E as a function of NOX. In fitting a spline model,
the main choices that must be made are (a) the degree of the local polynomial, (b)
the choice of the knots, and (c) the value of the smoothing parameter A. These are
primarily interesting in how they affect the bias—variance trade-off in estimation and
prediction.

As a pragmatic point, the degree is usually chosen to be 2 or 3, sometimes 4. Choosing
0 or 1 is often too rough, while choosing degrees higher than 4 defeats the purpose
of local fits, which is in part to use few degrees of freedom. If higher degrees seem
necessary, possibly there are not enough x;s. The plots in this subsection use cubic
splines; in Section 2.6, local polynomials of degree 2 and 3 were used. (Recall that the
NW estimator can be regarded as zeroth order, and a running line smoother would be
first order.)
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Next, in statistics, the knots are often chosen to be the values of x;. The Zhou et al.
(1998) theorem permits a general selection of knots, both random and fixed. This in-
cludes equispaced knots, which are regarded as optimal in numerical analysis, where
the knots are essentially never regarded as randomly sampled. Note that knots repre-
sent points of local change of the function. In view of this, it is unclear how effective
conventional statistical practice is even though it is motivated by insisting on having
variances that are only available at the sampled xs. Common statistical practice is fol-
lowed here for the ethanol data, but see Sun and Loader (1994).

The selection of the smoothing parameter A parallels bandwidth selection in kernel
regression. In the spline context, A can be regarded as a sort of reverse degrees of
freedom. Indeed, recall that if the smoothing parameter A is zero, the optimal function
interpolates the data. This can be regarded as modeling the data with an infinite degree
polynomial. At the other extreme, when A equals infinity, the data are modeled as a
straight line that has 2 degrees of freedom. These two extreme cases are shown in
Fig. 3.5. As expected, when A is too large, the bias is obviously large, and when A is
too small, the variability gets large and the fit looks ever more like an interpolation.
Heuristically, values of A between 0 and infinity correspond to intermediate values of
degrees of freedom. One formalization of the relationship between A and a concept of
degrees of freedom is given in Exercise 2.16.

data(ethanol) & smoothing splines data(ethanol) & smoothing splines

° °

Fig. 3.5 Cubic spline fits for the ethanol data for very small and very large degrees of freedom. Note
that, as A gets larger, it corresponds to fewer degrees of freedom, in which case the optimal curve is
in the nullspace of the penalty term regarded as a functional.

In practice, it is often reasonable to use GCV to find an optimal value for A. For the
ethanol data set, the GCV curve for A (regarded as a degrees of freedom) and the fit for
the optimal A are given in Fig. 3.6. The graph does not show a unique minimum; this
sometimes occurs. In general, it is not clear when to expect a unique minimum or when
either the bias side or the variance side will not rise as expected. In these indeterminate
cases, usually one chooses the value on the horizontal axis that looks like it would be
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the lowest if the other side were to rise. Sometimes this is called the knee or elbow of
the curve. Here, 8 is a reasonable choice.

data(ethanol) & smoothing splines

GCV
I0x
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degrees of freedom E

Fig. 3.6 GCV plot for cubic spline smoothing for the ethanol data. The value of A corresponding to
8 degrees of freedom was chosen.

From (3.3.8), it is seen that spline smoothers are linear. As with kernels, the variance of
f can be derived; expression (2.3.20) continues to hold but for W* as in (3.3.9). Since
o7 can again be estimated by the residual sum of squares, Var( f ) can be estimated at
the points x;. Recall that the variance is unspecified for values x outside the sampled x;s,
and the curves in Fig. 3.7 consequently only appear continuous because the endpoints
of confidence intervals at the x;s have been joined by straight lines. Since the bias at
the sampled x;s can be taken as zero asymptotically, the work of Zhou et al. (1998)
implies that normal-based confidence intervals at the x;s centered at f (x;) using the
estimate \/kTr( f ) just described can be used with a normal cutoff of, say, 1.96. As seen
in kernel regression for these data, the signal-to-noise ratio is pretty high, so inference
is pretty good.

The package gss by Chong Gu is a general framework for implementing smoothing
splines. The package allows the choice not only of different degrees for the local poly-
nomial but also different bases. The procedure ssanova is called from the package gss;
here it is used to construct a cubic spline fit to the ethanol data. The procedure predict
can then be used to obtain predictions for the training data along with the standard
error estimates. Finally, although Gu calls confidence bands generated from the stan-
dard error estimates Bayesian, they are constructed using normal cutoffs that can be
equally well regarded as frequentist. In the call to ssanova, the arguments permitted
for method allow a choice of the technique for estimating the smoothing parameter.
(One can use “v” for GCV, “u” for Mallows; Cp, or “m” for REML.) The results for
the ethanol data are given in Fig. 3.7.

The actual R code was:



136 3 Spline Smoothing

Fig. 3.7 Fit of the ethanol data with confidence bands, using the gss package.

cubic.fit <- ssanova(y™x, type = "cubic", method="m")
new <- data.frame(x=seqg(min(x),max(x),len=length(x)))
## Obtain estimates and standard errors on a grid

est <- predict(cubic.fit,new, se=TRUE)

## Plot the fit and the Bayesian confidence intervals
plot(x,y,col=1, xlab="E", ylab="NOx");

lines (newSx,est$fit, col=2)

lines (newsSx,est$Sfit+1.96*est$se,col=3)

lines (newSx,est$fit-1.96+estSse,col=3)

Estimates of the MSE and the corresponding raw MSE curves can also be obtained for
the fitted spline model as was done in Section 2.4.2 for the NW estimator, but this is
left as an exercise.

3.5 Splines Redux: Hilbert Space Formulation

The main goal in reformulating smoothing splines in RKHSs is to have a framework
that allows for a more elegant and general way to solve the type of optimization prob-
lem that implicitly defines a smoothing spline. In addition, Wahba (2005) gives rea-
sons why the RKHS framework is appealing in general. The underlying motivations
for spline smoothing include:

e The RKHS framework provides methods for model tuning that readily allow the
optimization of the bias—variance trade-off.

e Models based on RKHSs are the foundation of penalized likelihood estimation,
and regularization methods more generally. They can handle a wide variety of
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distributions — Gaussian, general exponential families — and summarize a variety
of inference criteria for estimation, prediction, and robustness.

e In the RKHS framework, constraints such as positivity, convexity, linear inequality
constraints, and so forth can be easily incorporated into the models.

e Estimates obtained via the RKHS framework have a dual interpretation as Bayes
estimates (up to a point).

It is important to remember that the objective functions dealt with throughout this
section are functionals (that is, operators acting on functions), as opposed to objective
functions with arguments that are real variables as in the parametric paradigm. To
emphasize this, rewrite the penalized least squares equation (3.1.2) as

E, (f) =L(f)+AJ(f). (3.5.1)

In typical settings, L( f) will involve function evaluations; the continuity of evaluation
functionals is central to RKHSs.

Splines were initially defined as local polynomials with constraints to ensure contin-
uous derivatives, apart from (3.1.1) and its generalization (3.1.3), (3.1.4). This second
approach meant that splines also solve a minimization problem in which the knots are
the x;s in a regression problem. This last property permits generalization of splines and
reveals the sense in which they are a shrinkage method. Indeed, Fig. 3.5 shows that, as
A increases, the curve shifts closer to a straight line. In general this is called shrinkage
because the solution “shrinks” closer to the functions in the kernel (or nullspace) of the
penalty term. For the cubic spline case, the kernel of the penalty term in (3.1.1) con-
sists of linear functions. Choosing other penalty terms and shrinking to their kernels
may give functions different from local polynomials with smoothness constraints.

The formulas (3.1.2), (3.1.3), and (3.1.4) are themselves special cases of a regularized
error functional on a Hilbert space. First, the total curvature J(f) can be replaced by the
integrated square of a higher-order derivative of f’; this yields polynomial splines. Re-
placing derivatives by general differential operators and reformulating the minimiza-
tion so it occurs in a Hilbert space of functions (also called splines) generalizes beyond
polynomial splines. In the regression spline case, it will be seen that the optimization
remains an extra constraint on the collection of functions, so a unique minimizer can
be identified and its coefficients estimated. Here, the Hilbert space formulation, based
on reproducing kernels, will be presented. Note that now the word kernel has a differ-
ent meaning from the last section. Here, a kernel is a function of two variables that acts
something like the inverse of the matrix defining an inner product. Heckman (1997)
provides a concise and deft overview of the material developed here.

To keep focused on problems that can be solved, it is important to have a notion of
ill-posed. Hadamard’s definition is one choice, see Canu et al. (2005).

The problem of interpolating, or more generally of obtaining a linear smoother, comes
down to the following. Let 2™ and % be two sets, and let .% be the collection of
functions from 2" to . Given a sample S, = {(x;,yi)|xi € 2", yi € ¥ ,i=1,--- ,n},
let O be a linear operator from .% to % with domain Dy so that
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VfeDo C.Z: Of = (q1(f).a2(f)s - an(f)). (3.5.2)

In (3.5.2), the g;s are evaluations of f at the x;s so that g;(f) = f(x;) and the g;s are
continuous linear functionals from Dy C .% to #. Denoting y = (y1,y2,-- ,¥n), the
interpolation f, if it exists, of the n points of S, is the solution to

of =y. (3.5.3)

Hadamard’s definition of an ill-posed problem can now be stated in terms of (3.5.2) and
(3.5.3). Let (F,%™) be a pair of metric spaces equipped respectively with the metrics
dz and dgy . The problem Qf =y is said to be ill-posed on (.%,%™) in Hadamard’s
sense if it does not satisfy one of the following three conditions:

1. Existence: There exists a solution to the problem; the rank of the image of the
operator Q equals the rank of %",

2. Uniqueness: The solution is unique; i.e.,
Vii,heZ, 0h=0fh = fi=h.

3. Stability: The solution is stable in the sense that the inverse Q~! of Q exists and is
continuous on #",

Intuitively, the third condition on stability means that a small perturbation of the data
leads to only a small change in the solution. Explicitly, this is

v€>07 3687 d@(yg,y)<6g - dﬁ?(.f&‘af)<87

where fe = Q0 'yeand f = Q7 'y.

The reformulation of the penalized least squares problem in the RKHS framework
will help show that cubic smoothing splines are the solution to least squares objective
functions penalized by the integrated squared derivative as in (3.1.2). The exposition
rests on some foundational definitions and notations that can be skipped if they are
already familiar.

3.5.1 Reproducing Kernels

Henceforth, 7 is a linear space equipped with an inner product, a positive definite
bilinear form, denoted by (-,-). A common choice is, for f,g € 5, defined by

(f8) = /I F(x)g(x)dx.

Once 7 has an inner product (-, -), it is an inner product space and hence has a norm
defined by Vf € 42,

[NAESRVAVAYOR
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The norm provides a metric on 7 that can be used to measure the distance between
two elements f,g € 5:D(f,g) = ||f — gl|- Now, in an inner product space such as 7,
a sequence {f,} of functions converges uniformly to f* if

Ve >0, 3N, such that ||f, — f*|| <&, Vn>N.
The notation used is lim||f, — f*|| = 0 or lim f, = f* or simply f,, — f*.
n—o0 n—o0

The definitions of Section 2.3.1 for Cauchy sequence, completeness, and Banach and
Hilbert space carry over. As a generality, Banach spaces are interesting in and of them-
selves, for their topology for instance. By contrast, because of the inner product, it
is typically the (linear) operators on a Hilbert space that are interesting not the space
itself.

Recall that an operator is a function on a space; a functional is a real-valued function of
a function-valued argument (on a space). A linear operator, or more typically a linear
functional, L, defined on a linear space .77, is a functional that satisfies two properties:
Vf,g € andVa € R,

o L(f+g)=Lf+Lg.
e L(af)=oaLf.

In addition, on a Hilbert space, an operator is continuous if and only if it is bounded,
which means, in the linear case, it has a finite norm. Thus, a linear functional L on .7#
is continuous if and only if, for a given sequence { f,} of functions in .7, we have
lim f, = f* = limLf, = Lf",
n—o0 n—oo
and for linear functionals this happens exactly when ||L||,» is finite. In general, a

closed linear subspace of 7 is itself a Hilbert space. Also, the distance between an
element f € 77 and a closed linear subspace 4 C 7 is

D(f.9) = inf I/ ~g]|.

An important implication of requiring evaluation functionals to be continuous is the
Riesz representation theorem from, say, Royden (1968). This deep theorem guarantees
that every linear operator can be obtained by regarding one entry in the inner product
as the argument of a function while the other argument defines the operator.

Theorem (Riesz Representation): Let L be a continuous linear functional on a Hilbert
space 7. Then, there exists a unique g; € ¢ such that

VieA Lf=(ef) O

While the Reisz representation theorem holds for any Hilbert space, within the col-
lection of Hilbert spaces, there is a subclass of particular relevance to splines. These
Hilbert spaces have what is called a reproducing kernel. This is a function like g7 in
the theorem, but here denoted as K (x), that has a reproducing property. The idea is that
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the kernel makes the inner product act like an identify function; i.e., for any f in the
Hilbert space it “reproduces” f. Naturally, these spaces are called reproducing kernel
Hilbert spaces (RKHS).

More formally, let 2~ be an arbitrary function domain (index set), and let . be a
Hilbert space of real-valued functions on 2. Denote the functional on . that evalu-
ates a function f at a point x € 2" by [x]. An RKHS is a Hilbert space of functions in
which all the evaluation functionals are continuous. That is, the space ¢ C . is an
RKHS if and only if any linear evaluation functional defined by

H(): A — R
[ =rk)

is continuous for any x € 2. When this holds, the Riesz representation theorem gives
that, for any x € £, there exists an element Ky(-) € ¢, which is the representer of
the evaluation functional [x](-) such that

(Kx,f)=[f(x), VfeH.

The symmetric function K(x,y) = Ky(x) = (K, Ky) is called the reproducing kernel
of the space 7. It is easy to check that K(-,-) has the reproducing property

Ve (K(x,-),f() = f(x). (3.5.4)

Thus, in principle, one can start with a Hilbert space and obtain a reproducing kernel.

One can also do the reverse and generate an RKHS from a kernel function K. Let 2~
be a domain, or index set. An RKHS on 2" is a Hilbert space of real-valued functions
that is generated by a bivariate symmetric, positive definite function K(-,), known as
the kernel, provided K has the reproducing property from (3.5.4),

again for all x. Requiring positive definiteness of K(-,-) is essential for constructing
RKHSs. In fact, the Aronszajn theorem, stated below, only gives a one-to-one corre-
spondence between positive definite functions and reproducing kernel Hilbert spaces.

Consider the domain 2. Recall that a bivariate symmetric function K(-,-) defined
on Z x A is positive definite (PD) if, for every n and x1,---,x, € 2" and every
at,---,dn,

n
Y aia;jK(xi,x;) > 0.
1j=1

M:

i

For a reproducing kernel K, K(x,y) = Ky (y), from which

n n
2 2 aja;K(x;,
i=1j=1

2
aiky| > 0.

As a result, reproducing kernels are PD.
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This definition for PD functions is very general, applying to a large variety of choices
of Z . For adiscrete set " ={1,2,--- ,N}, for instance, K reduces to an N x N matrix.
More typically, however, 2" = [0,1], or 2" = [a,b] for real a,b. Sometimes, 2~ C
R? for high-dimensional observations in Euclidean space. Wahba (2005) provides a
variety of choices of 2~ from a simple discrete set to a collection of graphs, a collection
of gene microarray chips, or even a Riemannian manifold.

Wahba (2005) also emphasizes the importance of PD functions in machine learning
techniques by stating the following important fact: Since a PD function, or kernel,
defined on 2" x 2 defines a metric on a class of functions defined on 2" possessing
in inner product, the PD function provides a way to find solutions to optimization,
clustering, and classification problems.

The key features defining an RKHS are summarized in Aronszajn (1950), stated here
in the following theorem.

Theorem (Aronszajn, 1950): For every PD function K on 2" x 2", there is a unique
RKHS J# of real-valued functions on .2" having K (-, ) as its reproducing kernel. Let
(-,-) be the inner product associated with .#%, and define K(-) = K(x,-). Then, for
every f € #x andeveryx € 27,

<Kx7f> :f(x)'

Conversely, for every reproducing kernel Hilbert space .# of functions on 2, there
corresponds a unique reproducing kernel K(-,-), which is positive definite. (J

A detailed proof of this theorem can be found in Gu (2002). Note that this theorem
means that to construct an RKHS all one requires is the reproducing kernel.

3.5.2 Constructing an RKHS

Choose a positive definite function K(-,-) as a kernel on 2" x 2. Fix x € 27, and
define the function Ky on 2" by

From K, one can construct a unique function space .7%:

e First, for Vx € 27, put Ki(-) € k.

e Second, for all finite m and {q; ;> and fixed {x; e 2, include the function

fi)= iain,-(') € Hx. (3.5.5)
i=1

e Third, define the inner product in ¢k by

<KX7KX> = K(x7y)
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so that

<fag> = <zain,~7 ijKy_,-> =3 aibjK(xi,y;).
-1 s

i=1j=I

Clearly, this procedure gives a linear space. The effectiveness of this procedure for
generating a Hilbert space with a reproducing kernel is assured by the following two
results. First, the reproducing property holds.

Proposition: Let .77k be the function space constructed from the positive definite ker-
nel K. Then, for f € J#,

<KXaf> = .f(x)a
and K is a reproducing kernel.

Proof: With f € 7% defined as in the second step,

) = 3 aike (x)

i=1

for each x € 2. Using the inner product in 7% from Step 3 gives

<Kxaf> = <KX7iain;> -
i=1

3 ik, () = £(x) .0
i=1

m m
Cl,‘(Kx[,Kx) = Za,-l((x,-,x)
i=1 i=1

Second, given that %% is a linear space with a reproducing kernel, it remains to verify
completeness. That is, it remains to show that every Cauchy sequence of functions in
Hk converges to a limit in J#%. So, recall the Cauchy-Schwartz inequality linking the
inner product and norm: (x,y) < ||x||||¥]-

Proposition: Let {f,} be a sequence of functions in . Then strong convergence
implies pointwise convergence. That is, if { f,} is a Cauchy sequence, so that

lfn = finll — 0 as n,m— oo,

then, for every x € 2,
| fu(x) — fin(x)| — 0.

Proof: Let f,, f, € 7#%. Then, for every x € 2,

() = fn ()| = [{Kx, fo = fon)| < | K[| f = S| -.O0

Now it is reasonable to include all the limits of Cauchy sequences of functions in %k
and call the overall space .7. Part of what gives RKHSs their structure is that when
K is square integrable it leads to a spectral representation for the kernel in terms of
its eigenfunctions, which are orthonormal and form a basis, and its eigenvalues. This
important structure undergirds almost all kernel methods.
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Theorem (Mercer-Hilbert-Schmidt): Let 2" be an index set, and let K(-,-) be a
positive definite function on 2~ x 2~ satisfying

/ / K?(x,x)dxdx = C < oo.
Then there exists an orthonormal set of eigenfunctions of K as an integral operator,
{¢i}2yon 27sie,

/J /JK (x,9)0;(x)dxdx = 2;¢;(y)

and

/y 0i(x)¢(x)dx = { 1, i=j:

0, otherwise,

with all 4; > 0, such that ¥y A? = C and
K(x,x) =Y, 2ii(x)9;(x). (3.5.6)
i=0

With the kernel K defined by (3.5.6), the inner product (-, -) has the representation

<f,g> _ i (f’(Pi;v('g’(Pi)v
i=0

(]

where (hi,hy) = [ hi(X)hy(x)dx for every hy,h, defined on Z". O

In practice, there is little need to find the eigenvalues A; and the eigenfunctions ¢; of K.
For most RKHS-based solutions, it will suffice to know the positive definite kernel K.
This will be the case with support vector machines in Chapter 5, for instance. Wahba
(2005) observes that the eigenfunction decomposition above is a generalization of the
finite dimensional case in which the the inner product is defined by a PD matrix.

Still, the key question remains: Given an objective functional like (3.5.1), how does
the RKHS help express a solution? The answer is that a recurring strategy for solving
problems in the RKHS framework is to decompose the RKHS of interest into tensor
sums, taking advantage of the relative ease of construction of subspaces of the RKHS.
Gu (2002) provides the following theorem. It is the key result that guides tensor sum
constructions. Note that here the subscript K is retained on some Hilbert spaces since
more than one kernel function will be used.

Theorem: If the reproducing kernel K of a function space 7# on domain .2 can be
decomposed into K = Ko+ K|, where Ky and K are both positive definite, Ko(x,-) and
Ki(x,-) in J#%, for all x in 27, and also (Ky(x,-),K;(y,-)) =0, Vx,y € 2, then the
spaces J7) and 7 corresponding to Ky and K; form a tensor sum decomposition of

I

Conversely, if Ky and K are both positive definite and their corresponding RKHSs .74
and 777 are such that 52 N7 = {0}, then the space ¢ = %) ® S has K = Ky + K;
as its reproducing kernel. [
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The general procedure for using this theorem in smoothing splines has three steps; see
Pearce and Wand (2005). Given a positive definite kernel K, the RKHS 7% may be
constructed by:

1. Determining the eigenfunction decomposition of K: This means finding a sequence
of eigenvalues {A;}7, and a sequence of eigenfunctions {¢;}>, so that, for every
x7y e %s

K(xy) = Y At (2)0i()- (3.5.7)
i=0

For bounded K, the Mercer theorem ensures this.

2. With the eigenfunctions {¢;}:, define the function space /% to be
;ﬁ({f: fZa,-q),}. (3.5.8)
i=0
3. Equip 4% with an inner product (-,-) s,

= aibi/A;. (3.5.9)
i=0

(f:8) o = <Zai¢i7 zbi¢i>
=0 =0

Hk

With the decomposition of K (3.5.7), the form of the functions in #% as in (3.5.8),
and the inner product (3.5.9), the reproducing property of K,

<K(x7')7K(Y7')>3fK = K(X,X),
follows and the norm of f in %% is ”sz}i"x =37 a2/ A

The key question in a given application will be: What positive definite kernel should
be used to construct the RKHS? In general, this is a hard question because it is de
facto equivalent to choosing the basis for a function space and hence much like model
selection. However, to hint at a procedure, consider a quick example. Suppose the
(unknown) true function underlying a data set is the “tooth” function

f(x)zx—f—ﬁexp [—42(2x—1)?] x€ 2 =[0,1].

Given a data set {(x;,y;),i = 1,---,n}, the task is to find a positive definite kernel K
and construct the corresponding RKHS, say 7%, so that the estimate

2 in LLOA) = A1l } 3.5.10
fu.= arg min {L() + 2]/, (35.10)
can be found. Following the Pearce and Wand (2005) steps, choose prespecified knots

11 < --- <ty so the intervals for the spline are of the form [r,;1). First, try choosing
a kernel that can generate an RKHS solution to (3.5.10). There are many possible
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choices; however, the simpler, the better. Mercer’s theorem suggests looking at a sum
of products of simple functions, and the simplest are linear. Thus, try

K(xy) = 1+xy+ Y, (x—=10)+ (v = 1)+ (3.5.11)
k=1

One can verify that the eigenfunctions associated with K are
Po(x) =1, o1(x) =x, 1 (x) =(x—t)+  k=1..m—1, (3512

and the associated RKHS is
m
Hx =< [ f(x)=Po+Pix+ D, oxlx—1)+ (3.5.13)
k=1

with corresponding inner product

. 8) e = <ﬁo+ﬁ1x+ S o) BBt S a,z<x—rk>+>
Hx

k=1 k=1
= BoBy+ BB + D, oy
k=1

From this definition of the inner product, it can be seen that

171

Since the norm for this RKHS is a sum of two finite-dimensional Euclidean norms, the
tensor sum theorem implies that the penalized spline RKHS is isomorphic to R”*2.
This is a particularly simple Hilbert space, as one would normally expect an RKHS to
be infinite-dimensional.

S = IBIP + ]|

The decomposition of an RKHS into a direct sum of two subspaces reflects the struc-
ture of the optimality criterion: There is one subspace for each of the two terms. The
smoothing parameter A controls the trade-off between the two terms; i.e., between
goodness of fit and amount of roughness. Large values of A put a lot of weight on the
roughness penalty, forcing it to be small; i.e., forcing the minimum to be very smooth,
in particular close to the nullspace of the differential operator in the sense of the dis-
cussion after (3.3.1). For the tooth function, Fig. 3.8(a) shows the fit when J(f) = 0;
this corresponds to the estimated function of x being a straight line. Small values of A
put little weight on the smoothness and (relatively) a lot of weight on goodness of fit,
forcing the error term to be small. This forces good fit at the cost of more roughness,
see Fig. 3.8(b); the estimated function is mostly in the orthogonal complement of the
null-space of J.
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(a) Null Space of Roughness penalty (b) Orthogonal complement of Nullspace

Fig. 3.8 Like Fig. 3.5, the two graphs show how large and small values of A affect spline estimates of
the tooth function. If 7 = 7 & J#{, where 4 is the null-space of J with orthogonal complement
1 and f is the true unknown function, then f = fy 5 + f1 3 for fi3 € JG.1f f = f 5 + f, ;. then (a)

is the case where A makes Hfm || very small and (b) is the case where A makes ”le || very small, so

the part of f in the other subspace dominates, respectively.

3.5.3 Direct Sum Construction for Splines

To develop an intuition for the use of RKHS methods, it is worthwhile to examine the
properties of the construction of the penalized sum of squares optimization and the
structure of the Hilbert space. Recall that the subspace of unpenalized functions in %%
consists of linear functions; they form the null-space of the total curvature J(f):

1
Ay ={f: f(x) = Bo+ Pix, Vxe%}:{le(f):/o [f”(x)]dezo}.

Its orthogonal complement,

IO =G = fx) =Y oplx—t)4 ¢,

EM&

is generated by the spline basis. It is easy to see that the kernel K in (3.5.11) is K =
Ko + K, where

m

Ko(x,y)=1+xy and K;(x,y)= z x—t)+(y—te)+

Consequently, any f € 7 can be written f = fy+ fi where fy € J%) and f| € J4, so
that 7 = 70 & 7.

All the functions given by (3.5.13) as solutions to (3.5.10) are penalized by an amount
governed by A. For a variety of technical and computational reasons, it is often desired
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in practice that some of the functions in 7#x be unpenalized. Such functions are the
elements of the null-space 7% and would ideally be minimizers of the unconstrained
L(f). Therefore, only the projections of f € .# onto the orthogonal complement of
7%, which in this case is JA = %’BJ-, should be penalized. If P; denotes the linear
operator corresponding to the projection onto 71, 77 is the null space of P;. With
respect to the null space .77, the solution can be restated as

i =arg min {L(7)+ 21711y |

For the simple example of the last subsection,

Pf=n <ﬁ0+ﬁlx+zak X — 1) ) zak X =)y
As aresult, ||P f|[%,, = [|et||*. The solution f; now reduces to

fk (x) = XXB +Zya,

where X, and Z, are evaluations of the basis elements of %) and 7] at x with coeffi-
cients obtained from the data string y by

(.0) = argmind{ |y~ [XB + Zor |+ Al .

in which X and Z are the design matrices with elements given by evaluations of the
basis functions for .7 and .4, namely {1,x} and the functions (x —#;)y for k =
1,...,m, at the design points x; fori=1,...,n

3.5.3.1 A Generalization

In the particular case of the squared error loss, L(f) can be written as

==Y (vi— (i, f))%

i=1 i=1

:\'—‘

1
n
where 1; is the representer of the evaluation functional for the point x; € 2,
(i, f) = f(xi)-

Using the evaluation functional and an arbitrary loss function £, one can find

feHk

fa(x) = arg mln{ Z-Z yir (M f >)+7L||P1f||?ny}~ (3.5.14)
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Observe that this general formulation allows the use of various projection operators
and various evaluation functionals. Also, because of its direct connection to the null-
space %, this formulation allows a step-by-step construction of Z, starting from
the solution of the differential equation defining the null-space .74 and adding its or-
thogonal complement to form % as a direct sum of %) and ;" Finally, (3.5.14)
indicates how general RKHS methods are since many regularizations can be formu-
lated expressed in the same form. (This may be very hard to implement pragmatically,
but the conceptual unity is satisfying.)

3.5.3.2 A More Detailed Example of RKHS Construction

For the sake of intuition, it is worthwhile seeing how the foregoing case for the cur-
vature penalty extends to more general penalties that integrate squares of higher-order
derivatives. To motivate this by local function approximation, let f € ¢™[0,1] and
write the Taylor series expansion in the neighborhood of zero using the integral form
of the remainder. This gives

m—1

moly . X (x—u)
0= 3 X0 W™ ),
709 = 3, 5000+ [ S s

Observe that the remainder term finds an integral for 0 <7 < x and for x € [0, 1],
x—1 > 0. So, the remainder term is unchanged if the domain becomes [0, 1], provided
the positive part is used in the integral. Thus,

j —u m—1
700 ="3 5000+ [ S

Now, with some hindsight, one can seek a reasonable two-term inner product. It is
seen that this generalizes (3.5.10) — (3.5.13). The form of the Taylor series expansion

suggests
m—1

() =3 P00+ [ 17w (o
j=0 0

Now try defining

m—1 j j 1 _ o ym—1 o m—1
Kx(y): i')% / ()C l/t)+' (y u)+’ d
SJtit (m—1)! (m—1)!

O Itis seen that the first reproducing kernel,
m—1

K()(X,y) = z

oy
Pk

provides the key ingredient for constructing the subspace
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Ay ={f: f =0}
with inner product

m—1
(f.8)0="Y, r7(0)g"(0).
j=0

0 A second reproducing kernel,

kit = [ Gt ooy

o (=D G-

is seen to generate the orthogonal complement of .74), namely

A= {1 1O =0, j=0,1,-,m— l,and/Ol [ ()P < o

with the inner product derived from the boundary conditions:
1
(ogh = [ £ 05" ()

Notice that this example generalizes cubic splines — the case m = 2. In general, this
construction gives polynomial splines, which means that the null-space of the operator
is a collection of polynomials corresponding to D" f = 0. As seen in Gu (2002) Chapter
4.3, many other differential operators L have been studied, leading to trigonometric
splines, hyperbolic splines, exponential splines, splines on the circle, and so forth. The
case of higher dimensions is of particular importance; see Wahba (1990), Chapter 2.
Indeed, it seems possible to generalize further to the use of kernels that are not in
general PD; see Canu et al. (2005) in this regard.

3.5.4 Explicit Forms

So far, the results presented have been specific examples or general properties. In this
subsection, it is important to state two results that provide explicit descriptions, at least
in principle, for general optimizations like (3.5.14). The first result rests on differential
equations, the second on Hilbert space optimization.

3.5.4.1 Using Differential Equation Tools to Construct RKHSs

To identify reproducing kernels for various contexts, two definitions are needed.

First, we define the Wronskian matrix. Let fi, f2,---, f4 be d functions that are d — 1
times continuously differentiable. The Wronskian matrix W is constructed by putting
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the functions in the first row, the first derivative of each function directly under it in the
second row, and so on through to the (d — 1)th derivative. So, the Wronskian matrix
W associated with fi, f2,--, fz is

S g o Ja
i A o f
W(fl7f27"'afd): : .

(d-1)

fl(dfl) fz(dfl) fd

For x € £, the Wronskian matrix is W(x) = [w;;(x)], where

j—1 ..
Wl](x):fz<1 >(x) l’J:17277d
The determinant of a Wronskian matrix is simply called the Wronskian and plays an
important role in differential equations.

Second are Green’s functions. These arise in solving inhomogeneous ordinary differ-
ential equations (ODEs)with boundary conditions. Consider a differential operator L
such as appears in the integrand of penalty terms. If a function 4 is given and one tries
to solve L(x) f(x) = h(x), subject to boundary conditions on, say, an interval [0, ¢], then
there is a unique solution of the form

¢
u(x) =L 'h(x) = / h(s)G(x,s)ds,
0
where G is the Green’s function associated with L. Green’s functions satisfy
L(x)G(x,s) = 0(x—s),

where § is the Dirac’s 0 operator at 0. It is easy to see that if G exists, then L(x)u(x) =
h(x).

Green’s functions have several useful properties. First, they exist in great generality.
Second, they express solutions for inhomogeneous equations where the coefficients
of the differential operators may be functions of x. Third, they are particularly well
suited to settings where the difficulty in solving the equation arises from satisfying the
boundary conditions. As suggested by the Dirac operator, certain derivatives of Green’s
functions have discontinuities; it turns out that the jumps can be expressed in terms of
the coefficient functions of the highest-order derivative in L. Thus, in spline problems,
where part of the difficulty is to ensure smoothness constraints, Green’s functions are
a natural way to express solutions. This is not the place to digress on such problems,
so the reader is referred to any of numerous books that treat this class of ODEs.

To return to spline optimization, let 2~ = [a, b], and define the inner product
m—1 . . b
(.0 = 3 M@ @+ [ LHOLe0ar (35.15)
j=0 a

Now, the decomposition theorem for identifying RKHSs can be stated; see Gu (2002).
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Theorem: Let {u,uz,- - ,uy} be a basis for the null-space of L (i.e., all f with Lf =
0), and let W(z) be the associated Wronskian matrix. Then, under the inner product
(3.5.15), o7 is an RKHS with reproducing kernel

K(s,t) = Ko(s,t) + K (s,1),

where

M&

i Cijui(s)uj(tr) with Cj; = [{W(a)WT(a)}fl] B

i=1j=1 ij

and .
-
Ki(s,t) = / G(s,u)G(t,u)du,
u

=a
with G(+,-) being the Green’s function associated with the differential operator L. Fur-
thermore, .7 can be partitioned into the direct sum of two subspaces,

%:%@%7

where
={f e :(Lf)(t) =0almost everywhere on 2"}
and

%:{fE%fO)(l):O? j:O,l,"'ﬂ’Vl—l},
so that %) has reproducing kernel Ky and 7# has reproducing kernel K. [

3.5.4.2 Form of Solutions

Surprisingly, there is a closed-form expression for solving spline optimization prob-
lems in some cases. In particular, consider the special case of (3.5.14) for squared
error loss,

n 1 n
/3 (x) = arg min {n > i <ni,f>>2+kllP1f?;f,(}, (3.5.16)

ferx | ni5

where 7); is the representer of the evaluation functional at x; and P is the orthogonal
projection of a given Hilbert space of functions .7 onto .74 with the orthogonal com-
plement 77 given by the null-space of the operator L defining the penalty term. Wahba
(1990) establishes the following theorem.

Theorem: Let uy, ..., u,, be a basis for 74), and suppose the n x m matrix

T=Txm= (ni(”V))izl,,.‘,n;v=l7...m

has full column rank. Then, for fixed 4, the minimum of (3.5.16) is given by
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m n
fa= z Oyuy + Zciéiv
v=I i=1

where & = P 1;, and the coefficients are defined as follows. Let £ = %, = ((§,&;))
and M = X +nAl,«,. Then

8 =(81,...,8,) = (T'M'T)'T'M Ny,
¢ =(ctyncn) =M Ly —T(T'M'T) ' T'M )y, O

As a final point, although statisticians typically choose the x;s themselves as the
knots, the knots can be, in principle, estimated, chosen, or inferred by other, possi-
bly Bayesian, techniques.

3.5.5 Nonparametrics in Data Mining and Machine Learning

So far, focus has been on the one-dimensional case for kernel smoothing and spline
smoothing. It was seen that the two smoothers essentially coincided in the unidimen-
sional case. In practice, for a variety of choices of tuning parameter and signal-to-noise
ratio in the data, numerical results confirm that kernel smoothing and spline smoothing
have equivalent performance. The estimated curve from one method looks like it was
printed on top of the curve from the other method, on graphs at any reasonable scale.
More generally, this is not surprising because the two techniques are fundamentally
instances of the same smoothing paradigm, local polynomial fitting, see Silverman
(1984), Huang (2001).

However, the unidimensional case is comparatively unimportant in DMML since an
important feature of many DMML problems is their (highly) multivariate settings.

Spline smoothing and kernel smoothing differ in the way they scale up to higher di-
mensions. Essentially, kernel smoothing does not scale up in any meaningful way; it
suffers the Curse. The reasoning for this is intuitive: In multivariate settings, kernel
smoothers use product kernels, one for each coordinate, to build up a smoother that
fills out the input space. As mentioned in Section 2.3.5, this causes the technique to re-
quire enormous amounts of data for good inference, hence the Curse. By contrast, the
spline smoothing formulation leads to RKHS techniques that can be scaled up, as seen
below. For this reason, RKHS techniques provide a flexible framework for solving a
large class of approximation, estimation, and optimization problems.

To see how RKHS techniques evade the Curse, consider a brief description of thin plate
splines. In this case, the kernel function evaluations are based on norms of the entire
input vectors, with no need to address each coordinate separately. It is as if the norm of
a vector is being treated as a summary statistic for the whole vector of measurements.

Let the predictor variable be a p-dimensional vector x = (xj, X2, - ,x,,)T. Suppose that
the objective functional remains
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%i )2+ Adn(f),

i=1

where the penalty function is

2
m! amf
Jm :/ d )
() %|a\2='ma1!"'a1’! <8x?“---9x,‘f”> *

where || = Y,; o, 2m > p, and the smoothing parameter A > O controls the balance
between fit and smoothness.

In this context, one of the most commonly used members of the thin-plate spline
smoother family corresponds to the case p = 2 and m = 2, in which the penalty term is

82 2 82 2 (92 2
0=, (55) (25 +(5) =
2 CR? 8x1 0x10x) 9)62
This roughness penalty, along with the constraint that the second derivatives at the

end-points be zero, provides an immediate generalization of natural cubic splines. It
turns out that the minimizing function under this penalty is of the form

n
=Y oK™ (x;,x)+BTx+7, (3.5.17)
i=1

in which
K3 (x;,x) = [|x — x;||*log || x — xi||>

is the thin-plate spline kernel. A series of interesting kernels will be discussed in Sec-
tions 5.4.7 and 5.4.8 in the context of support vector machines. The point for now is
to note that although many applications of thin-plate splines are for two-dimensional
design points, (3.5.17) extends naturally to higher dimensions.

Indeed, (3.5.17) is just one instance of a more general solution to an RKHS-based
approach to function approximation. The general solution is called the representer the-
orem. The earliest statement of this important theorem is in Kimeldorf and Wahba
(1971), but see also Scholkopf and Smola (2002), Wahba (1998), Wahba (2005), and
Smola and Scholkopf (1998), among others.

Representer Theorem: Let Q : [0,00) — R be a strictly monotonic increasing func-
tion, 2" be a set, and ¢ : (2 x R?)" — R U {0} be an arbitrary loss function. Then
each minimizer f € J¢ of the regularized risk functional

c((er,yr, f(x1)), -+ (v, f (%)) + ([ f1]#)

admits a representation of the form

n
= z Oz,»K(x,»,x) O
i=1
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The central point of (3.5.17) and the conclusion of the representer theorem is that the
reproducing kernel K is defined on 2 x Z°, where 2~ is a p-dimensional domain
for arbitrary p > 1. That is, the form of the solution in an RKHS is insensitive to the
dimension of the domain of the underlying function f being approximated. There are
n terms in the minimum where n is independent of p. The Curse has been avoided,
arguably by using of the norm.

An even more general form of the theorem is given in the semiparametric settings by
Scholkopf and Smola (2002) and Wahba (1998).

Semiparametric Representer Theorem: Suppose that in addition to the assumptions
of the representer theorem, the set of real-valued functions {¢;}7", : 2" — R has the
property that the n x m matrix (¢;(x;));; has rank m. Let f = f + h, with f € ¢ and
h € span{¢;}. Then, minimizing the regularized risk

c(Cer, v, Fen)) s (o v, F(x))) + ([ f 1)

over f results in a representation of the form
flx) = K (xi,x)+ Y, Bio;(x)
i=1 j=1

with B; € Rforall j=1,....m. O

The form of the solution in these representer theorems is ubiquitous in DMML and
highlights the importance of the kernel function. It is not just that the kernel defines the
space of functions but that the kernel defines the span of the solutions within the space
it defines. In essence, the kernel gives the terms in which a linear model is expressed.
It is therefore reasonable to regard a kernel as a continuously parametrized collection
of basis functions K(-), where the parameter z has the same dimension as the design
points. Taken together, this means that the variability due to choice of kernel is akin
to model uncertainty in conventional statistical contexts because perturbations of the
model lead to alternative estimates and predictions just as varying a kernel does. This
is reinforced by the fact that the RKHS formulation of spline smoothers has a Bayesian
interpretation (see Exercises 6.7 and 6.8). Also, the penalty term in (3.5.10) or (3.5.16)
can be regarded as the logarithm of a prior, see Chapter 10.4.4

3.6 Simulated Comparisons

It is actually quite easy to compare the techniques discussed so far, namely LOESS,
NW, and spline smoothing using R, because most of the routines are already built into
it. The function sinc(x), defined by

flx) = Sinix) xe[-10,+10],
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is a good test case because it has been used by various authors in the machine learning
literature and has several reasonable hills and valleys a good technique should match.
The main way techniques are compared is through MSE or bias and variance.

To be specific, the true model is ¥; = f(x;) + &, in which the noise terms &; are IID
normal with constant variance 62 = 0.22. The function f is, of course, not known to
the technique; only the data are. Here, the xs are assumed to be from a fixed design with

equally spaced design points. The sinc function is graphed in Fig. 3.9 with a scatterplot
of data points generated from it.

Fig. 3.9 The left-hand panel shows a graph of the sinc function. The right-hand panel shows the data
generated from it using error variance .022.

To analyze the data to estimate f, consider a sequence of three estimators depending
on the order of the polynomials that form them. First is the NW estimate which can
be regarded as a local constant polynomial estimate; i.e., a LOESS estimate with the
local polynomial being a constant. Second is a degree 2 LOESS, or local polynomial,
fit. Third is a spline smoother based on natural cubic splines with all the smoothness
conditions imposed to guarantee the existence of a solution. These three estimators
have smoothing parameter inputs &, ¢, and A. The first and third were chosen as before
by GCV. The bandwidth was found to be A, = 3.5, a largish value but valid for the
whole interval [—10, 10]. The fraction of data used in bins for the local polynomial plot
was o = .25. The actual GCV plot to find A, or the degrees of freedom it represents,
is given in Fig. 3.10 and A,,; = 11.

The fitted curves generated by the three estimators are given in Fig. 3.11. By eye, it
appears that the NW estimate is the worst and the spline estimator is the best. That is,
as the degree increases, the fitted curve becomes smoother and matches the function
more closely. In fact, a more detailed examination reveals that the choice among the
three is not so obvious.

Instead of drawing confidence or MSE bands as in Section 3.4 or Section 2.5, observe
that the same techniques as used to find the MSE give its constituent pieces, the bias
and variance. In particular, the biases for the three estimators can be estimated by
bootstrapping as before. The variances can be estimated by either (i) using the linearity
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Fig. 3.10 Plot of the generalized CV error. It decreases to about 11 after which it starts to increase.

One realization of the Naradaya Watson Estimation One realization of the Local Polynomial Estimation One realization of the Smoothing Spline Estimation

Fig. 3.11 Fit of the data for the three estimators, NW, local polynomial of degree 2, and cubic splines.

of the smoothers (see (2.3.20) and (3.3.8)) and normal approximation since n is large or
(i) using the lokern and gss packages, the first of which invokes a more sophisticated
procedure to find variances. Since n is large, these will be the same; lokern and gss
were used here for convenience. Figure 3.12 gives the results of estimating both the
squared bias and the variance for the sinc(x) based on m = 1000 samples, each of size
n = 100. As in earlier cases, the values are only valid at the sampled x;s but they are
joined by straight lines.

The curves in Fig. 3.12 qualitatively confirm intuition and theory. First, the natural
cubic spline smoother has the highest squared bias. This is plausible because NCSs
explicitly impose many conditions to obtain a unique function estimate. All those con-
ditions lead to strong restrictions on the function space, which translates into a high
bias, bigger than for the other two estimators. The flip side is that strong restrictions
tend to reduce the dimension of the space of estimators and consequently give the
smallest variance. One can argue, a little flippantly, that this means splines may esti-
mate the wrong value really well.
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Fig. 3.12 On the left, the squared biases are plotted. The highest is for the spline smoother, next is
NW, and the smallest is for local polynomials. On the right, variances are plotted. The highest is for
NW, next is local polynomials, and the smallest is for smoothing splines.

Second, the NW estimator’s only restriction on the function space is through the choice
of the kernel function. Otherwise the span of the NW estimators is unrestricted. (Note
that, in the theory of Chapter 2, the Lipschitz-like assumptions are applied only to the
unknown function to get rates of convergence, not to the estimation process itself.)
Unsurprisingly, therefore, the NW estimator has a smaller squared bias than the spline
smoother. However, the cost of the large span of the class of estimators is that the NW
estimator has the highest variance.

Third, the smallest squared bias is from the local polynomial estimator of degree 2.
This is due to the fact that there are few restrictions on the piecewise degree 2 polyno-
mials so they have much higher degrees of freedom than the NCS estimator and can
therefore track the unknown function quite well if there are enough design points. The
cost is that their variance is higher than that of NCS, though less than that for NW.
They would seem to achieve a better variance—bias trade-off overall than NCS once
degrees of freedom are taken into account. Note that there are two variance—bias trade-
offs operating. The first is within a class of estimators — that is how the & or the A was
chosen; in principle, o could have been chosen by a similar optimization strategy. The
second is across the spaces from which the estimators are drawn. The NCS space is
arguably too small, and the space over which the NW estimator varies is arguably too
large. This might leave the space of local polynomials of degree 2 as preferred.

3.6.1 What Happens with Dependent Noise Models?

In the last subsection, the noise was IID normal. In reality, noise terms are usually
just approximately normal and often have a nontrivial dependence structure that is just
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treated as independent. Just to see what happens, consider the sinc function example
but use an AR(1) noise term so the true model becomes

Y = f(X;)+¢& and & = @&+ N1,

in which ¢ is a constant, g is the time-dependent error in the function, and 7); is the
independent increment to the error process, often taken, as here, to be N(0, 62). For
definiteness, set 0 = .2 as before and choose some value between —1 and 1, say ¢ =
.72 as a test case. In generating the data, the xs were taken from left to right, thereby
giving the serial dependence of the AR(1) error.

Once the data were generated, the NW, local polynomial, and NCS estimators from
the last subsection were found and graphed over the scatterplot of the data as in Fig.
3.13, using optimal GCV values &, = .95 and A,p; = .6; o remained .25. The effect
of dependence in the error term is seen in the plots because there tend to be runs of
data points all deviating in the same direction from the function values. The small
values of Y around x = —5 and the large ones that form a cluster at 0 are instances
of this. One can argue that such departures from independence will be detected from
scatterplots, hypothesis tests, or residual analysis and so modeled. While this is true in
the present slightly extreme case ¢ = .72, it is unclear, in general, whether a case like
¢ = .35 would be similar. The extra variability from the dependence structure could
be swamped by all the other sources of variability and so be undetectable graphically.

One Naradaya Watson Fit for Non IID noise One Local Polynomial for for Non D noise One Smoothing Spline for Non IID noise

Fig. 3.13 Fits for an AR(1) noise model. Note that the fits weakly track runs in the data but shrink to
the correct curve and are otherwise similar to the IID case.

As before, it is instructive to look at curves for the bias and variance of the three estima-
tors. They are given in Fig. 3.14. They indicate the same variance—bias decomposition
as before; however, the scales on the horizontal axes in both graphs have expanded.
Both the bias and the variance are elevated. This is not a surprise since the extra vari-
ability in the error tends to make quantities harder to estimate (larger variance), and
unmodeled terms like the 7;s add to the bias. The curves also appear choppier than
before, with sharper peaks and valleys. These qualitative features would be more pro-
nounced if ¢ were larger or other terms were included in the noise model.
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Fig. 3.14 Squared bias and variance for an AR(1) noise model for splines, NW, and local polynomials.
The ordering is the same as before but the curves are choppier.

3.6.2 Higher Dimensions and the Curse of Dimensionality

How readily do kernel estimators, spline smoothers, and local polynomial fitting ex-
tend to multivariate settings? The short answer for kernel estimators is not well at all;
they fare poorly in three or more dimensions and are mediocre in two dimensions.
Spline smoothers and local polynomials scale up to higher dimensions somewhat bet-
ter than kernel estimators (which does not say much) but at the cost of mathematical
complexity and some loss of tractability. Overall, they are often adequate but not par-
ticularly compelling. This is why more recent techniques, like those in the next chapter,
are essential. To illustrate the limitation of the techniques so far, consider doing kernel
regression with two predictor variables rather than one. Let x be a two-dimensional
vector with coordinates x; and x,, and consider a 2D version of sinc(x):

_ sin|lx]|

P& ="l

This is graphed in Fig. 3.15. Clearly f is rotationally symmetric and undulating; not
an easy function to estimate but only moderately difficult.

Assuming a true model ¥ = f(x) + € with a normal mean-zero error having variance
the same as before (i.e. 62 = 0.2%) consider using a two-dimensional version of the
NW kernel regression estimator. First, the kernel has to be redefined for the two-
dimensional case. In one dimension, the summands were of the form K((x — x;)/h),
K being one of the kernels identified earlier. The natural extension to two dimensions
is the product K((x —x;)/h)K((y —yi)/h), and this is the most commonly used form.
Already this is a restriction on which functions can be estimated well: They have to
be parsimoniously expressible as sums of rectangular neighborhoods so that neighbor-
hood distances would be compatible with the unknown function. Better would be to
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The 2D sinc function

x2 0 o0

x1

Fig. 3.15 3D plot of the true function, a two dimensional version of sinc.

use the vectors x and x; and compute distances more generally using forms like
K(x,x;) = g(|lx—xill, h).

However, the details are beyond the goals of this chapter.

The basic point is that kernel regression estimators perform poorly and splines, naively
used, only perform a little better in two or more dimensions. Both just need too much
data to learn the function underlying the observations. This is suggested by Fig. 3.16.
The middle and right fit are given by NW and smoothing splines using n = 100 obser-
vations on an evenly spaced grid. For the two-dimensional sinc(x) function, both fits
are already poor. Even increasing the sample size from 100 to 1000 does not improve
the fit greatly. This is another demonstration of the Curse of Dimensionality.

For the sake of completeness, it’s worth noting that, for the ethanol data, the two-
dimensional NW estimator does quite well. This is shown is Fig. 3.17. The plot on the
left shows the response NOx modeled with both predictors E and C. The surface looks
like an arch. This is not surprising because, as the scatterplot of the full data set showed,
the response is unaffected by C, effectively making the problem unidimensional.

A plot for splines like that in Fig. 3.17 for kernels would look very similar, possibly
a little smoother. The improvement would be much like the improvement of splines
over NW in Fig. 3.16 but less since the NW fit is already pretty good. This kind of
comparison will often hold because, as seen in Silverman’s theorem, splines and ker-
nels are somewhat equivalent (for a specific kernel — but the exact form of the kernel
is not very important) in the sense that variable-bandwidth kernel regression is equiv-
alent to spline fitting given p(x). Since the choice of kernel makes little difference, if
the optimal constant-bandwidth kernel regression is really good, variable-bandwidth
kernel regression cannot do much better and so neither can spline smoothing. Good
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Fig. 3.16 The top panel shows the two-dimensional sinc function. It is included to help assess the
quality of the fit. The middle panel shows the fit obtained using the locfit package, which implements
a two dimensional NW estimator on the sample of size n = 100. The locfit smoothing parameter is
h = 0.45. The fit obtained using Gu’s smoothing spline ANOVA (ssanova) function within his gss
package is shown in the bottom panel. The ssanova function internally finds the optimal value of the
smoothing parameter. The spline fit is a little better (i.e., smoother) than the NW fit, as can be seen
from the more rounded peak at 0.
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constant-bandwidth kernel estimators correspond to the optimal variable-bandwidth
reducing as A(x) ~ h,, where h,; is the optimal constant bandwidth. Thus, the A for
optimal spline fitting would be determined by p(x). If the xs were chosen roughly uni-
formly, then p(x) =~ C, for some constant C so the best A would be determined by £,
suggesting the three fits (constant-bandwidth NW, variable-bandwidth NW, and spline)
should be roughly equivalent. Even so, splines will typically be a little better than ker-
nels because they involve an extra optimization in approximating the projection of the
function in an RKHS as well as choosing the A optimally.

XON

m1 m1

Fig. 3.17 Fits obtained with the locfit package. On the left, the bandwidth is & = .45, and on the right
h =75 is the optimal value. The fit on the right is closer to a plane and is smoother because the weight
of the kernel is spread over a larger neighborhood. When £ is small, the weight of the kernel is more
concentrated, giving a rougher appearance.

The difference in performance between smoothing spline techniques and kernel re-
gression more generally arises because, given a reproducing kernel, the regularization
structure of splines is not harmed as much by the dimension of the input space as ker-
nel regression is. The basic idea, heuristically and concisely, is the following. Given a
spline optimization of the form L(f) + A|| f|| s, the reproducing kernel defines a col-
lection of eigenfunctions by Mercer’s theorem. Some of the eigenfunctions span the
null-space of the penalty, while the others form its orthogonal complement. Minima
can therefore be expressed in terms of the eigenfunctions, somewhat independent of
the dimension of x. Also, the kernel defining the RKHS is itself a sum of products of
the eigenfunctions.

Even better, the representer theorem gives a representation of the minimum in terms
of evaluations of the kernel function. The representation is equivalent to an expression
in terms of the eigenfunction basis, but the basis elements are chosen by the data, as
if one of the (continuous) indices of the kernel actually indexed a basis for the RKHS.
Thus, the terms in the representer theorem representation can be expressed in terms
of the Mercer Theorem expression for the kernel (i.e., in terms of the eigenfunctions),
giving a solution dependent on the sample size n, not the dimension of the data p.
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Of course, having as many terms as data points poses a problem for most estimation
techniques, but the representer theorem reduction is a great start; further efforts to
achieve parsimony can improve inference.

3.7 Notes

3.7.1 Sobolev Spaces: Definition

Let 2 = [a,b] C R be a domain on the real line. Recall that the space L?(a,b) of
square-integrable functions on .2 is the space

b
L*(a,b) = {f: [a,b] — R s.t. Hf||i2 :/a (f(x))%dx < 00},

where the norm is defined through the inner product

e = [ Feas

so that || f Hil = (f, f)2. Sobolev spaces are Banach spaces where the norm involves
derivatives or at least something other than just function values. The simplest of
Sobolev spaces is H'(a,b), which is the space of functions defined by

H'(a,b)={f| feL*(ab), f' € L*(a,b).}
The Sobolev space H' (a,b) is endowed with the inner product
b / /
(£.8) = [ (F0g)+ (g (),
a
from which the norm for H'(a, b) is given by

2 2 2
1A = WAz + 1L

Higher-order Sobolev spaces can be defined as

HHab) = {1 lab] = RIf. oW € 2 (ab) |

with corresponding inner product
bk .
(0= [ X 190
a j=0

from which the norm is obtained as
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2 & )12 )12 k)12 2 2
/
1A = 215 = 1D + 1072 = 11 + A1
j=0

Note: A more general notation for Sobolev spaces is

W (ab) = {f:lab] = R|£.f, . f Y € L(ap) ],

where the norm is defined by

k
IAIE = X 1N = s + 1P DN = 1 1 ucs + A1
j=0

Some examples of simple Sobolev spaces are:

1. W1(0,1), the space of absolutely continuous functions on [0, 1].

2. Wh>(a,b), the space of Lipschitz functions on [a, b].

This definition of Sobolev spaces is based on the fact that the functions involved are
one-dimensional. In fact, to guarantee that H'(a,b) is well defined, one may require
that f be absolutely continuous,

10 =160+ [ @)

However, for higher-dimensional domains, 2~ C IR”, absolute continuity may be hard
to achieve. So, other approaches are used to define Sobolev spaces.

3.8 Exercises

Exercise 3.1. Use either Matlab or R to explore the difference in magnitude of the in-
terpolation error. The goal is to compare global polynomial interpolation with a piece-
wise polynomial interpolation technique such as splines. The point here is to show
computationally that the interpolation error grows exponentially with » for global poly-
nomials but is a small constant for piecewise polynomial interpolants.

1. Generate n = 16 points as before with the Runge function.

2. Use the modified norm based on the Lagrange basis to compute both |7,y ||, for
the polynomial interpolant and || 7. ||¢ for the spline interpolant. Compare and
comment.

3. Repeat Steps 1 and 2 for n = 25,36,64 and tabulate the norms for polynomial and
spline side by side. What pattern emerges?

Exercise 3.2. Consider the smoothing splines objective function
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£ =13 - foa) +x/ ()2,

n i=1

where ¥; = f(x;) + €& fori=1,...,n, f is an unknown function, the knots x; < --+ < x,
are given and the error term is mean-zero with variance 6.

1. If f has two derivatives, use integration by parts to show that

[ wrac= £k

a
where f = (f(x1),f(x2),--+,f(x,))" and K=ATB~'A as defined in Section 3.2

2. Now, show that the regularized risk E; (f) can be written as

Ex(f)=(Y-)T(Y-H)+AfTKf.

3. Deduce that the minimizer of E, (f) is

f=U+AK)!

Exercise 3.3. Consider the function f(x) = ¢* on the interval [0, 1].

1. Find the least squares approximation of f(x) on [0, 1] among all polynomials of
degree at most 2; i.e., find the numerical values

y
=arg mm/ [¢* — (co+ c1x+ c2x?)]*dx.
ccR

where ¢ = (co,c1,¢2) " and & = (¢o,¢1,62) "
2. Graph €%, the first three terms of its power series expansion, and ¢y + ¢1x + érx2.
How do they compare?

Exercise 3.4 (Hilbert spaces and norms). Consider the space .7 = €'([0,1]) of con-
tinuous real-valued functions 2" = [0, 1], and equip it with the inner product

= /Olf(x)g(x)dx. (3.8.1)

Consider the sequence {f,, } with

[ ()2 0<x<1/2
In(x) = { 1—2(1—x))"? 1/2<x<1.

1. Show that {f, } is a Cauchy sequence under (3.8.1).
2. Show that { f,} is convergent pointwise, but not to a continuous limit.

3. Deduce that the inner product space induced by (3.8.1) is not complete.
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Exercise 3.5 (Reproducing kernel Hilbert spaces). Consider the space .7 of func-
tions on [0, 1] with square integrable second derivatives. Equip ¢ with the inner prod-
uct

(1,8) = FO50) + [ 1'0¢ (W (382)
and the kernel
K(s,t) = 1+ min(s,?).
Write K, (-) = K(-,¢) and K(-) = K(s,-), so that K, (s) = K(s,1).

1. Show that K (-, -) is a reproducing kernel; i.e., that

(f,K:) = f(), Vre]|0,1].

2. Fix 2n constants 0 <t <f, <--- <t, < landcj,cp, - ,c, and assume that K; (s)
is piecewise linear in s for each #;. Define the linear combination

f = 2 ciKt;J
i=1

1

and verify that f(s) is also piecewise linear in s.

3. Let 2 be the space spanned by the K;;s and let P be an orthogonal projection of
f € S onto it. Now, . )
H = DA

Write Pf = f # for the orthogonal projection of an element f € .7 onto .

a. Show that (f — f,7,K,) =0, i=1.2,---,n.

b. Consider the system of equations

M=

(Kipy Ki)s = (foK) = f(t), i=1,2,--,n. (3.8.3)

j=1

Show that the coefficients of f,» denoted by c},c3,- - , ¢} can be found by solv-
ing (3.8.3).

c. Show that

fj{”(ti): C;<Klj7Kl,'>:f(ti)'

™=

1

J

d. Deduce that f ,; interpolates f at the points 0 <#; <#, <--- <1, <.

e. Show that f,» minimizes

1 = Flloe = {(f(O) = FO)*+ [ (f'(v) —f’(X))de}
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Exercise 3.6 (Discrete finite-dimensional RKHSs). Hilbert spaces can be finite di-
mensional and this exercise shows one way to construct them using a kernel. The
idea is to use restrict the entries of the kernel to be elements of a finite index set say
& ={1,2,---,n}. Then, let X = (0jj),i,j = 1,2,--- ,n be an n X n strictly positive
definite matrix and set K(i, j) = 0;;. Next consider two vectors of length n, f and g,
and define the inner product

(f.e)=r'z g

Let ¢; = (014,00, ,Oni) | = K(+,i) denote the ith column of the matrix X.
1. Show K satisfies

(cirej) = 0ij = (K(,0), K(-,1)) = K (i, j)-
2. Show that K has the reproducing property

<ciaf> = <K(7l)’f> = fi

3. Parallel to the Mercer theorem, let [®;, ®,,-- -, ®,] be a set of orthogonal vectors
and A;,---, A, be a collection of positive real numbers such that the values of X are
given by

O_U—K i,]) zlkd)k )Dr(j)-
k=1

Derive a new expression of the inner product (f,g) = f' X~ 'g in terms of { D}

and {A}.
Exercise 3.7 (Comparing splines to NW and local polynomials).

1. Refer to Exercises 2.13, 2.14, 2.15. Redo them using spline smoothing in place
of the NW estimator to generate plots of how biases and variances for spline
smoothers, for equidistant and non-equidistant design points, as functions of x com-
pare to those for NW and local polynomials.

2. Refer to Exercise 2.19. Redo it for spline smoothing to see how CV, GCV, and AIC
compare for finding an estimate f*. The R command for this is smooth.spline().

Exercise 3.8 (RKHS for penalized linear regression splines). Consider the function
space

k=1

K
Hx = {fif(x) =Bo+Bix+ Y up(x— ki), Vx € 3&”},

equipped with the inner product

K ~
(f:8) i <ﬁo+ﬁ1x+2ukx—xk Bo+ Brx+ 2 (x— Kk>=ﬁ”[3+uﬂz,

k=1 k=1

for any two functions f and g in %%, where 2~ = [a,b]. Now define the kernel
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K

K(s,t) =145t 4+ Y (s = K) 4 (1 — 1)+
k=1

for 5,7 € [a,b] and assume you have an IID sample & = {(x;,y;),i = 1,---,n}. The
penalized least squares empirical risk functional is

=

Ralf) =, 3 0r= £+ 211

Do the following:

1. Write down the expression of || || 4 in terms of the inner product.

2. Let 7% be the subspace of all those functions that are not penalized. Then, %% as
Sy = I+ FA, where JA = %J- is the orthogonal complement of 7). Let P; be
the orthogonal projection operator onto .. What is ||Pf||> for a given function
feHng?

3. Using item 2, rewrite the expression of the empirical risk functional R) (f).

4. Using your expression from item 3, derive an expression for the estimators of the
unknown quantities.

5. How would the process change if you used quadratic splines in .#% rather than
linear splines?

Exercise 3.9. Suppose you have the artificial data set
P = {(~2,-1),(~1,1),(0,2),(1,4),(2, ~2)}
drawn from the model model
y=PBo+Bix+P(x—1); +e. (3.8.4)
Assume that € ~ N(0, 1) and that the observations are independent.
1. Do the following:

a. Use a boxcar kernel and a bandwidth of 2.0 to fit a local constant regression
curve to 4. (See Exercise 2.8.)

b. Evaluate the estimator at —1,0, 1.
2. Now compare this to a least squares approach:

a. Estimate the parameters in the model.

b. Find a 95% confidence interval for f3,. Does this analysis suggest the knot at
x =1 is worth including?

3. Assume x ranges over [—2,2].
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a. Obtain the formulas for the three linear B-splines with a knot at x = 1 and sketch
their graphs.

b. Using the derived B-splines as your basis functions, find the least squares fit
to the artificial data set. How does the estimate of ¢ obtained using linear B-
splines compare with the estimate of ¢ from item 2?

4. Now, let’s look at quadratic B-splines.

a. Assume that By (x) = 0 and find the formulas for the four quadratic B-splines
with a knot at x = 1 and sketch their graphs.

b. Using the quadratic B-splines as your basis, find the least squares fit to the data
set 2. How does the estimate of 62 obtained via quadratic B-splines compare
with the one obtained with the model of equation (3.8.4)?

5. Use the R functions matplot() and bs() to check the graphs you sketched earlier.

6. Compare the fitted values from the local constant regression with those from the
linear and quadratic B-splines.

Exercise 3.10. Let
H*(0,1)={f:[0,1] > R| f,f,f" €L*0,1)}.

be the second-order Sobolev space on [0, 1]. Define the inner product

(7:8) = af 00) + B O 0) + [ )¢ @)

and let K(-,-) be the reproducing kernel for H2(0, 1). Consider the integral operator as
a linear functional L(f) = fol f(t)dr.

1. Verify L(f) is continuous.

2. Find the representer of L(f) using the inner product.

3. Find the optimal weights w; and the optimal design points #; € (0,1) such that
>, wif(t) is the best approximation of L(f).

Exercise 3.11 (Dimension of a spline space). Fix an interval (a,b) and let zy,2,- -+ ,z, €
(a,b). Denote the space of polynomial splines of order r with simple knots at the z;s
by Sy(z1,22,- -+ ,zx) Here you can prove that dim(S,(z1,22,- - ,2x)) = r +n.

1. First consider the r+ 7 functions 1,x,x%,--- ,x" ! (x— zl)ﬂjl gy (x— zn)fl. Ver-
ify they are elements of S,(z1,22, ,2n)-
2. Verify the r + n functions are linearly dependent.

3. Lets € S;(z1,22, -+ ,2x) and let p; be the polynomial, of degree at most r — 1, that
coincides with s on the interval (z;,z;11).

a. Prove that there exist constants ¢; such that
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—1
pir1(x) = pi(x) =ci(x—z)" .
b. From this conclude that s is a linear combination of the r + n functions.

Exercise 3.12. Let

Hn(0,1) = {f [0,1] =R | f(2) \fzavcos 2mvt +\f2bvsm (2mvt)

with Y (a2 4+ b2)(2nv)™" < oo} :

v=1

That is, H,(0,1) is the space of Fourier expansions with coefficients decreasing at a
rate determined by m.

1. Show that the mth derivatives of functions f € H, (0, 1) satisfy
1 oo
| (s ) = 3 (@ +pem)
0 v=1
2. Let K(s,t) denote the reproducing kernel for H,,(0,1). Show that
K(s,t) = 2 —cos[2mv (s —1)].
3. Show that 1
/ O Wdu=0  fork=0,1,2,---,m
Jo

4. Define the extension of Hy,(0,1), W,,(0,1) = {1} & H,,(0, 1), with norm

If1? = [/0 lf(u)durf/o' l (f<'"><u>)2du

on W, (0, 1) and verify that
R(s,t) = 1+ K(s,1)

is its reproducing kernel.



Chapter 4

New Wave Nonparametrics

By the late 1980s, Classical nonparametrics was established as “classical”. Concur-
rently, however, the beginnings of a different stream of nonparametric thinking were
already under way. Indeed, its origins go back to the 1970s if not earlier. The focus here
is not on large spaces of functions but on classes of functions intended to be tractable
representations for intermediate tranches. The models retain much of the flexibility of
Classical methods but are much more interpretable; not as interpretable as many sub-
ject matter specialists might want but possessing much more structure than the methods
of Chapters 2 and 3. In practice, computer-intensive procedures pervade these more
recent techniques. This permits iterative fitting algorithms, cross-validation for model
selection, bootstrapping for pointwise confidence bands on the estimated functions as
seen earlier, and much more besides.

New Wave nonparametrics focuses on the intermediate tranche. This is where the di-
mension is increasing without bound and the techniques rely explicitly on approximat-
ing an unknown function to an adequate accuracy. That is, bias is admitted but con-
trolled; one chooses, in effect, how far a sequence of approximations should be taken
even though in principle they could be taken to limits that realize a whole infinite-
dimensional space. In some cases, the search is over directions, as in projection pursuit,
and amounts to a sequential approximation because there is no bound on the number
of parameters introduced.

The Alternative regression methods, to be seen in Chapter 6, differ from these in that
multiple models are usually considered, perhaps implicitly. Also, the usual goal is un-
abashedly predictive rather than model identification, although some of the Alternative
methods do that, too.

This chapter discusses several of the famous New Wave nonparametric regression
techniques, including additive models, generalized additive models, projection pur-
suit, neural nets, recursive partitioning, multivariate adaptive regression splines, sliced
inverse regression, alternating conditional variances, and additivity and variance stabi-
lization.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 171
in Statistics, DOI 10.1007/978-0-387-98135-2_4, (©) Springer Science+Business Media, LLC 2009
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4.1 Additive Models

The main problem with multiple linear regression is that the estimate is always flat.
However, the class of all possible smooth models is too large to fit, and the Curse makes
such fits inadequate in high dimensions. The class of additive models is one useful
compromise. Essentially, the additive assumption reduces the size of the function space
in which the regression is done. Rather than general p-variate functions of the form
f(x1,...,x,), one uses a sum of p univariate functions, fi(x1)+...+ f,(x,). Of course,
when p itself is large, the Curse remains.

At their root, additive models in DMML are a generalization of additive models in
ANOVA. Recall the standard ANOVA model

Yiji = 0+ B+ & ji

inwhichk=1,...,K and j = 1,...,J are the levels for factors A and B,and i = 1,...,n
are the samples. In essence, oy is a function oo = ot(k) = oy, where k is an explanatory
variable taking K values. Likewise, P is a function 8 = f(j) = B; is a function of J,
an explanatory variable taking J values. Thus, Y =Y} ; is a function of two discrete
explanatory variables assumed to decompose into a sum of two univariate functions,
one for each variable. If k and j are taken as continuous variables, o and 3 are taken
as functions of them, and p such functions are permitted in the representation of Y,
the result is the class of additive models used in DMML. Another way to see this is
to replace the Xis in a p-dimensional linear repression model with general smooth
functions fi(Xy) fork=1,...,p.

More formally, the additive model for a response is
P
Y =Bo+ Y filx) +e, @.1.1)
k=1

where the f; are unknown smooth functions fit from the data. Thus, additive models
preserve additivity but lose linearity in the parameters. Often, one writes E(Y|X) in
place of Y and drops the error term. The basic assumptions are as before, except that
E[fi(X;)] = 0 and E(g|X) = 0 are required to prevent nonidentifiability; e.g., con-
founding means with y. Additive models are biased unless Y really is the sum of the
terms on the right-hand side, which is not common. The greatest benefit from using
additive models occurs when Y is reasonably well approximated by the right-hand side
so that the bias is small and the reduction in variance from the representation in (4.1.1)
is substantial.

Observe that the parameters in the additive model are {f;}, Bo, and o2. First, recall
that in the linear model it is the parameters that enter linearly and estimating a param-
eter costs one degree of freedom. Fitting smooth functions costs more, depending on
what kind of univariate smoother is used, and, for smoothers, linearity is not in the pa-
rameters (they do not exist) but rather in the sense of (2.1.1). Second, given Yi,...,Y,,
the location 3 will be estimated by 8 = (1/n) X}, Y:. So, without loss of generality,
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take By = 0, if necessary, by replacing the ¥;s with ¥; — V. Third, since Var(g|X) = o>
is typically assumed, it will usually be enough to use the residuals to estimate ©.

Clearly, the central issue in fitting a model such as (4.1.1) is estimating the f;s. De-
pending on how one does this, one can force the selected fis to lie in a specific family
such as linear, locally polynomial, or monotone. One can also enlarge the collection of
additive models by including functions of the X;s. For instance, X; X, can be included
as a p+ 1 explanatory variable. Indeed, one can force the inclusion of certain precho-
sen higher-dimensional smooths such as f(X;,X»), or f(X;Xz) if such an interaction is
desired. Thus, any function of the form f(a;(X),...,a,(X)) can be included for fixed
u and known a;s. However, the larger u is, the less benefit the additive structure gives.
The key benefit of additive models is that, in (4.1.1), transformation of each explana-
tory variable is done automatically by the marginal smoothing procedure. The main
technique for fitting additive models is called the backfitting algorithm. It permits the
use of an arbitrary smoother (e.g., spline, LOESS, kernel) to estimate the {f; }s.

4.1.1 The Backfitting Algorithm

The backfitting algorithm is a central idea that recurs in a variety of guises. So, it’s
worthwhile to provide an overview before turning to the technicalities.

Overview: Suppose the additive model is exactly correct. Then, forallk =1,...,p,

E|Y =Y filX)|x;

=y

= fi(x;). (4.1.2)

The backfitting algorithm solves these p equations for the fis iteratively. At each stage,
it replaces the conditional expectation of the delete-j residuals on the left-hand side
with a univariate smooth.

To see this, it helps to use vectorized notation for the smooth functions. Let ¥ be the
vector of responses and let X be the n x p matrix of explanatory values with columns
X . representing the n outcomes of the kth explanatory variable. Then define f; =
(fe(Xi1)s -, [k(Xin)) to be the vector of the n values fi takes on the outcomes Xj ;.
To represent the actual estimation of the univariate smooths, define L(Z|Cy.) to be
the smooth from the scatterplot of Z against the values of the kth explanatory variable.
Note that in this notation Z € R" typically is an iterate of ¥ — ¥, fx and L(-|Cy,.)
is the linear smooth as an operator on Z. The conditioning indicated by Cy . typically
represents X ., which is used to form the univariate smooth f; being fit.

The backfitting procedure, the Gauss-Seidel algorithm in the additive model context, is
attributed to Buja et al. (1989). The term backfitting arises because the procedure iter-
atively omits one of the occurrences of one of the summands when it occurs, replacing
it with an improved value. One version of their procedure is as follows:

Given Y1, ..., Y, and n outcomes of the p-dimensional explanatory variable X:
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U] Initialize: Set ﬁo = ¥ and set the f; functions to be something reasonable (e.g.,
a linear regression). Set the f, vectors to match.

U Cycle: Fork=1,...,p, set

fi=L (Y—ﬁo— Y fj(X~,j>
J#k
and update the f;s to match.

O Iterate: Repeat the cycle step until the change in f; between iterations is suffi-
ciently small.

One may use different smoothers L(-|C. x) for different variables or bivariate smoothers
for predesignated pairs of explanatory variables.

Technical Description: Following Hastie and Tibshirani (1990), consider the opti-
mization
min  E(¥—f(X)%
Ff =2 filw)

meaning one is searching for the best additive predictor for the overall minimum
E(Y|X). It can be verified that there is a unique minimum within the additive class
of fs and that this minimum satisfies p equations of the form

E((Y — £(X))|X;) = 0.

These equations are equivalent to (4.1.2).

The convention is to write these k equations in matrix form as

E(-[7) E(1X) ... E(|x1) fi(X) E(Y|X1)
E(1Xp) . ECXp) ECLF) /) \fp(Xp) E(Y|X,)

in which E(-|.%) is the conditional expectation with respect to the overall o-field and
so acts like the identity operator. For brevity, write (4.1.3) as

Pf =0y, 4.1.4)

in which Q is the linear transformation with the p projection operators E(-|X) on its
main diagonal and zeros elsewhere.

To use (4.1.4), one needs expressions for the E(-|X;)s that can be used for regress-
ing Y on X;. So, let S; be a collection of linear transformations like L,(-) in (2.3)
that give a linear smooth for Y as a function of Xj by acting on y. That is, let L; be
an n X n matrix from a linear smoothing technique for the univariate regression of Y
on X; so that the data-driven quantity Sy is an estimate of the theoretical quantity
(E(Y1[Xk1), .-, E(Ys[ Xk n)). Now,
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E(Y1|Xk.1)
Ly~
E(Y|Ki.n)

Substituting Ly for E(-|X;) for k = 1,..., p in (4.1.4) gives the data form

I, L ... L fl(xl) Ly 0...0 Y
R | R | L e
L,..L, I, Fo(Xp) 0..0L,) \Y

in which each entry in the p x p matrices indicated is itself an n X n matrix, giving
an overall dimension of np x np. The entries in the two vectors are similarly defined
but are np x p. On the right-hand side of (4.1.5), the application of the L;s is written
explicitly unlike in (4.1.3) where the E(-| X} )s are not written in a separate matrix from
the Y's. For brevity, write

Pf=0v (4.1.6)

parallel to (4.1.4). Also, note that E(-|X;) takes the expectation over all directions Xy
for k # k', but L ignores all values of the X;ss. Ignoring data is not the same as taking
an expectation over its distribution; however, if all the data are random, then ignoring
some of the variables can be much like using the marginal for the rest.

In principle, the linear system (4.1.6) can be solved for the ( fk(XM )yeees fk(Xk,n))s for
k=1,...,p. However, when p and n get large, this becomes difficult. What’s more,
P is often difficult to work with. So, instead of direct solutions such as Gaussian
elimination, iterative methods are used. Often these are superior for sparse matrices.
One such technique is called the Gauss-Seidel algorithm, see Hastie and Tibshirani
(1990), Chapter 5.2. This structure ensures that the backfitting algorithm converges
for smoothers that correspond to a symmetric smoothing matrix with all eigenvalues
in (0, 1). This includes smoothing splines and the Nadaraya-Watson estimator, but not
LOESS or local polynomial regression for degrees larger than 0. Empirically, how-
ever, it is usually observed that the eigenvalues of most kernel smoothers are in (0,1).
(Counterexamples are possible, but hard.)

Implementation of the procedure from the last subsection is as follows. Given starting
A0 .
values f;. , the iterates for m = 1,2, ... are

fkm — I (Y— z ﬁ/n’l]) :

Kk

and one iterates until a Cauchy criterion is satisfied (i.e., the distance between succes-
sive iterates is satisfactorily small). This formalizes the univariate regression of ¥ on

X, using the partial residuals ¥ — Y ﬂxm_l instead of ¥ for each m.
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Clearly, this depends on the formulation of the Cauchy criterion and the order in which
the univariate regressions are done. However, there are general assumptions guarantee-
ing the convergence of backfitting estimators. One is due to Opsomer (2000).

Rearrange (4.1.6) to give f‘ = ffl QY, and set W, = ExP~! Q, where E is a partitioned
n x np matrix with the n X n identity matrix as the kth block on its main diagonal.
Now, each component estimator is of the form fk = WY, and the estimator F for
fxi,..,xp) = fi(x1) + ...+ fp(x,) can be written as

S

]ACZ fk = (W] +...+WP)Y EWQY,
k=1

in which W is the additive smoother matrix for the additive model. Let WK be the
additive smoother matrix for the additive model with the kth variable deleted; i.e., for
the model ¥ = fi(x1) + ... + fi1 (%k—1) + fer1 (%k41) + ... + fp(xp). It is important to
realize that Wék is not the sum Y. Wy

Corollary 4.3 of Buja et al. (1989) showed that ||L;Ly|| < 1 is a sufficient condition
for the convergence of the backfitting algorithm in a bivariate additive model, and this
condition can only be satisfied when the univariate smoother matrices L; are centered
in the sense that they are replaced by L; = (I — 11’ /n)L;. Opsomer (2000), Lemma
2.1 established a p-dimensional generalization of Buja et al. (1989). Specifically, the
backfitting algorithm with smoothers Ly,...,L, converges to a unique solution if

LW | <1 “.1.7)
for k = 1,..., p and any matrix norm || - ||, in which case the additive smoother with
respect to the kth covariate is

Wi=I—(I-LWy)'(1-L). (4.1.8)

In the simple bivariate case, p = 2, Wél =1L,,and Wé2 = L, however, the importance
of additivity is far greater in higher dimensions. Indeed, from (4.1.8) it is seen that a
pth order additive model has smoother matrices Wy, that are expressed in terms of the
smoother matrices from the corresponding (p — 1)-order additive model, Wék, and the
univariate smoother L;. Therefore, the recursion can be built up from p = 2 cases to
p = 3 and so forth.

For the case of local polynomial regression smoothers, Opsomer (2000) also estab-
lishes that the hypotheses of his result hold — (4.1.7) in particular — after centering,
in the absence of concurvity (which will be discussed at the end of this section). In-
deed, asymptotically valid expressions for the conditional bias and variance of the kth
component can be obtained. That is, it can be shown that

E(fe(Rei) — fi(Xe)X) = C+ 6, (\}) o), (4.19)

where %y is the bandwidth for the kth univariate smoother, » = r; are odd numbers
giving the degrees of the polynomials for each k, the bias is evaluated at an observation
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point X; ;, and C is a leading term involving derivatives of f; and other quantities in
the estimator. It can be shown that the &,(1/y/n) term is smaller than the leading
term C = 0,(34_, h;""), which dominates 0, (h;""). Now, the recursivity implicit in
C motivates a corollary,

A )4
E(fi(Xki) — fi(Xei) | X) = O) (Z h,ﬁ“) ; (4.1.10)
=1

showing how the bandwidths add to bound the dimension effects. Moreover, the con-

ditional variance is
R(K) 1 1
X) =02 +o0 () (4.1.11)
) nhe fi(Xe) 7 \nhy

Var( fi(Xc.1)

in which R(K) is the integral of the square of the kernel K defined by the local poly-
nomials. Convergence requires n — o, i, — 0, and (nhy /logn) — o for both variance
and bias to go to zero. Expressions (4.1.7) — (4.1.11) can be combined to give an
evaluation of the MSE; however, the dependence among the X;s makes this difficult
outside certain independence assumptions. Nevertheless, an optimal rate can be found
by balancing the variance and squared bias.

A projection-based approach to backfitting is presented in Mammen et al. (1999), and
is known to achieve the oracle efficiency bound. That is, projection-based methods give
an expression for the bias of a single f; separate from the biases of the fis with i’ #k,
the other additive components, while the backfitting estimator only has this property if
the X;s are independent; see Opsomer (2000), Corollary 3.2. A general discussion of
this approach is found in Mammen et al. (2001). Overall, they find that many smooth-
ing methods (kernels, local polynomials, smoothing splines, constrained smoothing,
monotone smoothing, and additive models) can be viewed as a projection of the data
with respect to appropriate norms. The benefit of this approach is that it unifies several
seemingly disparate methods, giving a template for the convergence of backfitting; see
Mammen et al. (1999) for a version of the convergence of the backfitting algorithm
for a Nadaraya-Watson type estimator. It is important to realize that, in addition to the
varieties of smoother one can use in fitting the components of an additive model, there
are numerous variants of the backfitting procedure. Indeed, one needn’t use the same
smoother in all components, and even if one did, Mammen and Park (2005) give three
ways to do bandwidth selection in additive models. Moreover, there are several backfit-
ting type procedures that can be derived from projection optimizations; see Mammen
et al. (1999).

4.1.2 Concurvity and Inference

As a generality, if the backfitting algorithm converges, the solution is unique un-
less there is concurvity, in which case the solution depends on the initial conditions.
Roughly, concurvity occurs when the {X;} values lie on a smooth lower-dimensional
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manifold in IR”. In the present context, a manifold is smooth if the smoother used
in backfitting can interpolate all the {x;} perfectly. The picture to keep in mind is
a range of smooth deformations of a very twisted curve snaking through a high-
dimensional space, with the attendant sparsity of data. Qualitatively, this is analogous
to the nonuniqueness of regression solutions when the X matrix is not full rank.

The concurvity space of (4.1.4) is defined to be the set of additive functions f(x) =
X4, fj(x;) such that Pf = 0. That is,

filxj) +E

Y filx) xj] =0.

k#j

When the explanatory values do not lie exactly on a smooth lower-dimensional sub-
manifold but tend to fall near one, then there are the same instability problems that arise
in multiple linear regression when the data are nearly collinear. In terms of (4.1.6), non-
uniqueness occurs when there is a vector @ with Pa = 0, for then any solution f has
an associated vector space of solutions f+2aford eR.

It is evident that concurvity in practice occurs when certain relationships among the
smoother matrices Sy hold. So, suppose the eigenvalues of all the Sis are in [0, 1], and
let 4% be the vector space of eigenvectors of S; with eigenvalue 1; these are the vectors
that are unchanged by the smoother matrix Si. (This is nothing like a nulls-pace; it is
like an identity space.) Then Pa = 0 can occur, for instance, when Zle a; = 0 for
some choices a; € 4;. There are versions of the backfitting algorithm that reduce
the effect of this linear dependence among vectors; see Hastie and Tibshirani (1990).
However, in the presence of concurvity, backfitting tends to break down.

In principle, one way to reduce concurvity is to eliminate some of the components f
in the model. That is, once a model has been fit by the backfitting algorithm for a fixed
P, one wants to test whether setting the component to zero would lead to a model with
substantially less explanatory power.

Testing whether a term f; in an additive model is worth keeping has been studied by
Fan and Jiang (2005), where a generalized likelihood ratio test has been developed
along with results similar to Wilks’ theorem. To a large extent, this is a straightforward
extension of the usual goodness-of-fit statistic based on normality. If the likelihood for
the alternative hypothesis (i.e., the full model) is much larger than the likelihood for
the reduced model (i.e., with one of the components set to zero), then one is led to
reject the null. Thus, one needs critical values, techniques for nuisance statistics, and
some applicable asymptotics. Unfortunately, generalized likelihood ratio (GLR) tests
cannot be used directly unless a distribution for € is specified. So, one wants a test that
is robust to the distribution of € and valid for a wide range of smoothers that might be
used in backfitting (provided they converge).

Consider the hypothesis test

G fr=0 vs. J4:f, #0
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for whether the pth variable has a contribution to the model for Y. Since the distribution
of € is unknown, the likelihood function cannot be written down. However, if € were
N(0,6?), the log likelihood function would be

1 n P
—g log(2wo?) — 357 l; (Yi —Bo —];lfk(Xk,i)> ;

in which 30 and f; based on K and bandwidths /; can be substituted. Doing so, setting

2
n R 14 .
RSS1 =, (Yi—Bo— X, filXei) |
i=1 k=1
and maximizing the result over o gives the normal-based likelihood under the alterna-
tive:
n
5
Set ¢(41) = —(n/2)logRSS;. Similarly, under the null, the same procedure gives a
log likelihood for use under .775. Let

2
r_ glogRSSl .

"
Mo 2T
Zgn

" = g
RSSy =Y, <Yi —Bo —pz fk(Xk,i)> )

i=1 k=1

in which f; remains the estimator of f; under .74, using the same bandwidths and
backfitting algorithm. Now set £(.749) = —(n/2)1og RSSy. Fan and Jiang (2005) define
the GLR statistic

n,  RSSy nRSSo—RSS|
., =/ -4 =51 ~5 ’
Mn(H) = U A1) — U(H) = 5 log RSS; 2RSS,

rejecting when 4, is too large.

Although this uses normality, Fan and Jiang (2005) identify general hypotheses under
which A, has a Wilks’ theorem under the condition that local polynomial smoothing
(of order py for X;) with a kernel function K is used as the univariate smoother in
the backfitting algorithm. Their hypotheses are reasonable, including (i) K is bounded,
with bounded support, and Lipschitz-continuous, (ii) the individual X;s and the pairs
(Xi, X ) have Lipschitz continuous densities, bounded support, and are bounded away
from zero, (iii) p + 1 derivatives of the f; exist, the moment Ee* < oo, and (iv)
nhy/logn — oo for all k.

Their main theorem is the following.

Theorem (Fan and Jiang, 2005): Under the four conditions, the asymptotic behavior
of A, (%) for testing 7% against ] is given by

P((A«n(%) ;n,unfdl,n) <t|%) - ¢<I),
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where
L 2 1 L 1
dip=0p | 14+ Y, 0+ /nhl
k=1 k=1

in which py is the dimension of the local polynomial for the kth variable, 2" repre-
sents the design points assumed to be chosen so the backfitting algorithm converges,
and @ is the standard normal probability. Also, if nhi” 0 for k = 1,...,p, then,
conditional on X, a Wilks’ theorem holds:

r[(ﬂ,n(%) ~ XEK#;:' O

The expressions for l,, 0,, and rg are complicated and are given in terms of various
evaluations of K. Fan and Jiang (2005), Section 3, give some further simplifications
and extensions. They also characterize the rates at which this testing procedure can
detect alternatives; these rates indicate how fast the minimum norm of f; may decrease
when testing is at a fixed level o and power at least 3.

The fact that normal-based tests continue to perform well suggests that many regres-
sion diagnostics also generalize to additive models. In particular, ideas from weighted
regression generalize to handle heteroscedasticity. Also, as a pragmatic point, one can
use the bootstrap to set pointwise confidence bands on the f;.

4.1.3 Nonparametric Optimality

In a pair of papers, Stone (1982), Stone (1985) established results that characterize the
optimal behavior of nonparametric function estimators and their use in additive mod-
els. These results apply not just to estimating a function directly but also to estimating
its derivatives; these have been seen when optimizing the bias—variance terms in the
MSE over bandwidths in kernel estimation in Section 2.3 for instance. Accordingly,
one wants optimal rates of decrease for the norms of the difference between functions
and their estimators, even when the function is a derivative. Stone (1982), Theorem
1 shows that if f(x) is r times differentiable in xj,..., Xp, with mth derivative denoted

—

f () for m = 0,1,...,r, and has estimators denoted f("), then

— m 1
||f(m)_f( )||q:ﬁ<n(rm)/(2r+p))’ (4.1.12)

where || ||, is the Lebesgue g norm for some ¢ € R™. If g = o, then the optimal rate is
O((logn) /n)=")/(2r+p) _Clearly, m = 0 is the case one wants for estimation of f. IID
data from continuous or discrete distribution families are usually included in Stone’s
conditions, and the optimal rates are achieved by kernel, spline, and nearest-neighbor
methods.

Expression (4.1.12) extends to additive models because each component in an additive
model can be estimated at an optimal rate so that the overall p-variate estimator has
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the same rate as the individual univariate estimators. In particular, Stone (1985) shows,
under relatively mild conditions, that estimators of the individual components are op-
timal. That is, when the fitting is done using local polynomials such as splines on [0, 1]
partitioned into N, ~ n'/(?*+1) equal intervals, the error is

o I
E(IR" = K" 1B1X) = 6, (nz(’m)/@rﬂ’))’

for k=1,..., p, with the anticipated convergence of the constant,

B(F2%) =2, (1) = 00 (i)

(Stone’s norm actually has an extra weight function in it; here this is set to one.) Fur-
thermore, when m = 0, Stone (1985) obtains

A 1
B~ 7170 = 0, 7y )

indicating that the errors merely add. Of course, if p is large, the constant in the &
term will increase, and if one takes limits as p increases, the asymptotic behavior is
undetermined. Nevertheless, the point remains that the errors in estimating the terms
in additive models are additive.

4.2 Generalized Additive Models

It is clear how the additive model (4.1.1) extends the linear model (2.0.1)). Another
way to extend the linear model is by introducing a “link function” in which a func-
tion of the conditional mean is modeled by the regression function. These are called
generalized linear models (GLMs). The link function generalization can be applied to
additive models as well, giving generalized additive models GAMs.

To see this, first recall the definition of GLMs. Concisely, GLMs are formed by replac-
ing Y in (2.0.1) with g(E(Y|X)) to give

g(E(Y[X))=Bo+piXi+...+BpXp. 4.2.1)

The g is called the link function because if one writes E(Y|X) = u and g(u) = X,
then g is the “link” between the conditional mean of ¥ given X and a representation
in terms of the explanatory variables. As before, (Y|X) = u(X) + €, in which the IID
error terms have constant variance o2, independent of x1,...,x,, and usually have nor-
mal distributions. Taking [E of both sides and applying g gives the general expression
g(E(Y|X)) = p(X), which in GLMs is represented as in (4.2.1). Alternatively, one can
assume g~ ! exists, apply it to the right side of (4.2.1), and recover an expression for
E(Y|X).
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This procedure is mathematically valid but conceptually a little awkward because the
transformation g applies only to the mean. That is, the variability in (Y |X) as a random
variable does not necessarily transform by g the same way its mean does. Indeed,
g((Y|X))=g(E(Y|X)+e)#g(E(Y|X)). Thus, using a regression model on g((Y |X))
is not the same as using a regression model on g(E(Y |X)) because the error terms have
different meanings. See McCullagh and Nelder (1989) for more details on residual
analysis, joint modeling of means, and dispersions.

In practice, GLMs have proved most effective when the response variable ¥ comes
from an exponential family such as the binomial or Poisson. For instance, if Y is
Bernoulli, then E[Y | X = x] = p(x) = P[Y = 1|x]. Then it is natural to set

p(x)
1—p(x)’
which yields logistic regression. McCullagh and Nelder (1989) develop the techniques

for this and several other cases, thereby establishing the usefulness of the common
GLM structure.

8(p(x)) = logit(p(x)) = In

Additive models can be generalized in the same spirit by expressing the link function
as an additive, rather than linear, function of x. For u(X) = E(Y|X), set

R (422)
=

so the left-hand side of (4.2.2) is a transformation of the conditional mean response
variable but everything else is the same as for the additive model.

Domain knowledge is usually required to choose the link function g. For example, the
additive version of logistic regression is

logit(p(x)) = o+ 3 i),

k=1

and this would often be used when the responses are binary and the probability of
a specific response is believed to depend smoothly on the explanatory variables. If
g(u) =logu, then one gets the log-additive model often used for Poisson (count) data.
The gamma and negative-binomial sampling models also have natural link functions.
Note that all four of these cases are exponential families that lead to generalized linear
models which can be extended to GAMs.

Entertainingly, one can choose the functions f; to depend on two explanatory variables
or different numbers of them, or to include a linear model term; a simple case is g(1) =
Bo+x1 1+ 2k_, fi(xk). Factor levels can also be incorporated as indicator functions.

However GAMs arise, the central task is estimating the fis. Often they are estimated
by the Classical, flexible smoothing methods discussed, namely LOESS, splines, and
kernels, even nearest neighbors. To see how this can be done, denote the data by (x;,y;)
for i = 1,...,n, where the y;s are response outcomes and the x;s are explanatory vari-
ables, x; = (x1, ...,xp,,-). Now suppose the link function is just the identity (i.e., the
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goal is to fit Y = f(X) + €). As seen earlier, finding f that minimized ¥, (y; — £(x;))?
would yield an interpolant that was quite rough. However, the roughness of f could
be reduced either by narrowing the class of functions used in the optimization or by

changing the objective function by adding a penalty term.

In the GAM context, write f(x) = fi(x1)+---+ f»(x,) and consider a linear smoother
like cubic splines for each f;. These are piecewise cubic polynomials that arise from
optimizing
n p 2o

D (yi - ka(ﬁ,j)) +> lk/fzﬁ'(f)zdf

i=1 k=1 k=1
for fixed A. The knots of the spline occur at the observed values of each X;. So, a ver-
sion of the backfitting algorithm described in the previous section can be applied to ob-
tain f;s. The core idea is to use a cubic spline smoother on residuals y; — Skt e (Xni)
for each variable x; in turn, continuing the process until the estimated fis stabilize.
As noted, this is a version of the Gauss-Seidel algorithm for solving matrix equations.
When the link function is not the identity, the procedure is applied to g() rather than
Y, as will be seen below for an additive logistic model.

More formally, Hastie and Tibshirani (1996) note that this procedure is equivalent to
solving a set of estimating equations. Let Sy be the (linear) smoothing spline operator
for smoothing the kth variable, for instance. Then, the backfitting equations can be
written as

Jebae) = Sk(y = fi(xr) = . = G — oo = fp(xp)) (4.2.3)

for k=1,..., p. The collection (4.2.3) is a set of estimating equations, and when Sy is
linear, the & can be found. In other words, the n vectors (y;, fi(x1,), ..., f»(xp,i)) can be
found by solving (4.2.3). Other choices for Sy are possible, giving different answers.

To see explicitly what happens when the link function is not the identity consider the
case of additive logistic regression, as in Hastie and Tibshirani (1990), Chapter 6. The
heart of the matter is writing

POXLiy - Xpi)
1 —p(yilxiis e Xpi)

log = Po+ f1(x1i) + .+ fp(xp.i)

for i = 1,...,n. Using some technique such as linear logistic regression, one can get
starting values for By and the fis, say Bo i and fi i, for each i. This gives 0 jnir =
Bo,init + Zle Siinit(Xx,i). Now, one cycle of the backfitting algorithm, with Newton-

Raphson, forms adjusted dependent variables, replacing the y;s fori = 1,...,n with
21,i = Ni,init + M7
Piinit (1 = Piinit)

in which the p; jni;s come from the initial linear logistic model. The weights w; | =
Pi.init(1 — pimir) then lead to a new vector 1| = A,z;, where | = (m,],...,m’n)T,
z= (Z171,...,Z1J,)T, and A, is the operator that uses the weights. The procedure is
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repeated to get the vector 1,, and so forth, until convergence is observed. Analogous
procedures can be developed for other link functions.

4.3 Projection Pursuit Regression

Another extension of the additive model is projection pursuit regression (PPR). The
idea is to use linear transformation of the space of explanatory variables so that the
mean response can be represented in terms of univariate functions of projections of the
explanatory variables. That is, after recoordinatization, one can fit an additive model.
The axes in the recoordinatized space are expressed in terms of vectors B. So, the
Sr(x)s in (4.1.2) are replaced by fi(xB)s. The PPR model is

Y=fx)+e=Po+ Y fi(x¥'B;)+e, 4.3.1)
k=1

in which r replaces p because the number of terms need not be equal to the number
of variables. In (4.3.1), one seeks linear combinations of the explanatory variables that
give good additive model fits when r is small; the linear combinations that one pursues
are projections of the data. There are a variety of techniques for finding r, the Bys,
and the smooths f;. This was popularized by Friedman and Stuetzle (1981), but the
approach originates with Kruskal (1969).

The original motivation for PPR was to automate the selection of low-dimensional
projections of a high-dimensional data cloud, similar to the local dimension discussed
in Chapter 1. It is seen that picking out a linear combination is equivalent to choosing
a one-dimensional projection of X. For example, take r = 1, ﬂT =(1,1), and x € R%.
Write an arbitrary vector x € R? as x = x1 + (x )L, where x| is the component of x in
the direction of (1,1)T and (x;)" is its component in the orthogonal complement of
(1,1)T. Then, xB = x; because it projects xll to zero. Since x; is in the direction of B,
it is of the form A B for some A # 0 giving the space ., as shown in Fig. 4.1. If r = 1,
then the fitted PPR surface is constant along lines orthogonal to .. If f; were the sine
function, then the surface would look like a sheet of corrugated aluminum, oriented so
that the ridges were perpendicular to .. When r > 2, the surface is hard to visualize,
especially since the B,...,B, need not be mutually orthogonal. Consequently, one
expects PPR to outperform other methods when the primary trend in the data lies in
different directions than the natural axes.

The PPR procedure seeks the {f;} and { B ;} that minimize

n

2
)Y [Yi - fk(x?ﬁk)] : 43.2)
k=1

i=1

Backfitting can be used to estimate the fis for fixed s, which are then updated by a
Gauss-Newton search. The steps iterate until convergence is observed. Separate from
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i—j'x

Fig. 4.1 This graph shows an arbitrary x € R? and its projection under B = (1,1)T onto the line
x1 = x2. The space S is the axis that a function f(xB) uses to track the response.

this iterative procedure, extra terms are added (by a univariate search on r) until a
fitness criterion is satisfied.

The basic PPR procedure, modified from Friedman and Stuetzle (1981), is as follows:
Given Y1, ..., Y, and n outcomes of the p-dimensional explanatory variable X:

O Initialize: Start with ¢,(X) = Y;_, fx (XTfSk) as the fitted model for some r > 0

with fks and B «S specified. Form the current residuals e; = y; — (ﬁr(xi) for i =
1,...n. (When r =0, set e; = y;.)

O Check fit: Evaluate a goodness of fit measure on ¢, to see if it is worth adding
another term. For instance, let S, | give a smooth representation for the residuals
(i.e., univariate nonparametric regression of the residuals on the xl-Tﬁ s), and set

n n

F(BH—I) =1- Z(ei _Sf+1(szBr+l))2/zei2’

i=1 i=1

Then, let B, | =arg maxgF (B). (Solving this optimization problem may neces-
sitate backfitting; i.e., cycling through k = 1,...,r to solve

AxTB)=S{Y =Y fux"By)IB:

Kk

iteratively.)

O If maxF (B, ) is small enough, the extra term adds little, so stop and do not
include it. Otherwise, add an extra term f,{(x" 3., ), formed by minimizing
in (4.3.2). That is, iterate over Gauss-Newton to find an optimal B, ; and back-
fitting to identify the new term. Once convergence is achieved, return to the
initialization step.
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Hall (1989) used a kernel-based smoother S in his version of the PPR procedure. This
enabled him to establish formulas for the variance and bias of kernel-based projec-
tion pursuit estimators; see Hall (1989), Section 4. He obtains rates of convergence
identical to unidimensional problems, analogous to the way additive models have uni-
dimensional rates. It seems that the major source of error is in the bias of the estimate
of the B;s.

One can also think of (4.3.1) as a sort of expansion of f in terms that summarize
local, lower-dimensional behavior. Then the successive approximation by residuals
amounts to finding the next term in the expansion to minimize the error in (4.3.2).
Following Huber (1985), Section 9, observe that any square-integrable function f can
be approximated in an L* sense as in (4.3.1): For appropriate choices of B, and f;, one

can ensure )
/ (f(x)—I;Ifk<xTﬁk>> dP — 0,

for various choices of probability IP governing X, by any of a wide variety of series ex-
pansions (e.g., Fourier). If we already have B, ..., B, and fi, ..., f;, then each iteration
of the procedure seeks a minimum of

fesstae=] (s, o

over B, and f,;;. For fixed B;s, the minimum under squared error is achieved by
() =E(f(X)— it f(XBy)|XB,., = z), where the PP is the distribution of X
used in the conditlonal expectatlon Also, the residual norm

E erJrl f0+1 Tﬂr+] = ( %«f»l(x))_E rftl(x)z

is decreased the most by choosing B, | to maximize the marginal norm E£7| (X)?; if
[|B,,1]| is a unit vector, then a maximum must exist. This shows that the norm of the
term added at the r+ 1 stage, f”p ! (x), goes to zero, although that does not immediately
imply that e, goes to zero. However, it would be strange if it didn’t, and sufficient
conditions are given by Jones (1987).

An extra wrinkle with PPR is that representations such as (4.3.1) are not unique. In
fact, Huber (1985) notes that when p = 2, the function f(x) = x1x, = (1/4ab)[(ax; +
bx;)? — (ax; — bxy)? for any a, b. Thus, f has infinitely many projection pursuit addi-
tive models. Despite this, there is a uniqueness result that establishes that the difference
between two representations for the same function is a polynomial. In addition, there
are functions that cannot be represented as a sum like (4.3.1), such as f(x) = e*1*2.

As with the backfitting algorithm, there are numerous variants of PPR. One that is
particularly important is due to Chen (1991), who used a polynomial spline smoother
for the S in the generic procedure above. This variant of PPR is more complicated
than others but permits characterization of the rates of convergence of ¢,(-) to f(-) and
verification that optimal rates are achieved.



4.3 Projection Pursuit Regression 187

To present the main result, some careful definitions are needed. First, the r projection
vectors B, are assumed to lie in a set A, = {B,...,B,} C SP~!, where SP~! is the unit
sphere in p dimensions. Also, the angle between any B and the hyperplane generated
by the B s for kK’ # k is assumed bounded below by a constant. Essentially, this ensures
the terms in ¢, will not proliferate excessively and lead to redundancy in the regression
function. Also, the domain of the Xs must be restricted to B,,(O7 1), the unit ball in
p dimensions. The space of permitted approximands is now all sums of polynomial
splines of degree ¢ on [—1, 1], with equispaced knots at a distance of 2/N, denoted

S(Ar) =S(Ar,q,N) = {SAr(x) =M+ Z sk(xTBk)} :
k=1

As a vector space, S(A,) has finite dimension rN +r(g— 1)+ 1.

For a set U D B,(0,1) and a fixed A,, let U(A,) be the p-dimensional preimage of
B,(0,1) in U under the projections in A,. That is, set

{x| S (x"By)? <1x€U}

Biea,
Now, the estimator for f is ¢, € S (A,), given by

~

B(x) = Grna, (x) =, + D Wia, (x" B, (4.3.3)

k=1

which achieves

n

arg min Y (yi— @ (x:))* Lya, (%),
$es(a,) =1

a special case of (4.3.2). Chen (1991) shows that (4.3.3) has a unique solution; let it be
defined by the (linear) smoother S, 4, = Sy, 4N

Finally, Chen (1991) uses the following procedure:

[J For given r and A,, find qS,}Ar.
[ Given ¢,, find the residual sum of squares

n

RSSu(Ar,q,N) = Y (yi = Drna, (%)) 15, 0.1 (%)
i-1

and the corrected form of it,

FPE,(An,q.N) = ng,(0,1) +tr(Sn7ArIBp(0,1)) o RSS,(A,,q,N)
e ng,0.1) — r(Sna,dp,0,1)) ng,01)

where ng (o,1) = #{ilx; € B,(0,1)} and Iy (o 1) is the n x n diagonal matrix with
ith diagonal equal to 1 when x; € B,,(0, 1) and zero otherwise.
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[ The estimate ¢, is taken as any of the (13,7Ars with 7 < p that achieve the minimum
of FPE,(A,,q,N) over the A,s satisfying the minimum angle requirement.

For this procedure, Chen (1991) establishes optimal convergence. One of the issues is
that the models in PPR can have large rs and so be very flexible. This means one must
distinguish carefully between finding structure in the data that is true and incorrectly
finding structure that has arisen purely by chance. Two of the four major conditions
for Chen’s theorem help to avoid spurious findings. They are (i) the density of X is
bounded away from 0 and infinity on its support and (ii) infy Var(Y|X = x) > 0 and,
for a large enough 7, sup, E(|Y — ¢(x)|?|X = x) is bounded. Condition (i) ensures the
smoother is nontrivial, and condition (ii) ensures y; — ¢ (x;) is not too small.

Theorem (Chen, 1991): In addition to (i) and (ii), assume (iii) that the true function
¢ is of the form (4.3.1) and can be written as

bo() = o+ S vi(xBy).

k=1

for a collection of rg bounded, g times differentiable, Lipshitz-continuous functions v
of order /, and (iv) that A, in ¢ satisfies the minimum angle bound.

Let N ~ n'/2Pt1) where v = ¢ + . Then

1 & . c

lim sup P =Y () —00(x)) g 01> ——— | =0. O

I atistying (4.1 I (”121 (xi (x:)) Bp(0.1) = av/(2v1)
with 3 f; as in (i)

Thus, as long as the true function is representable as a sum of functions of univariate
projections, the PPR fit is a consistent estimator of smooth surfaces. Informally, the
PPR estimator converges to a unique solution under essentially the same conditions
as for the additive model; i.e., the values of the explanatory variables do not lie in the
concurvity space of the smoother, and the functions in f are not too small or functions
of nearby projections. Incidentally, Chen’s theorem also establishes consistency and
optimality for purely additive models if the B;’s are chosen to have 1 in the kth place
and zeros elsewhere. Note that Chen’s method uses splines, obviating backfitting.

Zhao and Atkeson (1991) have a theorem that is conceptually foundational: PPR es-
capes the Curse on spaces that do not admit a finite-dimensional parametrization if
the function space is suitably restricted otherwise; see also Zhao and Atkeson (1994).
In their theorem, the restrictions include square differentiability of the target function
(which is mild) as well as two other sorts of properties whose restrictiveness is more
difficult to assess. One is that the true f can be represented as an integral of ridge
functions,

1) = [ sxByw(B)ap.

where 2, is the unit sphere in d dimensions, equipped with a weight function w on
it, and g is some fixed function. The other assumptions are smoothness requirements.
The Zhao-Atkeson theorem seems to go beyond its predecessor Barron’s theorem (see
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Section 4) in that it may reduce to the case for single hidden-layer neural networks if
the fis are known to be sigmoids. Moreover, PPR regression includes much beyond
single hidden-layer neural networks. (General neural networks do not reduce to the
PPR case in any obvious way, either.) The proof of Barron’s theorem is explained
below and has some features in common with the more complicated proof of the Zhao-
Atkeson theorem which is not presented here.

Overall, PPR works best when some explanatory variables are commensurate; e.g., in
predicting life span, similar biometric measurements might be bundled into one linear
combination, and income-related measurements might form another. Also, heuristi-
cally, PPR avoids the Curse in a limited sense: Because it is intended for settings in
which most of the regions of a high-dimensional space are empty, it focuses on low-
dimensional linear projections. This means that the force of the Curse kicks in when
the structures are highly nonlinear; i.e., typically only at relatively refined levels of
approximation. As can be surmised from the procedure, PPR can be computationally
demanding. However, using principal components as the explanatory functions in a
regression, see Chapter 9, is a special case of PPR that can be easily implemented, as
it is based on the eigenvectors of the estimated covariance matrix.

4.4 Neural Networks

Originally, mathematical neural networks were intended to model the learning and pat-
tern recognition done by physiological neurons. This is described in Hebb (1949), who
modelled a synapse as a link from the output of one node to the input of another node,
with a weighting related to the correlation in their activity. Thus, groups of neurons
could be linked and thinking modeled as the activation of such assemblies. Rosenblatt
(1958) continued the Hebb model, focusing on how the links from neuron to neuron
could be developed; in particular he proposed the basic mathematical model still used
for (artificial) neural networks (NNs). His basic unit was called the perceptron (now
called a “node”), which upon receipt of a signal would either respond or not, depending
on whether a function exceeded a threshold. Although this model has not been con-
sidered applicable by neurophysiologists since the 1970s, the mathematical structure
remains of great importance in classification and regression contexts.

The class of NN is very large and somewhat complicated because it involves network
architecture as well as estimation of parameters once the network is fixed. The simplest
NN has the form

Y =B+ nyx Bi+vi)+e, (4.4.1)
k=1

where x is a p-dimensional vector of explanatory variables, the ;s are projection
vectors as in PPR and v shifts the argument of the sigmoid function y to locate the
projected vectors in the right place. The typical choice for the sigmoid function is
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1
~ l+exp(v+x"B)’

(x) =y p(x) (4.4.2)

which is shown in Fig. 4.2. More generally, any nondecreasing IR-valued function y
satisfying y(¢) — 1,0 as r — oo will do.

Fig. 4.2 The logistic sigmoid from (4.4.2) is one choice for the node function.

The network associated with (4.4.1) is shown in Fig. 4.3. It has a single “hidden layer”
with r nodes, each corresponding to a term Y (+). The layer is called hidden because
only the linear combination of their outputs is actually seen as the sum X. The network
is feedforward in the sense that the outputs from the hidden layer do not affect the
earlier inputs. The p-dimensional input X is written as having been partitioned into
N subvectors X j SO X = (Xj,...,Xy). The st represent blocks of data that can be
treated differently if desired. Proponents of NNs argue one of the main strengths of
NN is their ability to accommodate multitype data.

Like GAMs and PPR, single hidden layer NNs are variants on basic additive models.
GAMs, for instance, merely adds a link function. Note that single hidden layer NNs
are a special case of PPR — regard the node functions as in (4.4.2) as fixed versions of
the univariate fis so that only the projection vectors need to be identified. The general
relationship between multi-layer NNs and PPR is less clear: In NNs the functions are
fixed and there are more parameters while in PPR the functions must be estimated but
there are fewer parameters. So, it is difficult to compare the spaces they span.

Overall, however, feedforward NNs, like PPR, are best regarded as a rich class for
nonlinear regression. Indeed, NN structures go far beyond additive models by iterating
the composition of nodes. For instance, a two hidden layer neural network with s nodes
in the second hidden layer extends (4.4.1) by treating the r outputs from the first hidden
layer as inputs to another layer of nodes. That is, set v, = y(xp 1k T Vig) for k=
1,...,r =r; and form

o= w1, ¥) - By j+ V2, )) (4.4.3)
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OUTPUT

HIDDEN
LAYER

Fig. 4.3 Data of N types is fed into the first (and here only) hidden layer. Each node y; in the hidden
layer is the composition of the sigmoid y with an affine function of X defined by B, and v;. The
outputs from the hidden layer are combined linearly to give the overall output X.

for j =1,...,m, where the ﬂz. ;S are ri-dimensional and the v, ;s are real. Then the
overall output from the second layer is

n
Z=PBy+ D 10

j=1

That is, a single hidden layer NN structure is fed into the second hidden layer, which
is combined as before. Evidently, this can be repeated to form many layers, and the
structure becomes even more complicated if the output of one layer need not be fed
forward to the next layer but can skip one or more layers. A class of NNs that includes
more than one hidden layer is a reasonable class of models for nonlinear regression but
does not obviously contain PPR or additive models, nor do they necessarily contain
NNs with more than one hidden layer.

Consequently, when implementing an NN model, one often must choose the network
architecture first before estimating the coefficients within each layer. Architecture se-
lection, r in the case of (4.4.1), can be done by cross-validation or by simulated an-
nealing (both discussed briefly in Chapter 1). Even so, it is often important to limit
the number of nonzero parameters; this can be done by regularization (also sometimes
called shrinkage methods), which amounts to penalizing the squared error, usually by
A times a squared error penalty on the parameters.

Observe that multilayer neural nets reduce to linear models if y is linear. Indeed, if the
input vector to the first layer is X, then the output of a first-layer node is ¥ = WX for
weights Wy. If this is fed into a linear second-layer node, then the output is Z = Wo W X,
again a linear function of the inputs. Repeating this under squared error makes the
overall SSE of fitting the NN, E, reduce to the usual SSE in linear models, although
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the linearity only holds if the parameters are redefined to absorb the y;’s into the [s.
Another choice for y is thresholding, so that the output of a node will be, say, O or
1, depending on the value of its argument, say > w;x;. This is often not very good
because thresholding is relatively inflexible. As but one instance, thresholds are unable
to express an “exclusive or” function using linear functions of its inputs. For instance,
if we want a large value when either x; = 1 or x = 1 but not when x; =x, = 0,1, a
simple threshold will often assign 1 whenx; =x; =1 orx; =x, =0.

Since the point of NNs is to make use of a rich class of functions, there are many
theorems about their ability to approximate functions; one will be stated in Subsec-
tion 4.4.3 . Some experts take the view that single hidden layer neural networks are
a large enough class because large enough sums of them can approximate essentially
any function. Others argue that neural network performance can be significantly im-
proved in many applications by careful selection within larger classes of NN models.
In other words, the decrease in bias from using a deeper net is predictively better than
combining many nodes in a single layer. It is an open question how the variability
from model selection (either the number of nodes or the configuration of the mul-
tilayer net) affects the prediction, but some authors have examined this question by
using simulated annealing repeatedly to assess the impact of model selection. A good
overview of these issues can be found in Bullinaria (2004). Here, it will be enough
to outline the main computational procedure for estimation, called backpropagation,
discuss some straightforward aspects of inference and approximation, and see that,
surprisingly, NNs evade the Curse, at least in a formal sense.

4.4.1 Backpropagation and Inference

If the number of nodes, r in (4.4.1) or (r,s) in (4.4.3) for instance, is assumed big
enough that the degree of approximation is adequate (i.e., model misspecification can
be neglected), then the only task is to estimate the parameters. If one must estimate
all the parameters, the main technique is called backpropagation; it is an example of
a gradient descent. “Backprop”, sometimes called a general delta rule, is an iterative
fitting technique based on improving an initial estimate by shifting it in a direction in
the parameter space along which the empirical error decreases.

Start with a measure of performance such as the sum of squared errors

E(W) = i(y,- — Net(x;, W), )? (4.4.4)

i=1

in which Net is the function described by the NN and W generically indicates the
parameters in the NN. In (4.4.1), W is Py, the Bys, the s, and the ys. For (4.4.3), W
includes 3, the [32’js, the v, js, and the 7, ;s as well.

In general, estimators W, satisfying (1/n) X}, m(Z;,W,) — 0 are consistent for a so-
lution to E m(Z;,w) = 0, where Z; = (¥;,X;) and m represents a general optimality
criterion. If m is chosen to represent squared error as in (4.4.4), then it is possible to



4.4 Neural Networks 193

find ¥ = argminy £(W) that is consistent for the minimizing Wopr = argminy E(Y —
Net(X,W))?; see White (1981). Moreover, such s are typically asymptotically nor-
mal. Indeed,

Vn(w—w) — N(0,A7'BA™")

in distribution, where A = E V2E (Wopt), and B = Var(y/nVE (w,,)). Consistent esti-
mators are given in White (1989) as A = V2E (W) and

B =(1/n) ) VNet(x;,w) VNet(x;,w)(y; — Net(x;, Ww))2.

i=1

Despite the seeming simplicity of this procedure, it can be computationally demanding
because the error surface as a function of W is very complicated, with many local
maxima and minima in which a solution can get trapped. Even so, a method based on
Taylor expansions (i.e., gradient descent) or backpropagation is often used. Start with
a guess wy for the value of w,,,. Choose a sequence of “learning rates” 1 = 1 > 0
and consider the recursion

w; =w; 1 +n(VNet)| | (yi—Net; ), (4.4.5)

in which Net;_; = Net(x;,w;_; ), and VNet;_; is the Jacobian matrix from Net;_;. The
factor 7 is a learning rate in the sense that it specifies how much w; changes as a
consequence of the Newton updates; in some cases 11 = 1;. Note that this version of
backprop implicitly does as many iterations as there are data points, and the formal
theorems assume 7 increases indefinitely.

A more explicit form for this local gradient descent can be derived for the case where
the nodes in the network are fully connected from layer to layer in a grid. Thus, each
node j=1,...,rpatlayer ¢,/ =1,..., Lreceives inputs from all r,_; nodes at the earlier
layer but from no other nodes. If the s are suppressed by incorporating them into a
coefficient on a constant variable at each layer, then the generic node function is

re—1
V=V ( Z WEI.,uwé,j,Ll) (4.4.6)
u=1

for j =1,...,r; and weights W = (wy ; ,|¢, j,u). Now, if there are L layers, the error
can be written in terms of the Lth layer as

2
EW)=73 <}’i -y I/IL,MWL,M> (4.4.7)

i=1 u=1

since r;, = 1 means there is only one node function after the Lth layer to match the
response Y. Clearly, (4.4.6) can be substituted into (4.4.7) to effect the composition of
functions. So, for instance, the outputs from the second layer of a two-layer network
that get linearly combined to fit the Y;s are



194 4 New Wave Nonparametrics

' r N
w27j(.) = II/ <2 ll,lsuwlsjAM) = ‘V (Z II/ (2 XVWO,H,V> W17j,u> (448)
u=1 u=1 y=1

for j =1,...,r>. In this form, it is easy to see how to take the partial derivatives of y ;,
and hence E (W), with respect to any of the weights wy, ; ;.

It is seen that there are two sorts of backprop algorithms. The first, from (4.4.5), as-
sumes an infinite sequence of variables and uses their average properties to see that
they converge to a minimum. If the minimum is unique, then the process is convergent
to a useful estimate. More typically, the roughness of the error surface for a fixed sam-
ple as a function of the parameter w is so high that there are numerous minima. So,
the theoretical backprop cycles through all the minima like a mixture over the limit
points. The usefulness of this construction is the formal obtention of consistency and
asymptotic normality.

The second sort of backprop is pure gradient descent. This rests on Newton-Raphson,
and the iteration is over the location of w; as determined by derivatives of the empirical
error, not cycling over the individual data points (which would formally limit the pro-
cedure to n iterations unless repetitions were allowed). This kind of procedure takes
derivatives explicitly in (4.4.7) for use in (4.4.5) for the Newton step so as to adjust
the weights W to reduce £(W). It has a tendency to converge to a unique limit (which
is good) but does not deal with the possibility that the limit is purely local, not global
(which is bad). In practice, a variety of starting values wg can be used to search over
limits in an effort to ensure a global minimum has been found.

The central idea in backprop is to make a change in one or more of the weights so
that £ (W) is reduced. A large change in a weight wy ;,, only makes sense if (i) there
is a big discrepancy between the actual output and desired output of a node, (ii) the
discrepancy depends on the weight wy ;,, and (iii) the change in the weights leads to
a correspondingly large change in E. In stating these conditions, model uncertainty
means that the true regression function is arbitrary and need not be any neural network
close to the current estimate. Since wy ; ; is the weight on a connection between a node
in layer ¢ and a node in layer £ — 1, a change in the input to a node results in a change
in its output that depends on the slope of the function, its sigmoid in particular. The
steeper the sigmoid, the faster the learning but the harder it is to get stable values.

Alternatively, and more typically, a penalty function (usually the sum of squared pa-
rameters) is added to £(W) so that the solution is smoothed, as with splines. This
decreases the chance that a solution will get trapped in a local minimum. Because the
landscape (i.e., the error as a function of the architecture and parameter values) of NNs
is so rough, this is a major problem for NNs. Indeed, there may be changes in architec-
ture and parameter values that are well within any reasonable confidence regions that
give a substantially better fit and prediction. The penalty term ensures the objective
function is more bowl shaped, for instance in the squared error case, so that the bottom
of the bowl is likely to represent a better model.

To obtain formal statements for the consistency and asymptotic normality of backprop
estimators from (4.4.5), at least for single hidden layer NNs, a small detour into recur-
sive m-estimators is helpful; results for backprop will be special cases. To state this, let
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Z; = (¥;,X;) be a sequence of IID 1+ p-dimensional random vectors with Euclidean
norm ||Z]] < A < oo and let m : R"*? x R — R’ be smoothly differentiable with
mean M(w) = Em(Z;,w) < o for w € R". Given n; and an initial wy, the recursive
m-estimator at the ith step is

Wi = Wi +nim(Zi, Wi—1).

The next result is from White (1989), who credits Huber (1967) and Ljung (1977).
Theorem (White, 1989): Suppose < 1n; > is a divergent sequence so that

ini:‘x’v sup (1_ ! ) < oo, and inir<°°7
i=1 i i=1

i \Mi M- i-

for some r > 1, and suppose that there is a smooth Q : R’ - R so that, Vw € R’ , the
inequality (VQ(w))M(w) < 0 holds.

Then, either w; — Q = {w: (VQ(w))M(w) = 0} as n — oo, in the sense that inf ||w —
Wil — 0 for w € {w: VQ(w)M(w) = 0}, or w; — oo, with probability 1. OJ
Extensions to this theorem ensure M(w*) = 0 for limit points w* of w; and that w;

tends to a local minimum of Q(w). Moreover, White (1989) establishes the results for
the case of multidimensional outputs.

Now, the consistency of backprop in single hidden layer NNs is guaranteed by the
following. Recall that the empirical error is £ (w), and VNet(x,w) is the 1 x £ Jacobian
matrix of Net wrt w. Set E(w) = EL;(w), where L;(w) = (y; — Net(x;,w))?, so that
VL;(w) = —2VNet(y; — Net(x;,w)). For notational convenience, set

VL; =VLi(w"), Net;=Net(x;,w;,1), and VNet; =V (Net(x;,W; 1)),

so that (4.4.5) becomes
» » —T —~
Wi =Ww;—_1+ T],’(VNeti,I)(y,' — Net,'_l). (4.4.9)

Corollary (White, 1989): Assume (i) Z; = (¥;,X;) are IID 1 + p dimensional random
vectors, (ii) the output Net(x, w) from the single hidden layer NN to fit ¥ is of the form
(4.4.8) with r, = 1, or, equivalently, y on a linear combination of outputs from (4.4.3),
and (iii) the sequence < 1); > satisfies the conditions of the theorem.

Then, the backprop procedure in (4.4.9) has iterates w; that converge to
Q*={w:EVL,(w)=0}

with probability 1 or diverge to o with probability 1. Moreover, if E(w) has isolated
stationary points with J* = E((VL;) TVL}) positive definite for w* € Q, then #; con-
verges to a local minimum of E (w) with probability 1 or to e with probability 1. O

Note that White’s result is for a single output formed from the nodes in a single hid-

den layer NN. The reason is that White’s result extends to multidimensional Y. This
suggests the whole framework can be extended to multiple hidden layers. However,
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such an extension would be difficult involving theory from nonlinear least squares es-
timation. White’s formulation also permits the analogous conclusion using different
sigmoids at different nodes or no outer sigmoid. Indeed, the setting of Barron (1993)
discussed in the next subsection does not use such a final sigmoid and demonstrates
how to estimate the NN with risk &'(1/n). Of course, it is easy to see that for any
sigmoid of a linear combination of first-layer outputs, there will be a linear combina-
tion of a (possibly larger) collection of first-layer nodes that can approximate it to any
desired accuracy.

Given the consistency for backprop from the proposition, a result for asymptotic nor-
mality can be stated. The proof involves techniques from Gaussian processes that are
not central to the development here, for which reason they are omitted.

Theorem (White, 1989): Strengthen assumption (ii) of the corollary to ensure that the
derivatives of the output function Net and its constituents exist and are bounded. In
place of (iii), assume 1; = §/n for some & > 0. Then assume that w; — w* a.s. for a
stationary point w* of E(w) and that J* is PD. If 6 > 1/2A*, where A* is the smallest
eigenvalue of V2E (w*), then

Vn(w; —w*) — N(0,PHP™ )

in distribution, where P is the orthogonal matrix such that PAP ! = V2E (w*), in
which A is the diagonal matrix containing the eigenvalues A1, ...,4, of V2E(w*) in
decreasing order and H is the £ x £ matrix with elements h; j = §*(8Ai+84;—1) 'K},

fori, j=1,...,¢, where the matrix K* = [K; ;] = P~ 'J*P. O]

It is seen that this result can be difficult to apply. Indeed, such results are necessar-
ily difficult because although a given true function f has a unique representation in
terms of a limit of single-layer feedforward neural nets, the parameters defining the
approximation at each step may be quite different. In practice, it’s as if several differ-
ent parameter vectors give the same functional form but cannot be distinguished. Even
when this can be avoided, as a generality, PHP~' — A~'BA~! is positive semidefinite;
see White (1989), Section 5. Thus, in contrast to the nonlinear least squares estima-
tor, backprop is not efficient because A~'BA~! is the best possible. There are ways to
improve backprop, but they are beyond the present scope. Despite this, backprop as a
technique is often used because it does readily give point estimates and bootstrapping
can be used to indicate precision. In all of these methods, it is unclear in general how
quickly the asymptotics backprop, nonlinear least squares, risk-based methods, and so
forth become dominant.

Germane to the problem of identifying NN is the asymptotic behavior of least squares
estimators in nonlinear regression settings, namely consistency and asymptotic nor-
mality. Standard results of this sort, for general nonlinear models, can be found in Gal-
lant (1987). One problem is that asymptotic normality in NNs can occur regardless of
whether the model whose parameters are being estimated is true. Consequently, White
(1981), Section 4 develops goodness of fit analogous to the x> test but for general
models, based on squared residuals.

There is also a well-developed Bayesian theory of NNs; it rests on putting priors on
the number of node functions and their architecture while also assigning priors to the
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parameters in each NN model. As is typical in this kind of Bayes context, the compu-
tational implementation to find the posterior is a major challenge. See Lee (2004) for
a good treatment.

4.4.2 Barron’s Result and the Curse

In 1991, Andrew Barron startled statistics by showing that neural networks can evade
the Curse of Dimensionality. Because NN can be related to other classes of models,
analogous results are expected for other settings. Indeed, Zhao and Atkeson (1991),
Zhao and Atkeson (1994) give such a result for PPR. Here, an intuitive sketch for
Barron’s theorem is given; the full result is stated at the end of this section and proved
in the Notes at the end of this chapter.

Recall that for function estimates f(x) of a true function f(x), one typical measure of
distance is the

MISELf] = By | [170)~ S x|

where the expectation is taken with respect to the randomness in the data {(¥;,X;)}.

Before Barron (1991), it had been thought that the Curse implied that, for any re-
gression procedure, the MISE had to grow faster than linearly in p, the dimension
of the data. Barron showed that neural networks could achieve an MISE of order
O(r~')+ O(rp/n)Inn, where r is the number of hidden nodes.

Barron’s theorem is a tour de force. It applies to the class of functions f € I on R”
whose Fourier transforms g(w) satisfy

[ lolg@)do <c.

where the integral is in the complex domain and |- | denotes the complex modulus. The
importance of the class I;. is that it is thick, meaning that it cannot be parametrized by a
finite-dimensional parameter. However, as it is defined in terms of Fourier transforma-
tions, Barron’s set is not the full nonparametric function space. It may be best regarded
as an unusually flexible version of a parametric model. Indeed, it excludes important
functions such as hyperflats. However, it contains open sets in the topology.

With much oversimplification, the strategy in Barron’s proof is:

e Show that, for all f € I, there exists a neural net approximation f* such that || f —
FIP<c/n.

e Show that the MISE in estimating any of the approximations is bounded.

e Combine these results to obtain a bound on the MISE of a neural net estimate f for
an arbitrary f € I..
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Barron’s theorem ensures that these NNs can approximate any element in a large space
with n terms to order O(1/n) independently of the dimension p of x.

Since PPR is a generalization of single-layer feedforward NN, observe that if a func-
tion f on IR” admits a representation in both function spaces, we have that

flx)= i fi(x'6) = i YW (Bex + i)

k=1 k=1

PPR permits r distinct functions, absorbing the coefficients y; and the locations vy
into them, while NN restrict the generality of the representation. The function space
one would associate with PPR is clearly larger. Since the Zhao and Atkeson (1991)
approach relies on smoothness classes, it is unclear how much larger their function
space is than the collection of all NNs. The import of their result is that, like NNs, one
can obtain rates of convergence of an L, error that goes to zero independently of p
when the number of terms in the PPR sum is n and the rate is &'(1/n).

Indeed, one can use Barron’s theorem on each term in the PPR sum of f to get rm
terms (m nodes for each NN that approximates an f;) that are needed to approximate
f to order O(1/r), provided the functions f; are in I;., the space of functions used in
Barron’s Theorem. This will give a generalization to a class of PPRs, but is a weaker
statement with a narrower domain of application.

4.4.3 Approximation Properties

Neural nets are an exceedingly rich class of models that can be very unstable because
very different NNs may fit the same set of data equally well. In other words, small
differences in the data, or estimation procedure can lead to very different networks with
large differences in performance. This arises because they are so flexible: The number
of nodes, the architecture, the large number of parameters, and the sigmoid function
can all be chosen from very broad classes. This instability is one reason NNs are so
hard to interpret and why regularization is so important. In Chapter 7, the computed
examples will show that even with regularization NNs give fairly irregular curves.

NN can also be used in a classification context. Binary classification can formally be
regarded as a special case of function estimation in which the function to be estimated
takes only values +1 so the task is to identify the set on which one of the values is
assumed. Thus, NN can be used to find the decision boundary. For simplicity, assume
the Y;’s are binary, taking values —1, 41, and the model is of the usual form ¥ =
f(x) + €. (Technically, this model is incorrect. However, it is useful.) A NN classifier
should provide an estimate f, from a class of NNs, that tries to express Y as a step
function of the features with regions for —1 and +1.

To see that NNs can do classification as well as regression, it is enough to show an
approximation theorem: Essentially any continuous function can be approximated by
an NN of sufficiently large and complicated structure in any “reasonable” measure of
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distance in any function space. One way to state this more formally, for single hidden
layer NN, is the following.

Theorem: For any sigmoid function v, any continuous function f(x) for x € [0, 1],
and any € > 0, there is an integer r and real constants Y, B j, and vy for j=1,....,p
and k= 1,...,r such that

<e. U

r p
flxr, --->xp) - 2 134 < ﬂk-jxj - vk)
k=1 Jj=1

Note that this theorem only requires single hidden layer networks, a relatively small
subclass of all NNs.

It is obvious that when the true function f assumes values 1 and {f(x) =1} has a
smooth boundary that NNs can give a continuous approximation Y to f that is within
any preassigned € of f away from the boundary. Then, one can replace the continuous
approximation Y with

1 if y(x) >0,
Wclass(x) = { -1 ify(x)<O.

Alternatively, one can choose a sequence of continuous functions y; converging to the
discontinuous function f as ¢ — oo. Thus, step functions with nice boundaries can be
approximated in a limiting sense.

Even when cross-validation or simulated annealing can be used to fix a network archi-
tecture and gradient descent minimizing E(W) = Y, (y; — Net(x;, W))? can be used to
give the weights in an NN, the results may not be satisfactory. One way to investigate
this is to examine the old nemeses of bias and variance. Recall that from standard de-
cision theory the optimal theoretical minimizer under squared error is the conditional
mean. So, if possible, g(x) = E(Y|x) is a natural choice to be estimated by finding
the weights (and architecture) achieving the minimum of (E(Y|x) — Net(x,W))? on
average over random data D. That is, write

E(E(Y |x) — Net(x,W,D))? = (E(Y|x) — ENet(x, W, D))?
+E(ENet(x, W, D) — Net(x,W, D))

The first term is a bias, or approximation error, and the second is the variance of the
approximation Net(x, W, D) over possible data sets D. Thus, the optimal net, as ever,
is a trade-off between variance and bias. The two extreme cases would be a constant
network that has zero variance but terrible bias and a network so large that for D
with sample size n it could fit every data point perfectly giving zero bias but terrible
variance. In practice, one deals with these by using networks that are neither too big
nor too small and tries to ensure that the error is small over the range of NNs that can be
estimated adequately. As will be seen in the computations of Chapter 7, regularization,
or penalty terms, must be used on NN models to help stabilize variability.

A standard criticism of NNs, apart from instability, is that they are hard to interpret
physically. However, there are partial answers to this. For instance, once an NN has
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been obtained, one may want to eliminate irrelevant explanatory variables and re-
estimate the NN — with weights alone or weights and architecture together. Then,
reversing the procedure, one can use the NN to partition the data by looking at the
outputs from the last hidden layer. If these clusters made sense, then the model would
be partially validated. This procedure can be repeated on any layer in the NN as a
check on how the data are grouped.

Another strategy for developing interpretations for NN is given in Feraud and Clerot
(2002). Their definitions help formalize stability and plausibility arguments and can be
used in both classification and regression settings even though they are more natural
for classification. First, one can investigate the optimality of the NN by looking at the
second derivative of the error. For brevity, write the NN function as f(x). Then, for the
kth value of input i,

fii(@) = f(x, ol 4 a, )

represents the stability of the class or value assigned as a varies. An extension of this
called the causal importance is

Cl(al|x;, f) = /x_ﬁ(xi-l—a)Pi(xi)dxi,

where p; is the marginal distribution of the ith explanatory variable and f; is f; ; for an
arbitrary location (not necessarily a data point). Once irrelevant or correlated variables
have been removed, the “saliency” of each input is

Sl = [| [ plelhits+a) ~ fi(x)ldx da.

or, to take into account the input values,

da.

S(x; ((xi)plalx)[fi(xi +a) — fi(xi)]dx;

While these definitions do not themselves give a general interpretation for parameters
or architectures, they do assess key properties, akin to specificity and sensitivity, that
help characterize the robustness of an NN under local perturbations.

4.4.4 Barron’s Theorem: Formal Statement

Recall that Barron’s theorem is a formal demonstration that NNs escape the Curse
of Dimensionality at least for some function classes that have an interior and are not
parametrizable by any finite number of parameters. To present Barron’s result, let f,.(x)
be the right-hand side of (4.4.1), the generic expression for a single hidden layer feed-
forward NN, suppressing the weights W for concision. The Curse will be evaded if
the approximation error, as a function of the number of terms r, is of order &'(1/r),
for, if so, the number of parameters to be estimated is (p + 2)r + 1, linear in r, which
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can be estimated with error &'(r). Other regression techniques have an approximation
error rate of (1/ r)<2/ ?) (i.e., slower and dependent on p) or need exponentially many
parameters, see Barron (1993).

The generic result is that, for a large class of functions f on IR?, for each r an f, can
be found so that

If = frll < Cp/r,
where

= fe W (@)do,

in which f() is the Fourier transform of f,
1) = [, ¢ F(@)do.

The large class is defined via Fourier transforms as follows. For a function f on R?,
write its magnitude distribution as F(d®) and its phase at frequency @ as 0(®).
Then, the Fourier distribution of f is a unique complex-valued measure F(dw) =
PO F(dw). Now,

Flx) = /"‘”‘F(da) +/ 0% _ |\F(do).

The second expression holds more generally than the first, a distinction ignored here.
Now, let B C IR? be a bounded set containing x = 0 and let

FB{f B—R|VxeB, f(x) +/ o _ d(o)}

It is implicit, as part of the definition of I, that F' has a magnitude distribution F for
which [ |®|F(dw) is finite. The set to be actually used in the theorem is a restriction
of I'z denoted I'p ¢: Letting C > 0 be a bound on B for use with || =
set

Ipc= { feTIp: IF, representing f on B, so that /|w\BF(da)) SC}.

The unexpected result in this context is that the error of approximating f € Izc by
sums of r sigmoids is Cy/r, independent of p.

Theorem (Barron, 1993): For any f € I ¢, any sigmoidal function ¢, any probability
measure U, and any r > 1, there exists a linear combination of » sigmoidal functions
fr(x) so that

(2¢)?

r

[ @) =) ulax) <

The coefficients in f can be assumed to satisfy ¥, [c;| < 2C and ¢o = f(0).
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Barron’s proof has five major steps, some necessitating extra definitions. These steps
are outlined in the Notes, some in detail where it’s needed and some cursorily where
the statements are more intuitive.

4.5 Recursive Partitioning Regression

The partitioning meant here is of the domain of the regression function. That is, the
space of xs is partitioned into subsets on each of which a local regression function
can be specified. The initial partition is coarse, often just two subsets, but gets refined
with each iteration because sets in the partition are split, usually into two subsets but
sometimes more. Often the local regression function on a partition element is just a
constant — the mean of the Y's arising from xs in a set from a given partition. In these
cases, the regression function is like a bin smoother that defines bins by the splits. The
benefit of the recursive selection of elements in a final partition is that it is adaptive
and so can capture functions whose surfaces represent interaction structure.

Formally, recursive partitioning fits a model of the form
Z I(xER;)+¢ 4.5.1)

where the regions R; form a partition of the space of explanatory variables and the
coefficients f3; are estimated from the data. Model (4.5.1) is another extension of the
generalized additive model; the smooths are just average values on regions that must be
estimated from the data. As written, (4.5.1) uses a constant function on each R; below,
a generalization of this is used in which the ;s are replaced by arbitrary regression
functions, one for each R;. This permits different models to be used for different re-
gions of the explanatory variables. Recursive partitioning models are usually called
trees because the sequence of partitions can be represented as a tree under contain-
ment.

The most famous recursive partitioning method is CART, an acronym for classifica-
tion and regression trees, see Breiman et al. (1984). As the name implies, the tree
structure of the recursive partitioning method applies to both regression and classifi-
cation. However, the techniques used with trees for regression and for classification
are quite different owing to the nature of the problem. By contrast, NNs can be used
for both regression and classification as well, but the estimation techniques are more
similar. This section focuses on regression primarily; in Chapter 5, the classification
perspective is primary.

Tree structure helps makes regression results interpretable. For instance, suppose p =2
and a recursive partitioning procedure has fit a model of the form (4.5.1), generating
an r = 3 element partition: {x, > 1}, {x» < 1,x; > 2}, and {x, < 1,x; <2}, with
(Bi.p2,B3) = (7,5,3). Then, the partition itself can be visualized as three regions in
the plane or as a decision tree structure; see Fig. 4.4. Clearly, the tree indicates how
the partition was found; the top node is called the root and the termini are called the
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leaves. Coupled with a rule for estimating the function in each partition element, this
is equivalent to the model of the form (4.5.1), or to the diagram on the right (with the
values on each partition), when the rule is to estimate the function by its average on
the partition element. (More complicated function estimation procedures can be used
on the partition elements. Often this is not feasible because there are not enough data
to choose a good partition and estimate a complicated regression function on it.)

Xz

Xo>172

@ No Yes

1 o
B T Xy >27? ¥=7

Fig. 4.4 On the left is the partition in the plane, with boundaries parallel to the axes. The decision tree
on the right indicates the equivalent sequence of splits a recursive partitioning procedure would find.

One of the benefits of regression trees is that the influence of some variables can be
localized to some regions of the domain space and not matter on others. That is, the val-
ues of the regression function on different regions can be so different that it is efficient
to allow function values on one region to be unaffected by values on other regions. This
may be useful when a response really does require different explanations on different
regions. NN can also localize the influence of variables to a particular region, at least
somewhat, by using nodes in the last hidden layer. However, the localization in NN
uses a sigmoid of a linear combination, whereas the localization in trees is on regions
that roughly reflect an interaction between variables.

Regression trees are a very different generalization from linear regression than additive
models are in at least four ways. First, they encapsulate region-dependent interactions,
usually by using a decision threshold. This is qualitatively different from the usual
product term popular in multiple regression, which is not localized. Second, the pro-
cedure fits regression functions that are discontinuous at the boundaries of the regions;
this is a drawback if Y is believed to be smooth. However, from a predictive stand-
point, this is rarely a problem. Third, like any method, there are some functions that
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are difficult for models such as (4.5.1) to approximate and estimate. In the case of re-
cursive partitioning, functions that cut across the decision boundaries of the R;s are a
problem. For instance, with boundaries parallel to the axes (as in Fig. 4.4) it is difficult
to approximate functions that are linear, or additive in a small number of variables. As
an example, if p = 1 and the true f is a straight line, the best approximation will look
like a staircase. It is hard to decide when a complex recursive partitioning model is
close to a model that would be simple if another set of regressors was chosen. How-
ever, the reverse holds as well: Some functions that are easily described by regions
(e.g., have localized interactions) will be more accessible to recursive partitioning than
to other additive models. Finally, from an empirical standpoint, recursive partitioning
methods are better adapted to high dimensions than many additive methods are because
the sparsity of the data, naturally leads to rougher models. Indeed, recursive partition
methods are often not competitive in low dimensions.

In practice, trees are generally less wiggly than NNs (even with regularization), prob-
ably because of the pruning. However, trees and NNs have similar expressive power,
seeing as how they can both approximate any reasonable function in a limiting sense.
Consequently, in many cases one expects that the stabilities of estimators from trees
and NNs will be roughly comparable.

Because of its flexibility, recursive partitioning is virtually a template method, admit-
ting numerous variations at each stage of fitting. Arguably, there are three typical core
stages. First, the data are used to generate a maximal tree. Second, a collection of
subtrees of the maximal tree must be chosen. Finally, a particular member of that col-
lection must be chosen. Ideally, because these three stages are disjoint, they should
be done with disjoint, equal, randomly chosen subsets of the data. Of course, in prac-
tice this is not always reasonable. Nevertheless, the presentation here will assume this
for ease of exposition, and the sample sizes will be denoted n1, ny, and n3 as needed,
where n = n| 4 ny + n3. Fitting procedures that combine two of the three stages are
often used.

4.5.1 Growing Trees

Suppose n; of the n data points are to be used to grow a tree, T,,4c. Any tree-growing
procedure must have a way to:

1. Select splits at intermediate nodes.

2. Declare a node to be terminal.

3. Estimate Y for the set at a terminal node.

The first two parts are often related: If one has a criterion by which to select splits, it can
also be used to stop selecting splits. The third part is usually the most straightforward:
Use the sample average of the data at each terminal node. In more complicated settings,

linear regression is often used. In principle, any function estimation procedure can be
applied to any of the terminal nodes, subject to having enough data. In addition to
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linear regression, the other methods in this chapter are obvious candidates. So, the
focus in this subsection will be on selecting splits and stopping criteria.

The goal of splitting is to partition the training sample into increasingly homogeneous
groups, thereby inducing a partition on the space of explanatory variables. Homogene-
ity refers to the adequacy of the model at the terminal node for describing the cases at
the terminus, essentially in terms of an error criterion. Splitting usually stops when a
satisfactorily high degree of homogeneity is achieved at the terminal nodes and hence
in the corresponding regions of the x-space.

The usual approach is to select splits of the predictor variables used to predict values
of the response variable. One can search for splits in many ways; often the methods
come down to some kind of cluster analysis to find a good split (choose a variable
and cluster its values by some technique such as those described in chapter 8) or to
a predictive criterion (propose a split on the basis of some of the data and evaluate
how well it fits the other data). In general, the split at a node is intended to find the
greatest improvement in predictive accuracy; these algorithms are greedy. However,
this is evaluated within a sample, initially by some kind of node impurity measure —
an assessment of the relative homogeneity or fit of the data to the model at the node.
If one ends in a node for which all the values are well described by the same model,
the impurity is effectively zero, the homogeneity is maximal, the terminal model fits,
and the within-sample “prediction” or fit is perfect. The problem is that out-of-sample
prediction can be terrible.

To minimize bad out-of-sample prediction, three standard techniques are used. First is
a splitting rule that stops before overfitting is too serious. A simple rule is minimum
n: Disallow any further splits when the number of data points at a node is at or below
a threshold. This ensures a minimum number of data points are available for estimat-
ing the coefficients in the regression at the node. A variant on this is to stop when a
specified fraction of ill-fitting points at a node has been achieved. Second is to impose
a condition that one stops splitting when the data at a node are just similar enough, but
not over-similar. This is clearer in the classification context: One can have numerous
small sets of outcomes x; giving the same class, as permitted by the Gini coefficient,
to be discussed in Chapter 5. In regression, the corresponding condition would be in-
sisting a variance such as ¥,c, (y; — y(v))?, in which 7 is the average of the y;-values
at node v, be small but not too small. Third, and probably best, is to grow a large tree
and then prune it back in some way. This is discussed in detail in the next subsection.

Different partitioning algorithms use different methods for assessing improvement in
homogeneity and for stopping splitting. Because they represent different design crite-
ria, they grow different sorts of trees. Four popular techniques are: (i) defined bound-
aries, (ii) squared error, (iii) Gini, and (iv) twoing. Twoing, like Gini, is more appro-
priate for classification and so is deferred to Chapter 5; the first two are discussed here.
Hybrid methods can switch homogeneity criteria as they move down the decision tree;
some methods maximize the combined improvement in homogeneity on both sides of
a split, while other methods choose the split that achieves maximum homogeneity on
one side or the other (see Buja and Lee (2001)). It should be noted that in small data
sets these four techniques may not lead to particularly different tree structures after
pruning. In larger data sets, however, the resulting trees can be substantially different
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because they have more splits, and later splits depend more and more on the class of
trees each technique favors.

Boundaries can be defined in many ways, the simplest being parallel to the axes of the
x-space. The simplest splitting rule is to choose a variable, order its values, and split at
or near the median. Alternatively, one can cluster the values of that variable and split
between clusters. Generically, there are three obvious kinds of splits based on x:

1. Is x; <t? (univariate split).
2. Is Zl’-’:l wix; < t? (linear combination split).

3. Isx; € U? (categorical split, used if x; is a categorical variable).

One can do a univariate search over values of ¢, more complicated searches over {w;},
or search over subsets U of the category values. In all cases, the search seeks the split
that separates the cases in the training sample into two groups with maximum increase
in overall homogeneity.

More statistically, one can use the within-region variance (i.e., a squared error crite-
rion). This is quite popular, and is standard in many implementations. The idea is to
letg € 2, possibly of the form (4.5.1), have the associated error

ot

Blg) = 13 (v~ g(X)2.

i
Minima are found by solving

¢ = arg min E(g"),
greT
where g* varies over the set of piecewise constant (say) estimators of g defined on the
leaves of a tree T assumed to be in the class 7 of trees. When E is used in place of E,
it gives the population value of the error; i.e., the expectation over the error and X.

To see how this works, let . be a collection of sets; the simplest choice is to set . to
be the collection of halfspaces with boundaries parallel to the axes of x. This defines
the possible splits and the class .7 = 7. One strategy is to grow a binary tree out to
a defined maximal size, for instance one data point per terminal node, starting with the
whole X-space as the root. Following Gey and Nedelec (2005), let split vary over .7.
Since . consists of halfspaces with boundaries parallel to the axes, the optimal first
split from the root is

—

split = arg_min_ [E(gspiir) + E(gsplirc)] 4.5.2)

splite.
in which g, is an estimator of g using constant functions on the sets defined by split.
In (4.5.2), it is assumed that the xs (as data or as instances of the random variable X)
are also partitioned according to split. This gives &pi = 8ot = al@ﬁt +b1sﬁf as the
minimum least squares estimator of g using constant functions at the daughter nodes;
it is easy to see that under the squared error criterion the constants are the means over

split and split©.
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Once the root has been split once, each of the resulting nodes, n; and ng, can be split
analogously: New sets .77 and .%% can be defined to replace .. From them one obtains
s;l\itL and SZEIR with resulting &,,sir,1, &spiir,r- SPlitting continues in this fashion until
a tree is produced with the desired homogeneity at each terminal node. Often, one
grows a maximal tree; i.e., one that has a single data point at each leaf.

There is some debate as to how much these splitting criteria matter because in some
contexts, large differences haven’t been noticed very often. This is partially explained
by noting that when data sets are small and highly accurate, trees can be generated
easily and the particular splitting rule does not matter much. However, in many data
mining problems with large inchoate data sets, obtaining a good answer is genuinely
difficult and there is evidence that splitting rules matter a lot because of the kind of
trees they favor finding. In this view, choosing a splitting rule is like choosing a prior —
it favors some trees and disfavors others, though this can be overwhelmed by the data.
Related to this is the fact that with small sample sizes (relative to p or other measures
of complexity) trees exhibit great variability: Two trees may be predictively similar but
mathematically quite different.

4.5.2 Pruning and Selection

When generating trees, it is usually optimal to grow a larger tree than is justifiable and
then prune it back. The main reason this works well is that stop splitting rules do not
look far enough forward. That is, stop splitting rules tend to underfit, meaning that even
if a rule stops at a split for which the next candidate splits give little improvement, it
may be that splitting them one layer further will give a large improvement in accuracy.
Here, it is supposed that n, data points are used to develop a set of subtrees of a large,
possibly maximal tree and the last n3 points are used to choose among the subtrees.
Clearly, one could use all n; 4+ n3 data points to prune down to a single tree rather than
dividing the generation of candidate subtrees from selecting among them.

One way to generate a sequence of trees is to apply minimum cost-complexity pruning.
In this process, one creates a nested sequence of subtrees (indexed by ¢ in the cost-
complexity function below) of an initial large tree by weakest link cutting. That is,
given a large tree 7' generated from a technique in the last subsection, one prunes off
all the nodes that arise from a fixed nonterminal node. The cost-complexity criterion
chooses the nonterminal node to be ever closer to the root as the trade-off between
error and complexity shifts more and more weight to the complexity penalty. If two
nodes are approximately equal in terms of the cost-complexity values, one prefers to
prune off the larger number of nodes. The result is a sequence of ever smaller subtrees.

Formally, the cost-complexity measure for a tree is
C(T;a)=E(g)+alT|, (45.3)

where the number of terminal nodes in the tree T defined by g, denoted |T'|, summa-
rizes the complexity of the tree. The weight o determines the relative importance of fit
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E () and the complexity. The goal is to find trees that achieve small values of C(T, &t).
Large as penalize large trees heavily, making small trees optimal. Small values of o
permit large trees susceptible to overfitting. Thus, in the limit of large o, the one node
tree consisting of just the root is optimal; in the limit of small ¢, the large tree T itself
is optimal. Note that pruning means that regions R; are being joined so they have a
common node function.

By starting with oo = 0 and letting ¢ increase, one generates a sequence of subtrees by
weakest link cutting. That is, consider the sequence of trees generated by

Ty = arg ;1/1&1;6‘(T’7 o)

as o ranges from O to infinity. It can be shown that Ty, C Ty, when o > 0 and that
the sequence itself is nested; see Breiman et al. (1984). In this way, one generates a
nested sequence of subtrees 7, corresponding to functions §; for j =1,...,J.

Given such a sequence from the middle n, data points, the last n3 data points can
be used to select an element ga/.* of the sequence, for instance by cross-validation.
Hopefully, by choosing a subtree, one effectively chooses o to be a compromise value
indexing a tree with the right complexity and good fit. Here, right means minimal
predictive error in future cases. Most commonly, squared error loss is used in this
procedure, but any measure of goodness of fit can be used in principle.

It is worth noting that the criterion (4.5.3) has a common form. Recall that the opti-
mality criterion defining spline smoothing in Chapter 3 has the same form: a sum of
two terms, one being an assessment of fit and the other an assessment of wiggliness.
Indeed, it was commented that some of the instability of NNs could be smoothed out
if the squared error fit was moderated by a complexity penalty on the parameters. All
three of these cases are instances of complexity regularization because the penalty term
regularizes the overall estimation by penalizing some aspect of solutions that can be
broadly interpreted as a complexity.

4.5.3 Regression

The tree-based regression function resulting from the method presented so far is effec-
tively of the form

In this expression, n; data points were used to find the maximal tree T}, by a splitting
rule. Then, ny data points were used with (4.5.3) to generate the sequence of trees Tp,;
that represent gaj. The trees Taj are subtrees of T4y, and the a;s are the values of
« that order the subtrees of 7, under (4.5.3). The sum of squared errors, or other
criterion for fit, in (4.5.4) is formed using the last n3 data points.
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If the error term in (4.5.1) is IID N(0, 62) and the X are drawn from a distribution u,
Gey and Nedelec (2005) have established an important property of g: Its conditional
expected [? distance from 8true 18 less than the smallest conditional expected distance
from g, for any of the trees in the sequence Taj plus a &(1/n) term. This is a sort
of Oracle inequality because it ensures that even if the optimal subtree of 7,,,, were
known, the estimate ¢ would not perform much worse than for approximating g,e.

To derive a weak, informal version of the Gey and Nedelec (2005) result, suppose
gurue € L*(1) and let i, be the empirical distribution formed from X1, ...,X ;. Let
I|||n; be the norm from L%(u,,) (i.e., the norm with respect to the empirical distribu-
tion), and recall that for any g € L*>(u), the sum of squared errors is E3 = E, (g) =
(1/n3) 32, (Y: — g(X))?. Two easy identities are

E(ES(gtrue)|Xn3 :xn3) = 627

where X" = (X1,...,X,) and ¥ = (x....,x,), and, for any g € L*(u),

|| gtrue — 8| |ﬁg = E(Enz (8) —Ep, (8rrue) | X1, "'aXﬂ3)'

Now, adding and subtracting an arbitrary go; gives

\18true — 8115, = llgirue — 8yl I7, +E ([E5(8) — E3(80y)] X" = 2") £ E5(8) £ E5(8ay)

= |Igtrue — 8oy |lny + (E3(2) — E3(80y))
+ (E3(8a;) —E(E3(20,)[x"))
— (Es(8) —E(E3(2)|x")). (4.5.5)

The Gey and Nedelec (2005) approach is to recognize that the second term on the right
is negative and can be dropped, giving an upper bound of the form

R o [ E3(8a,—E5(8)
|8t rue _gaj||r213 +[18a; —gH%; (W) ;
in which E3 represents the centered forms of £3 given in the last two terms of (4.5.5).
For this last expression, one can give bounds on the second term as in Gey and Nedelec
(2005) so that after taking an expectation conditional on the first n; 4 n, data points
an infimum over j gives a uniform bound on the second term of order &'(1/n). So,
||8true *ﬁ”i is bounded by an infimum over j of ||g;ye — goch%3 plus &(1/n). The
actual proof relies on a substantial collection of other reasoning from empirical process
theory that can be found in the references in Gey and Nedelec (2005).
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4.5.4 Bayesian Additive Regression Trees: BART

Bayesian versions of recursive partitioning have also been developed. Often they use
a Bayes testing approach to decide whether a split at a node is worthwhile. That is,
a parametric prior is put on the number of nodes and on any of the parameters in the
regression function, while a nonparametric prior (typically a Dirichlet process prior
determined by the empirical distribution) is used on the splits themselves. The worth of
including a split is then decided by a Bayes factor from the appropriate tests. Bayesian
nonparametrics is discussed more fully in Chapter 6.

Here, it is worth describing a variant on CART from a Bayesian standpoint that is due
to Chipman et al. (1996) and Chipman et al. (2005). It uses a sum of small trees, often
called stumps, say g; (x), to model a response:

Y =f(x)+ergi(x)+..+g(x)+&

The stumps, g, can be regarded as small, biased models in their own right, so that an
estimate f is an ensemble method; such methods will be discussed in more detail in
Chapter 6 as well. The BART procedure treats the g;s as terms in the larger model f
rather than models in their own right. Thus, conceptually, BART is a single model with
tree terms, not a model average in which each term explains part of f. Thus, predictions
from several BART models could be averaged to give better overall predictions.

BART is a trade-off between using individual trees as in this section and combining
full tree models as developed in Chapter 5 in random forests. In this middle ground, it
is important that the individual trees be weak learners. If one of them becomes bigger,
and hence more able to explain f, it can thereby dominate, paradoxically degrading
performance. The paradox is resolved by realizing that if one of the trees is good
enough that it explains too much, the stumps lose their descriptive power because they
were weak learners from the outset. Computations suggest that there is improvement
in performance as the (fixed) k is permitted to increase; see Breiman’s theorem in
Chapter 5. Of course, ensuring good behavior in BART depends delicately on prior
specification, both within individual trees and across the collection of trees.

Overall, BART is a Bayesian intermediate tranche technique fitting a parameter-rich
model, using extensive prior information, to ensure balance among complexity, bias,
and variability. Computationally BART is implemented by a backfitting MCMC algo-
rithm rather than by a gradient descent approach.

4.6 MARS

Multivariate adaptive regression splines (MARS) is a hybrid template method with a
conceptually singular position in statistics. It was invented by Friedman (1991) — with
much discussion, still ongoing. As a hybrid, MARS combines recursive partitioning
regression and additive models, although taxonomists would mention splines too. The
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core idea is to express the regression function as a sum of functions (a la additive
models), each of which has its support on a region (a la CART). Within a region, the
regression function reduces to a product of simple functions that are initially constant
but can be chosen as splines. The points defining the boundary of a region, like knots
in splines, are obtained from the data.

The basic building block of the MARS regression function is a univariate function,
identically zero up to a knot, after which it rises linearly. That is, the root element is
(x—1)T, where the + indicates the positive part, the knot defining the support is ¢, and
the shape is as in Fig. 4.5. Each term in the regression function is formed from these

Fig. 4.5 The basic function (x —¢)™ from which MARS is built, # is at on the horizontal axis at its
intersection with the 45°. The indicator for R* can be applied to this to give positive values only on
certain regions.

root elements by summing products of them. If the products are composed with indi-
cator functions for disjoint regions R; before summing, the result is a recursive parti-
tioning model with spline-type node functions (having disjoint support) and a splitting
rule based on the lack of fit of the whole model rather than just the individual nodes. If
the indicator functions are not included, the model is arguably a more general MARS.
Thus, there are (at least) two flavors of MARS - recursive and general.

Formally, MARS models, recursive or general, can be described as follows. Let Iy(x)
be the indicator for x € R™, and consider Iy (s (xx —#;)), which is 1 when s (xx — ;) >
0. A product of such functions over j = 1,...p has the form HZ: To(sk(xx — 1)) and is
positive in the region [f1,o0) X ... X [t,,0) when all the s;s are one. Thus, it is a constant
on a set with edges parallel to the axes of x. To be more general, note that the product
need not be over all k = 1,..., p. Let 7 be a subset of js. The product over k € % is
only nontrivial for some k; for k & %, the indicator function of the kth element does
not appear.

Now, the MARS model is to write

Y= Z Bjl(x € R;)Bj(x) + €, (4.6.1)
j=1
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where typically

Bj(x) = T fo(sej(e—1)) or Bj(x)= [T [sej(e—n)]"  (4.6.2)
ke%; ke%;

for s;; = £1 and %; is the subset of the explanatory variables appearing in the jth
term. The first case in (4.6.2) is sometimes called the recursive partitioning version,
and the second is sometimes called the forward stepwise version. The indicators for
the regions R; may be included or not. Thus, B; is a product of functions on regions
determined by the knots {#;} for k € %; and the R;s. Clearly, the regression function
is not continuous because of the indicators. However, omitting the indicator functions
or the positive parts in (4.6.2) (i.e., just adding products of the hockey stick shaped
functions as in Fig. 4.5) does give a continuous regression function. More generally,
one can use spline basis functions of the form [sy;(xx — ;)77 as factors in the second
form in (4.6.2).

Fitting a MARS model is where the conceptual singularity begins. First, the core
method is to start with a maximal number of terms, say r = M,,,,, for the model
(4.6.1), an initial model comprised of one term B;(x) = 1, and a lack-of-fit criterion
set to a large value, say eo. GCV is one choice, but many may be considered. Friedman
(1991), Section 3 suggests several; Barron and Xiao (1991) suggest minimum descrip-
tion length or the Bayes information criterion. The value M,,,, is often chosen to be 2
or 3 times larger than the anticipated correct number of terms; this is important because
the MARS procedure merely searches a class of functions for one that has a good fit.
The larger the class, the better the fit — but generalization error remains to be properly
examined. In (4.6.2), r gives the number of regions for the spline-type basis functions.
Within the large class, the MARS procedure is to construct new terms until there are
too many as measured by the lack-of-fit criterion, here GCV. Here is one version of the
MARS template procedure for the recursive partitioning case.

Let By = 1. Search over k for k = 2,3...M,,,, terms with GCV (initial) = oo.

L] For each of the terms in the model, look at the n outcomes for variable j =
1,...,p, where x; , is assumed not to be in the term already.

O For each j and each m = 1, ...,k — 1, examine the function

k—1
D BuBu(x) + BB ()Io((xj — 1)) + Brs1Bu () Io(—(x; — 1)) (4.6.3)
u=1

to find the value r among the n outcomes of the jth variable that gives the smallest
lack of fit.

[0 Now, the optimal values of ¢, j, and m, say t*, j*, and m*, can be used to elaborate
one of the terms in the model into two new terms as in the last step. The term to
be elaborated is chosen to minimize the lack-of-fit criterion.

O The new model is of the same form as the old model (4.6.1), with the opti-
mally chosen term indexed by m* replaced by two terms: By, (x)Io((x< —1*))
and By (x)Io(—(xj —1%)).
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U] This procedure continues until the whole collection of models is searched or
some other error criterion is met.

It is easy to see how to use this procedure for the forward stepwise version; just replace
Io((xj —1)) and Io(—(x; — 1)) with (x; —¢)" and —(x; — )" in step two. There is also
a backwards elimination version of the procedure above that may be used to prune a
model. Note that a term with %/ factors in it can only emerge from this procedure at
the #(% )th iteration or later.

Several aspects bear comment. First, like recursive partitioning, MARS is order de-
pendent. That is, changing the order in which new splits (different js for instance) are
included may change the final function found. Second, MARS is not really an estima-
tion procedure but an approximation procedure. That is, it is the scope of the search
and the goodness-of-fit criterion that determine the adequacy of the fit. Changing the
class can, in principle, change the fit a lot; there is little objective validity in this sense.
Third, whether or not the indicator function is included greatly changes the character
of the approximation. If the indicator is included, then MARS is a particular case of
recursive partitioning. MARS can also be framed as an approximation using a “tensor
product” basis, so no explanatory variable appears twice in any term By, though this
could be relaxed. In fact, MARS is a template for a collection of methods that includes
recursive partitioning and much more besides.

It is seen that additive effects are captured by splitting the Bys on several variables,
and nonlinear effects are captured by allowing splits of Bys on the same variable more
than once with knots at different values of the x;s (or more general locations). If the
indicator functions are included, then the products of indicators in the two terms of
(4.6.3) combine to give a single indicator function. However, if the indicator functions
are omitted, the procedure permits the terms to have overlapping regions. What hap-
pens is that, when a region is split on a variable, one can retain the function on the
combined region while adding the two functions generated, one for each side of the
split. As with trees, the strategy is to overfit and then prune back, typically by back-
wards elimination under the same lack-of-fit criterion as used to generate the MARS
model in the first place. The pruning is not included in the algorithm above, but again a
variety of methods parallel to trees or to conventional linear regression can be applied,
e.g., backwards elimination or cost-complexity.

Comments on MARS have suggested problems and improvements. For instance, Bar-
ron and Xiao (1991) observe that in spline methods there can be nonrobustness when
knots are too close together because small changes in x can lead to large changes in
Y. They propose a roughness penalty on (4.6.3) to help smooth out such oversensitiv-
ity. By contrast, Gu and Wahba (1991) suggest that the class of splines used will not
perform well with rotationally invariant problems and that stepwise procedures like
MARS will often be confused by concurvity or nonparsimony. Thus, confidence in-
tervals may have to be weakened to coverage bands or predictive intervals based on
bootstrapping. Note that in this class of models, as with trees, the basic strategy is to
keep reducing the bias by improving the approximation until the class is searched and
then making sure that the variance is not too large by pruning. That is, there is always
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likely to be nonzero bias, but it should not contribute too much to an MSE relative to
the overall variance.

MARS is not really interpretable, but Friedman (1991) observes an ANOVA-esque de-
composition in which the terms dependent on a fixed number of variables are gathered
into cumulative expressions,

( B0+Zf]xj+ z f]kxjv'xk)

jes (j.kyext

where [ is the coefficient of the B; = 1 basis function, the first sum is over those basis
functions that involve a single explanatory variable, the second sum is over those basis
functions that involve exactly two explanatory variables, and so forth. These terms can
be thought of as the grand mean, the main effects, the two-way interactions, and so
forth. Thus, in MARS, there are several sorts of variability: the number of terms, the
regions, and the estimates of parameters [3; on regions.

The intertwining of model variability with parameter variability highlights a key fea-
ture of MARS: It is purely a procedure for generating approximations, not really a
statistical model. The model (4.6.1) has an error term in it, but this is a backforma-
tion from Friedman’s original class of approximations. There is no genuine statistical
model and hence no associated distribution for inference of any sort. One cannot really
argue that overfit or underfit exists without further criteria, or that model identification
has been successful, much less parameter estimation or prediction. Realistically, the
best one can do to quantify reliability for predictive purposes is to use the bootstrap
to get something that could be called a predictive distribution once a minimum GCV
model of some reasonable size had been found.

This is the conceptual singularity evinced from MARS: Is it acceptable, statistically,
to obtain estimates by using a method solely defined by a procedure when so little for-
mal inference can be done? One can argue that this is acceptable under some circum-
stances. For instance, one set of reasonable conditions might be: (i) there is an algo-
rithmic approximation method which is not close to any feasible, genuinely statistical
procedure, (ii) empirical evaluations such as GCV and bootstrapping provide enough
predictive guidance for meaningful implications to account for model and parameter
uncertainty, and (iii) the procedure itself has been systematically examined, via simu-
lations for instance, to find settings where it performs well or poorly (i.e., individual
data sets, however numerous, are inadequate because they do not generalize). On the
other hand, one could argue that any numerical approximation procedure amenable to
GCYV, bootstrapping, predictive analyses, and related computational techniques is valid
even though not hitherto seen as part of the traditional statistical framework. Overall,
this is part of the charm of DMML.
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4.7 Sliced Inverse Regression

Sliced inverse regression (SIR) invented by Li (1991), is a way to combine inverse
regressions on disjoint subsets of the range of Y to identify optimal directions of the
explanatory variables. The basic model is to write

Y = f(XBi,.... X €), 4.7.1)

in which r < p, f: R**! — R is an unknown function, and the error term £ has condi-
tional mean zero, E(g|X) = 0. Regarding € as an argument of f contrasts sharply with
the earlier models because there is no longer a disjoint signal, and the sum of squares
due to error, £, is no longer the relevant quantity. Moreover, the loss of additivity, in
contrast to PPR, means that the span of the f3;s only defines a subspace of dimension
r. That is, expression (4.7.1) models Y as a function of r linear functions of the Xs so
that the span of the X f3;s is an effective-dimension reduction space (see Chapter 9) of
dimension r on which f is supported or at least well approximated. It is the subspace
that expresses the dimension reduction, not the specific directions f3;.

Recall that inverse regression is literally an effort to invert a regression line. Instead
of seeking an estimate for the unidimensional function E(Y|X) as a function of p
variables in the context of ¥ = X3 + ¢, one seeks the p dimensional function E(X|Y)
as a function of Y. Locally inverting this on § intervals of Y, called slices, and tying
them together gives an approximation to E(Y |X), whence SIR. To do this, it is assumed
for the rest of this section that X is drawn from a nondegenerate, elliptically symmetric
distribution. This includes the often assumed normal family but much more besides.
While this is a restriction, it is often not severe. Moreover, it is clearly specified and,
in principle, can be checked by scatterplots of the X;;s.

Even though the goal is to estimate E(Y|X = x), it may be helpful to examine E(X|Y =
y) because finding p functions of a single real variable is less complicated than finding
a single real-valued function of p real variables. Then, given p univariate regressions
of the components of X on Y, implementing (4.7.1) requires knowing r, the f3;s, and s.
In this section, estimation of f is ignored; techniques such as those presented earlier
must be used to estimate it.

Following Duan and Li (1991), set &;(y) = E(X|y) in the context of the model
Y =gla+x"B,e), 4.7.2)

where €|X ~ F(¢g) is independent of X; g is sometimes called a link function. The
function &; is the step that helps minimize the Curse of Dimensionality. Note that this
is essentially (4.7.1) for r = 1; models like (4.7.2) will be combined on the slices of
Y. To use the elliptical symmetry, Li (1991) introduces a condition on the conditional
expectations of linear combinations of coordinates of X in terms of the 3;s. This is

P
VbeR? EXTHIXTB =x"Bi,.. X Bp=x"Bp) =co+ D cix'B; (4.7.3)
j=1
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for some sequence ¢y, ..., c,. Cook and Weisberg (1991) observe that elliptical symme-
try is equivalent to (4.7.3). That is, under a model of the form (4.7.1), X is elliptically
symmetric if and only if (4.7.3) holds.

The main result that makes SIR feasible is the following. Its importance is that it shows
that the centered regression line in the univariate case varies over the space spanned by
the vectors Cov(X)pj, for j=1,...,p.

Theorem (Duan and Li, 1991): In model (4.7.2), the inverse regression function &; ()
satisfies

E((X ~E(X))"Bly)

—EX = Cov(X 474

él (y) OV( )ﬂ ﬁTCOV(X)B ( )

Proof: Following Li (1991), suppose E(X) = 0, and let b be an element of the orthog-

onal complement of the span of Cov(X)B; for j =1,...,p. In the context of model
(4.7.1),

bTEX|Y =y) =E[E® ' X|XTBj,j=1,...p,Y =)}
=E[EDB XIXTBj,j=1,....p)p] (4.7.5)

So, to show that the centered regression line varies over the space spanned by the
Cov(X)p;s, it is enough to show that the inner conditional expectation Eb XX By, k=
1,...,p) is zero, or equivalently its square is; i.e., E(E(bTX|XTﬁk,k =1,..,p)?*) =0.
This follows from using conditioning and the elliptical symmetry. Indeed, it is seen
that the square is

E[E(b X|Bjx,j=1,...,p)x'b| = E

(C() + i CjﬁjX) beT]
J=1

P
=Y cjﬁjCov(X)bT =0.
j=1

As noted in Duan and Li (1991), the elliptical symmetry can also be used to obtain

_ Cov(X)BpT (X —EX)
= BTCov(X)p

E(X|X'B)—EX

So, taking the conditional expectation gives & (y) = E(E(X|X’'B)[y). O

From the standpoint of parameter estimation rather than &;, this theorem also gives
that 8 o< Cov(X)~!(&;(y) — EX) and identifies the constant of proportionality as the
fraction in (4.7.4), which is seen to be a real number dependent on 3 but not y.

Now consider the standardized variable Z = Cov(X)~'/?(X —E(X)), and form the
p-dimensional inverse regression function & (y) = &,(y) = E(Z|Y = y). The theorem
continues to hold since Z is a linear transformation of X —E(X). Thus, for each y, & ()
is a point in the span .¥ of {Cov(X)'/?By,...,Cov(X)'/2B,}. If b is orthogonal to .7,
then & (y)'b = 0; using (4.7.1) to express & in terms of . gives
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Cov(&(Y))b=E(E()E(y)T)b=0.

This means that Cov(E(Z[y)), is degenerate in every direction orthogonal to ..

Given these results, the overall SIR strategy for data (Y;,X;) fori=1,...,n, is to rewrite
(4.7.1) as

= f(Zn,....,Zn,,¢) (4.7.6)

since the exact representation of the r-dimensional effective dimension-reduction
space is not important. Then, partitioning the range of Y into H slices, one can form
an estimate of the inverse regression curve on each slice. The pooled estimator of the
p % p Cov(&(y)) matrix, based on the H slices of the range of Y, has a principal com-
ponents decomposition. So, finding the r largest eigenvalues (out of p) of an estimate

Cov(&(y)) and transforming the corresponding r eigenvectors of the standardized vari-

able in terms of the 7n;s gives estimates of the ﬁ ;s. More formally, the SIR procedure
is the following.

Estimate ¥ = Cov(X) by the sample covariance matrix X, define the standardized
dataz; =3"1/2 (x; —X), and partition the range of Y into S slices, H, fors =1,...,S.
Let n, be the number of observations y; in slice Hy, so that ny = Y| Iy (i)

(] Find the mean of the z; on each slice:

l n
Zs = - EZiIHS ).

s i=1

This mean will serve as a crude (constant) estimate for the inverse regression
curve E(Z|Y).

O Estimate Cov(& (y)):

— 138
Cov(&(y)) = 0 Z NuZuZy-

[J Obtain the eigenvalues A; and the eigenvectors }; of Cov/(é\(y)). (This is the
principal components analysis for the Z;s.)

0 Transform the eigenvectors 7; correspondlng to the r largest eigenvalues Ai by
applying £~'/2. Thus, obtain 3; = £~1/2 f(p—j+1) for use in (4.7.1).

Once the estimates B ; are obtained, it is desirable to do inference on them. The usual
consistency, asymptotic normality and identification variance theorems have been es-
tablished; see Li (1991) and Duan and Li (1991). The extra bit that’s interesting here
is that under the admittedly strong assumption of a normal distribution for X one can
identify asymptotic sampling distributions for the eigenvalues; parallel results for the
eigenvectors exist but are more complicated. Although the eigenvectors and eigenval-
ues are well defined and identifiable, they are only important because of their span.
Any other set of B;s with the same span would do as well.
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Asymptotic rates for the convergence of the ;s are easy to identify. Indeed, Li
(1991) uses the following reasoning. The central limit theorem gives that the Zgs

converge to the E(Zy)s at rate &(1/4/n). Consequently, the estimate Cov(&(y)) of
Cov(E(y)) =35, mE(z,)E(Z.), where 7y = lim(ns/n) converges at a &(1/+/n) rate.
Thus, the eigenvectors of Cov(&(y)), the #j;s, converge to the corresponding eigen-
vectors of Cov(£(y)) at a @(1/+/n) rate. By using the theorem, one obtains that the
standardized x;s (i.e., the z;8) give an inverse regression curve E(Z]y) that is contained
in the span of 1y,...,n,. So, since E(Z) = E(E(Z|y)|y € S;), the largest r eigenvectors
of Cov(&(y)) are in the space generated by the standardized vectors ny....,n,. Since £
converges to X, 312 converges to 312 50 the corresponding Bj = ﬁ‘”zﬁj also
converge at rate (1//n).

Although the rate determination is seen to be straightforward, identifying the constant
in the €(1/+/n) rate is not easy. It is done by Duan and Li (1991), Section 4, who
establish \/n(B — B) — N(0,V), as n — oo, where B = (Bi,..., 8,) and V is a matrix
that depends delicately on the choice of slices.

Like f, r remains to be estimated. One approach is to construct models using several
different rs, searching for the model with the smallest cross-validation error. Alterna-
tively, the usual criteria for a principal components analysis can be invoked; e.g., the
knee in the error curve. Further topics related to SIR and sufficient dimension reduction
more generally are taken up in Chapter 9.

4.8 ACE and AVAS

So far, the methods presented have focused exclusively on representing ¥ using a class
of functions of X. However, this is only one side of the story. The other side is that one
can transform Y as well — or instead of — X. In an additive model context gives

P
g(Y) =2 fiXj)+e 4.8.1)
=1

as a more general model class. Mathematically, it is as reasonable to transform Y as
X; however, many resist it on the grounds that it is ¥ that one measures, not g(Y), and
that introducing g, especially in addition to the f;s, leads to such a large increase in
instability that little can be said reliably. Nevertheless, (4.8.1) is a generalization of
GAMs that avoids having to choose a link function.

Study of this model class, summarized in Hastie and Tibshirani (1990), is incomplete,
and the two methods briefly discussed here alternating conditional expectations (ACE)
and additivity and variance stabilization (AVAS) are variants of each other. Thus, both
can be regarded as instances of a single template method. They are interesting here
not so much for their current usefulness as for their potential. Both involve techniques
based on alternating the way one takes conditional expectations, which may be an
important idea for dealing with transformations on Y. It is easy to imagine further
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variants that may yield better results than those obtained so far. If this interesting class
became tractable, the benefits would be large and pervasive.

The ACE algorithm is symmetric in its treatment of the conditional expectations of g
and the f;s. It originates in Breiman and Friedman (1985) and seeks fi,..., f, and g
to maximize the correlation between

¢(¥) and 2 £X).

J

a generalization of canonical correlation. This is equivalent to minimizing
» 2
E (g(Y) -2 fj(Xj)> /E[g*(V)],
j=1

where the expectation is taken over (V;,X;). Thus, ACE minimizes a variant on the
mean squared error; one can readily imagine other variants.

One version of the ACE algorithm (see Hastie and Tibshirani (1990) ) can be summa-
rized as follows.

Start with g(y;) = (y; —¥)/sy and f;(x;) as the linear regression of ¥ on X;.

O Find f(X) = Z§,1fj(xj) = E(g(Y)|X) as an additive model, possibly by the
backfitting algorithm. This gives a new g(y) in terms of new functions fi (x1),...,

Tp(xp)-

O Use smoothing to estimate

and standardize a new g(y) as

g(y) =gW)/v/ Var[g(y)].

(This standardization ensures that the trivial solution g = 0 does not arise.)

O Alternate: Repeat the last two steps until E[(g(Y) — [i):l £(X;))?¥ is satisfacto-
rily small. .

As shown in Breiman and Friedman (1985), Section 5 and Appendix 3, there are
unique optimal transformations g and f;, and the ACE algorithm converges weakly
to them. The proof rests on the recognition of conditional expectation as a projection
operator on suitably defined Hilbert spaces of functions and using its eigenfunctions.
There are settings, however, where this is not enough.

Unfortunately, from the standpoint of nonparametric regression, ACE has several un-
desirable features: (i) For the one-dimensional case, g(¥) = f(X) + €, ACE generally
will not find g and f but rather uo g and uo f for some function u. This is a sort of
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nonidentifiability. (ii) The solution is sensitive to the marginal distributions of the ex-
planatory variables and therefore is often nonrobust against outliers in the data. (iii)
ACE treats the explanatory and response variables in the same way, reflecting cor-
relation, whereas, arguably, regression should be asymmetric. (iv) ACE (and AVAS
below) only minimize correlation, so when correlation is not very high the model only
captures part of the relationship between the dependent and explanatory variables.

AVAS is a modification of ACE that addresses item (iii) by purposefully breaking
the symmetry between g and Y f;, thereby removing some of the undesirable fea-
tures of ACE; see Tibshirani (1988). The central difference between ACE and AVAS is
that instead of using the standardization indicated in Step (2) immediately, a variance-
stabilizing transformation is applied first: If a family of distributions for Z has mean p
and variance V (), then the asymptotic variance-stabilizing transformation for Z is

h(t) = /0' V(s)V2ds,

as can be verified by a delta method argument. In AVAS, one finds g(y) given
E(g(Y)|X = x) as before but then standardizes h o g(Y) (if necessary) rather than g(Y)
for the next iteration.

As a generality, model selection in an ACE or AVAS context is difficult when cross-
validation cannot be readily applied. Wong and Murphy (2004) develop some tech-
niques and are able to give spline estimates of g in (4.8.1). However, model uncertainty
with ACE and AVAS can be high because they often do not perform well (i) when the
explanatory variables are correlated, (ii) because they can give different models de-
pending on the order of inclusion of variables (permitting functions f; of univariate
functions of the components of X makes this problem very difficult), and (iii) because
they can be sensitive to omitted variables or spuriously included variables.

Similar to MARS, ACE and AVAS are, at their root, procedures for finding good ap-
proximations in contexts where inference in any conventional sense may be intractable.
Work going beyond the short description here includes de Leeuw (1988), who has a
more general approach for which both ACE and AVAS are special cases. Despite all
their limitations, it is clear that the template of which ACE and AVAS are instances has
enormous potential.

4.9 Notes

4.9.1 Proof of Barron’s Theorem

First, for a given sigmoidal function y, let

Gy={ry(a-x+b):|y|<2C,acR’, beR}
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be the collection of bounded multiples of the sigmoid composed with an affine func-
tion. Apart from the constant term, Barron’s theorem bounds the error of approximat-
ing f(x) — f(0) by convex combinations of functions in Gy, for functions f € I'y c. To
begin the function approximation step of the proof, let G be a bounded set in a Hilbert
space (i.e., Vg € G,||g|| < b) and let chull(G) be the closed convex hull of G.

Step 1: For any f € chull(G), any n > 1, and every ¢’ > b — || f||?, 3., a convex
combination of n points in chull(G), such that

- cl
||f_fn|‘2 < —.
n
Proof: Letn > 1 and 8 > 0, and f* € chull(G) such that ||f — f*|| < §/n. Now,

ZYk gi(x

for some m, with 7 > 0 and ¥ % = 1 for a set of gs in G.

Let G now be a random object taking values in the finite set {g7,...,g},} with proba-
bilities given by P(G = g;) = W. Let g1,...,g, be r independent outcomes of G with
sample average g,. Clearly, as functions, EG,(x) = f*(x). By the usual rules for vari-
ance,

ElIG, I = S EIG — 1P = LENGIP ~ 1£I]* < (6~ 1F°]P).
That is, as a random variable, g, approximates f* within 1/r in expectation. This is
possible only if there is an outcome of the random variable that achieves the bound.
So, there must be a fixed g1, ..., g, for which ||g, — f*||> < (1/r)(b* — |Lf 112). Using
this, choosing & small enough, and applying the triangle inequality to || f — &,||* gives
the result. J

To proceed, three sets of functions must be defined; Steps 2, 3, and 4 will give some of
their containment relationships. The first set is

GCOS:{M);' [cos(@ - x+ D) —cos(b )]:w#O,MSC,be]R};
B

it is seen that G.,; depends on B and C. It will be seen that, heuristically, Gy is the
smallest of the sets used in the proof. For convenience, set f = f(x) — f(0) to make
use of the Fourier representation. The next step shows that I'p ¢ is almost in G;.

Step 2: For f € Ip¢, f € chull(G,s), the closure of the convex hull of G-

Proof: Let x € B. For real-valued functions,
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10~ 1(0) = Re | [(€°* - DF (@)
- /cos(a)~x+ 6()) — cos(6())F(do)

[ S x5 0)—cos(0(@) A )
Jao|o|s

= | sx.0)A(d0).
Q

in which Cy p = [ |@|pF (dw) < Cis a variant on Cy and is assumed bounded. The new
probability measure is A(dw) = |@|gpF (dw)/Cy . (The restriction to Q = R” — 0 is
needed to make ||z well defined.)

It is seen that |g(x, )| < C|ow-x|/|®|p < C for x € B and nonzero . Thus, the func-
tions g(x, ®), as functions of x, are in G. So, any function f, as an inte_:gral of gs, is
an infinite convex combination of functions in G, and hence is in chull(G,y).

Formally, to see this last statement, if F has a continuous density on IR, one can verify
that Riemann sums in terms of the gs converge to f. More generally, the claim follows
from an L, law of large numbers omitted here. []

The two remaining sets needed for the proof are special cases of Gy, when vy is a step
function. Setting step(z) = 1,50}, let

Gyep={ ystep(a-x—1): |y <2C, |ajp=1, [t] <1}.

(The role of the 2C will be apparent shortly.) Also, consider restricting ¢ to the conti-
nuity points of the distribution of z = o - x induced by the measure p on IR”. This is a
dense set in IR. Let Ty, be its intersection with the closed interval [—1,1] and set

Gf,ep ={ystep(a-x—1):|y| <2C,|lalg=1,t € Ty} C Gyep-

Next, the goal is to show that functions in G, are in Ch_ull(Gll,) for any y. Consider
first the special case that y = step.

Step 3: (i) Geos C chull(Gyep).

(i) Geos C chull(GY,),).
(iii) G5 C Gy, the closure of Gy, in Ly (i, B).

Proof: Begin with (i). Each function in G, is a composition of a sinusoidal function
g(z) with a linear function z = o - x, where ot = @/|®|p for some ® # 0. When x €
B, z= o -xisin [—1,1], so it’s enough to restrict attention to that interval. Since g
is uniformly continuous on [—1,1], it is uniformly well approximated by piecewise
constant functions on any sequence of partitions of [—1,1] with maximum interval
length tending to zero. Each piecewise constant function is a linear combination of
step functions.

As a representative case, consider the restriction of a function g(z) to [0,1] and fix a
partition 0 =1y < t; < ... <t = 1. The function
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k—1

gr+(2) = 2 (8(tr) = 8(ti-1)) L z>ny

i=1

is a piecewise constant interpolation of g at the ;s (for i < k— 1). It is also a linear
combination of step functions. Since g’ < C on [0, 1],

Z\gt, g(ti1)| <C.

Similarly, define
k—1

8k,— (Z) = 2 (g(tz) g(tl 1)) 1 {z<—t;}+
i=1
Now, gk(z) = gr+(2) + gk.—(z) is a piecewise constant function on [—1, 1] uniformly
close to g for a fine enough partition and the sum of the absolute values of the coeffi-
cients is bounded by 2C. Hence, (i) follows.

For (ii), the Ty, is dense in [—1, 1] so an extra limit over choices of ¢ is enough to get
the result.

For (iii), observe that the limit of any sequence of sigmoidal functions y(|a|(c-x—1))
as |a| — oo is step(o - x —t) unless a -x —¢ = 0, which has g measure zero. By the
DCT, the limit holds in L, (tt, B) so (iii) follows. [J

Now, without proof, the main statements to be used with Step 1 to prove the theorem
are given in the following. Full details can be found in Barron (1993).

Step 4: With closures taken in Ly (1, B),

e C chull(Geos) C chull(GY, ) C chull(Gy),

step )

where FBOC is the set of functions in I'y ¢ with £(0) = 0.
Proof: These containments follow from Steps 2, 3(ii), and 3(iii). [J
Step 5: The conclusion of Barron’s theorem holds.

Proof: To see that the constant in the theorem can be taken to be (2C)?, for functions
f € I c note that the approximation bound is trivially true if f = 0, for then f(x) is
just a constant a.e. on B.

So, suppose || f|| > 0, and consider two cases: (i) The sigmoid is bounded by 1 or (ii)
it is not.

In case (i), the functions in Gy, are bounded by b = 2C, as seen for the step functions.
Thus, for any ¢’ > (2C)? — ||f]|?, Step 1 holds. The conclusion is the theorem: There
is a convex combination of functions in G, for which the squared norm (in L, (i, B))
is bounded by ¢’ /r.

For case (ii), Step 1 and I}?C C ch_ull(Gge,,) from Step 4 give that there is a con-
vex combination of functions in Gﬁ;ep for which the squared L,(u,B) norm of the

error of approximation is bounded by (1/r)[(2C)? —||f||>/2]/n. Then, by Step 3(iii),
with a suitable choice of scale of the sigmoidal function, one can replace the step
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functions by sufficiently accurate approximations in terms of y that the resulting con-
vex combination of r functions in Gy, yields a square Ly(u,B) norm bounded by
(2C)? /r, completing the proof. [J

4.10 Exercises

Exercise 4.1. Consider independent outcomes (xy,y1), -, (X4,y,) drawn from the
model Y = f(x,0) + &, where £ is N(0,5?%) and 6 is a vector of real parameters with
true value 67. Write y = (y1,...,y»)" and f(0) = (f(x1,0),..., f(xn,0))" and consider
the function S,(0) = (1/n)|ly — £(0)|?

1. Derive an expression for S,(0,67) = ES,(0). (Remember E is taken under 67.)
2. Let
5'(0.6r) = 0>+ [ (Fx.61) ~ £(x,6))%dx.

Argue that S,(0) and S,,(6, 6r) converge pointwise to S*(0, 6r).

Exercise 4.2. In the context of the last exercise, let § = argmin S, () It is known that
under appropriate regularity conditions 6 — 6r in distribution. Let §2=SSE(8)/(n—
p), where p = dim(0) and SSE(6) = ||y — £(6)]|*.

1. Let df/d0]g, be the matrix with typical row (d/d0)f(x;, 0r) and assume
A o 1+d N[\ 1
9—9T+<aef 50 ) <aef) 8+0P(\/ﬁ)'

R 9 +a \ !
"NNp("T"’z(aefTae) )

2. Parallel to the usual theory, argue that

Show that

approximately.

(n—p)s* 2
Yz Xn—p
asymptotically.

3. Consider testing .72 : h(0) = 0 vs. 74 : h(0) # 0 for some well behaved function
h representing a constraint on the p-dimensional parameter space where g is the
number of restrictions imposed on 6 by h.

Let 6 estimate 6 under the full model so that SSE (full) = SSE () as before, and let

0 = argminSSE(0) subjectto h(0) =0
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with SSE (reduced) denoting the minimum. Argue that

(SSE (reduced) — SSE (full)) /q
SSE(full)/(n— p)

is asymptotically an F statistic.

Exercise 4.3. [Sequential regression.] Let 1 be a learning rate parameter, f; € IR” be a
sequence of n vectors, and suppose a sequence of data (x1,y;),-- -, (X,,,)) is revealed
one at a time. Consider the following procedure:

O Initialize: Set B; = 0.

[0 Get an outcome of the explanatory variable: x.

O Predict the dependent variable: §; = B; - x.

[J Receive the correct answer: yj.

O Update: Set B2 = B1 —n(¥1 —y1)x1.

[0 Repeat with x;, x3 and so on.

Now suppose that the linear model is correct; i.e., there is some 8 € R” and M > 0
such that, for all i, y; = B - x; and ||x;||2 < M for all i on the domain of the explanatory

variables. Show that the cumulative squared error from the above procedure can be
bounded by

62 2
(vi = 51)" < [IBIf3-

-

i=1

Hint: First show the identity

1 1 n .
SIB=BIB=31B =Bl = (n— 38 (=50
Then, optimize over 11 and sum over i.

Exercise 4.4. Think of Net as the function from a neural network, and consider the
sigmoidal function

1— —bNet 2
f(Net) = atanh(bNet) = a [ ¢ ] a

1+ e bNet = 1 4 ¢—bNet -4

where a,b > 0.

1. Verify that f'(Net) can be written in terms of f(Net) itself.

2. Find f(Net), f'(Net), and f”(Net) when Net tends to —eo, 0, and o.

3. What are the extrema of f”/(Ner)?

Exercise 4.5. Consider a neural net with a single output neuron, defined as y =

Net(x,w), where x and w are in R”. Suppose a data set of the form (x1,y1),- -, (Xn,¥1))
is available and the average squared error on the data set is
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(i — 91)%,

M=

. 1
E=—
2n ¢

1

where y; is the outcome for x; and J; is the “fitted” value produced by Net for x; using
the eight vector w. Show that the Hessian matrix H evaluated at a local minimum of
the error surface defined by £ may be approximated by

Hzizgkgk7
e

where
dNet(w,x;)
e
w
Exercise 4.6. Suppose a data set of the form (x1,y;),---, (x,,y,)) is available and that
the jth components of the x;s are written simply as x1, - - - ,x,. Let ¢ € R be a candidate

split point for the x;s. Then, the best left prediction, py, is the average of the observa-
tions with x; < ¢ and the best right prediction, pg, is the average of the observations
with x; > ¢. The issue is how to define “best”.

1. Suppose first that best is in the sense of squared error loss. So find the value of ¢
which minimizes

n

L(PL,PR’C) = 2 1x:x_,-<c(y1 - pL)2 + 1x:x,->c()’i - PR)Z-
=1

How can you use this to generate splits at a node in a tree model?
2. Redo item 1, but with absolute error loss. How can you use this to generate splits at

a node in a tree model?

Exercise 4.7 (Variance-bias trade-off and regularization). The point of this exer-
cise is to see the effect of the number of nodes in the hidden layer of a single hidden
layer NN on the overall performance of the NN. Under squared error loss, you should
see the variance-bias trade-off. This should lead you to suggest seeking a trade-off
through regularization.

So, suppose the true function f defined on [—10, 10] is

rx) =

X
Using this f, generate a sample of n = 200 data points (x;,y;) fori =1,---,200 from
Y = f(x)+e,

where the &s are IID N(0,02). with 6 = 0.2, and the x;s equally spaced in [—10,10].
The error to be used in this exercise is

E(w) =Y (vi— Net(x;,w))?,

-

i=1
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where Net (x;,w) is the output produced by the NN for x;.

1. Construct the scatterplot of the data, and superimpose the true function on it in a
different color.

2. Randomly split the data set into two portions, one with 7.5, = 120 data points to
be used as the training set and the rest with niest = 80 points to be used as the test
set. (Other choices for ny,in and ntest are possible.)

3. Download and install the R Neural Network Package nnet or the MATLAB Neu-
ral Network package NETLAB. Let r; denote the number of nodes in the hidden
layer. Use ry =1,2,4,6,8,16,20 and, for the sigmoid, use the function tanh. Do the
following for each value of r:

a. Estimate the weights of the NN, storing them and the fitted values.
b. Compute the SSE; i.e., the training error.

c. Using the optimal weights from item 1, compute the predicted values and find
the SSE for the test set (i.e., the test error).

4. Plot both the training error and the test error as a function of r; and interpret what
you see.

Exercise 4.8 (Extension of Exercise 4.7). In this exercise, use the regularized squared

error loss
n

n
Ereg(w) = (yi—Net(x;,w))* +1 3 |w;?,
=1 =

where Net(x;,w) is the NN output for x;. The point is to explore the effect of the
regularization parameter A and the number of nodes in the hidden layer on both the
training error and the test error. Use the same data generation procedure as in Exercise
4.7 and either the R package nnet or the MATLAB package NETLAB.

1. For r; € {4,8,16}, repeat the following for A = %i,i =1,---,10:

a. Estimate the weights of the NN, storing them and the fitted values.
b. Compute the SSE; i.e., the training error.
c. Using the optimal weights from item 1, compute the predicted values and find
the SSE for the test set (i.e., the test error).
2. Plot the training error and the test error as a function of A.

3. For each r|, compute the mean and variance of the test error as a function of A. For
each A4, plot them as a function of ry.

4. Are the results what you expected? Explain.

5. What effect does increasing or decreasing 6> have on the mean and variance of the
test error?
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This process can be repeated for a multilayer neural network; i.e., one for which ¢ > 2.
If the network is rectangular (the same number of nodes in each hidden layer), the
results should be similar. For irregular networks, the results should be more diffuse,
but the curious reader is invited to seek a similar trade-off.

Exercise 4.9 (Ridge function representations). Functions whose argument is a one
dimensional projection, f(xf3), are called ridge functions because the projection di-
vides the p-dimensional space into positive and negative parts. Ridge functions are the
terms in PPR.

1. For an arbitrary function g write out the three term decomposition for estimating
it by a technique such as PPR or GAMs. Note that, given the class of functions
to be used to approximate g, there is a best approximand g* that gives the optimal
approximation error. After this, the usual bias—variance decomposition can be used
on g*.

2. To see that the decomposition in item 1 is too simple, let p = 2 and consider
g(x1,x2) = x1xp. Find two different representations of g* as a sum of two ridge
functions. Find a third. How many are there?

3. Find a function that is not a sum of finitely many ridge functions.

4. GAMs suffers the same problem as PPR. So, fix a link function and find a function
that cannot be represented as a link function on an additive model.

5. To explore the effect of bias as n increases, use a normal error in ¥ = f(x) 4 € and
generate data from

cos [% >f_ cos r,'(x,-)}

Y = f(x) =
™ 1 +cos B > coss,-(xi)}

)

using various choices of r;, s;, and p; start with p = 3, r;(x) = s;(x) = x. Use equally
spaced design points for convenience. Do trees or neural nets — which can give zero
bias in the limit of large data — perform better, worse, or about the same as the biased
techniques like GAMs or PPR in small sample sizes? Does the same problem occur
for SIR and MARS? Explain. (Don’t forget about variable selection.)

Exercise 4.10 (Projection pursuit regression). This is a generic comparison of sev-
eral methods. Choose a complicated function f and generate responses of the form
Y = f(X1,...,X,) + € for some p > 3, and generate data from it. (The Friedman func-
tion in Chapter 7 is one instance.) You can generate an error term from a N (0, Gg) for
various choices of o or use other unimodal distributions. A few ways to choose the
design points are the following: Choose each X; ~ N(0,B?/16) for some fixed B > 0,
choose X; ~ Unif|0,B] and choose X; ~ Unif[—B/2,B/2].

To do two-dimensional PPR, an excellent package is called XGobi and available from
the StatLib archive. A version of Xgobi for the freeware R statistical software package
is at CRAN. The software associated with Friedman (1987) is also available from the
StatLib archive.
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1. Fit a linear model to the data. Does residual analysis suggest any linear model cap-
tures the key feature of your function well?

2. Fit an additive nonparametric model, and compare it with the linear one. Any indi-
vidual smoother will do.

3. Perform PPR using various smoothing methods and different numbers of terms
(one, two, or three). Choose the most reasonable PPR. What are the resulting ex-
planatory variables? Compare the results with those obtained in (a) and (b).

4. Now redo the problem using neural nets (with regularization). What are the differ-
ences?

5. Hardy spirits may try the ACE, AVAS, or MARS procedures. Do the transforma-
tions from ACE or AVAS hint at any parametric model?

Exercise 4.11 (Another comparison).

Parallel to the previous exercise, consider the (one-dimensional) Doppler function

gx)=+/(xx(1—x))*sin((2xmw*x(1—e))/(x+e)),

where e = 0.05. Generate a data set by adding N(0,62) noise to g(x) at uniformly
chosen design points x; = i/500 for i = 1,...,500.

1. Plot the original Doppler signal and the generated noisy one.

2. Use the techniques of Chapters 2 and 3 to estimate g, namely the Nadaraya-Watson
estimator, nearest neighbors, and a cubic or other spline estimator. Find the MSE
for these two techniques and generate residual plots.

3. Use a single hidden layer neural network (with and without a penalty term) to gen-
erate an approximation to g. What happens if you allow extra hidden layers?

4. Now, use a recursive partitioning (tree) based approach. The Gini index is stan-
dard (see Chapter 5) but other selection techniques are possible; use standard cost-
complexity pruning. Again, plot g and the tree-based approximation and give an
MSE. Compare the residual analyses of these techniques.

Exercise 4.12. In this problem the goal is to establish conditions under which backfit-
ting converges and to identify the limit. So, refer back to (4.1.5).

1. Verify that (4.1.5) with p = 2 is equivalent to

fi=Li(y—f,) and fr=L(y—f1),
where L and L, are the smoother matrices for two linear procedures as in the
definition (2.1.1).

2. Use the expressions in item 1 to follow the backfitting procedure. That is, start with
f>,mir and use the first equation to get f!. Use f] in the second equation to get f3
for use in the first equation again. Write the iterates as f{ and fﬁ. Verify that
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A=Liy—f") and fi=Ly-f).

3. The goal is to show that if ||L;Ly| < 1, then f{ — f, and fé — f5. So, start by
using induction on j to derive

J—1
fl=y— Y (LiLy)/ (I, = L)y — (Li\Ly)"'Li f5 jir
j=0
J—1

=Ly Y (LiLy) (I, — L)y + Lo (Li L)~ 5 i
=0

for given J.

4. Choose the usual norm on matrices; i.e., for a p x p matrix M, let [|[M|[ = supjy
|IMv}, where the norm on v is Euclidean. Argue that the expressions in item 3
converge when ||L1L;|| < 1.

5. Now, given ||L;Ly|| < 1, solve the system of equations in item 4 to obtain the lim-
iting expressions
fl,oo = (= _L1L2)71(1p —Li))y
fre=Lo(l,~LiLy) " (I, — L)y
= (I, =y _L2L1)71 (Ip —L2))y.

6. Argue that the fitted values are § = f ., + f .-



Chapter 5

Supervised Learning: Partition Methods

Basically, supervised learning is what statisticians do almost all the time. The “super-
vision” refers to the fact that the Y;s are available, in contrast to unsupervised learning,
the topic of Chapter 8, where Y;s are assumed unavailable. The term “learning” is used
in a heuristic sense to mean any inferential procedure that can, in principle, be tested
for validity. Having measurements on Y available means that model identification, de-
cision making, prediction, and many other goals of analysis can all be validated.

In practice, supervised learning more typically refers to a topic that is less familiar
to statisticians but is the focus of this chapter: classification. This is like a regression
in which the dependent variable assumes one of finitely many values, representing
classes. The task remains to identify a regression function but now it is called a clas-
sifier because the goal is mostly to treat a new feature vector as an input and take its
value as the class label. Implicit in this is the primacy of prediction because classifiers
are evaluated almost exclusively on future data (or holdout sets). Roughly every re-
gression technique gives a classifier if it is applied for discrete responses, and every
classification procedure corresponds to a regression problem, although the ¥ may only
take two values.

The point of classification in general is to slot objects in a population — patients, cars,
images, etc. —into one of two or more categories based on a set of features measured on
each object. For patients, this might include sex, age, income, weight, blood pressure,
and so forth. The categories are known and, in general, not ordered. However, it is easy
to imagine classifying patients into low-, medium-, and high-risk groups, for instance.

Like regression, the typically data consist of n outcomes ¥; with corresponding co-
variates or explanatory variables X; of length p. In the supervised (and unsupervised)
learning context, explanatory variables are often called features and the data are often
called a training set. The Machine Learning Repository at the University of California-
Irvine has well-documented training sets often used in DMML for testing new meth-
ods. The first goal is to use the data to choose which components of X, or possibly
functions of them, are most important for determining which category Y; came from;
this topic will be addressed in Chapter 10. The second goal is to use this information
to use the data to find a function of the explanatory variables that will identify the class
for a given x. This analog to the regression function is often called the classification

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 231
in Statistics, DOI 10.1007/978-0-387-98135-2_5, (©) Springer Science+Business Media, LLC 2009
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rule, f (+). It is equivalent to specifying the decision boundary in feature space that best
separates the classes. Strictly speaking, only the second of these two goals is classifi-
cation, but variable selection, is often a necessary step for constructing a classifier.

In a training set, each data point is a vector of length p + 1 consisting of ¥ and the
p covariates that gave rise to it. It is assumed that there is an ideal classifier f that f
estimates, just as in regression there is a true function that the fitted curve estimates.
Thus, for a new observation Y., one looks at the covariate values X ,.,, and predicts
that Y,,.,, will be in the class f (X new)- The basic way a classifier such as f is assessed
is through its probability of misclassification, P(f(X ) # Ypew). The probability P
may be conditional on the training set, i.e., neglect the randomness in estimating f
or P may be as written and include the variability in f. Note that the existence of an
ideal classifier does not in general figure in the evaluation of an estimated classification
rule; this is unlike regression, where rates are on the norm between an estimate and a
true function. Another consequence of the discreteness of Y is that the loss function in
classification is usually discrete as well; for instance, 0-1 loss is typical, as opposed to
a continuous loss like squared or absolute error.

Classification procedures themselves can be classified into several classes. One is
called partitioning methods. These methods partition the feature space into disjoint,
usually exhaustive, regions. The hope is that the responses for feature vectors from the
same region should be similar to each other. Often these regions are found recursively,
and in the simplest cases they are rectangles. For instance, one can start with a variable
x1 and partition first by x; < ¢ versus x; > c. Then, within each rectangle, the partition
can be repeated on another variable.

Classification can also be done nonrecursively. In some cases, a discriminant function,
say di(Xpew), is used to assess how representative Xy, is of each class k = 1,... K,
assigning class k,p; = argmaxy dy (Xnew) O Xy Discriminant functions can be linear
or not, in which case they are called flexible. Even when they are not linear, discrimi-
nant functions are sometimes only a monotone transformation away from being linear.
For instance, it will be seen that logistic regression can be used to obtain a classifier.
In the two-class setting, let

eﬁ0+ﬁ,x
and |

be discriminant functions for the two classes. Then, the monotone transformation
given by the logit, p — log(1/(1 —p)), gives

P(Y =1|X =x)

log py =2y =

= ﬁ0+ﬁ/x’

and it is seen that the line By + 'x = 0 is the boundary between class 1 and class 2.

Other partitioning methods include trees, neural networks, and SVMs. Indeed, SVMs
are one of the most important: They have linear and nonlinear forms, can be used with
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separable or nonseparable data, and, to a great extent, evade the Curse because they
make use of kernel methods. Separable data means that the classes, or more exactly the
data, really are disjoint; nonseparable, which is more typical, means that the regions for
each class have boundaries that are much more general and the data appear to overlap.

Nonpartitioning classification procedures include nearest neighbor methods, discussed
in Chapter 2, and the relevance vector machine, to be discussed in Chapter 6. There are
not as many nonpartitioning methods; they tend to identify representative points and
predict based on proximity to them. In fact, nonpartitioning methods can be expressed
so they give a partition. However, the partition is so variable that it is not really helpful
to think of the method in those terms.

All of the methods treated here are crisp. That is, the complication that ¥ may only be
probabilistically determined by X is not considered. In other word, the setting that, for
a given feature vector x, it may be that both P(Y(x) =0) > 0and P(Y(x) =1) >0is
ruled out. For instance, one can have high blood pressure but not be at risk for a heart
attack. Blood pressure increases when someone is in pain. So, a heart-attack classifier
assuming Y is essentially determined by x may improperly identify some one with back
pain as actually having a heart attack on the basis of elevated blood pressure when a
more sophisticated technique would only report a probability (less than one) of heart
attack. Non-crisp methods are a level of complexity beyond the present scope.

This section presents three basic partitioning methods in order of increasing complex-
ity. The first and third, discriminant analysis and SVMs, are non-recursive. The second,
based on trees, is recursive. At the end, a short discussion of neural nets (also nonre-
cursive) in a classification context is given.

5.1 Multiclass Learning

The simplest classification problems separate a population into two classes labeled
1 and 2. These binary classification problems almost always generalize to multiclass
classification problems. Although binary classification is the paradigm case and con-
venient to examine first, it is no harder to state some of the formalities for the general
K class setting.

The task is to find a decision function to discriminate among data from K different
classes, where K > 2. The training set consists of samples (x;,y;) for i =1,...,n,
where x; € IR” are the feature vectors and y; € {1,...,K} is the class label for the ith
sample. The main task is to learn a decision rule,

Fx) R = {1,....K},

used to separate the K classes and predict the class label for a new input x = X;,,,.

A trained multiclassifier is generally associated with a K-function vector

d(x) = (di(x),...,dg(x)),
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where fi(x) represents the strength of evidence that x belongs to class k. The induced
classifier ¢ from f is defined as

f(x) :argk:nlladek(x). (5.1.1)

The decision boundary between classes k and [ is the set
{x e R’ :di(x) =d)(x)}, Vk#L

If the decision boundaries are linear in x, the problem is linearly separable. Figure 5.1,
cf. Liu and Shen (2006), shows a simple three-class classification problem, where the
training set can be perfectly separated by linear functions. Relatively few classification

Class 1

f1>max(f2,3) P .

f3>max(f1,f2) ,

x2

f2>max(f1,f3)

Class 2 Class 3

x1

Fig. 5.1 An example of a three-class problem with linear boundaries.

problems are linearly separable. However, the concept is useful, and often it is possible
to transform the feature space so that the boundaries in the transformed space are linear.

If K is not too large, one way to simplify multiclass problems is to transform them into
a series of binary problems. Two popular choices are the one-versus-rest approach (also
known as one-versus-all or OVA) and the pairwise comparison approach (also known
as all-pairs, all-versus-all, or AVA). The OVA method trains K binary classifiers. Each
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dy (x) is trained to separate class k from the rest. These K binary classifiers are then
combined to give a final classification

A

flx) = argk:rrllachfk(x). (5.1.2)

The OVA method is easy to implement and hence is a popular choice in practice. How-
ever, it may give poor classification performance in the absence of a dominating class
when none of the py(x)s is greater than 1/2; see Lee et al. (2004). Another disadvan-
tage of the OVA method is that the resulting binary problems are often very unbal-
anced; see Fung and Mangasarian (2004). By contrast, the pairwise classifications in
AVA train K(K — 1)/2 binary classifiers, each separating a pair of classes. The final
class predicted for an x is decided by a voting scheme among all the classifiers. One
criticism of these methods is that a large number of training tasks may be involved,
especially for AVA, when K is not small.

In the rest of this chapter, the goal will be to develop the general K case. However,
discriminant methods and SVMs are most naturally presented in the binary K = 2,
case and this will be done below. Details on extensions to general K will be discussed
where possible. It is only for tree-based classifiers, and NN that the general K case is
no harder to present than the binary case.

5.2 Discriminant Analysis

As noted earlier, the idea behind discriminant analysis is that K functions d(-) are
derived so that dj(xpey) can be used to assess how representative X, is of each class
k=1,...,K,asin (5.1.1) or (5.4.23). The natural classifier then assigns class

kopt = argmlflx di(Xpew)

to X,ew- In practice, one does not go too far wrong to think of dj as representing some-
thing like a distance between the sample mean of the kth class and a new value of X,
remembering that projections are closely related to distances.

The paradigm case for discriminant analysis is that K = 2 and the two classes corre-
spond to values of two explanatory variables that concentrate on two parallel, ellip-
tically shaped regions in the plane, one for each class. In this case, the two classes
are linearly separable because there is a linear decision boundary, a line in the plane
such that essentially all the class 1 cases are on one side and all class 2 cases are on
the other. This corresponds to having linear discriminant functions. More generally,
linear separability means that the classes can be separated by a linear combination of
features. For instance, when p = 3, a linear decision boundary would be a plane and
when p = 4 a linear decision boundary would be a hyperplane. Squares of the ex-
planatory variables can be included in the ds to give quadratic discriminant functions
with quadratic boundaries, although the term quadratic separability is not in common
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parlance. In general, decision boundaries obtained from discriminant functions dj can
be any partition of the feature space.

Discriminant functions fall roughly into three conceptual classes — distance-based,
Bayes, and probability-based even though the techniques in the classes have some
overlap. (For instance, the Bayes classifier turns out to be distance-based in many
cases.) Distance-based classifiers were the earliest and led to the linear discrimi-
nant functions pioneered by Fisher in the 1930s, now often just called collectively
Fisher’s linear discriminant analysis (LDA). Bayesian classification came later and has
a decision-theoretic foundation; it also leads to linear discriminants but of a slightly
different form. In the third class, probability based, the Bayes rule is estimated. First,
conditional probabilities p(x) = P(Y = k|X = x) are estimated, often using a model,
and then sample points x are classified according to the highest probability pi(x). It
can be argued that most standard statistical approaches for multiclass discrimination
are probability-based because the Bayes rule is optimal (even if hard to implement)
and any good classifier should approximate it satisfactorily.

5.2.1 Distance-Based Discriminant Analysis

To start thinking about distance-based classification, start with K =2,s0 Y = 1,2, and
consider looking for a linear function that predicts the class for a new value X = x. The
simplest case is that IP(X|Y = 0) and IP(X|Y = 1) are normally distributed with means
Uo and y; and the same covariance matrix X, assumed to be of full rank. Given data,
it makes intuitive sense to find X; and X, the means of the observations with values
y=1andy =2, and assign x to the class i with a smaller value of ||X; — x||, where the
norm uses the inner product on R” defined from X. It will be seen that this is equiv-
alent (apart from estimating parameters) to using the optimal classifier that assigns
whichever of class 1 or 2 has a higher value of P(Y = y|X =x) = Z~'(u; — ) - x.
That is, distance-based classification often converts to a projection, and projections
used for classification often have a distance-based interpretation. Even better, both
perspectives can lead to linear discriminants. Such procedures typically extend from
the binary case to the multiclass setting and have a Bayesian interpretation if the pro-
portions of the classes are regarded as a prior.

Noting that variances are average squared distances, Fisher ignored conditional prob-
abilities and derived a linear discriminant using a criterion based on the difference
between two projections of x scaled by the variances of the classes. This did not re-
quire normality or equal variance matrices. To see this, suppose there are two classes
with means o and y; and variance matrices X; and X, and consider a linear combina-
tion L = w-x. Then, E(L|Y =y) = wp, and Var(L|Y = y) = wZ,w. Let the separation
between the two classes be defined by

_ (W-po —w-u)?
wXiw+wlw ’
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a sort of signal-to-noise ratio. It can be verified that S is maximized when w = (X +
)" — uy), giving a projection form of Fisher’s LDA, and directly generalizing
beyond the normal case which required X = ;.

Again visualize two long, thin, parallel, elliptically shaped regions in a plane, each
ellipse representing the values of an explanatory variable for a class. If the class in-
formation is ignored, the scatterplot of the full data set may look like a single thicker
ellipse of the same length or, better, like two thin ellipses of the same length without
much overlap. That is, the full data set can be treated as a single ellipse in which the
major axis parallel to the two thin ellipses represents the larger of two variances and
the minor axis, crossing the two small ellipses, is the smaller of two variances.

Imagine separating the two classes by a decision boundary. If the data points were
projected onto the major axis and then a one-dimensional classification were done, the
result would be terrible because the points from the two classes would be intermin-
gled. The decision boundary would be transverse to the ellipses. However, if the data
points were projected onto the minor axis, the result would be quite good; the decision
boundary would be a line between the two ellipses, and the separation between the two
classes would be relatively clean. As noted above, the basic task of linear discriminants
is to find good decision boundaries, and this can be done by finding useful projections.
There are many ways this can be done. Two are as follows. First, a relevant objective
function can be maximized to give a useful projection for classification in general;
this is another form of Fisher’s LDA. Second, one can seek an optimal linear transfor-
mation corresponding to the optimal directions for classification generalizing X! in
Fisher’s LDA. Both of these will be developed below.

5.2.1.1 Direct Maximization

Instead of maximizing the separation S between two classes, one can use ANOVA rea-
soning. Recall that the main way the different cells in an ANOVA are contrasted is by
comparing the between-cell variation to the within-cell variation. The analogous treat-
ment for classification can be developed defining between-scatter and within-scatter
matrices. In terms of the data, these are S and Sy, defined by

K K ng
SB = z nk(ick 73)(.)_{,']( 73)1- and SW = z Z(x,- —Xk)(xi 73]()1-, (521)
k=1 k=1i=1

in which ny is the number of samples from class k, >, ny = n, X is the average of the
samples in class k, and X is the average over all the samples. It can be checked that

n
Sp+Sw =S8t = Z(x,' —X)(x —J_C)T,
i=1
where St is the total scatter.

Now, the analog of the ratio of variances in ANOVA is
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w'Spw
wliSyw’

J(w)

Maximizing J(w) is equivalent to maximizing the total scatter w' S7w while minimiz-
ing the within-scatter w' Syw, parallel to the ANOVA sum of squares decomposition.

Since J(w) = J(aw) is homogeneous for any o and the denominator is a squared
norm, it makes sense to maximize over the unit sphere in p dimensions in the norm
defined by using Sy as an inner product. Thus, it is enough to solve

. 1
Find minffwTSBw
w2

subjectto w'Syw = 1.

This is a familiar quadratic optimization problem solvable by Lagrange multipliers; see
Johnson and Wichern (1998) and Welling (2005). The Lagrange multiplier A can be
found to satisfy Sﬁ,l Spw = Aw. If S‘;,l Sp were symmetric, this would be an eigenvalue
problem. However, SV_VISB is not always symmetric. To get around this, one can use
a transformation based on the fact that Sp is positive symmetric and therefore has a
square root that can be represented as S g/ Z_yuA'y , where U diagonalizes Sp to A,
ie.,Sp=UAU. Writing v = Sé/ %w converts the Lagrange multiplier condition to
S5 280185 v = v,
So, the possible solutions for A are seen to be the eigenvalues of Sgl/ sz}ngl/ 2 with

eigenvectors v, given corresponding ws as wy = S;l/ 2vk. Putting this back into the
numerator of J(w) gives that

WTSBW W;;SWWp

J(w) = <A =2,

= S A
wlSyw wlSww,

when 4, is the largest eigenvalue.

This means that the projection defined by w,, the eigenvector corresponding to the
largest eigenvalue, is the optimal projection for maximizing the between-class scatter
relative to the within-class scatter, i.e., the discriminant function is

~

dk(x) = Wp(x—ik) 5.2.2)

because of the centering in the scatter matrices. Note that this remains a projection
onto a unidimensional space and so may not be particularly good if the classes are
not properly aligned so their minor axes are roughly parallel. This deficiency can be
partially fixed by a projection onto a space of dimension higher than one; see below.
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5.2.1.2 Noise in LDA

It is important at this point to look briefly at the effect of noise on distance-based
classification. The effect of noise is most easily analyzed using a form of Fisher’s
LDA that will be derived in the next subsection. It is Bayesian and obtains expressions
for conditional probabilities of the form IP(Y = k|X = x). The discriminant function it
gives reduces to assigning x to the class k achieving the maximum of

di(x) = du (%, %) = [(x—%) "= (x— 5]/ (5.2.3)

when the variance matrices of the K classes are the same. That is, x is assigned to the
class whose sample mean is closest to the observation in Mahalanobis distance, a norm
derived from an inner product defined by the inverse variance matrix. It can be seen
that this is equivalent, apart from estimating parameters, to the normal LDA rule for
two classes given at the start of this section and is of a form similar to the other linear
discriminants. If ¥ is unknown, then the usual estimate can be used and, in practice, it
is helpful to use robust estimators for both p; and X.

To analyze the effect of noise in linear discriminant analysis, assume a fixed sample
size of n and that the common variance matrix is diagonal, ¥ = 021, Write the esti-
mates of the means as

~ o N o

i=m+—7=Vy and f[b=+—=V;
N N/

for unknown vectors V| and V,. Suppose that the new observation to classify is X =
Uo +oV. Here, Vi, V5, and V can be treated as N, (0,/) random errors.

Now, the Mahalanobis form of Fisher’s LDA assigns class 1 if dy (X, fl1) < dy (X, f12),
and this is equivalent to (X — ;)T (X — fi;) < (X — 1) T (X — {1p). Writing X, i1, and
[1r in terms of V, V1, and V, shows this is equivalent to

<(u1 — ) +oV - Gnvz)T ((Hl — ) +oV— GnV2>

vn Vn
> (av - jﬁvz)T (av - jﬁvl) . (5.2.4)

As n — oo, this criterion converges to the rule that assigns class 1 when 26V - (i) —
t2) + ||t — t2]|> > 0. So, when p = 1, the asymptotic probability of misclassification
is seen to be P[V > |u; — U2|/20] and the error rate depends on the signal-to-noise
ratio |41 — U2|/ 0. Analogous expressions for larger p can also be derived but are left
as an exercise.

Without using asymptotics, one can use (5.2.4) to show that Fisher’s LDA specifies a
plane in p dimensions that partitions the feature space. Raudys and Young (2004), Sec.
3 give formulas for the probability of misclassification.

Note that fully three forms of Fisher’s LDA have now been seen. The original version
based on separation led to the projection form using w = (Zo + %)~ (11 — to); the
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ratio of scatter matrices led to another projection form

~

di(x) = Wp(x —Xy).

Third, the Mahalanobis form just seen uses a distance explicitly and is derived from
a Bayesian approach. In fact, the Bayes approach more generally leads to yet a fourth
form for Fisher’s LDA. All of these are called Fisher’s LDA, although, in practice, it
is the Bayes version that is most commonly meant.

5.2.1.3 Optimal Linear Transformations

Maximizing the between-scatter matrix relative to the within-scatter matrix can be
done in many ways; there are many functions that are reasonable besides taking the
matrices as inner products. In fact, taking inner products may not reflect the spread of
a matrix at all: The largest single eigenvalue says little about the (p — 1)-dimensional
subspace corresponding to the eigenvectors of the other eigenvalues. The dispersion of
a matrix may therefore be better represented by some function of its entries that treats
the eigenvalues symmetrically, for instance the trace. Moreover, it may be desirable to
be able to choose the dimension of the projection.

To set this up, follow Ye (2007) and consider an ¢ X p real matrix G and for any
x; write Gx; = x£. It would be nice to maximize trace(Sg)/trace(Sy) or perhaps
det(Sg)/det(Sw), but this seems hard. So, recall the matrix form of the conservation
of variation equation, St = Sp + Sw, and transform it by G. Set

Sk = GSwG", Sk =GSgGT, and Sk =GS;G'.

Writing G as column vectors G = (gy,...,&;). it is seen that, for x € R”, Gx = (g, -
x,...8-x) € R

Now, it would be nice to find G that maximizes trace(S%) and minimizes trace(S%,) at
the same time. So, it is reasonable to look at

max trace(S5) 'S5 and mGin trace(S5) 1Sk,

As noted in Ye et al. (2004), these optimizations, like the last direct maximization,
are equivalent to a generalized eigenvalue problem. Indeed, for the maximization,
set Spx = ASwx for A # 0 assuming Sy is nonsingular and use an eigendecompo-
sition of S‘;,lSB. (If Sp is nonsingular, use an eigendecomposition of SE]SW.) Since
rank(Sg) < K — 1, there are at most K — 1 nonzero eigenvalues. The minimization is
similar. Hopefully, G will preserve the class structure of the data in IR” while project-
ing it to R’.

These two optimizations are also equivalent to finding G that maximizes trace(S%)
and minimizes trace(S%). A standard argument (see Fukunaga (1990)) gives that the
optimal G'PA satisfies
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GLPA — arg max trace(S5(S%) ")

and consists of the ¢th largest eigenvectors of S (ST)’1 (with nonzero eigenvalues), as-
suming St is nonsingular. Clearly, these three optimizations generalize the optimiza-
tion in the last subsection in which G was just the eigenvector corresponding to the
largest eigenvalue in (5.2.2).

It is straightforward to verify (see Ye (2007)) that when there are K = 2 classes Fisher’s
LDA and linear regression of the xs on the class labels are equivalent. Indeed, suppose
the labels are +1 and the data points are centered; i.e., x; is replaced by x; — X and
y; is replaced by y; — ¥, and the linear model f(x) —x"p is fit for B € R”. Then,
under squared error loss, [3 = (XTX)7'XTy", where X is the design matrix and y" =
(V1,---,yn) " is the vector of classes. Using X ' X = nSr and Xy" = (2n1ny/n) (% —X),

it can be verified that
A 2n 11’12

B =

when S7 is nonsingular, so that the optimal Gis Gr =S, ! (%) — X;) for Fisher’s LDA,
which is the solution to G“P4 in this case. If S7 is singular, a generalized inverse may be
used in place of S ' Ye (2007) verifies that this equivalence between linear regression
and LDA holds quite generally.

ST (x1 XQ)

5.2.2 Bayes Rules

Abstractly, the Bayes classifier rests on a conditional density p(Y|Xi,...,X,) for a de-
pendent class variable Y = 1,..., K, given explanatory variables X; through X,,. Bayes’
theorem gives

Y)p(X1,.... X, |Y
p(Y|X1,...,X,,):p( )P, K| ), (5.2.5)

p(Xla ) )

but interest only focuses on the numerator because the denominator is a constant be-
cause the X; = x; must be given, independent of the value of Y = y. Although p(y) is
not known, it represents the actual proportion of class y in the population and so plays
the role of the prior. Given an outcome (xi,...,x,), the Bayes classifier is the mode of
(5.2.5),

argmax pp(x1,..,xplY = ).

The mode of a posterior is the Bayes optimal under certain loss functions, as will be
seen shortly.

An interesting special case of this is called the Idiot’s Bayes procedure. The idea is to
ignore any dependence structure among the X;s so the X;s are like independent data.
Thus, the numerator in (5.2.5) is written as
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)4
pM)pX1|Y)p(Xa|Y, X)) p(X3]Y, X1,X0) ... p(Xp |V, X1, ... . Xp1) = [ [ P(XG[Y).
j=1

So, the conditional distribution for Y becomes

1 P

p(Y[X1,....Xp) = mP(Y)HP(XJY),

where K is a normalizing constant depending on X!. Again, the natural classifier is the
mode, which is now

arg m;lx p(y)nlep(xﬂ y)

if the p(-|c)s are known; otherwise they are usually parametrized by, say, o as in
Pa(x]y), which must be estimated as in the next subsection.

The rest of this subsection examines the Bayes classifier for normally distributed
classes, deriving the Bayes version of Fisher’s LDA. Then, a more general decision-
theoretic framework is given to motivate the use of the mode of the posterior. Finally,
Fisher’s LDA is examined once more to identify the decision boundaries.

5.2.2.1 Bayes Classification in the Normal Case

The basic idea of the Bayes approach is to assign a prior to the classes, say W(-), so
that the posterior probability for ¥ assuming the value of the kth class upon receipt of
X=xis

W (k) fi(x)

W= =) = A+ 4+ WE )

(5.2.6)

where the f;s are the class densities. The modal class is therefore

argm]?xW(Y =klX=x)= argm]?xfk(x)W(k).

If the fi(-)s are normal with common variance (i.e., N(l,X) densities) then the Bayes
classification rule is

flx) = argm]?xW(Y =klX=x)
= argmax W (k) fi(x)

1
= argmax (—z(x— w) T e — ) + an(k)>
1
= argmax <xT21 Ui — E“’CT > /.Lk+1nW(k)> (5.2.7)

because the common variance term drops out. It makes sense to define di(x) to be
the parenthetical quantity in (5.2.7) so that the Bayes classification rule is f(x) =
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argmaxy dy (x). This means that the decision boundary between two classes k and £ is
{x|di(x) = di(x)}.
The Bayesian approach extends to the setting in which the variance matrices depend

on the classes. This is sometimes called quadratic discrimination analysis and results
in the quadratic discriminant function

dix) = —% Indet(Z) %(x— e = (x— ) + In W (k),

so that the classification rule is, again, to assign class arg max; di(x) to x. However,
decision boundaries of the form {d;(x) = d,,(x)} become more complicated to express
and there are many more parameters from the variance matrices that must be estimated.

For contrast, recall that the first discriminant given at the start of this section used a
projection based on w = X! (uy — p;). Here, it is worth noting that, when K = 2,
setting v = (v1,...,v,) = £~ (1 — 1) and

vo = In(W (1) /W (2)) + (1/2) (12 — ) "= (11 + p12)
means the Bayes classification rule reduces to assigning x to class 1 when

vo+v-x>0.

5.2.2.2 Decision-Theoretic Justification

In classification problems, the data (y;,x;),i = 1,---,n, are assumed to be indepen-
dently and identically drawn from a joint distribution IPx y (x,y). Deterministic designs
common to regression do not occur, and IP summarizes the error structure instead of a
perturbation €. It is IP that defines the conditional probabilities of Y given X as

p(x)=PY =k|X=x), k=1,...,K.

Earlier, the mode of a posterior was used to give a classification. Here, it will be seen
that the mode is the Bayes action under a specific loss structure.

Let C be the K x K cost matrix associated with classification, i.e., an entry C(k, ) rep-
resents the cost of classifying a data point from class k to class /. In general, C(k,k) =0
for k=1,...,K since correct classifications should not be penalized. For any classifier
f, the risk is the expected cost of misclassification,

M=

Exy (C(Y,f(X))) = Ex (
i

k

The Bayes rule, which minimizes the risk functional, is given by

Clk, f(x))Pr(Y = kX = x))
1

M=

C(k, f (x))pk(x)> : (5.2.8)
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K
> Clk,1)pr(x) | - (5.2.9)

=1

fe(x)= arg, min (
In the special case of equal misclassification costs, the risk in (5.2.8) is equivalent to
the expected misclassification rate

E[f(X) #Y] = Ex <§ I(f(x) # k) P(Y = k|X :x)> : (5.2.10)
k=1

and the Bayes rule becomes

fo(x) =arg_min [1—py(x)] = arg max_py(x). (5.2.11)

which assigns x to the most likely class. Thus, the modal class is the optimal Bayes
rule and would be computable if the underlying conditional distribution IP(Y |X) were
known. Many classification methods have been proposed to estimate, or approximate,
the Bayes rule directly or indirectly. Based on their learning schemes, existing classi-
fication methods fall into two main categories: probability-based, which are discussed
in the next subsection, and margin-based, of which SVMs taken up in Section 5.4 are
the most popular.

5.2.2.3 LDA Redux

Recall (5.2.6), which gives the conditional probability of a class ¥ =y given X.
Sometimes explicitly, but often implicitly, LDA assumes each class density is a p-
dimensional multivariate Gaussian MVN(t,, %;). Often, equal variances are assumed,
2, = X for all k. Therefore,

i) = (2m) P21z exp{ S r)TE (e )

The log ratio of a sample belonging to class k and belonging to class [ is

P(Y =kX =x) g™

log by —ix =x) w2

e+ 1) 2 (we— ) +x" 27 (e — ).
For each class k, the associated discriminant function is defined as
1
di(x) =x" =7 e — 5#1{271#1( +log 7.

The decision rule is given by

Y(x)= arg max di(x).

Jerny

Note that we can rewrite di(x) as
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1 _ I ro
di(x) :—E(x—pk)TZ l(x—;tk)—kExTZ x+logm.

If prior probabilities are the same, the LDA classifies x to the class with centroid clos-
est to x using the squared Mahalanobis distance based on the within-class covariance
matrix. The decision boundary of the LDA is linear in x due to the linear form of d,

di(x) =wlx+b,, where w; = Z’luk, k=1,--- K.
The boundary function between class k and class [ is then
(we—w) x+(by—b,) =wx+b=0,

where w = X~ !(p, — i;). The normal vector W is generally not in the direction of
U, — M,, and it attempts to minimize the overlap for Gaussian data. In practice, the
parameters are estimated from the training data

B =n/n,  fu= Y, xi/n,
Yimk

where n; is the number of observations in class k. The common covariance is often
estimated by the pooled within-class sample variances

K
E=3 > - ) (i — )"/ (n—K).
=1Y—k

However, in the presence of outliers, these estimates can be unstable, so more robust
estimators are often preferred.

5.2.3 Probability-Based Discriminant Analysis

In probability-based discriminant functions, the optimal Bayes rule is estimated or
approximated directly. This can be done by estimating the probabilities or densities
that appear in (5.2.6). For instance, if K = 2, IP(Y = y|x) can be obtained by estimating
the densities fi(x) and f>(x) by f; and f> and the proportions of the two classes by the
sample proportions 7 and 7. The basic idea is to form

Ay fi(x)
R f1(x) + o falx)
and choose the value of k that maximizes it. Alternatively, a model for the conditional

probability can be proposed and the Bayes rule estimated by it. Both approaches bear
some discussion.

P(Y = klx) =
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5.2.3.1 Multiple Logistic Regression Models

Given IID observations (x;,v;),i = 1,...,n, the counts for the K classes can be treated
as multinomial with probabilities {p; (x),..., px(x)}. The multiple logistic regression
model (MLR) is merely one successful way to obtain a classifier by using a model
based estimate of the Bayes rule. The MLR simultaneously proposes a specific form
for the log odds for all ( ) pairs of classes, so the log odds can be estimated.

By regarding the last class as a baseline, the MLR model assumes the linear form for
the following K — 1 logits:

o ;’k(") =m(x), k=1,....,K—1. (5.2.12)

With the model (5.2.12), the conditional probabilities p;(x) become

exp{m(x)}
1+ 35 exp{me(x)}

In particular, the linear MLR model assumes the linear forms for the logits

pe(x) = k=1,....K. (5.2.13)

Pr(x)

log =+ Bix, k=1,...,K—1, (5.2.14)
Pk (x) g
with ox = 0,8, = 0.
Maximum likelihood estimation can be used to estimate 6 = (a1, B1,..., k-1, Bx_;).
For the ith sample, let the vector z; = (z;1,...,zix)" represent its membership charac-

teristic; i.e., zjx = 1 if y; = k and z; = 0 otherwise. Note that Zszlz,-k = 1. The log
likelihood function is then given by

] [npk ]
n K—1
2 { Z zik(0g + Brxi) —log

=

kz: o <izz’k> KZI i Bjk <2x,jzlk> Zlog

1+ 2 exp ak+ﬂkxz)] }

k=1

>

1+ Z exp( ock+ka,)] .

The negative log likelihood function is convex, so the Newton-Raphson algorithm is
often used to optimize the function. Denote the maximum likelihood estimates by 0
and pi(x), k=1,...,K. The MLR decision rule classifies data with an input x to its
most probable class, i.e., f(x) = argmax—; g Pr(x).
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5.2.3.2 Variants on the Linear MLR

Consider the linear version of the MLR, but, following Dreiseitl and Ohno-Machado
(2002), write it as

1

P(Y =2[x,B) = T4 Br

(5.2.15)
for the binary case, where P(Y = 1]x,8) = 1 — P(Y =2|x, B). It is seen that the hyper-
plane B -x = 0 is the decision boundary between class 1 and class 2 and corresponds
to the case where the two classes are equally likely, P(Y = 2|x,8) = P(Y = 1|x, B).
The linear function is written 3 - x, but this can be generalized to nonlinear functions
in the covariates.

In particular, it is seen that the logistic model (5.2.15) is a one node neural net if 1/(1+
e ") is taken as the sigmoid. So, the whole model can be generalized by replacing B - x
to give

1

P(Y =2|x,B) =out, = 1+ e Bout_ (B, 1.x)+B’

where out,_1(B,_,x) is the vector of outcomes of the nodes at the r — 1 hidden layer,
with all parameters at that layer denoted by fB,_,.

Typically, one uses a maximum likelihood approach to estimate 3. That is, one uses

A

B= argmélxl_[i":lp(yl‘hiaﬁ)-

Alternatively, Bayesian estimates can be developed. Given a prior on 3, the posterior

density is
i 1) — — PBIL p(yili, B)
p(ﬂ‘ irYi- L. ) fﬁp(ﬂ)ni"zlp(ydxi,ﬁ)dﬂ'

N

This becomes sharply peaked at its mode f8

pm> Which will generally be close to ﬁ ML
it’s as if B pm 18 the same as B, but using an extra finite number of data points cor-
responding to the information in the prior. Clearly, one can imagine using gradient

descent and other techniques from NN as well.

Since Idiots Bayes, logistic regression, and neural nets can be regarded as successive
generalizations, some comments on model evaluation and discriminant analysis more
generally may be helpful.

The two main criteria for model evaluation are discrimination and calibration. Discrim-
ination asks how well the classes are separated; in the K = 2 case, common measures
of discrimination include the familiar concepts of sensitivity and specificity (i.e., the
proportion of class 1 and class 2 cases correctly identified). This is often summarized
graphically by plotting the true positive rate against the false positive rate, the “sensi-
tivity versus 1 minus specificity”. The graph is called a receiver operating characteristic
(ROC) curve. An ideal classifier rises from (0,0) straight up to one and then is constant
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to (1,1). This never happens in practice, so classifiers with a large area under the ROC
curve are preferred.

Calibration asks how accurately the model probability p(-|x, B) estimates the correct
probability p(y|x). This is harder to automate because the true probability function is
never known. So, one may be led instead to compare two different estimates of the
probability, a sort of robustness check. Another is to divide the sample into smaller
subsets, estimate Bs on each, and then calculate the sum of the predictions and the
sum of the outcomes for each subset (i.e., for each B). If these are close, then the
modeling may be good.

Overall, discriminant analysis is fundamental to the traditional ways classification was
done. This is partially because it is relatively easy to understand and it is computation-
ally relatively easy: It mostly devolves to matrix calculations. Linear discriminants are
related to principal component analysis because the rows of the data matrix, and the
class mean vectors, can be regarded as points in a p-dimensional space. The strategy
then, whether based on maximum separation or Bayes methods, determines discrimi-
nating axes in this space. This accounts for the multiplicity of roughly equivalent forms
for Fisher’s LDA. Mathematically, the problem becomes finding the eigenvectors of a
symmetric, real matrix because the eigenvalues represent the ability of the eigenvectors
to discriminate along the eigendirections. One of the most important improvements to
conventional use of LDA is the use of robust estimates for the t; and Xs since these
define the discriminants.

However, when p is large, the sample sizes required to estimate the parameters well
can be prohibitive. Consequently, over time, discriminant analysis has been modern-
ized to deal with more complex settings where model selection and uncertainty have
been central to finding good choices for P(x|Y = k). Indeed, even when the number of
explanatory variables p is not particularly large, it may be important to include more
than univariate functions of the components of x. Then, merely including the second-
order terms x,-2 and x;x; increases the dimension of the parameter space (X and the Ls)
beyond most reasonable data sets. The problem becomes worse if general univariate
functions of the components of x are permitted, let alone general functions of two or
more components. In these contexts, traditional dimension-reduction techniques such
as principal components and factor analysis have been used to reduce the number of
explanatory variables; see Chapter 9.

Recently, numerous variants on discriminant analysis have been proposed. Some au-
thors have combined discriminant analysis with boosting to get better predictive per-
formance or with regularization methods to do difficult model selection. Others have
used kernel methods to recast J(w) so as to get more general decision boundaries with
a linear form in the nonlinearly transformed feature space.

The problem is even more difficult when the nonindependence of the explanatory vari-
ables is considered. In fact, it is unclear whether modeling the dependence is worth-
while when p gets large. Bayes methods are often less sensitive to such dependencies
than frequentist methods, and Idiot’s Bayes is a colloquial term indicating the neglect
of correlation between explanatory variables in a Bayes framework. In a counterintu-
itive paper, Bickel and Levina (2004) demonstrate that Idiot’s Bayes may not be so
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idiotic in a classification context: Idiot’s Bayes often outperforms “intelligent” linear
discriminant analysis that models the dependencies when p >> n.

5.3 Tree-Based Classifiers

In Chapter 4, tree structures were used for regression, although some of the termi-
nology (e.g., homogeneity of nodes) was appropriate for classification as well. This
section focuses on the classification story. Regression and classification differ in their
formalities but have many common features. For instance, both network architecture
(the recursive partitioning) and parameter estimation are needed to specify the tree.

5.3.1 Splitting Rules

Again, a model of the form
,
Z I(x €ER)) (5.3.1)

is to be found, but Y is categorical taking values from 1 to K and the node functions are
constant; in principle, one can set 8, = k for k = 1,..., K for appropriate regions R, so
the node functions identify the classes. The error in modeling represents the mismatch
between the estimated and correct regions on which a class is identified. Assuming
there is one fixed optimality criterion for evaluating classification tree performance
(e.g., zero-one loss or some other cost of misclassification) the main issue is choosing
the partition of the range of the Xs (i.e., selecting the splits). Two methods for select-
ing the splits were discussed in Chapter 4: clustering on a variable so as to separate the
clusters and finding a split to minimize a sum of squared errors. This was in the regres-
sion context. Here, three further methods are given. The first two, hypothesis testing
and finding optimal directions, could be used in regression as well; the third replaces
the squared error criterion for finding optimal splits for regression with other criteria
appropriate for classification.

First, to select splits, consider the situation at a node, possibly the root, but more gen-
erally any terminal node in a growing tree. At the node, one can choose which variable
to split on by hypothesis testing, for instance. Suppose the jth explanatory variable
has values X;; for i = 1,...,n. One can do a test of dependence, for instance the xz,
between the Y;s and the X ;s for each j to find the variable with the lowest p-value.
Using the most dependent variable, one can cluster its values (using the techniques of
Chapter 8) and then choose a split to partition the clusters. There are techniques from
Bayesian clustering (see Chapter 8) that test whether a candidate partition of the data
at a node is optimal. Clearly, there are many tests and clustering procedures.
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Second, an alternative to testing to find a single variable to split on is to find splits based
on linear combinations of the X;s. This is a more elaborate procedure than finding a
single variable since there are many more choices for directions than for variables. One
way to find a direction comes down to looking for eigenvectors of the design matrix
X. For square matrices, this is called principal components, which will be discussed in
Chapter 9 in detail as a dimension-reduction technique. Here, because design matrices
are usually not square, a slightly different version of eigenvector decomposition called
a singular value decomposition (SVD) must be used. An SVD helps find the internal
structure of X as an operator on a linear space.

Consider the subdesign matrix, also denoted X for convenience, formed from the over-
all design matrix by including only those rows that correspond to the data points as-
signed to a given node. These are the vectors of explanatory variables that might be
split at the next iteration of tree formation. Essentially, an SVD represents a rectangu-
lar matrix, such as the n x p matrix X, as a product of three matrices, the middle one of
which has nonzero elements only on its main diagonal. The SVD theorem states that
for any matrix X there exist matrices U and V such that U TU=1Idyx,andV'V =1 pxp
so that

X=U,..S8pYpups (53.2)
in which S, , is an n X p diagonal and U is unitary. Clearly, this is a generalization to

rectangular matrices of the familiar eigenvalue decomposition of square matrices.

Looking at (5.3.2), S contains the eigenvalues, now square rooted and called singular
values, while U and V contain the analogs of eigenvectors. However, there are right
eigenvectors and left eigenvectors, now called singular vectors. The columns of U are
the left singular vectors, say u; for k = 1,..., n, that comprise an orthonormal basis and
the rows of U are the right singular vectors, say v, also comprising an orthonormal
basis for k = 1,..., p. The diagonal values s; for k = 1,...,min p,n of S are assumed to
be in decreasing order. Let §, be an n X p submatrix formed from using only the first £
singular values in S. An important property of the SVD is that

14
X, =U,,SV,). ,= Y wsv] (5.3.3)
k=1

is the best rank ¢ < min(p,n) approximation to X in Frobenius norm (basically, squared
error applied to the elements of a matrix as if it were a vector).

In principle, it is not hard to find the SVD for X. Write
X'X=V§V'

and then find the eigenvalues for S and the corresponding eigenvectors for V by the
usual diagonalization procedure. Now, U = m_l . If there are r nonzero s;s, then the
remaining n — r columns of V are ignored in the last matrix multiplication. Choices for
those n — r singular vectors in V (or V) may be found by Gram-Schmidt (or any other
method for filling out the dimensions). It is worth noting that although this method can
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be used, it is often numerically unstable when any of the singular values are near zero.
In practice, more sophisticated procedures are generally used.

Given an SVD for X, one can find the principal components as if calculated from an
empirical covariance matrix. If the columns of V are centered, then X TX = Z,-s%va is
seen to be proportional to the empirical covariance matrix. This means that the diago-
nalization of X " X that gives V also gives the principal components, with variances 52,
A similar argument holds if the rows of X are centered. In this case, X TX = sl-zul-uiT
and the left singular vectors are the principal components with variances siz. In statis-
tics, it is usually the left principal components that are used unless specified otherwise.

(The other side can be related to factor analysis; see Chapter 9.)

Now, the PCs generated from an SVD can be used to choose splits at a node. For
instance, the first PC, the vector uj, corresponding to the element of S, » with the
largest absolute value, can be used to give a projection of the data points x; - #; along
the direction u;. Clustering these values for the x;s at the node gives a way to find a
threshold for splitting at a node. Recalling that in the case of two thin, parallel ellipses,
it was the direction with smallest variance (the last principal component) that gave a
good split, not the direction with the smallest variance, it is clear that more complicated

node-splitting rules than just using the first PC may be necessary for a good fit.

A third possibility is the regression style search of all possible splits using an error
criterion. This was discussed in Chapter 4, where E(g) or, more empirically, £ (g*) was
minimized. Instead of squared error, suppose the X;s consist entirely of categorical
variables, and consider what happens at a node. The jth predictor variable X; may
assume, say, ¢,,4. levels among the data points at the node. So, in principle, there are
2lnode) _ 1 ways to divide the data points into two sets using X; alone. If each X;
has ¢ possible values, then the only general upper bound for the splits at a node is
trivial, (2¢)? — 1, from taking the product over all p variables. This is very large so
simplifications, such as choosing specific Xs, are necessary.

One way to simplify is to use indices of impurity. Such indices can be used to choose
splits as well as to decide when to stop splitting. The Gini index is specifically for
discrete variables and is a measure of inequality. Given a data set Z of size n, say, with
data points ranging over K classes, let n; be the number of data points in class & for
k=1,...,nsothatn; +...4+ng = n. Then p; = n;/n is the relative frequency of class
k in the data. The Gini index for & is

K
Gini(2) =1~ pt.
k=1
Clearly, Gini < 1 with equality if and only if K — o and all the pys tend to zero. Also,

Gini > 0 with equality if all p;s are zero except for one, which assumes the value one.
(The only if part fails; it is enough for the p;s to lie on the unit sphere.)

To obtain a split of the points at a node, write

N N
Ginigpii(7) = %Gini(%) + 72Gini(%)7
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where 7/ U 2, = 9, with cardinalities Ny = #(2)) and N, = #(%>). The optimal split
of the data in & is the one that minimizes Giniy;;. This can be done when 2 is defined
as the set of p-dimensional vectors x; or for the individual explanatory variables that
are components of the x;s.

Essentially, minimizing the Gini index to find splits is a way to try to pull off distinct
classes sequentially in order of size. Suppose there is a collection of homogeneous
classes of distinct sizes perfectly represented by the data at the root node. If Gini
were used, and worked perfectly, the first split would set a threshold to reduce the
Gini index by finding the split that optimally reduced the inequality. This would set a
threshold to pull off the largest class by itself. So, the first split would separate it from
the other classes. Since the first class would be homogeneous, Gini would not split
it further. However, Gini would split the other data points since they comprised the
reduced set of homogeneous distinct classes. So, the second split would set a threshold
to reduce the Gini index of the reduced set by finding the split that again optimally
reduced inequality. Thus, the second largest homogeneous class would be pulled off.
The procedure would then repeat until the classes were all pulled off, one at each
iteration. If successful, the final tree would ideally look like a long skinny branch with
single leaves coming off it along the way, one for each class.

There is a version of the Gini index appropriate for continuous data; it too is a measure
of inequality. The idea is to choose a Lorenz curve (i.e., a curve of the form f(x) =
Jo xdF (x)/u) as the density for some positive random variable X on [0,1]. Then, the
Gini index of X is

GinizZ/(x—f(x)) X = ZE / / —y|f(x)f(y)dxdy.

Empirically, if 4 = E(X), the Gini index can be estimated by

n
Z —x;jl;

Gini =

HM:

it ranges from zero, when all xs are the same, to a maximum of one.

The entropy is another notion of impurity. It is

K
. 1
H(7)= ZPkIOgT
k=1 Pk

The entropy has an interpretation in terms of information gain. It often gives results
similar to Gini.

The idea behind twoing is the opposite of Gini. In idealized form, twoing first splits the
points at the root node into two groups, attempting to find groups that each represent
50 percent of the data. This contrasts with Gini, trying to pull off a single class. Twoing
then searches for a split to partition each of the two subgroups, again into two groups,
each containing now 25 percent of the data. That is, Twoing seeks equal-sized leaves
from a node, under some splitting rule. Although twoing tries to ensure the leaves
from a split are equal, this can be difficult, especially at terminal nodes from the same
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parent. As with Gini, most real-world classification problems will not allow impurity
measures to give such a clean result.

Different splitting rules may result in the same tree, but usually they predispose the
procedure to a class of trees — twoing favors equal binary splits giving bushy, shortish
trees, whereas Gini favors trees that often have long, straggly branches.

Because of their high variability, it is important to evaluate trees comparatively. The
two basic techniques for generating alternatives within a class of trees and selecting
among them have already been discussed in Chapter 4: pruning back on the basis of
some cost-complexity criterion and using some version of cross-validation to choose
a tree in the class with the least average error. It is important to realize that there can
be bias in classification as a consequence of variable selection as well as variability
in the trees produced; see Strobl (2004) and the references therein. A survey of these
methodologies from the information theory standpoint can be found in Safavian and
Landgrebe (1991). They also contrast tree structures with neural net classification.

5.3.2 Logic Trees

A different tree-based tack for classification, called logic trees, is due to Ruczinski
et al. (2003). The idea is to recognize that the classification trees presented so far are
really “decision” trees, based on regression and incorporating variability in the usual
statistical way, but that there are alternatives that are more overtly rule-based. Logic
trees can be regarded as a sort of generalized linear models approach where the terms
in the model are Boolean functions.

The basic structure is as follows. Let X = (Xj,...,X,,) be a sequence of 0-1 predictors
and Y be a class indicator. The logic tree model is to write

K
S(E(Y))=Bo+ Y, Bk,
=1

where the fis are coefficients, g is the function that makes the linear model “gen-
eralized”, and L is a Boolean function of the covariates X;. For instance, if Xy is
the opposite of X, then one might have L(X) = (X; VX5) AX5. If p = 3, the value
X =(0,1,0) gives L(0,1,0) = 1 because 0V 1 gives 1 and 1 A0° gives 1. The task is
to estimate the L;s and the fB;s; the link function g is chosen by the user.

Note that the linear combination of logic functions is a tree not in the recursive parti-
tioning sense but in a Boolean function sense. However, functions of the form of the
right-hand side span the space of all real-valued functions when the X;s are categor-
ical, as does recursive partitioning when it is applied to categorical variables. Thus,
logic trees and recursive partitioning trees are merely different representations for the
same function space. The difference is in which functions are conveniently expressed
in each form. In both recursive partitioning and logic trees an “and” function such as
Xi=1)V(X2 =1)V (X3 =1)V (X4 = 1) when the X;s are binary is parsimoniously
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represented as a single long branch or as a single term, respectively. In both recursive
partitioning and logic trees, the components X; = 1 can be adjoined (or removed) se-
quentially. However, a functionsuchas (X; =1)V(Xa = 1))A((X3=1)V(Xa=1))is
easy to find as one term in a logic tree since it is not hard to build sequentially from its
individual components, whereas in recursive partitioning the cases X; =0 and X; =1
would correspond to two branches that would have similar structures and be hard for
recursive partitioning to find.

Building logic trees consists of adding or removing Boolean functions of individual
variables sequentially, and model selection can be done on the basis of MSE in simu-
lated annealing; see Ruczinski et al. (2003). This can be extended to continuous pre-
dictors as well.

5.3.3 Random Forests

So far, attention has focused on obtaining a specific tree for classification. However,
this is a model and hence subject to model misspecification. Thus, choosing a single
tree and not giving some assessment of its MSE or other measure of variability that
includes variability over model selection gives a falsely precise notion of how good a
classifier is. Although it is unclear how to assign a standard error or bias to a tree, it is
worthwhile to look into techniques that take averages over trees because the average
will typically reduce the variability from what one would have with a single tree. In
practice, this means that averaging trees will often give better classifiers.

Random forests are a generalization of recursive partitioning that combines a collection
of trees called an ensemble. However, random forests is best seen as a bootstrapped
version of a classification tree generating procedure. It was invented by Breiman
(2001) and substantially developed by Breiman and Cutler (2004). A random forest
is a collection of identically distributed trees whose predicted classes are obtained by
a variant on majority vote. Another way to say this is that random forests are a bagged
version of a tree classifier — improved by two clever tricks. The term bagging, or boot-
strap aggregation, will be discussed in detail in the next chapter; roughly one uses the
bootstrap to generate the members of an ensemble, which are then aggregated in some
way. As discussed in Breiman and Cutler (2004), random forests may also be used for
regression, but their advantages are less clear.

Operationally, one starts with a data set. From that, one draws multiple bootstrap sam-
ples, constructing a classification rule for each, for instance by recursive partitioning.
The random forest consists of the trees formed from the bootstrap samples. However,
no pruning of the trees is done. The tree is just grown until each terminal node contains
only members of a single class. Usually, about 100 trees are generated, each from an
independent bootstrap sample.

To classify a new observation, one uses each of the trees in the forest. If a plural-
ity of the trees agree on a given classification, then that is the predicted category of
the observation. Note that there is a built-in estimate of the uncertainty in each new
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classification: The distribution of the votes indicates whether nearly all trees agree or
whether there are many dissenters.

There are two clever “tricks” that make random forests particularly effective. The first
is an “out of bag” error estimate; the second is random feature selection.

The first trick is a technique to get an estimate of the misclassification error. Indeed, the
estimate is often claimed to be unbiased when the training set is a random sample from
the population. The idea is to estimate the expected predictive accuracy by running
each observation through all of the trees that were formed without using it. It will be
seen below that, for each data point, approximately one-third of the bootstrap samples
will not contain it, so approximately two-thirds of the trees generated can be used. If k
be the class that gets the most votes for the ith data point. The proportion of times that
k differs from the class of the initial data point is the out-of-bag error estimate.

Before going on to the second trick, it’s worth looking closely at the bootstrapping
procedure in more detail since random forests relies on it.

5.3.3.1 Occupancy

For the bootstrap, start with a sample x1,...,x,, and then sample from it with replacement
until a new sample of size n, say yi,...,yn, has been generated. It is possible that some
of the y;s will be repeated and that some of the x;s will not be among the y;s. Since
each bootstrap sample is drawn with replacement, about a third of the original sample
is not chosen. This is important because the effectiveness of bootstrapping depends
on the overlap of the resampling. If one has a fixed sample of size n and intends to
take n bootstrap samples of size n from it, then, asymptotically, 1/e of the original
sample is not chosen. This is seen by the elementary argument that P(x; not chosen) =
(I—1/n)" —1/e.

More generally, this result follows from a central limit theorem because selecting a
bootstrap sample can be modeled by a ball-and-urn scheme. Let n urns represent the
n original data points, the x;s. Imagine randomly dropping balls into the urns one at a
time and independently. If n balls are dropped, then the number of balls in the ith urn
represents how many times x; occurs in the first bootstrap sample.

This is seen to be a multinomial problem: Given that n is fixed and n balls are dropped
at random, define X; to be the (random) count of how many balls are in urn k, k =
1,...,n. Now,
— 7 J— — n‘ jl jn
]P(Xl = .]la"'7XIl = ,]ll) = mpl pl’l 3

in which Y jy = n. If all p; = 1/n, then

P(X: — i X iy— n! 1
(1—]17---7 n—]n)—mnj-
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The study of the properties of these urns is called the occupancy problem; see Barbour
et al. (1992). If n increases, a classical central limit theorem for the occupancy problem
has been established by Rahmann and Rivals (2000).

Theorem (Rahman and Rivals, 2000): Let N, and M}, be sequences of natural num-
bers such that Ny — oo and My — e with (N;/M;) — A as k — . Let W be the
sequence of random variables denoting the number of empty urns after Ny balls have
been dropped independently into M urns. Then, as k — oo,

E(W/My) — e *,

Var(Wi/ /M) — (" — 1= A)e 2,

and we have that
W, — M, kef}L

VMi(eh —1—L)e 2%

~ N(0,1)

in distribution.

Proof: See Johnson and Kotz (1977); Harris (1966) gives a superb reference list and
observes that the proof goes back to Geiringer (1937). J

This result shows, in principle, how bootstrapping on discretized data tends to operate
as the discretization, represented by M, gets finer and the number of samples of size
Ny increases.

One of the important implications of the out-of-bag prediction error analysis is that
random forests do not overfit. Breiman’s theorem below shows that the average mis-
classification rate decreases to a fixed value. As the number of trees N increases, the
estimated predictive error converges to a value bounded above by the ratio of the av-
erage correlation between trees to a function of the “strength” of a set of classifiers.
The correlation decreases as the size of the training sample increases and the strength
increases as the signal in the data grows.

5.3.3.2 Random Feature Selection

The second clever trick is random feature selection. Recall that, at each step in grow-
ing a tree, classic recursive partitioning examines all p variables to determine the best
split. By contrast, random forests (usually) picks ,/p of the variables at random, tak-
ing the best split among them. This extra level of selection makes the different trees
in the forest less similar by allowing highly correlated variables to play nearly equiv-
alent roles (otherwise, the slightly more predictive variable would always be chosen).
Random feature selection decorrelates the trees, lowering the prediction error.

As part of feature selection, random forests can be used to estimate the relative im-
portance of, say, the jth explanatory variable. To do this, recall that a random forest
runs each observation through all the trees for which the observation is out-of-bag and
counts the number of votes for the correct class each observation gets. This vote count
can be compared to the corresponding vote count after randomly permuting the values
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of variable j among the samples. So, permute the values of X; and run them down the
corresponding trees, again counting the number of correct votes. The difference in the
number of correct votes under the two procedures is the raw importance for variable j.
Usually this is standardized so the scores sum to one.

Rather than looking at features, one can look at observations and create a local measure
of importance specific to each observation in the training sample. For observation i,
run it down all the trees for which it is out-of-bag. Repeat the process with randomly
permuted values of variable j, and look at the difference in the number of correct
votes. This is a measure of how important variable j is for classifying cases in the
neighborhood of observation i.

5.3.3.3 Breiman’s Theorems

So far, the discussion of random forests has been informal, describing heuristics that
can be calculated to evaluate performance. So it is important to present several of the
formal results that ensure random forests will work well. These are primarily due to
Breiman (2001).

First note that a good classifier 4 has a high value of IP(h(X) =Y), where the proba-
bility IP is in the joint probability of X x Y. It is assumed that ¥ ranges over {1,...,K},
and, as ever, the vector X = x represents explanatory variables and Y is the response.
In practice, usually an IID sample (x1,y1), ..., (X,,y,) is available from which to learn
h. Estimation of & can be done as described in the first part of this section, or as in the
other sections of this chapter, so the construction of finitely many distinct classifiers
h; can be assumed. Random forests as a procedure takes a set of A;s as an input and
produces an improved classifier from them.

Recall that effectively each £ is equivalent to a partition of the range of the xs based on
the values of Y. Although random forests can be applied to many types of classifiers,
here it will only be used for tree-based methods. Thus, it will be enough to consider
only those partitions of the feature space that correspond to trees. To state this formally,
define a function 4 : X — {1,...,K} to be tree-structured if and only if the partition
of the domain it induces is described by a finite sequence of inequalities involving
individual x;s in x = (x1,...,x,). Now, a classifier i(x, @) is tree-structured if and only
if for each outcome © = 0, h(x,0) is tree-structured as a function of x. A random
forest is a classifier derived from a collection of tree-structured classifiers, {h;(x) =
h(x,0;)[j=1,...,J}, where 6y,...,0; are IID outcomes of O.

For a collection of tree-structured classifiers /;, consider the random forest classifier
formed by taking a vote of the individual tree-structured classifiers comprising it. The
average number of correct classifications is the proportion of classifiers identifying the
right class and is

1 J
AV(Y)=+ 21 Lon )=
=
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in which 14 is the indicator function for a set A. The average number of misclassifica-
tions of type k, for k # Y, is the proportion of 4 s misclassifying Y as &,

1 J
AV = 7 2 L)1)
j:

For good classification, AV (Y) should be large relative to all the AV (j)s with j # Y,
for all (X,Y). The worst case occurs for the value of k achieving max;..y AV (k). Since
it is enough for AV (Y) to be large relative to the worst case, let

CA=CAX,Y)=AV(Y) fm;?(AV(j)
J
be the classification accuracy. CA represents how many more of the classifiers get the
right class than get the wrong class; a good classifier would give large CA. If CA were
negative and K = 2, it would indicate that interchanging the predicted classes would
give a better classifier. On average, the behavior of CA is described by the probability
of error
PE=P(CA(X,Y) <0),

in which X, Y are both treated as random variables. It is seen that PE is the probability
that the correct classification by the pooled classifiers is given less often than the most
likely of the wrong classifications. Clearly, it is desirable for PE to be small.

Suppose the J classifiers are tree-structured with £ j(x) = h(x, 6;) and the random forest
generated from them is formed by majority vote. In this notation, 8 summarizes the
extra variability used in constructing the tree, for instance the dropping of n balls into
K urns in the occupancy theorem scenario. Breiman’s random forest theorem states
that as J increases (i.e., more and more trees are aggregated) PE, which depends on
J, the size of the forest, converges to a limiting value. This limiting value, P(CA), is
derived from CA by replacing indicator functions with expectations. Formally, we have
the following theorem.

Theorem (Breiman, 2001): As the number of tree-structured classifiers in the random
forest increases, PE converges a.s. to P(CA). That is, as j — e

PE — P Po(h(X,0) =) ~ maxPo(h(X,0) =k) <0 ,

in which Py is the probability for ©.

Remark: This result is asymptotic in the number of trees in the forest, not the sample
size. Thus, it ensures that, as more trees are added, the random forest does not overfit.
Entertainingly, no assumption has been made that any of the trees in the forest actually
are good classifiers, only that they are randomly generated. This will include some
good classifiers, but many poor ones, too.

Proof: Fix a value k. As J — oo, it is intuitive that
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1 J
j Z l{h(X,Gj):k} HP@(h(X,@) :k) (534)
j=1

However, it is not enough just to use an LLN to take expectations because the average
in (5.3.4) is over functions A(-,©), not individual random variables.

To verify (5.3.4), first observe that the J functions are tree-structured. So, together
they induce a minimal partition of, say, L elements Sj,...,5 of the feature space. That
is, each h(-, ;) corresponds to a partition of the feature space into K sets, each a finite
union of hyperrectangles, representing the points on which the classifier assumes the
K values in S. These J partitions can be represented as subpartitions of a larger but
finite partition, and it is the smallest of these, of size L, that is most useful.

Fix k € {1,...,K} and define a function ¢(6) = ¢4 (0) by setting
$(0) =L = {x|h(x,0) =k} =S, < hy' (k) = Sy, (5.3.5)

i.e., for a given k, ¢(0) gives the index of the partition element for which &(-,0) = k.
(In fact, the partition element may be a finite union of partition elements; this abuse of
notation should not be confusing.) Set ¢ (0) = 0if h(0,-) is never 1. To use (5.3.5), let
Ny count the number of times ¢ (6;) = ¢ on the sequence 6;,...,0k. That is,

J
MZ%HW#@ (5.3.6)
=

The usual LLN applies to (5.3.6) to give

Now, the strategy of proof is to convert the sum over J outcomes of the tree-structured
classifier in (5.3.4) to a sum over the partition elements since the LLN can be applied
to all L of them individually. Thus, for each %,

Lin(x,6,)=k1 1 {6(6,)=0}
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Clearly, (5.3.7) is another way to write (5.3.4). Now, a series of Slutsky arguments
gives the result: The limiting value in the theorem is

M=

P(Po(h(X,0) =k) —max Po(h(X,0) =u) <0]Y =k)P(Y =k).

i wutk

1

So, as long as the quantities conditional on k converge to their limits as above as J
increases, AV (Y) and the AV (k)s converge as in the theorem. [J

Breiman’s theorem has several implications. First, it shows that the reason there is
no overfit is that outcomes of 0 effectively search the model space for scenarios at
random. So, probability cannot pile up at any one model on account of an apparent
ability to explain the data. That is, a model that explains the data perfectly may be
found by chance by 6, but only as one of many models that are found. A model that
was good as a consequence of overfit would be washed out by averaging over other
models that more fairly represented the explanatory power of the data. Second, the
proof leads one to suspect that, in general, averaging can be used to avoid overfit. The
avoidance of overfit may be a general property of many ensemble methods discussed
in the next chapter. Indeed, in practice, ensemble methods based on randomness do not
appear to lead to overfit unless used improperly (e.g., the selection of splits for the tree
is unduly narrow). Third, the theorem assumes endless outcomes 6; at random. With
samples of finite size n, typically one does not take more than n bootstrap samples. If
one were to take “too many” bootstrap samples, the result would be like taking a limit
in the empirical distribution; this has good properties, as seen in Chapter 1, but would
give a false sense of convergence because the empirical distribution function itself is
only an approximation. In the present context, it would typically take many more than
n bootstrap samples to fill out the empirical distribution over trees.

Another important theorem from Breiman (2001) bounds PE. To state this result, two
definitions are required. First is the strength s of a classifier, and second is the standard-
ized correlation p. Following the structure of Breiman (2001), let the limiting random
variable from CA be

LCA(X,¥) = Po(h(X,0) =) ~max Po (h(X,0) =K).

Take the expectation of this, over @, to get the “strength” of the set of classifiers:
s=E(LCA(X,Y)).

This summarizes the strength of the entire set of classifiers because LCA is the per-
formance measure for a given 6 and s is the average performance over classifiers
generated by the randomness in @. It is a measure of how good the collection of tree-
structured classifiers is.

The second definition is more involved. It encapsulates the correlation between the
performances of two randomly generated classifiers. The tricky part is the need to
standardize the expected correlation (over 0) by the variability in 6. To set up this
correlation, observe that another expression for LCA comes from identifying the best
wrong classifier. Let
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k(X.Y)= Po(h(X,0) =k
(X,Y) argrlggg@(h ) =k),

so that LCA can be written as
LCA = Po(h(X,0) =Y) — Po(h(X,0) =k)
= Eo [l{h(x,@):Y} - 1{h(x,@)=f}} ;

in which the subscript O indicates that the probability measure involved only looks at
the randomness in ©, not X or Y. Nevertheless, the expression in brackets is a function
of O, X, and Y, indicating how much better the best classifier does given that both
were generated from 6. Let this be the empirical classification accuracy,

ECA(0.X.Y) = lyx 0=y} — Linx.0)-j)-

It is seen that E(ECA) = LCA.

At its root, it is the ECA that characterizes the correlation between the classifiers cor-
responding to independent copies of ©. When the correlation is nonzero, it arises from
the X and Y in the two indicator functions in ECA. Indeed, it is important to distinguish
conceptually between what is random and what is not, (i.e., expectations over O, Eg
versus expectations over (X,Y) where E does not have a subscript).

Suppose independent copies of ©, say © and @', have been generated, the expectation
of their product factors giving

LCA*> =Eg o/ [ECA(O,X,Y)ECA(O',X.Y)],
in which X and Y remain random. The variance over X and Y is

Var(LCA) = Eg o/Cov(ECA(0,X,Y),ECA(O",X,Y))
= E@’@/p(@,@/)SD(@>SD(@/),
in which p(©,0’) is the correlation between ECA(©,X,Y) and ECA(O’,X,Y) hold-
ing © and O’ fixed, and SD is the standard deviation of ECA, again holding © or 6’
fixed. Finally, the standardized correlation is
Eg o p(©,0")SD(0)SD(O’)
Eg o'SD(O)SD(0’) ’

p:

in which the quantities inside the expectation are random only in © and @’ It is seen
that p is a measure of how correlated two randomly chosen trees are on average, stan-
dardized by their variability. The result is the following.

Theorem (Breiman, 2001): The generalization error can be bounded:

2
pe<PU—5),

= Sz

(5.3.8)

Proof: Chebyshev’s inequality can be applied to PE:
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Var(LCA)

PE =P(CA < 0) <IP([CA— E(LCA)]> > E(LCA)?) < —.

N

Next, the numerator on the right-hand side is
Var(LCA) = p[EgSD(0)]* < pEg(Var(0)) < pEg(EECA(0,X,Y))* —5*

by Jensen’s inequality (twice) and the definition of ECA and LCA. Putting these to-
gether gives the theorem. The right-hand side is bounded by p(1 — s2) since ECA? is
bounded by 1. The ratio in (5.3.8) follows. [J

The qualitative behavior of the ratio in (5.3.8) is intuitively reasonable. When the
strength increases or decreases, the bound on PE tightens or loosens. When the cor-
relation is small or large, then repeated sampling gives more or less information and,
again, the bound tightens or loosens. A strong set of classifiers with little correlation
gives a strong bound.

Overall, random forests of trees tend to give good classifiers, competitive with SVMs,
the topic of the next section. Unlike SVMs they often work relatively well with