
LECTURE NOTES IN 

DATA MINING 

EDITED BY 

MICHAELW. BERRY • MURRAY BROWNE 



LECTURE NOTES IN 

DATA MINING 





LECTURE NOTES IN 

DATA MINING 
EDITED BY 

MICHAELW BERRY 
MURRAY BROWNE 
UNIVERSITY OF TENNESSEE, USA 

\Hp World Scientific 
N E W JERSEY • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • HONG KONG • TAIPEI • C H E N N A I 



Published by 

World Scientific Publishing Co. Pte. Ltd. 

5 Toh Tuck Link, Singapore 596224 

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE 

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library. 

LECTURE NOTES IN DATA MINING 

Copyright © 2006 by World Scientific Publishing Co. Pte. Ltd. 

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the Publisher. 

For photocopying of material in this volume, please pay a copying fee through the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to 
photocopy is not required from the publisher. 

ISBN 981-256-802-6 

Printed by Fulsland Offset Printing (S) Pte Ltd, Singapore 



PREFACE 

The explosion of information technology, which continues to expand data-
driven markets and business, has made data mining an even more relevant 
topic of study. Books on data mining tend to be either broad and introduc­
tory or focus on some very specific technical aspect of the field. 

Lecture Notes in Data Mining is a series of seventeen "written lectures" 
that explores in depth the core of data mining (classification, clustering 
and association rules) by offering overviews that include both analysis and 
insight. Written by graduate students from the University of Tennessee as 
part of an Advancements in Data Mining course, Lecture Notes is an ideal 
companion to either an introductory data mining textbook or a technical 
data mining book. 

The Advancements in Data Mining Course was developed not only to 
allow graduate students an opportunity to investigate certain topics in data 
mining, but it was also planned as a vehicle for graduate students to sharpen 
their writing and presentation skills. After selecting one of the assigned 
topics, researching, and writing his or her paper, each student was required 
to make a lengthy presentation to the class. Both the presentation and 
the paper was extensively peer reviewed and each student was required to 
make revisions before submitting a final paper. The discussion following the 
presentations was spirited but respectful, as each student was aware that at 
some point in the semester — he or she would be facing their peers as well. 

The initial chapters of Lecture Notes lay a framework of data mining 
techniques by explaining some of the basics such as applications of Bayes 
Theorem, similarity measures and decision trees. Before focusing on the 
pillars of classification, clustering and association rules, the book also pro­
vides information about alternative candidates such as point estimation 
and genetic algorithms. 

The book's discussion of classification includes an introduction to deci­
sion tree algorithms, rule-based algorithms (a popular alternative to deci­
sion trees) and distance-based algorithms. Five of the lecture-chapters are 



VI Preface 

devoted to the concept of clustering or unsupervised classification. The 
functionality of clustering's hierarchial and partitional algorithms is also 
covered as well as the efficient and scalable cluster algorithms used in large 
databases. The concept of association rules in terms of basic algorithms, 
parallel and distributive algorithms and advanced measures that help deter­
mine the value of association rules are included in this book too. The final 
chapter covers spatial mining algorithms. 

In addition to the technical descriptions of the algorithms and methods, 
the students were encouraged to provide simple examples and to provide 
commentary based on references that could assess both strengths and weak­
nesses of the respective techniques. This type of analysis gives the student 
an understanding of what it is to go behind just reporting the particulars 
of an algorithm and the value of providing additional insights. With this in 
mind, each student was required to include a complete bibliography of jour­
nal articles, books, conference papers, technical reports, electronic journals 
and web sites for each report. These references have been compiled and 
appear at the end of the book. 

Lecture Notes can be used as a supplement that would accompany a 
data mining textbook for graduate level computer students. With its explo­
ration of data mining's core competencies, Lecture Notes also appeals to the 
database professional who is looking for a concise background and evalua­
tion of the various tools that are now available to data miners. 

One of the more common mistakes data miners make is becoming too 
focused on one area of technique. It's not unusual to become an expert in 
one area and forget that there are other approaches that merit consideration 
based on the problem at hand. Lecture Notes offers a good sampling of what 
other techniques are available presented with a fresh set of eyes. Hopefully, 
these hardworking students will open your senses to the burgeoning world 
of data mining. 

All proceeds from the sales of this book will be donated to the stu­
dent travel fund in the Department of Computer Science, University of 
Tennessee, Knoxville. 

Michael W. Berry, Murray Browne 
Knoxville, TN 

December 2005 



CONTENTS 

Preface v 

1 Point Estimation Algorithms 1 

1. Introduction 1 

2. Motivation 2 
3. Methods of Point Estimation 2 

3.1. The Method of Moments 2 
3.2. Maximum Likelihood Estimation 4 
3.3. The Expectation-Maximization Algorithm 6 

4. Measures of Performance 8 
4.1. Bias 9 
4.2. Mean Squared Error 9 
4.3. Standard Error 10 
4.4. Efficiency 10 
4.5. Consistency 11 
4.6. The Jackknife Method 11 

5. Summary 13 

2 Applications of Bayes Theorem 15 

1. Introduction 15 
2. Motivation 16 
3. The Bayes Approach for Classification 17 

3.1. Statistical Framework for Classification 17 
3.2. Bayesian Methodology 20 

4. Examples 22 
4.1. Example 1: Numerical Methods 22 
4.2. Example 2: Bayesian Networks 24 

5. Summary 25 

vii 



viii Contents 

3 Similarity Measures 27 

1. Introduction 27 
2. Motivation 28 
3. Classic Similarity Measures 28 

3.1. Dice 30 
3.2. Overlap 30 
3.3. Jaccard 31 
3.4. Asymmetric 31 
3.5. Cosine 31 
3.6. Other Measures 32 
3.7. Dissimilarity 32 

4. Example 33 
5. Current Applications 35 

5.1. Multi-Dimensional Modeling 35 
5.2. Hierarchical Clustering 36 
5.3. Bioinformatics 37 

6. Summary 38 

4 Decision Trees 39 

1. Introduction 39 
2. Motivation 41 
3. Decision Tree Algorithms 42 

3.1. ID3 Algorithm 43 
3.2. Evaluating Tests 43 
3.3. Selection of Splitting Variable 46 
3.4. Stopping Criteria 46 
3.5. Tree Pruning 47 
3.6. Stability of Decision Trees 47 

4. Example: Classification of University Students 48 
5. Applications of Decision Tree Algorithms 49 
6. Summary 50 

5 Genetic Algorithms 53 

1. Introduction 53 
2. Motivation ' 54 
3. Fundamentals 55 

3.1. Encoding Schema and Initialization 56 
3.2. Fitness Evaluation 57 



Contents ix 

3.3. Selection 58 
3.4. Crossover 59 
3.5. Mutation 61 
3.6. Iterative Evolution 62 

4. Example: The Traveling-Salesman 63 
5. Current and Future Applications 65 
6. Summary 66 

6 Classification: Distance-based Algorithms 67 

1. Introduction 67 
2. Motivation 68 
3. Distance Functions 68 

3.1. City Block Distance 69 
3.2. Euclidean Distance 70 
3.3. Tangent Distance 70 
3.4. Other Distances 71 

4. Classification Algorithms 72 
4.1. A Simple Approach Using Mean Vector 72 
4.2. .^-Nearest Neighbors 74 

5. Current Applications 76 
6. Summary 77 

7 Decision Tree-based Algorithms 79 

1. Introduction 79 
2. Motivation 80 
3. ID3 80 
4. C4.5 82 
5. C5.0 83 
6. CART 84 
7. Summary 85 

8 Covering (Rule-based) Algorithms 87 

1. Introduction 87 
2. Motivation 88 
3. Classification Rules 88 
4. Covering (Rule-based) Algorithms 90 

4.1. 1R Algorithm 91 
4.2. PRISM Algorithm 94 
4.3. Other Algorithms 96 



x Contents 

5. Applications of Covering Algorithms 97 

6. Summary 97 

9 Clustering: An Overview 99 

1. Introduction 99 

2. Motivation 100 
3. The Clustering Process 100 

3.1. Pattern Representation 101 
3.2. Pattern Proximity Measures 102 
3.3. Clustering Algorithms 103 

3.3.1. Hierarchical Algorithms 103 
3.3.2. Partitional Algorithms 105 

3.4. Data Abstraction 105 
3.5. Cluster Assessment 105 

4. Current Applications 107 
5. Summary 107 

10 Clustering: Hierarchical Algorithms 109 

1. Introduction 109 
2. Motivation 110 

3. Agglomerative Hierarchical Algorithms I l l 
3.1. The Single Linkage Method 112 
3.2. The Complete Linkage Method 114 
3.3. The Average Linkage Method 116 

3.4. The Centroid Method 116 
3.5. The Ward Method 117 

4. Divisive Hierarchical Algorithms 118 

5. Summary 120 

11 Clustering: Partitional Algorithms 121 

1. Introduction 121 

2. Motivation 122 
3. Partitional Clustering Algorithms 122 

3.1. Squared Error Clustering 122 
3.2. Nearest Neighbor Clustering 126 

3.3. Partitioning Around Medoids 127 
3.4. Self-Organizing Maps 131 



Contents xi 

4. Current Applications 132 

5. Summary 132 

12 Clustering: Large Databases 133 

1. Introduction 133 

2. Motivation 134 
3. Requirements for Scalable Clustering 134 
4. Major Approaches to Scalable Clustering 135 

4.1. The Divide-and-Conquer Approach 135 
4.2. Incremental Clustering Approach 135 
4.3. Parallel Approach to Clustering 136 

5. BIRCH 137 
6. DBSCAN 139 
7. CURE 140 
8. Summary 141 

13 Clustering: Categorical Attributes 143 

1. Introduction 143 
2. Motivation 144 
3. ROCK Clustering Algorithm 145 

3.1. Computation of Links 146 
3.2. Goodness Measure 147 
3.3. Miscellaneous Issues 148 
3.4. Example 148 

4. COOLCAT Clustering Algorithm 149 
5. CACTUS Clustering Algorithm 151 
6. Summary 152 

14 Association Rules: An Overview 153 

1. Introduction 153 
2. Motivation 154 
3. Association Rule Process 154 

3.1. Terminology and Notation 154 
3.2. From Data to Association Rules 157 

4. Large Itemset Discovery Algorithms 158 
4.1. Apriori 158 
4.2. Sampling 160 
4.3. Partitioning 162 

5. Summary 163 



xii Contents 

15 Association Rules: Parallel and Distributed 
Algorithms 169 

1. Introduction 169 
2. Motivation 170 
3. Parallel and Distributed Algorithms 171 

3.1. Data Parallel Algorithms on Distributed 
Memory Systems 172 
3.1.1. Count Distribution (CD) 172 

3.2. Task Parallel Algorithms on Distributed 
Memory Systems 174 
3.2.1. Data Distribution (DD) 174 
3.2.2. Candidate Distribution (CaD) 174 
3.2.3. Intelligent Data Distribution (IDD) 175 

3.3. Data Parallel Algorithms on Shared Memory 
Systems 176 
3.3.1. Common Candidate Partitioned 

Database (CCPD) 176 
3.4. Task Parallel Algorithms on Shared Memory 

Systems 177 
3.4.1. Asynchronous Parallel Mining (APM) . . . . 177 

4. Discussion of Parallel Algorithms 177 
5. Summary 179 

16 Association Rules: Advanced Techniques 
and Measures 183 

1. Introduction 183 
2. Motivation 184 
3. Incremental Rules 184 
4. Generalized Association Rules 185 
5. Quantitative Association Rules 187 
6. Correlation Rules 188 
7. Measuring the Quality of Association Rules 189 

7.1. Lift 189 
7.2. Conviction 189 
7.3. Chi-Squared Test 190 

8. Summary 191 



Contents xiii 

17 Spatial Mining: Techniques and Algorithms 193 

1. Introduction and Motivation 193 
2. Concept Hierarchies and Generalization 194 
3. Spatial Rules 196 
4. STING 197 
5. Spatial Classification 199 

5.1. ID3 Extension 200 
5.2. Two-Step Method 201 

6. Spatial Clustering 202 
6.1. CLARANS 202 
6.2. GDBSCAN 203 
6.3. DBCLASD 204 

7. Summary 204 

References 207 

Index 219 





CHAPTER 1 

POINT ESTIMATION ALGORITHMS 

Huadong Liu 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
hliu@cs.utk.edu 

Overview 

Point estimation can be used in both predictive and descriptive data mining 
tasks. Three classical point estimation methods — the method of moments, 
maximum likelihood estimation, and the Expectation-Maximization algo­
rithm — are discussed in this chapter, followed by a review of measurements 
of estimation performance. This chapter intends to introduce basic concepts 
and methods of point estimation. These concepts and methods are the basis 
for more advanced estimation techniques. 

Keywords: Bias, EM algorithm, maximum likelihood estimation, mean 
squared error, method of moments, point estimation, standard error. 

1. Introduction 

Statistics is the science of collecting, analyzing and presenting data. Many 
statistical techniques are used to perform data mining tasks. These tech­
niques include point estimation, interval estimation, regression and many 
others. For a population whose distribution is known but depends on one 
or more unknown parameters, point estimation predicts the value of the 
unknown parameter and interval estimation determines the range of the 
unknown parameter. Point estimation techniques and algorithms will be 
discussed in this chapter. These classical techniques and algorithms are 
illustrated with examples and are not meant to reflect the state of the art 

1 

mailto:hliu@cs.utk.edu


2 H. Liu 

in this area. Many other useful techniques such as robust estimation meth­
ods [152] and re-sampling methods [105] have been developed and ongoing 
research continues to advance estimation techniques. 

2. Motivation 

Point estimation is a well-known and computationally tractable tool for 
learning the parameters of a data mining model. It can be used for many 
data mining tasks such as summarization and time-series prediction. Sum­
marization is the process of extracting or deriving representative informa­
tion about the data. Point estimation is used to estimate mean, variance, 
standard deviation, or any other statistical parameter for describing the 
data. In time-series prediction, point estimation is used to predict one or 
more values appearing later in a sequence by calculating parameters for a 
sample. 

In this chapter, Sec. 3 discusses methods of point estimation, including 
the method of moments, maximum likelihood estimation, and the EM algo­
rithm. Criteria to measure the performance of estimation methods, includ­
ing bias, mean squared error, standard error, efficiency, and consistency are 
reviewed in Sec. 4. Finally, the summarization of the chapter is provided in 
Sec. 5. 

3. Methods of Point Estimation 

Several methods exist for obtaining point estimates, including least squares, 
the method of moments, maximum likelihood estimation, Bayes estimators, 
and robust estimation. The method of moments and maximum likelihood 
estimation for deriving estimates for parameters will be discussed in this 
section with simple examples. The EM algorithm for finding maximum-
likelihood estimates will also be described. 

A few formal definitions are needed before discussing methods for 
point estimation. Let X\,X2, • • • ,Xn be a random sample, and let O = 
{6*i,..., 9k] be the set of population parameters. An estimator is a func­
tion that maps a random sample X\,..., Xn to a set of parameter values 
9 = {#1 , . . . , 9^}, where 9j is the estimate of parameter 9j. 

3.1. The Method of Moments 

The method of moments, introduced by Karl Pearson circa 1894, is one of 
the oldest methods of determining estimates [99]. In [149], the method of 



Point Estimation Algorithms 3 

moments was defined as follows: let Xi,X2,... ,Xn be a random sample 
from a population whose density function depends on a set of unknown 
parameters 6 = {6\, 62, • • •, Ok}- Assume that the first k population 
moments exist as functions 4>r(Q) of the unknown parameters, where 
r = 1,2, ...,fc. Let 

1 n 

4>r = -^XV (1) 
i=l 

be the rth sample moment. By equating <f>r to <f>r, where r = 1 , . . . , k, k 
equations in k unknown parameters can be obtained. 

Therefore, if there are k population parameters to be estimated, the 
method of moments consists of the following two steps: 

(i) Express the first k population moments in terms of the k population 
p a r a m e t e r s 61,62, ••• ,9k', 

(ii) Equate the population moments obtained from step (i) to the cor­
responding sample moments calculated using Eq. (1) and solve 
61,62, • • • ,6k as the estimates of parameters. 

Example 1: This is an example adapted from [105]. Suppose one wanted to 
find estimates for parameters of the gamma distribution using the method 
of moments. The gamma probability density function 

/(*; ̂  t) = roo I ', , x > o , 

has two parameters, the shape parameter t and the scale parameter A. 
Since two parameters are unknown, the first step is to express E(X) 

and E(X2) in terms of t and A. Though the probability density function 
of the gamma distribution looks complicated, the mean and variance of a 
gamma random variable are quite simple. The mean and variance are 

E[X) = j , (2) 

and 

V(X) = E[X2]-(E[X}f = ^ , (3) 

respectively. 
The next step is to solve the above two equations for t and A in terms 

of E(X) and E(X2). Substituting t in Eq. (3) with XE[X], which can be 



4 H. Liu 

derived from Eq. (2), yields 

E[X2]-(E[X])2 = ^ ± . (4) 

Rearranging Eq. (4) gives the following expression for A 

A _, E[X] 
E[X2]-(E[X})2' [> 

By substituting Eq. (5) for A in Eq. (2), the parameter t is obtained in 
terms of E{X) and E{X2): 

, (E[X})2 ,fi, 
E[X2]-{E[X})2' {> 

To get the estimates for A and t, just substitute E[X] and E[X2] with 
sample moments in Eqs. (5) and (6). This yields 

X2 

t=~x , 

~ ELi X? ~ X2 

and 

f X 

\Y.Uxi-x* 

3.2. Maximum Likelihood Estimation 

Sir Ronald A. Fisher circa 1920 introduced the method of maximization of 
likelihood functions [82]. Given a random sample X\,..., Xn distributed 
with the density (mass) function f(x;Q), the likelihood function of the 
random sample is the joint probability density function, denoted by 

L(Q;X1,...,Xn) = f(X1,...,Xn;e). (7) 

In Eq. (7), 0 is the set of unknown population parameters {9i,..., 9k}-
If the random sample consists of random variables that are independent 
and identically distributed with a common density function f(x;Q), the 
likelihood function can be reduced to 

HQ;X1,...,Xn) = f(X1;e)x---xf(Xn;e), 

which is the product of individual density functions evaluated at each 
sample point. 

A maximum likelihood estimate, therefore, is a set of parameter values 
O = {§i,..., §k} that maximizes the likelihood function of the sample. A 



Point Estimation Algorithms 5 

well-known approach to find 9 is to take the derivative of L, set it equal 
to zero and solve for 0 . Thus, 9 can be obtained by solving the likelihood 
equation 

8%L^ = °-
It is important to note that a solution to the likelihood equation is not 

necessarily a maximum; it could also be a minimum or a stationary point (in 
the case of L(Q) = 0 3 , for example). One should ensure that the solution 
is a maximum before using it as a maximum likelihood estimate. 

It is sometimes easier, especially when working with an exponential 
function, to solve the logarithm of the likelihood function, logL(9), that is, 

a n 

— l o g i ( 0 ) = O, where logL(0) = ] T l o g / p Q ; 9 ) . 
i = l 

Since the logarithm function is monotonically increasing, which means that 
if x\ < X2, log(a;i) < log(a;2), the likelihood function L(Q) and its logarithm 
logL(9) are maximized by the same 0 . 

Example 2: Consider a population of balls with colors {red(r), blue(6), 
green(g)}. Assume the color of a ball occurs with the following probabilities 
as a function of the parameter 6 (0 < 0 < 1): 

f(r;0)=02, 

f(b;0) = 20(1-0), 

f(g;6) = (l-6)2. 

If a sample of three balls X\ = r, X2 = b, X3 = r is observed, then 

WX1,X2,X3) = f(r,b,r;0) = f(r,0)f(b,0)f(r,0) = 20s(l-0). 

Taking the derivative of the logarithm of L(6; Xi, X2,X3) and setting 
it to zero, the likelihood equation is obtained 

which has the 

for all 0e(0,\ 

unique 

fr 

l),0 = 

Slog L(6) 
86 

solution 6 = 

!logL(0) 
d02 ~ 

| maximizes 

5 
9 

1 
1-0 

| . Because 

5 
e2 

HO). 

1 
( 1 -

= c 

0)2 < 0 



6 H. Liu 

Example 3: This is an example taken from [99]. Suppose one wanted to 
find estimates of a normal distribution with unknown mean \i and unknown 
variance v. The likelihood function for a random sample of size n is 

L(Q) = TT - J = e " 2 ^ = (-L) f e"* EI^*-")'. (8) 
1=1 v x ' 

Since Eq. (8) has an exponential expression, the logarithm can be used 
to obtain 

i n 

logL(9) = - | l o g ( 2 ™ ) - _ ^ ( X i - / x ) 2 . (9) 

By taking the partial derivative of Eq. (9) with respect to \i and v, the 
following two likelihood equations can be obtained: 

<91ogL 1 v ^ , ^ , . , 

^ = -B^-M), do) 
^ i=\ 

and 

SlogL 
dv 2v 2v2 

i n 

i = l 

By setting Eqs. (10) and (11) to zero and solving them for fj, and v 
respectively, the maximum likelihood estimates are obtained with 

1 ™ 

n ^-^ 
i—1 

and 

1 ™ 
t> = ± £ ( X i - X ) a . 

n . 

3.3. TTie Expectation-Maximization Algorithm 

The Expectation-Maximization (EM) algorithm is a method for finding 
maximum-likelihood estimates of population parameters of an underly­
ing distribution from a given incomplete data set. It provides an itera­
tive scheme for obtaining maximum likelihood estimates, converting a hard 
problem into a sequence of simpler problems. The EM algorithm obtains 
the initial estimates for population parameters either by random guess or 
previous knowledge of the data. Then it iteratively uses the estimates for 



Point Estimation Algorithms 7 

the missing data to obtain new estimates and continues until estimates 
converge. 

The Basic EM algorithm was defined in [16] as follows: let X be 
an incomplete data set observed or generated by some distribution with 
unknown parameters 9\, 62, • • • ,0k and y be the unknown data set. To 
simplify the notation, 0 is used to represent these unknown parameters. 
Assume that a complete data set Z = (X, y) exists and assume a joint 
density function, 

p(z; 0 ) = p(x, y; 0 ) = p{y; x, Q)p(x; 0 ) , 

where x G X, y G y and z e Z. With this joint density function, the 
complete-data likelihood function can be defined as 

L(G;Z) = L(e;x,y) =p(x,y;&). 

The EM algorithm first finds the expected value of the complete-data 
log-likelihood \ogp(X, y; 0 ) with respect to the unknown data y, given the 
observed data X and current parameter estimates. 

Define 

Q(©, e^1) = E(iogP(x, y- e ) | * , &-1), (12) 

where 0 I _ 1 is the current parameter estimates used to evaluate the expec­
tation and 0 are the new parameters optimized to increase the value of 
Q. On the right-hand side of Eq. (12), X and Q1^1 are constants, 0 is a 
normal variable to be adjusted, and y is a random variable governed by 
the distribution of the data. So, the right-hand side of Eq. (12) can be 
re-written as: 

E(logp(X, y- 0 ) | * , 0 ^ ) = f \ogp(X, y; 0)/(y; X, Q^dy, 
Jyer 

where / is the marginal distribution of the unknown data y that depends 
on both the observed data X and the current parameter estimates 
0 l _ 1 , and T is the space of values y can take on. The evaluation of 
£ ( l o g p ( * , 3 ; ; 0 ) | * , 0 i " 1 ) is called the E-step of the EM algorithm. 

The second step of the EM algorithm maximizes E(logp(X, y; 0 ) 1 * , 
0 l _ 1 ) and sets 

0* = argmaxQ{Q,&-1). 
e 

This is called the M-step. The E-step and M-step steps are repeated as 
necessary. Each iteration is guaranteed to increase the log-likelihood of the 



8 H. Liu 

complete-data and the algorithm is guaranteed to converge to a local maxi­
mum of the likelihood function [16]. The EM algorithm can be summarized 
as follows: 

Algorithm 1 EM Algorithm 
Input: 

Data set distribution with unknown parameters G = {6*i,..., 6k}; 
Incomplete data set X; 
Convergence threshold e; 

Output: 
Parameter estimates G = {6\,... ,8^} 

Initialize G° 

repeat 
n <— n + 1; 
Q(e, G"-1) <- E(\ogP(x,y- e)\x, e"-1); 
Compute the maximum likelihood estimates of G to maximize 
QtG.G""1); 
Gn <- ar f fmax eQ(G,G"- 1 ) ; 

until I Q " - © " " 1 ! < e 
G ^ G " ; 

The EM algorithm is useful in computational pattern recognition [16], 
image retrieval [159], computer vision [lOl], and many other fields. In data 
mining, the EM algorithm can be used when the data set has missing values 
due to limitations of the observation process. It is especially useful when 
maximizing the likelihood function directly is analytically intractable. In 
that case, the likelihood function can be simplified by assuming that the 
hidden parameters are known. 

4. Measures of Performance 

As discussed in Sec. 3, there are several different ways (estimators) to esti­
mate unknown parameters. In order to assess the usefulness of estimators, 
some criteria are necessary to measure the performance of estimators. In 
this section, five criteria used to assess estimators — bias, mean squared 
error, standard error, efficiency, and consistency will be discussed. At the 
end of this section, the Jackknife method will be introduced to estimate 



Point Estimation Algorithms 9 

bias and standard error of an estimator. As discussed before, an estimator 
is a function that maps a random sample to a set of parameter estimates. 
Furthermore, if the sample obtained is a random sample, an estimator is 
also a random variable since the estimates are calculated using the sample. 
In the following discussion, 9 is denoted as the estimator (random variable) 
of an unknown parameter 9. 

4.1. Bias 

The bias of an estimator provides a measure of the average error in the 
estimator 9 of a parameter 9. The bias of an estimator is defined as the 
difference between the expected value of the estimator and the actual value 

bias{9) = E[§] - 9. (13) 

An estimator is unbiased if the expected value of the estimator equals the 
true parameter value, i.e., E[9] = 9. Otherwise, the estimator is biased. 
For example, the maximum likelihood estimate of the mean for a normal 
distribution is unbiased, since E[p] = u [109]. However, this it is not the 
case for the maximum likelihood estimate of the variance v [68]. It can be 
shown that E[v] = n~ 'v, where n is the sample size. 

To determine the expected value in Eq. (13), the distribution of the 
statistic 9 must be known to analytically calculate the bias. If the distribu­
tion of the statistic is not known, then some methods such as the Jackknife 
(see Sec. 4.6) can be used to estimate the bias of 9. 

4.2. Mean Squared Error 

The mean squared error (MSE) is the expected value of the squared error. 
Let 9 be a parameter and 9 be an estimator of the parameter, the mean 
squared error of the estimator is defined as 

MSE(8)=E\{9-8)2}. (14) 

It is sometimes more useful to rewrite the MSE equation in terms of the 
bias and the variance [109]. The first step of the rewriting is to expand the 
expected value on the right-hand side of Eq. (14) to get 

MSE{9) = E[{92 - 299 + 02)] = E[92} - 29E[9] + 92. (15) 

The next step of the rewriting is to add to and subtract {E[9})2 from 
the right-hand side of Eq. (15) so that 

MSE{9) = E[92] - (E\9])2 + {E[9})2 - 29E[9] + 92. (16) 



10 H. Liu 

By simplifying Eq. (16), the mean squared error can be written as 

MSE{9) = E[§2} - {E[9]f + (E[§] - 9)2 = V(9) + \bias{9)]2. (17) 

Equation (17) shows how the mean squared error, variance and bias 
of an estimator are related. Since the mean squared error is the sum of 
the variance and the squared bias, two non-negative quantities, the error 
will be small when the variance and the absolute value of the bias are 
both small. When 9 is unbiased, the mean squared error is equal to the 
variance. 

4.3. Standard Error 

The standard error gives a measure of the precision of the estimators. The 
standard error of an estimator 9 is defined as the standard deviation of its 
sampling distribution 

SE(§) = ^Jv{§) = a§. 

The sample mean can be used as an example to illustrate the concept of 
standard error. Let f(x) represent a probability density function with finite 
variance a2 and mean \i. Let X be the sample mean for a random sample 
of size n drawn from this distribution. By the Central Limit Theorem [105], 
the distribution of X is approximately normally distributed with mean \i 

2 

and variance —. So the standard error is given by 

SE(X)=ax = ~^. 

When the standard deviation a for the underlying population is unknown, 
then an estimate S for the parameter can be used as a substitute for it and 
leads to the estimated standard error 

4.4. Efficiency 

Another measure used to compare estimators is called efficiency. Suppose 
there are two estimators 9 and 9' for a parameter 9 based on the sample 
Xi,..., Xn. If the MSE of one estimator is less than the MSE of the other, 



Point Estimation Algorithms 11 

i.e., MSE{9) < MSE{9'), then the estimator 9 is said to be more efficient 
than 9'. The relative efficiency of 0 with respect to 6' is defined as the ratio 

MSE{9) 

If this ratio is greater than one, then 9 is a more efficient estimator of the 
parameter 9. When the estimator is unbiased, the ratio is just the ratio 
of their variance, and the most efficient estimator would be the one with 
minimum variance. 

4.5. Consistency 

Unlike the four measures defined in previous subsections, consistency is 
defined for increasing sample sizes, not a fixed sample sizes. Like the effi­
ciency, consistency is also defined using the MSE. Let 9n be the estimator 
of a parameter based on a sample of size n, then an estimator is said to be 
consistent if 

lim MSE(9n) = 0, (18) 
n—>oo 

or 

lim [V(9n) + (bias(9n))
2} = 0 (19) 

n—>oo 

when MSE is written in terms of bias and variance. Thus, Eq. (18) or 
Eq. (19) holds if and only if both variance and bias of 9n tend to zero as n 
approaches infinite. 

4.6. The Jackknife Method 

Given a random sample and a parameter 9, its estimate is also a random 
variable and has some error associated with it. Estimates of bias and stan­
dard error of the estimator 9 can assess the accuracy of the results. The 
Jackknife method is a technique for estimating bias and standard error of 
statistics [44]. 

The Jackknife obtains the estimate of a parameter from a set of observed 
data by generating that statistic repeatedly on the data set excluding a 
single data value during each iteration. The Jackknife method consists of 
taking repeated sub-samples of the original sample of n independent obser­
vations by omitting a single observation at a time. Thus, each sub-sample 



12 H. Liu 

Algorithm 2 Jackknife 
Input: 

An estimator 9 = T(XI, . . . , Xn); a random sample X\,..., Xn; 
Output: 

Jackknife estimate of bias of 9; Jackknife estimate of standard error 
of 0; 

for i = 1 to n 
Leave out the sample point X{\ 
Calculate the value of the statistic using remaining sample points to 
obtain 9^; 

end for 

Calculate the overall Jackknife estimate using Eq. (20), the Jackknife 
estimate of bias of 9 using Eq. (21), and the Jackknife estimate of 
standard error of 9 using Eq. (22). 

consists of n — 1 observations formed by deleting a different observation 
from the sample. The Jackknife estimate and its standard error are then 
calculated from these truncated sub-samples. 

Suppose that there is a set of n values X\,...,Xn, the ith Jackknife 
estimate is calculated by omitting the ith value 

0(i) = T(XI, ...,Xj_i,Xj+i,... ,Xn). 

For example, the ith Jackknife estimate for the mean fj, would be 

i—\ n 

/}(i) = ( l / n - l ) ] T x , + ( l / n - l ) ]T Xj. 
3=1 j=i+l 

Given a set of Jackknife estimates, 9^),i = 1, 2 , . . . , n, an overall esti­

mate, #(.) can be obtained by 

n 

0(.) = (iAoX>V (20) 
i=l 

The estimate of the bias of 8 obtained by the Jackknife method is given 
by [44] 

Bi^jack0) = (n- l)(0(.) - 9). (21) 



Point Estimation Algorithms 13 

The estimated standard error of 6 using the Jackknife method is 
defined as 

i 
2 

(22) 

5. Summary 

In this chapter, the method of moments, maximum likelihood estimation, 
and the EM algorithm have been discussed with simple examples. Even 
though classical point estimation is a useful theoretical topic, it requires 
some knowledge about the data involved and violates an important prin­
ciple of data mining — avoid making any assumptions about the data. 
Also, point estimation is too simple for data mining applications that 
have huge data sets and complex processing models. The need to solve 
real problems has driven the evolution of estimation techniques and algo­
rithms. It has progressed from least squares to the method of moments, 
to maximum likelihood, to Bayes and empirical Bayes procedures, to risk-
reduction approaches, to robustness, and to re-sampling techniques [82]. 
Readers interested in further details of these advanced topics will benefit 
from reading [95]. 

SEjack{9) — 
n • 

-i>*(i)-*(-))a 
4 = 1 





CHAPTER 2 

APPLICATIONS OF BAYES THEOREM 

Erika Fuentes 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
efuentes@cs.utk.edu 

Overview 

Classification is an important task in data mining because it helps to 
address a variety of problems. Statistical techniques can provide the means 
to solve these problems in a simple way. Specifically, the Bayesian approach 
provides a natural and flexible way to approach classification problems and 
other probability-related questions. The Bayes Theorem is the basis of this 
methodology, and it can also be used as a building block and starting point 
for more complex methodologies such as the popular Bayesian networks. 

Keywords: Bayes decision rule, Bayesian networks, Bayes Theorem, 
classification. 

1. Introduction 

Although classification or discrimination can be seen as a problem of pre­
diction and class assignment, it is also a learning process and is often used 
in data mining applications and in pattern recognition. Statistical methods 
for classification are widely used and they provide a simple starting point 
for addressing many problems. They are relatively easy to implement, but 
should be used judiciously since they typically require many assumptions. 
Success using these techniques depends both on the size of the data set and 
previous knowledge regarding the set. 

15 

mailto:efuentes@cs.utk.edu


16 E. Fuentes 

The Bayes Theorem is a statistical concept that can be used as a basis 
for data mining techniques, such as pattern classification and discrimina­
tion. It can also be used as a starting point for implementing more com­
plex data mining and Knowledge Discovery Database (KDD) techniques 
such as Bayesian networks [122]. The Bayes approach can also be used in 
combination with other methodologies such as Markov Chains and other 
probabilistic techniques, many of which are used to build innovative models 
such as the Relational Bayesian Classifiers for relational data sets [112]. 

The Bayes methodology has a wide range of applications in many dif­
ferent fields such as medicine, genetics and business. The simplicity and 
natural interpretation of its output makes it suitable for many applica­
tions, yet it has some disadvantages since in many cases Bayesian models 
tend to be naive or too simple for certain types of data. 

2. Motivation 

In general, data mining is the process of automatically extracting useful 
knowledge from large data sets. It has become increasingly important as the 
amount of data being generated continues to grow. By using data mining, 
the structure in data can be identified, resulting in recognized patterns, 
statistical or predictive models of the data, and relationships among parts 
of it. Furthermore, this information can be used for future predictions [85]. 

The basic problems of data mining involve the classification, discrimi­
nation and clustering of data. Classification involves the ordering of a set 
of objects described by high-dimensional data into small units, or classes 
that give a better understanding, control, and interpretation and retrieval 
of the data. The main goal of classification is to assign an instance to a class 
depending on the values of descriptive features. One of the most popular and 
successful methods in classification is statistical pattern classification [85]. 

Statistics provides methods for data analysis, such as sampling, stochas­
tic modeling, predictions, experimental design, and exploratory data analy­
sis. With the increasing size and complexity of data, new types of statistical 
models and applications are becoming more closely related to computer sci­
ence [85]. The Bayesian approach in statistical data analysis is based on a 
probability model, which is based on observed or given information. This 
approach determines the conditional probability distributions for the possi­
ble classifications of the data of being produced. In other words, it estimates 
the likelihood of some property given some input data as evidence. The 
Bayes Theorem is used in particular to compute these conditional posterior 



Applications of Bayes Theorem 17 

probability distributions (with the aid of probability density estimation 
methods) [163]. It expresses the problem in terms of probabilities that can 
be used to make classification decisions. 

In Bayes classification, the learning process estimates probabilities 
instead of finding an explicit rule. The advantage of this approach is that 
the classifier will reach the minimum error when the data set is large and the 
methods for estimating particular probabilities are consistent. With large 
sample sets, these probabilities will converge to the underling probability 
distribution of the classes. If the designer has some prior knowledge about 
the data that would lead to the belief that some model is a particularly good 
approximation to the probability distribution, the classifier will have a very 
good performance. The problem is that the model used in the classification 
might not be the best estimator of the probability distribution, but unreal­
istic models that make naive assumptions are not necessarily bad and often 
will lead to relatively good performance. One should note that Bayesian 
classification could give you the "correct" classification, while not provid­
ing the acceptable solution to the real problem since the cost of the errors 
could be unacceptable (for example, classifications in cancer diagnosis or 
tornado warnings) [85, 144]. 

This chapter gives a brief introduction to the basic methodology of the 
Bayesian approach, and some examples of its application. The next section 
covers the general framework for statistical classification techniques and in 
more detail the Bayesian methodology. Section 4 contains two examples 
of the Bayesian approach. Section 5 is a brief summary addressing some 
advantages and disadvantages of this methodology. 

3. The Bayes Approach for Classification 

3.1 . Statistical Framework for Classification 

Statistical methods are widely used in discrimination and pattern recogni­
tion problems, because they provide a simple framework for classification. 
Given a data set of interest as input, the main steps (see also Fig. 1) of 
these methods are [40]: 

(i) Feature extraction. The features (or characteristics) should be repre­
sentative of the classes and adequate for the method. 

(ii) Information gathering. Obtain a sample set of these features for the 
different classes of interest. Select variables and measurements that 
can best discriminate between the classes; this includes, in many 



18 E. Fuentes 

Class Membership 

Class 1 

Input 
Feature 

Extraction 

Feature 
Vector _ Pattern 

Classification 

Recognition 
Result 

Class n 

Fig. 1. General flow diagram for the statistical approach to data classification. 

cases, preprocessing of the data, compression and sampling. Also 
collect information about the statistical properties of the classes. 
This step usually involves the creation of training and validation 
data sets. 

(iii) Creation of a methodology for classification. Construct a "good" 
classifier using the information available from the existing classes. 
Based on the information collected, choose or design classifiers that 
take as input a set of feature measurements (feature vectors) from 
a training set. For each element of a validation set indicate its 
class. 

(iv) Evaluation of the classification results. Measure the classifier's perfor­
mance, determine class membership for each of the samples, and verify 
if the selected class is indeed the correct one. 

(v) Apply the classifier to new objects. 

Each of the objects from a data set, described by a vector a; of A; com­
ponents or features, are originally known to belong to one of the target 
classes. The goal of classification is to find this unknown class. Hence, it 
must be "reconstructed" or guessed from the values of x by means of a 
function, which can be used as a regression function for the data distribu­
tion (of each class). This function is a prediction or estimate of the true 
but unknown class of the object [85]. In theory, this might be possible if 
each class is described by a particular data distribution, and the objects 
in a class have a specific behavior and have feature values that are distinc­
tive of the class. Unfortunately (and partly due to the randomness of the 
input data), the target classes are not always independent and separated 
from each other. For this reason, their data distributions will very likely 
overlap, leading to misclassifications [163]. One of the objectives when build­
ing classifiers is to minimize the number of misclassifications. This prob­
lem will be addressed in more detail with Bayesian classifiers in the next 
subsection. 



Applications of Bayes Theorem 19 

There are two main approaches for building classifiers used in statistical 
pattern recognition: 

• Parametric Classifiers: also called supervised methods estimate the 
parameters for a presumed probability distribution function such as 
the Normal or Gaussian distribution. This function is used as a basis 
for making decisions [42]. The problem with this approach is that it 
sometimes requires a great deal of knowledge about the data involved 
[105]. A typical example of this approach is the Bayes method, where 
a class-specific probability model is designed for the random observa­
tions, given that a learning sample of representative data vectors is 
provided for each class. 

• Non-parametric Classifiers: also called unsupervised methods do not 
assume the existence of any specific probability distribution. Instead, 
the parameters and the decision function are built specifically from the 
collected data. They can be better for data mining applications since 
they are data-driven and there are no explicit equations to determine 
the models. However, they require large amounts of input data to per­
form better. Examples of these are clustering techniques and decision 
trees [40, 42]. 

Figure 2 shows an overview of the parametric approach used by the 
Bayes methodology. It is based on the idea of using part of the input data 
to "teach" the classifier to recognize the data [38]. The important steps of 
this type of classification are: 

(i) Using a set of training (learning) data for which we know the class 
membership of each sample, derive a decision rule. 

(ii) Apply this decision rule to a new set of validating (testing) data sam­
ples, whose classification is not known, and assign each sample to a 
class. 

Decision Rule 

apply 

Known Classification Unknown Classification 

Fig. 2. Overview of the parametric statistical methods. 



20 E. Fuentes 

(iii) Evaluate the classification: verify, if possible, that each sample was 
assigned to the correct class. One measure of accuracy is the proportion 
of samples that were classified correctly. 

The next section contains a more detailed description of the Bayesian 
methodology for classification. 

3.2. Bayesian Methodology 

This Bayes approach defines the classification problem in terms of proba­
bilities. More specifically, the three main concepts required are conditional 
probability, Bayes Theorem, and the Bayes decision rule. 

The conditional probability P(A\B), which is used to define independent 
events [105], is defined by 

P(AUB) 
P(A\B) 

le pro 
observed. Similarly, 

P{B) ' 

where P(A\B) is the probability that event A happens, given that B is 

where P{B\A) is the probability that event B happens, given that A is 
observed. It then follows (by substitution) that 

P{Af]B) = P(A)P(B\A). 

The premise of Bayes Theorem starts with an initial degree of belief that 
an event will occur, and then with new information this degree of belief can 
be "updated" [105]. These two degrees are represented, respectively, by the 
prior probability P{A\B) and the posterior probability P(B\A), which are 
related by 

P{A)P{B\A) 
P(A\B) 

P(B) 

The Bayes decision rule states that based on the posterior probabilities, 
it is possible to assign an element a; to a class with the largest probabil­
ity. In particular, for the classifying problem, the conditional probabilities 
described above can be defined as follows: let i be a data sample (vec­
tor of features) and w, one of the possible classes [40]. Then, P{x\u)i) is 
the prior probability, because it can be obtained based on prior knowledge 



Applications of Bayes Theorem 21 

(i.e., the distribution constructed from training data). Given class i, it spec­
ifies the probability of finding x within this class. Similarly, P(uij\x) is the 
posterior probability, because it is computed based on posterior knowledge. 
Given sample x, it specifies the probability that x belongs to class j . For a 
given x, if 

P(LJI\X) >P(u2\x), 

where 

P{x\^)P{^) pKUi\x) = ^ , (23) 

then x belongs to class 1, otherwise to class 2. 
The denominator term of Eq. (23) is the overall probability of x in all 

the classes. For a given x, one must compute the posterior probabilities for 
all tUi classes, then assign x to the class that yields the maximum posterior 
probability [38]. Fi gure 3 illustrates how the Bayes decision rule can be 
used for single-feature (one-dimensional) classification. The two probabil­
ity distributions shown demonstrate the values obtained for the posterior 
probabilities for each class. The shaded regions indicate the areas of possi­
ble misclassincation, i.e., those areas where the probability distribution of 
the other class is greater. 

Generally speaking, the Bayesian methodology for classification follows 
these five steps [40]: 

(i) Collect data, and estimate parameters such as mean and covariance 
for each class (for the parametric approach we assume that all the 
probability density functions have a Gaussian behavior). 

(ii) Choose a set of features. 
(iii) Choose a model and derive a decision rule with these parameters. 

Fig. 3. Probability distributions for two classes using a single-feature. 



22 E. Fuentes 

(iv) Train the classifier and apply the decision rule by using a discriminant 
function (a way to represent a pattern classifier), and apply it to a test 
data set to classify each sample. 

(v) Evaluate the decision rule. Measure the accuracy /error rate in order to 
improve the choice of features and the overall design of the classifier. 

The next section provides specific examples of how this methodology can 
be used for predicting or classifying different types of objects. 

4. Examples 

In the first example, the Bayes decision rule is used in numerical method 
selection, where there are many alternative algorithms that can be used to 
solve the same numerical problem (e.g., solving the linear system of equa­
tions Ax = b for the vector x). Statistical data mining can play an important 
role in matching the most appropriate algorithm for a particular numeri­
cal problem. In the second example of this section, Bayesian networks are 
briefly introduced for modeling gene-to-gene functional relationships. 

4.1. Example 1: Numerical Methods 

The Bayes decision rule is one of the applications of Bayes Theorem. This 
example shows how it could be used in numerical method decision-making. 
Solving problems using algorithms from numerical linear algebra can con­
sume considerable computation time. By using a statistical approach, it 
might be possible to find the method(s) that more efficiently solve a prob­
lem by extracting and characterizing features from the underlying matrices, 
and assigning them to classes corresponding to methods that will work well 
on similar problems with similar features. While this idea is still in an 
experimental phase [38], it is a good example that shows how a statistical 
approach can be used to identify important features of data sets, and more 
specifically, how the Bayes Theorem can be used for classification tasks. 

The strategy for determining appropriate numerical algorithms by the 
Bayesian approach is summarized as follows: 

(i) Solve a large collection of test problems by every available method, 
that is, every choice of algorithm, and suitable setting of parameters. 

(ii) Assign each problem to the algorithm class corresponding to the 
method that gave the fastest solution. 

(iii) Compute a probability density function for each class. 
(iv) Using the Bayesian classification, assign new problems to the classes 

and test the efficiency of the classifier. 



Applications of Bayes Theorem 23 

The output of this process is a function Pi(x) = P(wi\x)) where i ranges 
over all classes (methods), and x lies in the space of the feature vectors for 
the input problems. Given a new problem and its feature vector x, the goal 
is to select the method i for which Pi{x) is maximized. 

One of the crucial steps in the classification process is the extraction of 
features from the application. In the context of numerical problems there 
are many features, but not all of them are relevant for the decision-making 
process, so several combinations are tested. Some features (such as struc­
tural characteristics of a matrix), have to be pre-processed before being fed 
into a classifier. Only after a testing phase is it possible to determine which 
features are actually significant for the decision process. The set of features 
chosen is known as the feature vector. 

The most expensive step in this example is the training stage. This 
essential part of the training process assigns each numerical problem to a 
class, where the classes correspond to the solution methods. All the sample 
problems are solved by each available method, and then a data set is built 
by finding for each method (class) a number of problems that are best 
solved by it. All the results from this stage are divided into two sets — 
a training set and a validation set. With the training data available, the 
Bayes methodology is used to train a classifier. Then, using the feature 
vectors from this data, a vector of mean values p, and a correlation matrix 
£ can be computed for each class [42], i.e., 

1 n 

(xi - n){xi - fj,) , 
" i=\ 

where {xi}f=1 are each of the samples in the appropriate class. 
Using the mean value vector and the correlation matrix, a multivariate 

density function for each method (class) j can be given by 

1 
PM 2d£|!/2 

-(l/2)(x-p,)^i(x-fl) 

With a probability density function for each class, it is possible to com­
pute the posterior probabilities (see Sec. 3.2) using the Bayes Theorem. For 
example, the probability that x belongs in class j can be determined [40] by 

P{x\Wj)P{Wj) 
P{mlx)= P3(x) • 

The classifier is then built using these posterior probabilities and once 
it has been established, it can be used to classify and validate the data set. 
Given a new problem and its associated feature vector, the classifier is then 



24 E. Fuentes 

used to select the numerical method (class) which yields the maximum pos­
terior probability. To evaluate the accuracy of the model one can compare 
the class assigned by the classifier to the one that corresponds to the class 
of the numerical method that was experimentally judged to be the most 
efficent. 

Following this approach, a series of experiments have been run on a 
number of matrices using two different sets of features. Classifiers were 
then evaluated using the validation set. Each entry tabulated below rep­
resents the rate of accuracy with which new test problems were correctly 
classified [38]: 

Feature Set 1 Feature Set 2 
Method 1 70% 40% 
Method 2 98% 86% 
Method 3 93% 45% 

From these results a couple of observations can be made about the Bayes 
approach for classification: 

• The performance is good for one set of features, but not for the second 
set. This is why it is critical to have as much knowledge regarding the 
data sets and the relevant features that best describe or represent this 
data and the application that is being modeled. This can be either an 
advantage or a disadvantage of the Bayesian methodology depending 
on expertise in the field and prior knowledge of the source data. 

• When a good set of relevant features is chosen, the Bayes approach 
can produce good results, even though many naive assumptions have 
to be made. 

4.2. Example 2: Bayesian Networks 

Bayesian networks are an example of the use of the Bayes Theorem as a part 
of more complex applications. Bayesian networks provide a blueprint to help 
understand relations among a large number of variables. They are useful 
in modeling problems in which there is a large amount of data involved, 
and in recent years they have been especially used in biomedical areas for 
feature extraction and classification [46]. 

A Bayesian network is basically a directed acyclic graph that models the 
probabilistic dependencies of a group of nodes [122]. This example concerns 
the use of Bayesian networks in genetics, for combining data from various 
heterogeneous sources for gene function prediction. The Bayesian network 



Applications of Bayes Theorem 25 

can combine data from diverse sources and try to predict if two proteins 
are functionally related. For each pair of genes one may ask: "What is 
the probability, based on the evidence presented, that products of genes i 
and j have a functional relationship?" The network is then built based on 
the data from gene-gene relationship (prior probability) matrices S = [sy] 
where element ŝ - ^ 0 if genes i and j are believed to have a functional 
relationship and sy = 0, if they do not. The output of the matrix is a 
posterior probability matrix whose scores Sij correspond to the strength 
of each method's posterior belief in the existence of relationship between 
genes i and j , and the final goal is to create gene groupings (classification) 
based on this data [144]. 

Expert knowledge is generally needed to assess the prior probabilities 
(e.g., from microarray analysis and molecular biology), and Bayesian net­
works constructed from probabilities provided by experts in the field have 
been successfully used [144]. Such results can be compared and enriched 
with results from other methodologies such as microarray analysis, so this 
approach can also be used as a starting point for more complex techniques. 

5. Summary 

Statistical techniques are very useful in data mining for classification and 
prediction tasks. These techniques are not always very efficient or accurate, 
but they are simple to implement and to understand. Their performance 
is strongly related to the amount of available knowledge of the data and 
the understanding of the problem being modeled. More efficient models 
are implemented when it is possible to extract a relevant set of features, 
and obtain good data distributions that can more accurately describe the 
behavior of the data. The Bayesian approach is one of these techniques, 
and is based on conditional probabilities that represent prior and posterior 
knowledge of the data. This method is very versatile but can be naive since 
certain assumptions need to be made. However, there are several modifica­
tions that can improve its performance [85, 112, 122]. 





CHAPTER 3 

SIMILARITY MEASURES 

Kevin E. Heinrich 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450 
heinrich@cs. utk. edu 

Overview 

Similarity measures provide the framework on which many data mining 
decisions are based. Tasks such as classification and clustering usually 
assume the existence of some similarity measure, while fields with poor 
methods to compute similarity often find that searching data is a cum­
bersome task. Several classic similarity measures are discussed, and the 
application of similarity measures to other fields are addressed. 

Keywords: Bioinformatics, distance metrics, information retrieval, multi­
dimensional modeling, ontologies, similarity measures. 

1. Introduction 

The goal of information retrieval (IR) systems is to meet users' needs. In 
practical terms, a need is usually manifested in the form of a short textual 
query entered in the text box of some search engine online. IR systems 
typically do not directly answer a query; instead, they present a ranked 
list of documents that are judged relevant to that query by some similarity 
measure [115]. Since similarity measures have the effect of clustering and 
classifying information with respect to a query, users will commonly find 
new interpretations of their information need that may or may not be useful 
to them when reformulating their query. In the case when the query is 
a document from the initial collection, similarity measures can be used 
to cluster and classify documents within a collection. In short, similarity 

27 



28 K. E. Heinrich 

measures can add a rudimentary structure to a previously unstructured 
collection. 

2. Motivation 

Similarity measures used in IR systems can distort one's perception of the 
entire data set. For example, if a user types a query into a search engine 
and does not find a satisfactory answer in the top ten returned web pages, 
then he/she will usually try to reformulate his/her query once or twice. If 
a satisfactory answer is still not returned, then the user will often assume 
that one does not exist. Rarely does a user understand or care what ranking 
scheme a particular search engine employs. 

An understanding of the basic similarity measures, however, is crucial in 
today's business world. Many business decisions are often based on answers 
to questions that are posed in a way similar to how queries are given to 
search engines. Data miners do not have the luxury of assuming that the 
answers given to them from a database or IR system are correct or all-
inclusive — they must know the drawbacks of any similarity measure used 
and adjust their business decisions accordingly. 

This chapter will discuss classic similarity measures from [132, 133] such 
as Dice, Overlap, Jaccard, and Cosine. Asymmetric and distance measures 
will also be discussed.a A simple example will be presented demonstrating 
the effectiveness of the various measures. Finally, uses of similarity measures 
in applications such as multi-dimensional modeling, hierarchical clustering, 
and bioinformatics will be discussed. 

3. Classic Similarity Measures 

A similarity measure is defined as a mapping from a pair of tuples of size k 
to a scalar number. By convention, all similarity measures should map to 
the range [—1,1] or [0,1], where a similarity score of 1 indicates maximum 
similarity. Similarity measures should exhibit the property that their value 
will increase as the number of common properties in the two items being 
compared increases [42]. 

A popular model in many IR applications is the vector-space model, 
where documents are represented by a vector of size n, where n is 
the size of the dictionary. Thus, document i is represented by a vector 

aFor a more extensive listing of similarity and related measures, the reader is directed 
to [29, 133]. 



Similarity Measures 29 

di = (wa,..., wni), where Wki denotes the weight associated with term k 
in document i. In the simplest case, Wki is the frequency of occurrence of 
term k in document i.h Queries are formed by creating a pseudo-document 
vector q of size n, where Wkq is assumed to be non-zero if and only if term 
k occurs in the query. 

Given two similarity scores sim(q,di) = si and sim(q,dj) = S2, si > S2 
means that document i is judged more relevant than document j to query q. 
Since similarity measures are a pairwise measure, the values of si and S2 
do not imply a relationship between documents i and j themselves.0 

From a set theoretic standpoint, assume that a universe fl exists from 
which subsets A, B are generated. From the IR perspective, Q is the dic­
tionary, while A and B are documents with A usually representing the 
query. Some similarity measures are more easily visualized via set theoretic 
notation. 

As a simple measure, An B denotes the number of shared index terms. 
However, this Simple coefficient takes no information about the sizes of 
A and B into account. The Simple coefficient is analogous to the binary 
weighting scheme in IR that can be thought of as the frequency of term co­
occurrence with respect to two documents. Although the Simple coefficient 
is technically a similarity measure, it will not be further discussed in this 
chapter. 

Most similarity measures are themselves evaluated by precision and 
recall. Let A denote the set of retrieved documents and B denote the set 
of relevant documents. [45] defines precision and recall as 

and 

R(A m - lAnBl 

respectively. Informally, precision is the ratio of returned relevant doc­
uments to the total number of documents returned, while recall is 
the ratio of returned relevant documents to the total number of rele­
vant documents. Precision is often evaluated at varying levels of recall 
(namely, i = 1 , . . . , \B\) to produce a precision-recall graph. Ideally, IR 

Weighting schemes are beyond the scope of this chapter. For a more in-depth discussion 
of weighting schemes, the reader is directed to [12, 15]. 
cFrom the author's experience, this observation is often misunderstood in multi-
disciplinary fields such as bioinformatics. 



30 K. E. Heinrich 

systems generate high precision at all levels of recall. In practice, however, 
most systems exhibit lower precision values at higher levels of recall. 

When applicable, the similarity measures presented in the next subsec­
tions will be defined in set theoretic notation followed by the equivalent 
matrix notation. While the different notation styles may not yield exactly 
the same numeric values for each pair of items, the ordering of the items 
within a set is preserved. 

3.1. Dice 

The Dice coefficient is a generalization of the harmonic mean of the pre­
cision and recall measures. A system with a high harmonic mean should 
theoretically be closer to an ideal retrieval system in that it can achieve 
high precision values at high levels of recall. The harmonic mean for preci­
sion and recall is given by 

P + R 

while the Dice coefficient is denoted by 

SM^) = D(A,B) = alAl^i
B[m (25) 

E n 
fc=i wkqwkj 

a E L i wla + (1 - ") Ek=i wl 
(26) 

ukq ^ \± "•) Z^fc=l wkj 

with a G [0,1]. To show that the Dice coefficient is a weighted harmonic 
mean, let a = ^ and note that Eq. (25) is equivalent to Eq. (24). 

3.2. Overlap 

As its name implies, the Overlap coefficient attempts to determine the 
degree to which two sets overlap. The Overlap coefficient is computed as 

sim(q,dj) = 0(A,B) 
mm{\A\,\B\) 

E n 
k=l WkqWkj 

min(£fc=i™fc,.Efc=i«'fcj/ 

The Overlap coefficient is sometimes calculated using the max operator in 
place of the min. Note that the denominator does not necessarily normalize 
the similarity values produced by this measure. As a result, the Overlap 
values are typically higher in magnitude than most other similarity 
measures. 



Similarity Measures 31 

3.3. Jaccard 

The percentage of relevance covered by two sets is known as the Jaccard 
coefficient and is given by 

\AC\B\ 
sim(q,dj) = J(A,B) 

\AUB\ 

E L l WkqWkj 

E f c = l Wkq + E f c = l Wkj ~ £ f c = l Wfc?^fej 

This measure is fairly intuitive and often one of the more widely used 
measures when comparing IR systems. In a set theoretic sense, the Jaccard 
measure signifies the degree of relevance covered by the union of two sets. 

3.4. Asymmetric 

Similarity measures do not necessarily have to demonstrate symmetry. Con­
sider the asymmetric measure 

Sim{q,dj)=A{q,dj)=^riWk^). 
E f c = l Wkq 

In general, sim(di,dj) ^ sim(dj,di) because the denominator is only 
dependent upon the first argument. This behavior can be useful to assess 
inclusion relations between document vectors. That is, document di is 
included in dj if and only if u>ki =£ 0 =£> Wkj ^ 0 for k = 1 , . . . , n. This 
inclusion property is often useful when clustering or classifying documents 
within an hierarchical framework. 

3.5. Cosine 

Since the classic vector space model represents documents by an 
n-dimensional vector, one can visualize the entire document collection as 
a set of n-dimensional vectors. From a geometric standpoint, the cosine of 
the angle between two vectors q and dj is given by 

sim(q, dj) = C{A, B) = VRP= 4 = (27) 

Q-dj _ E f c = l wkgWkj 

l«1x^'! JELi^EL 
(28) 

Note that Eq. (27) is also the geometric mean of precision and recall. Since 
this is a cosine measure with a normalizing factor in the denominator, all 

file:///AC/B/


32 K. E. Heinrich 

similarities produced will be in the range [—1,1]. The document vectors 
that are pointing in the most similar direction in n-dimensional space will 
receive the highest score. 

3.6. Other Measures 

Similarity measures are often application dependent, and different measures 
can be defined as hybrids of the measures previously mentioned. Other 
modifications to the aforementioned measures are not at all uncommon.d 

In general, if a measure can take into account any kind of a priori knowledge 
to help distinguish documents from each other, then that measure is likely 
to be more effective than one that does not. For example, [133] suggests 
that 

sim(q,dj) = a[content identifier similarity] 

+ /^[objective term similarity] 

+ 7 [citation similarity] 

would intuitively yield more effective precision and recall than an ordi­
nary measure that ignored document structure simply because it takes into 
account more information. 

3.7. Dissimilarity 

Just as similarity measures can indicate how close one document is to 
another, dissimilarity or distance measures can show how far documents 
are from each other. A distance measure can be defined as 1 — s, where s is 
some similarity measure with values in [0,1]. Since distance is often associ­
ated with maps, there are two standard distance measures. The Euclidean 
distance, given by 

dis(q,dj) = dE(q,dj) 
\ fc=i 

is simply the straight-line distance between any two points in space, while 
the Manhattan or city block distance, 

dis(q,dj) = dM(q,dj) = ^ \wkq - wkj\ 
k=\ 

dNote that the quadratic terms in the denominators of all the previous equations with 
the exception of the Cosine are oftentimes alternatively defined to be linear. This does 
not, however, affect the performance of the measure in question. 



Similarity Measures 33 

can be thought of as the distance between two points if one can only travel 
along the axes defined and could only make right angle turns. In the 2D 
case, this is analogous to walking across city blocks (hence the name). Like 
similarity measures, other distance measures exist and are often application 
dependent [13]. 

4. Example 

Since many of the similarity measures are rooted in IR, it follows to consider 
a simple example based on a vector-space IR model. Consider the document 
collection shown in Table 1. 

The document collection consists of the titles of papers cited in this 
chapter, while the query has been constructed arbitrarily. Each title repre­
sents one document, and only the boldface words are considered tokens.6 A 
term-by-document matrix A = [aij] can be constructed as in Fig. 4, where 
the terms correspond to the rows of the matrix and the documents are rep­
resented by the columns of the matrix. A vector representation of the query 
is also depicted in Fig. 4. The element a^ is defined to be the frequency 
with which term i occurs within document j . 

Table 1. Sample document collection and query. 

T l 
T2 
T3 
T4: 
T5 
T6 
T7 
T8 
T9 

T10 
T i l 
T12 
T13 
T14: 
T15: 
T16: 
T17: 

conceptual Dl : A Search Engine for 3D Model s 
database D2: Design and Implementation of a String Database 
dependence Query Language 
documents D3: Ranking of D o c u m e n t s by Measures Considering 
domain Conceptual Dependence between Terms 
engine(s) D4: Exploiting Hierarchical D o m a i n Structure to 
information Compute Similarity 
language D5: An Approach for Measuring Semantic Similarity 
measur(es, ing) between Words Using Multiple Information Sources 
models D6: Determining Semantic Similarity among Entity 
ontologies Classes from Different Ontologies 
query D7: Strong Similarity Measures for Ordered Sets of 
retrieval D o c u m e n t s in Information Retrieval 
search(ing) 
semantic Q: Semant ic Similarity Measures Used by Search 
similarity Engines and Other Information Searching 
structure Mechanisms 

e The non-boldface words are not considered to be part of the dictionary for simplification 
purposes. Here, tokens are defined to be dictionary words. In general, however, tokens 
can be defined to be word phrases or parts of a word. 



34 K. E. Heinrich 

[A\q] 

(° 
0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

\o 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

°\ 
0 
0 
0 
0 
1 
1 
0 
1 
0 
0 
0 
0 
2 
1 
1 

Fig. 4. Sample term-document matrix for the collection in Table 1. 

Given the document vectors that represent the document collection and 
the query, each of the similarity measures and distance metrics discussed 
in Sec. 3 can be computed in a pairwise fashion as seen in Table 2. Note 
that each measure is assumed to be taken between query q and document 
dj except the second asymmetric measure, which considers dj then q. 

The asymmetric measures demonstrate that document D5 is included 
in q and not vice versa. By inspection, one can infer that 

J <D<C <0 

holds for all pairs of arbitrary documents [45] asserts that this relation can 
be verified algebraically by elementary calculations. In this example, no 

Table 2. Similarity measures between the query q and the document collection. The 
similarity measures depicted are Dice (D), Overlap (O), Jaccard (J ) , Cosine (C), 
and Asymmetric (A), dE and d,M denote the Euclidean and Manhattan distances, 
respectively. 

D5 
Dl 
D6 
D7 
D4 
D3 
D2 

D 

0.62 
0.5 
0.33 
0.31 
0.17 
0.15 
0 

O 

1 
1 
0.67 
0.50 
0.33 
0.25 
0 

J 

0.44 
0.33 
0.20 
0.18 
0.09 
0.08 
0 

C 

0.67 
0.58 
0.38 
0.33 
0.19 
0.17 
0 

A 

1 
0.67 
0.67 
0.50 
0.33 
0.25 
0 

A{di,q) 

0.57 
0.29 
0.29 
0.29 
0.14 
0.14 
0 

dE 

2.24 
2.45 
2.83 
3 
3.16 
3.32 
3.46 

dm 

3 
6 
6 
7 
8 
9 
10 



Similarity Measures 35 

measure does a better job than another since the ultimate information need 
of the user is unknown. It should be noted, however, that some measures 
such as the Jaccard and Cosine do not score any two distinct documents 
identically with respect to the given query. This characteristic is one of the 
reasons why many retrieval systems use the Jaccard and Cosine measures 
as a baseline for evaluation. 

5. Current Applications 

Similarity measures will always play a vital role in any application where 
full automation (of a search) is desired. This section discusses three current 
applications of similarity measures, which is by no means an exhaustive 
list. Similarity measures are applied to fields such as speech recognition, 
video summarization, homeland security, and others in addition to the ones 
mentioned later in this section. 

5.1. Multi-Dimensional Modeling 

There are numerous text models available for use on the Web. Generally 
speaking, after text parsing, corpus analysis is performed. Parsing text 
into tokens or atomic units is usually not a very difficult process. Unfortu­
nately, parsing cannot be easily generalized to other data types. According 
to [52], the information revolution for 3D dataf is still in its relative infancy 
compared to other forms of data such as text, images, audio, and video. As 
computers become better able to handle more complex models of infor­
mation, the number of models publicly available increases. In particular, 
methods to efficiently query 3D models need to be developed in order to 
search the growing number of 3D models available on the Web. 

One of the core challenges of searching 3D models is deciding on which 
characteristics to index the models. Extending existing 2D indexing meth­
ods based on shape contours such as arc length parameterization to the 
equivalent 3D surface boundary parameterization problem is nontrivial. 
Shape matching methods that utilize geometric hashing techniques become 
increasingly more expensive to compute when adding the extra dimension 
to address the 3D case. In short, 2D techniques simply do not scale up well 
to their 3D counterparts. 

The specific type of 3D data considered here are 3D models of isolated objects that 
are often used in computer graphics. The models usually consist of coordinates, triangle 
mesh data, or other information needed to render 3D models. 



36 K. E. Heinrich 

As is often the case when attempting to develop a new standard method 
for querying a relatively new data type, much thought must be given to user 
interfaces and the type of queries allowable by the system. In the case of 
3D data, sketch queries, text queries, and multi-modal queries are being 
investigated. 

Sketch queries are performed by a user physically drawing a representa­
tion of an object or selecting a generic object from a predefined list. Once a 
query shape is generated, several shape matching algorithms can be applied. 
Algorithms exist that attempt to compare models based on their statisti­
cal properties such as shape histograms, moments, 2D shape distributions, 
etc. Such algorithms, however, tend to blend shape information from dif­
ferent parts of the object into one statistic. There is also work based on 
spherical harmonics that can identify shape descriptors that are rotation 
invariant. This allows users to query models without having to worry about 
the orientation of the model on its principal axes, which is one of the down­
falls of many of the statistical similarity measures. Once two spherical har­
monic descriptors are produced, the Euclidean distance (discussed earlier 
in Sec. 3.7) is computed to determine the dissimilarity between the two 
models. 

Assuming manual construction of representative documents of 3D mod­
els, text queries can be performed over the set of models. Such queries and 
documents typically address function and more abstract qualities of the 
model, and any of the measures mentioned in Sec. 3 can be used. Multi­
modal queries combine sketch and text queries into one measure. In most 
cases, text queries are effective at identifying classes of objects, while sketch 
queries are most useful at distinguishing the best object within a class. 

5.2. Hierarchical Clustering 

Often the actual words used in a query can affect the rankings presented to 
the user. For example, all of the similarity measures in Sec. 4 determined 
that D2 was unrelated to the query. A human judgment, however, would 
probably give D2 at least some similarity to the query (that paper is, after 
all, a reference for this chapter). To address this problem, many researchers 
are developing ways to abstract meaning from simple query terms [54, 97, 
111, 129] all propose different methods to incorporate concept hierarchies or 
ontologies such as WordNets to add context to a query word in an attempt 
to increase precision and recall. 

gWordNet can be found at http://wordnet.princeton.edu. 

http://wordnet.princeton.edu


Similarity Measures 37 

Concept hierarchies are usually highly specialized thesauri that place 
words within a parent-child relationship. For example, a person may be 
a type of life form, while there are numerous types of people (e.g., male, 
female, child, athlete, student) under the concept of a person. Many hierar­
chies are subjective and their use is usually application dependent. These 
hierarchies, however, are an attempt to create basic knowledge about cer­
tain terms, which can ultimately lead to more effective retrieval. With a 
concept hierarchy, a similarity measure can become a function of the depth 
of a word within the hierarchy. For example, a query for a college student 
will be deemed more relevant to a person concept as opposed to an animal 
concept such as a bear. 

If used effectively, ontologies can be used to perform query refinement. 
That is, given a query, replace a word within the query with its synset, or set 
of words that are its synonyms [129], with the hope that the synonyms will 
more fully cover the concept the original query word intended to identify. In 
some measures, similarity is not computed as a function of the query words 
themselves but as a function of the overlap between the neighborhoods of 
the query words in question. Cross-ontology similarity measures are also 
being investigated with marginal success. Since each ontology defines its 
word relationships in a potentially unique way, standard cross-ontology 
measures can be difficult to apply to ontologies in a general case. 

5.3. Bioinformatics 

Text can be used to represent data structures different from the typical text 
interpretation of words and sentences. In particular, data from bioinformat­
ics are encoded into text strings, where each symbol in the string represents 
some biological entity such as a protein or nucleic acid. A particular pattern 
of nucleic acids in a DNA sequence may, for example, imply the presence of 
a certain gene that may be associated with a certain disease. As a result, 
biologists often attempt to find similarities between known patterns in DNA 
sequences and other suspected DNA sequences to predict disease likelihood 
and other characteristics. 

Similarity between sequences in the computational molecular biology 
sense is often measured via alignments. The relatedness or alignment 
between two sequences is usually computed as the edit distance between 
two strings. The edit or Levenstein distance is defined as the total number of 
operations required to transform one string into another, where valid oper­
ations are symbol replacement, insertion, or deletion. Variants of the edit 



38 K. E. Heinrich 

distance place different weights or costs for each operation type performed. 
According to [58], the edit distance can be interpreted in an evolution­
ary sense as the number of point mutations between two sequences. Other 
distance measures are also defined, and currently bioinformatics is attempt­
ing to find ways to compute similarity between complex, multi-dimensional 
gene models in an effort to understand the relationship between gene form 
and function. 

6. Summary 

Similarity measures play a crucial role in information systems today. Com­
prehending the basic foundations of classic similarity measures such as the 
Dice, Overlap, Jaccard, and Cosine will help develop a better intuition 
about the behavior of many retrieval systems. As the complexity of data 
increases, methods for searching those data need to maintain a simple inter­
face without compromising precision and recall. Often, hybrids or simple 
extensions of the classic measures are found to be effective in retrieving 
complex data. However, as data complexity increases to the point that 
extending existing models becomes computationally unfeasible, new meth­
ods need to be created to help organize that data in some manner. 



CHAPTER 4 

DECISION TREES 

Olufemi A. Omitaomu 
Department of Industrial & Information Engineering 

University of Tennessee, J^ll East Stadium Hall 
Knoxville, TN 37996-0700 

femi@utk.edu 

Overview 

Decision trees are one of the fundamental techniques used in data min­
ing. They are tree-like structures used for classification, clustering, feature 
selection, and prediction. Decision trees are easily interpretable and intu­
itive for humans. They are well suited for high-dimensional applications. 
Decision trees are fast and usually produce high-quality solutions. Decision 
tree objectives are consistent with the goals of data mining and knowledge 
discovery. This chapter reviews the concept of decision trees in data mining. 

Keywords: Decision trees, classification, clustering, prediction, feature 
selection. 

1. Introduction 

A decision tree (DT) is a tree-like structure used for classification, decision 
theory, clustering, and prediction functions. It depicts rules for dividing 
training data into groups based on the regularities in the data. A DT can be 
used for categorical and continuous response variables. When the response 
variables are continuous, the DT is often referred to as a regression tree. If 
the response variables are categorical, it is called a classification tree [56]. 
However, the same concepts apply to both types of trees. Decision trees 
are widely used in computer science for data structures, in medical sciences 
for diagnosis, in botany for classification, in psychology for decision theory 

39 

mailto:femi@utk.edu


40 O. A. Omitaomu 

[153], and in economic analysis for evaluating investment alternatives [23]. 
These trees may differ in how they are created. For example, in some cases 
the trees are created top to bottom, while in other cases they are created 
from left to right. Decision trees have been described as universal approx­
imators since they map linear and nonlinear relationships [9l]. However, 
they do not require as much training data as other universal approxima­
tors, such as neural networks. 

A decision tree consists of a root and internal nodes. The root and the 
internal nodes are labeled with questions in order to find a solution to 
the problem under consideration. The root node is the first state of a DT. 
This node is assigned to all of the examples from the training data. If all 
examples belong to the same group, no further decisions need to be made 
to split the data set. If the examples in this node belong to two or more 
groups, a test is made at the node that results in a split. A DT is binary 
if each node is split into two parts, and it is nonbinary (multi-branch) if 
each node is split into three or more parts (Fig. 5). According to Wilkinson 
[153], multi-branch trees are not superior to binary trees because "each tree 
is a permutation of the other." 

If an internal node cannot be split further, it becomes a terminal node 
(Fig. 5). The paths to each internal or terminal node are mutually exclusive; 
that is, no more than one group can possibly be chosen. The process is 
repeated for each of the internal nodes until a completely discriminating 
tree is obtained or the terminal node is reached. When a terminal node is 
reached, its stored value (or content) is returned. 

Root 

Terminal 
Node 

Terminal 
Node 

Terminal 
Node 

Nonbinary Tree 

Binary Tree 

Fig. 5. Types of decision tree. 



Decision Trees 41 

2. Motivation 

Decision trees are popular for partitioning data and identifying local struc­
tures in small and large databases. Decision tree models have two objec­
tives: producing an accurate classifier, and understanding the predictive 
structure of the problem [20]. The first goal deals with the accuracy 
of decision tree classification, while the second goal aims at "develop­
ing understandable patterns that can be interpreted as interesting knowl­
edge" [46]. In addition, there are some unique characteristics of decision 
trees that make them the first choice for data mining experts. Deci­
sion trees are appealing because of the clear depiction of the relation­
ships between the input data and the target outputs. They accept several 
types of variables: nominal, ordinal, and interval. A variable can be of 
any type regardless of whether it serves as an input or as the target. A 
DT can be implemented with little or no consideration for converting odd 
variables (e.g., opinions, biases, or risks) to more appealing types. Deci­
sion trees are also robust with respect to missing values and distribu­
tion assumptions about the inputs, and well suited for high-dimensional 
applications. 

DTs can produce fast nonlinear prediction methods and may employ 
dynamic feature selection [153]. Several approaches, such as principal com­
ponent analysis and decision trees, are used to filter or transform several 
features into a reduced number of features. Using DTs for feature selection 
is particularly advantageous in large feature spaces. The selected features 
are the outputs, and the unused features are deleted from the database. 
The reduced database is then processed by other time-consuming prediction 
methods, such as neural networks. Decision trees are easily interpretable, 
amenable to graphical display, and intuitive for humans. As a tree size 
increases, however, the quality of such explanation decreases. The size of a 
tree can grow much larger since the rules are mutually exclusive. Decision 
trees are also excellent benchmarks for evaluating the performance of other 
techniques. 

For the remaining part of this chapter, decision trees will be examined 
from a data mining perspective. Section 4.3 discusses decision tree algo­
rithms, including methods of improving the algorithms. An example of the 
use of decision tree algorithms is discussed in Sec. 4.4. Real world appli­
cations of decision trees are discussed in Sec. 4.5. Section 4.6 presents a 
summary of the chapter. 



42 O. A. Omitaomu 

3. Decision Tree Algorithms 

A decision tree model consists of two parts: creating the tree and apply­
ing the tree to the database [42]. To achieve this, decision trees use sev­
eral different algorithms. The most widely-used algorithms by computer 
scientists are IDS, C4-5, and C5.0 [126]. The most popular algorithm in 
the statistical community is Classification and Regression Trees (CART) 
[20]. This algorithm helps decision trees gain credibility and acceptance 
in the statistics community [59]. It creates binary splits on nominal or 
interval inputs for a nominal, ordinal, or interval target. The first ver­
sion of C4.5 and C5.0 were limited to categorical predictors; however, the 
most recent versions are similar to CART [56]. Other algorithms include 
Chi-Square Automatic Interaction Detection (CHAW) for categorical out­
puts [80], CLS, AID, TREEDISC, and Angoss KnowledgeSEEKER. These 
algorithms use different approaches for splitting variables. CART uses the 
statistical approach, while CLS, ID3, and C4.5 use an approach in which 
the number of branches off a nonterminal node is equal to the number 
of possible categories. Another common approach, used by AID, CHAID, 
and TREEDISC, is the one in which the number of nodes on a nontermi­
nal node varies from two to the maximum number of possible categories. 
Angoss KnowledgeSEEKER uses a combination of these approaches. Each 
algorithm employs different mathematical processes to determine how to 
group and rank variables. 

According to Quinlan [126] the original idea of constructing a decision 
tree dates back to the work of Hoveland and Hunt in the late 1950s. The 
skeleton of Hunt's methods for constructing a decision tree from a set T of 
training cases is as follows: 

Let the classes be denoted by {C\, C2, • • •, Cn}. There are three 
possibilities: 

(i) T contains one or more cases, but all belonging to a single class Cj. 
The decision tree for T is a leaf identifying class Cj. 

(ii) T contains no cases. The decision tree is also a leaf in this case, but the 
class to be associated with the leaf must be determined from sources 
other than T. 

(iii) T contains cases that belong to a mixture of classes. T is partitioned 
into subsets T\,Tz, • • •, jffc, where T; contains all cases in T that have 
outcome Oi of the chosen test. The decision tree for T consists of a 
decision node identifying the test, and one branch for each possible out­
come. This process is applied recursively to each subset of the training 



Decision Trees 43 

cases, so that the ith branch leads to the decision tree constructed 
from the subset T; of the training cases. 

Generally, a decision tree algorithm is most appropriate for the third case. 
In this case, the decision tree algorithm can be stated as follows: 

• From the training data set, identify a target variable and a set of input 
variables. 

• Examine each input variable one at a time: 
— Create two or more groupings of the values of the input variables, 
and measure how similar items are within each group and how different 
items are between groups. 
— Select the grouping that maximizes similarity within groupings and 
differences between groupings. 

• Once the groupings have been calculated for each input variable, select 
the single input variable that maximizes similarity within groupings 
and differences between groupings. 

This process is repeated in each group that contains a convincing percentage 
of information in the original data. The process is not terminated until all 
divisible groups have been divided. 

3.1. ID3 Algorithm 

Below is the decision tree algorithm for IDS that describes the general layout 
for DT algorithms [124]. This algorithm uses gain ratio (see Sec. 3.2) as the 
evaluating test. 

3.2. Evaluating Tests 

The final classification of a decision tree model depends on the choice of 
tests used in evaluating the training data. DT algorithms are greedy in the 
sense that once a test has been selected to partition the training set, the 
consequences of alternative choices are not explored. Therefore, to ensure a 
stable and predictable final tree the choice of tests must be correct. Several 
tests could be evaluated so that the most appropriate test can be chosen. 
C4-5 contains mechanisms for proposing three types of tests [126]: 

• The standard test on a discrete attribute, with one outcome and branch 
for each possible value of that attribute. 



44 O. A. Omitaomu 

Algorithm 3 ID3 Decision Tree Algorithm 
Given Examples (S); Target attribute (C); Attributes (R) 
Initialize Root 
Function ID3 (S,C,R) 
Create a Root node for the tree 
IF S = empty, return a single node with value Failure; 
IF S = C, return a single node with C; 
IF R = empty, return a single node with most frequent target attribute 

(C); 
ELSE 
BEGIN 
Let D be the attribute with largest Gain Ratio (D, S) among attributes in 
R; 
Let {dj\j = 1, 2 , . . . , n} be the values of attribute D; 
Let {Sj\j = 1, 2 , . . . , n} be the subsets of 5 consisting respectively of records 
with value dj for attribute D; 
Return a tree with root labeled D arcs d\, d-i,..., dn going respectively 
to the trees; 
For each branch in the tree 
IF S = empty, add a new branch with most frequent C; 
ELSE 
IDS{S!,C,R-{D}), ID3{S2,C,R-{D}), . . . , IDS (Sn,C,R~{B}) 
E N D IDS 
Return Root 

• A more complex test, based on a discrete attribute, in which the pos­
sible values are allocated to a variable number of groups with one 
outcome for each group rather than each value. 

• If attribute A has continuous numeric values, a binary test with out­
comes A < Z and A > Z for some threshold Z. 

These tests are evaluated using the gain or gain ratio criterion. The gain 
criterion selects a test to maximize the mutual information between the 
test and the class. The process of determining the gain for a test is as 
follows [126]: 

Imagine selecting one case at random from a set S of cases and announc­
ing that it belongs to some class Cj. Let freq(Cj, S) denote the frequency 



Decision Trees 45 

of class Cj cases in set S so that this message has the probability 

freq(Cj,S) 

\S\ ' 

The information the message conveys is defined by 

The expected information from such a message pertaining to class mem­
bership is the sum over the classes in proportion to their frequencies in 5; 
that is, 

When applied to the set of training cases, Info(T) measures the average 
amount of information needed to identify the class of a case in set T. This 
quantity is also known as the entropy of the set T. 

Now consider a similar measurement after T has been partitioned 
(denoted by Tj) in accordance with the n outcomes of a test X. The 
expected information requirement is the weighted sum over the n subsets: 

Infox(T) = £^xInfo(Ti). 

The quantity 

gain(X) = Info (T) - Info X(T) 

measures the information that is gained by partitioning T in accordance to 
the test X. 

Even though the gain criterion yields good results, it has a serious 
deficiency — it is biased towards tests with many outcomes. To correct 
this deficiency, a gain ratio criterion has been developed [126]. The bias 
in the gain criterion can be corrected by normalizing the apparent gain of 
tests. By analogy, the definition of split info is given by 

split info(X) =-J2mx l og2 

According to [126], this represents the "potential information generated 
by dividing T into n subsets, whereas the information gain measures the 



46 O. A. Omitaomu 

information relevant to classification that arises from the same division." 
Then, 

gainjX) 
gain raUo{X) = ^ - ^ y 

expresses the useful portion of the generated information by the split (that 
appears useful for classification). The gain ratio selects a test to maximize 
the ratio above, subject to the constraint that the information gain must 
be large — at least as large as the average gain over all tests examined. 

3.3. Selection of Splitting Variable 

All DT algorithms search for the variable with the best split. Selecting 
variables with the best splits will help in constructing a less complicated 
tree. According to Loh and Shih [100] splitting each variable significantly 
biases the selection towards nominal variables with many categories. This 
may be a concern when a decision tree is used for feature selection, rather 
than when used for prediction. An algorithm that searches for a better fit 
on each variable will typically require more computation time. 

3.4. Stopping Criteria 

A decision tree is easy to interpret when its size is manageable. Therefore, 
the size of a tree may be of greater importance than splitting of variables. 
Trees should not be too small nor too large. Smaller trees do not describe 
the training data very well; therefore, they may not perform well on new 
data sets. When trees are too large, they have several leaves with little data 
to make any dependable predictions when applied to new data. Stopping 
criteria have been proposed to handle this problem. However, stopping the 
algorithm early may not produce a tree that has taken into consideration 
almost all information in the training data. Allowing the algorithm to make 
use of all data available, however, results in a larger tree. The latter scenario 
is usually more desirable because it guarantees that all the information has 
been captured. Some algorithms including CHAW have a stopping rule 
that accounts for the predictive reliability of the data. Unfortunately, such 
a stopping rule turns out to be problematic in three related aspects: choice 
of statistical test, accommodations for multiple comparisons, and the choice 
of a threshold [80]. 



Decision Trees 47 

3.5. Tree Pruning 

Many experts agree that stopping rules cannot work based on the above 
mentioned problems. Therefore, tree pruning is required to reduce full 
grown trees into manageable sizes. Tree pruning is a technique developed 
for trimming larger trees to appropriate sizes. The pruning process may 
evaluate subtrees instead of individual splits. Pruning is necessary to avoid 
over-fitting the data. Error estimation techniques play a major role in tree 
pruning [8]. There are several tree pruning algorithms. One tree pruning 
algorithm is reduced-error pruning. This algorithm finds the subtree with 
the smallest error on pruning data [125]. Another tree pruning algorithm 
is cost-complexity pruning [20]. In this case, the algorithm uses a sepa­
rate "pruning data set" to evaluate the subtrees. Subtrees that over-fit the 
training data will perform poorly on the pruning data. Cost-complexity 
pruning is another tree pruning algorithm. This algorithm evaluates dif­
ferent sizes of the subtree in sequence using new data. The larger tree 
is trimmed to the subtree with the optimum assessment. This algorithm 
is based on cross validation. Another popular pruning algorithm called 
pessimistic pruning [126] is based on an inflated error rate of the train­
ing data in each node. However, tree pruning is not required if decision 
trees are used for feature selection. The objective in this case is "the set 
of features selected by the tree, not the tree structure or the numerical 
threshold" [153]. 

3.6. Stability of Decision Trees 

Tree pruning, however, does not guarantee a stable tree. Decision trees, 
like some other classifiers such as neural networks, are usually not stable. 
The instability of a decision tree refers to when the same algorithm applied 
to slightly different data produces a very different model. The unstable 
nature of tree-based models makes the interpretation of trees tricky. Sev­
eral methods, including bagging, arcing, and boosting, have been developed 
to make trees more stable and provide accurate predictions [93]. Bagging 
(bootstrap aggregation) is the process of creating an ensemble of models 
using the same algorithm on data sets sampled with replacement from a 
single training data set [18]. Bagging uses independent samples of the origi­
nal data. Arcing (adaptive resampling and combining) uses a sample of the 
training data that the current ensemble predicts relatively poorly. That is, 
the first model trains on all the original data. Cases that the first model 
incorrectly classified are sampled for the second training data set. A second 



48 O. A. Omitaomu 

model is trained, and the two models are combined. Cases for which the 
combined model performed poorly are sampled for the third training data. 
This process is repeated until a more stable model is developed. This process 
applies only to categorical targets [19]. Boosting was formulated by Freund 
and Schapire [50], but reformulated without a new name by Friedman, 
Hastie, and Tibshirani [51]. Boosting is more commonly used than arcing, 
but they essentially mean the same thing. The reformulated method creates 
an ensemble consisting of weighted averages of models. However, the same 
data sets are used for all the models. 

4. Example: Classification of University Students 

This section provides an example to illustrate the steps involved in con­
structing decision trees. This example from [42] is simple, but it is detailed 
enough to illustrate the important points in using a decision tree algorithms. 

Students in a particular university are to be classified as short, medium, 
or tall based on the information in the database using a decision tree algo­
rithm. Assume that the database schema is {name, address, gender, height, 
age, year, major}. The decision tree is constructed using the following steps: 

(i) Selection of splitting attributes. The selection of attributes to use for 
the classification is the first step. One of the possible attributes to select 
is height. Name, address, year, and major are not important because 
they are irrelevant to the objective of this problem. Therefore, height, 
age, and gender are chosen. A female student whose height is greater 
than 1.8 m is defined as tall, less than 1.3 m is short, and at least 
1.3 m but less than 1.8 m is considered of medium height. Moreover, a 
male student whose height is greater than 2 m is tall, less than 1.5 m 
is considered short, and at least 1.5 m but less than 2 m is defined as 
medium. 

(ii) Filtration of the training data. The training data is filtered to remove 
outliers (based on the criteria set above). In addition, students less 
than 17 years of age will be considered outliers since they are not typi­
cal of most university students. With the removal of outliers, the num­
ber of attributes can actually be reduced to two: gender and height. 
This reduction helps construct a less complicated tree. 

(iii) Constructing the tree. The decision tree algorithm constructs a tree 
based on a sample of the database with known classification values. 
This training data forms the basis for how the tree is constructed. The 
root is split into two internal nodes (branches), being the maximum 



Decision Trees 49 

<1.3m ^ l i m >1.8m <= 1.8 m 

= M 

< 1 5 m - : iom > 2 0 m 

Short Medium Tall Short Medium Tall 

Fig. 6. A decision tree with two internal nodes. 

number of categories possible for the labeled question: What is the 
gender of the student? Each internal node can be split into two or 
three branches depending on the algorithm used. If the internal nodes 
are split into three branches (the maximum number of categories pos­
sible), these branches are the terminal nodes, so no further division is 
necessary. One of the possible resulting trees in this case is shown in 
Fig. 6. 

Nevertheless, if each internal node is split into two branches, one of the 
branches is a terminal node and the other is another internal node. These 
new internal nodes are further divided into two branches to complete the 
tree construction. A possible resulting tree in this other case is shown in 
Fig. 7. 

Step 4 — Interpretation of the Final Tree: Both trees show that a 
female student is short, if her height is less than 1.3 m; tall, if her height is 
more than 1.8 m; and medium, otherwise. A similar conclusion can be said 
of a male student. These trees are simple and easy to interpret, so they do 
not require pruning. 

5. Applications of Decision Tree Algorithms 

Decision tree algorithms are widely used in several areas in business, 
science, government, and engineering. There is hardly an area in which 



50 O. A. Omitaomu 

Fig. 7. A decision tree with four internal nodes. 

decision tree algorithms have not been used. Decision trees have been used 
in the retail businesses to study customers' purchasing patterns for business 
planning purposes. They are also used in the medical sciences to group and 
identify potential risks associated with certain diseases. Decision trees are 
used by banks and credit card companies to identify potential credit risk 
customers, by chemometrics to classify chemical data [67], and by geogra­
phers to classify land cover [118]. Decision trees can be used by govern­
ment agencies to identify the features of a potential terrorist. Decision tree 
algorithms are becoming so prevalent that current research topics include 
methods for enhancing decision tree algorithms and of combining decision 
tree algorithms with other computational techniques, such as fuzzy sys­
tems, neural networks, and genetic algorithms. For example, a fuzzy deci­
sion tree technique called soft decision tree has been developed by Olaru 
and Wehenkel [117]. 

6. Summary 

In this chapter the basic concepts of decision tree models as they relate to 
data mining were presented. Decision trees are used for several data mining 
functions such as clustering, feature selection, prediction, and classification. 



Decision Trees 51 

They are easy to interpret, amenable to graphical display, and intuitive to 
humans. DTs are robust with respect to missing data and can be used with 
nominal, interval, and ordinal variables. Current research involves combin­
ing decision tree algorithms with other computational techniques, such as 
fuzzy systems, neural networks, and genetic algorithms. 





CHAPTER 5 

GENETIC ALGORITHMS 

Geoffrey Mazeroff 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
mazeroff@cs. utk. edu 

Overview 

This chapter describes genetic algorithms in relation to optimization-based 
data mining applications. Emphasis is placed on introducing terminology 
and the fundamental phases of a standard genetic algorithm framework. An 
application to the traveling-salesman problem is discussed, and references 
to current genetic algorithm use are presented. The chapter concludes with 
a synopsis of genetic algorithm applicability to general data mining tasks. 

Keywords: Allele set, crossover, evolutionary algorithm, fitness function, 
genetic algorithm, mutation, traveling-salesman. 

1. Introduction 

There exists a large class of problems for which no computationally-efficient 
algorithms have been developed. Many of these problems contain globally 
optimal solutions within a large search space. For small optimization appli­
cations, one can successfully employ exhaustive search methods. However, 
such methods become impractical as the applications become more com­
plex and the amount of data becomes significantly large. It is often possible 
to find an effective yet computationally practical algorithm whose solution 
is approximately optimal. One approach in dealing with such problems is 
the use of genetic algorithms, which are based on the principles of natural 
evolution. 

53 



54 G. Mazeroff 

Table 3. Basic concepts in genetic algorithms [77]. 

Concept in Natural Evolution Concept in Genetic Algorithms 

Chromosome String 
Gene Features in the string 
Locus Position in the string 
Allele Position value (usually 0 or 1) 
Genotype String structure 
Phenotype Set of characteristics (features) 

Genetic algorithms (GAs) are stochastic-optimization methods first pro­
posed by James Holland in 1975 [69]. The concept of such an algorithm was 
revealed by several biologists who were performing computer simulations of 
natural genetic systems. The terminology and concepts used in GA theory 
have analogs in the field of biology. See Table 3. 

GAs encode each point in a solution space into a string called a chro­
mosome. Unlike other data mining samples, which are often predefined and 
not likely to change as the data mining algorithm is carried out, samples 
in GAs change or "evolve" during their execution. The features of inter­
est are located in different portions of the string. The string structures in 
the chromosomes undergo operations similar to the natural-evolution pro­
cess to yield increasingly optimal solutions. The quality of the solution is 
based on a "fitness" value, which relates to the objective function for the 
optimization problem. 

In data mining, GAs can be used for prediction, clustering, and associa­
tion rule inference [42]. For each of these uses, a starting model is assumed, 
then iteratively refined to find the optimal model for the given application. 
One particular algorithm does not necessarily hold for all problems; how­
ever, the general concepts used in applying GAs to data mining remain 
the same. 

2. Motivation 

A common aphorism in the realm of data mining is "the curse of dimension­
ality." This situation occurs when dealing with problems that have a large 
number of attributes. High dimensionality imposes a larger search space in 
a combinitorially explosive manner. Furthermore, an increased number of 
training samples are typically required to generate reliable results. GAs are 



Genetic Algorithms 55 

of interest because they provide an alternative to traditional machine learn­
ing algorithms, which tend to perform poorly when the search space is large. 
GAs have been shown to solve problems that were considered intractable 
due to their expansive search spaces. In short, GAs can help "break" the 
curse of dimensionality [104]. 

This chapter covers the fundamental components of genetic algorithms, 
beginning with the choice of an initial population and ending with a descrip­
tion of how the algorithm as a whole allows the population to "evolve" over 
several iterations. Next, an example GA application in the area of optimiza­
tion, specifically the traveling-salesman problem, will be discussed. Finally, 
several current and future applications of GAs will be presented. 

3. Fundamentals 

GAs consist of five major phases: schema encoding, fitness evaluation, par­
ent selection, crossover, and mutation (see Fig. 8). 

Once the encoding schema has been applied, the remaining phases recur 
iteratively, thus causing the initial population to evolve until a specific crite­
rion is met. The subsequent sections present definitions of these components 
and the corresponding notations. Each section also contains an explanation 
of the given topic in relation to a small-scale example; however, general 
examples of GA applications are presented in Sec. 4. 

The example used to demonstrate the phases of a GA in the following 
subsections attempts to optimize 

f(x)=x2. 

Encoding schemas 

J—1— 
-**j Fitness evaluation 

I YES ^ 
I Testing the end of the algorithm *-f Halt 

NO 
j 

Parent selection 

P 
Crossover operators T 
Mutation operators 

Fig. 8. M a j o r phases of a genet ic a l g o r i t h m [77]. 



56 G. Mazeroff 

The goal is to find x from the range [0,31] G N which maximizes f(x). The 
approximate optimal solution is relatively easy to find while demonstrating 
the development and use of a GA. 

3.1. Encoding Schema and Initialization 

The first phase of a genetic algorithm is to design a representation of a 
solution for the given problem. Although solution forms vary by appli­
cation, the most common representation is a string of characters used 
for feature representation. The characters are members of a fixed alpha­
bet whose size determines the number of features that can be represented 
by each character. In general, solution encodings are binary strings [127]. 
Each feature's value can be coded with a string from a set of discrete 
values called the allele set, which is defined based on the needs of the 
problem. The encoding of the allele set must be "minimal but completely 
expressive" [77]. 

Encoding schemes provide a way of mapping problem-specific knowledge 
into the framework of GAs. A set of all feature values encoded into a string 
represents a chromosome. A set of chromosomes forms a collection called a 
population. The initial population can be established in several ways, such 
as a random set of chromosomes or a predefined starting set. The size of the 
population also has an impact on GA performance as well as the quality 
of the resulting solution. If the initial population is too small, the GA may 
converge quickly, thus finding only a local optimum. Conversely, if the initial 
population is too large, the GA may waste computational resources and will 
most likely require more time to converge. 

With regard to the example, the range of the solution is analyzed to 
determine how the allele set is to be coded. Because the range is [0,31], a 
minimum five-bit code is needed (i.e., 25 = 32). The mapping from a real 
number to a binary code and vice versa is defined by the relations 

Code = binary (x decimal) 

and 

x = decimal (Codef,i„or?/). 

For example, x = 5 has a corresponding code of 00101. Likewise, the code 
11001 represents the decimal value x = 25. The initial population will 



Genetic Algorithms 57 

consist of four randomly chosen chromosomes: 

CRi = 01101, 

CR 2 = 11000, 

CR 3 = 01000, 

CR 4 = 10011. 

3 .2 . Fitness Evaluation 

After creating a population, a fitness value is calculated for each member 

in the population because each chromosome is a candidate solution. The 

fitness of a solution is a comparative measure for judging the quality (opti-

mality) of candidate solutions. The choice of an appropriate fitness function 

depends significantly on the given problem. In certain cases complex ana­

lytical formulas work best, whereas observations from real-world problem 

settings work better in other scenarios. 

Fitness values are typically positive and can represent rankings of mem­

bers in a population. The latter approach has the advantage of not requiring 

complete accuracy, as long as the fitness function can provide the correct 

ranking information. 

For the example, the four chromosomes CRi to CR4 correspond to the 

following values for input variable x: 

cci(CRi) = 13, 

x 2 (CR 2 ) = 24, 

x 3 (CR 3 ) = 8, 

ir4(CR4) = 19. 

The evaluation function would rate them respectively as 

/ ( X l ) = 132 = 169, 

f{x2) = 242 = 576, 

f(x3) = 82 = 6 4 , 
/ ( x 4 ) = 192 = 361. 

An additional metric can be calculated, which [77] defines as the "expected 

reproduction." This metric indicates the likelihood of certain chromosomes 

being reproduced in the next generation. The expected reproduction ER in 



58 G. Mazeroff 

this example is calculated using 

ER(X) = f-f, 
where / is the mean value of fix). The higher the value of ER, the more 
likely the chromosome will be reproduced in the next generation. The En 
values for each of the chromosomes are 

ER(Xl) = 0.58, 

ER{x2) = 1.97, 

ER{x3) = 0.22, 

ER(x4) = 1.23. 

3.3. Selection 

Once the initial population and fitness function have been defined, a new 
population must be created. The selection operation determines which par­
ent chromosomes are involved in producing the next generation of offspring. 
Typically, parents are selected for mating with a probability that is propor­
tional to their fitness values. The most common way to perform selection 
is to define the probability pi of selecting the ith chromosome 

u 
Pi ^ n r ' 

Z^fc=l Ik 

where n is the population size and fi is the fitness value for the ith chro­
mosome. The effect of this method is to allow members with above-average 
values to reproduce, thus replacing members with below-average fitness 
values. 

The process of selecting a chromosome is analogous to a "roulette wheel" 
with slots whose sizes correspond to fitness for each chromosome [77]. There 
are four steps for constructing the roulette wheel: 

(i) Calculate the fitness value /(fj) for each chromosome w,. 
(ii) Find the total fitness of the population: 

i=i 

(iii) Calculate the probability of a selection pi for each chromo­
some Vi'. 

Pt — J", • 



Genetic Algorithms 59 

(iv) Calculate a cumulative probability qt after each chromosome 

Vi is included: 

i 

i= i 

where % increases from 0 to a maximum value of 1. Because prob­

abilities lie in the range [0,1], the corresponding maximum for qt 

shows tha t all chromosomes from the population are included. 

The selection process is based on "spinning the roulette wheel" n times, 

where n is the size of the population. A single chromosome for a new pop­

ulation is selected for each spin. The following algorithm formalizes the 

selection process. 

(i) Generate a random number r from the range [0, 1]. 

(ii) If r < qi then select the first chromosome v\\ otherwise, select 

the «th chromosome Vi such tha t qi-% < r < q^. 

Some chromosomes may be selected more than once; however, this is in 

accordance with GA theory [127]. Genetic algorithms maintain a popu­

lation of potential solutions tha t undergo a simulated evolution. In each 

generation the "more fit" solutions reproduce while the "weaker" solutions 

die. A chromosome may be selected depending on the objective function 

value or the fitness function value. For maximization problems, a higher 

fitness value for a given chromosome corresponds to a higher likelihood of 

it being selected for the next generation. 

Returning to the example, the probabilities of selection, pi, are 

Pi = 0.14, 

Vi = 0.49, 

P3 = 0.06, 

p4 = 0.31. 

A corresponding roulette wheel can be constructed to select chromosomes 

for the next population (see Fig. 9). 

3.4. Crossover 

The core of genetic algorithms involves exchanging chromosome informa­

tion between highly-fit individuals. To exploit similarities between chromo­

somes, a crossover function is used. The probability of crossover, pcr, is 



60 G. Mazeroff 

Fig. 9. Roulette wheel for selection of the next population [77]. 

the parameter that defines the expected number of chromosomes, pcr x n, 
which undergo the crossover operation. The following steps formalize the 
selection (or exclusion) of each chromosome for crossover: 

(i) Generate a random number r from the range [0, 1]. 
(ii) If r < pcr, select the given chromosome for crossover. 

For example, if pcr = 1, all chromosomes in the population will be subject 
to the crossover operation. Similarly, if pcr = 0.5, only half of the population 
will be subject to crossover, while the other half remains unchanged. 

Two types of crossover functions are discussed here: one-point crossover 
and two-point crossover. One-point crossover involves a random selection of 
a crossover point on the genetic code. Given two parent chromosomes, the 
values in the chromosome to the left of the crossover point are swapped. 
Two-point crossover involves the selection of two points on the genetic 
code. In this scenario, the values in the chromosomes between the two 
crossover points are swapped between the two parents. Examples of one-
and two-point crossover are shown in Fig. 10.h 

In the general case, n-point crossover can be defined, where parts of 
strings between points 1 and 2, 3 and 4, and ultimately n — 1 and n are 
swapped. 

The process of crossover is analogous to the evolutionary process of 
exchanging gene segments between two parents and then passing them on 
to their children. This process allows children to inherit desirable traits 
from their increasingly-optimal parents. 

hPart(a) of Fig. 10 is corrected from the original source. 



Genetic Algorithms 61 

Selected point for one-point crossover (after fourth position in the string) 

10011110 

10110010 

10010010 

10 111110 

a) One-point crossover 

Selected points for two-point crossover (after second and fifth positions in the string) 

10011110 

10110010 

10110110 

10011010 

b) Two-point crossover 

Fig. 10. Crossover operators [77], 

Pertaining to the example, the probability of crossover is set to 1, 

Per = 1, 

indicating tha t all of the chromosomes will be included in the crossover 

operation. Two random pairs of parents are selected for crossover: the ran­

domly selected crossover point (for one-point crossover) is after the third 

position in the string. After crossover the selected strings (crossover bits 

indicated by underlines) 

will become a new population: 

First pair 

Second pair 

ulation: 
CR; = 
CR2 = 

CRs = 

CR4 = 

CRi = 
CR2 = 

CR2 = 
CR4 = 

01100, 

11001, 

11011, 

10000. 

01101 
11000 

11000 
10011 

3 .5 . Mutation 

Even though crossover exploits the potential of existing chromosomes, the 

population may not contain all the encoded information needed to solve 



62 G. Mazeroff 

Randomly selected mutated bit Chromosome after mutation 
(in the sixth position) 

I 7 

1 0 0 1 1 1 1 0 - 1 0 0 1 1 0 1 0 

Fig. 11. Mutation operator [77]. 

a given problem. To address this issue, a mutation operator capable of 
generating new "genetic" information is introduced. The most common 
method of implementing mutation on binary strings is to invert a given bit 
based on a probability-based mutation rate (see Fig. 11). 

A mutation operator is effective in preventing any single bit from con­
verging to a value throughout the entire population. More importantly, 
the mutation operator can prevent the population from converging and 
"stagnating" at local optima. The mutation rate is typically set to a low 
probability such that "good" chromosomes obtained from crossover are not 
lost. High mutation rates cause the GA performance to approach that of a 
"primitive random search" [77]. 

In the example problem, the probability of mutation is 0.1%, meaning 
that only one out of every 1,000 bits will be mutated. Given the simplistic 
example, several iterations of the algorithm would have to take place before 
any significant mutation could be observed. 

3.6. Iterative Evolution 

In the natural evolutionary process, the aforementioned steps occur simul­
taneously. In the context of GAs, the phases occur iteratively to facilitate 
implementation and experimentation. As shown in Fig. 10, the process of 
evaluating fitness, selecting parents, and applying crossover and mutation 
operators occurs until a given stopping criterion is met. Several example 
stopping criteria are as follows: 

• a certain number of iterations is reached; 
• the difference between two successive iterations is less than some pre­

defined threshold; 
• a sufficient fitness value is achieved; 
• a certain amount of time has elapsed. 

Continuing the example from Sec. 3.4 (crossover), statistics for the second 
generation can be computed as shown in Table 4. 



Genetic Algorithms 63 

Table 4. Evaluation of the second generation of 
chromosomes [77]. 

C R j 

1 
2 
3 
4 

Code 

01100 
11001 
11011 
10000 

X 

12 
25 
27 
16 

/(*) 

144 
625 
729 
256 

Pi 

0.08 
0.36 
0.42 
0.14 

Expected Reproduction 

0.32 
1.44 
1.68 
0.56 

Table 5. First and second generation 
statistics. 

First Generation Second Generation 

S / (x ) = 1170 E/(a;) = 1754 
f(x) = 293 f(x) = 439 
max = 576 max = 729 

Comparing the sum of the evaluation function values for each of the 
chromosomes from the first and second generations as shown in Table 5, 
one notes that the new population is approaching the maximum of the 
function f(x). As more iterations occur, the solution population evolves to 
contain the optimal solution of x = 31. 

4. Example: The Traveling-Salesman 

The traveling-salesman problem is a well-known problem in computational 
theory. In the problem a salesman must visit n cities. The cities and the 
paths connecting them can be modeled as a complete graph with n vertices 
that the salesman must "tour." This tour starts and ends at the same city, 
and the salesman must visit each city exactly once. Additionally, the paths 
(i.e., edges in the graph) are weighted; therefore, various tours may have 
different "costs" associated with them. The optimization version of the 
traveling-salesman problem involves finding the minimum cost tour given a 
set of cities and weighted paths connecting them. 

Formally, the traveling-salesman problem is defined as: G = (V, E) is 
a complete graph, c is a cost function from V x V —> Z, k G Z, and G 
has a traveling-salesman tour with cost at most k. The decision version of 
the problem has been shown to be NP-complete, meaning that there does 



64 G. Mazeroff 

9 3 4 8 7 
Optimal solution: A — • - B — • - C—*- E — » - D—*~ (A) 

Fig. 12. Graphical representation of the traveling-salesman problem with a correspond­
ing optimal solution [77]. 

not exist a deterministic polynomial-time bounded algorithm to indicate 
whether or not a given graph has a minimal tour of size k [34]. Figure 12 
presents an example instance and optimal solution of the traveling-salesman 
problem. 

The initial population in this case corresponds to permutations of the 
cities; however, not every permutation represents a valid solution because 
some cities are not directly connected (e.g., cities A and E). One method 
of handling potentially invalid solutions is to assign an artificially large 
distance between cities that are not directly connected, thereby forcing the 
invalid solutions to be extremely sub-optimal. 

The objective in the traveling-salesman problem is to minimize the total 
distance of each tour. A simple fitness function that can be employed is 
f(T) — d, where / returns the length of a given tour T. 

Additional insight is needed into the crossover function because resul­
tant chromosomes may be invalid permutations. For example, a crossover of 
two solutions after the third position in the strings (characters to exchange 
are underlined) 

A D E B C 
A E C D B 

will produce new strings 

A E C B C 
A D E D B 



Genetic Algorithms 65 

2nd 

ADEBC ABCDE 

AECDB ACEBD 

2nd 

Fig. 13. Result of partially-matched crossover operation. 

which are invalid solutions. To avoid this problem, a partially-matched 
crossover operation is used to directly operate on permutations. Given two 
solutions that are permutations of the same symbols, two random crossing 
points can be chosen within each chromosome (indicated by underlines). 

A D E B C 
A E C D B 

The crossover operation requires an exchange of symbols between chromo­
somes — E with C, and B with D — represented by ordered pairs (E, C) and 
(B, D) respectively. The next step is to permute each of the two-element 
permutations in each string. Within the first chromosome, for example, 
C and E are swapped. Likewise in the second chromosome, B and D are 
swapped. The chromosomes produced by the partially-matched crossover 
are shown in Fig. 13. 

According to [77] the application of a GA in this manner outperforms 
a random search for optimal solutions to the traveling-salesman problem; 
however, the algorithm leaves much room for improvement. Typical results 
from the algorithm when applied to 100 randomly-generated cities gave a 
value of the whole tour 9.4% above minimum after 20,000 generations. 

5. Current and Future Applications 

Many published works can be found on the application of genetic algo­
rithms to data mining tasks. As a starting point [48] provides a survey of 
GAs for data mining and knowledge discovery. This publication focuses on 
classification and addresses GA usage in a data mining context, including 
various types of data pre- and post-processing techniques. A book by the 
same author [49], is dedicated entirely to the application of GAs to data 
mining tasks; however, these topics are presented in much greater detail 
than the previously mentioned publication [36] addresses the specific issue 



66 G. Mazeroff 

of mutation and presents other mutation operators and their respective 
performance in solving optimization problems. 

Other publications of interest include applications of GAs to cluster­
ing, association rules, classification, and Bayesian networks [47] proposes a 
method of vector clustering with application to image compression. Both 
related to Web-based hypermedia systems, [130] and [107] present methods 
for applying GAs to association rule inference and optimized classification 
respectively. Also, [72] discusses a technique of using GAs to learn struc­
tures of Bayesian networks. 

6. Summary 

Genetic algorithms aim to find optimal solutions to large-scale optimization 
problems through a unique combination of stochastic and directed search 
techniques. When contrasted with other data mining methods, GAs offer 
the advantage of maintaining a population of potential solutions, whereas 
other knowledge discovery techniques process a single point of the search 
space. GAs also lend themselves well to parallelized search procedures, in 
turn decreasing the overall computation time for a given problem. GAs are 
applicable to both continuous- and discrete-based problems, and accommo­
date structure and parameter identification in complex models. 

GAs also have drawbacks when attempting to put genetic algorithm 
theory into practice. First, the encoding of the problem often moves the 
GA to function in a different space than that of the problem. Second, there 
are practical limits on the theoretically unlimited number of generations 
produced by a GA. Finally, population size cannot always be assumed to 
be unbounded. Despite these disadvantages, genetic algorithms provide an 
intuitive and efficient means of finding optimal solutions to a wide variety 
of data mining problems. 



CHAPTER 6 

CLASSIFICATION: DISTANCE-BASED ALGORITHMS 

Zeqian Shen 
Department of Computer Science, University of California, Davis 

One Shields Avenue, Savis, CA 95616, USA 
zqshen@ucdavis. edu 

Overview 

Distance-based algorithms are nonparametric methods that can be used for 
classification. These algorithms classify objects by the dissimilarity between 
them as measured by distance functions. Several candidate distance func­
tions are reviewed in this chapter along with two particular classification 
algorithms. Some of the current applications related to distance-based algo­
rithms are also addressed. 

Keywords: Classification, distance measures, if-nearest neighbors, 
Euclidean distance, city block distance, tangent distance. 

1. Introduction 

Distance-based algorithms assume that an object is more similar to the 
objects within the same class as opposed to objects from other classes. 
Therefore, the classification of the target object is affected by the objects 
that are similar to it. The concept of distance is used to measure the dissimi­
larity between objects. In other words, two similar objects can be considered 
close to each other in the sample space. The two key issues in distance-based 
classification are choosing the proper distance function and the design of 
the classification algorithm. Many kinds of distance functions can be used, 
such as city block distance or Euclidean distance. Different distances have 
different characteristics, which fit various types of data. Classification algo­
rithms must determine the class of target object according to objects close 

67 



68 Z. Shen 

to it. One of the most effective techniques is i\-Nearest Neighbors (KNN). 
Using the X-closest objects, the target object is assigned the class that 
contains the most objects. KNN is widely used in text classification [162], 
web mining [92] and stream data mining [84]. 

2. Motivation 

The classification methods mentioned in previous chapters, such as Bayes 
rule, are under the assumption that the underlying distribution of data is 
known. Nevertheless, this assumption is suspect in most practical applica­
tions. Distance-based algorithms are of interest because they are nonpara-
metric classification methods that do not require the prior knowledge of the 
data and can work with arbitrary distributions. 

Besides data classification, the idea of using distance to measure the 
dissimilarity is important. It is applied in many other areas, such as machine 
learning [151], query similarity [17] and outlier detection [86]. 

The remainder of this chapter is organized as follows: several distance 
functions are reviewed in Sec. 3. Two classification algorithms are addressed 
in Sec. 4. Current applications of distance-based algorithms are discussed 
in Sec. 5, and a summary of the advantages and disadvantages of the algo­
rithms is provided in Sec. 6 

3. Distance Functions 

Distance-based algorithms rely on distance functions to measure the dis­
similarity between the objects. Selecting a distance function is not only the 
first step of the algorithms, but also a critical step. Different distance func­
tions have different characteristics, which fit various types of data. There 
does not exist a distance function that can deal with every type of data. So 
the performance of the algorithm heavily depends on whether a proper dis­
tance function is chosen for that particular data. For a set X, the distance 
function d: X x X —> 1Z, for all x,y,z € X, satisfies 

d{x,y) > 0, 
d(x, y) = 0 if and only if x = y, 
d(x,y) = d(y,x) (symmetry law), and 
d(x,z) < d(x,y) + d(y,z) (triangle inequality). 

Interestingly, several distance functions used in practice do not neces­
sarily satisfy all four of the constraints listed above. For example, the 
squared Euclidean distance does not satisfy the triangle inequality and the 



Classification: Distance-based Algorithms 69 

Kullback-Leibler distance function used in document clustering is not sym­
metric [14, 37]. A good distance function should be invariant to the natural 
data transformations that do not affect the class of the objects. This criteria 
will be explained and discussed in detail in the following review of distance 
functions. 

3.1. City Block Distance 

City block distance, sometimes called Manhattan distance is defined as 

Let x,y EX, where x = {xi, x2, • • • ,xk} and y - {yi,y2, • • •, Vk}-

Then, dCuyBiock{x,y) = J2i=i Vi 

This measure reflects the sum of the absolute distances along each coor­
dinate axis. In Fig. 14, the city block distance between P\ and P2 is given by 

d(Pi,P2) = | l - 5 | + | 3 - l | = 6. 

Although the city block distance is easy to compute, it is variant to scal­
ing, rotation and many other transformations. In other words, the similarity 
is not preserved by the city block distance after these transformations. Such 
a distance measure would not be appropriate for many types of data (e.g., 
images) which may be invariant to rotation and scaling. 

, 

3 

1 

0 

Pi 
r 
K 

1 

"> 
J 

P2 

1 

5 

Fig. 14. City block distance between two points in 2D space. 



70 Z. Shen 

3.2. Euclidean Distance 

Euclidean distance is the most common distance used as the dissimilarity 
measure. It is defined as 

/ k \ V 2 

dEuclidean{x,y) = ^ I Vi 

\i=l 

Figure 15 illustrates the effects of rotation and scaling on Euclidean distance 
in a 2D space. It is obvious from Fig. 15 that dissimilarity is preserved after 
rotation. But after scaling the ir-axis, the dissimilarity between objects is 
changed. So Euclidean distance is invariant to rotation, but not to scaling. If 
rotation is the only acceptable operation for an image database, Euclidean 
distance would be a good choice. 

3.3. Tangent Distance 

In order to achieve invariance of different transformations, the tangent 
distance is often used. Let x € X be an object and T(x, a) denote a 

O 
O 

CL 
O 

O 
Q 

O 
O 

° n 
Rotation \J 

o 

o o 

Scaling 

Q_ 
O 

O 

O P 

CD 

-O-
O 

O 
O 

O 

Fig. 15. Effects of rotation and scaling on Euclidean distance. 



Classification: Distance-based Algorithms 

Fig. 16. Tangent distance in 3D sample space. 

transformation of a; by a that is natural to the data. For example, T(x, a) 
could represent the image of rotating x by an angle a. A tangent vector is 
defined as TV = T{x, a) — x. Suppose the data has n natural transforma­
tions Ti(x, a),i = 1,2,... ,n, and the tangent space TS is the space spanned 
by all the n tangent vectors. The tangent distance between objects x and y 
is the distance from y to tangent space TS. In Fig. 16, y' is the projection 
of y on to the tangent space TS. The tangent distance is calculated as 

dtan(x,y) = \\y-y'\\. 

Because all the transformations of x are in the same tangent space TS, they 
have the same tangent distance to y. Therefore, the tangent distance is an 
invariance distance [138]. Because of this invariance, the tangent distance 
may be used to fit data from diverse sources: speech [103], images [131], 
and handwriting [94]. 

3.4. Other Distances 

There are also many other distances that can be used for different data. 
Edit distance fits sequence and text data [128]. The Tanimoto distance is 
suitable for data with binary-valued features [4l]. 



72 Z. Shen 

Actually, data normalization is one way to overcome the limitation 
of the distance functions. For example, normalizing the data to the same 
scale can overcome the scaling problem of Euclidean distance. However, 
normalization may lead to information loss and lower classification 
accuracy. 

4. Classification Algorithms 

After a proper distance function is chosen, another key issue is the method 
to determine the class of the object. There are several different algorithms 
based on the class of objects close to the target. One simple approach 
assigns the closest class to the target object. The distance between a class 
and an object is denned as the distance between the representative vector 
of the class and the object. Another approach is the KNN algorithm (or 
technique) mentioned earlier. This algorithm classifies the target object 
by assigning it the class that is most frequently represented among the 
if-nearest objects. In other words, the classification is made by checking the 
classes of the X-closest neighbors and taking a majority vote. For simplicity, 
both algorithms are discussed using Euclidean distance. 

4.1. A Simple Approach Using Mean Vector 

The most straightforward method assigns the object to its most sim­
ilar class. The classification problem [42] is formulated as follows. Let 
database D = {x\,X2, • • • ,xn}, where each object Xi = {xn,Xi2,... ,Xik} 
contains numeric values. Name a set of classes C = {C\, C2, • • •, Cm} 
where each class Cj = {Cji, Cj2, • • •, Cjfe} has numeric values. The 
classification problem is to assign each x, to the class Cj such that 
d{xuCj) < d(xi,Ci)\/Q G C, where Q ^ Cj. 

The representative vector {Cji,Cj2, • • •, Cjk} of class Cj is the key com­
ponent of this method. One way to define this vector is to use the mean 
vector of objects in class Cj, i.e., 

Cjt = mean(xit), where Xi is labeled as class Cj and t = 1, 2 , . . . , fc. 

This classification algorithm can be described as follows. 

Example 4: Figure 17 illustrates how Algorithm 4 can be used to classify 
an unknown object in 2D space [42]. The representative vectors of class 
A, B, C are [4, 7.5], [2,2.5] and [6,2.5] respectively. The input object is 



Classification: Distance-based Algorithms 

i. 

10 

8 

6 

4 

2 

0 2 4 6 8 

Fig. 17. A simple approach of distance-based algorithm. 

Algorithm 4 Simple Distance-based algorithm (using mean vector) 
Input : 

T {Training set} 
x' {Input object to classify} 
Output : 

c {Class to which x' is assigned} 

Cjt <— mean(xit), where Xu G T and is labeled class Cjt {Calculate the 
mean vector of each class} 
dist <— oo; 

for i := 1 to m do 
if d(Ci,x') < dist 

c <— i 

dist <— d(Ci, x') 
end if 

end for 



74 Z. Shen 

x' with the values [3,3]. The distance between x' and three classes are 
d{x',CA) = 4.61, d(x',CB) = 1-12, and d{x',Cc) = 3.04. So x' is assigned 
to class C. This algorithm assumes that the mean vector is the unbiased 
representative of the class. This assumption can be dubious in practical 
applications since the training set may not be sufficiently large to represent 
all characteristics of the classes. 

4.2. K-Nearest Neighbors 

KNN (Algorithm 5) is a more complicated and robust classification algo­
rithm that labels the target based on the classes of the K-nearest objects. 
The KNN algorithm [42] is illustrated by the following example. 

Algorithm 5 KNN Algorithm 
Input : 

T {Training Data} 
K {Number for classify} 
x' {Input object to classify} 
Output : 

c {Class to which x' is assigned} 

i V ^ O 
for all v e T do 

if |JV| < K then 
N ^ Nu{v} 

else if 3u e N such that d(x',u) > d(x',v) then 
N <- N - {u} 
N <- Nll{v} 

end if 
end for 

c = class to which the most a £ J V are classified. 

Example 5: Figure 18 illustrates an example of KNN in 2D space. In 
Fig. 18, the star x' is the target object. The triangles indicate the objects 
belong to class A and the circles indicate those belonging to class B. Among 
the five nearest objects of x', there are three triangles and two circles. So 
x' is assigned to class A. 



Classification: Distance-based Algorithms 75 

O 

o 

A 

O A 

A 

O 

O 

A 

Fig. 18. .fif-nearest neighbors (k = 5). 

KNN is a nonparametric classification method that is based on the 
estimation of posteriori probabilities. According to the Bayes Theorem 
(see Chap. 2), the probability of object X{ belonging to class Cj is 

n C ^ i j - p(xt) 

The classification is based on the objects inside the region surrounding 
the target object. Define the region as R and let V be the volume enclosed 
by R. Given a training set with the size n, let the probability of an object 
belong to class Cj within region R be Pn(d). It is given by [41] 

Pn{Ci)= / pn(x',Ci)d(x'). (29) 

If pn(x', Ci) is continuous and the region R is so small that pn(x', Cj) does 
not vary appreciably within it, Pn{Ci) can be approximated by 

Pn(.x',Ci)d{x') ^ pn{x',d) Y.V, (30) 

or 

Pn(Ci)*pn(x',Ci)xV. (31) 

Suppose all the n objects in a training set are drawn independently and 
identically distributed (i.i.d.). Let ki be the number of objects that fall in 



76 Z. Shen 

R and belong to class d and Y^ ki = K. Then, 

Pn{Ci) = ki/n. (32) 

Combining Eqs. (31) and (32), yields 

pn{x',Ci) *V = ki/n, 

pn(x',Cl)=
k^. (33) 

If the training set is large enough, i.e., n approaches oo, pn{x', d) can 
be taken as an approximation of p(x',C,). By Eq. (33), 

_ p(x'\d) x P(d) _ P(x\d) ,„,. 
{Cllx}" PW) " E~M^) (34) 

(35) 

According to the Bayes Theorem, the class with the maximum posteriori 
probability P[Ci\x') will be assigned to the object. Therefore, the class with 
the largest ki, which is the number of objects belong to class d in the set 
of JC-closest objects, will be assigned to the target object x' (the expected 
result for the KNN algorithm). The key to optimal performance of the KNN 
algorithm is the value of K. The rule that K < *Jn is suggested in [83]. 

KNN is a typical lazy classification method that does not build a clas­
sifier until a new object needs to be classified. During classification, the 
distances between the new object and each object in the training set are 
computed. So the time complexity is 0(n). The time expense is high com­
pared to eager classification methods, such as those decision tree based 
methods which build a search structure before examing new objects. Some 
research has been done to improve the performance of lazy classifiers, espe­
cially KNN [123]. 

5. Current Applications 

Distance-based classification algorithms, especially KNN, are widely used 
in practical applications. KNN has been applied to text categorization since 
the early stages of research and is one of the top-performing methods [162]. 
In [92], KNN is supplemented with a feature selection method and a term-
weighting scheme to achieve a good performance of web page classifica­
tion. KNN has been adapted into a data-mining-ready structure in the 



Classification: Distance-based Algorithms 77 

stream data mining project [84] and yields higher classification accuracy as 
well as higher speed. Distance-based algorithms have also been applied in 
other contexts. For example, decision tree approaches based on the distance 
between objects have been used for similarity searches in high-dimensional 
generic databases [30, 164]. 

6. Summary 

Distance-based algorithms classify objects according to the objects close to 
them. So the first step is to choose a proper distance function for the par­
ticular data. Euclidean distance and city block distance are easy to calcu­
late. However, they are variant to many transformations. Tangent distance 
is an invariance distance and can fit many types of data, such as images 
and speech. 

The second step of a distance-based algorithm is to classify the objects. 
if-Nearest Neighbors is a nonparametric method that is often used in prac­
tical data mining applications. It is easy to implement and yields good per­
formance. However, KNN does not build the classifier until a new object 
needs to be classified. If some classifier structures can be built before new 
tasks are received, the performance of classification would be even better. 





CHAPTER 7 

DECISION TREE-BASED ALGORITHMS 

Farial Shahnaz 
Information International Associates, Inc. 

P.O. Box 16221, Knoxville, TN 37996, USA 
shahnazQcs. utk. edu 

Overview 

Decision tree-based algorithms serve as the fundamental step in application 
of the decision tree method, which is a predictive modeling technique for 
classification of data. This chapter provides a broad overview of decision 
tree-based algorithms that are among the most commonly used methods 
for constructing classifiers. 

Keywords: Boosting, attribute, data mining, decision trees, domain, 
entropy, information gain, pruning. 

1. Introduction 

Decision trees (DTs) are widely used in data mining for classification pur­
poses. Given a heterogeneous data collection and a set of attributes that 
describe the data, decision trees use the values of these attributes to divide 
the data set into smaller, more homogeneous subsets. Implementation of 
decision trees differ primarily in how the trees are constructed and sev­
eral techniques exist for constructing or modeling the trees. These model­
ing techniques are commonly referred to as decision tree-based algorithms, 
or simply, decision tree algorithms. The objective of all DT algorithms 
is to minimize the size of the tree while maximizing the accuracy of the 
classification. 

79 



80 F. Shahnaz 

2. Motivation 

Decision tree-based algorithms greatly affect the performance of DT 
approaches to data mining. Without the use of an efficient DT algorithm, 
a decision tree might contain several nodes that have little or no relevant 
information for classifying data. The presence of nodes containing insignifi­
cant attributes results in increased depth, which detracts from the effective­
ness of DTs. Moreover, DT algorithms not only choose the best splitting 
attribute for a node, but also decide what values or how many branches to 
assign to that node. Poorly designed decision tree algorithms that assign 
random values often cause an ineffective rendering of the DT technique. 

This chapter will discuss the three most common algorithms used for DT 
construction: ID3, C4.5, C5.0, and CART. Each algorithm will be discussed 
with respect to the success of these algorithms in minimizing cost while 
maximizing information gain. 

3. ID3 

Interactive Dichotomizer 3 or ID3, uses a basic tree induction algorithm 
that assigns an attribute to a tree node based on how much information is 
gained from that node. The ID3 method allows an attribute to have two 
or more values at a node or splitting point, thereby facilitating formation 
of an n-ary tree where n can be greater than two. Table 6 contains the 
input and output parameters for the BuildDT algorithm — the basic tree 
induction method used in ID3. 

Table 6. The input and output parameters for algorithm BuildDT. 

Input: 
Data set D = {di, d,2, • • •, dn}. 
Collection of attributes A = {ai , 02, . . . , am}-
Domain of each attribute en, Vi = {vn, V12, • • . , vn^}. 
Each Vij represents a value of the attribute ai. 
k is the cardinality of the attribute domain V*. 

Output: 
Decision tree T = {t i , *2, • • •, ts} |J {c\, C2, .. ., cr}. 
Each ti represents an internal node, i.e., an attribute. 
s is the number of internal nodes. 
Each Cj represents an external or leaf node, i.e., a class or category. 
r is the number of external nodes. 



Decision Tree-based Algorithms 81 

Algorithm 6 BuildDT Algorithm 

Select best splitting criterion a* from set A 
Create root node U and assign it label at 
Add a branch to node U for each v\j in Vi 
Add U to set T 
for each branch of node U 

{ 
Set D = subset of D created by applying attribute aj to D 
if stopping point reached for this path, then 

{ 
Create leaf node c$ 
Add Ci to set T 

} 
else 

{ 
T' = BuildDT (D) 
Add T" to set T 

} 
} 

BuildDT (Algorithm 6) assumes knowledge of optimal attribute selec­
tion and accurate stopping point detection. Ideally, a stopping point is 
reached when the data set is perfectly classified; however, situations may 
arise where reaching the accurate stopping point becomes an obstacle to 
creating a tractable decision tree. In such trade-off is often made 
between accuracy and performance by setting a stopping criterion at a 
certain depth. 

Selecting the splitting criterion or optimal attribute at each node 
involves choosing the attribute that maximizes information gain. In other 
words, the optimal attribute minimizes the information needed in the result­
ing subtree to classify the data set [77]. Information gain is also referred to 
as entropy reduction, where entropy denotes the measure of randomness 
in a data collection. After selecting the lowest entropy attribute, branches 
representing the attribute values or choices are added to the node. Since 
the number of branches depends on the cardinality of the attribute domain, 
domains with a high cardinality can adversely affect the performance of a 
DT. Much like the ideal stopping point quandary, accuracy is often com­
promised by limiting the available choices to enhance performance. 



82 F. Shahnaz 

Two major issues that remain beyond the scope of ID3 are processing 
continuous data and handling incomplete data sets. Nevertheless, consider­
able progress has been made with regard to these issues by ID3's successor 
algorithms C4.5 and C5.0, which are discussed in the following sections. 

4. C4.5 

The C4.5 algorithm utilizes the same basic inductive tree creation approach 
as ID3, but extends its capabilities to classification of continuous data by 
grouping together discrete values of an attribute into subsets or ranges. 
Another advantage of C4.5 is that it can predict values for data with miss­
ing attributes based on knowledge of the relevant domains [42]. C4.5 also 
provides a way to prune or reduce the size of the tree without any significant 
decrease in accuracy. Pruning occurs in two forms [42]: subtree replacement 
and subtree raising. In case of the former, a subtree is replaced with a leaf 
node, and in the second method, a subtree is replaced with its most fre­
quently used subtree. 

In both cases, replacement is acceptable only when the original tree 
undergoes minimal distortion as a result of pruning. In situations where tree 
pruning does not effectively reduce the complexity of the DT structure, C4.5 
generates decision rules based on the choices associated with a path, which 
is defined as a set of branches connecting two nodes. The following example, 
with the aid of Fig. 19, illustrates the generation process of decision rules. 
It should be noted that the complexity of this example is not indicative of 
the actual complexity of typical classification problems. 

The decision Rules for tree T in Fig. 19 are shown below: 

Rule 1: If (A = x\ and B = yi), then Classification = Class 1; 
Rule 2: If (A = #2 and C = z{), then Classification = Class 2; 
Rule 3: If (A = x-i and C = Z2), then Classification = Class 1. 

Class 1 ) ( Class 2 ) Class 1 

Fig. 19. A simple decision tree T. 



Decision Tree-based Algorithms 83 

In this set of decision rules, Rule 1, 2, and 3 are respectively generated by 
the paths between nodes A and Class 1, A and Class 2, and A and Class 1. 
Multiple decision rules can be merged to further reduce the complexity of 
a tree. For example, grouping multiple rules together results in a smaller 
set of decision rules for T: 

If (A = x\ and B = y\) or (A = x2 and C = z2), 
then Classification = Class 1; 

If (A = X2 and C = z\), then Classification = Class 2. 

It is worth noting that merging should decrease the entropy of the data set; 
if it does not, then it should be avoided. This feature of rewriting multiple 
decision rules in a conjunctive form is unique to C4.5 and is not available 
in its commercial version C5.0. 

5. C5.0 

Algorithm C5.0, known as See5 on the MS Windows platform, provides 
significant improvements on memory usage and runtime. It also produces 
better results than C4.5 in terms of minimizing decision trees and generat­
ing decision rules. The precise algorithm for C5.0 has not been made public, 
but one of the chief contributors to the performance augmentations achieved 
by C5.0 is a new feature called boosting. Boosting is a method for creating 
multiple training sets from the original data set by assigning weights to 
each record in the data collection [42]. The example below demonstrates 
the application of boosting to a contrived data set D. 

Data set D = {di,d,2, . . . ,ds} 
Set of attributes, A = {shape, color} 
Domain of attribute 'shape' = {square, round} 
Domain of attribute 'color' = {red (r), green (g), blue (b)} 
record d\ = {square, r} 
record 6,2 = {square, g} 
record ds = {square, b} 
record d± = {round, r} 
record d$ = {round, g}. 

A straightforward approach to construction produces the classifier T 
(Fig. 20). 

Applying boosting to D produces k sets, where k is the number of 
training sets desired by the user. These training sets can be written as 
A = {wn * di, wi2 * d2, wi3 * d3, WiA * cLt, wi5 * d5}, where "*" denotes 
association, i = { 1 , . . . , k} enumerates the new data sets, Wij is the weight 



84 F. Shahnaz 

Fig. 20. A simple decision tree T with six classes. 

( Color ) 

Fig. 21. Decision tree Tj for data set Di. 

associated with record dj of training set Di, and Wij denotes the importance 
of record dj to the classification for Di [42]. 

If all the weights are equal, Di is equivalent to the original set D. 
Otherwise, the resulting classifier may be significantly different from T 
(Fig. 20). Suppose the set of weights associated with some data set D, 
is {0.5,0.5,0.5,0,0}. This weight distribution implies records 4 and 5 are 
not important for classifying Di. Since records 1, 2, and 3 all have the 
same value for "shape," it can be inferred that the "shape" attribute has 
negligible impact on the construction of a classifier for Di (Fig. 20). By 
applying different combinations of weights to the original data set, many 
such classifiers (Fig. 21) can be constructed. 

Algorithm C5.0 provides an efficient mechanism for emulating this pro­
cess of boosting for large data sets. During classification of a new record, 
C5.0 assigns a vote to each of the decision trees created through boosting. 
Then voting is performed, and the new record is assigned to the class with 
the most votes [42]. The use of multiple classifiers is the key to increasing 
the accuracy of C5.0. 

6. CART 

The Classification and Regression Trees (CART) algorithm adheres to the 
same basic tree induction algorithm used by C5.0 and its predecessors for 
selecting optimal attributes; unlike the previously discussed algorithms, 
CART only allows the construction of binary trees. Given a data set, the 



Decision Tree-based Algorithms 85 

CART method performs binary recursive partitioning based on attributes 
that can be expressed as questions with "yes" or "no" answers [96]. At each 
node, all possible splits are compared and the attribute with the highest 
degree of homogeneity is selected. CART also includes a pruning technique 
quite similar to the pruning features available in C4.5 and C5.0 — pruning 
is performed only if the reduction in complexity is not offset by a consider­
able increase in entropy or inaccuracy. 

The CART algorithm is amenable to processing continuous data sets. 
Moreover, it is capable of overcoming the problem imposed by incomplete 
data sets. For any record in the data set that lacks a value for a splitting 
attribute, CART assigns a surrogate value to it [96] rather than discarding 
the entire record or data point. As shown below, a surrogate value is derived 
by examining other records in the data set and choosing a data point most 
similar to the one with a missing attribute. 

Suppose data set D = {di, d2, d^, d^} so that each d{ is a data point 
or record containing three numerical attributes {X, Y, Z}. Sample data 
records are listed below: 

record di = {1, 2, 3} 
record d2 = {1, 4, 2} 
record dz = {1, _, 3} 
record d4 = {2, 4, 3}. 

If Y is the optimal attribute at any node and record ds is being considered 
for a split, scrutiny of the data set would yield 2 as the surrogate value 
since record d\ is the most similar to d^. 

Notwithstanding its array of features, the most appealing aspect of the 
CART method still remains its binary format. This approach is largely 
responsible for the acceptance of decision trees as a tool for predictive mod­
eling by the statistics community. 

7. Summary 

The DT algorithms described in this chapter represent the most effective 
methods available for constructing decision trees. For all decision tree-based 
algorithms, the challenge lies in maintaining the accuracy of a classifier 
without paying a high price for computational complexity. Many algorithms 
espouse techniques such as pruning or setting a stopping point at a cer­
tain depth to prevent the creation of computationally intractable trees. 
Although strides made in this direction by algorithms such as C5.0 deserve 
considerable acclaim, there still remains much room for improvement. 





CHAPTER 8 

COVERING (RULE-BASED) ALGORITHMS 

Shakhina Pulatova 
National Instruments 

11500 N. Mopac Expressway, Austin, TX 78759-3504, USA 
shakhina© gmail. com 

Overview 

Classification rules (if-then rules) are an intuitive way of performing clas­
sification, and they are a popular alternative to decision trees. Covering 
algorithms are one of the most well-studied methods for inducing classifi­
cation rules from training sets. This chapter discusses basic covering algo­
rithms and illustrates them with simple examples that capture the essence 
of the problems. In addition, some of the current applications of covering 
algorithms are reviewed. 

Keywords: Covering algorithms, 1R, PRISM, classification rules, 
rule-based. 

1. Introduction 

Classification is one of the most developed and applied techniques in data 
mining. Given a collection of records each containing a set of attributes, 
classification is a model that accurately assigns records to specific classes 
depending on the values of their attributes. Classification methods devel­
oped in data mining are widely used in image and pattern recognition, 
medical diagnosis, homeland security, and loan approval. 

One direct way of performing classification is generating sets of if-then 
rules, where the data is assigned to some class if certain conditions are 
met. Covering (rule-based) algorithms provide mechanisms that generate 
compact, easy-to-interpret, and accurate rules by concentrating on a specific 

87 



88 S. Pulatova 

class at a time and maximizing the probability of the desired classification 
[156]. Simple covering algorithms can be utilized to gain insight into the 
data and to obtain baseline performance while more sophisticated covering 
algorithms can be employed to tackle challenging classification tasks. 

2. Motivation 

One way of generating classification rules is to traverse existing decision 
trees. The disadvantage of this approach is that rules generated this way 
may be unnecessarily complex and incomprehensible. Covering algorithms, 
however, produce more compact, easy-to-understand and easy-to-modify 
rules with comparable accuracy. Covering algorithms are thus widely used 
for classification in data mining and machine learning. 

This chapter introduces the concept of classification rules in Sec. 3 and 
briefly discusses the advantages and disadvantages of directly deriving the 
rules from decision trees as opposed to constructing them by other means. 
Basic covering algorithms are introduced in Sec. 4 and are explained with 
simple examples. A review of some of the applications of covering algorithms 
is provided in Sec. 5, followed by a summary in Sec. 6. 

3. Classification Rules 

As illustrated in Chaps. 4 and 7, the decision tree is a widely used technique 
for classification purposes. Another popular alternative to decision trees is 
classification rules (also known as if-then rules). A classification rule is 
defined as r = (a, c), where a (antecedent/precondition) is a series of tests 
that can be evaluated as true or false, and c (consequent/conclusion) is 
the class or classes that apply to instances covered by rule r [42, 156]. For 
example, one could have the following set of rules to classify the weather: 

If temperature < 50°F, then weather = cold. 
If temperature > 50°F AND temperature < 80°F, then weather = warm. 
If temperature > 80°F, then weather = hot. 

Although any of the logical expressions are allowed, preconditions are 
usually connected with the AND operation. One straightforward way of 
constructing classification rules is to derive them from an existing decision 
tree, where each rule corresponds to a different path from the root of the 
tree to its leaf. Figure 22 provides a simple example of building classification 
rules based on a decision tree. 



Covering (Rule-based) Algorithms 

If a=0 and b=0 then class = X 

If a=0 and b=1 then class = Y 

If a=1 and b=0 then class = Y 

If a=1 and b=1 then class = X 

Fig. 22. Rules constructed from a decision tree. 

One advantage of this method is that rules are order-independent, that 
is, regardless of the order of rules executed, the same classification of the 
classes is reached [156]. The disadvantage, however, is that the generated 
rules are often more complex than necessary and contain redundant infor­
mation. The reason usually lies in decision trees' inability to "express the 
disjunction implied between the different rules in a set," leading to a repli­
cated subtree problem, as illustrated by the following example [156]. Con­
sider the rules: 

If a AND b, then x. 
If c AND d, then x. 

Since a single test condition must be chosen for a root node, the result­
ing decision tree for these simple rules becomes far more complicated and 
incomprehensible (see Fig. 23). Notice that the tree in the figure contains 
duplicate subtrees rooted at node c. Moreover, the addition of an extra test 
or rule to a set requires reshaping of the whole tree. 

In contrast, rules obtained without decision trees are usually easier for 
humans to understand and modify. They are more compact and are useful 
for providing insights about regularities in the data. On the other hand, 
some algorithms generate rules that are intended to be followed in order 
(called decision lists) and can lead to incorrect classifications if the correct 
ordering is not met [156]. In addition, more than one classification can be 
obtained for the same instance, or the rule can fail to classify completely. 
Different strategies can be employed in this situation ranging from selecting 
the most frequently used class to reaching no conclusion at all. These differ­
ent decisions have led to a vast number of rule-based algorithms available 
today. 



90 S. Pulatova 

Fig. 23. Demonstration of a replicated subtree problem [156]. 

4. Covering (Rule-based) Algorithms 

One of the most well-studied methods for producing sets of classification 
rules from examples is covering algorithms [7l]. They attempt to cover 
all instances of each class while excluding instances not in the class. The 
main point is that covering algorithms work on a specific class at a time, 
ignoring the rest of the classes [156]. For instance, if a rule is desired to 
classify the weather as warm in the previous example, then the covering 
algorithm attempts to replace x in the statement 

If x, then class = warm, 

with the condition that produces the best probability (in the training 
set) for the weather to be warm. Covering algorithms follow these three 
steps [71]: 

(i) Generate rule R on training data S; 
(ii) Remove the training data covered by rule R; 

(iii) Repeat the process. 

This method can be visualized in the 2D space of instances illustrated 
in Fig. 24 (adapted from [156]). First, a rule is constructed to cover a's 
by splitting the space vertically at x = 1.2 and then further splitting it 



Covering (Rule-based) Algorithms 91 

Fig. 24. Covering algorithm demonstration. Figure adapted from [156]. 

horizontally at y = 2.6, leading to the rule 

If x > 1.2 AND y > 2.6, then class = a. 

Second, the following procedure is used to construct rules to cover b's: 

If x < 1.2, then class = b. 

If x > 1.2 AND y < 2.6, then class = b. 

Note that one a is incorrectly covered by these rules, and more tests can 
be added to exclude that a from b's cover and include it in the a's cover. 

4.1. 1R Algorithm 

One of the simple approaches used to find classification rules is called 1R, 
as it generates a one level decision tree. This algorithm examines the "rules 
that classify an object on the basis of a single attribute" [70]. A sample 
algorithm is provided by [42] in Algorithm 7. 

The basic idea is that rules are constructed to test a single attribute 
and branch for every value of that attribute. For each branch, the class 
with the best classification is the one occurring most often in the training 
data. The error rate of the rules is then determined by counting the number 
of instances that do not have the majority class in the training data. Finally, 
the error rate for each attribute's rule set is evaluated, and the rule set with 
the minimum error rate is chosen. 

A comprehensive comparative evaluation of the performance of 1R and 
other methods on 16 datasets (many of which were most commonly used 
in machine learning research) was performed by [70]. Despite its simplic­
ity, 1R produced surprisingly accurate rules, just a few percentage points 



92 S. Pulatova 

Algorithm 7 IR Algorithm 
Input: 

D //Training Data 
T //Attributes to consider for rules 
C //Classes 

Output: 
R //Rules 

Algorithm: 
/ / I R algorithm generates rules based on one attribute 
i? = 0; 
for all A in T do 

RA = k 
for all possible value, v, of A do 

J jv may be a range rather than a specific value 
for all Cj e C do 

//count is the number of occurrences of this class for this attribute 
find count(Cj) 

end for 
let Cm be the class with the largest count; 
RA = RA U ((A = v) —> (class = Cm))\ 

end for 
ERR^ = number of tuples incorrectly classified by R^; 

end for 
R = RA where ERR A is minimum; 

lower in accuracy than the decision trees produced by the state of the art 
algorithm (C4). The decision trees produced by C4 were in most cases con­
siderably larger than lR's rules, and the rules generated by IR were much 
easier to interpret. IR therefore provides a baseline performance using a 
rudimentary technique to be used before progressing to more sophisticated 
algorithms. 

Example 6: Consider the training data in Table 7 for deciding whether to 
play sports depending on four attributes: outlook, temperature, humidity 
and wind [156]. Table 8 shows the number of errors for each rule as well as 
the total number of errors for the rule set as a whole. 



Covering (Rule-based) Algorithms 93 

Table 7. The weather data [156]. 

Outlook 

sunny 
sunny 
overcast 
rainy 
rainy 
rainy 
overcast 
sunny 
sunny 
rainy 
sunny 
overcast 
overcast 
rainy 

Temperature 

hot 
hot 
hot 

mild 
cool 
cool 
cool 
mild 
cool 
mild 
mild 
mild 
hot 

mild 

Humidity 

high 
high 
high 
high 

normal 
normal 
normal 

high 
normal 
normal 
normal 

high 
normal 

high 

Windy 

false 
true 
false 
false 
false 
true 
true 
false 
false 
false 
true 
true 
false 
true 

Play 

no 
no 
yes 
yes 
yes 
no 
yes 
no 
yes 
yes 
yes 
yes 
yes 
no 

Table 8. Evaluating the attributes in the weather data [42]. 
(*) — random choice between two equally likely outcomes. 

1 

2 

3 

4 

Attribute 

outlook 

temperature 

humidity 

windy 

Rules 

sunny —> no 
overcast —> yes 
rainy —> yes 

hot —> no* 
mild —> yes 
cool —> yes 

high —> no 
normal —> yes 

false —> yes 
true —> no* 

Errors 

2/5 
0/4 
2/5 

2/4 
2/6 
1/4 

3/7 
1/7 

2/8 
3/6 

Total Errors 

4/14 

5/14 

4/14 

5/14 

The attributes with the smallest number of errors in the dataset are 
outlook and humidity. Assuming the algorithm arbitrarily chooses humidity, 
the resulting classification rules are: 

Humidity: High —> no 
Normal —> yes. 



94 S. Pulatova 

4.2. PRISM Algorithm 

The inherent redundancy of decision trees requires the outcomes of irrele­
vant tests before a decision can be made. These tests may be very costly to 
perform, for instance, in medicine: irrelevant tests performed for diagnos­
ing a patient waste time and even may require unnecessary surgery. Even 
though it is based on ID3, the PRISM algorithm [42] given in Algorithm 8 
overcomes these and other decision tree problems [24]. PRISM identifies 
a rule that covers many instances in the class, separates out the covered 
instances, and continues the process with the rest. The algorithm induces 
modular rules with 100 percent accuracy and produces rules with compara­
ble accuracy to the decision trees induced by ID3. It measures the success 
of a rule by the formula: p/t, where t is a total number of instances, and p 
is number of those that are positive. 

Example 7: Consider an example of classifying height (here the classifi­
cation to Tall is considered). Given the training set in Table 9, the prob­
abilities that the Tall class has been assigned given attribute-value pairs 
are [42]: 

Gender = F 0/9, 
Gender = M 3/6, 
Height < 1.6 0/2, 
1.6 < Height < 1.7 0/2, 
1.7 < Height < 1.8 0/3, 
1.8 < Height < 1.9 0/4, 
1.9 < Height < 2.0 1/2, 
2.0 < Height 2/2. 

Since the largest fraction is 2/2, the generated rule is 

If 2.0 < Height, then class = Tall. 

There is no need to add any additional predicates to the rule because all 
predicates that satisfy 2.0 < Height are Tall. To generate additional rules 
for the Tall class, examine the remaining tuples in the training set and 
recalculate the accuracy of the corresponding predicates: 

Gender = F 0/9, 
Gender = M 1/4, 
Height < 1.6 0/2, 



Covering (Rule-based) Algorithms 95 

Algorithm 8 PRISM Algorithm 
Input: 

D //Training Data 
C //Classes 

Output: 
R //Rules 

Algorithm: 
/ /PRISM algorithm generates rules based on best attribute-value pairs 
R = %; 

for all Cj e C 
repeat 

T = D; //All instances of class Cj will be systematically removed 
from T 
p = true; //create a new rule with empty left hand side 
r = (If p, then Cj); 
repeat 

for all attribute A value v pair found in T do 
calculate (|(tuples G T with A = v) Ap A (e Cj)\/ 
\(tuples £ T with A = v) Ap\) 

end for 
find A = v that maximizes this value; 
p = p A (A = v); 
T = tuples in T that satisfy A = v; 

until all tuples in T belong to CJ; 
D = D~T; 
R = RUr; 

until there are no tuples in D that belong to Cj; 
end for 

1.6 < Height < 1.7 0/2, 
1.7 < Height < 1.8 0/3, 
1.8 < Height < 1.9 0/4, 
1.9 < Height < 2.0 1/2. 

Here, the last Height range is the most accurate, but another predicate 
needs to be added as the only one of the tuples that satisfies it is Tall. 



96 S. Pulatova 

Table 9. Data Height Classification [42]. 

Name 

Kristina 
Jim 
Maggie 
Martha 
Stephanie 
Bob 
Kathy 
Dave 
Worth 
Steven 
Debbie 
Todd 
Kim 
Amy 
Wynette 

Gender 

F 
M 
F 
F 
F 
M 
F 
M 
M 
M 
F 
M 
F 
F 
F 

Height (m) 

1.6 
2 
1.9 
1.88 
1.7 
1.85 
1.6 
1.7 
2.2 
2.1 
1.8 
1.95 
1.9 
1.8 
1.75 

Output 

Short 
Tall 
Medium 
Medium 
Short 
Medium 
Short 
Short 
Tall 
Tall 
Medium 
Medium 
Medium 
Medium 
Medium 

This problem is caused by the arbitrary range divisions performed earlier. 
Dividing the range into subranges produces the probabilities: 

1.9 < Height < 1.95 0/1, 
1.95 < Height < 2.0 1/1. 

The last predicate has the largest fraction, so it is added to the rule: 

If 2.0 < Height AND 1.95 < Height < 2.0, then class = Tall, 

which is equivalent to 

If 1.95 < Height, then class = Tall. 

Thus, all Tall tuples are classified. 

4.3. Other Algorithms 

Basic covering algorithms construct rules that classify training data per­
fectly, that is, they tend to overfit the training set causing insufficient gen­
eralization and difficulty for processing new data. However, for applications 
in real world domains, methods for handling noisy data, mechanisms for 
avoiding overfitting even on training data, and relaxation requirements of 
the constraints are needed [31]. Pruning is one of the ways of dealing with 
these problems, and it approaches the problem of overfitting by learning a 
general concept from the training set "to improve the prediction of unseen 



Covering (Rule-based) Algorithms 97 

instances" [53]. The concept of Reduced Error Pruning (REP) was devel­
oped by [53], where some of the training examples were withheld as a test 
set and performance of the rule was measured on them. Also, Incremental 
Reduced Error Pruning (IREP) has proven to be efficient in handling over-
fitting, and it forms the basis for RIPPER [32]. SLIPPER (Simple Learner 
with Iterative Pruning to Produce Error Reduction) [33] uses "confidence-
rated boosting to learn an ensemble of rules." 

5. Applications of Covering Algorithms 

Covering algorithms are widely used for deriving classification rules applied 
in medical sciences for diagnosing illnesses, business planning, banking, 
government and different disciplines of science. Particularly, covering algo­
rithms have deep roots in machine learning [156]. Within data mining, cov­
ering algorithms including SWAP-1, RIPPER, and DAIRY are used in text 
classification [71], adapted in gene expression programming for discovering 
classification rules [169]. 

6. Summary 

Covering algorithms are appealing because they generate rules that are rel­
atively simple, easy to interpret and manipulate, and each of the rules they 
produce seems to represent "an independent nugget of knowledge" [156]. 
The simple algorithms are fast and perform with comparable accuracy com­
pared to sophisticated decision tree algorithms. Thus, they are particularly 
attractive for providing a baseline performance using a simple rudimentary 
technique to be used before progressing to more sophisticated algorithms. 

On the other hand, basic covering algorithms suffer from overfitting the 
training data, which makes their application to independent (noisy) data 
sets difficult. In addition, handling missing values and ambiguous assign­
ments to classes lead to unstable results. These problems are typically min­
imized with the use of more advanced tree pruning techniques (similar to 
the ones employed by decision trees), and with the application of specialized 
methods. 





CHAPTER 9 

CLUSTERING: A N OVERVIEW 

Matthew Aldridge 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
aldridge@cs. uik. edu 

Overview 

This chapter introduces the concept of clustering, sometimes referred to 
as unsupervised classification. Clustering is a method employed by many 
disciplines to group objects into previously undefined categories with the 
goal of abstracting data for easier interpretation or to gain new knowledge 
thereof. The typical process of a clustering activity is discussed along with 
a brief overview of a few major clustering methodologies and related issues. 

Keywords: Clustering, unsupervised learning, unsupervised classification, 
proximity measures, outliers. 

1. Introduction 

Clustering, defined broadly, is the grouping of similar objects [66]. More 
specifically, clustering is the unsupervised classification of patterns into 
groups based upon similarity, where a pattern is a representation of features 
or observations made on an object. Upon first glance, the problem of clus­
tering is quite similar to that of classification. It should be noted, however, 
that the key difference between the two is the unsupervised nature of clus­
tering. Traditional supervised classification involves a special input training 
set or predefined set of classes into which objects are placed, whereas clus­
tering attempts to derive meaningful classes solely from the data. 

99 



100 M. Aldridge 

The problem of clustering arises in many different scientific fields, and 
thus, a vast amount of literature has been produced on the subject. For a 
more comprehensive survey of data clustering, along with an extensive list 
of references, the reader is directed to [74]. 

2. Motivation 

Clustering is often a critical component of the data mining or knowledge dis­
covery process. Data mining tasks frequently involve large amounts of data, 
and clustering methods may be employed during the data transformation 
stage of the knowledge discovery process [42]. Doing so effectively abstracts 
or compresses the data and allows the subsequent data mining algorithms 
to treat each data cluster as a single datum. Clustering may also be utilized 
to aid the practitioner in visualizing and interpreting data mining results, 
possibly revealing previously unknown tendencies in the data. 

The primary focus of this chapter is to establish the general framework 
of the clustering process from initial data representation to assessment of 
clustering results. A brief discussion of the two major clustering algorithm 
approaches is made, and a handful of practical applications of clustering 
techniques are introduced. 

3. The Clustering Process 

Prior to discussing the specifics of the clustering process, a brief treatment 
on terminology and notation must be made. The notational system used in 
this chapter follows directly from [39]. 

An object, in the current context, could refer to a physical object (e.g., 
an animal), as well as to an abstract notion (e.g., a style of writing). A 
measurement made on such an object is called a feature. A feature may be 
either quantitative (e.g., a specific weight) or qualitative (e.g., "heavy"). A 
pattern is a set of features describing an object and is generally represented 
as a vector. The set of patterns for all objects in the domain of interest is 
represented as a pattern matrix. Given a set of n patterns with d features, 
the pattern matrix is an n x d matrix. The j th feature of pattern i is Xij • 
The ith pattern itself is denoted by the column vector Xj, where 

^Q — [•^il %i2 ' ' ' •^id\ 

A proximity matrix is a square, symmetric matrix, with rows and 
columns both corresponding to patterns. The (i, j) entry represents the 
proximity or degree of closeness between patterns i and j . The proximity 



Clustering: An Overview 101 

matrix may be a dissimilarity matrix, in which case a large (i, j) represents 
a large degree of separation between i and j . Conversely, a large value in a 
similarity matrix indicates a close resemblance between the two patterns. 

The pattern clustering process typically involves the following steps [74]: 

(i) Create a pattern representation. 
(ii) Define a pattern proximity measure appropriate to the data domain. 

(iii) Apply a clustering algorithm. 
(iv) Perform data abstraction, if needed. 
(v) Assess cluster output, if needed. 

Each of these steps is discussed individually in the following subsections. 

3.1. Pattern Representation 

As noted in [74], pattern representation "refers to the number of classes, 
the number of available patterns, and the number, type, and scale of the 
features available to the clustering algorithm." The generation of a pattern 
representation is often dependent exclusively on the data available and the 
clustering algorithm being used. However, it is sometimes possible and help­
ful for the practitioner to employ feature selection and/or feature extraction 
to refine the pattern representation in order to provide more appropriate 
clustering results. 

Feature selection involves identifying the most effective features for dis­
criminating patterns. For example, in discriminating types of vehicles, a 
"color" attribute would likely not be as useful as "size," "number of wheels," 
"passenger seating," and "fuel type" attributes. In such a situation, the 
"color" feature could safely be excluded from consideration. Furthermore, 
some features selected may be weighted according to their relative impor­
tance [76].' Features may be highly variable among patterns, rare, or even 
redundant. Feature weightings must also be taken into account by the pat­
tern proximity measure. 

Feature extraction is the process of transforming the available features 
to provide new features. Given a set of images of human faces, one possible 
application of feature extraction is the extraction of identifiable character­
istics usable by a face recognition system. 

In addition to which features should be utilized, feature representation 
is important in creating a pattern representation. Figure 25 illustrates a 

'In a sense, deciding to exclude certain features entirely effectively gives those features 
a relative weighting of zero. 



102 M. Aldridge 

l\ 

.V . .v 
^ 

Fig. 25. Different coordinate systems in a pattern representation would yield different 
clustering results for these points about the origin. Figure adapted from [74]. 

simple example where different coordinate system choices in a pattern rep­
resentation would yield different clustering results. Each point in the figure 
is approximately equidistant from the origin. If one chose to represent the 
points in Cartesian space, a clustering algorithm may likely produce multi­
ple clusters. If the points were instead represented using polar coordinates, 
the similar radius components among the points could influence the creation 
of a single cluster. 

3.2. Pattern Proximity Measures 

Indices of proximity between all pairs of patterns are required by clustering 
algorithms [39]. A well-known index of dissimilarity between two patterns, 
say q and r in a pattern matrix, with continuous features is the Minkowski 
metric: 

d(q, r) 

(l/n 

urj\ 

For m — 2, d(q, r) produces the Euclidean distance between the two 
patterns, while m = 1 results in the Manhattan or city-block distance. It is 
often necessary to normalize the results of Minkowski metrics, because fea­
tures of large degree may otherwise dominate the others. Normalization may 
be accomplished by dividing the distance for each feature by the feature's 
range. This effectively maps distances to the range [0,1]. If the distribu­
tion of the data is known a priori, outliers may be avoided by "trimming" 



Clustering: An Overview 103 

the range by the upper and lower few percent and then mapping values 
outside of this range to the new minimum and maximum values [155]. For 
many real world clustering applications, though, the distribution of the 
data may not be known, and other methods must be employed to handle 
outliers. 

Common indices of similarity for binary or nominal (unordered) fea­
tures include the Jaccard coefficient (see Chap. 3) and the simple matching 
coefficient [39]. However, a problem arises when patterns include both con­
tinuous and nominal features, since no single proximity measure can handle 
such diverse pattern comparisons. In [155], several methods are proposed 
to handle heterogeneous patterns but are beyond the scope of this chapter. 

Once the indices of dissimilarity or similarity have been computed, the 
proximity matrix is populated and may be examined to identify outliers 
based upon high distances from other patterns. Depending upon the data 
domain and the intended goal of the clustering process, such outliers may be 
removed prior to applying a clustering algorithm. However, outliers some­
times provide useful information that would otherwise be lost if removed 
prematurely. For example, consider a credit agency that uses clustering to 
model its customers' typical credit card purchasing habits based upon geo­
graphic locality. Outliers in this case would represent purchases that occur 
far outside of a customer's usual shopping areas, and may indicate possible 
credit fraud. 

3.3. Clustering Algorithms 

Clustering approaches may be broadly categorized into two methods: hierar­
chical and partitional. Although the focus of this chapter is not to provide 
individual algorithmic details, a brief discussion of both major methods 
follows. 

3.3.1. Hierarchical Algorithms 

Hierarchical clustering algorithms create nested sets of clusters, producing a 
binary tree structure known as a dendrogram. Each node in the dendrogram 
represents a cluster. The root node is a cluster that includes every individual 
pattern, and each child thereof contains a subcluster of its parent node. 
The height of each node is proportional to the measure of similarity or 
dissimilarity between its two subclusters. Typically, the leaf nodes in the 
dendrogram represent individual patterns. 



104 M. Aldridge 

"'0 > 

Fig. 26. A possible set of nested clusters for five patterns. Note that singleton clusters 
are not indicated. 

1 2 3 4 5 

Fig. 27. The dendrogram corresponding to the sample clustering given in Fig. 26. 

Figure 26 illustrates a possible set of nested clusters for five patterns, 
where each line style represents a different level in the cluster hierarchy. 
The corresponding dendrogram is shown in Fig. 27. 

A hierarchical clustering may be produced by either an agglomerative or 
a divisive algorithm. An agglomerative algorithm begins with each pattern 
in its own individual cluster (leaf node in the dendrogram) and proceeds to 
pair clusters until the all-inclusive cluster (root node in the dendrogram) 
is created. A divisive algorithm works in the reverse order, by beginning 
with the root node and recursively splitting each node until either each 
pattern is in a singleton cluster or some stopping criterion is reached (e.g., 
the requested number, k, of clusters is reached). 

A major advantange of hierarchical clustering is the embedded flexibility 
regarding the level of granularity. However, the creation of a hierarchical 
clustering may involve excessive time and space constraints, because the 
algorithm used must make an iteration for each level in the hierarchy [42]. 



Clustering: An Overview 105 

3.3.2. Partitional Algorithms 

Unlike hierarchical methods, partitional clustering algorithms produce a 
single partition of the patterns. Partitional clustering requires less time 
and space than hierarchical clustering, a very desirable quality when work­
ing on large data sets. However, partitional methods require the user to 
choose a specific number, k, of clusters to be created. Additionally, while 
a partitional method produces only one final set of clusters, the algorithm 
may create the final set iteratively, beginning each time with a different 
starting configuration and choosing the best result from all the runs [74]. 

3.4. Data Abstraction 

The data abstraction process involves extracting a simple and compact 
representation of the clustering results [74]. This may be done either to allow 
for more automatic processing of the results or to provide the results in a 
human-comprehensible fashion. The abstraction process typically includes 
producing a description of each cluster, because the patterns are not placed 
into predefined classes, as with classification. 

3.5. Cluster Assessment 

As [74] notes, the cluster assessment process is multi-faceted. One task 
involved is the assessment of the data domain itself rather than the clus­
tering algorithm. It should be verified that the data set contains reasonable 
clusters prior to performing further cluster analysis. During such verifica­
tion, the practitioner may make the determination that the data set has 
a low cluster tendency, meaning there is actually little or no benefit in 
attempting to perform clustering. 

Another facet of cluster assessment is the validation of algorithm 
results. Given a cluster, Km of N points {tmi, im2, • • •, imiv}, three typical 
measurements of Km are [42]: 

centroid = C„ 
TN t • 

N 

radius = Rm = \\ ±^—±—— '-



106 M. Aldridge 

and 

diameter = Dm = y (iV)(iv - 1) • 

The centroid may be viewed as the "middle" of the cluster, but may 
not actually be a point itself. Alternatively, a medoid, or a centrally located 
point, may be identified. The radius represents the average mean squared 
distance from any point to the cluster's centroid. The diameter is the square 
root of the average mean squared distance between all pairs of points in 
the cluster. The radius and density measurements may be used in determin­
ing the density of a cluster. Another common clustering result evaluation 
involves determining the distance between clusters, either by utilizing the 
centroids of clusters or individual points themselves. Although such objec­
tive characteristics are used to measure and describe clusters, the relative 
importance of each characteristic must be judged subjectively, depending 
upon the data domain and desired results. 

In [39], three types of validation studies are explored: external, internal, 
and relative. An external assessment of validity compares the clustering 
result to an a priori structure and attempts to quantify the match between 
the two. An internal assessment of validity attempts to determine if the clus­
tering result is intrinsically appropriate for the data. Such an assessment 
may consider, for example, whether a given cluster is unusually compact 
or isolated compared to other clusters of the same size in random data. 
Finally, a relative assessment compares two clustering results and weighs 
their relative merit. Figure 28 illustrates a simple example where the same 

Fig. 28. An illustration of the differences between a 2-cluster and a 3-cluster of the 
same data. 



Clustering: An Overview 107 

data set is partitioned into both two and three clusters. A relative assess­
ment would involve analyzing both cluster sets and determining which is 
more appropriate for the data domain. 

4. Current Applications 

Traditional classification, and by extension clustering, owes its origins in 
part to work in biological taxonomy [76]. Clustering today, however, is 
a vastly multi-disciplinary practice. Researchers in image analysis and the 
related practice of image segmentation use clustering techniques to partition 
images into regions, "each of which is considered to be homogeneous with 
respect to some image property of interest" [74]. Clustering may be used by 
data miners in the business world to identify potential marketing targets or 
to discover consumer trends. [142] presents a novel application of clustering 
in the field of investigative psychology for the classification of deviant and 
criminal behavior with respect to psychological disorders. 

5. Summary 

Data clustering is often an essential component of a larger knowledge dis­
covery task, both in terms of preprocessing or transforming data and visu­
alizing data mining results. Due to the unsupervised nature of clustering, 
previously unrealized data groupings may be discovered. Though there are 
no predefined classes for the clustering process, an expert for the data 
domain is still required to ensure that a reasonable pattern representation 
is used, choose an appropriate proximity measure and clustering algorithm, 
and perform the final cluster analysis. 





CHAPTER 10 

CLUSTERING: HIERARCHICAL ALGORITHMS 

Hiiadong Liu 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
hliu@cs.utk.edu 

Overview 

Hierarchical clustering is an iterative method of clustering data objects. 
The agglomerative and divisive hierarchical algorithms are discussed in 
this chapter. Because the most important part of hierarchical clustering 
is the definition of distance between two clusters, several basic methods 
of calculating the distance are introduced. The chapter concludes with a 
comparison of the agglomerative and divisive algorithms. 

Keywords: Agglomerative, average linkage method, centroid method, com­
plete linkage method, DIANA algorithm, divisive, hierarchical algorithm, 
median method, single linkage method, Ward method. 

1. Introduction 

Clustering is the unsupervised classification of data objects into differ­
ent groups or clusters. Data objects are assumed to be similar to one 
another within the same cluster. However, data objects from different clus­
ters should not be alike. In supervised classification, a collection of labelled 
(pre-classified) data objects is provided. The challenge is to label newly 
encountered data objects. In unsupervised classification, the problem is to 
group a collection of unlabelled data objects into meaningful clusters. Clus­
tering combines techniques from different disciplines such as mathematics, 
statistics, artificial intelligence and databases. It can be used as a stand­
alone tool to obtain insight into data objects or as a preprocessing step for 

109 

mailto:hliu@cs.utk.edu


110 H. Liu 

more complex algorithms. Clustering is particularly useful for the explo­
ration of relationships among the data objects to make an assessment of 
their structure [73]. 

Clustering can be divided into two basic types: hierarchical and parti-
tional. Within each of the types there exist many subtypes and different 
algorithms for finding clusters. Hierarchical clustering proceeds successively 
by either merging smaller clusters into larger ones, or by splitting larger 
clusters. The algorithms differ in how to decide which two small clusters 
are merged or which large cluster is split. Partitional clustering, on the other 
hand, attempts to directly decompose the data set into a set of disjoint clus­
ters. Such algorithms use the desired number of clusters to drive how the 
final set is created [42]. Hierarchical clustering produces different clusters 
at different iterations. It provides more structural information about data 
objects at the expense of more computation. This is especially useful when 
no prior knowledge (e.g., the number of clusters) of data objects is known. 
The hierarchical clustering algorithms will be discussed in this chapter. 
However, readers interested in further details of partitional algorithms will 
benefit from reading [74]. 

2. Motivation 

The goal of clustering is to reduce the amount of data by categorizing or 
grouping similar data objects together. Such grouping is pervasive in the 
way humans process information, and one of the motivations for using clus­
tering algorithms is to provide automated tools for constructing categories 
or taxonomies [79]. Hierarchical clustering is natural in this sense and can 
provide more information about data objects. The hierarchical clustering 
algorithm and its derivatives have been implemented in a number of com­
mercial data mining software packages, such as the Daylight™ Chemical 
Information System. 

Hierarchical clustering is either agglomerative or divisive. Agglomerative 
algorithms start with all data objects as individual clusters. These clusters 
are then merged according to their distances, until all data objects are 
grouped into a single cluster. Divisive algorithms start with one cluster 
containing all data objects. The initial cluster is successively separated into 
smaller clusters until the number of clusters is equal to the number of data 
objects. The results of hierarchical clustering are often represented in the 
form of dendrograms. The dendrogram is a tree-like diagram that can depict 
sets of different clusters that have been produced at successive iterations of 



Clustering: Hierarchical Algorithms 111 

{ ( 4 , \,{{A,B,C,D,E}}), 

( 3 , 2 , {{A,B,C},{D,E}}), 

( 2 , 3 , {{A,B,C}, {£»},{£}}), 

( 1, 4, {{A,B},{C}, {£>},{£}}), 

( 0 , 5 , {{A}, {S},{C}, { / ) } , {£} } ) } 

Fig. 29. A sample dendrogram. 

the hierarchical algorithm. It can be represented by a set of ordered triples 
(d, k, S), where d is the threshold distance, k is the number of clusters, and 
S is the set of clusters. Figure 29 is an example of the representations of a 
dendrogram. 

An important issue in hierarchical clustering is the distance between 
two data objects so that clusters can be formed. Distance functions such 
as City Block, Euclidean and Tanimoto are used to determine the distance 
between two data objects. A distance function usually yields a higher value 
for pairs of data objects that are less similar to one another. The Euclidean 
distance is used to calculate the distance between two data objects in this 
chapter. This distance is defined as 

m 

where m is the dimensionality of the data object X and Y. 
In this chapter, Sec. 3 discusses agglomerative hierarchical algorithms. 

Methods of calculating distance between clusters — the single linkage 
method, the complete linkage method, the average linkage method, the 
centroid method and the Ward method — are introduced. The divisive 
hierarchical algorithm, particularly the DIANA algorithm is discussed in 
Sec. 4. Finally, a summary of the chapter is provided in Sec. 5. 

3. Agglomerative Hierarchical Algorithms 

Agglomerative hierarchical clustering is a bottom-up clustering method. 
The main goal of agglomerative algorithms is to iteratively merge a set of 
clusters based on some distance measure. An agglomerative algorithm starts 
with each data object in a cluster. In each successive iteration, the algorithm 

m m E m m 

dist(X, Y) 

\ 



112 H. Liu 

agglomerates the closest pair of clusters by satisfying some distance criteria, 
until all data objects are in one cluster. 

The most important part of agglomerative algorithms is the calculation 
of distance between clusters. Before going into detail about different meth­
ods of calculating the distance, a general agglomerative algorithm will be 
introduced. The algorithm is adapted from [42]. It assumes that a set of 
data objects E = {E\,E2,..., En} is given as input. The output of the 
algorithm is a dendrogram DE, which is represented as a set of ordered 
triples (d, k, S), where d is the threshold distance, k is the number of clus­
ters, and S is the set of clusters, as denned earlier. Initially, each data object 
Ei is considered to be in one cluster Cj. A k x k distance matrix Dist is 
used to maintain the distances between clusters. 

Algorithm 9 starts with each individual data object in its own cluster 
and iteratively merges two clusters with the minimum distance until all 
data objects belong to one cluster. Some variations of the algorithm might 
allow multiple clusters with identical distance to be merged at one iteration. 
The ComputeDistance function calculates distances between clusters using 
the current set of clusters S. Agglomerative algorithms differ in how the 
distance matrix is calculated, and hence how the clusters are merged at 
each level. The single linkage method, the complete linkage method, and the 
average linkage method are the simplest methods for obtaining distances 
between clusters. These methods will be introduced with examples in the 
following sections. 

3.1. The Single Linkage Method 

The single linkage method is also called the nearest neighbor method or 
minimum c 
defined by 
minimum distance method. The distance between clusters Cj and Cj is 

Dist(Ci,Cj) = min dist(X,Y). 

The single linkage method builds clusters hierarchically starting from 
the most similar cluster pairs. The distance between two clusters is defined 
as the distance between the two closest data objects, one from each cluster. 
Unfortunately, the single linkage method suffers from a chaining effect [110], 
in that it has a tendency to produce straggly and elongated clusters [74]. 
One pair of close data objects can cause two clusters to be merged although 
other data objects are far away from each other. 



Clustering: Hierarchical Algorithms 113 

Algorithm 9 Agglomerative algorithm 
Input: E = {E1,E2,...,En} 
Output: DE 

for i = 1 to n do 
a <- {Ei}; 

end for 

k <— n; 
S < {Ci , . . . , Cn); 
D £ ^ (d,k,S); 
repeat 

Dist <— ComputeDistance(S); 
d <— oo; 

for i = 1 to A; — 1 do 
for j = i + 1 to k do 

if Dist(i,j) < d then 
d <— Dist(i,j); 
u +— i; 
v <-j; 

end if 
end for 

end for 
k^k-1; 

b < D U Lsnew C u ^vS 

DE^DE U(d,k,S); 
until /c = 1; 

Example 8: Suppose a market consulting company wishes to group 
customers based on their age and loyalty to grocery brands. Table 10 shows 
the sample data from the customer survey. 

Table 10. Sample data for Example 8. 

ID E l E2 E3 E4 E5 

Age 20 30 40 50 60 
Brand Loyalty (%) 40 64 55 74 85 



114 H. Liu 

Cluster ID 

C2 = {E2> 

C3 = {E3> 

C4 = {E4} 

C5 = {E5} 

C1={E1} 

26.0 

25.0 

45.3 

60.2 

C2 = (E2) 

13.5 

22.4 

36.6 

C3 = {E3} 

21.5 

36.1 

C4 = (E4> 

14.9 

Cluster ID 

C2 - {E2, E3) 

C3 = {E4> 

C4 = {E5} 

C1={E1) 

25.0 

45.3 

60.2 

C2 = {E2, E3} 

21.5 

36.1 

C3 = {E4} 

14.9 

Iteration 1 
d=13.5, /c=4, /(={{E1}, 
{E2, E3}, {E4}, {E5}} 

Iteration 2 
D/'s/(C1,C2) = mm{26.0, 25.0} = 25.0 
Dist(C2, C3) = m/n{22.4, 21.5} = 21.5 
Dfe[(C2, C4) = m/n{36.6, 36.1} = 36.1 
d=14.9, k = 3, K={{E1}, {E2, E3}, {E4, E5}} 

Cluster ID 

C2 = {E2, E3} 

C3 = {E4, E5) 

C1={E1} 

25.0 

45.3 

C2 = {E2, E3} 

21.5 

Iteration 3 
D/sf(C1, C3) = m/n{45.3, 60.2} = 45.3 
D/sf(C2, C3) = mm{21.5, 26.1 } = 21.5 
d = 21.5, k = 2, K = {{E1}, {E2, E3, E4, E5}) 

Cluster ID 

C2 = {E2, E3, E4, E5) 

C1 = {E1> 

25.0 

Iteration 4 
Dist(C1, C2) = min{25.0, 45.3} = 25.0 
d = 25.0, k = 1, K = {{E1, E2, E3, E4, E5}} 

(a) Iterations 

0 • 

/ 
/ - r , 
( 

v ^ - ~ _ _ _ „ 

, 

^/" 
' 4T^r^ 
(^ . 
1 --^ 

__——-"""̂  
— . 

^^^ - - — ^ 
t„ y) 
*~-^v/ 

\ ^y 
T^^y 

30 40 50 60 70 

Brand loyalty (%) 

(b) Clusters (c) Dendrogram 

Fig. 30. An example for the single linkage method. 

Figure 30(a) illustrates iterations of the agglomerative algorithm using 
the single linkage method to obtain the dendrogram for the sample data 
given in Table 10. Figure 30(b) shows the clusters formed in each iteration, 
and Figure 30(c) gives the resulting dendrogram. 

3.2. The Complete Linkage Method 

The complete linkage method is also called the farthest neighbor or maxi­
mum distance method. The distance Dist(Ci,Cj) between two clusters d 
and Cj is defined as the longest distance from any data object of one cluster 



Clustering: Hierarchical Algorithms 115 

to any data object of the other cluster: 

Dist{CuCj) max dist(X,Y). 
xeCi,YeCj 

The complete linkage method works in the opposite manner to the single 
linkage method. As a result, the complete linkage method produces tightly 
bounded clusters [ll]. 

Example 9: For the same sample data given in Example 8, Fig. 31(a) 
illustrates iterations of the agglomerative algorithm using the complete 
linkage method to obtain the dendrogram. Figure 31(b) shows the clusters 
formed in each iteration, and Fig. 31(c) gives the resulting dendrogram. 

Cluster ID 

C2 = {E2} 

C3 = {E3} 

C4 = {E4} 

C5 = {E5} 

C1 ={E1} 

26.0 

25.0 

45.3 

60.2 

C2 = {E2} 

13.5 

22.4 

36.6 

C3 = {E3} 

21.5 

36.1 

C4 = {E4} 

14.9 

Cluster ID 

C2 = {E2, E3} 

C3 = {E4} 

C4 = {E5} 

C1={E1} 

26.0 

45.3 

60.2 

C2 = {E2, E3} 

22.4 

36.6 

C3 = {E4} 

14.9 

Iteration 1 
d=13.5, <f = 4, K={{E1}, 
{E2, E3}, {E4}, {E5}} 

Iteration 2 
Dfef(C1,C2)= max{26.0, 25.0} = 26.0 
Dist(C2, C3) = max{22.4, 21.5) = 22.4 
Dist(C2, C4)= max{36.6, 36.1} = 36.6 
d=14.9, k = 3, K = {{E1}, {E2, E3}, {E4, E5}} 

Cluster ID 

C2 = {E2, E3} 

C3 = {E4, E5} 

C1 ={E1} 

26.0 

60.2 

C2 = {E2, E3} 

36.6 

Iteration 3 
D/sf(C1,C3)= max{45.3, 60.2} = 60.2 
D/sf (C2, C3) = max{22.4, 36.6} = 36.6 
d=26.0, k = 2, / f={ {E1, E2, E3}, {E4, E5}} 

Cluster ID 

C2 = {E4, £5} 

C1 ={E1,E2, E3} 

WS>-

Iteration 4 
D/s((C1, C2) = max {60.2, 45.3} = 60.2 
d=60.2, k=-\, K={{E1, E2, E3, E4, E5}} 

(a) Iterations 

(b) Clusters (c) Dendrogram 

Fig. 31. An example for the complete linkage method. 



116 H. Liu 

3.3. The Average Linkage Method 

The average linkage method is a compromise between the single linkage 
method and the complete linkage method. It avoids the extremes of large 
or compact clusters. The distance Dist(Ci, Cj) between clusters C; and Cj 
is defined by 

_ ExecXYec3dist(X,Y) 
Dlst^»C3)- \G\x\Cj\ 

where \C^\ is the number of data objects in cluster C^. 
The average linkage method computes the distance between two clusters 

as the arithmetic average of distances between all the data objects in one 
cluster and all the data objects in the other. An illustration of this method 
is given in Fig. 32(a). 

The average linkage method is unweighted in that all data objects 
receive equal weight in the computation of distances between clusters. In 
some cases, it may occur that different groups of data objects are unequally 
sampled in the population. Thus, the proportion of each group in the sam­
ple does not reflect its proportion in the population. In this situation, the 
weighted arithmetic average clustering, WPGMA, is often used. For more 
information about WPGMA algorithms, refer to [139]. 

3.4. The Centroid Method 

The centroid linkage method is also a compromise between the single linkage 
method and the complete linkage method. In this method, the mean clus­
ter position, centroid, is determined by averaging the positions of all data 
objects within the cluster. A cluster centroid is the typical data object of 
the cluster, whether it exists or not. Given a cluster Cj with n data objects 
Xi,..., Xn. Let m be the number of dimensions of each data object. The 

Distance between Clusters = (d, + d2 + d3 + d4) / 4 Distance between Clusters 

o 
\ o Q / 

Cluster 2 Cluster 1 

(a) (b) 

Fig. 32. (a) Average linkage distance; (b) centroid distance. 

file:///G/x/Cj/


Clustering: Hierarchical Algorithms 117 

centroid of cluster d is defined as Xc = ( c i , . . . , cm), with 

1 n 

n 
fc=i 

where Xkj is the j t h dimension of the kth data object in the cluster d. 
With the centroid method, the distance between two clusters is defined 

as the distance between the pair of cluster centroids. An illustration of the 
centroid linkage method is given in Fig. 32(b). The main difference between 
the average linkage method and the centroid linkage method is that in the 
former, the distance is an arithmetic average, while in the latter the distance 
is a geometric average. 

If the sizes of two clusters to be merged are very different, the centroid of 
the newly formed cluster will be close to that of the larger cluster and may 
remain within that cluster. This is a disadvantage of the centroid method. 
Gower suggested an alternative strategy, called the median method. The 
median method could be made suitable for distance measuring in such a 
situation [57]. 

3.5. The Ward Method 

Ward proposed a clustering method to form clusters in a manner that min­
imizes the information loss associated with each grouping [148]. The infor­
mation loss is defined in terms of the Error Sum of Squares (ESS). Let 
X be a set of data objects, X = {X\,... ,Xn}. Each data object has m 
dimensions, Xi = (Xa,..., Xim). For a set of clusters C = { C i , . . . , CK} 
of X, where K is the number of clusters, the ESS for each cluster Ck is 
defined as 

m 

ESS(Ck) = 2_j / X-Xjj ~ Xkj) • 
Xieckj=i 

Xkj is the cluster mean of the j th dimension, defined as 

1 M x,ecfc 

where \Ck\ is the number of data objects in cluster Ck-



118 H. Liu 

The ESS for the set of clusters C is defined as the sum of ESS of all 
clusters: 

K K m 

Ess(C) = YtESS(ck) = J2 E D ^ y - ^ - ) 2 -
fc=l fe=lXj6Ct j = l 

The clustering procedure using the Ward method has a similar structure 
with agglomerative algorithms using other methods (e.g., the single linkage 
method and the complete linkage method) discussed above. However, the 
Ward procedure computes the ESS instead of distances between clusters in 
each iteration as the criteria for merging clusters. 

4. Divisive Hierarchical Algor i thms 

The divisive hierarchical clustering is a less common top-down clustering 
process. It works in a similar way as agglomerative clustering but in the 
opposite direction. Divisive hierarchical clustering starts with a single clus­
ter containing all data objects. The initial cluster is divided into two clusters 
such that the data objects in one cluster are far from data objects in the 
other. The method then successively splits resulting clusters until each data 
object is in its own cluster. 

Two types of divisive hierarchical clustering are monothetic methods and 
polythetic methods. The monothetic methods divide data objects based on 
the processing of a single specified attribute, while the polythetic methods 
are based on values of several attributes. Monothetic methods are generally 
more efficient than the corresponding polythetic methods, but tend to give 
poor results. 

The DIANA algorithm is one of the most well-known divisive hierarchi­
cal clustering algorithms. It was introduced by Kaufmann and Rousseeuw 
[81] and has been implemented in many statistical analysis packages. The 
DIANA algorithm is based on the distance between an object Xi and a 
cluster Cfe. The distance is defined as 

D(Xi,Ck) 

\ck\ 
j±- J2 distiXuXj), XiiCk. 

XjECk 

Again, \Ck\ is the number of data objects in cluster Ck. The DIANA algo­
rithm can be summarized as follows. 



Clustering: Hierarchical Algorithms 119 

Algorithm 10 DIANA algorithm 
Input: E = {E1,E2,...,En} 

Output: DE 

d <— oo ; 

fc<- 1; 
S^{{E1,E2,...,En}}; 
DE^- (d,k,S); 

repeat 
A <— the cluster containing two data objects with the longest distance 
dist; 
B^%; 
S^S-A; _ 
Xi <— data object in A with maximum D(Xi, A); 
A^A- {Xt}; 
B^BU {Xi}; 

repeat 
for all data object Xj in A do 

e{j)^-D{X3,A)-D{XJ,B); 
end for 
if 3 e(j) > 0 then 

Xk <— data object in A with maximum e(j); 
A^A-{Xk}; 
B^BU{Xk}; 
split <- TRUE; 

else 
split <- FALSE; 

end if 
until spHf = = FALSE; 

d <— disi; 
fc < - fc + 1; 
S f - 5 U A U 5 ; 
DE <- DE U{d,k,S); 

until k = n; 

Algorithm 10 starts with all data objects in one cluster and iteratively 
divides one cluster into two smaller clusters until each data object is in its 
own cluster. In each iteration, the algorithm selects one cluster containing 
two data objects with the longest distance among the current set of clusters. 



120 H. Liu 

Then the algorithm moves as many data objects as possible to a new cluster 
from the selected cluster, thus one cluster is divided into two clusters. 

5. Summary 

Most implementations of the hierarchical algorithms are agglomerative for 
efficiency reasons. Let n be the number of data objects in a clustering 
task. In the agglomerative algorithm, the first step considers all possible 
pairs of clusters. Each cluster has only one data object initially, so the 
time complexity is 2~ = 0(n2). In the divisive algorithm, the first 
step must consider all possible divisions of the entire data objects into two 
nonempty sets. The time complexity is 2 n _ 1 —1 = 0(2n). The agglomerative 
hierarchical clustering can also produce an ordering of the data objects, 
which may be useful for data display and information discovery. 

In recent years, hierarchical clustering has been widely used in pattern 
recognition [161], image processing [136], document classification [154], and 
many other areas. Although hierarchical clustering is a useful way of explor­
ing data, it is still very ad hoc. Good results are often dependent on choosing 
the appropriate data representation and distance matrix. As shown in pre­
vious examples, the use of different distance metrics may yield different 
dendrograms. Performing multiple experiments and comparing the results 
is recommended for achieving better clustering results. 



CHAPTER 11 

CLUSTERING: PARTITIONAL ALGORITHMS 

Kevin E. Heinrich 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
heinrich@cs.utk. edu 

Overview 

This chapter introduces partitional clustering and briefly outlines several 
partitional algorithms including squared error clustering, nearest neighbor 
algorithms, partitioning around medoids, and self-organizing maps. Some 
advantages and shortcomings of each method are mentioned, and improve­
ments to each method are discussed when applicable. An overview of related 
applications is presented. 

Keywords: if-means, fc-medoids, nearest neighbor clustering, partitional 
clustering, pattern recognition, squared error criterion, unsupervised 
learning. 

1. Introduction 

Partitional clustering algorithms group data into one set of clusters. Clus­
ters are formed in an unsupervised manner based on the similarity of pat­
terns within a data set with respect to some criterion function. Often, the 
aim of partitional clustering algorithms is to minimize the average variance 
between intra-cluster patterns while maximizing the average inter-cluster 
distance. Once an acceptable clustering has been produced, the data can 
be abstracted to reveal tendencies within the original data set. 

121 

mailto:heinrich@cs.utk


122 K. E. Heinrich 

2. Motivation 

The curse of dimensionality is a common problem in data mining. As the 
size and complexity of data increases, algorithms intended to handle that 
data perform ineffectively. Such is also the case with partitional algorithms. 
Many popular algorithms have been developed to cluster data based on 
different criteria; however, as data size and complexity increases, trade-offs 
must be made between solution quality and computation time. 

This chapter aims to introduce the reader to a small subset of partitional 
clustering algorithms. Namely, squared error algorithms, nearest neighbor 
algorithms, partitioning around medoids, and self-organizing maps will be 
briefly examined. Other techniques such as minimum spanning trees [66], 
evolutionary algorithms [l], bond energy algorithms [42], stochastic con-
nectionist approaches [10], and fuzzy clustering methods [25] will not be 
covered. For general information about these and other clustering meth­
ods, the reader is directed to [66]. 

3. Partitional Clustering Algorithms 

Following the terminology introduced in Sec. 3, partitional clustering algo­
rithms attempt to cluster patterns based on some distance metric. As such, 
the clustering problem becomes an optimization problem with respect to 
that metric. In general, let C denote a partition where Ci denotes the ith 
cluster within that partition. The ith pattern Xi IS cL member of the entire 
data set X. Most partitional clustering algorithms assume that the number 
of desired clusters, k, is known a priori. 

3.1. Squared Error Clustering 

Given an initial partition of k clusters, squared error clustering algorithms 
attempt to repartition the data to minimize the squared error associated 
with that partition. The squared error for a clustering C of size k on a 
pattern set X is given by 

k nj 2 

e*(X,C) = J2J2\HJ)~ci\ > 

where j indicates the cluster number and rij, x\ , and Cj denote the number 
of elements, the ith pattern in cluster j , and the centroid for cluster j , 
respectively [74]. 



Clustering: Partitional Algorithms 123 

Squared error methods are iterative methods that terminate based 
on some stopping criterion. A common stopping criterion is met when 
the squared error between successive iterations is below some predefined 
threshold. Cluster membership convergence is another common criterion, 
while limiting the number of maximum allowable iterations is a practi­
cal approach. Other stopping criteria or a hybrid of the aforementioned 
approaches are all feasible. 

Algorithm 11 Squared Error Clustering Algorithm 
Input: Number of clusters k 

Output: Clustering C 

Choose an initial partition of the data into k pattern clusters; 
Calculate initial k cluster centers; 

while some stopping criterion is not met do 
Assign each pattern to the cluster that has the closest center; 
Calculate new cluster centers based on the new cluster assignments; 
Calculate squared error; 

end while 

Squared error clustering methods follow the general procedure outlined 
in Algorithm 11 (see also [42]). The most common squared error clustering 
method is the k- means clustering algorithm. The general fc-means algorithm 
differs from the squared error clustering method only in the initialization 
phase; k cluster means are chosen and patterns are assigned to its closest 
mean. The standard cluster mean is defined as 

•> i = l 

Since each pattern in the data set is compared against each mean, the 
time complexity is O(kn) per iteration, where n is the total number of 
patterns in the data set. X-means may converge to a locally but not globally 
optimal solution dependent upon the choice of the initial cluster means as 
demonstrated in Fig. 33. 

The calculated means at each step are denoted by the black points if 
they do not coincide with patterns. If k = 3 and the initial cluster means 
are chosen to be A, B, and C, then the final partition will be {{A}, {B, 
C}, {D, E, F, G}} (denoted by the ovals). Changing the initial means 



124 K. E. Heinrich 

• F 

G 

A c 

I ' A V ' ' S ' - ^ 

(a) First iteration of k-means (b) Final partition produced by fc-means 
on a sample data set. compared to the optimal clustering. 

Fig. 33. Two iterations of fc-means converging to a locally optimal solution for an 
arbitrary dataset of seven patterns. 

to B, D, and F will yield the optimal partition of {{A, B, C}, {D, E}, {F, 
G}} (denoted by the rectangles). 

Since fc-means is based on centroids, it is sensitive to noise and outliers. 
Filtering is an obvious although impractical approach to handle this prob­
lem. [108] proposes the use of feature weighting and distortion measures 
to produce a partition that will minimize average within-cluster variance 
while simultaneously maximizing the average between-cluster distance. This 
method is shown to be effective but dependent upon the choice of appro­
priate feature weights. 

There are variants of the fc-means algorithm that utilize distance func­
tions other than the Euclidean distance. For example, [158] proposes the 
distance function 

d{x,y) = l~e-mx-yl\\ 

where (3 is a positive constant. This distance measure is shown to be robust 
to the outlier and noise problem. In addition to the new distance metric, 
alternative methods are proposed that weight patterns based on the pat­
tern distance to its centroid [157]. In effect, outliers are downweighted with 
respect to the centroid, making the overall algorithm more robust to noise 
and outliers. 

As its name implies, fc-means assumes that the number of clusters k 
is known beforehand and that a mean can be computed. In many real 
world applications, the optimal value of k is not known. To overcome this, 
many algorithms cluster several times with several different values of k. 
Since means are not defined over categorical data, most /c-means algorithms 

> c 



Clustering: Partitional Algorithms 125 

assume data is not categorical. Another variation, fc-modes, can be used to 
accommodate categorical data. 

As previously shown in Fig. 33, fc-means is sensitive to the initial par­
tition choice and may converge to a locally optimal solution instead of a 
globally optimal one. To help alleviate this, many initialization methods 
have been proposed. The Random Approach (RA) is the most common ini­
tialization method, where the data set is partitioned into k clusters chosen 
at random. The Forgy Approach (FA) chooses k patterns from the database 
at random to represent cluster means and assigns the remaining patterns 
to the cluster represented by the closest mean. Similar to the FA, the Mac-
queen Approach (MA) assigns the remaining patterns in some predefined 
order. After each pattern is assigned to a cluster, that cluster centroid 
is recalculated. A more complex initialization procedure is the Kaufman 
Approach (KA), which successively selects k representative instances of the 
data set. The complete KA algorithm can be found in [121]. The same 
authors performed an empirical study on these popular initialization meth­
ods and concluded that KA and RA are the two most effective methods 
for fc-means in terms of both robustness and convergence speed, with KA 
slightly outperforming RA. 

[98] proposes a globally optimal fc-means algorithm and several variants 
that are invariant to the initial partition. This algorithm finds the optimal 
centroid for one cluster. Using this information, the "optimal" partition for 
k = m is computed by performing n runs of fc-means with initial seeds x% 
for i = 1 , . . . , n and the centroids of the previous iteration. This iterative 
method exhaustively finds partitions of size less than fc to find a globally 
optimal solution to the fc-means problem. This result has been shown to 
yield experimentally optimal results, but it has not yet been proven to be 
theoretically optimal. 

[74] proposes another improvement upon fc-means called the ISODATA 
algorithm. The ISODATA algorithm permits the merging and splitting of 
clusters depending on the distance between cluster means and the variance 
within a cluster. Two clusters can be merged if their centroids are suffi­
ciently close, and a cluster can be split if the variance of the patterns within 
it are over a predefined threshold. For example, given the poor choice of 
initial partition, the final cluster {B, C} in Fig. 33(b) would be merged with 
{A} while {D, E, F, G} would be split to produce the optimal partition. 
The ISODATA algorithm is more likely than fc-means to find a globally 
optimal solution regardless of the choice of initial partition; however, that 
likelihood is dependent upon the choice of threshold values. 



126 K. E. Heinrich 

3.2. Nearest Neighbor Clustering 

Nearest neighbor clustering algorithms use the properties of distance metrics 
introduced in Sec. 3 to form clusters. A nearest neighbor of x G X is a 
pattern a G X such that for all b G X where a ^= b, 

d(x,a) < d(x, b), 

where d(a, b) denotes the distance between patterns a and b. Likewise, a 
u-nearest-neighbor set Nu(x) = {a\,a,2, • • •, au} must satisfy 

d(x,cii) < d(x,b), 

for all b G X — Nu(x). Nearest neighbor clustering occurs in the steps 
outlined in Algorithm 12 [42]. 

Algorithm 12 Nearest Neighbor Clustering Algorithm 
Input: Threshold t 
Output: Clustering C 

fc<- 1; 
Select x G X and assign x to cluster C\; 

while all patterns have not been clustered do 
Select an unassigned pattern a G X; 
Find a clustered pattern x G Cj where d(a,x) is the smallest; 
if d(a,x) < t then 

Assign a to Cj\ 
else 

Increment k and assign a to the new cluster Ck', 
end if 

end while 

One variation to this algorithm ensures that a cluster remains a 
u-nearest neighbor set when adding a new pattern to it. That is, ensure 
that a new pattern is within the threshold distance to all elements within 
the cluster rather than just one pattern. Such a variation, however, may be 
subject to the order in which patterns are considered, as demonstrated in 
Fig. 34. 

If A is the first pattern clustered, then the final clusters produced can 
be either {{A, B}, {C, D}} (denoted by solid ovals) or {{A, D}, {B, C}} 
(denoted by dashed ovals) depending on which pattern is considered next. 



Clustering: Partitional Algorithms 127 

Fig. 34. Nearest neighbor may be sensitive to the order in which patterns are considered. 
Assume that d(A, B) = d(A, D) = d(B, C) = d(C, D) < t < d{A, C) = d(B, D). 

If the aforementioned nearest neighbor algorithm that does not consider 
u-nearest neighbors is followed, only one final cluster will be produced con­
taining all four patterns. 

Many storage structures have been proposed for nearest neighbor clus­
tering. Quad trees, kd-trees, R-trees, R*-trees, X-trees, and M-trees are 
several common structures that address the nearest neighbor clustering 
problem. The reader is directed to [f] for further discussion about these 
techniques. Assuming the data can be represented in high-dimensional vec­
tor spaces, most storage structures partition the pattern space into regions. 
If there is a possibility that a desired pattern is in a particular region, then 
the entire region must be searched. As a result, searching through these tree 
structures can be inefficient. Unfortunately, no universally efficient storage 
solution has been found yet, since all current methods degenerate as the 
number of dimensions increases. 

3.3. Partitioning Around Medoids 

Similar to the fc-means algorithm, the PAM (partitioning around medoids) 
or k-medoids algorithm iteratively forms clusters around predefined 
medoids. A medoid can be thought of a centermost point within a given 
cluster, or as a median in higher-dimensional space. Rather than computing 
new means, PAM attempts to improve the clustering by replacing existing 
medoids with other patterns based on a cost function. The total cost of 
swapping medoid x» with non-medoid Xh is given by 

n 

1 L'ih = / y L'jih : 

3 = 1 



128 K. E. Heinrich 

where Cjih denotes the cost change for pattern Xj associated with the 
medoid swap. [42] defines cost as "the change to the sum of all distances 
from items to their cluster medoids" and further suggests the PAM algo­
rithm requires the steps given in Algorithm 13. 

Algorithm 13 Partitioning Around Medoids 
Input: Number of clusters k 
Output: Clustering C 

Select k medoids from X; 
repeat 

Calculate TCih for each non-medoid Xt and each medoid Xi\ 
Choose i, h where TCih is smallest; 
if TCih < 0 then 

Replace medoid x, with Xh\ 
end if 

until no swap has occurred in the current iteration; 
Assign each non-medoid Xi to its closest medoid; 

To demonstrate the application of PAM, an example from [42] will be 
examined. The data in Table 11 represents a distance matrix on a simple 
data set. If the initial medoids chosen are A and B, then the clusters formed 
about them are {A, C, D} and {B,E}, where C and E are assigned arbi­
trarily since they are equidistant to both medoids. 

The cost associated with changing a medoid with every other pattern 
in the data set must be examined. For example, to find TCBE, the total 
cost of swapping medoid B with medoid E, clusters must be formed around 
hypothetical medoids A and E. The resulting clusters are {A, B, C, D} and 
{E}. The cost change for each pattern must be examined based on the 

Table 11. Distances between 
patterns in a sample data set. 

Item 

A 
B 
C 
D 
E 

A 

0 
1 
2 
2 
3 

B 

1 
0 
2 
4 
3 

C 

2 
2 
0 
1 
5 

D 

2 
4 
1 
0 
3 

E 

3 
3 
5 
3 

n 



Clustering: Partitional Algorithms 129 

old clustering and the hypothetical clustering. A remains a medoid, so no 
change occurs. B loses its medoid assignment and incurs the 1 unit cost 
to A. C and D remain the same distance to the medoid A, so no cost 
change is incurred. E becomes a medoid, so its former cost of 3 is now set 
to zero. Thus, the total cost of swapping medoid B for medoid E is 

TCBE = CABE + CBBE + CCBE + CDBE + CEBE 

= 0 + 1+ 0 + 0+(-3) = -2. 

Continuing the same computation for all one-swap medoid combina­
tions, one finds that TCAC = TCAD = TCBC = TCBD = TCBE = —2. 
Since these values are all minimum with respect to the original medoids, 
the choice of new cluster medoids is arbitrary. In fact, the clusters produced 
by PAM are dependent upon the arbitrary choice of medoids since, in this 
case, all subsequent iterations of PAM will produce non-negative total cost 
change values. 

If the initial choice of medoids is D and E, PAM will converge to similar 
clusters in one iteration. The number of possible medoid swaps, however, 
is limited to swapping E with either A or B. This behavior suggests that 
PAM is not as sensitive as fc-means to the initial partition choice. 

Although PAM handles outliers well, the computation of TC is a 
quadratic cost in the data set size that makes PAM an infeasible algo­
rithm on large data sets. Two PAM-based methods have been developed 
for use specifically with large data sets — CLARA and CLARANS. 

CLARA (Clustering LARge Applications) samples the data set and 
applies PAM to the smaller data set to find optimal medoids for that sample. 
CLARA then clusters the entire data set based on the sample medoids. 
As with other approaches, cluster quality depends greatly upon the initial 
sample chosen. To help eliminate sample bias, some CLARA algorithms 
will extract several samples and cluster the data set based on the medoids 
generated by the sample that minimizes the cost function 

Cost(M,X) = T.Z*d{xUTep{M,Xi)) ^ ( 3 f i ) 

where M is the set of medoids and rep(M, Xi) returns the medoid in M 
closest to Xi. In general, smaller sampling sizes will result in greater effi­
ciency at the cost of clustering quality. 

CLARANS (Clustering LARge Applications based upon raNdomized 
Search) finds fc-medoids by searching a graph [113]. Let G = (V, E) be 



130 K. E. Heinrich 

a graph. A vertex v e V represents a set of fc patterns from X, where the 
patterns are the selected medoids. An edge (u, v) G E is drawn if the sets 
represented by u and v differ by only one object. Equivalently, an edge 
is drawn if \MU n Mv\ = k — 1, where Mu and Mv represent the sets of 
k elements associated with nodes u and v. By construction, each node has 
k(n — k) neighbors, representing a possible clustering of fc-medoids, and has 
a cost associated with it as defined in Eq. (36). The CLARANS algorithm 
is shown in Algorithm 14. 

CLARANS uses a serial randomized search — it searches random neigh­
bors of a node M until a node with a lower cost has been found. If no such 
node exists (i.e., the current node M is better than all its neighbors), then 
the set of medoids represented by M is a locally optimal solution. For many 
applications, CLARANS outperforms CLARA in both cluster quality and 
execution time. 

Algorithm 14 CLARANS Algorithm 
Input: Number of clusters k 
Output: bestnode, which represents fc-medoids (from which a clustering C 

can be produced) 

mincost <— oo; 
for i = 1 to numlocal 

Randomly select a node in the graph to be the current node M; 

while j > maxneighbor 
Randomly select a neighbor N of M; 
if Cost(N, X) < Cost(M, X) then 

M <— N; (Assign N as the current node M) 

else 

j ^ i + i; 
end if 

end while 
if Cost(M,X) < mincost then 

mincost ^~ Cost{M, X); 
bestnode <— M; 

end if 
end for 
return bestnode; 



Clustering: Partitional Algorithms 131 

The two common parameters to CLARANS are numlocal and 
maxneighbor. CLARANS will find locally optimal solutions to numlocal 
samples in an attempt to discover the globally optimal solution. On the 
other hand, the parameter maxneighbor indicates the number of neighbors 
to examine from a given node. If maxneighbor is k{n — k), then CLARANS 
will perform an exhaustive search and will mimic PAM) Similar to CLARA, 
if maxneighbor and numlocal increase, solutions will tend to converge to 
the optimum at the cost of computation time. Unfortunately, due to the 
random search, an optimal clustering cannot be guaranteed. For more infor­
mation regarding CLARA, CLARANS and other partitional algorithms 
designed for large data sets, the reader is directed to [150]. 

3.4. Self-Organizing Maps 

A self-organizing map (SOM) or self-organizing feature map (SOFM) is 
a competitive unsupervised learning approach based on artificial neural 
networks. An artificial neural network (ANN) consists of neural processing 
elements (neurons) that are connected through directed links. Assuming 
patterns consist of n features, each neuron i is assigned an n-dimensional 
weight vector mi. Neurons in an ANN are adaptive in that the output of 
any given neuron depends on the input parameters. In general, ANNs learn 
and adapt to data through a training phase. The benefits of ANNs as well 
as more detailed information on their function is given in [78]. 

Since SOMs are a competitive approach, the winner, c, of the training 
iteration is defined as having the weight 

mc(t) = min||x(t) -m;(£) | | , 
i 

where c denotes the neuron with the lowest activation. A neuron's activation 
is typically the Euclidean distance between the weight vector and the input 
pattern. The adaptation of the winner is achieved by 

mt(t + 1) = m*(i) + a(t) x hci(t) x \x{t) - m^t)], (37) 

where a denotes the learning rate and hci(t) is a neighborhood function. 
Both the learning rate and neighborhood function decrease over time. Equa­
tion (37) effectively pulls the winner and the neurons in its vicinity closer 
to the input pattern to achieve adaptation and eventual clustering. 

JThis assumes that the implementation guarantees that a visited node will not be 
revisited by the same current node. 



132 K. E. Heinrich 

The Kohonen self-organizing map is one of the most common examples 
of a SOM. A Kohonen map consists of one input layer, one output layer, 
and a two-dimensional array of nodes called the competitive layer. Each 
node in the input layer is connected to each node in the competitive layer,' 
and all competitive nodes produce an output. After training and adaptation 
occurs, nodes from the competitive layer cluster toward particular patterns 
in the training data so that they will produce the best clusters for the actual 
data set with respect to the training data. For more information regarding 
SOMs, the reader is directed to [7, 87, 116]. 

4. Current Applications 

Partitional clustering has roots in machine learning, pattern recognition, 
and image analysis. Given the informative nature of the resulting clusters, 
partitioning has practical applications in diverse fields. [75] suggests that 
partitional clustering can help with medical diagnosis and prognosis from 
medical imaging data as well as from genomic microarray data. Other appli­
cations exist in the fields of investigative psychology and financial decision 
making. Studies have been performed that examine the effect of company 
background statistics on revenue. Numerous applications in textual clus­
tering and information retrieval are presented by [158]. 

5. Summary 

Grouping data based on some metric has applications in many fields. Unfor­
tunately, this problem is non-trivial when applied to large data sets with 
many attributes. Although partitional clustering is considered an unsuper­
vised method, clustering large data sets requires expert knowledge about 
the data in order to choose the correct clustering algorithm, distance 
metric, and algorithm parameters. Even with a good choice of algorithm 
and parameters, many algorithms sacrifice solution quality for speed or 
vice versa, and the need for tractable, robust clustering algorithms becomes 
apparent. 



CHAPTER 12 

CLUSTERING: LARGE DATABASES 

Farial Shahnaz 
Information International Associates, Inc. 

P.O. Box 16221, Knoxville, TN 37996, USA 
shahnazQcs. utk. edu 

Overview 

This chapter describes the application of clustering algorithms to large 
databases. The basic requirements for efficient and scalable clustering algo­
rithms and the three possible approaches to fulfilling these requirements are 
provided. BIRCH, DBSCAN, and CURE — three major algorithms that 
implement the different approaches to scalable clustering — are discussed 
in detail. 

Keywords: Scalablility, divide-and-conquer, order-dependent, order-
independent, density-reachable, BIRCH, DBSCAN, CURE. 

1. Introduction 

Clustering is regarded as a form of classification except unlike classification, 
no prior knowledge of the data (i.e., training set) is available. The most 
commonly used methods for clustering have computational complexities 
of 0(n 2) and are severely constrained by memory size. In other words, 
clustering methods require n scans for a data set of n elements, and in order 
to efficiently perform the passes with minimum I/O time, the entire data set 
needs to be present in main memory. Although this memory requirement 
does not pose a problem for small databases, in the case of large databases 
that contain millions of records, this requirement is a major problem. Such 
large databases require linear approaches to clustering that do not involve 
loading entire datasets into the main memory of a computer. 

133 



134 F. Shahnaz 

2. Motivation 

Clustering provides a general overview of a database by constructing a 
measurement of similarities (or dissimilarities) for the records stored in 
the database. In the absence of any such similarity measures, abstracting 
features or common traits from the database becomes a truly daunting task; 
however, it is a task that is essential to the management and manipulation 
of any data collection. Since the traditional clustering algorithms described 
in the previous chapter are inadequately equipped to perform this task on 
large databases (i.e., data elements numbering in the millions), the need 
for scalable clustering techniques capable of overcoming the impasse over 
memory and computational complexity has become imperative. 

The following sections in this chapter describe the basic requirements for 
a scalable clustering algorithm, the three main approaches to implement­
ing the requirements, and the three most widely used algorithms, namely 
BIRCH, DBSCAN, and CURE, for clustering large databases. 

3. Requirements for Scalable Clustering 

The primary requirement for methods that can cluster large databases (i.e., 
scalable clustering methods), is to have linear computational complexity. It 
has been proposed that a successful clustering algorithm for large databases 
should [42]: 

(i) Require no more (preferably less) than one scan of the database. 
(ii) Have the ability to provide status and "best" answer so far during the 

algorithm execution. This is sometimes referred to as the ability to be 
online. 

(iii) Be suspendable, stoppable, and resumable. 
(iv) Be able to update the results incremental as data are added to or 

removed from the database. 
(v) Work with limited memory. 

(vi) Be capable of performing different techniques for scanning the 
database. This may include sampling. 

(vii) Process each [record] only once. 

Different clustering algorithms apply different techniques to achieve a 
successful implementation of the mentioned requirements. These algorithms 
can be categorized under three major approaches to scalable clustering that 
are described in the following section. 



Clustering: Large Databases 135 

4. Major Approaches to Scalable Clustering 

Currently there are three general approaches to clustering large 
databases [74] — divide-and-conquer, incremental, and parallelization. For 
the divide-and-conquer approach, the entire data set is stored in secondary 
memory and subsets of the data are clustered independently using tra­
ditional algorithms. Clustering of the subsets is followed by a merging 
step that constructs a clustering of the entire data set. In the incremen­
tal approach to clustering, the data set is stored in secondary memory, 
cluster representations are stored in main memory, and each record in the 
data set is transferred one at a time to the main memory for clustering. 
The parallel method to clustering is a variation on the divide-and-conquer 
approach and is only used when parallelism provides faster results [77]. 

4.1. The Divide-and-Conquer Approach 

Given a large data set, the divide-and-conquer approach creates several 
smaller subsets and performs one of the classical clustering techniques on 
each of those subsets. Assume a data set D has n records, and is stored in 
secondary memory such as a disk drive. The data set is then divided into p 
subsets, where the optimal value of p is chosen according to the clustering 
algorithm used. The cardinality of each of the subsets pi is n/p. Each pi 
is sequentially transferred into main memory and clustered into k groups, 
and a representation or sample of each of the k clusters for pi is retained 
in main memory. After clustering all p subsets, there are kp sample records 
stored in main memory. Clustering is again performed on these kp records 
to create k clusters, the labels of which are then used to cluster the original 
data set. Figure 35 provides a visual representation of this method [74]. 

This clustering method assumes a somewhat high degree of homogeneity 
among the records of each of the pi subsets. If the sample records used in 
the final merging step are not reasonably representative of the subsets, clus­
ters generated by the divide-and-conquer approach could contain significant 
inaccuracies. 

4.2. Incremental Clustering Approach 

The underlying premise of the incremental approach is that records in a 
database can be assigned a cluster label on an individual basis, and once 
a record has been classified, no subsequent operation (performed on other 
records) will change its cluster label. Incremental algorithms involve the 



136 F. Shahnaz 

subset 1 subset 2 subset p 

Fig. 35. Divide-and-conquer approach to clustering. 

following steps [74]: 

(i) Assign the first record to a cluster. 
(ii) Read in the next record and calculate the similarity between the two 

records using some form of similarity measure. If the similarity mea­
surement is within a threshold value set by the user, assign the second 
record to the first cluster. Otherwise, create a new cluster. 

(iii) For each subsequent record, compute the similarity between that 
record and the existing clusters. If the similarity measurement is within 
a threshold value of any of the clusters, assign it to that cluster. 
Otherwise, create a new cluster. 

The most desirable aspect of incremental clustering algorithms is the 
very limited memory usage. However, this approach generates a clustering 
that is order-dependent, which violates one of the important requirements 
for a successful clustering algorithm. A clustering algorithm is order-
independent if the same clusters are formed regardless of the order of how 
the database is accessed. In case of incremental algorithms, the order of 
fetching records from the data set significantly affects the resulting data 
clusters, thereby imposing an additional constraint on the database by 
requiring a rigid ordering of data retrieval. 

4.3. Parallel Approach to Clustering 

Parallel clustering methods take advantage of the inherently parallel nature 
of the divide-and-conquer approach. Given the same dataset D from the 



Clustering: Large Databases 137 

divide-and-conquer algorithm (Fig. 35), a parallel algorithm sends each of 
the p subsets, pi to a separate machine, which generates k clusters for pi 
by the use of some clustering algorithm. Then the representatives of each 
of those k clusters are sent to a machine that performs the merging of the 
pk (p subsets with k clusters each) sample records and generates the final 
cluster labels. With the aid of enhanced clustering algorithms that create 
highly homogeneous clusters, the parallel clustering approach can become 
a very powerful method for clustering large databases. 

In the following sections, the three most commonly used clustering algo­
rithms BIRCH, DBSCAN, and CURE, are described; BIRCH and DBSCAN 
can be considered incremental methods of clustering, while CURE is an 
implementation of the divide-and-conquer approach. 

5. BIRCH 

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is 
an incremental and hierarchical algorithm widely used to cluster large data 
sets that contain metric attributes. A metric attribute is an attribute with 
values that satisfy the requirements of Euclidean space, i.e., self identity and 
triangle inequality. This implies that BIRCH is only applicable to numeric 
data sets. 

In [168], the clustering problem is formalized as follows. Given the 
desired number of clusters k, a data set D of n records with metric 
attributes, and a distance-based measurement function for pairs of records, 
partition the data set into clusters that minimize the value of the measure­
ment function. [168] also introduces the concepts of clustering feature (CF) 
and clustering feature trees, both of which are very crucial components of 
BIRCH. 

Definition 1. A clustering feature or CF is a feature summarizing the 
information about a cluster. Given n records or data points in a cluster, 
the CF is defined as a triple: CF = (n, LS, SS), LS is the linear sum of the 
n data points or the centroid of the cluster, and SS is the square sum of 
the n points or radius of the cluster [77]. 

Definition 2. A CF tree is a height-balanced tree with two parameters B 
(branching factor) and T (threshold value for radius). Every internal node 
of the tree contains at most B entries, each of which has the format [CFi, 
childi}. Here i = 1, 2 , . . . , B, childi is a pointer to the ith child of the node, 
and CFi is the cluster feature of the subcluster represented by the child. 
An external node, or leaf node contains at most L entries of the form [CFi] 



138 F. Shahnaz 

(i = 1,2, . . . ,L), and two pointers "prew" and "next" used to chain all 
the leaf nodes together for effective scans. Like the internal nodes, a leaf 
node is also a representation of a cluster consisting of all the subclusters 
represented by its entries. But the entries in a leaf node must satisfy the 
threshold requirement. 

Algorithm 15 provides the basic steps used in BIRCH to construct the CF 
tree [42]. The size of the tree is a function of T, and the two are inversely 
proportional, meaning the higher the threshold, the smaller the tree. T is 
determined by the page size of the computer as each tree node is required 
to fit into a page [168]. If this requirement is not met, the tree may have to 
be constructed many times in order to provide nodes that can be memory-
resident, resulting in the worst-case time complexity of 0(n 2 ) . In all other 
circumstances, however, BIRCH is linear in both space and I/O time [42]. 
BIRCH also handles the problem of outliers by removing data points found 
in sparsely populated areas of the problem space. 

BIRCH performs well on spherical clusters of uniform size, but it does 
not produce good results when the clusters are of unequal size or of non-
spherical shape (e.g., spiral, cylindrical, ellipsoid) [60]. To overcome these 
issues, a density based approach to clustering is taken in DBSCAN, which 
is discussed in the following section. 

Algorithm 15 BIRCH 
Input: 

D = {ii, £2, • • • ,tn} If set of elements 
T If Threshold for CF tree construction 

Output: 
K I/ Set of clusters 

for each ti in D do 
determine correct leaf node for ti intersection 
if threshold condition is not violated then 

add ti to cluster and update CF triples 
end if 
if room to insert ij then 

insert ti as single cluster and update CF triples 
end if 
else split leaf node and redistribute CF features 

end for 



Clustering: Large Databases 139 

6. D B S C A N 

The DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise) method for clustering entails creating clusters with a minimum size 
and density [42]. As the name suggests, this approach relies on a density-
based notion of clustering and discerns clusters of arbitrary shape in spatial 
databases with noise. The algorithm has two input parameters — MinPts 
and Eps. MinPts is the minimum number of data points in any cluster, 
while Eps is the threshold value or maximum radius of a cluster. N(p), 
the Eps-neighborhood or neighborhood of a point p, consists of all the 
points within Eps distance of p. Point p is directly density-reachable from 
another data point q if p is in N(q), and \N(q) |> MinPts. p is in N(q) 
implies that q is "close enough" to p, and \N(q) |> MinPts implies that 
there is an adequate number of core points close enough to each other [42]. 
Data points that form the main portion of a cluster (i.e., those that are 
close to each other) are referred to as core points, and points that are den­
sity reachable from a core point are considered border points. In DBSCAN, 
the desired number of clusters is determined by the algorithm itself rather 
than being set by the user. Algorithm 16 describes DBSCAN. 

Algorithm 16 DBSCAN 
Input: 

D = {tifa, • • •, tn} II Set of elements 
MinPts If Number of points in cluster 

Eps If Maximum distance for density measure 

Output: 
K = K\, K2, • • •, Kk II Set of clusters 

k = 0 / / Initially there are no clusters 
for i = 1 to n do 

if ti is not in a cluster then 
X = {U\tj is density-reachable from t,} 

end if 
if A is a valid cluster then 

k = k + 1 
Kk = X 

end if 
end for 



140 F. Shahnaz 

The average time complexity of DBSCAN is O(nlgn). However, as there 
are no preclustering step in DBSCAN and the algorithm is performed 
directly on the entire data set, for large data sets DBSCAN could incur 
significant I/O costs. Also, in cases where two clusters are connected by 
a dense string of points, DBSCAN might merge the two clusters and thus 
reduce accuracy of the clustering. The following section includes discus­
sion of CURE, which succesfully handles arbitrary shaped clusters and has 
linear storage requirements and 0(n 2) time complexity [60]. 

7. CURE 

CURE (Clustering Using REpresentatives) is a form of the divide-and-
conquer clustering algorithm that has both a hierarchical and a partition­
ing component [42]. The algorithm is initially performed on a sample set of 
the database. The basic steps for CURE include obtaining a sample set D 
of size n and partitioning D into p subsets, each of which is then partially 
clustered into k groups for some constant k. This clustering is done using a 
hierarchical algorithm and provides a first impression of what the clusters 
should be. Afterwards, outliers are eliminated by the use of two different 
techniques. If a cluster contains no more than one or two data points or 
records, that cluster is removed from the cluster list. The second method 
for outlier detection and removal is used near the very end of the algorithm 
on small clusters. Elimination of outliers is followed by application of the 
earlier hierarchical algorithm to pk records that represent each of the pk 
subsets derived from the initial clustering. The representative points are 
then clustered into k subsets, which are used to cluster the entire database 
on disk. A record in the database is placed in the cluster that has a repre­
sentative point most similar to it. Figure 36 provides a visual representation 
of this method [60]. 

The time and space complexity of CURE can be reduced to O(n) 
with the use of heaps and /c-D trees in the actual hierarchical algorithm. 
This algorithm is presented in Algorithm 17, but the exact algorithms for 

Data —»- f Draw random sample ] —-»- [ Partition sample 1 —»- ( Partially cluster sample 

Label data in disk J I Cluster partial clusters J ( Eliminate outliers 

F ig . 36. Overv iew of C U R E 



Clustering: Large Databases 141 

Algorithm 17 CURE 
Input: 
D = {t\,t-2, • • •, tn} II Set of elements 
k If desired number of clusters 

Output: 
Q If Heap containing one entry for each cluster 

T = build(D) 
Q = heapify(D) // Initially build heap with one entry per item 
Repeat: 
u = min(Q) 
delete(Q, u.close) 
w = merge(u, v) 
delete(T,u) 
delete(T,v) 
insert(T, w) 
for each x in Q do 

x.close = find closest cluster to x 
if x is closest to w then 

w.close = x 
insert(Q, w) 

end if 
end for 
until number of nodes in Q is k 

obtaining the sample data set or for merging the initial clusters are beyond 
the scope of this chapter. 

8. Summary 

Clustering as a means of unsupervised classification and knowledge abstrac­
tion is becoming an essential feature of database management systems. 
The pressing need for clustering extremely large databases has initiated 
the transformation of traditional clustering algorithms into highly effi­
cient algorithms capable of successfully overcoming the memory constraints. 
Besides the three algorithms described in this chapter, several other meth­
ods such as ScaleKM/EM, MAFIA, CHAMEL, ROCK, and WaveCluster 
have been proposed in recent years to cluster large databases, but these 
methods are beyond the scope of this chapter. 





CHAPTER 13 

CLUSTERING: CATEGORICAL ATTRIBUTES 

Olufemi A. Omitaomu 
Department of Industrial & Information Engineering, University of Tennessee 

411 East Stadium Hall, Knoxville, TN 37996-0700, USA 
femi@utk.edu 

Overview 

This chapter describes clustering techniques for categorical data. Cluster­
ing categorical attributes is an important task in data mining; however, it 
has not received much attention. Some of the popular algorithms, such as 
ROCK, COOLCAT, and CACTUS, are described. An example of the appli­
cation of the ROCK algorithm is presented, and the results are compared 
with the results of a traditional algorithm for clustering numeric data. 

Keywords: Categorical clustering, CACTUS, COOLCAT, ROCK. 

1. Introduction 

Clustering is a widely used technique in which data are partitioned into 
groups (called clusters) based on their similarities or differences, such that 
data points in the same cluster are more similar among themselves than 
those in other clusters. An introduction to clustering techniques is presented 
in Chap. 9. Clustering has been used extensively for grouping numeric 
data. Traditional algorithms for clustering numeric data can be classi­
fied into hierarchical clustering (see Chap. 10) and partitional clustering 
(see Chap. 11). More recently, variants of either partitional or centroid-
based hierarchical clustering algorithms have been proposed for mining 
large databases. A review of these algorithms is presented in Chap. 12. 
A review of algorithms for clustering categorical attributes is the focus of 
this chapter. 

143 

mailto:femi@utk.edu


144 O. A. Omitaomu 

Categorical attributes are objects whose domain is not numeric, and 
many fields including statistics, psychology, biology, business, and engi­
neering deal with them. An example of a categorical attribute is color, 
whose domain includes values such as brown, white, yellow, blue, and so on. 
Another example is student grades, whose domain includes A, B+, B, and 
so on. These values can be viewed as records with boolean attributes, each 
attribute corresponding to a single item. In the record for a transaction, 
the attribute corresponding to an item is true if and only if the transaction 
contains the item; otherwise, it is false. Boolean attributes are a special 
case of categorical attributes. The domain of categorical attributes is not 
limited to simply true and false values but could be any arbitrary finite set 
of values. It is usually more difficult to deal with attributes with categorical 
domains; therefore, clustering of categorical attributes has not received as 
much attention as its numerical counterpart. 

2. Motivation 

Categorical attributes have unique features; therefore, traditional algo­
rithms do not always do a good job of clustering these attributes as they 
do with numerical data [42]. For example, hierarchical clustering algorithms 
may be unstable when used to cluster categorical data because "the dis­
tance between the centroid of clusters for categorical data is a poor estimate 
of the similarity between these data" [60]. Partitional clustering algorithms 
may also be unsuitable because the set of items that defines clusters may 
not have the same sizes, since the cluster may contain only some subset 
of the possible number of items. For example, a cluster involving all com­
mon items such as baby food, milk, sugar, diapers, and toys will typically 
involve a large number of items and customer transactions, while the cluster 
defined by imported items such as French beer, Swiss cheese, Italian pasta 
sauce, Belgian wine, and so on will be much smaller. Every transaction in 
the cluster may not contain all of the above items, but some subset of them. 
Thus, it is possible that a pair of transactions in a cluster have few items 
in common [61]. Therefore, there is a need for algorithms that take these 
features into consideration during data clustering tasks. 

Three of the popular algorithms for clustering categorical attributes are 
reviewed in this chapter. The next section discusses the ROCK algorithm. 
The COOLCAT algorithm is discussed in Sec. 4, and the CACTUS algo­
rithm is discussed in Sec. 5. A summary of the chapter is presented in Sec. 6. 



Clustering: Categorical Attributes 145 

3. ROCK Clustering Algorithm 

The RObust Clustering using UnKs (ROCK) clustering algorithm is a 
form of agglomerative hierarchical clustering algorithm. This section is 
based on the original paper on ROCK by Guha, Rastogi, and Shim [61]. 
This algorithm is based on links between data points, instead of dis­
tances between data points. The notion of links between data helps over­
come the problems with distance based coefficients. The link between 
point i (pi) and point j (pj), defined as link(pi,pj), is the number of 
common neighbors between pi and pj. A pair of points are neighbors 
if their similarity exceeds a certain threshold. The similarity value for 
pairs of points can be based on Lp distances, the Jaccard coefficient or 
any other non-metric similarity function. It follows that if link(pi,pj) is 
large, then it is more probable that Pi and pj belong to the same clus­
ter. The link-based approach adopts a global approach to the cluster­
ing problem, since it captures the global knowledge of neighboring data 
points into the relationship between individual pairs of points. The steps 
involved in clustering categorical attributes using the ROCK algorithm 
are [42, 61]: 

(i) Obtain a random sample from the database. 
(ii) Perform clustering on the data using the link approach (see Sec. 3.1). 

A goodness measure, discussed in Sec. 3.2, is used to determine which 
pair of points is merged at each step. 

(hi) Use these clusters to assign the remaining data points not selected in 
Step (i). 

ROCK's hierarchical clustering algorithm accepts as input the set S 
of n sampled points (drawn randomly from the original data set) to be 
clustered, and the number of desired clusters k. The procedure begins by 
computing the number of links (see Sec. 3.1) between pairs of points. The 
number of links is then used in Algorithm 18 to cluster the dataset [61]. 
The first step in implementing the algorithm is to create a boolean matrix 
with entry 1 and 0 from the adjacency matrix. The entry is 1 if the two 
corresponding points are neighbors or 0 if otherwise. This is an 0(n2) step 
since the size of the adjacency matrix is n2. The next step converts this 
boolean matrix into another matrix indicating the links. This is achieved in 
0(n2-37), that is, calculating S x S. The hierarchial clustering part of the 
ROCK algorithm starts by placing each point in the sample in a separate 
cluster. It successively merges clusters until k clusters are found. To enhance 



146 O. A. Omitaomu 

Algorithm 18 ROCK Algorithm 
procedure cluster(S',fc) 

begin 
link := compute_links(S') 

for each s e S do 
q[s] := build_local_heap(Zmfc,s) 
Q := build_global_heap(5',g) 

while size (Q) > k do 
u := extract _max(Q) 
v := max(g[«]) 
delete (Q,v) 
w := merge(M,w) 

for each x e q[u] [j q[v] do 
link[x,w] := link[x,u] + link[x,v] 
delete(g[a;],M); delete(g[a;],w) 

end for 
insert(q[x},w,q(x,w)); insert(g[«;];2;,g(a;,w)) 
update(<5,a;,g[x]) 
insert (Q, w,q[w\) 
deallocate(q[u]); deallocate(q[v]) 
end while 

end for 
end 

this processing, both local and global heaps are used. A local heap, q, is 
created to represent each cluster. Hence, q contains every cluster that has a 
nonzero link to the other cluster. The global heap, Q, contains information 
about each cluster. All information in this heap is ordered based on the 
goodness measure discussed in Sec. 3.2. 

3.1. Computation of Links 

The algorithm for computing links between every pair of points is given in 
Algorithm 19 [61]. After computing a list of neighbors for every point, the 
algorithm considers all pairs of neighbors and each point contributes one 
link for each pair. The process is repeated for every point while the link 



Clustering: Categorical Attributes 147 

Algorithm 19 Links Algorithm 

procedure compute_links(5) 
begin 

Compute nbrlist[i] for every point i in S 
Set link[i, j] to be zero for all i, j 

for i := 1 to n do 
N := nbrlist[i] 

for j := 1 to |7V| - 1 do 

for I := j + 1 to |7V( do 
Unk[N{j), N(l)] := link[N{j), N{\)] + 1 

end for 
end for 

end for 
end 

count is increased for each pair of neighbors to obtain the total link counts 
for all points. 

3.2. Goodness Measure 

To determine the best pair of clusters, the ROCK algorithm uses a measure 
in which the best clusters are those that result in the highest values for the 
criterion function. The criterion function in this case is called goodness 
measure. For a pair of clusters Cj, Cj, let link[d,Cj] store the number of 
cross links between clusters d and Cj, and rii and rij are the number of 
points in each cluster. Then, the goodness measure g{Ci,Cj) for merging 
clusters Cj, Cj is defined as [6l] 

g{Ci,C^- lmk[Ci,Cj 

i _i_o f (Q\ 

where ni is an estimate for the number of links between pairs of 
points in Cj and the threshold used for the measure is 0. The function 
f{6) is a function of the data, and it satisfies the property that each item 
in Ci has approximately ny neighbors in the cluster. Therefore, if all 
points in the cluster are connected f(6) = 1 and nf is the number of links 
between points in d. The pair of clusters for which the above goodness 



148 O. A. Omitaomu 

measure is maximum is the best pair of clusters to be merged at any given 
step. A large number of cross links is an indication of good candidates to 
merge [42, 61]. 

3.3. Miscellaneous Issues 

Some of the issues of concern when implementing the ROCK algorithm 
include random sampling and outliers. 

In the case of a large database, random sampling enables ROCK to 
reduce the number of points to be considered and ensures that the input 
data set fits in the main memory. Random sampling can aid clustering by 
filtering outliers [61] using techniques such as the one proposed by [145]. 
In addition, determining the appropriate random sample size enhances the 
quality of the clustering. One method of achieving this appropriate size is 
proposed in [60]. 

The ROCK algorithm handles outliers in two parts. The most significant 
part is choosing the right 9 value. This relatively discards outliers from the 
rest of the points and immediately helps to isolate points with very few or no 
neighbors from participating in the clustering. However, in some situations, 
outliers may be present as small groups that are loosely connected to the 
rest of the dataset. In this situation, these data will participate in the 
clustering because they are closer to the major clusters; however, they can 
be prevented by stopping the clustering and weeding out the clusters that 
have very little support [61]. 

3.4. Example 

This example compares Traditional Hierarchical Clustering Algorithm 
(THCA) to the ROCK clustering algorithm. This example is adopted from 
[61]. The dataset used, according to [61], was obtained from the UCI 
Machine Learning Repository. It contains the United States Congressional 
Voting Records for the year 1984. Each record contains a Congressman's 
votes on 16 issues. All attributes are boolean ("yes" or "no"), with a few of 
the votes containing missing values. Some congressmen "crossed" parties to 
vote. There are 435 records in the set (267 Democrats and 168 Republicans). 

The results obtained for centroid-based THCA and ROCK with the 
threshold (9) set to 0.73 are summarized in Table 12 [61]. Both algo­
rithms identify two clusters, each with a large number of either Republicans 
or Democrats. Nevertheless, there is about 25 percent Democrat votes in 



Clustering: Categorical Attributes 149 

Table 12. Clustering result for congressional voting data [61]. 

Algorithm Type 

THCA 
THCA 

ROCK 
ROCK 

Cluster No. 

1 
2 

1 
2 

No. of Republicans 

157 
11 

144 
5 

No. of Democrats 

52 
215 

22 
201 

the Republican cluster using the traditional algorithm, while this is only 
about 12 percent using ROCK. Records with missing data were not used 
in the clustering task. The improvement in the quality of clustering can 
be attributed to the usage of links by ROCK [61]. These results indicate 
that the ROCK algorithm performs better than the traditional hierarchical 
algorithm when used to cluster categorical data. 

4. COOLCAT Clustering Algorithm 

COOLCAT is an entropy-based algorithm for clustering categorical 
attributes. Named because the entropy of the clusters is reduced, thereby 
cooling them, this algorithm uses the notion of entropy to group records 
and, more importantly, does not rely on arbitrary distance metrics. Entropy 
has been defined as the degree of disorder in a system. For example, a 
classroom with disorganized chairs and tables has more entropy than a 
classroom in which chairs and tables are well arranged. If X is a random 
variable, S(X) the set of values that X can take, and p(X) the probability 
function of X, then the entropy E(X) is defined as: 

E(X) = - ] T p(X)\og(p(X)). 
xes(x) 

This section is based on the original paper about this algorithm by 
Barbara, Li, and Couto [35]. The COOLCAT algorithm consists of two 
steps: initialization and the incremental step. The initialization step boot­
straps the algorithm by finding a suitable set of clusters out of a sample 
5, taken from the data set (\S\ < N), where N is the size of the entire 
data set. The first step is to find k, defined as the most "dissimilar" records 
from the sample set. This is achieved by maximizing the minimum pairwise 
entropy of the chosen points. To do this, two points pSl,pS2 that maximize 
E{pSl,pS2) are found and placed in two separate clusters (C1,C2). The algo­
rithm proceeds incrementally to find the record to place in jtla cluster by 



150 O. A. Omitaomu 

choosing an unmarked point ps. that maximizes 

m m i = i , . . , j - i ( £ ( ! ) S i l p S j ) ) . 

The remaining unmarked sample points (| -S' | — k), and the points outside 
the sample, are then placed in the clusters using the incremental step. 

The incremental step finds a suitable cluster for each record by com­
puting the expected entropy that results from placing the point in each of 
the clusters and selecting the cluster for which that expected entropy is 
the minimum. The first batch of points are those that were not selected 
during the initialization step. The order in which the points are processed 
is of importance because a point that appears to be a good fit for a cluster 
using a particular order of process may become a poor fit as more points 
are clustered using another order of process. To minimize this problem, a 
re-processing capability of a fraction of the points in the batch is introduced 
into the algorithm. After each batch of points is clustered, a fraction m of 
worst-fit points for each cluster is selected and re-clustered. The number of 
occurrences for each of attributes' values in a particular cluster is used to 
determine the goodness of the fit. For example, if each record in the batch 
is i, each attribute is j , and qij represent the number of times that the value 
Vij appears in the cluster where i was placed then ptj is qij divided by the 
cluster size. Hence, for each record a fitting probability, pi, is computed, 
where pi = \\Aqij)- The lower the fitting probability, the less likely the 
record would be a good fit. The computed fitting probabilities are sorted 
and m records in the batch with the lowest pi are selected for processing. 
Each reprocessed record is placed in the cluster that minimizes the expected 
entropy. The incremental step algorithm is presented in Algorithm 20 [35]. 

Algorithm 20 COOLCAT — Incremental Step Algorithm 

Given an initial set of clusters C = C\,..., Ck 
Bring points to memory from disk and for each point p do 

for i = 1, . . . , k do 
Place p in Cj and compute E(C%) 
where Cl denotes the clustering obtained by placing p in cluster C — i 
Let j = argmini(E(C1)) 
Place p in Cj 

end for 
Until all points have been placed in some cluster 

file:////Aqij)-


Clustering: Categorical Attributes 151 

5. CACTUS Clustering Algorithm 

CAtegorical ClusTering Using Summaries (CACTUS) is a summarization-
based algorithm for clustering categorical data. This section is based on the 
paper by Ganti, Gehrke, and Ramakrishnan [55]. The central idea behind 
CACTUS is that "a summary of the entire data set is sufficient to com­
pute a set of candidate clusters that can then be validated to determine the 
actual set of clusters." CACTUS consists of three phases: summarization, 
clustering, and validation. In the summarization phase, summary informa­
tion is computed from the data set. In the clustering phase, the summary 
information is used to discover a set of candidate clusters. In the validation 
phase, the actual set of clusters is determined from the set of candidate 
clusters. 

The summary information used to describe the CACTUS algorithm is 
of two types: inter-attribute summaries and intra-attribute summaries. The 
inter-attribute summaries consist of all strongly-connected attribute value 
pairs where each pair has attribute values from different attributes; the 
intra-attribute summaries consist of similarities between attribute values 
of the same attribute. 

Once the summary information is obtained, the output is used by the 
clustering algorithm to compute candidate clusters in the data. In the first 
step of the two-step phase, each attribute is analyzed to compute all cluster-
projections (DS?) on it. In the second step, candidate clusters on sets of 
attributes from the cluster-projections on individual attributes are synthe­
sized in a level-wise manner. That is, candidate clusters are determined 
by a pair of attributes. This is then extended to a set of three attributes, 
four attributes, and so on. The pseudocode for the computation of cluster-
projections is shown in Algorithm 21. 

After the cluster-projections have been determined and candidate clus­
ters identified, the next phase is to compute the set of actual clusters. 
Some of the candidate clusters may not have enough support because the 
clusters that combine to form a candidate cluster may be due to differ­
ent sets of tuples. To recognize such false candidates, the support of each 
candidate cluster is compared against the required threshold. Only clus­
ters whose support on D passes the threshold requirement are retained. 
Once the support of all candidate cluster has been set to zero, the scan­
ning of the data set D begins. At the end of the scan, all candidate clus­
ters whose support in the data set is less than the required threshold are 
deleted. 



152 O. A. Omitaornu 

Algorithm 21 CACTUS Algorithm — Extend(£>S"/, ^ . ) 

Output: DSf 

Initialization 

Reset the subset flags and the participation counts of all distinguishing 
sets in DSf to zero 

for each S, 6 DS( 

if the subset flag of Si is not set then 
Extend S, to Cf 
Set the subset flags and increment by the sibling strength of Si the 
participation counts of all subsets of Cf in DSf. 

end if 
end for 
Identify and add small cluster-projections (of size < k) to DSf 

6. Summary 

The ROCK algorithm employs links rather than distances for merging clus­
ters. This feature demonstrates that ROCK can be used in situations where 
a domain expert or similarity table is the only source of knowledge. This 
feature has also been demonstrated to be useful for clustering time-series 
data [61]. However, ROCK is difficult to fine-tune (that is, finding the 
right 6). Therefore, ROCK may be more suitable for smaller data sets. The 
COOLCAT algorithm clusters categorical data by minimizing the expected 
entropy of the clusters. COOLCAT's only parameter (TO) is usually stable: 
"small values of m are sufficient to obtain a good result" [35]. This feature 
makes COOLCAT useful for larger data sets. CACTUS is a summarization-
based algorithm. It finds intuitively meaningful clusters from the data set 
using summary information incrementally. However, for this method to per­
form better, the inter-attribute and intra-attribute summaries must fit in 
the main memory [55]. Like ROCK, this algorithm may be more suitable 
for smaller data sets. 



CHAPTER 14 

ASSOCIATION RULES: A N OVERVIEW 

Geoffrey Mazeroff 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
mazeroff@cs.utk. edu 

Overview 

This chapter introduces the concept of association rules, a form of local-
pattern discovery in an unsupervised learning system. Association rules 
are used to uncover relationships between inherently unrelated data items. 
The terminology, notation, and the processes used with association rules 
are discussed, and a brief overview of three basic rule inference algorithms 
is given. 

Keywords: Apriori, association rule, confidence, large itemset, market 
basket, negative border, partitioning, support. 

1. Introduction 

Association rules were first introduced by Agrawal et al. in 1993 as a means 
of determining relationships among a set of items in a database [3]. Asso­
ciation rules, like clustering, are a form of unsupervised learning and have 
been applied to many fields such as retail business, Web mining, and text 
mining [77]. Although numerous applications of association rules involve 
categorical data, the rule-mining methods available to an analyst can be 
applied to numerical data as well. 

The most challenging part of association rule inference involves finding 
sets of items which satisfy specific criteria, and in turn are used to infer the 
rules themselves. The reader should note that the literature on association 
rules often contains algorithms that do not infer the actual rules, but instead 

153 

mailto:mazeroff@cs.utk


154 G. Mazeroff 

creatively find the desired itemsets upon which the rules are based. This 
chapter presents an application of three such algorithms in the context of 
market baskets used in retail businesses. A market basket is a collection of 
items purchased during a single transaction [77]. The rules inferred from 
market baskets can allow a market analyst to design advertising campaigns 
that effectively match the purchasing trends indicated by the data. 

2. Motivation 

Data mining tasks typically involve the analysis of data whose inherent rela­
tionships may be obscured by the quantity of data or high dimensionality. 
Association rules, as a form of unsupervised learning, can be used to extract 
these relationships so that an analyst can make informed decisions based on 
the available data. Given that databases can be quite large, efficient algo­
rithms for mining association rules are required to maximize the quality of 
inferred information and at the same time minimize the computation time. 

This chapter covers the general framework for association rules, begin­
ning with an introduction to terminology, notation, and the process of rule 
inference. A discussion of three basic algorithms — Apriori, sampling, and 
partitioning — will be presented with the aid of supplementary examples. 
The reader should note that formal statements are given for the algorithms 
discussed in this chapter.k However, textual descriptions of a given algo­
rithm's functionality are also provided. 

3. Association Rule Process 

Association rules are used to detect common relationships between items, 
thus making market basket analysis a practical application of rule inference 
and usage. The example market basket used throughout this chapter con­
sists of small sets of items purchased at a grocery store. A sample database 
of transactions will be used supplement the introduction of terminology, 
notation, and the process of creating association rules. 

3.1. Terminology and Notation 

The source of information for association rule algorithms is often a database 
viewed as a set of tuples, where each tuple contains a set of items. 

kAH algorithms presented in the chapter are adapted from [42]. 



Association Rules: An Overview 155 

Table 13. Sample database of purchase 
transactions. 

Transaction 

tl 
*2 

*3 

u 
t5 

Items 

Peanuts, Popcorn, Chips 

Peanuts, Chips 

Peanuts, Dip, Chips 

Pretzels, Chips 

Dip, Pretzels 

Table 13 shows the contents of a sample database containing five pur­
chase transactions. 

Throughout this chapter the items listed in the examples appear in 
alphabetical order within a transaction because several algorithms assume 
the data is sorted in a preprocessing step [42]. An association rule is an 
implication that one item (or set of items) is associated with another item 
(or set of items). Formally, given a set of m items i" = {Ii, I2, • • • ,Im} and 
a database of n transactions D = {t\, £2, • • •, tn}, where a given transaction 
contains k items U = {In,Ii2, • • • ,Iik} and Ijj e / , an association rule is 
an implication of the form X =$• Y, where X,Y c I are sets of items called 
itemsets and X C\Y = 0 [77]. 

The support (denoted by variable s) of an item or set of items is the 
percentage of transactions in which the item can be found. For example, 
{Chips} has 80 percent support because it appears in all but the last trans­
action, and {Pre tze ls , Peanuts} has no support because those two items 
never appear in the same transaction. Formally, the support for an asso­
ciation rule X => Y is the percentage of transactions in the database 
that contain X UY [42]. Another numerical measure that is found with 
association rules is confidence (denoted by variable a), which essentially 
describes the strength of co-occurrence between two items or sets of items. 
The confidence for an association rule X => Y is the ratio of the num­
ber of transactions that contain l U Y t o the number of transactions that 
contain X [42]. 

Support and confidence can also be represented using probabilistic 
notation. The support of an item or itemset X can be written as 

P(X) = 
number of transactions 



156 G. Mazeroff 

For example, Chips occurs in four transactions, therefore P(Chips) = 
80%. The confidence of a rule X =>• Y can be written as 

For example, the confidence for the association rule Peanuts =$• Chips can 
be expressed as 

P({Peanuts, Chips}) 
P(ChipsjPeanuts) = 

P(Chips) 

= 7 = 75%. 
4 

Association rules are inferred based on support and confidence. Support 
refers to the percentage of occurrence of the rule in the database and confi­
dence reflects the strength of the rule. Typically, high confidence values are 
used for choosing rules because the values indicate that the given rule occurs 
frequently in the database. For example, Peanuts =>• Chips has a confidence 
value of a = 75% because {Chips, Peanuts} occurs in three transactions 
(ti,t2,t$) and Chips occurs in four transactions (ti through £4), and con­
fidence is the ratio of the occurrences of X U Y to the occurrences of X. 
The support for this rule is s = 60% because Chips and Peanuts occur 
together in three out of the five transactions. The rule Peanuts =4> Chips is 
much stronger than Dip =>- Popcorn because Popcorn and Dip never occur 
within the same transaction, giving a confidence of a = 0%. Table 14 gives 
some other example association rules and their corresponding support and 
confidence values. 

From an application perspective, a market analyst would base an adver­
tising campaign on rules with high confidence and high support. For exam­
ple, placing peanuts on sale might increase the sales for chips as well. Con­
versely, having a sale on dip will most likely not result in increased popcorn 
sales. 

Table 14. Support and confidence for some association rules. 

X^Y 

Peanuts => Chips 

Chips => Peanuts 

Chips =>• Pretzels 

Popcorn =S> Peanuts 

Peanuts => Popcorn 

Dip =>• Popcorn 

s 

60% 

60% 

20% 

20% 

20% 

0% 

a 

75% 

100% 

50% 

33.3% 

100% 

0% 



Association Rules: An Overview 157 

3.2 . From Data to Association Rules 

The problem of mining association rules can be separated into two phases: 

(i) discover large itemsets, i.e., sets of items tha t have support s above a 

predetermined minimum threshold, and (ii) use large itemsets to generate 

the association rules for the database tha t have confidence a above a prede­

termined minimum threshold [2]. This chapter uses the following notat ion 

to describe large itemsets: L indicates the complete set of large itemsets, 

I indicates a specific large itemset, and lk indicates a large itemset of size k. 

Determining the members of large itemsets is generally easy when using 

a naive approach, such as generating all possible itemsets tha t could appear 

in any transaction. However, given a set of m items, there are 2m — 1 

potential subsets, disregarding the empty set. The number of itemsets to 

generate quickly becomes impractical from a computat ional perspective. 

Association rule inference algorithms aim to reduce the number of itemsets 

to examine by generating candidate itemsets. The performance of these 

algorithms is often based on the number of candidate itemsets generated 

(denoted by the variable C). 

Association rule inference is straightforward once the large itemsets 

are found. Algorithm 22, adapted originally from [6], describes the steps 

needed to transform itemsets into association rules. To summarize in words, 

Algorithm 22 examines each large itemset and calculates the support value 

by finding the ratio of large itemset member support to individual item 

support . If the calculated ratio is at or above the threshold a , a rule is 

constructed. 

To illustrate rule inference, the transactions from Table 13 will be used. 

Suppose tha t the support threshold is s = 30% and the confidence threshold 

is a = 50%. One can calculate the support of each possible subset of items 

(omitted here) to obtain a large itemset of 

L = { { P r e t z e l s } , {Chips}, {Dip}, {Peanu t s} , {Peanu t s , Chips}} . 

Next, the ratio of large itemset support to individual item support is calcu­

lated. Suppose I = {Chips, P e a n u t s } , which contains two nonempty sub­

sets, {Chips} and { P e a n u t s } . Calculating the two ratios gives 

suppor t ({Peanu ts , Chips}) 60 

support({Chips}) 80 

and 

suppor t ({Peanu ts , Chips}) 60 l n n 0 / 
77 rr = — = 100/o . 

suppor t ({Peanuts}) 60 



158 G. Mazeroff 

Algorithm 22 Association Rule Generation 
Input: 
L {Large itemsets} 
s {Support} 
a {Confidence} 

Output: 
R {Association rules satisfying s and a} 

i? = 0 
for I e L 

for x C I such that s ^ 8 d o 
if support(7)/support(x) > a then 

R = RU{x^ (l-x)} 
end if 

end for 
end for 

These ratios indicate the rule Peanuts =>• Chips has 75% confidence 
and the rule Chips =4> Peanuts has 100% confidence. Because both of these 
rules have confidence values exceeding a = 50%, both rules will be added 
to the set of inferred rules R. 

4. Large Itemset Discovery Algorithms 

Association rule inference depends on the efficient discovery of large item-
sets. Three such itemset-mining algorithms are presented in this section: 
Apriori, sampling, and partitioning. The Apriori algorithm generates can­
didate large itemsets based on inference rather than brute-force itemset 
creation. The sampling algorithm uses portions of the database instead of 
all the transactions to infer large itemsets. Lastly, the partitioning algo­
rithm divides the database into partitions that can be mined individually 
to infer candidate itemsets that correspond to the entire database. 

4.1. Apriori 

The Apriori algorithm is one of the most well-known association rule algo­
rithms [6, 42]. This algorithm uses the property that any subset of a large 
itemset is also large. In other words, if an itemset satisfies the minimum 
support requirements, so do all of its subsets. The contrapositive of the 



Association Rules: An Overview 159 

property also applies: small itemsets have supersets that are also small. 
The Apriori algorithm works by generating candidate itemsets of a partic­
ular size. The support for the candidates is then calculated by counting the 
number of occurrences of a given candidate in the database. Only those 
candidates that are considered large are used to generate candidates for 
the next iteration; small candidates can be discarded because no superset 
containing them can be large. Candidates for the next pass (Cj+i) are the 
result of joining large itemsets from the current pass (Li). 

Apriori can be divided into two steps: (i) generate candidate itemsets, 
and (ii) count and select candidates. The first step is known as Apriori-Gen 
and is formally described by Algorithm 23. 

Algorithm 23 Apriori-Gen 
Input: 
Li_i {Large item sets of size i — 1} 

Output: 
Ci {Candidates of size i} 

Ci = 9 
for I 6 Lj_i do 

for J ^ I e Li^1 do 
if i — 2 of the elements in / and J are equal then 

d = d U {/ U J } 
end if 

end for 
end for 

Apriori-Gen generates the candidate itemsets for each iteration of the 
Apriori algorithm except for the first pass, where the initial candidates 
are the singleton itemsets. The set of large itemsets from the previous pass 
(Li-i) is joined with itself to determine the next set of candidates. 

The Apriori algorithm counts the occurrences of a given itemset in 
the database transactions and selects those candidates who meet the min­
imum support requirement as members of the large itemset L. See Sec. 5, 
Algorithm 24. Apriori uses Apriori-Gen to generate the candidates for the 
next iteration. These two steps, generating and counting/selecting, occur 
until no additional large itemsets can be created. 



160 G. Mazeroff 

Table 15. Using Apriori with transactions in Table 13. 

Pass Candidates Large Itemsets 

1 {Pre tze l s} , {Chips}, {Popcorn}, {Pre tze l s} , {Chips}, 
{Dip},{Peanuts} {Dip}, {Peanuts} 

2 {Pre tze ls , Chips}, {Pre tze ls , Dip}, {Chips, Peanuts,} 
{Pre tze ls , Peanuts} 
{Chips, Dip}, 
{Chips, Peanuts}, 
{Dip, Peanuts} 

To illustrate two passes of the Apriori algorithm, the transactions from 
the market basket given in Table 13 will be used. The candidates and large 
itemsets for two passes of the algorithm are given in Table 15. Suppose 
that s = 30% and a = 50%. The first pass has a candidate set contain­
ing all singletons, in this case {Pre tze ls} , {Chips}, {Popcorn}, {Dip}, 
and {Peanuts}. Because {Popcorn} has a support of 20% (only occur­
ring in one of the five transactions), it is not included as a candidate 
for the next pass. The second pass uses the four large itemsets to gen­
erate the next set of candidates by joining each itemset with every other 
itemset. Of these candidates for the second pass, only one large itemset 
remains, {Chips, Peanuts}, which will eventually become the associate rule 
Chips => Peanuts. 

4.2. Sampling 

The efficiency of association rule inference can be measured by the number 
of database scans made during a given algorithm's execution. The number 
of scans can be reduced by sampling, where only a few transactions are 
selected for mining rather than the entire database [143]. The performance 
of sampling yields one scan in the best case and two scans in the worst case. 
A sample that can fit in main memory is selected from the database, then 
given as input to any algorithm that finds large itemsets (e.g., Apriori). 
The large itemsets returned by the algorithm are potential large itemsets 
(denoted as PL) and are used to generate candidates that are to be verified 
against the entire database. 



Association Rules: An Overview 161 

Candidates are generated by applying a negative border function (where 
Bn(X) denotes finding the negative border of itemset X)1 to the potentially 
large itemsets PL. The negative border of a set of itemsets is the minimal 
set of itemsets that are not in PL but have subsets that are in PL. The 
candidate set is the negative border combined with PL: 

C = Bn(PL)UPL. 

For example, suppose there exists a set of items {Sa, Sb, Sc, Sj} that has 
a representative set of large itemsets PL = {Sa, Sc, Sd, Scd}- Sac is in the 
negative border because its subsets, Sa and Sc, are in PL. Sacd cannot be 
in the negative border because neither Sac

 n o r Sad is m PL. The negative 
border acts as a buffer area between those itemsets known to be large and 
the remaining itemsets. It represents the smallest possible set of itemsets 
that could be in L. The large itemset property mentioned previously guar­
antees that if there are no large itemsets in the negative border, there can 
be no large itemsets in the rest of the set. The sampling method combined 
with the Apriori algorithm as a means of finding large itemsets is given 
in Algorithm 25 (see Sec. 5, Algorithm 25). The small support value given 
as input to Apriori is used to discover more of the true large itemsets by 
preventing the exclusion of some potential candidates. 

In practice, any sampling method and any algorithm for finding large 
itemsets can be used. The sampling algorithm works by drawing trans­
actions from the database to serve as a sample or representative of the 
entire database. In the first scan, these transactions are used as input to an 
itemset-mining algorithm (Apriori in this case) to generate PL. Next, PL 
is combined with its negative border Bn(PL) to produce the list of large 
itemset candidates. In the second scan, additional candidates are generated 
and counted if there are additional itemsets in L that do not exist in PL. 
The sampling algorithm repeatedly applies the negative border function 
until no further candidates can be generated. Although the resulting set of 
candidates may be large, the algorithm guarantees that only one additional 
scan of the database is required. 

This notation is used here for clarity. The conventional notation for the negative border 
is BD~(X)[2}. 



162 G. Mazeroff 

To illustrate sampling using the market basket example, suppose a sam­
ple of two transactions is drawn from the database: 

Ds = {ti = {Chips, Popcorn, Peanuts}, 

£2 = {Chips, Peanuts}}. 

Applying the Apriori algorithm to Ds gives 

PL = {{Chips}, {Popcorn}, {Peanuts}, {Chips, Popcorn}, 
{Chips, Peanuts}, {Popcorn, Peanuts}, 
{Chips, Popcorn, Peanuts}}. 

Applying the negative border yields 

Bn(PL) = {{Pretzels}, {Dip}} 

because Pretzels and Dip are large in the entire database (both having 
s = 40%) and are not accounted for in PL. From the initial scan, the 
following large itemsets are obtained: 

L = {{Chips}, {Peanuts}, {Chips, Peanuts}, 

{Pretzels},{Dip}}. 

Because Pretzels and Dip are missing from PL, a second scan of the 
database is needed. After three applications of the negative border function, 
the resultant candidate set is 

C = {{Pretzels , Chips, Dip, Peanuts}}. 

If a smaller support value (e.g., s = 10%) were used, PL would be much 
larger for the first pass, thus yielding more potentially large itemsets [42]. 

4.3. Partitioning 

Another approach to generating large itemsets introduced by [135] called 
partitioning divides the database into smaller subsets of transactions. Par­
titioning aims to improve the performance of mining large itemsets in four 
ways [42]. First, partitioning algorithms can better adapt to limited main 
memory size such that each partition fits into memory. Second, the large 
itemset property can be exploited because a large itemset must be large 
in at least one of the partitions. Third, the partitions can serve as states 
of the database, thus allowing incremental generation of association rules. 
Finally, partitioning lends itself well to parallel and distributed design to 
increase overall computational efficiency. 



Association Rules: An Overview 163 

Table 16. Partitions of the transactions in Table 13. 

Partition 

D1 

D2 

Transaction 

t\ = {Chips, Popcorn, Peanuts} 

*2 = {Chips, Peanuts} 

t3 = {Chips, Dip, Peanuts} 

t^ = {Pretzels, Chips} 

ts = {Pretzels, Dip} 

The partition algorithm works by splitting the database into p parti­
tions, D1, D2, . . . , Dp such that each partition can reside in main memory. 
During the first scan of the database, the algorithm determines the large 
itemsets for each partition using any given itemset-mining algorithm (e.g., 
Apriori). In the second scan, the itemsets deemed large from the first scan 
are counted to determine if they are large across the entire database. The 
formal description of the partition algorithm (using the Apriori method for 
itemset-mining) is presented in Algorithm 26 (see Sec. 6, Algorithm 26). 

Returning to the market basket example, the database can be arbitrarily 
divided into two partitions as shown in Table 16. The Apriori algorithm 
yields the following large itemsets for both partitions using s = 10%: 

L1 = {{Chips},{Popcorn},{Peanuts},{Chips, Popcorn}, 
{Chips, Peanuts},{Popcorn, Peanuts}, 
{Chips, Popcorn, Peanuts}}, 

L2 = {{Pretzels},{Chips},{Dip},{Peanuts},{Pretzels, Chips}, 
{Pre tze ls , Dip},{Chips, Dip},{Chips, Peanuts}, 
{Dip, Peanuts},{Chips, Dip, Peanuts}}. 

Because the two large itemsets differ in content and in cardinality, a market 
analyst may choose two different advertising campaigns based on the rules 
inferred for each partition. In other words, the first partition may corre­
spond to a certain demographic while the second partition may correspond 
to another. 

5. Summary 

The itemset-mining algorithms presented in this chapter attempt to min­
imize the number of itemsets analyzed or the number of database scans 
needed to find applicable large itemsets; however, each algorithm can per­
form sub-optimally. First, the Apriori algorithm assumes that the entire 



164 G. Mazeroff 

database is memory-resident, which may be problematic for situations 
involving large amounts of data. Also, the maximum number of database 
scans is one more than the size of the largest itemset, resulting in a large 
number of scans and slower performance. Second, the sampling algorithm 
can potentially generate a very large set of candidates during the second 
scan of the database to ensure that all large itemsets are found. It is possi­
ble that this larger set may not include the entire set of itemsets, meaning 
that certain items in the database are never considered as they would be by 
other algorithms. Third, the partitioning algorithm results depend entirely 
on the manner in which the database is divided. If the data is not uni­
formly spread throughout the partitions (e.g., seasonal data), the resultant 
association rules may not apply to the entire database, also known as false 
candidates [42]. Lastly, each of these algorithms typically expect the data to 
be alphabetically sorted. This preprocessing may affect the order in which 
itemsets are analyzed and in turn what rules are actually derived. 

Many literature sources provide enhancements to the introductory algo­
rithms presented here, such as [4]. The two chapters that follow discuss the 
application of association rule algorithms to parallel and distributed archi­
tectures, additional rule-mining algorithms, and methods to determine rule 
quality. 

Appendix 

Algorithm 24 Apriori 
Input: 
/ {Itemsets} 
D {Database of transactions} 
s {Support} 

Output: 
L {Large itemsets} 

k = 0 {k is used as the scan number} 
L = 0 



Association Rules: An Overview 165 

A l g o r i t h m 24 (Continued) 

repeat 
k = k+l 

Lk = % 

for Ii e Ck do 
d = 0 {Initial counts for each itemset are zero} 

e n d for 
for tj e D d o 

for Ji e Cfe d o 
if Ii S tj t h e n 

Cj = Ci + 1 
e n d if 

e n d for 
e n d for 

for Ii e Ck d o 

if d>(sx \D\) t h e n 

Lk = Lkl) Ii 
e n d if 

e n d for 
L = L U Lk 

Ck+i = Apriori-Gen(L fc) 

unti l Cfc+i = 0 

A l g o r i t h m 25 Sampling 
Input: 
/ {Itemsets} 
D {Database of transactions} 
s {Support} 

Output: 
L {Large itemsets} 

Dg — sample drawn from D 
PL = Apriori(J, Dg,smalls) 
C = PLuBn(PL) 
L = 0 



166 G. Mazeroff 

Algorithm 25 (Continued) 

for It£C 

Ci = 0 {Initial counts for each itemset are zero} 
end for 
for tj G D do 

for Ii G C do 
if Ii G tj then 

Ci = Ci + 1 
end if 

end for 
end for 
for Ii e C do 

if a > (s x |D|) then 

end if 
end for 
ML = {x | x G Bn(PL) and i G i } {Missing large itemsets} 
if ML ^ 0 
C = L {Set candidates to be the large itemsets} 
repeat 

C = C U Bn(C) {Expand candidate sets using negative border} 
until no new itemsets are added to C 
for U e C do 

Q = 0 {Initial counts for each itemset are zero} 
end for 
for tj G D do 

for Ii e C do 
if Ii G £j then 

Ci = Ci + 1 
end if 

end for 
end for 
if Ci > (s x |£)|) then 

L = L U Ii 
end if 

end if 



Association Rules: An Overview 167 

Algorithm 26 Partition 
Input: 
/ {Itemsets} 
D = {D1, D2,..., Dp} {Database transactions divided into partitions} 
s {Support} 

Output: 
L {Large itemsets} 

C = 0 
{Find large itemsets in each partition} 
for i = 1 to p do 

U = Apriori(/,D\s) 
C = CULi 

end for 
L = % 
for Ii G C do 

Cj = 0 {Initial counts for each itemset are zero} 
end for 
for tj € D do 

for It e C do 
if Ii G tj then 

Ci = Ci + 1 
end if 

end for 
end for 
for IiEC 
if Ci > (s x |D|) then 

I = L U I ; 
end if 

end for 





CHAPTER 15 

ASSOCIATION RULES: 
PARALLEL A N D DISTRIBUTED ALGORITHMS 

Shakhina Pulatova 
National Instruments 

11500 N. Mopac Expressway, Austin, TX 78759-3504, USA 
shakhina©gmail. com 

Overview 

Mining association rules from databases with extremely large numbers of 
transactions requires massive amount of computation. Efficient paralleliza-
tion of association rule mining is particularly important for scalability. Some 
of the data and task parallel algorithms for both distributed and shared 
memory systems are reviewed in this chapter. A discussion and comparison 
of these algorithms in terms of computation, communication, synchroniza­
tion, and memory usage is provided. 

Keywords: Association rules, parallel algorithms, parallel data mining, 
parallel association mining, distributed association mining, scalability. 

1. Introduction 

As one of the most important problems in data mining and knowledge 
discovery, association rule mining attempts to discover strong associations 
among items from databases having a large number of transaction records. 
Besides market basket analysis, association rules have been successfully 
applied to domains such as decision support, financial forecasting, telecom­
munication alarm prediction, medical diagnosis, customer segmentation and 
catalog design [26, 120, 165]. 

The task of finding association rules can be decomposed into two sub-
problems [28, 119, 165]. First, all large itemsets that are contained in a 
sufficient number of transactions above the minimum support requirement 

169 



170 S. Pulatova 

must be identified. Second, strong association rules having minimum con­
fidence are generated from large itemsets.m Efficiently determining large 
itemsets is often viewed as a challenging problem and a significant amount 
of research has been conducted to devise algorithms to accomplish it. Basic 
algorithms including Apriori were introduced in Chap. 6. 

Computing large itemsets is both computationally and I/O intensive 
since it involves scanning the database and identifying all candidate item-
sets for each transaction [28]. Moreover, scalability becomes an issue as the 
number of items and transactions increases in the database. Since sequen­
tial algorithms are not scalable, high performance parallel and distributed 
computing becomes essential for efficient generation of association rules 
[165]. Efficient methods for distributed mining of association rules have 
been proposed in the literature and some of the parallel algorithms are 
presented in this chapter. For a more comprehensive survey of parallel and 
distributed association mining algorithms, the reader is directed to [43] 
and [165]. 

2. Motivation 

Association rule mining has attracted a growing amount of attention due to 
its wide applicability in the retail industry by improving marketing strategy 
[119]. Databases in these areas often contain very large numbers of trans­
actions, thus requiring massive computational power. In addition, many 
databases are physically distributed. Efficient distributed and parallel algo­
rithms thus become particularly important for mining association rules. 
Distributed systems in these situations can provide an ideal platform with 
their high scalability, flexibility, ease of connectivity and low cost perfor­
mance ratio. Furthermore, advances in this field may benefit other areas of 
parallel data mining as well [119]. 

The primary focus of this chapter is to introduce and discuss the parallel 
algorithms that are currently available. Some of the data and task parallel 
algorithms on both distributed and shared memory systems are reviewed 
in the next section. A discussion of these algorithms in terms of commu­
nication, computation, memory usage, and synchronization is presented in 
Sec. 4, followed by a summary in Sec. 5. 

Refer to Chap. 6 for definitions of large itemset, support, and confidence. 



Association Rules: Parallel and Distributed Algorithms 171 

3. Parallel and Distributed Algorithms 

Parallel and distributed algorithms for mining association rules can be clas­
sified in terms of three main components [165]: (i) distributed versus shared 
memory systems," (ii) data versus task parallelism, and (iii) static versus 
dynamic load balancing. 

In a distributed (shared-nothing) memory architecture each processor 
has a private memory and a message passing mechanism (such as MPI°) 
needs to be employed for exchanging data between processors. In a shared 
memory architecture, in contrast, all processors can access a common mem­
ory [165]. In a distributed memory system, communication between the 
processors is crucial to accomplish tasks. Parallel algorithms geared toward 
these systems are often concerned with partitioning the candidate sets to 
processor memories, reducing communication, and pruning candidate sets 
[28]. In a shared memory system, however, communication cost is no longer 
an issue, since processors communicate through shared variables. Instead, 
performance is determined by I/O and computation costs. Unfortunately, 
I/O can become a bottleneck due to the access of different processes via the 
same I/O channel. Also I/O contention may result due to a synchronized 
access of processors. On the other hand, with its large aggregated memory, 
a shared memory processor is good for mining association rules that need 
large storage for storing intermediate values [28]. 

Data and task parallelism paradigms split according to the distribution 
of candidate sets across the processors. While each processor counts the 
same set of candidates in a data parallel algorithm, each processor in a 
task parallel algorithm counts a different set of distributed candidates [43]. 
With data parallelism, the database is partitioned among the processors 
and with task parallelism, each processor has or needs access to the entire 
database [165]. 

Parallel algorithms can further be classified as having a static or 
dynamic load balancing. Static load balancing refers to the initial and final 
partitioning of the database among processors according to some heuristic 
cost function. In contrast, dynamic load balancing refers to the environ­
ment where data is continuously moved from heavily loaded processors 
to less busy ones. Current association rule mining algorithms all employ 

"Hierarchical systems that have both distributed and shared memory components (e.g., 
a cluster of SMP workstations) are not discussed here. The reader is directed to [165] 
for a survey of algorithms suited for these systems. 
°MPI is a library specification for message passing. Refer to [9] for more information. 



172 S. Pulatova 

Load Balancing Strategy 

Dypsrijic 

Data 

Distributed Memory 

Task Data Task Data Task 

PEAR 
PDM 
CountDist 
NPA 
FDM 
FPM 

PPAR 
DataDist 
CandDist 
SPA 
HPA 
HPA-ELD 
IDD 
HD 

CCPD PCCD 
APM 

ParEclat 
ParMaxEclat 
ParClique 
ParMaxClique 

Fig. 37. Taxonomy of parallel association rule mining algorithms (figure adapted from 
[165]). 

static load balancing, since they partition the database among processors 
and assume a homogeneous environment [165]. The taxonomy of different 
parallel and distributed algorithms according to these three components is 
given in Fig. 37. 

3.1. Data Parallel Algorithms on Distributed 
Memory Systems 

The algorithms that adopt the data parallelism paradigm on a distributed 
memory architecture include Count Distribution (CD) proposed by [5], 
Parallel Data Mining (PDM) [119], and Distributed Mining of Association 
Rules (DMA) [26]. The representative algorithm CD is described here in 
detail. 

3.1.1. Count Distribution (CD) 

CD algorithm is a simple parallelization of the Partitioning algorithm pre­
sented in Chap. 6. The main focus of the algorithm is to minimize communi­
cation, but it does so at the expense of performing redundant computation 
in parallel [5]. More specifically, the database is divided into p partitions, 
where p is the number of processors and the candidates are duplicated on all 
processors. Each processor then determines local counts for all candidates 



Association Rules: Parallel and Distributed Algorithms 173 

using the support counts in its database partition. Then, by exchanging 
the local counts with other processors, each processor calculates the global 
counts that are used to determine large itemsets. Candidates for the next 
scan are then generated, and the whole process is repeated until no further 
candidates are found [42, 43]. 

The main advantage of CD is that no data tuples are sent from processor 
to processor. Instead only the counts are exchanged allowing processors 
to operate independently and asynchronously while reading the data. The 
disadvantage of the algorithm includes its inability to use aggregate memory 
effectively. 

The algorithm is provided in Algorithm 27 in Sec. 6 and an example of 
its use on grocery store data (see Table 17 [42]) is illustrated in Fig. 38. 
There are three processors in the example, PI , P2 and P3. The first two 
transactions (tl and t2) are counted at PI , the next two (t3 and t4) are 
counted at P2, and the last one (t5) at P3. After the local counts are 
obtained, they are broadcast to other processors for generation of global 
counts [42]. 

Table 17. Grocery store data [42]. 

Transaction 

t l 
t2 
t3 
t4 
t5 

Items 

Bread, Jelly, Peanut Butter 
Bread, Peanut Butter 
Bread, Milk, Peanut Butter 
Beer, Bread 
Beer, Milk 

P1 

D1: 
t i , t2 

Counts: 
BeerO 
Bread 2 
Jelly 1 
MilkO 
Peanut Butter 2 

P2 

D2: 
t3, t4 

Counts: 
Beer 1 
Bread 2 
Jelly 0 
Milk 1 
Peanut Butter 1 

P3 

D3: 
t5 

Counts: 
Beer 1 
Bread 0 
Jelly 0 
Milk 1 
Peanut Butter 0 

Fig. 38. Example database partitions for CD (figure adapted from [42]). 



174 S. Pulatova 

3.2. Task Parallel Algorithms on Distributed Memory 
Systems 

Task parallel algorithms that are more suitable for distributed memory 
systems include Data Distribution (DD), Candidate Distribution (CaD) [5] 
and Intelligent Data Distribution (IDD) [62]. 

3.2.1. Data Distribution (DD) 

In contrast to the CD algorithm, the DD algorithm is designed to exploit 
the total aggregate memory of a machine. It distributes and partitions 
the candidate sets and the database to each processor, thus each processor 
counts mutually exclusive candidates. The disadvantage of DD is that every 
processor must broadcast its database partition to other processors in order 
to obtain global support counts for the entire database. As a result, the 
algorithm suffers from high communication overhead. 

The details of the algorithm for DD is provided in Algorithm 28, 
Sec. 6 and its application for the sample data from Table 17 is illustrated in 
Fig. 39 [42]. In the example, processor PI counts Beer and Bread, P2 counts 
Jelly and Milk, while P3 counts Peanut Butter. Initially, the first two trans­
actions are counted at PI , the next two at P2 and the last one is counted 
at P3. Then, local counts are obtained at each processor and database par­
titions are broadcast to the other processors to obtain a global count. 

3.2.2. Candidate Distribution (CaD) 

With CD and DD algorithms each transaction is compared against the 
entire candidate set. This is accomplished in CD by duplicating the entire 

P1 P2 P3 

D1: 
tl,t2 

Counts: 
BeerO 
Bread 2 

^\T"--——— 
. B r o a 

D2: 
t3,t4 

Counts: 
Jelly 0 
Milk 1 

jcast Database Partit on _, 

D3: 
t5 

Counts: 
Peanut Butter 0 

Fig. 39. Example database partitions for DD (figure adapted from [42]). 



Association Rules: Parallel and Distributed Algorithms 175 

candidate set on every processor, and by broadcasting each database trans­
action between the processors in DD. Moreover, in both algorithms proces­
sors need to synchronize at the end of each pass through the data in order to 
exchange counts (CD) and candidates (DD). This requirement may lead to 
long wait times if the workload between the processors is not balanced [5]. 

The CaD algorithm in [5] attempts to solve these problems by parti­
tioning both the data and the candidates so that processors can proceed 
independently. During some pass I (I is heuristically determined), the algo­
rithm divides the large itemsets between the processors in such a way that 
each processor can generate a unique set of candidates. At the same time, 
the database is repartitioned so that each processor can count the can­
didates it generated independently. However, some parts of the database 
may have to be replicated on several processors depending upon the qual­
ity of the itemset partitioning. The itemset partitioning choice depends on 
the trade-off between decoupling processor dependence as soon as possible, 
and waiting until the itemsets become more easily partitionable. 

After the candidates are partitioned, each processor proceeds with 
counting candidates independently, that is, no communication of counts 
or portions of the database is required. The only dependence between the 
processors involves pruning the local candidate set. This is handled by hav­
ing each processor broadcast local pruning information asynchronously. If 
this information arrives in time, it is used by the processors; otherwise, it 
is saved for subsequent passes. 

Thus, by incorporating domain knowledge to partition both the data 
and the candidates, CaD algorithm prevents the dataset from being repeat­
edly broadcasted. This maximizes the use of aggregate memory, limits 
heavy communication between processors, and eliminates the synchroniza­
tion problems of CD and DD [5]. 

3.2.3. Intelligent Data Distribution (IDD) 

The IDD algorithm is proposed by [62] as an improvement upon the DD 
algorithm. Specifically, it minimizes communication overhead and idle pro­
cessor time, while eliminating redundant computation [62]. 

With IDD, redundant communication is minimized by adopting a ring 
architecture, where asynchronous point-to-point communication is used 
between neighbors in the ring, instead of each processor broadcasting data 
to all others as in DD. In order to assure a load-balanced distribution of the 
candidates among processors, IDD employs a partitioning algorithm based 



176 S. Pulatova 

on bin-backing, which assigns the items to candidate partitions. The number 
of candidates in each partition is roughly equal. Moreover, a candidate set is 
partitioned across the processors more intelligently, where candidates with 
the same first item are placed into the same partition, and each processor 
gets itemsets that begin only with the items assigned to it. This reduces 
the redundant computation inherent in DD, where each processor needs to 
consider all subsets of each transaction [43, 62, 165]. 

3.3. Data Parallel Algorithms on Shared Memory Systems 

Shared memory multiprocessors are useful for association rule mining, since 
they have large aggregate memory. The algorithms developed for machines 
with this type of architecture are not concerned with communication cost 
due to the communication of processors via shared variables. Hence, the 
main objectives of algorithms targeting this architecture are to reduce com­
putation and I/O contention caused by synchronization [28]. One of the first 
data parallel algorithms for shared memory multiprocessors is the Common 
Candidate Partitioned Database (CCPD) and it is described in the following 
subsection. 

3.3.1. Common Candidate Partitioned Database (CCPD) 

The CCPD algorithm is an improvement of CD, which was implemented 
in shared memory in a 12-node SGI Power Challenge [166]. It generates 
candidate itemsets in parallel and stores them in a common candidate hash 
treep shared by all the processors. The database is logically split among pro­
cessors into equal-sized chunks. Each processor traverses its local database 
and generates a disjoint subset of the whole candidate set. A separate lock 
is associated with each leaf node of the hash tree and the processor has to 
acquire the lock in order to insert a candidate. Thus, different processors 
can insert itemsets in different parts of the hash tree in parallel. CCPD 
also introduces a short-circuited join method to count the candidates for 
each transaction efficiently and a hash tree balancing technique to speed 
up processing [137, 165-167]. 

pHash trees are the most common data structure used to store the candidate itemsets 
and their counts. For more information about them, refer to [42]. 



Association Rules: Parallel and Distributed Algorithms 177 

3.4. Task Parallel Algorithms on Shared Memory Systems 

Task parallel algorithms designed for shared memory systems include Parti­
tioned Candidate Common Database (PCCD) [166] and Asynchronous Par­
allel Mining (APM) [28]. PCCD can be viewed as the opposite of the CCPD 
algorithm described in Sec. 3.3.1, in that it has a partitioned candidate hash 
tree, but a common database. The description of APM algorithm will be 
presented in the next section. 

3.4.1. Asynchronous Parallel Mining (APM) 

The APM algorithm is an asynchronous and adaptive algorithm for shared 
memory systems developed by [28]. Compared to CD and its variants, it 
requires significantly fewer database scans, and generates a much smaller 
set of candidates. Moreover, APM produces less I/O contention than other 
algorithms [28]. Its candidate set generation is based on the dynamic can­
didate generation method in an algorithm called Dynamic Itemset Count­
ing (DIC). The database is divided into intervals, and the candidates are 
counted on these intervals. Dynamic candidate generation is appealing 
because it has a potential to generate less database scanning and proces­
sors can perform counting asynchronously over their partitions. APM uses 
a dynamic technique together with two other optimization techniques — 
Adaptive interval configuration and Virtual partition pruning. Instead of 
a hash tree, APM uses a trieq to store the supports so that candidates of 
different sizes can be stored. The algorithm is presented in Algorithm 29, 
Sec. 6 [28]. 

4. Discussion of Parallel Algorithms 

The main challenges parallel and distributed algorithms face today include 
communication overhead minimization, synchronization, workload balanc­
ing, data decomposition, efficient memory usage, and disk I/O minimiza­
tion [165]. Various algorithms have been proposed that explore trade-offs 
between these issues. While the CD algorithm (based on sequential Apriori) 
minimizes communication at the expense of ignoring aggregate memory, 
DD algorithm exploits aggregate memory at the cost of heavy communi­
cation. The CaD algorithm attempts to reduce the synchronization and 

q A trie is a data structure, where information about the contents of each node is stored 
in the path from the root to the node. 



178 S. Pulatova 

communication overhead of CD and DD by forming the hybrid of the two 
and by incorporating detailed problem knowledge. According to the perfor­
mance evaluation on these three algorithms on a 32-node IBM SP2 in [5], 
CD outperformed DD and CaD. Scaleup (database size increased in direct 
proportion to the number of nodes in the system), speedup (number of pro­
cessors increased, database kept constant) and sizeup (multiprocessor size 
fixed, database size per node increased) characteristics of the CD algorithm 
were examined, and CD was shown to have linear scaleup and excellent 
speedup and sizeup behaviors. Many subsequent algorithms use CD as a 
baseline algorithm to measure performance. 

Further extensive analysis in [62] leads to the following results about the 
scalability issues of algorithms. CD does not scale well with respect to the 
increasing number of candidates: if the number of candidates is too large 
to fit in the main memory, transaction sets need to be read from the disk. 
Since DD performs redundant computation and has an extra cost of data 
movement, it does not scale well with respect to the increasing number of 
transactions in the database. However, DD is scalable with respect to the 
increasing number of candidates. Even though IDD performs no redundant 
work, for it to have a good load balance, the number of processors needs 
to be relatively small. IDD is not scalable with respect to the number of 
transactions, but since it does not have redundant computations, it scales 
better than DD. Like DD, IDD also scales with respect to the increasing 
number of candidates. 

Moreover, plenty of experiments were run in [120] on a 12-node SGI 
Power Challenge (shared memory machine) on different databases that have 
been used as benchmarks for many association rule algorithms. The results 
indicated that CCPD achieved a good speedup, but serial I/O inhibited 
good performance. 

APM was compared to CD as well as on the five series of databases 
in terms of response time, total number of candidate itemsets generated, 
CPU, and I/O costs and performance. For experiments run on a 12-node 
Sun Enterprise 4000 shared memory multiprocessor, APM outperformed 
CD in all of these areas. In the experiments conducted, APM was two to 
five times faster than CD, had about the half of I/O cost, and had a six 
to thirty times smaller candidate set. Furthermore, APM was shown to 
have a better scaleup (close to the ideal scaleup) and sizeup. APM was 
demonstrated to be consistently superior to CD despite the inherent I/O 
contention of shared memory architecture [28]. 



Association Rules: Parallel and Distributed Algorithms 179 

5. Summary 

Discovery of association rules is an important task in data mining. Since 
computing large itemsets sequentially is costly in terms of I/O and CPU 
resources, there is a practical need for scalable parallel algorithms espe­
cially when databases are enormous and distributed. Various parallel and 
distributed methods have been developed that attempt to minimize com­
munication, employ efficient computation, and synchronization techniques, 
and make a better usage of memory on both distributed and shared memory 
systems. Nevertheless, there is still room for plenty of improvement for solv­
ing issues including high dimensionality, large database sizes, data location 
(logically and physically distributed data), data skew, and dynamic load 
balancing. 

In addition, most, if not all current parallel algorithms are mainly con­
cerned with frequent itemset discovery and ignore the rule-generation phase. 
Although rule generation may seem as a straightforward task, it is not a 
trivial problem when millions of large itemsets are generated. Parallel meth­
ods are thus needed to "efficiently enumerate all strong rules" [165]. 

Appendix 

Algorithm 27 Count Distribution [42] 
Input: 
I //Itemsets 
P\P2,...,PP //Processors 
D1, D2,..., Dp //Database divided into partitions 
s //Support 

Output: 
L //Large itemsets 

Algorithm: 
perform in parallel at each processor pl; / /Count in parallel. 
k = 0 / / k is used as the scan number. 
L = <D; 
C\ = I; //Initial candidates are set to be the items. 
repeat 

k = k+1; 



180 S. Pulatova 

Algorithm 27 (Continued) 
for all Ii G Ck do 

c\ = 0; //Initial counts for each itemset are 0 
end for 
for all tj G Dl do 

for all Ii G Ck do 
if Ii G tj then 

c\ = c< + 1; 
end if 

end for 
end for 
broadcast c\ to all other processors; 
for all Ii G Cfc do 

//Determine global counts 

end for 
for all Ii G Cfc do 

if ^ > (s x ID1 U D2 U • • • U DP\) then 
Lk = Lk\J I^, 

end if 
end for 
L = L\jLk; 
Ck+i = Apriori-Gen (Lfc) 

until Cfe+i = 0; 

Algorithm 28 Data Distribution [42] 

Input: 
I //Itemsets 
P1,P2,...,Pp //Processors 
D1 , D2,..., Dp //Database divided into partitions 
s //Support 

Output: 
L //Large itemsets 

Algorithm: 
Ci = I; 



Association Rules: Parallel and Distributed Algorithms 181 

Algorithm 28 (Continued) 

for all 1 < I < p 
//Distribute size 1 candidates to each processor. 
determine C[ and distribute to Pl; 
perform in parallel at each processor Pl; / /Count in parallel. 
k = 0; J jk is used as the scan number. 
L = 0; 
repeat 

k = k + 1; 
4 = 0; 
for all Ii e C{ do 

c\ = 0; //Initial counts for each itemset are 0. 
end for 
for all tj £ Dl do 

for all U e C{ do 
if / , S tj then 

c\ = c\ 1 //Determine local counts. 
end if 

end for 
end for 
broadcast Dl to all other processors; 
for every other processor m ^ I do 

for all tj e Dm do 
for all Ii £ Cl

K do 
if Ii £ tj then 

c\ = c\ + 1 //Determine global counts. 
end if 

end for 
end for 
if Ci > (s x ID1 U D2 U • • • U Dp\) then 

4 = 4u/.; 
end if 
broadcast L\ to all other processors; 
Lk = L\ U L\ U • • • U Lp

k; //Global large fc-itemsets. 
Cfc+i = Apriori-gen (Lk) 
Ck+i c Ck+i; 

end for 
until Cl

k+1 = 0; 
end for 



182 S. Pulatova 

Algorithm 29 Asynchronous Parallel Mining [28] 

/ //Itemsets 
P1, P2,..., PP //Processors 
D1, D2,..., Dp //Database divided into partitions 

Preprocessing: 
(i) All processors scan their partitions to compute local supports of size-1 

itemsets in their intervals; 
(ii) Compute size-1 large itemsets L\ and generate Ci = Apriori-gen (Li); 
(iii) Perform a virtual partition pruning on C2; 
(iv) Initialize the shared trie with the remaining size-2 candidates; 
(v) Perform inter-partition interval configuration and intra-partition inter­

val configuration to prepare a homogeneous distribution. 

//Parallel Execution: 
/ /Each processor i runs the following fragment on its partition Dl 

while Some processor has not finished the counting of all the itemsets 
on the trie on its partition do 
while P% has not finished the counting of all the itemsets on the trie 
on Dl do 

Scan the next interval on Dl and count the supports of the itemsets 
on the trie in the interval scanned; 
Find the locally large itemsets among the itemsets on the trie; 
Generate new candidates from these locally large itemsets; 
Perform virtual partition pruning on these candidates and insert the 
survivors into the trie; 
Remove globally small itemsets on the trie; 

end while 
end while 



CHAPTER 16 

ASSOCIATION RULES: ADVANCED TECHNIQUES 
A N D MEASURES 

Asim YarKhan 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
yarkhan@cs. utk. edu 

Overview 

Association rules are a powerful tool for discovering relationships in data 
sets. Nevertheless, the straightforward representation of items does not 
allow for rules based on item categories or on quantitative information. 
The support-confidence measures of association rules are often not power­
ful enough to separate valuable insight from junk. Presented in this work 
are extensions to association rules that handle incremental updates, item-
categories, and quantitative information. A variant of association rules that 
uses correlation between items is described. Advanced measures that help 
determine the value of association rules are shown. 

Keywords: Generalized association rules, quantitative association rules, 
correlation rules, lift metric, conviction metric, chi-squared metric. 

1. Introduction 

Many of the concepts in data mining have emerged from other fields such 
as statistics and artificial intelligence. On the other hand, the concept of 
association rules originated with data mining itself and may be considered 
to be one of its major successes. In earlier chapters the basics of association 
rules have been introduced and some methods of parallelizing them have 
been presented. In this chapter advanced ideas relating to association rules 
will be discussed. 

183 



184 A. YarKhan 

2. Motivation 

Very often the business value from association rules derives from informa­
tion that is beyond the simple view of transactions as groups of items. The 
actual price of the items, the general category (e.g., a hammer is a tool), 
the season (e.g., warm clothes in winter) and other external information 
may be very important. 

Basic association rules can be used to generate interesting knowledge 
about the relationships between items from transactions. Nevertheless, it 
may be desirable to extend beyond the transactions using external knowl­
edge about the items to generate the rules. In the following fictitious exam­
ple, generating association rules between categories (e.g., sports equipment 
and womens clothing) from specific market basket items (e.g., Spalding golf 
balls, fluffy Angora sweaters) might lead to useful business ideas such as 
"advertise sports equipment on womens clothing Web sites." 

Rules that are in some sense "surprising" and reflect rare events may 
provide new insights into the business process, whereas common associa­
tions (with high support) can be used to do basic tasks like make prod­
uct recommendations. Some measures are presented that go beyond the 
support-confidence framework to determine the value of a rule. 

Methods of incorporating incremental updates to the data into asso­
ciation rules are presented in Sec. 3. Techniques to deal with hierarchies 
and taxonomies of items are presented in Sec. 4. Section 5 discusses one 
way to add quantitative information to the items. Section 6 describes 
how statistical correlation information can be added to association rules. 
Section 7 presents some measures of association rules that go beyond 
support-confidence. 

3. Incremental Rules 

In many data mining tasks the underlying data cannot be assumed to be 
static, although most data mining algorithms, such as Apriori (see Chap. 6), 
are designed for static data sets and updates to the data are handled by 
running the algorithm again. This is not acceptable for large data sets, or 
when the runtime is slow. Algorithms are needed that can handle incre­
mental updates to the data in a graceful manner. 

Fast Update (FUP) is one approach to association rules that handles 
incremental updates to the data [27]. The method tries to determine the 
promising itemsets in the incremental update to reduce the size of the 
candidate set to be searched in the original large database. 



Association Rules: Advanced Techniques and Measures 185 

Given an initial large database DB with known large itemsets L, an 
incremental update db is to be added to it. Some previously large k-itemsets 
may become small in DB + db, whereas some previously small ones may 
become large. An itemset will be large if it is large in both DB and db, and 
it will be small if it is small in both. The itemsets that are large in DB, 
but small in db just need to have the counts updated using the counts from 
db. Moreover, the itemsets that are large only in db need to be checked for 
sufficient support, requiring a scan of the large DB to get the count. Using 
these updated counts, the support and confidence for the itemsets can then 
be computed. 

4. Generalized Association Rules 

Generalized association rules use a concept hierarchy, i.e., building rules 
at different levels of the hierarchy. One possible motivation would be when 
there is insufficient support for a rule involving the actual items, there might 
be sufficient support for the ancestors of the item. A simple approach to 
using taxonomies is shown by Srikant and Agrawal in [140]. In this case, all 
ancestors of an item are added into the transaction. This naive approach is 
presented here, but it is computationally expensive; several improvements 
and variations are discussed in [140]. 

In Fig. 40, a simple hierarchy is shown, and a set of transactions based 
on the items is presented in Table 18. In Table 19, each transaction has been 
extended to include the hierarchy. Standard algorithms such as Apriori can 
be applied to the extended transactions to generate the association rules. 
Note that support for an ancestor is not simply the sum of the support for 
the children because several of the children could be presented in a single 
transaction. 

Footwear 

Shoes Hiking Boots 

Fig. 40. Hierarchy for clothes and footwear (from [140]). 



A. YarKhan 

Table 18. The original transactions (from [140]). 

Transaction Items Bought 

100 Shirt 
200 Jacket, Hiking Boots 
300 Ski Pants, Hiking Boots 
400 Shoes 
500 Shoes 
600 Jacket 

Table 19. Transactions extended with the hierarchy. 

Transaction Items Bought 

100 Shirt, (Clothes) 

200 Jacket, Hiking Boots, (Outerwear, Clothes, Footwear) 
300 Ski Pants, Hiking Boots, (Outerwear, Clothes, Footwear) 
400 Shoes, (Footwear) 
500 Shoes, (Footwear) 
600 Jacket, (Outerwear, Clothes) 

There are many possible problems with this naive approach, for exam­
ple, the support for the categories will be much higher than the support 
for the actual items. Thus, interesting rules based on rare items may be 
"drowned out" by the rules for their ancestors. Also, redundant rules may 
be generated (Outerwear =J> Hiking boots; Jacket => Hiking boots). 

In [140], an interesting rule is defined as one whose support is other 
than expected. For example, consider a rule 

Outerwear =4> Hiking boots (16% support, 80% confidence). 

If 25% of Outerwear sales is Jackets, then the expected rule would be 

Jacket => Hiking boots (4% support, 80% confidence). 

Note that if the support for this rule is substantially different from the 
expected support, then this would be an interesting rule. Based on a for­
malization of this notion of interesting rules, the rules that are generated 
can be filtered to produce a more useful set. 

Multiple-level association rules are a variation of generalized association 
rules [63, 65]. The motivation of this variation is that items at the lowest 
level of hierarchy (e.g., seven-grain-bread) are likely to have lower support 
than those at a higher level (e.g., all bread). If a minimum support value 
is set low to allow rules with the seven-grain-bread to emerge, then many 



Association Rules: Advanced Techniques and Measures 187 

uninteresting rules may be generated. If the minimum support is set too 
high, rules involving rare items may be lost. In multiple-level association 
rules, different levels of the concept hierarchy can use different minimum 
support values. 

5. Quantitative Association Rules 

This variation on association rules involves quantitative information about 
the items, and was studied by Srikant and Agrawal [141]. Extending the 
example from Fig. 40 and Table 19, the price of a jacket could be associated 
with the sales of shoes or more expensive hiking boots to produce the 
following rules: 

Jacket:[$0--- $50] => Shoes, 
Jacket:($50 • • • oo] => Hiking Boots. 

This is valuable information to retailers. If they are aware that the customer 
is likely to buy more expensive hiking boots, they can direct the customer 
in that direction, rather than have the customer walk away with a cheaper 
pair of shoes. Table 20 shows a simple approach to including quantitative 
information in the rules. Break the quantity into several regions, label the 
items appropriately, and use the usual association rule algorithms. 

Since the original item is broken into several pseudo items, the support 
for these items is less than for the original item. Therefore, the minimum 
support value may need to be adjusted to avoid losing useful rules. Addi­
tionally, there is no easy way to determine how to create the quantitative 
regions. 

Table 20. Transaction hierarchy with quantitative information. 

Transaction Items Bought 

100 Shirt, (Clothes) 
200 Jacket:[50 • • • oo], Hiking Boots, (Outerwear, Clothes, Footwear) 
300 Ski Pants, Hiking Boots, (Outerwear, Clothes, Footwear) 
400 Shoes, (Footwear) 
500 Shoes, (Footwear) 
600 Jacket:[50 ••• oo], (Outerwear, Clothes) 
200 Jacket:[0 ••• 50], Shoes, (Outerwear, Clothes, Footwear) 



188 A. YarKhan 

6. Correlation Rules 

Correlation rules were proposed by Brin et al. [21] as a way of generaliz­
ing beyond market baskets and association rules. These mining rules use 
correlations, and the absence or presence of an item are both considered 
in generating rules. The significance of the associations is tested using the 
standard chi-squared test (presented in Sec. 7.3). Correlation rules can be 
used on generalized market baskets, which can be any collection of subsets 
of items from some space. For example, in [21], correlation rule techniques 
were applied to census data as well as text data from Usenet. 

For random variables A and B, the correlation between A and B is 
defined as follows. Define the probability that A does not occur as P(A) = 
1 — P(A), and define P{B) similarly. If A, B are independent then P(AB) = 
P(A)P(B), otherwise they are dependent. A and B are said to be correlated 
if and only if any of AB, AB, AB, AB are dependent. 

This example is adapted from [21] and shows some of the deficiencies of 
support and confidence. For the association rule A =>• B, define its support 
by P(A, B) and its confidence by P(B\A). Suppose 90 percent of customers 
buy coffee, 25 percent buy tea, and 20 percent buy both tea and coffee. Then 
the following rule can be made: 

tea =4> coffee (support = 20%, confidence = 20/25 = 80%). 

On the basis of support-confidence this seems to be a good rule; however, 
this ignores the knowledge that 90 percent of customers buy coffee anyway. 
So, knowing that the customer bought tea actually decreases the likelihood 
that they buy coffee by 10%. There is a negative relationship between buy­
ing tea and coffee that is not captured by the support-confidence framework. 
The correlation between tea and coffee can be calculated by (P(tea and cof-
fee)/(P(tea) P(coffee)) = 0.2/(0.25 x 0.9) = 0.89, which is less than 1, so 
they are negatively correlated. 

Correlation has a useful property for the construction of rules; it is 
upwardly closed. This means that if A, B are correlated, then any super­
sets (e.g., A, B, C) will also be correlated. This can intuitively be seen 
because adding an item to a set would not cancel out the correlations that 
already exist. In finding correlation rules, the minimum correlated itemsets 
are desired, that is, those itemsets whose subsets are not correlated. 

The upward closure property of correlation can be contrasted with the 
downward closure property of support. In downward closure, all candidate 
(i + l)-itemsets are generated from the supported z-itemsets, and then the 



Association Rules: Advanced Techniques and Measures 189 

ones that do not have sufficient support are pruned. In upward closure, 
all supersets of correlated sets are known to be correlated. Support and 
correlation can be combined to generate significant itemsets, which are 
supported and minimally correlated. 

A simplified core of the algorithm to determine significant (i.e., corre­
lated and supported) itemsets follows. Candidate £;-itemsets are constructed 
using the usual ideas of support. For each fc-itemset, the chi-squared test 
(see Sec. 7.3) is used to determine if the itemset is correlated at some spec­
ified significance level. If it is correlated, then it is returned as a significant 
itemset. If it is not correlated, then it will be used to generate the next set 
of {k + l)-itemsets. 

7. Measuring the Quality of Association Rules 

As defined in the previous section, the support and confidence for an asso­
ciation rule A => B is given by P(A,B) and P(B\A), respectively. On the 
other hand, these measures for the rule leave a lot of questions, some of 
which have been mentioned in earlier sections. For business purposes, an 
obvious rule is not usually a very useful rule. So additional measures are 
defined that bring out other aspects of the association rules. The discussion 
in this section follows [42]. 

7.1. Lift 

Lift or interest may be used to measure the relationship or independence 
of items in a rule [22]: 

Uft{A =*B) = „P[AlBL • J v ' P{A)P(B) 

Note that this measure can be seen in the definition of independence in 
Sec. 6. This measure is symmetric, and does not distinguish between A => B 
and B => A and could help judge if items are positively or negatively 
related. Lift would be 1 if A and B are statistically independent. This is a 
measure of "surprise," in that it indicates the difference from expectations 
under statistical independence. 

7.2. Conviction 

From symbolic logic, it is known that A —> B = ~i(A A -<B). So, pfJnp7-vB) 
would measure the negation of A —> B. To account for the negation, the 



190 A. YarKhan 

fraction is inverted to measure conviction [22]: 

. ^ , . „ , P(A)P{pB) 
convictioniA =$• B) = —-r1—-—-L. V ' P(A,^B) 

When A and B are not related, all the events are independent, and con­
viction will have the value of 1. Rules that are always true approach oo. 
Therefore, conviction measures how strongly a rule holds. 

7.3. Chi-Squared Test 

The chi-squared test for independence takes into account both the absence 
and the presence of items in a set. It measures the degree to which the 
actual count of an itemset differs from its expected count. A contingency 
table for sales of coffee and tea is shown in Table 21. The table shows that 
90% of the customers bought coffee, and 25% of the customers bought tea 
and 20% bought both tea and coffee (this continues the example in Sec. 6 
taken from [22]). 

The chi-squared statistic is defined as 

2 _ ^ {0{X)-E[X\Y *2 = £ 
where X is an itemset in the rule R. For the single items i'mX, the expected 
value E(i) is equal to the observed count 0(i). Thus E[t] = 25, E[i] = 75, 
E[c] = 90, E[c] = 10. Calculate E[tc] = 100 x 25/100 x 90/100 = 22.5, 
whereas the observed 0(tc) = 20. The expected value E[tc] for the itemset 
[tc] gives a contribution to \2 of (20 - 22.5)2/22.5 = 0.278. Similarly, the 
contributions of tc, t, c, and tc can be calculated to get x2 = 2.204. This chi-
squared value can be looked up in standard statistical tables and is found 
to be too low at 95 percent confidence (less than 3.84). So the independent 
assumption cannot be rejected, and even though there appears to be a 
correlation, it is not statistically significant. Ultimately, the sales of coffee 
and tea are not correlated. 

Table 21. Contingency table for coffee and tea sales. 

Coffee (c) No Coffee (c) J2r 

Tea (t) 
No Tea (t) 

2—tcol 

20 
70 

90 

5 
5 

10 

25 
75 

100 



Association Rules: Advanced Techniques and Measures 191 

8. Summary 

The techniques shown in this chapter can help overcome some of the 
shortcomings of the basic association rule algorithms like Apriori and 
the standard support-confidence framework. Any large, frequently-updated 
database should take advantage of a incremental update technique, since 
the cost of continually scanning the database would be too high. 

Many sales databases are sparse in their counts at the UPC (Universal 
Product Code) or product-ID level. This is because these identifiers can 
change when new shipments come in, when minor updates to the product 
occur, etc. In these circumstances, a hierarchical or categorical technique 
would be vital in generating useful association rules. 

One of the major problems of association rules is selecting the minimum 
support and confidence values. If minimum-support is too low, too many 
rules will be generated and they will have no value. If minimum-support is 
set too high, rare but interesting events might be missed. Several additional 
measures are presented that help select the interesting rules. Techniques for 
combining correlation statistics with association rules were presented that 
can test relationships in different ways from support-confidence. 

Many other advanced techniques for association rules are not addressed 
in this chapter. Spatial association rules add spatial operations (e.g., near, 
far, next to) to describe the relationships between the data items. Temporal 
association rules handle the temporal variation of items, e.g., the sales of 
clothing varies over time (e.g., seasonal items, warm versus cool clothing). 
Frequent Pattern (FP) trees [64] compress the database into a tree repre­
senting frequent items, which avoids the exponential problem of candidate 
generation in Apriori. 





CHAPTER 17 

SPATIAL MINING: TECHNIQUES A N D ALGORITHMS 

Matthew Aldridge 
Department of Computer Science, University of Tennessee 

203 Claxton Complex, Knoxville, TN 37996-3450, USA 
aldridge@cs.utk. edu 

Overview 

When attempting knowledge discovery on spatial data, certain additional 
constraints on and relationships among the data must be considered. These 
include spatially or locationally explicit attributes, as well as more implicit 
topological relationships. Given such additional constraints, many general­
ized data mining techniques and algorithms may be specially tailored for 
mining in spatial data. This chapter introduces several adapted techniques 
and algorithms that may be applied in a spatial data mining task. 

Keywords: Spatial data mining, concept hierarchy, generalization, 
STING, spatial rules, ID3, two-step classification, CLARANS, GDBSCAN, 
DBCLASD. 

1. Introduction and Motivation 

Spatial mining is a specialized domain of data mining whose goal is to find 
latent or implicit knowledge in spatial data. While many general data min­
ing techniques apply in spatial mining, additional challenges are introduced 
by the intrinsic nature of spatial data. Unlike other forms of data, spatial 
data may be viewed as objects with some location in a physical space. 
Spatial data also contain nonspatial attributes that may be either depen­
dent or independent of location. Furthermore, spatial object attributes are 
often influenced by other nearby objects, or those contained within some 
notion of a neighborhood. Another challenge imposed on spatial mining is 

193 

mailto:aldridge@cs.utk


194 M. Aldridge 

the very large amount of spatial data often produced by remote sensing, 
medical equipment, geographical information systems, etc. 

Given such challenges, researchers in spatial mining have adapted many 
general data mining techniques and algorithms for use in spatially ori­
ented data mining tasks. This chapter discusses several such adaptations, 
beginning with concept hierarchies and their roles in generalizing spatial 
data. Rules used to describe spatial data are then introduced, followed by 
a hierarchical spatial mining technique based on data statistics. Finally, 
an overview of several spatial classification and clustering methods is 
given. 

2. Concept Hierarchies and Generalization 

A concept hierarchy is a tree structure that shows the set relationships 
among objects. Concept hierarchies satisfy upward consistency, in that a 
high-level concept is more general than but consistent with its lower-level 
concepts. Generalization is a process that employs concept hierarchies to 
provide descriptions of data objects at different granularities or levels of 
detail. 

As applied to spatial data, the hierarchical levels may illustrate spatial 
relationships. An example spatial concept hierarchy is given in Fig. 41. 
Such spatial hierarchies may be generated by consolidating adjacent spatial 
objects. Since spatial data contain both spatial and nonspatial features, 
attribute hierarchies may be provided to further aid in the extraction of 
general knowledge from spatial databases [102]. An attribute hierarchy is 
given in Fig. 42, where types of agriculture production are examined. Using 

Tennessee 

Davidson Knox . . . Shelby 

Brentwood . . . Nashville Farragut . . . Knoxville Memphis 

Sequoyah Hills Fort Sanders Vestal . . . Bearden 

Fig. 41. A portion of a spatial concept hierarchy that describes the state of Tennessee 
by county, city, and community. 



Spatial Mining: Techniques and Algorithms 195 

Agriculture 

Food Nonfood 

Grain . . . Fruit Fabric 

Corn Rice . . . Wheat Apple . . . Pear Cotton . . . Flax Tea . . . Coffee 

Fig. 42. An attribute concept hierarchy that partitions types of agriculture production. 
Figure adapted from [102]. 

this attribute hierarchy, a region that produces corn and wheat may be 
generalized to a grain-production region. 

Depending upon the application, the practitioner may choose to gen­
eralize either nonspatial or spatial data first. Nonspatial data dominant 
generalization first performs generalization on nonspatial attributes using 
an expert-provided concept hierarchy, followed by the generalization of spa­
tial attributes into clusters or regions. This process consists of the following 
steps: 

(i) Collect related nonspatial data. In the above agriculture example, the 
relevant nonspatial data would be the lowest-level production types 
for each spatial object in the spatial database. 

(ii) Perform attribute-oriented generalization on collected nonspatial data 
using concept hierarchy ascension. The sufficiency of a given nonspatial 
generalization may be determined either by the number of generalized 
tuples in the generalized relation or by an appropriate concept level, 
both of which can be provided by the user or expert explicity. 

(iii) Perform spatial generalization. After the desired level of nonspatial 
generalization has been reached, spatial objects or regions are merged 
together with neighboring objects or regions that contain the same 
high-level attribute values. If an object or region is dominated by a par­
ticular attribute value, then the submissive value(s) may be dropped 
from the high-level description. For example, if 95 percent of a region 
produces corn, and 5 percent of the region produces tobacco, then the 
region may still be generalized to grain-producing according to the 
concept hierarchy in Fig. 42. 



196 M. Aldridge 

Spatial data dominant generalization works in a very similar manner as 
nonspatial data dominant generalization: 

(i) Collect related spatial data. 
(ii) Generalize spatial data by clustering spatial objects according to their 

regions. 
(iii) For each region, generalize nonspatial data until a small number of 

concepts subsume all the concepts existing in the region. 

The computational complexity of both spatial and nonspatial domi­
nant generalization on n spatial objects is O(nlogn). Nevertheless, [102] 
suggests interleaved generalization between spatial and nonspatial data to 
achieve satisfactory results with improved performance. For example, a per­
formance gain may be achieved if nonspatial data is generalized to a cer­
tain level before performing a potentially expensive spatial data dominant 
generalization. 

3. Spatial Rules 

As previously mentioned, spatial data contain both spatial and nonspatial 
features. For example, consider a thematic raster image depicting average 
yearly rainfall amounts for a region. A pixel's coordinates in the image 
correspond to location (spatial feature), while the pixel's color indicates 
rainfall amount (nonspatial feature). To better describe the nature of such 
data, spatial rules may be employed. 

One type of spatial rule is the spatial characteristic rule, which 
characterizes or describes the data. This is the simplest spatial rule, as it 
provides no greater context for the spatial object being described. Spatial 
discriminant rules provide such missing context by describing the differ­
ences between classes or objects within the data and may be viewed as 
conjunctions of multiple spatial characteristic rules. Using the above rain­
fall raster image example, possible instances for spatial characteristic and 
discriminant rules are as follows: 

• Characteristic rule: The average yearly rainfall at pixel A is 35 inches. 
• Discriminant rule: The average yearly rainfall at pixel A is 35 inches, 

while the average yearly rainfall at pixel B is 39 inches. 

The third type of spatial rule is the spatial association rule. The con­
cept of spatial association rules is an extension of the original work on 



Spatial Mining: Techniques and Algorithms 197 

association rules as applied to mining of large transaction databases [88].r 

A spatial association rule is of the form X —> Y(c%), where X and Y are 
sets of spatial or nonspatial predicates and (c%) is the confidence of the 
rule. Referring again to the above rainfall example, one potential spatial 
association rule may be: 

Eighty percent of the pixels near pixel C have average yearly 
rainfall levels of less than 33 inches. 

Note that this example association rule contains a spatial predicate in 
the antecedent, while the consequent is nonspatial. One or both of the 
antecedent and consequent must contain a spatial predicate. A possible 
rule with a nonspatial antecedent and spatial consequent is: 

Twenty percent of the pixels with average yearly rainfall levels 
above 39 inches lie south of pixel D. 

As with traditional association rules, support and confidence thresholds 
are used to reduce the number of association rules under consideration. 
These thresholds may also be adjusted for different levels of a concept 
hierarchy. At lower levels of a hierarchy, high thresholds could prevent the 
discovery of interesting associations because fewer objects have a given 
description [89]. 

A two-step method for discovering spatial association rules is given in 
[88]. The first step involves finding the support for predicates among the 
objects at a coarse level of description. For example, R-trees or fast min­
imum bounding rectangle methods may be used to find objects that are 
approximately close to each other. Those predicates that pass the support 
threshold are given further consideration, and another round of predicate 
support computation is performed with finer detail and probably a lower 
support threshold. Finally, those predicates that pass both filtration steps 
are mined for possible strong association rules. 

4. STING 

The STatistical INformation Grid (STING) approach to spatial data min­
ing is introduced in [146]. STING is a hierarchical method that divides the 
spatial area into cells at multiple levels of granularity, much like a quad 
tree, with statistical information about the objects in each cell. Unlike 

rSee Chap. 14 for an introduction to association rules. 



198 M. Aldridge 

~~~^ 

•* „ 

~~~ 

, 

*--^ 
~~. 

" lstleve 

^ - . 

-_ 3rd level 

Fig. 43. An example STING grid hierarchy of four levels. 

generalization techniques, STING does not require a predefined concept 
hierarchy. Moreover, STING is a query-independent approach since the sta­
tistical summary of the spatial region is computed only once, independently 
of any query. 

The initial step prior to applying the STING algorithm is to create the 
hierarchical grid cell structure. Figure 43 illustrates this structure. The top 
level is a single cell containing the entire spatial region of interest. Beginning 
with the top cell, the region is recursively divided into quadrants until a 
sufficiently deep hierarchy is reached. The size of the lowest level cells is 
dependent upon the density of the spatial objects; [146] suggests choosing 
a depth such that the average number of objects in each leaf cell is in the 
range from several dozens to several thousands. 

For each cell in the lowest level, the number of objects contained within 
the cell is stored, along with several object attribute-dependent parameters. 
It is assumed that all object attributes have numerical values. For each 
numerical attribute, the mean, minimum, maximum, standard deviation 
and distribution type of the attribute are determined. 

The parameters of higher level cells may be easily computed from their 
child cells. This statistical summary need only be computed once for static 
data. Moreover, if the data is updated, only the parameters for the lowest 



Spatial Mining: Techniques and Algorithms 199 

level cells affected and each of their ancestor cells would require recom-
putation, rather than the entire region. Though not discussed here, [147] 
proposes an extension called STING+ that handles dynamically evolving 
data in a more sophisticated manner by utilizing user-defined triggers. 

The most common query fielded by STING is a region query, where 
regions satisfying certain conditions are returned. Another possible query 
type is one that selects a predetermined region, returning some function of 
the region's parameters (e.g., an attribute's range). An extension of SQL 
is suggested in [146] for handling STING queries, and an example query 
is given: 

SELECT REGION 
FROM house-map 
WHERE DENSITY IN (100, oo) 
AND price RANGE (400000, oo) 

WITH PERCENT (0.7, 1) 
AND AREA (100, oo) 
AND WITH CONFIDENCE 0.9 

This query selects with 90 percent confidence regions containing at least 
100 houses per unit area, with at least 70 percent of the house prices above 
$400K, and with total area at least 100 units. 

The STING algorithm, shown in Algorithm 30 as adapted from [42], 
uses a breadth-first search of the grid hierarchy to find regions of cells 
that satisfy a given query. Regions of relevant cells may be generated by 
joining cells marked relevant with each neighboring cell successively and 
determining whether this small region satisfies the query requirements. If it 
does, the region is marked relevant, and the process of joining and testing 
neighboring cells of the region continues until the region cannot be increased 
while still maintaining relevancy. When region production is performed at 
multiple levels of granularity, the STING approach may be viewed as a type 
of hierarchical clustering. If the number of cells, k, at the lowest level of the 
grid hierarchy is significantly less than the number of objects in the entire 
region (as the STING authors suggest), then the computational complexity 
of a STING query is 0(h). As such, STING provides better performance 
than many other spatial mining approaches. 

5. Spatial Classification 

A specialization of the general classification problem introduced in previous 
chapters is spatial classification, wherein spatial objects are partitioned. To 



200 M. Aldridge 

Algorithm 30 STING Algorithm 
Input: 
T {Grid hierarchy tree} 
q {Query} 

Output: 
R {Regions of relevant cells} 

i = 1 {Current hierarchy level} 
c {Current cell} 
repeat 

for c eTi such that parent of c is relevant do 
Based on a confidence theshold, mark c as relevant or irrelevant to 

q 
end for 
i = i + l 

until all levels of the tree have been visited 
Populate R 

find rules for use in such partitioning, several types of characterizations of 
spatial objects must be considered [90]: 

• Nonspatial attributes, such as "population," 
• Spatially-related attributes with nonspatial values, such as "popula­

tion living within walking distance of a store," 
• Spatial predicates, such as distancelessdhanAOkm [source, target), 
• Spatial functions, such as distanceJo (source, target). 

Each of these categories may be used both to define classes and to build the 
decision trees for predicting objects' class membership. To create simpler 
decision trees and improve efficiency, it may be possible to aggregate some 
attribute values, and concept hierarchies could be utilized to generalize 
attributes. 

5 .1. ID3 Extension 

An extension to the ID3 classification algorithm for classifying spatial data 
is proposed in [106].s The driving force behind this approach is that the 

sSee Chap. 7 for an introduction to the ID3 method. 



Spatial Mining: Techniques and Algorithms 201 

implicit relationships of spatial neighborhoods impact the classification of 
spatial objects. To examine such relationships, the concept of neighborhood 
graphs is introduced. 

The authors define a neighborhood graph Gneighbor, for some spatial 
relation or predicate neighbor, as a graph (N, E), where N is a set of nodes 
and E a set of edges. Each node is an object in the spatial database, and two 
nodes n\ and 712 are connected via an edge if and only if neighbor'(711,722) 
holds. The predicate neighbor may be based on topological, metric, or 
directional relationships. From the neighborhood graph, a neighborhood 
path may be defined as a list of nodes of G, [711,712,..., 7ifc], such that 
neighbor(ni, ni+i) holds for each i, 1 < i < k — 1. 

The method then applies a modified version of ID3 for creating a deci­
sion tree that takes into consideration not only the attributes of a given 
object, but also the attributes of neighboring objects. Because the influ­
ence of neighboring objects and their attributes decreases with increased 
distance, the neighbors taken into consideration are limited to those within 
some maximum distance along a neighborhood path. This ID3 extension 
may be prone to producing overspecialized decision trees. As described in 
the next section, this can be avoided by using predicate relevance analysis 
in their two-step method [90]. 

5.2. Two-Step Method 

A two-step approach for classifying spatial objects is proposed in [90]. This 
process is similar to the two-step method for mining association rules men­
tioned earlier in Sec. 3, in that rough computations are performed first and 
then fine computations are done only for the promising patterns. 

In the first step, a training sample of the objects in the domain is 
chosen and examined to find coarse descriptions and relevant predicates 
and functions. Minimum bounding rectangles about the sample objects may 
be used at this stage for finding approximate distances among the objects. 
Then, for every sample object s, two nearest neighbors are found for s. One 
neighbor is the nearest hit, which is the closest object to s that belongs to 
the same class. The other is the nearest miss, which is the closest object to 
s that does not belong to the same class. 

Prior to examining all sample objects and their nearest hits or misses, 
all predicates defined in the system are given an initial weight of zero. 
Then, if a nearest hit contains the same value as s for a given predicate, 
then the predicate's weight is increased. Otherwise, the predicate's weight 



202 M. Aldridge 

is decreased. Conversely, if a nearest miss for s contains the same predicate 
value, the weight decreased, while a different predicate value increases the 
weight. After examining all objects and their nearest hits and misses, only 
those predicates that have positive weights above a predetermined threshold 
are given further consideration. The motivation for this step is to create 
more efficient decision trees that do not branch on irrelevant predicates. 

In the second step, the buffers around each sample object are examined. 
Determining buffer shape and size is important, as buffers represent areas 
that have an impact on class discrimination. In their experiments, [90] use 
equidistant rings around objects to define the buffers. Once the appropri­
ate buffer shape and size have been determined, each buffer is described by 
aggregating the values of the most relevant predicates for objects contained 
within. Then, the predicates for each buffer are generalized using a prede­
fined concept hierarchy. The information gain for each of these generalized 
predicates is computed in a method similar to that used in ID3. Finally, 
a binary decision tree is produced to classify all the spatial objects in the 
domain. 

6. Spatial Clustering 

As in any data mining task, clustering often plays an important role in the 
mining of spatial data. Nevertheless, spatial data may impose new limita­
tions or complications not realized in other domains. Spatial databases often 
contain massive amounts of data, and spatial clustering algorithms must 
be able to handle such databases efficiently. Spatial clustering algorithms 
typically cluster spatial objects according to locality; for point objects, 
Euclidean or Manhattan metrics of dissimilarity may suffice, but for polygon 
objects no such intuitive notion of similarity exists. Furthermore, spatial 
clustering algorithms should be able to detect clusters of arbitrary shape. 
The following is a discussion of several clustering techniques and their 
ability or inability to handle some of these complications. 

6.1. CLARANS 

Introduced by [113] but revised in [114], CLARANS is a hybrid approach 
using both the PAM and CLARA clustering techniques.1 The CLARA tech­
nique selects an initial random sample of objects in the domain before 

tSee Chap. 11 for an overview of PAM and CLARA, and for algorithmic details of 
CLARANS. 



Spatial Mining: Techniques and Algorithms 203 

applying the PAM algorithm to find better cluster medoids or center points 
among those objects' neighbors. CLARANS, on the other hand, applies 
the PAM algorithm to all objects in the domain, but randomly samples the 
neighbors in the search for better cluster medoids. This approach has the 
added benefit of not limiting the medoid searches to a given area, as may 
happen with the initial CLARA random sample. 

CLARANS is not limited to point objects, and the original authors pro­
pose a method for efficiently computing distance between polygon objects. 
An isothetic rectangle for an object is its minimum bounding rectangle that 
has edges parallel to either the x- or y-axis. By utilizing such a restricted 
rectangle, testing for overlap and distance among polygons is computation­
ally much simpler. Experimental results are given in [114] that show that 
the isothetic approximation approach requires only about 30 to 40 percent 
of the time for performing exact polygon distances. 

One major drawback of the CLARANS algorithm is its main-memory 
requirement. An entire spatial database must be loaded at once when apply­
ing CLARANS, which is not satisfactory for very large data sets. Modifica­
tions of CLARANS have been proposed to offset the effects of this problem 
[89]. These modifications involve the use of an R-tree variant to focus the 
algorithms computations on only relevant objects, thereby reducing the 
amount of data required to be in memory at a given point. 

6.2. GDBSCAN 

[134] introduces GDBSCAN, a generalized version of DBSCAN.U 

GDBSCAN can cluster point objects as well as polygon objects using both 
their spatial and nonspatial attributes. One way that GDBSCAN general­
izes DBSCAN is that any notion of a neighborhood of an object may be 
used, as long as the definition of a neighborhood is based on a binary pred­
icate that is symmetric and reflexive. GDBSAN is not limited to using a 
simple maxmimum cluster radius like in DBSCAN. Further generalization 
is provided by the ability to use nonspatial attributes to determine the den­
sity of a neighborhood, rather than just using the number of objects in the 
neighborhood, as with DBSCAN. 

Spatial index structures such as R-trees may be used with GDBSCAN 
to improve upon its memory and runtime requirements. When not using 
such a structure, the overall complexity of GDBSCAN applied to n objects 
is 0(n2). When using an R-tree, the complexity is O(nlogn). 

See Chap. 12 for an overview of DBSCAN. 



204 M. Aldridge 

Experimental results are provided by [134] for running the algorithm 
on data sets containing intuitive clusters of irregular shapes and sizes 
with obvious outliers. It is shown that GDBSCAN performs quite well in 
such situations. The authors also provide experimental results for running 
CLARANS on the same data sets. The accuracy of the clusters provided 
by CLARANS pale in comparison, as nearby clusters are often merged, and 
outliers are not handled properly. 

6.3. DBCLASD 

The creators of GDBSCAN also introduce a spatial clustering method called 
DBCLASD, or Distribution Based Clustering of LArge Spatial Databases 
[160]. The fundamental idea behind DBCLASD is the assumption that 
points within a given cluster are uniformly distributed. The algorithm cre­
ates clusters in a manner very similar to (G)DBSCAN. Initially, no points 
belong to any cluster. Each point p in the database is examined, and if p 
does not belong to a cluster, a new cluster containing p is created. Each 
neighbor q of p is also added to this cluster. Then for each q, any remaining 
neighbors of q not already added to the cluster are examined for the uni­
form distribution requirement. Those neighbors that fit the distribution of 
the cluster are added. 

Though certainly not applicable in every clustering application, the 
authors provide a few examples where the uniform distribution assump­
tion applies. One is the task of identifying minefield clusters and distin­
guishing those clusters from outliers, possibly representing rocks or other 
debris. Since mines in a minefield are typically fairly uniformly distributed, 
DBCLASD should perform well in this task. Experimental results are also 
provided for running DBCLASD on a database of California earthquakes. 
Though the earthquake points do not follow an exactly uniform distribu­
tion, DBCLASD provides intuitive clusters of the points. 

Like GDBSCAN, DBCLASD provides accurate clusters of points 
arranged in irregular shapes. Empirically, the runtime of DBCLASD is 
shown to be roughly twice that of DBSCAN, though DBCLASD outper­
forms CLARANS by "a factor of at least 60" [160]. 

7. Summary 

As the amount of available spatial data continues to grow, the need for effi­
cient and effective spatial data mining techniques becomes more pressing. 
Though general data mining methods may be applicable in some spatially 



Spatial Mining: Techniques and Algorithms 205 

oriented tasks, the challenges imposed by the nature of spatial data often 
need to be addressed in order to extract meaningful knowledge from spa­
tial databases. Though advancements have been made on this front, spa­
tial mining is still a young field with many available avenues for further 
progress. 





REFERENCES 

1. H. ABBASS, R. SARKER, AND C. NEWTON, Data Mining: A Heuristic 
Approach, Idea Group Publishing, London, 2002. 

2. J. ADAMO, Data Mining for Association Rules and Sequential Patterns: 
Sequential and Parallel Algorithms, Springer-Verlag, New York, 2001. 

3. R. AGRAWAL, T. IMIELINSKI, AND A. SWAMI, Mining association rules 
between sets of items in large databases, in Proceedings of ACM-SIGMOD 
Conference, Washington, DC, 1993. 

4. R. AGRAWAL, H. MANNILA, R. SRIKANT, H. TOIVONEN, AND A. VERKANO, 

Fast discovery of association rules, in Advances in Knowledge Discovery 
and Data Mining, U. FAYYAD, G. PIATETSKY-SHAPIRO, P. SMYTH, AND 
R. UTHURUSAMY, eds., AAAI Press/The MIT Press, Menlo Park, CA, 1996. 

5. R. AGRAWAL AND J. C. SHAFER, Parallel mining of association rules, IEEE 
Transactions on Knowledge and Data Engineering, 8 (1996), pp. 962-969. 

6. R. AGRAWAL AND R. SRIKANT, Fast algorithms for mining association 
rules, in Proceedings of the 20th International Conference on Very Large 
Databases, Santiago, Chile, 1994. 

7. N. ALLINSON, H. YIN, L. ALLINSON, AND J. SLACK, eds., Advances in 

Self-Organising Maps, Springer-Verlag, London, 2001. 
8. C. A P T E AND S. WEISS, Data mining with decision trees and decision rules, 

Future Generation Computer Systems, 13 (1997), pp. 197-210. 
9. ARGONNE NATIONAL LABORATORY, The Message Passing Interface (MPI) 

Standard, 2004. www-unix.mcs.anl.gov/mpi, accessed May, 2004. 
10. G. BABU, M. MURTY, AND S. KEERTHI, A stochastic connectionist approach 

for global optimization with application to pattern clustering, IEEE Transac­
tions on Systems, Man, and Cybernetics — Part B: Cybernetics, 30 (2000), 
pp. 10-24. 

11. R. BAEZA-YATES, Introduction to data structures and algorithms related to 
information retrieval, in Information Retrieval: Data Structures and Algo­
rithms, R. BAEZA-YATES AND W. B. FRAKES, eds., Prentice Hall, Engle-
wood, NJ, 1992. 

12. R. BAEZA-YATES AND B. RIBEIRO-NETO, Modern Information Retrieval, 
Addison-Wesley, New York, 1999. 

13. A. BANERJEE, S. MERUGU, I. DHILLON, AND J. GHOSH, Clustering with 

Bregman divergences, in Proceedings of the Fourth SIAM International Con­
ference on Data Mining, 2004, pp. 234-245. 

207 

http://www-unix.mcs.anl.gov/mpi


208 References 

14. P. BERKHIN AND J. BECHER, Learning simple relations: Theory and appli­
cations, in Proceedings of the Second SIAM International Conference on 
Data Mining, Arlington, VA, 2002, pp. 420-436. 

15. M. BERRY AND M . B R O W N E , Understanding Search Engines: Mathematical 
Modeling and Text Retrieval, SIAM, Philadelphia, PA, 1999. 

16. J. BlLMES, A Gentle Tutorial of the EM Algorithm and its Application to 
Parameter Estimation for Gaussian Mixture and Hidden Markov Models, 
International Computer Science Institute, Berkley, CA, 1998. 

17. T. BOZKAYA AND M. OZSOYOGLU, Distance-based indexing for high-
dimensional metric spaces, in Proceedings of the 1997 ACM SIGMOD, 
ACM, 1997. 

18. L. BREIMAN, Bagging predictors, Machine Learning, 24 (1996), pp. 123-140. 
19. L. BREIMAN, Arcing classifier, Annals of Statistics, 26 (1998), pp. 801-824. 
20. L. BREIMAN, J. FRIEDMAN, R. OLSHEN, AND P. STONE, Classification and 

Regression Trees, Wadsworth, Belmont, CA, 1984. 
21. S. BRIN, R. MOTWANI, AND C. SILVERSTEIN, Beyond market baskets: Gen­

eralizing association rules to correlations, in Proceedings of the 1997 ACM 
SIGMOD International Conference on Management of Data, vol. 26(2), 
ACM Press, 1997, pp. 265-276. 

22. S. BRIN, R. MOTWANI, J. D. ULLMAN, AND S. TSUR, Dynamic itemset 

counting and implication rules for market basket data, in Proceedings of the 
1997 ACM SIGMOD International Conference on Management of Data, 
vol. 26(2), 1997, pp. 255-264. 

23. J. CANADA, W. SULLIVAN, AND J. W H I T E , Capital Investment Analysis 
for Engineering and Management, Prentice Hall, Upper Saddle River, NJ, 
2nd ed., 1996. 

24. J. CENDROWSKA, PRISM: An algorithm for inducing modular rules, Inter­
national Journal of Man-Machine Studies, 27 (1987), pp. 349-370. 

25. P . CHAN AND A. RAD, Adaptation an learning of a fuzzy system by nearest 
neighbor clustering, Fuzzy Sets and Systems, 126 (2002), pp. 353-366. 

26. D. CHEUNG, J. HAN, V. N G , A. Fu, AND Y. F U , A fast distributed algo­
rithm for mining association rules, in Proceedings of the Parallel and Dis­
tributed Information Systems Conference, 1996. 

27. D. W. CHEUNG, J. HAN, V. T. N G , AND C. W O N G , Maintenance of discov­
ered association rules in large databases: An incremental updating technique, 
in Proceedings of the International Conference on Data Engineering, ICDE, 
1996, pp. 106-114. 

28. D. W. CHEUNG, K. HU, AND S. XIA, An adaptive algorithm for mining 
association rules on shared-memory parallel machines, Distributed and Par­
allel Databases, 9 (2001), pp. 99-132. 

29. G. CHOWDHURY, Introduction to Modern Information Retrieval, Library 
Association, London, 1999. 

30. P. CIACCIA, M. PATELLA, AND P. ZEZULA, M-tree: An efficient access 
method for similarity search in metric spaces, in Proceedings of the Twenty-
Third International Conference on VLDB, Morgan Kaufmann Publishers, 
1997, pp. 426-435. 



References 209 

31. P. CLARK AND T. NIBLETT, The CN2 induction algorithm, Machine Learn­
ing Journal, 3 (1988), pp. 261-283. 

32. W. COHEN, Fast effective rule induction, in Proceedings of the 
Twelfth International Conference on Machine Learning, vol. 12, 1995, 
pp. 115-123. 

33. W. COHEN AND Y. SINGER, A simple, fast, and effective rule learner, www-
2.cs.cmu.edu/~wcohen/postscript/aaai-99-slipper.ps, accessed May, 2004, 
1999. 

34. T. CORMEN, C. LEISERSON, R. RIVEST, AND C. STEIN, Introduction to 

Algorithms, McGraw Hill, Cambridge, 2nd ed., 2001. 
35. D. BARBARA, Y. LI , AND J. COUTO, COOLCAT: An entropy-based algo­

rithm for categorical clustering, in Proceedings of the Eleventh Interna­
tional Conference on Information and Knowledge Management, McLean, 
VA, 2002. 

36. I. D E FALCO, A. DELLA CIOPPA, AND E. TARANTINO, Mutation-based 

genetic algorithm: Performance evaluation, Applied Soft Computing, 1 
(2002), pp. 285-299. 

37. I. DHILLON, S. MALLELA, AND R. KUMAR, Enhanced word clustering for 
hierarchical text classification, in Proceedings of the Eighth ACM-SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 2002, 
pp. 191-200. 

38. J. DONGARRA, V. EIJKHOUT, E. FUENTES, J. DEMMEL, R. VUDU, AND 

K. YELICK, Self adapting linear algebra algorithms and software, in Pro­
ceedings of the IEEE, 2004. In Press. 

39. R. DUBES, Cluster analysis and related issues, in Handbook of Pattern 
Recognition & Computer Vision, C. H. CHEN, L. F. PAU, AND P. S. P . 
WANG, eds., World Scientific Publishing, River Edge, NJ, 1993. 

40. O. DUDA AND P . HART, Pattern Recognition and Scene Analysis, Wiley, 
New York, 1973. 

41. R. O. DUDA, P . E. HART, AND D. G. STORK, Pattern Classification, Wiley, 
New York, 2001. 

42. M. DUNHAM, Data Mining: Introductory and Advanced Topics, Prentice 
Hall, Upper Saddle River, NJ, 2003. 

43. M. H. DUNHAM, Y. XIAO, L. GRUENWALD, AND Z. HOSSAIN, A survey 

of association rules, Technical Report TR 00-CSE-8, Southern Methodist 
University, Department of Computer Science, 2000. 

44. B. EFRON AND R. TlBSHIRANI, An Introduction to the Bootstrap, Chapman 
and Hall, London, 1993. 

45. L. EGGHE AND C. MICHEL, Strong similarity measures for ordered sets of 
document in information retrieval, Information Processing & Management, 
38 (2002), pp. 823-848. 

46. U. FAYYAD, G. PIATETSKY-SHAPIRO, AND P. SMYTH, From data mining 
to knowledge discovery: An overview, in Advances in Knowledge Discov­
ery and Data Mining, U. FAYYAD, G. PIATETSKY-SHAPIRO, P. SMYTH, 
AND R. UTHURUSAMY, eds., AAAI Press/MIT Press, Menlo Park, CA, 
1996. 

http://cs.cmu.edu/~wcohen/postscript/aaai-99-slipper.ps


210 References 

47. V. FERNANDEZ, R. G. MARTINEZ, R. GONZALES, AND L. RODRIGUEZ, 

Genetic algorithms applied to clustering, in Proceedings of the IASTED 
International Conference: Signal and Image Processing, 1996. 

48. A. FREITAS, A survey of evolutionary algorithms for data mining and knowl­
edge discovery, in Advances in Evolutionary Computing, S. T. A. GHOSH, 
ed., Springer-Verlag, 2001. 

49. A. FREITAS, Data Mining and Knowledge Discovery with Evolutionary Algo­
rithms, Springer, Berlin, New York, 2002. 

50. Y. FREUND AND R. SCHAPIRO, Experiments with a new boosting algorithm, 
in Proceedings of the Thirteenth International Conference on Machine 
Learning, 1996, pp. 148-156. 

51. H. FRIEDMAN, T. HASTIE, AND R. TIBSHIRANI, Additive logistic regression: 
A statistical view of boosting, Annals of Statistics, 28 (1998), pp. 337-374. 

52. T. FUNKHOUSER, P . MIN, M. KAZHDAN, J. CHEN, A. HALDERMAN, AND 

D. DOBKIN, A search engine for 3D models, ACM Transactions on Graphics, 
22 (2003), pp. 83-105. 

53. J. FURNKRANZ AND G. WIDMER, Incremental reduced error pruning, in 
Proceedings of the Eleventh International Conference on Machine Learning, 
vol. 11, 1994. 

54. P . GANESAN, H. GARCIA-MOLINA, AND J. WIDOM, Exploiting hierarchical 

domain structure to compute similarity, ACM Transaction on Information 
Systems, 21 (2003), pp. 64-93. 

55. V. GANTI, J. GEHRKE, AND R. RAMAKRISHNAN, CACTUS: Clustering cat­
egorical data using summaries, in Proceedings of the ACM-SIGKDD Inter­
national Conference on Knowledge Discovery and Data Mining, San Diego, 
CA, 1999. 

56. P . GlUDlCI, Applied Data Mining: Statistical Methods for Business and 
Industry, John Wiley, West Sussex, England, 2003. 

57. J. GOWER, A comparison of some methods of cluster analysis, Biometrics, 
23 (1967), pp. 623-628. 

58. G. GRAHNE, R. HAKLI, M. NYKANEN, H. TAMM, AND E. UKKONEN, Design 

and implementation of a string database query language, Information Sys­
tems, 28 (2003), pp. 311-337. 

59. R. GROTH, Data Mining: Building Competitive Advantage, Prentice Hall, 
Upper Saddle River, NJ, 2000. 

60. S. GUHA, R. RASTOGI, AND K. SHIM, CURE: A clustering algorithm, for 
large databases, in ACM SIGMOD International Conference on Management 
of Data, 1998, pp. 73-84. 

61. S. GUHA, R. RASTOGI, AND K. SHIM, ROCK: A robust clustering 
algorithm for categorical attributes, Information Systems, 25 (2000), 
pp. 345-366. 

62. E. HAN, G. KARYPIS, AND V. KUMAR, Scalable parallel data mining for 
association rules, IEEE Transactions on Knowledge and Data Engineering, 
12 (1996), pp. 337-352. 

63. J. HAN AND Y. F U , Mining multiple-level association rules in large 
databases, Knowledge and Data Engineering, 11 (1999), pp. 798-804. 



References 211 

64. J. HAN, J. P E I , AND Y. YIN, Mining frequent patterns without can­
didate generation, in Proceedings of the 2000 ACM SIGMOD Inter­
national Conference on Management of Data, ACM Press, 2000, 
pp. 1-12. 

65. J. HAN AND Y. FU, Discovery of multiple-level association rules from large 
databases, in Proceedings of 1995 International Conference on Very Large 
Data Bases, Zurich, Switzerland, 1995. 

66. J. HARTIGAN, Clustering Algorithms, John Wiley & Sons, New York, 1975. 
67. P . H E , C.-J. X U , Y.-Z. LIANG, AND K.-T. FANG, Improving the classi­

fication accuracy in chemistry via boosting technique, Chemometrics and 
Intelligent Laboratory Systems, 70 (2004), pp. 39-46. 

68. R. HOGG AND A. CRAIG, Introduction to Mathematical Statistics, Macmil-
lan Publishing Co., New York, 4th ed., 1978. 

69. J. HOLLAND, Adaptation in Natural and Artificial Systems, University of 
Michigan Press, Ann Arbor, 1975. 

70. R. HOLTE, Very simple classification rules perform well on most commonly 
used datasets, Machine Learning, 11 (1993), pp. 63-91. 

71. D. Hsu, S. SODERLAND, AND O. ETZIONI, A redundant covering algo­
rithm applied to text classification, www.cs.washington.edu/homes/hsud/ 
papers/quals.ps, accessed May, 2004, 1998. 

72. W. Hsu, H. Guo, B. PERRY, AND J. STILSON, A permutation genetic 
algorithm for variable ordering in learning Bayesian networks from data, 
in Proceedings of the Genetic and Evolutionary Computation Conference 
(GECCO), New York, 2002. 

73. A. JAIN AND R. DUBES, Algorithms for Clustering Data, Prentice Hall, 
Englewood Cliffs, NJ, 1988. 

74. A. JAIN, M. MURTY, AND P. FLYNN, Data clustering: A review, ACM 
Computing Surveys, 31 (1999), pp. 264-323. 

75. K. JAJUGA, A. SOKOLOWSKI, AND H. BOCK, eds., Classification, Cluster­
ing, and Data Analysis: Recent Advances and Applications, Springer-Verlag, 
Berlin, 2002. 

76. N. JARDINE AND R. SIBSON, Mathematical Taxonomy, John Wiley & Sons, 
New York, 1971. 

77. M. KANTARDZIC, Data Mining: Concepts, Models, Methods, and Algorithms, 
Wiley-Interscience, Hoboken, NJ, 2003. 

78. M. KANTARDZIC, Data Mining: Concepts, Models, Methods, and Algorithms, 
IEEE, Piscataway, NJ, 2003. 

79. S. KASKI, Data exploration using self-organizing maps, PhD thesis, Acta 
Polytechnica Scandinavica, Mathematics, Computing and Management in 
Engineering, Finnish Academy of Technology, 1997. 

80. G. KASS, An exploratory technique for investigating large quantities of cat­
egorical data, Applied Statistics, 29 (1980), pp. 119-127. 

81. L. KAUFMAN AND P. ROUSSEEUW, Finding Groups in Data: An Introduc­
tion to Cluster Analysis, J. Wiley and Sons, New York, 1990. 

82. J. KEATING, R. MASON, AND P. SEN, Pitman's Measure of Closeness: 
A Comparison of Statistical Estimators, SIAM, Philadelphia, 1993. 

http://www.cs.washington.edu/homes/hsud/


212 References 

83. R. L. KENNEDY, Y. LEE, B. VAN ROY, C. D. R E E D , AND R. P. LIPPMAN, 

Solving Data Mining Problems Through Pattern Recognition, Prentice Hall 
PTR, Upper Saddle River, NJ, 1997. 

84. M. KHAN, Q. DING, AND W. PERRIZO, k-nearest neighbor classification on 
spatial data streams using p-trees, in Proceedings of Pacific-Asia Conference 
on Knowledge Discovery and Data Mining, 2002. 

85. W. KLOSGEN AND J. ZYTKOW, eds., Handbook of Data Mining and Know­
ledge Discovery, Oxford University Press, New York, 2002. 

86. E. M. KNORR AND R. T. N G , Algorithms for mining distance-based outliers 
in large datasets, in Proceedings of the 24th International Conference on 
Very Large Data Bases, VLDB, 1998. 

87. T. KOHONEN, Self-Organizing Maps, Springer-Verlag, Berlin, 1997. 
88. K. KOPERSKI AND J. HAN, Discovery of spatial association rules in 

geographic information databases, in Proceedings of the Fourth SSD Sym­
posium, 1995. 

89. K. KOPERSKI, J. HAN, AND J. ADHIKARY, Spatial data mining, in Proceed­
ings of the ACM SIGMOD Workshop on Research Issues in Data Mining 
and Knowledge Discovery, 1996. 

90. K. KOPERSKI, J. HAN, AND N. STEFANOVIC, An efficient two-step method 
for classification of spatial data, in Proceedings of the International Sym­
posium on Spatial Data Handling, 1998. 

91. M. KUBAT, I. KOPRINSKA, AND G. PFURTSCHELLER, Learning to classify 
biomedical signals, in Machine Learning and Data Mining: Methods and 
Applications, R. MICHALSKI, I. BRATKO, AND M. KUBAT, eds., John Wiley, 
West Sussex, England, 1997. 

92. O.-W. KWON AND J.-H. LEE, Web page classification based on k-nearest 
neighbor approach, in Proceedings of the Fifth International Workshop on 
Information Retrieval with Asian Languages, Hong Kong, China, 2000. 

93. M. LAST, O. MAIMON, AND E. MlNKOV, Improving stability of decision 
trees, International Journal of Pattern Recognition and Artificial Intelli­
gence, 16 (2002), pp. 145-159. 

94. Y. L E C U N , L. JACKEL, L. BOTTOU, A. BRUNOT, C. CORTES, J. DENKER, 

H. DRUCKER, I. GUYON, U. MULLER, E. SACKINGER, P. SIMARD, AND 

V. VAPNIK, Comparison of learning algorithms for handwritten digit recog­
nition, in Proceedings of the International Conference on Artificial Neural 
Networks, 1995. 

95. E. LEHMANN AND G. CASELLA, Theory of Point Estimation, Springer-
Verlag, New York, 2nd ed., 1998. 

96. R. LEWIS, An introduction to classification and regression tree (cart) anal­
ysis, in Annual Meeting of the Society for Academic Emergency Medicine, 
San Francisco, CA, 2002. 

97. Y. Li, Z. BANDAR, AND D. MCLEAN, An approach for measuring semantic 
similarity between words using multiple information sources, IEEE Trans­
actions on Knowledge and Data Engineering, 15(4) (2003), pp. 871-882. 

98. A. LlKAS, N. VLASSIS, AND J. VERBEEK, The global k-means clustering 
algorithm, Pattern Recognition, 36 (2003), pp. 451-461. 



References 213 

99. B. LINDGREN, Statistics Theory, Chapman and Hall, London, 4th ed., 1993. 
100. W. LOH AND Y. SHIH, Split selection methods for classification tree, Statis-

tica Sinica, 7 (1997), pp. 815-840. 
101. P. LOPEZ-DE-TERUEL, J. GARCIA, AND M. ACACIO, The Parallel EM 

Algorithm and its Applications in Computer Vision, PDPTA, University 
of Murcia, Spain, 1999. 

102. W. Lu, J. HAN, AND B. C. OOI , Discovery of general knowledge in large 
spatial databases, in Proceedings of Far East Workshop on Geographic Infor­
mation Systems, 1993. 

103. W. MACHEREY, D. KEYSERS, J. DAHMEN, AND H. NEY, Improving auto­
matic speech recognition using tangent distance, in Eurospeech 2001, 7th 
European Conference on Speech Communication and Technology, Aalborg, 
Denmark, 2001. 

104. R. MARMELSTEIN, Application of genetic algorithms to data mining, in Pro­
ceedings of the Eighth Midwest Artificial Intelligence and Cognitive Science 
Conference, 1997. 

105. W. MARTINEZ AND A. MARTINEZ, Computational Statistics Handbook with 
Matlab, Chapman and Hall/CRC, New York, 2002. 

106. M. ESTER, H. P. KRIEGEL, AND J. SANDER, Spatial data mining: A 
database approach, in Proceedings of the Fifth SSD Symposium, 1997. 

107. B. MlNAEI-BlDGOLI AND W. P. Il l , Using genetic algorithms for data min­
ing optimization in an educational web-based system, in Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO), 2003. 

108. D. MODHA AND W. SPANGLER, Feature weighting in k-means clustering, 
Machine Learning, 52 (2003), pp. 217-237. 

109. A. MOOD, F. GRAYBILL, AND D. BOES, Introduction to the Theory of Statis­
tics, McGraw-Hill Publishing, New York, 3rd ed., 1974. 

110. G. NAGY, State of the art in pattern recognition, in Proceedings of IEEE, 
1968, pp. 836-862. 

111. M. NAKASHIMA, Y. KANEKO, AND T. ITO, Ranking of documents by mea­
sures considering conceptual dependence between terms, Systems and Com­
puters in Japan, 34 (2003), pp. 81-91. 

112. J. NEVILLE, D. JENSEN, AND B. GALLAHER, Simple estimators for rela­
tional Bayesian classifiers, in Proceedings of the Third IEEE International 
Conference on Data Mining, 2003. 

113. R. N G AND J. HAN, Efficient and effective clustering methods for spatial 
data mining, in Proceedings of the International VLDB Conference, 1994. 

114. R. N G AND J. HAN, CLARANS: A method for clustering objects for spatial 
data mining, IEEE Transactions on Knowledge and Data Engineering, 14 
(2002), pp. 1003-1016. 

115. R. ODDY, S. ROBERTSON, C. VAN RIJSBERGEN, AND P. WILLIAMS, eds., 

Information Retrieval Research, Butterworth, London, 1981. 
116. E. O J A AND S. KASKI, eds., Kohonen Maps, Elsevier Science, Amsterdam, 

1999. 
117. C. OLARU AND L. WEHENKEL, A complete fuzzy decision tree technique, 

Fuzzy Sets and Systems, 138 (2003), pp. 221-254. 



214 References 

118. M. PAL AND P. M. MATHER, An assessment of the effectiveness of decision 
tree methods for land cover classification, Remote Sensing of Environment, 
86 (2003), pp. 554-565. 

119. J. S. PARK, M. CHEN, AND P. S. Yu, An effective hash-based algorithm for 
mining association rules, in Proceedings of the ACM International Confer­
ence on Management of Data, 1995, pp. 175-186. 

120. S. PARTHASARATHY, M. J. ZAKI, M. OGIHARA, AND W. LI , Parallel data 
mining for association rules on shared-memory system, Knowledge and 
Information Systems, 3 (2001), pp. 1-29. 

121. J. PENA, J. LOZANO, AND P. LARRANAGA, An empirical comparison of 
four initialization methods for the k-means algorithm, Pattern Recognition 
Letters, 20 (1999), pp. 1027-1040. 

122. H. PENG AND C. DING, Structure search and stability enhancement of 
Bayesian networks, in Proceedings of the Third IEEE International Confer­
ence on Data Mining, 2003. 

' 123. W. PERRIZO, Q. DING, AND A. DENTON, Lazy classifiers using p-trees. 
www.citeseer.nj.nec.com/perrizo021azy.html, accessed May, 2004, 2002. 

124. J. R. QuiNLAN, Induction of decision trees, Machine Learning, 11 (1986), 
pp. 81-106. 

125. J. R. QUINLAN, Simplifying decision trees, International Journal of Man-
Machine Studies, 27 (1987), pp. 221-234. 

126. J. R. QuiNLAN, C4-5: Programs for Machine Learning, Morgan Kaufmann, 
San Mateo, CA, 1993. 

127. C. REEVES AND J. ROWE, Genetic Algorithms: Principles and Perspectives: 
A Guide to GA Theory, Kluwer Academic Publishers, Boston, 2003. 

128. E. S. RISTAD AND P. N. YIANILOS, Learning string-edit distance, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 20 (1998), 
pp. 522-532. 

129. M. RODRIGUEZ AND M. EGENHOFER, Determining semantic similarity 
among entity classes from different ontologies, IEEE Transactions on Know­
ledge and Data Engineering, 15(2) (2003), pp. 442-456. 

130. C. ROMERO, S. VENTURA, C. DE CASTRO, W. HALL, AND M. N G , Using 

genetic algorithms for data mining in web-based educational hypermedia sys­
tems, in Proceedings of the Workshop on Adaptive Systems for Web-based 
Education, 2002. 

131. T. Rui AND X. GUORONG, A classification method of diagnostic image based 
on tangent distance, in International Conference on Diagnostic Imaging and 
Analysis, Shanghai, China, 2002, ICDIA'02. 

132. G. SALTON, Automatic Information Organization and Retrieval, McGraw-
Hill, New York, 1968. 

133. G. SALTON AND M. M C G I L L , Introduction to Modern Information Retrieval, 
McGraw-Hill, New York, 1983. 

134. J. SANDER, M. ESTER, H.-P. KRIEGEL, AND X. Xu, Density-

based clustering in spatial databases: The algorithm GDBSCAN and 
its applications, Data Mining and Knowledge Discovery, 2 (1998), 
pp. 169-194. 

http://www.citeseer.nj.nec.com/perrizo021azy.html


References 215 

135. A. SAVASERE, E. OMIECINSKI, AND S. NAVATHE, An efficient algorithm for 
mining association rules in large databases, in Proceedings of the 21st Inter­
national Conference on Very Large Databases, Zurich, Switzerland, 1995, 
pp. 432-444. 

136. X. SHEN AND M. SPANN, Segmentation of 2D and 3D images through a 
hierarchical clustering based on region modeling, in International Conference 
on Image Processing (ICIP '97), vol. 3, Washington, DC, 1997. 

137. T. SHINTANI AND M. KITSUREGAWA, Hash based parallel algorithms for 
mining association rules, in Proceedings of the Parallel and Distributed 
Information Systems Conference, 1996. 

138. P. SlMARD, Y. L. CUN, AND J. DENKER, An efficient pattern recognition 
using a new transformation distance, in Advances in Neural Information 
Processing Systems 5, S. HANSON, J. COWAN, AND C GILES, eds., Morgan 
Kaufmann, San Mateo, CA, 1993, pp. 50-58. 

139. R. SOKAL AND C D . MICHENER, A statistical method for evaluating sys­
tematic relationships, University of Kansas Science Bulletin, 38 (1958), 
pp. 1409-1438. 

140. R. SRIKANT AND R. AGRAWAL, Mining generalized association rules, in 
VLDB'95: Proceedings of the 21st International Conference on Very Large 
Data Bases, Morgan Kaufmann, Zurich, Switzerland, 1995. 

141. R. SRIKANT AND R. AGRAWAL, Mining quantitative association rules in 
large relational tables, in Proceedings of the 1996 ACM SIGMOD Interna­
tional Conference on Management of Data, ACM Press, 1996. 

142. P. TAYLOR, C. BRENNELL, AND B. SNOOK, Problems of classification in 
investigative psychology, in Classification, Clustering, and Data Analysis: 
Recent Advances and Applications, K. JAJUGA, A. SOKOLOWSKI, AND 
H. H. BOCK, eds., Springer-Verlag, Berlin, Heidelberg, New York, 2002. 

143. H. TOIVONEN, Sampling large databases for association rules, in Proceedings 
of the 22nd International Conference on Very Large Databases, Mumbai, 
India, 1996, pp. 134-145. 

144. O. TROYANSKAYA, K. DOLINSKI, A. OWEN, R. ALTMAN, AND 

D. BOTSTEIN, A Bayesian framework for combining heterogeneous data 
sources for gene function prediction, in Proceedings of the National 
Academy of Science, 100(14) (2003), pp. 8348-8353. 

145. J. VITTER, Random sampling with a reservoir, ACM Transactions on Math­
ematical Software, 11 (1985), pp. 37-57. 

146. W. WANG, J. YANG, AND R. MUNTZ, STING: A statistical information 
grid approach to spatial data mining, in Proceedings of the International 
VLDB Conference, 1997. 

147. W. WANG, J. YANG, AND R.MUNTZ, An approach to active spatial data 
mining based on statistical information, IEEE Transactions on Knowledge 
and Data Engineering, 12 (2000), pp. 715-728. 

148. J. WARD, Hierarchical grouping to optimize an objective function, Journal 
of American Statistical Association, 58 (1963), pp. 236-244. 

149. M. WASAN, Parametric Estimation, McGraw-Hill Book Company, 
New York, 1970. 



216 References 

150. C. W E I , Y. LEE, AND C. HSU, Empirical comparison of fast partitioning-
based clustering algorithms for large data sets, Expert Systems with Appli­
cations, 24 (2003), pp. 351-363. 

151. D. WETTSCHERECK, A Study of Distance-Based Machine Learning Algo­
rithms, PhD thesis, Oregon State University, Computer Science Depart­
ment, Corvallis, OR, 1994. 

152. R. WlLCOX, Introduction to Robust Estimation and Hypothesis Testing, 
Academic Press, New York, 1997. 

153. L. WILKINSON, Tree structured data analysis: Aid, chaid, and cart, in Saw-
tooth/SYSTAT Joint Software Conference, Sun Valley, ID, 1992. 

154. P . WILLETT, Recent trends in hierarchic document clustering: A critical 
review, Information Processing and Management, 24 (1988), pp. 577-597. 

155. D. WILSON AND T. MARTINEZ, Improved heterogeneous distance functions, 
Journal of Artificial Intelligence Research, 6 (1997), pp. 1-34. 

156. I. W I T T E N AND E. FRANK, Data Mining: Practical Machine Learning Tools 
and Techniques with Java Implementations, Morgan Kaufmann Publishers, 
San Mateo, CA, 2000. 

157. K. Wu AND M. YANG, Alternative c-means clustering algorithms, Pattern 
Recognition, 35 (2002), pp. 2267-2278. 

158. W. Wu, H. XlONG, AND S. SHEKHAR, Clustering and Information 
Retrieval, Kluwer Academic Publishers, Norwell, MA, 2004. 

159. Y. Wu, Q. TlAN, AND T. HUANG, Discriminant-em algorithm with applica­
tion to image retrieval, in IEEE Computer Vision and Pattern Recognition 
(CVPR'00), South Carolina, 1 (2000), p. 1222. 

160. X. Xu, M. ESTER, H . - P . K R I E G E L , AND J. SANDER, A distribution-based 

clustering algorithm for mining in large spatial databases, in Proceedings of 
the IEEE International Conference on Data Engineering, 1998. 

161. M. YANG AND N. AHUJA, Gaussian mixture model for human skin color and 
its applications in image and video databases, Technical Report, Beckman 
Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 1999. 

162. Y. YANG AND X. Liu, A re-examination of text categorization methods, in 
Proceedings of SIGIR-99, 22nd ACM International Conference on Research 
and Development in Information Retrieval, Berkeley, CA, 1999. 

163. N. Y E , The Handbook of Data Mining, Lawrence Erlbaum Associates, 
Mahwah, NJ, 2003. 

164. P . N . YlANILOS, Data structures and algorithms for nearest neighbor search 
in general metric spaces, in Proceedings of the Fifth Annual ACM-SIAM 
Symposium on Discrete Algorithms (SODA), 1993. 

165. M. J. ZAKI, Parallel and distributed association mining: A survey, IEEE 
Concurrency, 7 (1999), pp. 14-25. 

166. M. J. ZAKI, M. OGIHARA, S. PARTHASARATHY, AND W. LI , Parallel data 
mining for association rules on shared-memory multi-processors, Technical 
Report, TR 618, University of Rochester, Computer Science Department, 
1996. 

167. M. J. ZAKI, S. PARTHASARATHY, M. OGIHARA, AND W. LI , Parallel algo­
rithms for fast discovery of association rules, Data Mining and Knowledge 
Discovery, 1 (1997), pp. 343-373. 



References 217 

168. T. ZHANG, R. RAMAKRISHNAN, AND M. LIVNY, BIRCH: An efficient data 

clustering method for very large databases, in ACM SIGMOD International 
Conference on Management of Data, 1996. 

169. C. ZHOU, W. XIAO, T. TIRPAK, AND P. NELSON, Evolving accurate and 
compact classification rules with gene expression programming, IEEE Trans­
actions on Evolutionary Computation, 7 (2003), pp. 519-531. 





INDEX 

Apriori algorithm, 158, 191 
kd-trees, 127 
1R algorithm, 91 

AID, 41 
Aldridge, Matthew, 99, 193 
algorithm 

agglomerative, 104, 109, 111, 112, 
145 

distributed, 171 
divisive, 104, 109, 111 
parallel, 171 
partitioning, 162, 173 

Angoss KnowledgeSEEKER, 41 
APM algorithm, 177 
architecture 

distributed memory, 174 
shared memory, 171 

arcing, 47 
association rules, 54, 153, 169, 

confidence, 155, 189, 197 
conviction, 190 
generalized, 185 
multiple-level, 187 
spatial, 191 
support, 155, 189, 191, 197 
temporal, 191 

attribute hierarchy, 195 

bagging, 47 
Bayes decision rule, 15, 20 
Bayes theorem, 15, 20, 76 
Bayesian networks, 15, 24, 66 
bias, 9 
bioinformatics, 29, 37 

biological taxonomy, 107 
BIRCH, 137 
boosting, 47, 83 
Build DT, 81 

C4, 92 
C4.5, 41, 82 
C5.0 (See5), 41, 83 
CACTUS, 151 
CaD, 175 
candidate itemsets, 157 
CART, 41, 84 
catalog design, 169 
CCPD, 176 
CD, 173 
Central Limit Theorem, 10 
centroid, 106 
CHAID, 41 
chemometrics, 50 
chi-squared test, 183, 188, 190 
chromosome, 54 
CLARA, 129, 203 
CLARANS, 129, 202 
classification 

Bayes, 17 
document, 120 
gene, 25 
nonparametric, 67 
rules, 87 
spatial, 200 
tree, 40 
unsupervised, 99, 110 

classifier 
lazy, 76 
non-parametric, 19 

219 



220 Index 

classifiers 
parametric, 19 

CLS, 41 
clustering, 99 

fc-means, 123 
assessment, 105 
categorical, 143 
divide-and-conquer, 135 
hierarchical, 36, 103, 109, 110, 144 

divisive, 118 
incremental, 135 
nearest neighbor, 126 
parallelization, 135 
partitional, 105, 110, 121 
spatial, 202 
squared error, 122 
tendency, 105 
validation, 107 

computer vision, 8 
concept hierarchy, 194 
consistency, 11 
consumer credit 

fraud, 103 
risk, 50 

COOLCAT, 149 
correlation 

rules, 188 
upward closure, 189 

cosine measure, 31 
covariance, 21 
covering algorithms, 90 
CURE, 140 
curse of dimensionality, 54, 122 
customer segmentation, 169 

DAIRY, 97 
data abstraction, 105 
data parallelism, 171 
Daylight Chemical Information 

System, 110 
DBCLASD, 204 
DBSCAN, 139, 203 
DD, 174 
decision support, 169 
decision trees, 39, 77, 79, 88, 201 
dendrogram, 103, 111 

DIANA algorithm, 118 
DIC algorithm, 177 
Dice coefficient, 30 
discrimination, 15 
dissimilarity measure, 32 
distance 

Lp, 145 
city block, 32, 69, 103, 111 
edit, 71 
Euclidean, 32, 70, 103, 111 
Manhattan, 32, 103 
measure, 32, 67, 124 
tangent, 71 
Tanimoto, 71, 111 

distance-based algorithms, 68 
Distributed Mining of Association 

(DMA), 172 
DNA sequences, 37 

earthquakes, 204 
efficiency, 10 
entropy, 45, 81, 149 
error 

mean squared, 9 
standard, 10 

Expectation-Maximization algorithm, 
1,6 

expected reproduction, 58 

False candidates, 164 
Fast Update (FUP) method, 184 
feature 

extraction, 18, 101 
representation, 56, 102 
selection, 77, 101 
vector, 23 
weighting, 124 

financial decision making, 132 
financial forecasting, 169 
Fisher, Sir Ronald A., 4 
fitness 

function, 57 
value, 54 

Forgy Approach (FA), 125 
Frequent Pattern (FP) trees, 191 
Fuentes, Erika, 15 



Index 221 

function 
crossover, 60 
likelihood, 4 
multivariate density, 23 
negative border, 161 

fuzzy systems, 50 

gain ratio, 43 
gamma distribution, 3 
Gaussian behavior, 21 
GDBSCAN, 203 
genetic algorithms, 50, 53 
Geographic Information System 

(GIS), 194 
goodness measure, 147 
graph 

acyclic, 25 
neighborhood, 201 

greedy algorithms, 43 

Heinrich, Kevin E., 27, 121 
Holland, James, 54 
homeland security, 87 
Hoveland, 42 
Hunt, 42 

ID3 (Interactive Dichotomizer 3), 
extension, 201 

IDD, 175 
image 

analysis, 107, 132 
compression, 66 
processing, 120 
recognition, 87 
retrieval, 8 

information gain, 80, 81 
information retrieval, 28 

3D models, 35 
vector space model, 29 

investigative psychology, 107, 132 
IREP, 97 
ISODATA algorithm, 125 
iterative evolution, 62 

Jaccard coefficient, 31, 103, 145 
jackknife method, 11 

Kaufman Approach (KA), 125 
KNN (fc-Nearest Neighbors), 68, 72, 

74 

linkage method 
average, 116 
centroid, 116 
complete, 114 
single, 112 

Liu, Huadong, 1, 109 
load balancing, 172, 176 

M-trees, 127 
machine learning, 68, 97, 132 
Macqueen Approach (MA), 125 
market basket, 154 
Markov Chains, 16 
matrix 

boolean, 146 
correlation, 23 
dissimilarity, 101 
distance, 112 
proximity, 101 
similarity, 101 

maximum likelihood, 1 
Mazeroff, Geoffrey, 53, 153 
medical diagnosis, 87, 132, 169 
medioid, 127 
method of moments, 3 
microarray analysis, 25 
minefield identification, 204 
Minkowski metric, 102 
molecular biology, 25 
monothetic method, 118 
mutation operator, 62 

neural networks, 47, 50 
nonlinear prediction methods, 41 
numerical methods, 22 

object, 100 
Omitaomu, Olufemi A., 39, 143 
outlier detection, 68 
overlap coefficient, 30 



222 

PAM, 127, 202 
Parallel Data Mining (PDM), 172 
pattern, 100 

matrix, 100 
proximity measure, 102 
recognition, 8, 19, 87, 120, 132 
representation, 101 

PCCD, 177 
point estimation, 1 
polythetic method, 118 
population, 56 
precision, 29 
principal component analysis, 41 
PRISM algorithm, 94 
probability 

conditional, 20 
density function, 21 
of selection, 58 
posterior, 20 
prior, 20 

probabilty 
posterior, 17 

Pulatova, Shakhina, 87, 169 

quad trees, 127 
query 

region, 199 
similarity, 68 

R*-trees, 127 
R-trees, 127 
Random Approach (RA), 125 
recall, 29 
remote sensing, 194 
REP, 97 
retail business, 50, 153 
RIPPER, 97 
ROCK, 145 
rule-based algorithms, 90 

scaleup, 178 
Shahnaz, Farial, 79, 133 
Shen, Zeqian, 67 

Index 

similarity measure, 28 
asymmetric, 31 

sizeup, 178 
sketch query, 36 
SLIPPER, 97 
SOM (Self-Organizing Map), 131 

Kohonen, 132 
spatial 

characteristic rule, 196 
data, 194 
discriminant rule, 196 
generalization, 194 

speedup, 178 
splitting variable, 46 
STING, 198 
stochastic-optimization methods, 54 
summarization, 2, 151 
supervised methods, 19 
SWAP-1, 97 

task parallelism, 171 
telecommunication alarm prediction, 

169 
text mining, 153 
THCA, 148 
traveling-salesman problem, 63 
tree pruning, 47, 97 
TREEDISC, 41 
trie, 177 

unsupervised methods, 19 

variance, 10 

Ward method, 117 
Web mining, 153 
Web-based hypermedia, 66 
WPGMA, 116 

X-trees, 127 

YarKhan, Asim, 183 




