k.

~ Charu C.Aggatwal «

The Te.xtbook

@ Springer .'

Data Mining: The Textbook

Charu C. Aggarwal

Data Mining

The Textbook

@ Springer

Charu C. Aggarwal

IBM T.J. Watson Research Center
Yorktown Heights

New York

USA

A solution manual for this book is available on Springer.com.

ISBN 978-3-319-14141-1 ISBN 978-3-319-14142-8 (eBook)
DOI 10.1007/978-3-319-14142-8

Library of Congress Control Number: 2015930833

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my wife Lata,
and my daughter Sayani

Contents

1 An Introduction to Data Mining

1.1
1.2

1.3

14

1.5
1.6

1.7

Introduction L
The Data Mining Process,
1.2.1 The Data Preprocessing Phase
1.2.2 The Analytical Phase L.
The Basic Data Types o
1.3.1 Nondependency-Oriented Data
1.3.1.1 Quantitative Multidimensional Data
1.3.1.2 Categorical and Mixed Attribute Data
1.3.1.3 Binary and Set Data
1.3.14 Text Data
1.3.2 Dependency-Oriented Data
1.3.2.1 Time-Series Data
1.3.2.2 Discrete Sequences and Strings
1.3.2.3 Spatial Data o o
1.3.24 Network and Graph Data
The Major Building Blocks: A Bird’s Eye View
1.4.1 Association Pattern Mining
1.4.2 Data Clustering o
1.4.3 Outlier Detection
1.4.4 Data Classification
1.4.5 Impact of Complex Data Types on Problem Definitions
1.4.5.1 Pattern Mining with Complex Data Types
1.4.5.2 Clustering with Complex Data Types
1.4.5.3 Outlier Detection with Complex Data Types
1454 Classification with Complex Data Types
Scalability Issues and the Streaming Scenario
A Stroll Through Some Application Scenarios
1.6.1 Store Product Placement L.
1.6.2 Customer Recommendations
1.6.3 Medical Diagnosis oo
1.64 Web Log Anomalies
SUMMAryo e e e

© 0000w~ UtwWwrH =

NN RN DNKNDNDNDRNDNDN RN = e e s e
R W WO R EE OO W0 Uk~ OO

vii

viii

2

CONTENTS

1.8 Bibliographic Notes L oo

1.9 Exercises

Data Preparation

2.1 Introduction

2.2 Feature Extraction and Portability
Feature Extraction
Data Type Portability

221
2.2.2

2.2.21
2.2.22
2.2.2.3
2224
2.2.25
2.2.2.6
2.2.2.7
2.2.2.8
2.2.29

2.3 Data Cleaning
Handling Missing Entries
Handling Incorrect and Inconsistent Entries
Scaling and Normalization
2.4 Data Reduction and Transformation

2.3.1
2.3.2
2.3.3
24.1

2.4.2
243

244

2.5 Summary

Sampling

2411
24.1.2

Numeric to Categorical Data: Discretization
Categorical to Numeric Data: Binarization
Text to Numeric Data
Time Series to Discrete Sequence Data
Time Series to Numeric Data.
Discrete Sequence to Numeric Data
Spatial to Numeric Data
Graphs to Numeric Data
Any Type to Graphs for Similarity-Based Applications

Sampling for Static Data
Reservoir Sampling for Data Streams

Feature Subset Selection
Dimensionality Reduction with Axis Rotation

2431
2.4.3.2
24.3.3
2434

Principal Component Analysis
Singular Value Decomposition
Latent Semantic Analysis
Applications of PCA and SVD

Dimensionality Reduction with Type Transformation

2441
2442
2443

Haar Wavelet Transform
Multidimensional Scaling
Spectral Transformation and Embedding of Graphs . .

2.6 Bibliographic Notes

2.7 Exercises

Similarity and Distances

3.1 Introduction

3.2 Multidimensional Data
Quantitative Data,

3.2.1

3.2.1.1
3.2.1.2
3.2.1.3
3.2.14
3.2.1.5
3.2.1.6

Impact of Domain-Specific Relevance
Impact of High Dimensionality
Impact of Locally Irrelevant Features
Impact of Different L,-Norms
Match-Based Similarity Computation
Impact of Data Distribution

27
27
28
28
30
30
31
31
32
32
33
33
33
33
34
35
36
37
37
38
38
39
40
41
42
44
47
48
49
50
%)
o7
99
60
61

CONTENTS

3.3

3.4

3.5

3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

4.5

3.2.1.7 Nonlinear Distributions: ISOMAP
3.2.1.8 Impact of Local Data Distribution
3.2.19 Computational Considerations
3.2.2 Categorical Data
3.2.3 Mixed Quantitative and Categorical Data
Text Similarity Measures L o
3.3.1 Binary and Set Data 0oL
Temporal Similarity Measures,
3.4.1 Time-Series Similarity Measures
3.4.1.1 Impact of Behavioral Attribute Normalization
3.4.1.2 Ly-Normo
3.4.1.3 Dynamic Time Warping Distance
3.4.14 Window-Based Methods
3.4.2 Discrete Sequence Similarity Measures
3.4.2.1 Edit Distance00
3.4.2.2 Longest Common Subsequence
Graph Similarity Measures L oo
3.5.1 Similarity between Two Nodes in a Single Graph
3.5.1.1 Structural Distance-Based Measure
3.5.1.2 Random Walk-Based Similarity
3.5.2 Similarity Between Two Graphs
Supervised Similarity Functions 0L
SUMMATY . . . o o o e e e
Bibliographic Notes e
Exercises

Association Pattern Mining

Introduction
The Frequent Pattern Mining Model
Association Rule Generation Framework,
Frequent Itemset Mining Algorithms
441 Brute Force Algorithms oL
4.4.2 The Apriori Algorithm o
44.2.1 Efficient Support Counting

4.4.3 Enumeration-Tree Algorithms
4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori . . .

4.4.3.2 TreeProjection and DepthProject

4.4.3.3 Vertical Counting Methods

4.44 Recursive Suffix-Based Pattern Growth Methods.
4.4.4.1 Implementation with Arrays but No Pointers

4.4.4.2 Implementation with Pointers but No FP-Tree

4.4.4.3 Implementation with Pointers and FP-Tree

4.4.44 Trade-offs with Different Data Structures

4.4.4.5 Relationship Between FP-Growth and Enumeration-

Tree Methods

Alternative Models: Interesting Patterns
4.5.1 Statistical Coefficient of Correlation
452 X2 Measureo
4.5.3 Interest Ratioo

70
72
73
74
75
75
7
7
7
78
79
79
82
82
82
84
85
85
85
86
86
87
88
89
90

4.5.4 Symmetric Confidence Measures

4.5.5 Cosine Coefficient on Columns

4.5.6 Jaccard Coefficient and the Min-hash Trick

4.5.7 Collective Strength

4.5.8 Relationship to Negative Pattern Mining

4.6 Useful Meta-algorithms
4.6.1 Sampling Methods

4.6.2 Data Partitioned Ensembles

4.6.3 Generalization to Other Data Types
4.6.3.1 Quantitative Data

4.6.3.2 Categorical Data

4.7 Summary ...
4.8 Bibliographic Notes
4.9 Exercises

Association Pattern Mining: Advanced Concepts

5.1 Introduction
5.2 Pattern Summarization
5.2.1 Maximal Patterns
5.2.2 Closed Patterns
5.2.3 Approximate Frequent Patterns

5.2.3.1 Approximation in Terms of Transactions

5.2.3.2 Approximation in Terms of Itemsets

5.3 Pattern Querying
5.3.1 Preprocess-once Query-many Paradigm
5.3.1.1 Leveraging the Itemset Lattice

5.3.1.2 Leveraging Data Structures for Querying

5.3.2 Pushing Constraints into Pattern Mining

5.4 Putting Associations to Work: Applications
5.4.1 Relationship to Other Data Mining Problems
5.4.1.1 Application to Classification

5.4.1.2 Application to Clustering

5.4.1.3 Applications to Outlier Detection

5.4.2 Market Basket Analysis.

5.4.3 Demographic and Profile Analysis

5.4.4 Recommendations and Collaborative Filtering

54.5 Web Log Analysis

5.4.6 Bioinformatics L

5.4.7 Other Applications for Complex Data Types

5.5 Summary
5.6 Bibliographic Notes
5.7 Exercises

Cluster Analysis

6.1 Introduction
6.2 Feature Selection for Clustering
6.2.1 Filter Models
6.2.1.1 Term Strength

6.2.1.2 Predictive Attribute Dependence

CONTENTS

CONTENTS xi

6.2.1.3 Entropy 156

6.2.1.4 Hopkins Statistic 157

6.2.2 Wrapper Models o 158

6.3 Representative-Based Algorithms 159

6.3.1 The k-Means Algorithm 162

6.3.2 The Kernel k-Means Algorithm 163

6.3.3 The k-Medians Algorithm 164

6.3.4 The k-Medoids Algorithm 164

6.4 Hierarchical Clustering Algorithms 166

6.4.1 Bottom-Up Agglomerative Methods 167

6.4.1.1 Group-Based Statistics 169

6.4.2 Top-Down Divisive Methods 172

6.4.2.1 Bisecting k-Means oL 173

6.5 Probabilistic Model-Based Algorithms 173
6.5.1 Relationship of EM to k-means and Other Representative

Methods 176

6.6 Grid-Based and Density-Based Algorithms 178

6.6.1 Grid-Based Methods 179

6.6.2 DBSCAN 181

6.6.3 DENCLUE. 184

6.7 Graph-Based Algorithms, 187

6.7.1 Properties of Graph-Based Algorithms 189

6.8 Non-negative Matrix Factorization 191

6.8.1 Comparison with Singular Value Decomposition 194

6.9 Cluster Validation 195

6.9.1 Internal Validation Criteria. 196

6.9.1.1 Parameter Tuning with Internal Measures 198

6.9.2 External Validation Criteria 198

6.9.3 General Comments 201

6.10 Summary e 201

6.11 Bibliographic Notes 201

6.12 Exercises 202

7 Cluster Analysis: Advanced Concepts 205

7.1 Introduction 205

7.2 Clustering Categorical Data 206

7.2.1 Representative-Based Algorithms 207

7.2.1.1 k-Modes Clustering 208

7.2.1.2 k-Medoids Clustering 209

7.2.2 Hierarchical Algorithms 209

7.2.2.1 ROCK 209

7.2.3 Probabilistic Algorithms L. 211

7.2.4 Graph-Based Algorithms 212

7.3 Scalable Data Clustering 212

7.3.1 CLARANS e 213

732 BIRCH 214

733 CURE e 216

7.4 High-Dimensional Clustering 217

7.4.1 CLIQUE 219

742 PROCLUS e 220

xii

CONTENTS

743 ORCLUS e 222

7.5 Semisupervised Clustering oL 224
7.5.1 Pointwise Supervision Lo 225

7.5.2 Pairwise Supervision Lo 226

7.6 ~ Human and Visually Supervised Clustering 227
7.6.1 Modifications of Existing Clustering Algorithms 228

7.6.2 Visual Clustering 228

7.7 Cluster Ensembles 231
7.7.1 Selecting Different Ensemble Components 231

7.7.2 Combining Different Ensemble Components 232
7.7.2.1 Hypergraph Partitioning Algorithm 232

7.7.2.2 Meta-clustering Algorithm 232

7.8 Putting Clustering to Work: Applications 233
7.8.1 Applications to Other Data Mining Problems 233
7.8.1.1 Data Summarization 233

7.8.1.2 Outlier Analysis 233

7.8.1.3 Classification, 233

7.8.1.4 Dimensionality Reduction 234

7.8.1.5 Similarity Search and Indexing 234

7.8.2 Customer Segmentation and Collaborative Filtering 234

7.8.3 Text Applications L 234

7.84 Multimedia Applications 234

7.8.5 Temporal and Sequence Applications 234

7.8.6 Social Network Analysis 235

7.9 Summary 235
7.10 Bibliographic Notes L 235
TA1 EXercises o o e 236
Outlier Analysis 237
8.1 Imtroduction 237
8.2 Extreme Value Analysis 239
8.2.1 Univariate Extreme Value Analysis 240

8.2.2 Multivariate Extreme Values 242

8.2.3 Depth-Based Methods 243

8.3 Probabilistic Models oo 244
8.4 Clustering for Outlier Detection 246
8.5 Distance-Based Outlier Detection 248
8.5.1 Pruning Methods o 249
8.5.1.1 Sampling Methods 249

8.5.1.2 Early Termination Trick with Nested Loops 250

8.5.2 Local Distance Correction Methods 251
8.5.2.1 Local Outlier Factor (LOF) 252

8.5.2.2 Instance-Specific Mahalanobis Distance 254

8.6 Density-Based Methods 255
8.6.1 Histogram- and Grid-Based Techniques 255

8.6.2 Kernel Density Estimation, 256

8.7 Information-Theoretic Models 256
8.8 Outlier Validity 258

8.8.1 Methodological Challenges 258

CONTENTS

8.8.2 Receiver Operating Characteristic
8.8.3 Common Mistakes Lo
8.9 Summary
8.10 Bibliographic Notes
8.11 Exercises

Outlier Analysis: Advanced Concepts
9.1 Introduction
9.2 Outlier Detection with Categorical Data
9.2.1 Probabilistic Models oL
9.2.2 Clustering and Distance-Based Methods
9.2.3 Binary and Set-Valued Data
9.3 High-Dimensional Outlier Detection
9.3.1 Grid-Based Rare Subspace Exploration
9.3.1.1 Modeling Abnormal Lower Dimensional Projections . .
9.3.1.2 Grid Search for Subspace Outliers
9.3.2 Random Subspace Sampling
9.4 Outlier Ensembles
9.4.1 Categorization by Component Independence
9.4.1.1 Sequential Ensembles
9.4.1.2 Independent Ensembles
9.4.2 Categorization by Constituent Components
9.4.2.1 Model-Centered Ensembles
9.4.2.2 Data-Centered Ensembles
9.4.3 Normalization and Combination
9.5 Putting Outliers to Work: Applications
9.5.1 Quality Control and Fault Detection
9.5.2 Financial Fraud and Anomalous Events
9.5.3 Web Log Analytics,
9.54 Intrusion Detection Applications
9.5.5 Biological and Medical Applications
9.5.6 Earth Science Applications
9.6 SUMIMATY oot e e
9.7 Bibliographic Notes
9.8 Exercises e

10 Data Classification

10.1 Introduction
10.2 Feature Selection for Classification
10.2.1 Filter Models
10.2.1.1 GiniIndex o

10.2.1.2 Entropy

10.2.1.3 Fisher Score

10.2.1.4 Fisher’s Linear Discriminant

10.2.2 Wrapper Models Lo

10.2.3 Embedded Models

10.3 Decision Trees e e e e e e
10.3.1 Split Criteria

10.3.2 Stopping Criterion and Pruning

Xiv

10.4

10.5

10.6

10.7

10.8

10.9

10.10
10.11
10.12

11 Data
11.1
11.2
11.3

CONTENTS

10.3.3 Practical Issues 298
Rule-Based Classifiers oL 298
10.4.1 Rule Generation from Decision Trees 300
10.4.2 Sequential Covering Algorithms 301
10.4.2.1 Learn-One-Rule 302
10.4.3 Rule Pruning 304
10.4.4 Associative Classifiers 305
Probabilistic Classifiers oL 306
10.5.1 Naive Bayes Classifier 306
10.5.1.1 The Ranking Model for Classification 309
10.5.1.2 Discussion of the Naive Assumption 310
10.5.2 Logistic Regression 310
10.5.2.1 Training a Logistic Regression Classifier 311
10.5.2.2 Relationship with Other Linear Models 312
Support Vector Machines Lo 313
10.6.1 Support Vector Machines for Linearly Separable Data 313
10.6.1.1 Solving the Lagrangian Dual 318
10.6.2 Support Vector Machines with Soft Margin
for Nonseparable Data 319
10.6.2.1 Comparison with Other Linear Models 321
10.6.3 Nonlinear Support Vector Machines 321
10.6.4 The Kernel Trick 323
10.6.4.1 Other Applications of Kernel Methods 325
Neural Networks 326
10.7.1 Single-Layer Neural Network: The Perceptron 326
10.7.2 Multilayer Neural Networks 328
10.7.3 Comparing Various Linear Models 330
Instance-Based Learning Lo Lo 331
10.8.1 Design Variations of Nearest Neighbor Classifiers 332
10.8.1.1 Unsupervised Mahalanobis Metric 332
10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis . 332
Classifier Evaluation 334
10.9.1 Methodological Issues 335
10.9.1.1 Holdout. 336
10.9.1.2 Cross-Validation 336
10.9.1.3 Bootstrap o o 337
10.9.2 Quantification Issues oL 337
10.9.2.1 Output as Class Labels 338
10.9.2.2 Output as Numerical Score 339
Summary 342
Bibliographic Notes oo 342
Exercises 343
Classification: Advanced Concepts 345
Introduction 345
Multiclass Learning Lo o 346
Rare Class Learning 347
11.3.1 Example Reweighting 348

11.3.2 Sampling Methods oL 349

CONTENTS XV

11.3.2.1 Relationship Between Weighting and Sampling 350

11.3.2.2 Synthetic Oversampling: SMOTE 350

11.4 Scalable Classification 350
11.4.1 Scalable Decision Trees 351
11.4.1.1 RainForest 351

11.4.1.2 BOAT 351

11.4.2 Scalable Support Vector Machines 352

11.5 Regression Modeling with Numeric Classes 353
11.5.1 Linear Regression 353
11.5.1.1 Relationship with Fisher’s Linear Discriminant 356

11.5.2 Principal Component Regression 356

11.5.3 Generalized Linear Models 357

11.5.4 Nonlinear and Polynomial Regression 359

11.5.5 From Decision Trees to Regression Trees 360

11.5.6 Assessing Model Effectiveness 361

11.6 Semisupervised Learning L oL o 361
11.6.1 Generic Meta-algorithms 363
11.6.1.1 Self-Training 363

11.6.1.2 Co-training o 363

11.6.2 Specific Variations of Classification Algorithms. 364
11.6.2.1 Semisupervised Bayes Classification with EM 364

11.6.2.2 Transductive Support Vector Machines 366

11.6.3 Graph-Based Semisupervised Learning 367

11.6.4 Discussion of Semisupervised Learning 367

11.7 Active Learning 368
11.7.1 Heterogeneity-Based Models 370
11.7.1.1 Uncertainty Sampling 370

11.7.1.2 Query-by-Committee 371

11.7.1.3 Expected Model Change 371

11.7.2 Performance-Based Models 372
11.7.2.1 Expected Error Reduction 372

11.7.2.2 Expected Variance Reduction 373

11.7.3 Representativeness-Based Models 373

11.8 Ensemble Methods 373
11.8.1 Why Does Ensemble Analysis Work? 375

11.8.2 Formal Statement of Bias-Variance Trade-off 377

11.8.3 Specific Instantiations of Ensemble Learning 379
11.8.3.1 Bagging 379

11.8.3.2 Random Forests 380

11.8.3.3 Boostingo oo 381

11.8.3.4 Bucket of Models 383

11.8.3.5 Stacking oo 384

11.9 Summary 384
11.10 Bibliographic Notes 385

11.11 EXercises o e 386

xvi CONTENTS
12 Mining Data Streams 389
12.1 Imtroduction Lo 389
12.2 Synopsis Data Structures for Streams 0L 391
12.2.1 Reservoir Sampling Lo 391
12.2.1.1 Handling Concept Drift 393
12.2.1.2 Useful Theoretical Bounds for Sampling 394
12.2.2 Synopsis Structures for the Massive-Domain Scenario 398
12.2.2.1 Bloom Filter 0L 399
12.2.2.2 Count-Min Sketch 403
12.2.23 AMSSketch 406

12.2.2.4 Flajolet—-Martin Algorithm for Distinct Element
Counting Lo 408
12.3 Frequent Pattern Mining in Data Streams 409
12.3.1 Leveraging Synopsis Structures 409
12.3.1.1 Reservoir Sampling 410
12.3.1.2 Sketches 410
12.3.2 Lossy Counting Algorithm 410
12.4 Clustering Data Streams Lo 411
12.4.1 STREAM Algorithm 411
12.4.2 CluStream Algorithm 413
12.4.2.1 Microcluster Definition 413
12.4.2.2 Microclustering Algorithm 414
12.4.2.3 Pyramidal Time Frame 415
12.4.3 Massive-Domain Stream Clustering 417
12.5 Streaming Outlier Detectiono L. 417
12.5.1 Individual Data Points as Outliers 418
12.5.2 Aggregate Change Points as Outliers 419
12.6 Streaming Classification L 0oL 421
12.6.1 VFDT Family 421
12.6.2 Supervised Microcluster Approach 424
12.6.3 Ensemble Method oL 424
12.6.4 Massive-Domain Streaming Classification 425
12,7 Summary e e e 425
12.8 Bibliographic Notes L 425
12.9 EXercises 426
13 Mining Text Data 429
13.1 Imtroduction 429

13.2 Document Preparation and Similarity

Computation 431
13.2.1 Document Normalization and Similarity Computation 432
13.2.2 Specialized Preprocessing for Web Documents 433
13.3 Specialized Clustering Methods for Text 434
13.3.1 Representative-Based Algorithms 434
13.3.1.1 Scatter/Gather Approach 434
13.3.2 Probabilistic Algorithms 00 436
13.3.3 Simultaneous Document and Word Cluster Discovery 438
13.3.3.1 Co-clustering 438
13.4 Topic Modeling 440

CONTENTS xvii

13.4.1 Use in Dimensionality Reduction and Comparison with Latent

Semantic Analysis oL 443

13.4.2 Use in Clustering and Comparison with Probabilistic
Clustering 445
13.4.3 Limitations of PLSA 446
13.5 Specialized Classification Methods for Text 446
13.5.1 Instance-Based Classifiers 447
13.5.1.1 Leveraging Latent Semantic Analysis 447
13.5.1.2 Centroid-Based Classification 447
13.5.1.3 Rocchio Classification 448
13.5.2 Bayes Classifiers o 448
13.5.2.1 Multinomial Bayes Model 449
13.5.3 SVM Classifiers for High-Dimensional and Sparse Data 451
13.6 Novelty and First Story Detection 453
13.6.1 Micro-clustering Method 453
13.7 Summaryo e e 454
13.8 Bibliographic Notes 454
13.9 Exercises 455
14 Mining Time Series Data 457
14.1 Introduction L 457
14.2 Time Series Preparation and Similarity 459
14.2.1 Handling Missing Values 459
14.2.2 Noise Removal L o 460
14.2.3 Normalization L 461
14.2.4 Data Transformation and Reduction 462
14.2.4.1 Discrete Wavelet Transform 462
14.2.4.2 Discrete Fourier Transform 462
14.2.4.3 Symbolic Aggregate Approximation (SAX) 464
14.2.5 Time Series Similarity Measures 464
14.3 Time Series Forecasting 0. 464
14.3.1 Autoregressive Models oo 467
14.3.2 Autoregressive Moving Average Models 468
14.3.3 Multivariate Forecasting with Hidden Variables 470
14.4 Time Series Motifs o 472
14.4.1 Distance-Based Motifs L 0L 473
14.4.2 Transformation to Sequential Pattern Mining 475
14.4.3 Periodic Patterns L. 476
14.5 Time Series Clustering oo 476
14.5.1 Online Clustering of Coevolving Series 477
14.5.2 Shape-Based Clustering 479
14.5.2.1 k-Means 480
14.5.2.2 k-Medoids 480
14.5.2.3 Hierarchical Methods 481
14.5.2.4 Graph-Based Methods 481
14.6 Time Series Outlier Detection 481
14.6.1 Point Outliers 482
14.6.2 Shape Outliers 483
14.7 Time Series Classification 485

xviii CONTENTS

14.7.1 Supervised Event Detection,

14.7.2 Whole Series Classification
14.7.2.1 Wavelet-Based Rules

14.7.2.2 Nearest Neighbor Classifier

14.7.2.3 Graph-Based Methods

14.8 Summary e
14.9 Bibliographic Notes o
14.10 EXercises o ..o e e e

15 Mining Discrete Sequences
15.1 Imtroduction
15.2 Sequential Pattern Mining oo
15.2.1 Frequent Patterns to Frequent Sequences
15.2.2 Constrained Sequential Pattern Mining
15.3 Sequence Clustering L
15.3.1 Distance-Based Methods
15.3.2 Graph-Based Methods,
15.3.3 Subsequence-Based Clustering
15.3.4 Probabilistic Clustering
15.3.4.1 Markovian Similarity-Based Algorithm: CLUSEQ . . .
15.3.4.2 Mixture of Hidden Markov Models
15.4 Outlier Detection in Sequences
15.4.1 Position Outliers o
15.4.1.1 Efficiency Issues: Probabilistic Suffix Trees
15.4.2 Combination Outliers
15.4.2.1 Distance-Based Models
15.4.2.2 Frequency-Based Models
15.5 Hidden Markov Models
15.5.1 Formal Definition and Techniques for HMMs
15.5.2 Evaluation: Computing the Fit Probability for Observed
Sequence
15.5.3 Explanation: Determining the Most Likely State Sequence
for Observed Sequence
15.5.4 Training: Baum—Welch Algorithm
15.5.5 Applications
15.6 Sequence Classification
15.6.1 Nearest Neighbor Classifier
15.6.2 Graph-Based Methods
15.6.3 Rule-Based Methods
15.6.4 Kernel Support Vector Machines
15.6.4.1 Bag-of-Words Kernel
15.6.4.2 Spectrum Kernel, ...
15.6.4.3 Weighted Degree Kernel
15.6.5 Probabilistic Methods: Hidden Markov Models
15.7 Summary e
15.8 Bibliographic Notes Lo o
15.9 Exercises

CONTENTS

16 Mining Spatial Data
Introduction
16.2 Mining with Contextual Spatial Attributes

16.1

16.3

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5

16.2.6

Shape to Time Series Transformation
Spatial to Multidimensional Transformation with Wavelets
Spatial Colocation Patterns
Clustering Shapes L o
Outlier Detection
16.2.5.1 Point Outliers
16.2.5.2 Shape Outliers
Classification of Shapes

Trajectory Mining

16.3.1
16.3.2
16.3.3

16.3.4

16.3.5

16.3.6

Equivalence of Trajectories and Multivariate Time Series
Converting Trajectories to Multidimensional Data
Trajectory Pattern Mining
16.3.3.1 Frequent Trajectory Paths
16.3.3.2 Colocation Patterns
Trajectory Clustering
16.3.4.1 Computing Similarity Between Trajectories
16.3.4.2 Similarity-Based Clustering Methods
16.3.4.3 Trajectory Clustering as a Sequence Clustering
Problem
Trajectory Outlier Detection
16.3.5.1 Distance-Based Methods
16.3.5.2 Sequence-Based Methods
Trajectory Classification
16.3.6.1 Distance-Based Methods
16.3.6.2 Sequence-Based Methods

16.4 Summary e e e
16.5 Bibliographic Notes oo
16.6 Exercises e

17 Mining Graph Data
Introductiono
17.2 Matching and Distance Computation in Graphs

17.1

17.3

17.4

17.2.1

17.2.2
17.2.3

Ullman’s Algorithm for Subgraph Isomorphism
17.2.1.1 Algorithm Variations and Refinements
Maximum Common Subgraph (MCG) Problem
Graph Matching Methods for Distance Computation
17.2.3.1 MCG-based Distances
17.2.3.2 Graph Edit Distance

Transformation-Based Distance Computation

17.3.1

17.3.2
17.3.3

Frequent Substructure-Based Transformation and Distance

Computation
Topological Descriptors
Kernel-Based Transformations and Computation.
17.3.3.1 Random Walk Kernels
17.3.3.2 Shortest-Path Kernels

Frequent Substructure Mining in Graphs

17.4.1

Node-Based Join Growth

XX CONTENTS
17.4.2 Edge-Based Join Growth 578
17.4.3 Frequent Pattern Mining to Graph Pattern Mining 578
17.5 Graph Clustering 579
17.5.1 Distance-Based Methods 579
17.5.2 Frequent Substructure-Based Methods 580
17.5.2.1 Generic Transformational Approach 580

17.5.2.2 XProj: Direct Clustering with Frequent Subgraph
Discovery oo 581
17.6 Graph Classification 582
17.6.1 Distance-Based Methods 583
17.6.2 Frequent Substructure-Based Methods 583
17.6.2.1 Generic Transformational Approach 583
17.6.2.2 XRules: A Rule-Based Approach 584
17.6.3 Kernel SVMs 585
177 Summary e e e 585
17.8 Bibliographic Notes Lo oo 586
17.9 EXErcises o o o e e 586
18 Mining Web Data 589
18.1 Imtroduction L 589
18.2 Web Crawling and Resource Discovery 591
18.2.1 A Basic Crawler Algorithm 591
18.2.2 Preferential Crawlers 593
18.2.3 Multiple Threads 593
18.2.4 Combatting Spider Traps 593
18.2.5 Shingling for Near Duplicate Detection 594
18.3 Search Engine Indexing and Query Processing 594
18.4 Ranking Algorithms 597
18.4.1 PageRank 598
18.4.1.1 Topic-Sensitive PageRank 601
18.4.1.2 SimRank 601
18.4.2 HITS e 602
18.5 Recommender Systems o 604
18.5.1 Content-Based Recommendations 606
18.5.2 Neighborhood-Based Methods for Collaborative Filtering 607
18.5.2.1 User-Based Similarity with Ratings 607
18.5.2.2 Item-Based Similarity with Ratings 608
18.5.3 Graph-Based Methods 608
18.5.4 Clustering Methods 609
18.5.4.1 Adapting k-Means Clustering 610
18.5.4.2 Adapting Co-Clustering 610
18.5.5 Latent Factor Models 611
18.5.5.1 Singular Value Decomposition 612
18.5.5.2 Matrix Factorization 612
18.6 Web Usage Mining L 613
18.6.1 Data Preprocessing oL 614
18.6.2 Applications 614
18.7 Summary 615
18.8 Bibliographic Notes Lo oL 616
18.9 EXercises 616

CONTENTS

19 Social Network Analysis

19.1
19.2

19.3

19.4

19.5

19.6

19.7
19.8
19.9

Introduction
Social Networks: Preliminaries and Properties
19.2.1 Homophilyo
19.2.2 Triadic Closure and Clustering Coefficient
19.2.3 Dynamics of Network Formation
19.2.4 Power-Law Degree Distributions
19.2.5 Measures of Centrality and Prestige
19.2.5.1 Degree Centrality and Prestige
19.2.5.2 Closeness Centrality and Proximity Prestige
19.2.5.3 Betweenness Centrality
19.2.5.4 Rank Centrality and Prestige
Community Detection L
19.3.1 Kernighan—Lin Algorithm
19.3.1.1 Speeding Up Kernighan—Lin
19.3.2 Girvan—-Newman Algorithm
19.3.3 Multilevel Graph Partitioning: METIS
19.3.4 Spectral Clustering
19.3.4.1 Important Observations and Intuitions
Collective Classification L
19.4.1 Tterative Classification Algorithm
19.4.2 Label Propagation with Random Walks
19.4.2.1 Tterative Label Propagation: The Spectral
Interpretation oL
19.4.3 Supervised Spectral Methods
19.4.3.1 Supervised Feature Generation with Spectral
Embedding oL
19.4.3.2 Graph Regularization Approach
19.4.3.3 Connections with Random Walk Methods
Link Prediction
19.5.1 Neighborhood-Based Measures
19.5.2 Katz Measure
19.5.3 Random Walk-Based Measures.
19.5.4 Link Prediction as a Classification Problem
19.5.5 Link Prediction as a Missing-Value Estimation Problem
19.5.6 Discussiono
Social Influence Analysis
19.6.1 Linear Threshold Model
19.6.2 Independent Cascade Model
19.6.3 Influence Function Evaluation
Summary ... e e e
Bibliographic Notes
Exercises

20 Privacy-Preserving Data Mining

20.1
20.2

20.3

Introduction
Privacy During Data Collection
20.2.1 Reconstructing Aggregate Distributions
20.2.2 Leveraging Aggregate Distributions for Data Mining
Privacy-Preserving Data Publishing
20.3.1 The k-Anonymity Model

xxi

619
619
620
621
621
622
623
623
624
624
626
627
627
629
630
631
634
637
640
641
641
643

646
646

xxii CONTENTS
20.3.1.1 Samarati’s Algorithm 673
20.3.1.2 Incognitoo 675
20.3.1.3 Mondrian Multidimensional k-Anonymity 678

20.3.1.4 Synthetic Data Generation: Condensation-Based
Approach 680
20.3.2 The ¢-Diversity Modelo 682
20.3.3 The t-closeness Model oL 684
20.3.4 The Curse of Dimensionality 687
20.4 Output Privacy 688
20.5 Distributed Privacy oo 689
20.6 SUMMATY o e e e e e e 690
20.7 Bibliographic Notes 691
20.8 Exerciseso e 692
Bibliography 695
Index 727

Preface

“Data is the new oil.”— Clive Humby

The field of data mining has seen rapid strides over the past two decades, especially from
the perspective of the computer science community. While data analysis has been studied
extensively in the conventional field of probability and statistics, data mining is a term
coined by the computer science-oriented community. For computer scientists, issues such as
scalability, usability, and computational implementation are extremely important.

The emergence of data science as a discipline requires the development of a book that
goes beyond the traditional focus of books on only the fundamental data mining courses.
Recent years have seen the emergence of the job description of “data scientists,” who try to
glean knowledge from vast amounts of data. In typical applications, the data types are so
heterogeneous and diverse that the fundamental methods discussed for a multidimensional
data type may not be effective. Therefore, more emphasis needs to be placed on the different
data types and the applications that arise in the context of these different data types. A
comprehensive data mining book must explore the different aspects of data mining, starting
from the fundamentals, and then explore the complex data types, and their relationships
with the fundamental techniques. While fundamental techniques form an excellent basis
for the further study of data mining, they do not provide a complete picture of the true
complexity of data analysis. This book studies these advanced topics without compromis-
ing the presentation of fundamental methods. Therefore, this book may be used for both
introductory and advanced data mining courses. Until now, no single book has addressed
all these topics in a comprehensive and integrated way.

The textbook assumes a basic knowledge of probability, statistics, and linear algebra,
which is taught in most undergraduate curricula of science and engineering disciplines.
Therefore, the book can also be used by industrial practitioners, who have a working knowl-
edge of these basic skills. While stronger mathematical background is helpful for the more
advanced chapters, it is not a prerequisite. Special chapters are also devoted to different
aspects of data mining, such as text data, time-series data, discrete sequences, and graphs.
This kind of specialized treatment is intended to capture the wide diversity of problem
domains in which a data mining problem might arise.

The chapters of this book fall into one of three categories:

e The fundamental chapters: Data mining has four main “super problems,” which
correspond to clustering, classification, association pattern mining, and outlier anal-

xxiii

XXiv

PREFACE

ysis. These problems are so important because they are used repeatedly as building
blocks in the context of a wide variety of data mining applications. As a result, a large
amount of emphasis has been placed by data mining researchers and practitioners to
design effective and efficient methods for these problems. These chapters comprehen-
sively discuss the vast diversity of methods used by the data mining community in
the context of these super problems.

Domain chapters: These chapters discuss the specific methods used for different
domains of data such as text data, time-series data, sequence data, graph data, and
spatial data. Many of these chapters can also be considered application chapters,
because they explore the specific characteristics of the problem in a particular domain.

Application chapters: Advancements in hardware technology and software plat-
forms have lead to a number of data-intensive applications such as streaming systems,
Web mining, social networks, and privacy preservation. These topics are studied in
detail in these chapters. The domain chapters are also focused on many different kinds
of applications that arise in the context of those data types.

Suggestions for the Instructor

The book was specifically written to enable the teaching of both the basic data mining and
advanced data mining courses from a single book. It can be used to offer various types of
data mining courses with different emphases. Specifically, the courses that could be offered
with various chapters are as follows:

e Basic data mining course and fundamentals: The basic data mining course

should focus on the fundamentals of data mining. Chapters 1, 2, 3, 4, 6, 8, and 10
can be covered. In fact, the material in these chapters is more than what is possible
to teach in a single course. Therefore, instructors may need to select topics of their
interest from these chapters. Some portions of Chaps. 5, 7, 9, and 11 can also be
covered, although these chapters are really meant for an advanced course.

Advanced course (fundamentals): Such a course would cover advanced topics
on the fundamentals of data mining and assume that the student is already familiar
with Chaps. 1-3, and parts of Chaps. 4, 6, 8, and 10. The course can then focus on
Chaps. 5, 7, 9, and 11. Topics such as ensemble analysis are useful for the advanced
course. Furthermore, some topics from Chaps. 4, 6, 8, and 10, which were not covered
in the basic course, can be used. In addition, Chap. 20 on privacy can be offered.

Advanced course (data types): Advanced topics such as text mining, time series,
sequences, graphs, and spatial data may be covered. The material should focus on
Chaps. 13, 14, 15, 16, and 17. Some parts of Chap. 19 (e.g., graph clustering) and
Chap. 12 (data streaming) can also be used.

Advanced course (applications): An application course overlaps with a data type
course but has a different focus. For example, the focus in an application-centered
course would be more on the modeling aspect than the algorithmic aspect. Therefore,
the same materials in Chaps. 13, 14, 15, 16, and 17 can be used while skipping specific
details of algorithms. With less focus on specific algorithms, these chapters can be
covered fairly quickly. The remaining time should be allocated to three very important
chapters on data streams (Chap. 12), Web mining (Chap. 18), and social network
analysis (Chap. 19).

PREFACE XXV

The book is written in a simple style to make it accessible to undergraduate students and
industrial practitioners with a limited mathematical background. Thus, the book will serve
both as an introductory text and as an advanced text for students, industrial practitioners,
and researchers.

Throughout this book, a vector or a multidimensional data point (including categorical
attributes), is annotated with a bar, such as X or 7. A vector or multidimensional point
may be denoted by either small letters or capital letters, as long as it has a bar. Vector dot
products are denoted by centered dots, such as X - Y. A matrix is denoted in capital letters
without a bar, such as R. Throughout the book, the n x d data matrix is denoted by D, with
n points and d dimensions. The individual data points in D are therefore d-dimensional row
vectors. On the other hand, vectors with one component for each data point are usually
n-dimensional column vectors. An example is the n-dimensional column vector § of class
variables of n data points.

Acknowledgments

I would like to thank my wife and daughter for their love and support during the writing of
this book. The writing of a book requires significant time, which is taken away from family
members. This book is the result of their patience with me during this time.

I would also like to thank my manager Nagui Halim for providing the tremendous support
necessary for the writing of this book. His professional support has been instrumental for
my many book efforts in the past and present.

During the writing of this book, I received feedback from many colleagues. In partic-
ular, I received feedback from Kanishka Bhaduri, Alain Biem, Graham Cormode, Hongbo
Deng, Amit Dhurandhar, Bart Goethals, Alexander Hinneburg, Ramakrishnan Kannan,
George Karypis, Dominique LaSalle, Abdullah Mueen, Guojun Qi, Pierangela Samarati,
Saket Sathe, Karthik Subbian, Jiliang Tang, Deepak Turaga, Jilles Vreeken, Jieping Ye,
and Peixiang Zhao. I would like to thank them for their constructive feedback and sugges-
tions. Over the years, I have benefited from the insights of numerous collaborators. These
insights have influenced this book directly or indirectly. I would first like to thank my long-
term collaborator Philip S. Yu for my years of collaboration with him. Other researchers
with whom I have had significant collaborations include Tarek F. Abdelzaher, Jing Gao,
Quanquan Gu, Manish Gupta, Jiawei Han, Alexander Hinneburg, Thomas Huang, Nan Li,
Huan Liu, Ruoming Jin, Daniel Keim, Arijit Khan, Latifur Khan, Mohammad M. Masud,
Jian Pei, Magda Procopiuc, Guojun Qi, Chandan Reddy, Jaideep Srivastava, Karthik Sub-
bian, Yizhou Sun, Jiliang Tang, Min-Hsuan Tsai, Haixun Wang, Jianyong Wang, Min Wang,
Joel Wolf, Xifeng Yan, Mohammed Zaki, ChengXiang Zhai, and Peixiang Zhao.

I would also like to thank my advisor James B. Orlin for his guidance during my early
years as a researcher. While I no longer work in the same area, the legacy of what I learned
from him is a crucial part of my approach to research. In particular, he taught me the
importance of intuition and simplicity of thought in the research process. These are more
important aspects of research than is generally recognized. This book is written in a simple
and intuitive style, and is meant to improve accessibility of this area to both researchers
and practitioners.

I would also like to thank Lata Aggarwal for helping me with some of the figures drawn
using Microsoft Powerpoint.

xxvii

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.
J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from
IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.
He has worked extensively in the field of data mining. He has pub-
lished more than 250 papers in refereed conferences and journals
and authored over 80 patents. He is author or editor of 14 books,
including the first comprehensive book on outlier analysis, which
is written from a computer science point of view. Because of the
commercial value of his patents, he has thrice been designated a
Master Inventor at IBM. He is a recipient of an IBM Corporate
Award (2003) for his work on bio-terrorist threat detection in data
streams, a recipient of the IBM Outstanding Innovation Award
(2008) for his scientific contributions to privacy technology, a recip-
ient of the IBM Outstanding Technical Achievement Award (2009)
for his work on data streams, and a recipient of an IBM Research
Division Award (2008) for his contributions to System S. He also received the EDBT 2014
Test of Time Award for his work on condensation-based privacy-preserving data mining.

He has served as the general co-chair of the IEEE Big Data Conference, 2014, and as an
associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to
2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data,
an action editor of the Data Mining and Knowledge Discovery Journal, editor-in-chief of
the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information
Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks,
a publication by Springer. He has served as the vice-president of the STAM Activity Group
on Data Mining. He is a fellow of the ACM and the IEEE, for “contributions to knowledge
discovery and data mining algorithms.”

XXix

Chapter 1

An Introduction to Data Mining

“FEducation is not the piling on of learning, information, data, facts, skills,
or abilities — that’s training or instruction — but is rather making visible
what is hidden as a seed.”—Thomas More

1.1 Introduction

Data mining is the study of collecting, cleaning, processing, analyzing, and gaining useful
insights from data. A wide variation exists in terms of the problem domains, applications,
formulations, and data representations that are encountered in real applications. Therefore,
“data mining” is a broad umbrella term that is used to describe these different aspects of
data processing.

In the modern age, virtually all automated systems generate some form of data either
for diagnostic or analysis purposes. This has resulted in a deluge of data, which has been
reaching the order of petabytes or exabytes. Some examples of different kinds of data are
as follows:

o World Wide Web: The number of documents on the indexed Web is now on the order
of billions, and the invisible Web is much larger. User accesses to such documents
create Web access logs at servers and customer behavior profiles at commercial sites.
Furthermore, the linked structure of the Web is referred to as the Web graph, which
is itself a kind of data. These different types of data are useful in various applications.
For example, the Web documents and link structure can be mined to determine asso-
ciations between different topics on the Web. On the other hand, user access logs can
be mined to determine frequent patterns of accesses or unusual patterns of possibly
unwarranted behavior.

e Financial interactions: Most common transactions of everyday life, such as using an
automated teller machine (ATM) card or a credit card, can create data in an auto-
mated way. Such transactions can be mined for many useful insights such as fraud or
other unusual activity.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8_1 1
(© Springer International Publishing Switzerland 2015

2 CHAPTER 1. AN INTRODUCTION TO DATA MINING

o User interactions: Many forms of user interactions create large volumes of data. For
example, the use of a telephone typically creates a record at the telecommunication
company with details about the duration and destination of the call. Many phone
companies routinely analyze such data to determine relevant patterns of behavior
that can be used to make decisions about network capacity, promotions, pricing, or
customer targeting.

e Sensor technologies and the Internet of Things: A recent trend is the development
of low-cost wearable sensors, smartphones, and other smart devices that can commu-
nicate with one another. By one estimate, the number of such devices exceeded the
number of people on the planet in 2008 [30]. The implications of such massive data
collection are significant for mining algorithms.

The deluge of data is a direct result of advances in technology and the computerization of
every aspect of modern life. It is, therefore, natural to examine whether one can extract
concise and possibly actionable insights from the available data for application-specific goals.
This is where the task of data mining comes in. The raw data may be arbitrary, unstructured,
or even in a format that is not immediately suitable for automated processing. For example,
manually collected data may be drawn from heterogeneous sources in different formats and
yet somehow needs to be processed by an automated computer program to gain insights.

To address this issue, data mining analysts use a pipeline of processing, where the raw
data are collected, cleaned, and transformed into a standardized format. The data may be
stored in a commercial database system and finally processed for insights with the use of
analytical methods. In fact, while data mining often conjures up the notion of analytical
algorithms, the reality is that the vast majority of work is related to the data preparation
portion of the process. This pipeline of processing is conceptually similar to that of an actual
mining process from a mineral ore to the refined end product. The term “mining” derives
its roots from this analogy.

From an analytical perspective, data mining is challenging because of the wide disparity
in the problems and data types that are encountered. For example, a commercial product
recommendation problem is very different from an intrusion-detection application, even at
the level of the input data format or the problem definition. Even within related classes
of problems, the differences are quite significant. For example, a product recommendation
problem in a multidimensional database is very different from a social recommendation
problem due to the differences in the underlying data type. Nevertheless, in spite of these
differences, data mining applications are often closely connected to one of four “super-
problems” in data mining: association pattern mining, clustering, classification, and outlier
detection. These problems are so important because they are used as building blocks in a
majority of the applications in some indirect form or the other. This is a useful abstraction
because it helps us conceptualize and structure the field of data mining more effectively.

The data may have different formats or types. The type may be quantitative (e.g., age),
categorical (e.g., ethnicity), text, spatial, temporal, or graph-oriented. Although the most
common form of data is multidimensional, an increasing proportion belongs to more complex
data types. While there is a conceptual portability of algorithms between many data types
at a very high level, this is not the case from a practical perspective. The reality is that
the precise data type may affect the behavior of a particular algorithm significantly. As a
result, one may need to design refined variations of the basic approach for multidimensional
data, so that it can be used effectively for a different data type. Therefore, this book will
dedicate different chapters to the various data types to provide a better understanding of
how the processing methods are affected by the underlying data type.

1.2. THE DATA MINING PROCESS 3

A major challenge has been created in recent years due to increasing data volumes. The
prevalence of continuously collected data has led to an increasing interest in the field of data
streams. For example, Internet traffic generates large streams that cannot even be stored
effectively unless significant resources are spent on storage. This leads to unique challenges
from the perspective of processing and analysis. In cases where it is not possible to explicitly
store the data, all the processing needs to be performed in real time.

This chapter will provide a broad overview of the different technologies involved in pre-
processing and analyzing different types of data. The goal is to study data mining from the
perspective of different problem abstractions and data types that are frequently encoun-
tered. Many important applications can be converted into these abstractions.

This chapter is organized as follows. Section 1.2 discusses the data mining process with
particular attention paid to the data preprocessing phase in this section. Different data
types and their formal definition are discussed in Sect. 1.3. The major problems in data
mining are discussed in Sect. 1.4 at a very high level. The impact of data type on problem
definitions is also addressed in this section. Scalability issues are addressed in Sect. 1.5. In
Sect. 1.6, a few examples of applications are provided. Section 1.7 gives a summary.

1.2 The Data Mining Process

As discussed earlier, the data mining process is a pipeline containing many phases such as
data cleaning, feature extraction, and algorithmic design. In this section, we will study these
different phases. The workflow of a typical data mining application contains the following
phases:

1. Data collection: Data collection may require the use of specialized hardware such as a
sensor network, manual labor such as the collection of user surveys, or software tools
such as a Web document crawling engine to collect documents. While this stage is
highly application-specific and often outside the realm of the data mining analyst,
it is critically important because good choices at this stage may significantly impact
the data mining process. After the collection phase, the data are often stored in a
database, or, more generally, a data warehouse for processing.

2. Feature extraction and data cleaning: When the data are collected, they are often not
in a form that is suitable for processing. For example, the data may be encoded in
complex logs or free-form documents. In many cases, different types of data may be
arbitrarily mixed together in a free-form document. To make the data suitable for
processing, it is essential to transform them into a format that is friendly to data
mining algorithms, such as multidimensional, time series, or semistructured format.
The multidimensional format is the most common one, in which different fields of the
data correspond to the different measured properties that are referred to as features,
attributes, or dimensions. It is crucial to extract relevant features for the mining
process. The feature extraction phase is often performed in parallel with data cleaning,
where missing and erroneous parts of the data are either estimated or corrected. In
many cases, the data may be extracted from multiple sources and need to be integrated
into a unified format for processing. The final result of this procedure is a nicely
structured data set, which can be effectively used by a computer program. After the
feature extraction phase, the data may again be stored in a database for processing.

3. Analytical processing and algorithms: The final part of the mining process is to design
effective analytical methods from the processed data. In many cases, it may not be

4 CHAPTER 1. AN INTRODUCTION TO DATA MINING

DATA
PREPROCESSING ANALYTICAL PROCESSING
DATA OUTPUT
COLLECTION [— FEATURE CL?&NG || BuiDING | | BulLDING || FOR

EXTRACTION INTEGRATION BLOCK 1 BLOCK 2 ANALYST

N N T T

| | FEEDBACK (OPTIONAL); |

i FEEDBACK (OPTIONAL) i

Figure 1.1: The data processing pipeline

possible to directly use a standard data mining problem, such as the four “superprob-
lems” discussed earlier, for the application at hand. However, these four problems have
such wide coverage that many applications can be broken up into components that
use these different building blocks. This book will provide examples of this process.

The overall data mining process is illustrated in Fig. 1.1. Note that the analytical block in
Fig. 1.1 shows multiple building blocks representing the design of the solution to a particular
application. This part of the algorithmic design is dependent on the skill of the analyst and
often uses one or more of the four major problems as a building block. This is, of course,
not always the case, but it is frequent enough to merit special treatment of these four
problems within this book. To explain the data mining process, we will use an example
from a recommendation scenario.

Example 1.2.1 Consider a scenario in which a retailer has Web logs corresponding to
customer accesses to Web pages at his or her site. Each of these Web pages corresponds
to a product, and therefore a customer access to a page may often be indicative of interest
in that particular product. The retailer also stores demographic profiles for the different
customers. The retailer wants to make targeted product recommendations to customers using
the customer demographics and buying behavior.

Sample Solution Pipeline In this case, the first step for the analyst is to collect the
relevant data from two different sources. The first source is the set of Web logs at the
site. The second is the demographic information within the retailer database that were
collected during Web registration of the customer. Unfortunately, these data sets are in
a very different format and cannot easily be used together for processing. For example,
consider a sample log entry of the following form:

98.206.207.157 - - [31/Jul/2013:18:09:38 -0700] "GET /productA.htm
HTTP/1.1" 200 328177 "-" "Mozilla/5.0 (Mac 0S X) AppleWebKit/536.26
(KHTML, like Gecko) Version/6.0 Mobile/10B329 Safari/8536.25"
"retailer.net"

The log may contain hundreds of thousands of such entries. Here, a customer at IP address
98.206.207.157 has accessed productA.htm. The customer from the IP address can be iden-
tified using the previous login information, by using cookies, or by the IP address itself,
but this may be a noisy process and may not always yield accurate results. The analyst
would need to design algorithms for deciding how to filter the different log entries and use
only those which provide accurate results as a part of the cleaning and extraction process.
Furthermore, the raw log contains a lot of additional information that is not necessarily

1.2. THE DATA MINING PROCESS 5

of any use to the retailer. In the feature extraction process, the retailer decides to create
one record for each customer, with a specific choice of features extracted from the Web
page accesses. For each record, an attribute corresponds to the number of accesses to each
product description. Therefore, the raw logs need to be processed, and the accesses need to
be aggregated during this feature extraction phase. Attributes are added to these records
for the retailer’s database containing demographic information in a data integration phase.
Missing entries from the demographic records need to be estimated for further data clean-
ing. This results in a single data set containing attributes for the customer demographics
and customer accesses.

At this point, the analyst has to decide how to use this cleaned data set for making
recommendations. He or she decides to determine similar groups of customers, and make
recommendations on the basis of the buying behavior of these similar groups. In particular,
the building block of clustering is used to determine similar groups. For a given customer,
the most frequent items accessed by the customers in that group are recommended. This
provides an example of the entire data mining pipeline. As you will learn in Chap. 18, there
are many elegant ways of performing the recommendations, some of which are more effective
than the others depending on the specific definition of the problem. Therefore, the entire
data mining process is an art form, which is based on the skill of the analyst, and cannot be
fully captured by a single technique or building block. In practice, this skill can be learned
only by working with a diversity of applications over different scenarios and data types.

1.2.1 The Data Preprocessing Phase

The data preprocessing phase is perhaps the most crucial one in the data mining process.
Yet, it is rarely explored to the extent that it deserves because most of the focus is on the
analytical aspects of data mining. This phase begins after the collection of the data, and it
consists of the following steps:

1. Feature extraction: An analyst may be confronted with vast volumes of raw documents,
system logs, or commercial transactions with little guidance on how these raw data
should be transformed into meaningful database features for processing. This phase
is highly dependent on the analyst to be able to abstract out the features that are
most relevant to a particular application. For example, in a credit-card fraud detection
application, the amount of a charge, the repeat frequency, and the location are often
good indicators of fraud. However, many other features may be poorer indicators
of fraud. Therefore, extracting the right features is often a skill that requires an
understanding of the specific application domain at hand.

2. Data cleaning: The extracted data may have erroneous or missing entries. Therefore,
some records may need to be dropped, or missing entries may need to be estimated.
Inconsistencies may need to be removed.

3. Feature selection and transformation: When the data are very high dimensional, many
data mining algorithms do not work effectively. Furthermore, many of the high-
dimensional features are noisy and may add errors to the data mining process. There-
fore, a variety of methods are used to either remove irrelevant features or transform
the current set of features to a new data space that is more amenable for analysis.
Another related aspect is data transformation, where a data set with a particular set
of attributes may be transformed into a data set with another set of attributes of the
same or a different type. For example, an attribute, such as age, may be partitioned
into ranges to create discrete values for analytical convenience.

6 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The data cleaning process requires statistical methods that are commonly used for miss-
ing data estimation. In addition, erroneous data entries are often removed to ensure more
accurate mining results. The topics of data cleaning is addressed in Chap. 2 on data pre-
processing.

Feature selection and transformation should not be considered a part of data preprocess-
ing because the feature selection phase is often highly dependent on the specific analytical
problem being solved. In some cases, the feature selection process can even be tightly inte-
grated with the specific algorithm or methodology being used, in the form of a wrapper
model or embedded model. Nevertheless, the feature selection phase is usually performed
before applying the specific algorithm at hand.

1.2.2 The Analytical Phase

The vast majority of this book will be devoted to the analytical phase of the mining process.
A major challenge is that each data mining application is unique, and it is, therefore, difficult
to create general and reusable techniques across different applications. Nevertheless, many
data mining formulations are repeatedly used in the context of different applications. These
correspond to the major “superproblems” or building blocks of the data mining process.
It is dependent on the skill and experience of the analyst to determine how these different
formulations may be used in the context of a particular data mining application. Although
this book can provide a good overview of the fundamental data mining models, the ability
to apply them to real-world applications can only be learned with practical experience.

1.3 The Basic Data Types

One of the interesting aspects of the data mining process is the wide variety of data types
that are available for analysis. There are two broad types of data, of varying complexity,
for the data mining process:

1. Nondependency-oriented data: This typically refers to simple data types such as multi-
dimensional data or text data. These data types are the simplest and most commonly
encountered. In these cases, the data records do not have any specified dependencies
between either the data items or the attributes. An example is a set of demographic
records about individuals containing their age, gender, and ZIP code.

2. Dependency-oriented data: In these cases, implicit or explicit relationships may exist
between data items. For example, a social network data set contains a set of vertices
(data items) that are connected together by a set of edges (relationships). On the
other hand, time series contains implicit dependencies. For example, two successive
values collected from a sensor are likely to be related to one another. Therefore, the
time attribute implicitly specifies a dependency between successive readings.

In general, dependency-oriented data are more challenging because of the complexities cre-
ated by preexisting relationships between data items. Such dependencies between data items
need to be incorporated directly into the analytical process to obtain contextually mean-
ingful results.

1.3. THE BASIC DATA TYPES 7

Table 1.1: An example of a multidimensional data set
H Name H Age \ Gender \ Race \ ZIP code H

John S. 45 M African American 05139
Manyona L. 31 F Native American 10598
Sayani A. 11 F East Indian 10547
Jack M. 56 M Caucasian 10562
Wei L. 63 M Asian 90210

1.3.1 Nondependency-Oriented Data

This is the simplest form of data and typically refers to multidimensional data. This data
typically contains a set of records. A record is also referred to as a data point, instance,
example, transaction, entity, tuple, object, or feature-vector, depending on the application at
hand. Each record contains a set of fields, which are also referred to as attributes, dimen-
sions, and features. These terms will be used interchangeably throughout this book. These
fields describe the different properties of that record. Relational database systems were tra-
ditionally designed to handle this kind of data, even in their earliest forms. For example,
consider the demographic data set illustrated in Table 1.1. Here, the demographic proper-
ties of an individual, such as age, gender, and ZIP code, are illustrated. A multidimensional
data set is defined as follows:

Deﬁnitioni&lﬂultidimensional DataLA multidimensional data set D is a set of
n records, Xi...X,, such that each record X; contains a set of d features denoted by
(z}...2d).

[1

Throughout the early chapters of this book, we will work with multidimensional data
because it is the simplest form of data and establishes the broader principles on which
the more complex data types can be processed. More complex data types will be addressed
in later chapters of the book, and the impact of the dependencies on the mining process
will be explicitly discussed.

1.3.1.1 Quantitative Multidimensional Data

The attributes in Table 1.1 are of two different types. The age field has values that are
numerical in the sense that they have a natural ordering. Such attributes are referred to as
continuous, numeric, or quantitative. Data in which all fields are quantitative is also referred
to as quantitative data or numeric data. Thus, when each value of 27 in Definition 1.3.1 is
quantitative, the corresponding data set is referred to as quantitative multidimensional
data. In the data mining literature, this particular subtype of data is considered the most
common, and many algorithms discussed in this book work with this subtype of data. This
subtype is particularly convenient for analytical processing because it is much easier to
work with quantitative data from a statistical perspective. For example, the mean of a set
of quantitative records can be expressed as a simple average of these values, whereas such
computations become more complex in other data types. Where possible and effective, many
data mining algorithms therefore try to convert different kinds of data to quantitative values
before processing. This is also the reason that many algorithms discussed in this (or virtually
any other) data mining textbook assume a quantitative multidimensional representation.
Nevertheless, in real applications, the data are likely to be more complex and may contain
a mixture of different data types.

8 CHAPTER 1. AN INTRODUCTION TO DATA MINING

1.3.1.2 Categorical and Mixed Attribute Data

Many data sets in real applications may contain categorical attributes that take on discrete
unordered values. For example, in Table 1.1, the attributes such as gender, race, and ZIP
code, have discrete values without a natural ordering among them. If each value of x7 in
Definition 1.3.1 is categorical, then such data are referred to as unordered discrete-valued
or categorical. In the case of mized attribute data, there is a combination of categorical and
numeric attributes. The full data in Table 1.1 are considered mixed-attribute data because
they contain both numeric and categorical attributes.

The attribute corresponding to gender is special because it is categorical, but with only
two possible values. In such cases, it is possible to impose an artificial ordering between
these values and use algorithms designed for numeric data for this type. This is referred to
as binary data, and it can be considered a special case of either numeric or categorical data.
Chap. 2 will explain how binary data form the “bridge” to transform numeric or categorical
attributes into a common format that is suitable for processing in many scenarios.

1.3.1.3 Binary and Set Data

Binary data can be considered a special case of either multidimensional categorical data
or multidimensional quantitative data. It is a special case of multidimensional categorical
data, in which each categorical attribute may take on one of at most two discrete values.
It is also a special case of multidimensional quantitative data because an ordering exists
between the two values. Furthermore, binary data is also a representation of setwise data,
in which each attribute is treated as a set element indicator. A value of 1 indicates that the
element should be included in the set. Such data is common in market basket applications.
This topic will be studied in detail in Chaps. 4 and 5.

1.3.1.4 Text Data

Text data can be viewed either as a string, or as multidimensional data, depending on how
they are represented. In its raw form, a text document corresponds to a string. This is a
dependency-oriented data type, which will be described later in this chapter. Each string is a
sequence of characters (or words) corresponding to the document. However, text documents
are rarely represented as strings. This is because it is difficult to directly use the ordering
between words in an efficient way for large-scale applications, and the additional advantages
of leveraging the ordering are often limited in the text domain.

In practice, a vector-space representation is used, where the frequencies of the words in
the document are used for analysis. Words are also sometimes referred to as terms. Thus, the
precise ordering of the words is lost in this representation. These frequencies are typically
normalized with statistics such as the length of the document, or the frequencies of the
individual words in the collection. These issues will be discussed in detail in Chap. 13 on
text data. The corresponding n x d data matrix for a text collection with n documents and
d terms is referred to as a document-term matriz.

When represented in vector-space form, text data can be considered multidimensional
quantitative data, where the attributes correspond to the words, and the values correspond
to the frequencies of these attributes. However, this kind of quantitative data is special
because most attributes take on zero values, and only a few attributes have nonzero values.
This is because a single document may contain only a relatively small number of words
out of a dictionary of size 10°. This phenomenon is referred to as data sparsity, and it
significantly impacts the data mining process. The direct use of a quantitative data mining

1.3. THE BASIC DATA TYPES 9

algorithm is often unlikely to work with sparse data without appropriate modifications.
The sparsity also affects how the data are represented. For example, while it is possible to
use the representation suggested in Definition 1.3.1, this is not a practical approach. Most
values of x in Definition 1.3.1 are 0 for the case of text data. Therefore, it is inefficient
to explicitly maintain a d-dimensional representation in which most values are 0. A bag-
of-words representation is used containing only the words in the document. In addition,
the frequencies of these words are explicitly maintained. This approach is typically more
efficient. Because of data sparsity issues, text data are often processed with specialized
methods. Therefore, text mining is often studied as a separate subtopic within data mining.
Text mining methods are discussed in Chap. 13.

1.3.2 Dependency-Oriented Data

Most of the aforementioned discussion in this chapter is about the multidimensional sce-
nario, where it is assumed that the data records can be treated independently of one another.
In practice, the different data values may be (implicitly) related to each other temporally,
spatially, or through explicit network relationship links between the data items. The knowl-
edge about preeristing dependencies greatly changes the data mining process because data
mining is all about finding relationships between data items. The presence of preexisting
dependencies therefore changes the expected relationships in the data, and what may be
considered interesting from the perspective of these expected relationships. Several types of
dependencies may exist that may be either implicit or explicit:

1. Implicit dependencies: In this case, the dependencies between data items are not
explicitly specified but are known to “typically” exist in that domain. For exam-
ple, consecutive temperature values collected by a sensor are likely to be extremely
similar to one another. Therefore, if the temperature value recorded by a sensor at a
particular time is significantly different from that recorded at the next time instant
then this is extremely unusual and may be interesting for the data mining process.
This is different from multidimensional data sets where each data record is treated as
an independent entity.

2. Ezplicit dependencies: This typically refers to graph or network data in which edges
are used to specify explicit relationships. Graphs are a very powerful abstraction that
are often used as an intermediate representation to solve data mining problems in the
context of other data types.

In this section, the different dependency-oriented data types will be discussed in detail.

1.3.2.1 Time-Series Data

Time-series data contain values that are typically generated by continuous measurement
over time. For example, an environmental sensor will measure the temperature continu-
ously, whereas an electrocardiogram (ECG) will measure the parameters of a subject’s
heart rhythm. Such data typically have implicit dependencies built into the values received
over time. For example, the adjacent values recorded by a temperature sensor will usually
vary smoothly over time, and this factor needs to be explicitly used in the data mining
process.

The nature of the temporal dependency may vary significantly with the application.
For example, some forms of sensor readings may show periodic patterns of the measured

10 CHAPTER 1. AN INTRODUCTION TO DATA MINING

attribute over time. An important aspect of time-series mining is the extraction of such
dependencies in the data. To formalize the issue of dependencies caused by temporal corre-
lation, the attributes are classified into two types:

1. Conteztual attributes: These are the attributes that define the context on the basis
of which the implicit dependencies occur in the data. For example, in the case of
sensor data, the time stamp at which the reading is measured may be considered the
contextual attribute. Sometimes, the time stamp is not explicitly used, but a position
index is used. While the time-series data type contains only one contextual attribute,
other data types may have more than one contextual attribute. A specific example is
spatial data, which will be discussed later in this chapter.

2. Behavioral attributes: These represent the values that are measured in a particular
context. In the sensor example, the temperature is the behavioral attribute value. It is
possible to have more than one behavioral attribute. For example, if multiple sensors
record readings at synchronized time stamps, then it results in a multidimensional
time-series data set.

The contextual attributes typically have a strong impact on the dependencies between the
behavioral attribute values in the data. Formally, time-series data are defined as follows:

Definition 1.3.2 (Multivariate Time-Series Data) A time series of length n and
dimensionality d contains d numeric features at each of n time stamps t1 .. .t,. Fach time-
stamp contains a component for each of the d series. Therefore, the set of values received
at time stamp t; is Y; = (y} ...y¢). The value of the jth series at time stamp t; is y .

For example, consider the case where two sensors at a particular location monitor the
temperature and pressure every second for a minute. This corresponds to a multidimensional
series with d = 2 and n = 60. In some cases, the time stamps ¢; ...t, may be replaced by
index values from 1 through n, especially when the time-stamp values are equally spaced
apart.

Time-series data are relatively common in many sensor applications, forecasting, and
financial market analysis. Methods for analyzing time series are discussed in Chap. 14.

1.3.2.2 Discrete Sequences and Strings

Discrete sequences can be considered the categorical analog of time-series data. As in the
case of time-series data, the contextual attribute is a time stamp or a position index in the
ordering. The behavioral attribute is a categorical value. Therefore, discrete sequence data
are defined in a similar way to time-series data.

Definition 1.3.3 (Multivariate Discrete Sequence Data) A discrete sequence of length
n and dimensionality d contains d discrete feature values at each of n different time stamps
t1...tn. Each of the n components Y; contains d discrete behavioral attributes (y} .. .yf),
collected at the ith time-stamp.

For example, consider a sequence of Web accesses, in which the Web page address and the
originating IP address of the request are collected for 100 different accesses. This represents
a discrete sequence of length n = 100 and dimensionality d = 2. A particularly common
case in sequence data is the univariate scenario, in which the value of d is 1. Such sequence
data are also referred to as strings.

1.3. THE BASIC DATA TYPES 11

It should be noted that the aforementioned definition is almost identical to the time-
series case, with the main difference being that discrete sequences contain categorical
attributes. In theory, it is possible to have series that are mixed between categorical and
numerical data. Another important variation is the case where a sequence does not contain
categorical attributes, but a set of any number of unordered categorical values. For example,
supermarket transactions may contain a sequence of sets of items. Each set may contain
any number of items. Such setwise sequences are not really multivariate sequences, but are
univariate sequences, in which each element of the sequence is a set as opposed to a unit
element. Thus, discrete sequences can be defined in a wider variety of ways, as compared
to time-series data because of the ability to define sets on discrete elements.

In some cases, the contextual attribute may not refer to time explicitly, but it might
be a position based on physical placement. This is the case for biological sequence data. In
such cases, the time stamp may be replaced by an index representing the position of the
value in the string, counting the leftmost position as 1. Some examples of common scenarios
in which sequence data may arise are as follows:

e Fuent logs: A wide variety of computer systems, Web servers, and Web applications
create event logs on the basis of user activity. An example of an event log is a sequence
of user actions at a financial Web site:

Login Password Login Password Login Password

This particular sequence may represent a scenario where a user is attempting to break
into a password-protected system, and it may be interesting from the perspective of
anomaly detection.

e Biological data: In this case, the sequences may correspond to strings of nucleotides or
amino acids. The ordering of such units provides information about the characteristics
of protein function. Therefore, the data mining process can be used to determine
interesting patterns that are reflective of different biological properties.

Discrete sequences are often more challenging for mining algorithms because they do not
have the smooth value continuity of time-series data. Methods for sequence mining are
discussed in Chap. 15.

1.3.2.3 Spatial Data

In spatial data, many nonspatial attributes (e.g., temperature, pressure, image pixel color
intensity) are measured at spatial locations. For example, sea-surface temperatures are often
collected by meteorologists to forecast the occurrence of hurricanes. In such cases, the spatial
coordinates correspond to contextual attributes, whereas attributes such as the temperature
correspond to the behavioral attributes. Typically, there are two spatial attributes. As
in the case of time-series data, it is also possible to have multiple behavioral attributes.
For example, in the sea-surface temperature application, one might also measure other
behavioral attributes such as the pressure.

Definition 1.3.4 (Spatial Data) A d-dimensional spatial data record contains d behav-
1oral attributes and one or more contextual attributes containing the spatial location. There-
fore, a d-dimensional spatial data set is a set of d dimensional records X, ... X,, together
with a set of n locations L . .. Ly, such that the record X; is associated with the location L;.

12 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The aforementioned definition provides broad flexibility in terms of how record X; and
location L; may be defined. For example, the behavioral attributes in record X; may be
numeric or categorical, or a mixture of the two. In the meteorological application, X; may
contain the temperature and pressure attributes at location L;. Furthermore, L; may be
specified in terms of precise spatial coordinates, such as latitude and longitude, or in terms
of a logical location, such as the city or state.

Spatial data mining is closely related to time-series data mining, in that the behavioral
attributes in most commonly studied spatial applications are continuous, although some
applications may use categorical attributes as well. Therefore, value continuity is observed
across contiguous spatial locations, just as value continuity is observed across contiguous
time stamps in time-series data.

Spatiotemporal Data

A particular form of spatial data is spatiotemporal data, which contains both spatial and
temporal attributes. The precise nature of the data also depends on which of the attributes
are contextual and which are behavioral. Two kinds of spatiotemporal data are most com-
mon:

1. Both spatial and temporal attributes are contextual: This kind of data can be viewed
as a direct generalization of both spatial data and temporal data. This kind of data is
particularly useful when the spatial and temporal dynamics of particular behavioral
attributes are measured simultaneously. For example, consider the case where the
variations in the sea-surface temperature need to be measured over time. In such
cases, the temperature is the behavioral attribute, whereas the spatial and temporal
attributes are contextual.

2. The temporal attribute is contextual, whereas the spatial attributes are behavioral:
Strictly speaking, this kind of data can also be considered time-series data. However,
the spatial nature of the behavioral attributes also provides better interpretability and
more focused analysis in many scenarios. The most common form of this data arises
in the context of trajectory analysis.

It should be pointed out that any 2- or 3-dimensional time-series data can be mapped
onto trajectories. This is a useful transformation because it implies that trajectory mining
algorithms can also be used for 2- or 3-dimensional time-series data. For example, the Intel
Research Berkeley data set [556] contains readings from a variety of sensors. An example of
a pair of readings from a temperature and voltage sensor are illustrated in Figs. 1.2a and b,
respectively. The corresponding temperature—voltage trajectory is illustrated in Fig. 1.2c.
Methods for spatial and spatiotemporal data mining are discussed in Chap. 16.

1.3.2.4 Network and Graph Data

In network and graph data, the data values may correspond to nodes in the network, whereas
the relationships among the data values may correspond to the edges in the network. In
some cases, attributes may be associated with nodes in the network. Although it is also
possible to associate attributes with edges in the network, it is much less common to do so.

Definition 1.3.5 (Network Data) A network G = (N, A) contains a set of nodes N and
a set of edges A, where the edges in A represent the relationships between the nodes. In

1.3. THE BASIC DATA TYPES 13

- 69
T T T T T T T T T 2.

241

N
)
T

TEMPERATURE

N
N
T

VOLTAGE

N N

@)

ESS 1

T T

N
T
el
@
@

T

d

@

N
T

20

N
2
T

9 L L L L L L L L L 26 L L L L L L n n n
15000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200 2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

TIME STAMP TIME STAMP
(a) Temperature (b) Voltage
269
2.68}
267}
2.66}
8
2.65F
5
g 2641
2.63}F
2.62F
261
26 19 2‘0 2‘1 2‘2 2‘3 2‘4 25

TEMPERATURE

(¢) Temperature-voltage
trajectory

Figure 1.2: Mapping of multivariate time series to trajectory data

some cases, an attribute set X; may be associated with node i, or an attribute set YT] may
be associated with edge (i,7).

The edge (i,7) may be directed or undirected, depending on the application at hand. For
example, the Web graph may contain directed edges corresponding to directions of hyper-
links between pages, whereas friendships in the Facebook social network are undirected.

A second class of graph mining problems is that of a database containing many small
graphs such as chemical compounds. The challenges in these two classes of problems are
very different. Some examples of data that are represented as graphs are as follows:

e Web graph: The nodes correspond to the Web pages, and the edges correspond to
hyperlinks. The nodes have text attributes corresponding to the content in the page.

e Social networks: In this case, the nodes correspond to social network actors, whereas
the edges correspond to friendship links. The nodes may have attributes corresponding
to social page content. In some specialized forms of social networks, such as email or

14 CHAPTER 1. AN INTRODUCTION TO DATA MINING

chat-messenger networks, the edges may have content associated with them. This
content corresponds to the communication between the different nodes.

e Chemical compound databases: In this case, the nodes correspond to the elements and
the edges correspond to the chemical bonds between the elements. The structures
in these chemical compounds are very useful for identifying important reactive and
pharmacological properties of these compounds.

Network data are a very general representation and can be used for solving many similarity-
based applications on other data types. For example, multidimensional data may be con-
verted to network data by creating a node for each record in the database, and representing
similarities between nodes by edges. Such a representation is used quite often for many
similarity-based data mining applications, such as clustering. It is possible to use commu-
nity detection algorithms to determine clusters in the network data and then map them
back to multidimensional data. Some spectral clustering methods, discussed in Chap. 19,
are based on this principle. This generality of network data comes at a price. The develop-
ment of mining algorithms for network data is generally more difficult. Methods for mining
network data are discussed in Chaps. 17, 18, and 19.

1.4 The Major Building Blocks: A Bird’s Eye View

As discussed in the introduction Sect. 1.1, four problems in data mining are considered
fundamental to the mining process. These problems correspond to clustering, classification,
association pattern mining, and outlier detection, and they are encountered repeatedly in
the context of many data mining applications. What makes these problems so special?
Why are they encountered repeatedly? To answer these questions, one must understand the
nature of the typical relationships that data scientists often try to extract from the data.

Consider a multidimensional database D with n records, and d attributes. Such a
database D may be represented as an n x d matrix D, in which each row corresponds to
one record and each column corresponds to a dimension. We generally refer to this matrix
as the data matriz. This book will use the notation of a data matrix D, and a database
D interchangeably. Broadly speaking, data mining is all about finding summary relation-
ships between the entries in the data matrix that are either unusually frequent or unusually
infrequent. Relationships between data items are one of two kinds:

e Relationships between columns: In this case, the frequent or infrequent relationships
between the values in a particular row are determined. This maps into either the
positive or negative association pattern mining problem, though the former is more
commonly studied. In some cases, one particular column of the matrix is considered
more important than other columns because it represents a target attribute of the
data mining analyst. In such cases, one tries to determine how the relationships in the
other columns relate to this special column. Such relationships can be used to predict
the value of this special column, when the value of that special column is unknown.
This problem is referred to as data classification. A mining process is referred to as
supervised when it is based on treating a particular attribute as special and predicting
it.

e Relationships between rows: In these cases, the goal is to determine subsets of rows, in
which the values in the corresponding columns are related. In cases where these subsets
are similar, the corresponding problem is referred to as clustering. On the other hand,

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 15

when the entries in a row are very different from the corresponding entries in other
rows, then the corresponding row becomes interesting as an unusual data point, or as
an anomaly. This problem is referred to as outlier analysis. Interestingly, the clustering
problem is closely related to that of classification, in that the latter can be considered
a supervised version of the former. The discrete values of a special column in the
data correspond to the group identifiers of different desired or supervised groups of
application-specific similar records in the data. For example, when the special column
corresponds to whether or not a customer is interested in a particular product, this
represents the two groups in the data that one is interested in learning, with the use
of supervision. The term “supervision” refers to the fact that the special column is
used to direct the data mining process in an application-specific way, just as a teacher
may supervise his or her student toward a specific goal.

Thus, these four problems are important because they seem to cover an exhaustive range
of scenarios representing different kinds of positive, negative, supervised, or unsupervised
relationships between the entries of the data matrix. These problems are also related to one
another in a variety of ways. For example, association patterns may be considered indirect
representations of (overlapping) clusters, where each pattern corresponds to a cluster of
data points of which it is a subset.

It should be pointed out that the aforementioned discussion assumes the (most com-
monly encountered) multidimensional data type, although these problems continue to retain
their relative importance for more complex data types. However, the more complex data
types have a wider variety of problem formulations associated with them because of their
greater complexity. This issue will be discussed in detail later in this section.

It has consistently been observed that many application scenarios determine such rela-
tionships between rows and columns of the data matrix as an intermediate step. This is the
reason that a good understanding of these building-block problems is so important for the
data mining process. Therefore, the first part of this book will focus on these problems in
detail before generalizing to complex scenarios.

1.4.1 Association Pattern Mining

In its most primitive form, the association pattern mining problem is defined in the context
of sparse binary databases, where the data matrix contains only 0/1 entries, and most entries
take on the value of 0. Most customer transaction databases are of this type. For example,
if each column in the data matrix corresponds to an item, and a customer transaction
represents a row, the (i,7)th entry is 1, if customer transaction ¢ contains item j as one
of the items that was bought. A particularly commonly studied version of this problem
is the frequent pattern mining problem or, more generally, the association pattern mining
problem. In terms of the binary data matrix, the frequent pattern mining problem may be
formally defined as follows:

Definition 1.4.1 (Frequent Pattern Mining) Given a binary n x d data matriz D,
determine all subsets of columns such that all the values in these columns take on the
value of 1 for at least a fraction s of the rows in the matriz. The relative frequency of a
pattern is referred to as its support. The fraction s is referred to as the minimum support.

Patterns that satisfy the minimum support requirement are often referred to as frequent
patterns, or frequent itemsets. Frequent patterns represent an important class of association
patterns. Many other definitions of relevant association patterns are possible that do not use

16 CHAPTER 1. AN INTRODUCTION TO DATA MINING

absolute frequencies but use other statistical quantifications such as the y? measure. These
measures often lead to generation of more interesting rules from a statistical perspective.
Nevertheless, this particular definition of association pattern mining has become the most
popular one in the literature because of the ease in developing algorithms for it. This book
therefore refers to this problem as association pattern mining as opposed to frequent pattern
mining.

For example, if the columns of the data matrix D corresponding to Bread, Butter, and
Milk take on the value of 1 together frequently in a customer transaction database, then
it implies that these items are often bought together. This is very useful information for
the merchant from the perspective of physical placement of the items in the store, or from
the perspective of product promotions. Association pattern mining is not restricted to the
case of binary data and can be easily generalized to quantitative and numeric attributes by
using appropriate data transformations, which will be discussed in Chap. 4.

Association pattern mining was originally proposed in the context of association rule
mining, where an additional step was included based on a measure known as the confidence
of the rule. For example, consider two sets of items A and B. The confidence of the rule
A = B is defined as the fraction of transactions containing A, which also contain B. In
other words, the confidence is obtained by dividing the support of the pattern AUB with the
support of pattern A. A combination of support and confidence is used to define association
rules.

Definition 1.4.2 (Association Rules) Let A and B be two sets of items. The rule A =
B is said to be valid at support level s and confidence level ¢, if the following two conditions
are satisfied:

1. The support of the item set A is at least s.
2. The confidence of A = B is at least c.

By incorporating supervision in association rule mining algorithms, it is possible to provide
solutions for the classification problem. Many variations of association pattern mining are
also related to clustering and outlier analysis. This is a natural consequence of the fact that
horizontal and vertical analysis of the data matrix are often related to one another. In fact,
many variations of the association pattern mining problem are used as a subroutine to solve
the clustering, outlier analysis, and classification problems. These issues will be discussed
in Chaps. 4 and 5.

1.4.2 Data Clustering

A rather broad and informal definition of the clustering problem is as follows:

Definition 1.4.3 (Data Clustering) Given a data matriz D (database D), partition its
rows (records) into sets Cy ...Cy, such that the rows (records) in each cluster are “similar”
to one another.

We have intentionally provided an informal definition here because clustering allows a wide
variety of definitions of similarity, some of which are not cleanly defined in closed form by a
similarity function. A clustering problem can often be defined as an optimization problem,
in which the variables of the optimization problem represent cluster memberships of data
points, and the objective function maximizes a concrete mathematical quantification of
intragroup similarity in terms of these variables.

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 17

An important part of the clustering process is the design of an appropriate similarity
function for the computation process. Clearly, the computation of similarity depends heavily
on the underlying data type. The issue of similarity computation will be discussed in detail
in Chap. 3. Some examples of relevant applications are as follows:

o Customer segmentation: In many applications, it is desirable to determine customers
that are similar to one another in the context of a variety of product promotion tasks.
The segmentation phase plays an important role in this process.

e Data summarization: Because clusters can be considered similar groups of records,
these similar groups can be used to create a summary of the data.

o Application to other data mining problems: Because clustering is considered an unsu-
pervised version of classification, it is often used as a building block to solve the latter.
Furthermore, this problem is also used in the context of the outlier analysis problem,
as discussed below.

The data clustering problem is discussed in detail in Chaps. 6 and 7.

1.4.3 Outlier Detection

An outlier is a data point that is significantly different from the remaining data. Hawkins
formally defined [259] the concept of an outlier as follows:

“An outlier is an observation that deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.”

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the
data mining and statistics literature. In most applications, the data are created by one
or more generating processes that can either reflect activity in the system or observations
collected about entities. When the generating process behaves in an unusual way, it results
in the creation of outliers. Therefore, an outlier often contains useful information about
abnormal characteristics of the systems and entities that impact the data-generation process.
The recognition of such unusual characteristics provides useful application-specific insights.
The outlier detection problem is informally defined in terms of the data matrix as follows:

Definition 1.4.4 (Outlier Detection) Given a data matriz D, determine the rows of the
data matriz that are very different from the remaining rows in the matriz.

The outlier detection problem is related to the clustering problem by complementarity. This
is because outliers correspond to dissimilar data points from the main groups in the data.
On the other hand, the main groups in the data are clusters. In fact, a simple methodology
to determine outliers uses clustering as an intermediate step. Some examples of relevant
applications are as follows:

e [ntrusion-detection systems: In many networked computer systems, different kinds of
data are collected about the operating system calls, network traffic, or other activity
in the system. These data may show unusual behavior because of malicious activity.
The detection of such activity is referred to as intrusion detection.

e (redit card fraud: Unauthorized use of credit cards may show different patterns, such
as a buying spree from geographically obscure locations. Such patterns may show up
as outliers in credit card transaction data.

18 CHAPTER 1. AN INTRODUCTION TO DATA MINING

o Interesting sensor events: Sensors are often used to track various environmental and
location parameters in many real applications. The sudden changes in the underly-
ing patterns may represent events of interest. Event detection is one of the primary
motivating applications in the field of sensor networks.

e Medical diagnosis: In many medical applications, the data are collected from a variety
of devices such as magnetic resonance imaging (MRI), positron emission tomography
(PET) scans, or electrocardiogram (ECG) time series. Unusual patterns in such data
typically reflect disease conditions.

e Law enforcement: Outlier detection finds numerous applications in law enforcement,
especially in cases where unusual patterns can only be discovered over time through
multiple actions of an entity. The identification of fraud in financial transactions,
trading activity, or insurance claims typically requires the determination of unusual
patterns in the data generated by the actions of the criminal entity.

e FEarth science: A significant amount of spatiotemporal data about weather patterns,
climate changes, or land-cover patterns is collected through a variety of mechanisms
such as satellites or remote sensing. Anomalies in such data provide significant insights
about hidden human or environmental trends that may have caused such anomalies.

The outlier detection problem is studied in detail in Chaps. 8 and 9.

1.4.4 Data Classification

Many data mining problems are directed toward a specialized goal that is sometimes rep-
resented by the value of a particular feature in the data. This particular feature is referred
to as the class label. Therefore, such problems are supervised, wherein the relationships of
the remaining features in the data with respect to this special feature are learned. The data
used to learn these relationships is referred to as the training data. The learned model may
then be used to determine the estimated class labels for records, where the label is missing.
For example, in a target marketing application, each record may be tagged by a par-
ticular label that represents the interest (or lack of it) of the customer toward a particular
product. The labels associated with customers may have been derived from the previous
buying behavior of the customer. In addition, a set of features corresponding the customer
demographics may also be available. The goal is to predict whether or not a customer, whose
buying behavior is unknown, will be interested in a particular product by relating the demo-
graphic features to the class label. Therefore, a training model is constructed, which is then
used to predict class labels. The classification problem is informally defined as follows:

Definition 1.4.5 (Data Classification) Given annxd training data matriz D (database
D), and a class label value in {1...k} associated with each of the n rows in D (records in D),
create a training model M, which can be used to predict the class label of a d-dimensional

record Y € D.

The record whose class label is unknown is referred to as the test record. It is interesting to
examine the relationship between the clustering and the classification problems. In the case
of the clustering problem, the data are partitioned into k& groups on the basis of similarity. In
the case of the classification problem, a (test) record is also categorized into one of k groups,
except that this is achieved by learning a model from a training database D, rather than on
the basis of similarity. In other words, the supervision from the training data redefines the

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 19

notion of a group of “similar” records. Therefore, from a learning perspective, clustering is
often referred to as unsupervised learning (because of the lack of a special training database
to “teach” the model about the notion of an appropriate grouping), whereas the classification
problem is referred to as supervised learning.

The classification problem is related to association pattern mining, in the sense that
the latter problem is often used to solve the former. This is because if the entire training
database (including the class label) is treated as an n x (d+1) matrix, then frequent patterns
containing the class label in this matrix provide useful hints about the correlations of other
features to the class label. In fact, many forms of classifiers, known as rule-based classifiers,
are based on this broader principle.

The classification problem can be mapped to a specific version of the outlier detection
problem, by incorporating supervision in the latter. While the outlier detection problem is
assumed to be unsupervised by default, many variations of the problem are either partially
or fully supervised. In supervised outlier detection, some examples of outliers are available.
Thus, such data records are tagged to belong to a rare class, whereas the remaining data
records belong to the normal class. Thus, the supervised outlier detection problem maps to
a binary classification problem, with the caveat that the class labels are highly imbalanced.

The incorporation of supervision makes the classification problem unique in terms of its
direct application specificity due to its use of application-specific class labels. Compared to
the other major data mining problems, the classification problem is relatively self-contained.
For example, the clustering and frequent pattern mining problem are more often used as
intermediate steps in larger application frameworks. Even the outlier analysis problem is
sometimes used in an exploratory way. On the other hand, the classification problem is often
used directly as a stand-alone tool in many applications. Some examples of applications
where the classification problem is used are as follows:

o Tuarget marketing: Features about customers are related to their buying behavior with
the use of a training model.

e Intrusion detection: The sequences of customer activity in a computer system may be
used to predict the possibility of intrusions.

e Supervised anomaly detection: The rare class may be differentiated from the normal
class when previous examples of outliers are available.

The data classification problem is discussed in detail in Chaps. 10 and 11.

1.4.5 Impact of Complex Data Types on Problem Definitions

The specific data type has a profound impact on the kinds of problems that may be defined.
In particular, in dependency-oriented data types, the dependencies often play a critical role
in the problem definition, the solution, or both. This is because the contextual attributes
and dependencies are often fundamental to how the data may be evaluated. Furthermore,
because complex data types are much richer, they allow the formulation of novel problem
definitions that may not even exist in the context of multidimensional data. A tabular
summary of the different variations of data mining problems for dependency-oriented data
types is provided in Table 1.2. In the following, a brief review will be provided as to how
the different problem definitions are affected by data type.

20

CHAPTER 1.

AN INTRODUCTION TO DATA MINING

Table 1.2: Some examples of variation in problem definition with data type

H Problem H Time series [Spatial [Sequence [Networks ”
Patterns Motif- Colocation Sequential Structural
mining patterns patterns patterns
Periodic Periodic
pattern Sequence
Trajectory patterns
Clustering Shape Spatial Sequence Community
clusters clusters clusters detection
Trajectory clusters
Outliers Position outlier | Position outlier | Position outlier | Node outlier
Shape outlier Shape outlier Combination Linkage
outlier outlier
Trajectory Community
outliers outliers
Classification Position Position Position Collective
classification classification classification classification
Shape Shape Sequence Graph
classification classification classification classification
Trajectory classification

1.4.5.1 Pattern Mining with Complex Data Types

The association pattern mining problem generally determines the patterns from the under-
lying data in the form of sets; however, this is not the case when dependencies are present in
the data. This is because the dependencies and relationships often impose ordering among
data items, and the direct use of frequent pattern mining methods fails to recognize the
relationships among the different data values. For example, when a larger number of time
series are made available, they can be used to determine different kinds of temporally fre-
quent patterns, in which a temporal ordering is imposed on the items in the pattern. Fur-
thermore, because of the presence of the additional contextual attribute representing time,
temporal patterns may be defined in a much richer way than a set-based pattern as in
association pattern mining. The patterns may be temporally contiguous, as in time-series
motifs, or they may be periodic, as in periodic patterns. Some of these methods for tempo-
ral pattern mining will be discussed in Chap. 14. A similar analogy exists for the case of
discrete sequence mining, except that the individual pattern constituents are categorical,
as opposed to continuous. It is also possible to define 2-dimensional motifs for the spatial
scenario, and such a formulation is useful for image processing. Finally, structural patterns
are commonly defined in networks that correspond to frequent subgraphs in the data. Thus,
the dependencies between the nodes are included within the definition of the patterns.

1.4.5.2 Clustering with Complex Data Types

The techniques used for clustering are also affected significantly by the underlying data
type. Most importantly, the similarity function is significantly affected by the data type.
For example, in the case of time series, sequential, or graph data, the similarity between
a pair of time series cannot be easily defined by using straightforward metrics such as
the Euclidean metric. Rather, it is necessary to use other kinds of metrics, such as the
edit distance or structural similarity. In the context of spatial data, trajectory clustering
is particularly useful in finding the relevant patterns for mobile data, or for multivariate

1.5. SCALABILITY ISSUES AND THE STREAMING SCENARIO 21

time series. For network data, the clustering problem discovers densely connected groups of
nodes, and is also referred to as community detection.

1.4.5.3 Outlier Detection with Complex Data Types

Dependencies can be used to define expected values of data items. Deviations from these
expected values are outliers. For example, a sudden jump in the value of a time series
will result in a position outlier at the specific spot at which the jump occurs. The idea in
these methods is to use prediction-based techniques to forecast the value at that position.
Significant deviation from the prediction is reported as a position outlier. Such outliers
can be defined in the context of time-series, spatial, and sequential data, where significant
deviations from the corresponding neighborhoods can be detected using autoregressive,
Markovian, or other models. In the context of graph data, outliers may correspond to
unusual properties of nodes, edges, or entire subgraphs. Thus, the complex data types show
significant richness in terms of how outliers may be defined.

1.4.5.4 Classification with Complex Data Types

The classification problem also shows a significant amount of variation in the different
complex data types. For example, class labels can be attached to specific positions in a
series, or they can be attached to the entire series. When the class labels are attached to
a specific position in the series, this can be used to perform supervised event detection,
where the first occurrence of an event-specific label (e.g., the breakdown of a machine
as suggested by the underlying temperature and pressure sensor) of a particular series
represents the occurrence of the event. For the case of network data, the labels may be
attached to individual nodes in a very large network, or to entire graphs in a collection
of multiple graphs. The former case corresponds to the classification of nodes in a social
network, and is also referred to as collective classification. The latter case corresponds to
the chemical compound classification problem, in which labels are attached to compounds
on the basis of their chemical properties.

1.5 Scalability Issues and the Streaming Scenario

Scalability is an important concern in many data mining applications due to the increasing
sizes of the data in modern-day applications. Broadly speaking, there are two important
scenarios for scalability:

1. The data are stored on one or more machines, but it is too large to process efficiently.
For example, it is easy to design efficient algorithms in cases where the entire data can
be maintained in main memory. When the data are stored on disk, it is important to
be design the algorithms in such a way that random access to the disk is minimized.
For very large data sets, big data frameworks, such as MapReduce, may need to be
used. This book will touch upon this kind of scalability at the level of disk-resident
processing, where needed.

2. The data are generated continuously over time in high volume, and it is not practical
to store it entirely. This scenario is that of data streams, in which the data need to be
processed with the use of an online approach.

22 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The latter scenario requires some further exposition. The streaming scenario has become
increasingly popular because of advances in data collection technology that can collect large
amounts of data over time. For example, simple transactions of everyday life such as using
a credit card or the phone may lead to automated data collection. In such cases, the volume
of the data is so large that it may be impractical to store directly. Rather, all algorithms
must be executed in a single pass over the data. The major challenges that arise in the
context of data stream processing are as follows:

1. One-pass constraint: The algorithm needs to process the entire data set in one pass. In
other words, after a data item has been processed and the relevant summary insights
have been gleaned, the raw item is discarded and is no longer available for processing.
The amount of data that may be processed at a given time depends on the storage
available for retaining segments of the data.

2. Concept drift: In most applications, the data distribution changes over time. For exam-
ple, the pattern of sales in a given hour of a day may not be similar to that at another
hour of the day. This leads to changes in the output of the mining algorithms as well.

It is often challenging to design algorithms for such scenarios because of the varying rates at
which the patterns in the data may change over time and the continuously evolving patterns
in the underlying data. Methods for stream mining are addressed in Chap. 12.

1.6 A Stroll Through Some Application Scenarios

In this section, some common application scenarios will be discussed. The goal is to illustrate
the wide diversity of problems and applications, and how they might map onto some of the
building blocks discussed in this chapter.

1.6.1 Store Product Placement

The application scenario may be stated as follows:

Application 1.6.1 (Store Product Placement) A merchant has a set of d products
together with previous transactions from the customers containing baskets of items bought
together. The merchant would like to know how to place the product on the shelves to increase
the likelihood that items that are frequently bought together are placed on adjacent shelves.

This problem is closely related to frequent pattern mining because the analyst can use the
frequent pattern mining problem to determine groups of items that are frequently bought
together at a particular support level. An important point to note here is that the deter-
mination of the frequent patterns, while providing useful insights, does not provide the
merchant with precise guidance in terms of how the products may be placed on the differ-
ent shelves. This situation is quite common in data mining. The building block problems
often do not directly solve the problem at hand. In this particular case, the merchant may
choose from a variety of heuristic ideas in terms of how the products may be stocked on
the different shelves. For example, the merchant may already have an existing placement,
and may use the frequent patterns to create a numerical score for the quality of the place-
ment. This placement can be successively optimized by making incremental changes to the
current placement. With an appropriate initialization methodology, the frequent pattern
mining approach can be leveraged as a very useful subroutine for the problem. These parts
of data mining are often application-specific and show such wide variations across different
domains that they can only be learned through practical experience.

1.6. A STROLL THROUGH SOME APPLICATION SCENARIOS 23

1.6.2 Customer Recommendations

This is a very commonly encountered problem in the data mining literature. Many variations
of this problem exist, depending on the kind of input data available to that application. In
the following, we will examine a particular instantiation of the recommendation problem
and a straw-man solution.

Application 1.6.2 (Product Recommendations) A merchant has an n x d binary
matriz D representing the buying behavior of n customers across d items. It is assumed
that the matriz is sparse, and therefore each customer may have bought only a few items.
It is desirable to use the product associations to make recommendations to customers.

This problem is a simple version of the collaborative filtering problem that is widely studied
in the data mining and recommendation literature. There are literally hundreds of solutions
to the vanilla version of this problem, and we provide three sample examples of varying
complexity below:

1. A simple solution is to use association rule mining at particular levels of support and
confidence. For a particular customer, the relevant rules are those in which all items
in the left-hand side were previously bought by this customer. Items that appear
frequently on the right-hand side of the relevant rules are reported.

2. The previous solution does not use the similarity across different customers to make
recommendations. A second solution is to determine the most similar rows to a target
customer, and then recommend the most common item occurring in these similar
rOwWsS.

3. A final solution is to use clustering to create segments of similar customers. Within
each similar segment, association pattern mining may be used to make recommenda-
tions.

Thus, there can be multiple ways of solving a particular problem corresponding to different
analytical paths. These different paths may use different kinds of building blocks, which are
all useful in different parts of the data mining process.

1.6.3 Medical Diagnosis

Medical diagnosis has become a common application in the context of data mining. The
data types in medical diagnosis tend to be complex, and may correspond to image, time-
series, or discrete sequence data. Thus, dependency-oriented data types tend to be rather
common in medical diagnosis applications. A particular case is that of ECG readings from
heart patients.

Application 1.6.3 (Medical ECG Diagnosis) Consider a set of ECG time series that
are collected from different patients. It is desirable to determine the anomalous series from
this set.

This application can be mapped to different problems, depending upon the nature of the
input data available. For example, consider the case where no previous examples of anoma-
lous ECG series are available. In such cases, the problem can be mapped to the outlier
detection problem. A time series that differs significantly from the remaining series in the
data may be considered an outlier. However, the solution methodology changes significantly

24 CHAPTER 1. AN INTRODUCTION TO DATA MINING

if previous examples of normal and anomalous series are available. In such cases, the prob-
lem maps to a classification problem on time-series data. Furthermore, the class labels are
likely to be imbalanced because the number of abnormal series are usually far fewer than
the number of normal series.

1.6.4 Web Log Anomalies

Web logs are commonly collected at the hosts of different Web sites. Such logs can be used to
detect unusual, suspicious, or malicious activity at the site. Financial institutions regularly
analyze the logs at their site to detect intrusion attempts.

Application 1.6.4 (Web Log Anomalies) A set of Web logs is available. It is desired
to determine the anomalous sequences from the Web logs.

Because the data are typically available in the form of raw logs, a significant amount of data
cleaning is required. First, the raw logs need to be transformed into sequences of symbols.
These sequences may then need to be decomposed into smaller windows to analyze the
sequences at a particular level of granularity. Anomalous sequences may be determined by
using a sequence clustering algorithm, and then determining the sequences that do not lie
in these clusters [5]. If it is desired to find specific positions that correspond to anomalies,
then more sophisticated methods such as Markovian models may be used to determine the
anomalies [5].

As in the previous case, the analytical phase of this problem can be modeled differently,
depending on whether or not examples of Web log anomalies are available. If no previous
examples of Web log anomalies are available, then this problem maps to the unsupervised
temporal outlier detection problem. Numerous methods for solving the unsupervised case
for the temporal outlier detection problem are introduced in [5]. The topic is also briefly
discussed in Chaps. 14 and 15 of this book. On the other hand, when examples of previous
anomalies are available, then the problem maps to the rare class-detection problem. This
problem is discussed in [5] as well, and in Chap. 11 of this book.

1.7 Summary

Data mining is a complex and multistage process. These different stages are data collection,
preprocessing, and analysis. The data preprocessing phase is highly application-specific
because the different formats of the data require different algorithms to be applied to them.
The processing phase may include data integration, cleaning, and feature extraction. In
some cases, feature selection may also be used to sharpen the data representation. After the
data have been converted to a convenient format, a variety of analytical algorithms can be
used.

A number of data mining building blocks are often used repeatedly in a wide variety of
application scenarios. These correspond to the frequent pattern mining, clustering, outlier
analysis, and classification problems, respectively. The final design of a solution for a partic-
ular data mining problem is dependent on the skill of the analyst in mapping the application
to the different building blocks, or in using novel algorithms for a specific application. This
book will introduce the fundamentals required for gaining such analytical skills.

1.8. BIBLIOGRAPHIC NOTES 25

1.8 Bibliographic Notes

The problem of data mining is generally studied by multiple research communities corre-
sponding to statistics, data mining, and machine learning. These communities are highly
overlapping and often share many researchers in common. The machine learning and statis-
tics communities generally approach data mining from a theoretical and statistical perspec-
tive. Some good books written in this context may be found in [95, 256, 389]. However,
because the machine learning community is generally focused on supervised learning meth-
ods, these books are mostly focused on the classification scenario. More general data min-
ing books, which are written from a broader perspective, may be found in [250, 485, 536].
Because the data mining process often has to interact with databases, a number of relevant
database textbooks [434, 194] provide knowledge about data representation and integration
issues.

A number of books have also been written on each of the major areas of data mining.
The frequent pattern mining problem and its variations have been covered in detail in [34].
Numerous books have been written on the topic of data clustering. A well-known data clus-
tering book [284] discusses the classical techniques from the literature. Another book [219]
discusses the more recent methods for data clustering, although the material is somewhat
basic. The most recent book [32] in the literature provides a very comprehensive overview
of the different data clustering algorithms. The problem of data classification has been
addressed in the standard machine learning books [95, 256, 389]. The classification problem
has also been studied extensively by the pattern recognition community [189]. More recent
surveys on the topic may be found in [33]. The problem of outlier detection has been studied
in detail in [89, 259]. These books are, however, written from a statistical perspective and
do not address the problem from the perspective of the computer science community. The
problem has been addressed from the perspective of the computer science community in [5].

1.9 Exercises

1. An analyst collects surveys from different participants about their likes and dislikes.
Subsequently, the analyst uploads the data to a database, corrects erroneous or missing
entries, and designs a recommendation algorithm on this basis. Which of the following
actions represent data collection, data preprocessing, and data analysis? (a) Conduct-
ing surveys and uploading to database, (b) correcting missing entries, (c) designing a
recommendation algorithm.

2. What is the data type of each of the following kinds of attributes (a) Age, (b) Salary,
(¢) ZIP code, (d) State of residence, (e) Height, (f) Weight?

3. An analyst obtains medical notes from a physician for data mining purposes, and then
transforms them into a table containing the medicines prescribed for each patient.
What is the data type of (a) the original data, and (b) the transformed data? (c)
What is the process of transforming the data to the new format called?

4. An analyst sets up a sensor network in order to measure the temperature of different
locations over a period. What is the data type of the data collected?

5. The same analyst as discussed in Exercise 4 above finds another database from a
different source containing pressure readings. She decides to create a single database

26

10.

11.

CHAPTER 1. AN INTRODUCTION TO DATA MINING

containing her own readings and the pressure readings. What is the process of creating
such a single database called?

. An analyst processes Web logs in order to create records with the ordering information

for Web page accesses from different users. What is the type of this data?

. Consider a data object corresponding to a set of nucleotides arranged in a certain

order. What is this type of data?

. It is desired to partition customers into similar groups on the basis of their demo-

graphic profile. Which data mining problem is best suited to this task?

. Suppose in Exercise 8, the merchant already knows for some of the customers whether

or not they have bought widgets. Which data mining problem would be suited to the
task of identifying groups among the remaining customers, who might buy widgets in
the future?

Suppose in Exercise 9, the merchant also has information for other items bought by
the customers (beyond widgets). Which data mining problem would be best suited to
finding sets of items that are often bought together with widgets?

Suppose that a small number of customers lie about their demographic profile, and
this results in a mismatch between the buying behavior and the demographic profile,
as suggested by comparison with the remaining data. Which data mining problem
would be best suited to finding such customers?

Chapter 2

Data Preparation

“Success depends upon previous preparation, and without such
preparation there is sure to be failure.”—Confucius

2.1 Introduction

The raw format of real data is usually widely variable. Many values may be missing, incon-
sistent across different data sources, and erroneous. For the analyst, this leads to numerous
challenges in using the data effectively. For example, consider the case of evaluating the
interests of consumers from their activity on a social media site. The analyst may first
need to determine the types of activity that are valuable to the mining process. The activ-
ity might correspond to the interests entered by the user, the comments entered by the
user, and the set of friendships of the user along with their interests. All these pieces of
information are diverse and need to be collected from different databases within the social
media site. Furthermore, some forms of data, such as raw logs, are often not directly usable
because of their unstructured nature. In other words, useful features need to be extracted
from these data sources. Therefore, a data preparation phase is needed.

The data preparation phase is a multistage process that comprises several individual
steps, some or all of which may be used in a given application. These steps are as follows:

1. Feature extraction and portability: The raw data is often in a form that is not suit-
able for processing. Examples include raw logs, documents, semistructured data, and
possibly other forms of heterogeneous data. In such cases, it may be desirable to
derive meaningful features from the data. Generally, features with good semantic
interpretability are more desirable because they simplify the ability of the analyst
to understand intermediate results. Furthermore, they are usually better tied to the
goals of the data mining application at hand. In some cases where the data is obtained
from multiple sources, it needs to be integrated into a single database for processing.
In addition, some algorithms may work only with a specific data type, whereas the
data may contain heterogeneous types. In such cases, data type portability becomes

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8_2 27
(© Springer International Publishing Switzerland 2015

28 CHAPTER 2. DATA PREPARATION

important where attributes of one type are transformed to another. This results in a
more homogeneous data set that can be processed by existing algorithms.

2. Data cleaning: In the data cleaning phase, missing, erroneous, and inconsistent entries
are removed from the data. In addition, some missing entries may also be estimated
by a process known as imputation.

3. Data reduction, selection, and transformation: In this phase, the size of the data is
reduced through data subset selection, feature subset selection, or data transforma-
tion. The gains obtained in this phase are twofold. First, when the size of the data is
reduced, the algorithms are generally more efficient. Second, if irrelevant features or
irrelevant records are removed, the quality of the data mining process is improved. The
first goal is achieved by generic sampling and dimensionality reduction techniques. To
achieve the second goal, a highly problem-specific approach must be used for feature
selection. For example, a feature selection approach that works well for clustering may
not work well for classification.

Some forms of feature selection are tightly integrated with the problem at hand. Later
chapters on specific problems such as clustering and classification will contain detailed
discussions on feature selection.

This chapter is organized as follows. The feature extraction phase is discussed in Sect. 2.2.
The data cleaning phase is covered in Sect. 2.3. The data reduction phase is explained in
Sect. 2.4. A summary is given in Sect. 2.5.

2.2 Feature Extraction and Portability

The first phase of the data mining process is creating a set of features that the analyst can
work with. In cases where the data is in raw and unstructured form (e.g., raw text, sensor
signals), the relevant features need to be extracted for processing. In other cases where a
heterogeneous mixture of features is available in different forms, an “off-the-shelf” analytical
approach is often not available to process such data. In such cases, it may be desirable to
transform the data into a uniform representation for processing. This is referred to as data
type porting.

2.2.1 Feature Extraction

The first phase of feature extraction is a crucial one, though it is very application specific.
In some cases, feature extraction is closely related to the concept of data type portability,
where low-level features of one type may be transformed to higher-level features of another
type. The nature of feature extraction depends on the domain from which the data is drawn:

1. Sensor data: Sensor data is often collected as large volumes of low-level signals, which
are massive. The low-level signals are sometimes converted to higher-level features
using wavelet or Fourier transforms. In other cases, the time series is used directly
after some cleaning. The field of signal processing has an extensive literature devoted
to such methods. These technologies are also useful for porting time-series data to
multidimensional data.

2. Image data: In its most primitive form, image data are represented as pixels. At a
slightly higher level, color histograms can be used to represent the features in differ-
ent segments of an image. More recently, the use of visual words has become more

2.2. FEATURE EXTRACTION AND PORTABILITY 29

popular. This is a semantically rich representation that is similar to document data.
One challenge in image processing is that the data are generally very high dimen-
sional. Thus, feature extraction can be performed at different levels, depending on the
application at hand.

3. Web logs: Web logs are typically represented as text strings in a prespecified format.
Because the fields in these logs are clearly specified and separated, it is relatively easy
to convert Web access logs into a multidimensional representation of (the relevant)
categorical and numeric attributes.

4. Network traffic: In many intrusion-detection applications, the characteristics of the
network packets are used to analyze intrusions or other interesting activity. Depending
on the underlying application, a variety of features may be extracted from these
packets, such as the number of bytes transferred, the network protocol used, and so
on.

5. Document data: Document data is often available in raw and unstructured form, and
the data may contain rich linguistic relations between different entities. One approach
is to remove stop words, stem the data, and use a bag-of-words representation. Other
methods use entity extraction to determine linguistic relationships.

Named-entity recognition is an important subtask of information extraction. This
approach locates and classifies atomic elements in text into predefined expressions
of names of persons, organizations, locations, actions, numeric quantities, and so on.
Clearly, the ability to identify such atomic elements is very useful because they can be
used to understand the structure of sentences and complex events. Such an approach
can also be used to populate a more conventional database of relational elements or
as a sequence of atomic entities, which is more easily analyzed. For example, consider
the following sentence:

Bill Clinton lives in Chappaqua.

Here, “Bill Clinton” is the name of a person, and “Chappaqua’ is the name of a
place. The word “lives” denotes an action. Each type of entity may have a different
significance to the data mining process depending on the application at hand. For
example, if a data mining application is mainly concerned with mentions of specific
locations, then the word “Chappaqua” needs to be extracted.

Popular techniques for named entity recognition include linguistic grammar-based
techniques and statistical models. The use of grammar rules is typically very effective,
but it requires work by experienced computational linguists. On the other hand, sta-
tistical models require a significant amount of training data. The techniques designed
are very often domain-specific. The area of named entity recognition is vast in its own
right, which is outside the scope of this book. The reader is referred to [400] for a
detailed discussion of different methods for entity recognition.

Feature extraction is an art form that is highly dependent on the skill of the analyst to
choose the features and their representation that are best suited to the task at hand. While
this particular aspect of data analysis typically belongs to the domain expert, it is perhaps
the most important one. If the correct features are not extracted, the analysis can only be
as good as the available data.

30 CHAPTER 2. DATA PREPARATION

2.2.2 Data Type Portability

Data type portability is a crucial element of the data mining process because the data is
often heterogeneous, and may contain multiple types. For example, a demographic data
set may contain both numeric and mixed attributes. A time-series data set collected from
an electrocardiogram (ECG) sensor may have numerous other meta-information and text
attributes associated with it. This creates a bewildering situation for an analyst who is now
faced with the difficult challenge of designing an algorithm with an arbitrary combination
of data types. The mixing of data types also restricts the ability of the analyst to use
off-the-shelf tools for processing. Note that porting data types does lose representational
accuracy and expressiveness in some cases. Ideally, it is best to customize the algorithm
to the particular combination of data types to optimize results. This is, however, time-
consuming and sometimes impractical.

This section will describe methods for converting between various data types. Because
the numeric data type is the simplest and most widely studied one for data mining algo-
rithms, it is particularly useful to focus on how different data types may be converted to
it. However, other forms of conversion are also useful in many scenarios. For example, for
similarity-based algorithms, it is possible to convert virtually any data type to a graph and
apply graph-based algorithms to this representation. The following discussion, summarized
in Table 2.1, will discuss various ways of transforming data across different types.

2.2.2.1 Numeric to Categorical Data: Discretization

The most commonly used conversion is from the numeric to the categorical data type.
This process is known as discretization. The process of discretization divides the ranges of
the numeric attribute into ¢ ranges. Then, the attribute is assumed to contain ¢ different
categorical labeled values from 1 to ¢, depending on the range in which the original attribute
lies. For example, consider the age attribute. One could create ranges [0, 10], [11, 20], [21, 30],
and so on. The symbolic value for any record in the range [11,20] is “2” and the symbolic
value for a record in the range [21,30] is “3”. Because these are symbolic values, no ordering
is assumed between the values “2” and “3”. Furthermore, variations within a range are
not distinguishable after discretization. Thus, the discretization process does lose some
information for the mining process. However, for some applications, this loss of information is
not too debilitating. One challenge with discretization is that the data may be nonuniformly
distributed across the different intervals. For example, for the case of the salary attribute,
a large subset of the population may be grouped in the [40,000, 80,000] range, but very
few will be grouped in the [1,040,000, 1,080,000] range. Note that both ranges have the
same size. Thus, the use of ranges of equal size may not be very helpful in discriminating
between different data segments. On the other hand, many attributes, such as age, are not
as nonuniformly distributed, and therefore ranges of equal size may work reasonably well.
The discretization process can be performed in a variety of ways depending on application-
specific goals:

1. Equi-width ranges: In this case, each range [a,b] is chosen in such a way that b — a
is the same for each range. This approach has the drawback that it will not work for
data sets that are distributed nonuniformly across the different ranges. To determine
the actual values of the ranges, the minimum and maximum values of each attribute
are determined. This range [min, maz] is then divided into ¢ ranges of equal length.

2. FEqui-log ranges: Each range [a,b] is chosen in such a way that log(b) — log(a) has the
same value. This kinds of range selection has the effect of geometrically increasing

2.2. FEATURE EXTRACTION AND PORTABILITY 31

Table 2.1: Portability of different data types

H Source data type \ Destination data type \ Methods H
Numeric Categorical Discretization
Categorical Numeric Binarization
Text Numeric Latent semantic analysis (LSA)
Time series Discrete sequence SAX
Time series Numeric multidimensional DWT, DFT
Discrete sequence | Numeric multidimensional DWT, DFT
Spatial Numeric multidimensional 2-d DWT
Graphs Numeric multidimensional MDS, spectral
Any type Graphs Similarity graph
(Restricted applicability)

ranges [a,a - o], [a - a,a - a?], and so on, for some o > 1. This kind of range may be
useful when the attribute shows an exponential distribution across a range. In fact,
if the attribute frequency distribution for an attribute can be modeled in functional
form, then a natural approach would be to select ranges [a,b] such that f(b) — f(a)
is the same for some function f(-). The idea is to select this function f(-) in such a
way that each range contains an approximately similar number of records. However,
in most cases, it is hard to find such a function f(-) in closed form.

3. Equi-depth ranges: In this case, the ranges are selected so that each range has an
equal number of records. The idea is to provide the same level of granularity to each
range. An attribute can be divided into equi-depth ranges by first sorting it, and
then selecting the division points on the sorted attribute value, such that each range
contains an equal number of records.

The process of discretization can also be used to convert time-series data to discrete sequence
data.

2.2.2.2 Categorical to Numeric Data: Binarization

In some cases, it is desirable to use numeric data mining algorithms on categorical data.
Because binary data is a special form of both numeric and categorical data, it is possible
to convert the categorical attributes to binary form and then use numeric algorithms on
the binarized data. If a categorical attribute has ¢ different values, then ¢ different binary
attributes are created. Each binary attribute corresponds to one possible value of the cate-
gorical attribute. Therefore, exactly one of the ¢ attributes takes on the value of 1, and the
remaining take on the value of 0.

2.2.2.3 Text to Numeric Data

Although the vector-space representation of text can be considered a sparse numeric data
set with very high dimensionality, this special numeric representation is not very amenable
to conventional data mining algorithms. For example, one typically uses specialized simi-
larity functions, such as the cosine, rather than the Euclidean distance for text data. This
is the reason that text mining is a distinct area in its own right with its own family of
specialized algorithms. Nevertheless, it is possible to convert a text collection into a form

32 CHAPTER 2. DATA PREPARATION

that is more amenable to the use of mining algorithms for numeric data. The first step is
to use latent semantic analysis (LSA) to transform the text collection to a nonsparse rep-
resentation with lower dimensionality. Furthermore, after transformation, each document
X = (21 ...24) needs to be scaled to \/ﬁ(:ﬂl ...xq). This scaling is necessary to ensure

i= i

that documents of varying length are treat?alcl in a uniform way. After this scaling, traditional
numeric measures, such as the Euclidean distance, work more effectively. LSA is discussed
in Sect. 2.4.3.3 of this chapter. Note that LSA is rarely used in conjunction with this kind
of scaling. Rather, traditional text mining algorithms are directly applied to the reduced
representation obtained from LSA.

2.2.2.4 Time Series to Discrete Sequence Data

Time-series data can be converted to discrete sequence data using an approach known as
symbolic aggregate approxzimation (SAX). This method comprises two steps:

1. Window-based averaging: The series is divided into windows of length w, and the
average time-series value over each window is computed.

2. Value-based discretization: The (already averaged) time-series values are discretized
into a smaller number of approximately equi-depth intervals. This is identical to the
equi-depth discretization of numeric attributes that was discussed earlier. The idea is
to ensure that each symbol has an approximately equal frequency in the time series.
The interval boundaries are constructed by assuming that the time-series values are
distributed with a Gaussian assumption. The mean and standard deviation of the
(windowed) time-series values are estimated in the data-driven manner to instantiate
the parameters of the Gaussian distribution. The quantiles of the Gaussian distribu-
tion are used to determine the boundaries of the intervals. This is more efficient than
sorting all the data values to determine quantiles, and it may be a more practical
approach for a long (or streaming) time series. The values are discretized into a small
number (typically 3 to 10) of intervals for the best results. Each such equi-depth inter-
val is mapped to a symbolic value. This creates a symbolic representation of the time
series, which is essentially a discrete sequence.

Thus, SAX might be viewed as an equi-depth discretization approach after window-based
averaging.

2.2.2.5 Time Series to Numeric Data

This particular transformation is very useful because it enables the use of multidimensional
algorithms for time-series data. A common method used for this conversion is the discrete
wavelet transform (DWT). The wavelet transform converts the time series data to multidi-
mensional data, as a set of coefficients that represent averaged differences between different
portions of the series. If desired, a subset of the largest coefficients may be used to reduce
the data size. This approach will be discussed in Sect. 2.4.4.1 on data reduction. An alterna-
tive method, known as the discrete Fourier transform (DFT), is discussed in Sect. 14.2.4.2
of Chap. 14. The common property of these transforms is that the various coefficients are
no longer as dependency oriented as the original time-series values.

2.2. FEATURE EXTRACTION AND PORTABILITY 33

2.2.2.6 Discrete Sequence to Numeric Data

This transformation can be performed in two steps. The first step is to convert the discrete
sequence to a set of (binary) time series, where the number of time series in this set is equal
to the number of distinct symbols. The second step is to map each of these time series
into a multidimensional vector using the wavelet transform. Finally, the features from the
different series are combined to create a single multidimensional record.

To convert a sequence to a binary time series, one can create a binary string in which
the value denotes whether or not a particular symbol is present at a position. For example,
consider the following nucleotide sequence, which is drawn on four symbols:

ACACACTGTGACTG

This series can be converted into the following set of four binary time series corresponding
to the symbols A, C, T, and G, respectively:

10101000001000
01010100000100
00000010100010
00000001010001

A wavelet transformation can be applied to each of these series to create a multidimensional
set of features. The features from the four different series can be appended to create a single
numeric multidimensional record.

2.2.2.7 Spatial to Numeric Data

Spatial data can be converted to numeric data by using the same approach that was used for
time-series data. The main difference is that there are now two contextual attributes (instead
of one). This requires modification of the wavelet transformation method. Section 2.4.4.1
will briefly discuss how the one-dimensional wavelet approach can be generalized when there
are two contextual attributes. The approach is fairly general and can be used for any number
of contextual attributes.

2.2.2.8 Graphs to Numeric Data

Graphs can be converted to numeric data with the use of methods such as multidimen-
sional scaling (MDS) and spectral transformations. This approach works for those appli-
cations where the edges are weighted, and represent similarity or distance relationships
between nodes. The general approach of MDS can achieve this goal, and it is discussed
in Sect. 2.4.4.2. A spectral approach can also be used to convert a graph into a multi-
dimensional representation. This is also a dimensionality reduction scheme that converts
the structural information into a multidimensional representation. This approach will be
discussed in Sect. 2.4.4.3.

2.2.2.9 Any Type to Graphs for Similarity-Based Applications

Many applications are based on the notion of similarity. For example, the clustering problem
is defined as the creation of groups of similar objects, whereas the outlier detection problem
is defined as one in which a subset of objects differing significantly from the remaining
objects are identified. Many forms of classification models, such as nearest neighbor classi-
fiers, are also dependent on the notion of similarity. The notion of pairwise similarity can

34 CHAPTER 2. DATA PREPARATION

be best captured with the use of a neighborhood graph. For a given set of data objects
O ={0;...0,}, a neighborhood graph is defined as follows:

1. A single node is defined for each object in . This is defined by the node set N,
containing n nodes where the node 4 corresponds to the object O;.

2. An edge exists between O; and O, if the distance d(O;, O;) is less than a particular
threshold e. Alternatively, the k-nearest neighbors of each node may be used. Because
the k-nearest neighbor relationship is not symmetric, this results in a directed graph.
The directions on the edges are ignored, and the parallel edges are removed. The
weight w;; of the edge (4,7) is equal to a kernelized function of the distance between
the objects O; and Oy, so that larger weights indicate greater similarity. An example

is the heat kernel:
wiy = ¢~ 400 (2.1)

Here, t is a user-defined parameter.

A wide variety of data mining algorithms are available for network data. All these methods
can also be used on the similarity graph. Note that the similarity graph can be crisply
defined for data objects of any type, as long as an appropriate distance function can be
defined. This is the reason that distance function design is so important for virtually any
data type. The issue of distance function design will be addressed in Chap. 3. Note that
this approach is useful only for applications that are based on the notion of similarity or
distances. Nevertheless, many data mining problems are directed or indirectly related to
notions of similarity and distances.

2.3 Data Cleaning

The data cleaning process is important because of the errors associated with the data
collection process. Several sources of missing entries and errors may arise during the data
collection process. Some examples are as follows:

1. Some data collection technologies, such as sensors, are inherently inaccurate because
of the hardware limitations associated with collection and transmission. Sometimes
sensors may drop readings because of hardware failure or battery exhaustion.

2. Data collected using scanning technologies may have errors associated with it because
optical character recognition techniques are far from perfect. Furthermore, speech-to-
text data is also prone to errors.

3. Users may not want to specify their information for privacy reasons, or they may
specify incorrect values intentionally. For example, it has often been observed that
users sometimes specify their birthday incorrectly on automated registration sites
such as those of social networks. In some cases, users may choose to leave several
fields empty.

4. A significant amount of data is created manually. Manual errors are common during
data entry.

5. The entity in charge of data collection may not collect certain fields for some records,
if it is too costly. Therefore, records may be incompletely specified.

2.3. DATA CLEANING 35

The aforementioned issues may be a significant source of inaccuracy for data mining appli-
cations. Methods are needed to remove or correct missing and erroneous entries from the
data. There are several important aspects of data cleaning:

1. Handling missing entries: Many entries in the data may remain unspecified because of
weaknesses in data collection or the inherent nature of the data. Such missing entries
may need to be estimated. The process of estimating missing entries is also referred
to as imputation.

2. Handling incorrect entries: In cases where the same information is available from
multiple sources, inconsistencies may be detected. Such inconsistencies can be removed
as a part of the analytical process. Another method for detecting the incorrect entries
is to use domain-specific knowledge about what is already known about the data.
For example, if a person’s height is listed as 6 m, it is most likely incorrect. More
generally, data points that are inconsistent with the remaining data distribution are
often noisy. Such data points are referred to as outliers. It is, however, dangerous
to assume that such data points are always caused by errors. For example, a record
representing credit card fraud is likely to be inconsistent with respect to the patterns
in most of the (normal) data but should not be removed as “incorrect” data.

3. Scaling and normalization: The data may often be expressed in very different scales
(e.g., age and salary). This may result in some features being inadvertently weighted
too much so that the other features are implicitly ignored. Therefore, it is important
to normalize the different features.

The following sections will discuss each of these aspects of data cleaning.

2.3.1 Handling Missing Entries

Missing entries are common in databases where the data collection methods are imperfect.
For example, user surveys are often unable to collect responses to all questions. In cases
where data contribution is voluntary, the data is almost always incompletely specified. Three
classes of techniques are used to handle missing entries:

1. Any data record containing a missing entry may be eliminated entirely. However, this
approach may not be practical when most of the records contain missing entries.

2. The missing values may be estimated or imputed. However, errors created by the
imputation process may affect the results of the data mining algorithm.

3. The analytical phase is designed in such a way that it can work with missing values.
Many data mining methods are inherently designed to work robustly with missing
values. This approach is usually the most desirable because it avoids the additional
biases inherent in the imputation process.

The problem of estimating missing entries is directly related to the classification problem.
In the classification problem, a single attribute is treated specially, and the other features
are used to estimate its value. In this case, the missing value can occur on any feature, and
therefore the problem is more challenging, although it is fundamentally not different. Many
of the methods discussed in Chaps. 10 and 11 for classification can also be used for missing
value estimation. In addition, the matrix completion methods discussed in Sect. 18.5 of
Chap. 18 may also be used.

36 CHAPTER 2. DATA PREPARATION

X NOISE

FEATURE Y

X NOISE

-2 0 2 4 6 8 10 12 14 16
FEATURE X

Figure 2.1: Finding noise by data-centric methods

In the case of dependency-oriented data, such as time series or spatial data, missing value
estimation is much simpler. In this case, the behavioral attribute values of contextually
nearby records are used for the imputation process. For example, in a time-series data set,
the average of the values at the time stamp just before or after the missing attribute may
be used for estimation. Alternatively, the behavioral values at the last n time-series data
stamps can be linearly interpolated to determine the missing value. For the case of spatial
data, the estimation process is quite similar, where the average of values at neighboring
spatial locations may be used.

2.3.2 Handling Incorrect and Inconsistent Entries

The key methods that are used for removing or correcting the incorrect and inconsistent
entries are as follows:

1. Inconsistency detection: This is typically done when the data is available from different
sources in different formats. For example, a person’s name may be spelled out in full in
one source, whereas the other source may only contain the initials and a last name. In
such cases, the key issues are duplicate detection and inconsistency detection. These

topics are studied under the general umbrella of data integration within the database
field.

2. Domain knowledge: A significant amount of domain knowledge is often available in
terms of the ranges of the attributes or rules that specify the relationships across
different attributes. For example, if the country field is “United States,” then the city
field cannot be “Shanghai.” Many data scrubbing and data auditing tools have been
developed that use such domain knowledge and constraints to detect incorrect entries.

3. Data-centric methods: In these cases, the statistical behavior of the data is used to
detect outliers. For example, the two isolated data points in Fig. 2.1 marked as “noise”
are outliers. These isolated points might have arisen because of errors in the data
collection process. However, this may not always be the case because the anomalies
may be the result of interesting behavior of the underlying system. Therefore, any
detected outlier may need to be manually examined before it is discarded. The use of

2.4. DATA REDUCTION AND TRANSFORMATION 37

data-centric methods for cleaning can sometimes be dangerous because they can result
in the removal of useful knowledge from the underlying system. The outlier detection
problem is an important analytical technique in its own right, and is discussed in
detail in Chaps. 8 and 9.

The methods for addressing erroneous and inconsistent entries are generally highly domain
specific.

2.3.3 Scaling and Normalization

In many scenarios, the different features represent different scales of reference and may
therefore not be comparable to one another. For example, an attribute such as age is drawn
on a very different scale than an attribute such as salary. The latter attribute is typically
orders of magnitude larger than the former. As a result, any aggregate function computed
on the different features (e.g., Euclidean distances) will be dominated by the attribute of
larger magnitude.

To address this problem, it is common to use standardization. Consider the case where
the jth attribute has mean p; and standard deviation o;. Then, the jth attribute value 2
of the ith record X; may be normalized as follows:

J
P (2.2)
gj
The vast majority of the normalized values will typically lie in the range [—3, 3] under the
normal distribution assumption.

A second approach uses min-maz scaling to map all attributes to the range [0, 1]. Let
min; and max; represent the minimum and maximum values of attribute j. Then, the jth
attribute value a?f of the ith record X; may be scaled as follows:

J

T; —min;

Yi = (2.3)

mar; — min;
This approach is not effective when the maximum and minimum values are extreme value
outliers because of some mistake in data collection. For example, consider the age attribute
where a mistake in data collection caused an additional zero to be appended to an age,
resulting in an age value of 800 years instead of 80. In this case, most of the scaled data
along the age attribute will be in the range [0,0.1], as a result of which this attribute may
be de-emphasized. Standardization is more robust to such scenarios.

2.4 Data Reduction and Transformation

The goal of data reduction is to represent it more compactly. When the data size is smaller,
it is much easier to apply sophisticated and computationally expensive algorithms. The
reduction of the data may be in terms of the number of rows (records) or in terms of the
number of columns (dimensions). Data reduction does result in some loss of information.
The use of a more sophisticated algorithm may sometimes compensate for the loss in infor-
mation resulting from data reduction. Different types of data reduction are used in various
applications:

38 CHAPTER 2. DATA PREPARATION

1. Data sampling: The records from the underlying data are sampled to create a much
smaller database. Sampling is generally much harder in the streaming scenario where
the sample needs to be dynamically maintained.

2. Feature selection: Only a subset of features from the underlying data is used in the
analytical process. Typically, these subsets are chosen in an application-specific way.
For example, a feature selection method that works well for clustering may not work
well for classification and vice versa. Therefore, this section will discuss the issue of
feature subsetting only in a limited way and defer a more detailed discussion to later
chapters.

3. Data reduction with axis rotation: The correlations in the data are leveraged to repre-
sent it in a smaller number of dimensions. Examples of such data reduction methods
include principal component analysis (PCA), singular value decomposition (SVD), or
latent semantic analysis (LSA) for the text domain.

4. Data reduction with type transformation: This form of data reduction is closely related
to data type portability. For example, time series are converted to multidimensional
data of a smaller size and lower complexity by discrete wavelet transformations. Simi-
larly, graphs can be converted to multidimensional representations by using embedding
techniques.

Each of the aforementioned aspects will be discussed in different segments of this section.

2.4.1 Sampling

The main advantage of sampling is that it is simple, intuitive, and relatively easy to imple-
ment. The type of sampling used may vary with the application at hand.

2.4.1.1 Sampling for Static Data

It is much simpler to sample data when the entire data is already available, and therefore
the number of base data points is known in advance. In the unbiased sampling approach,
a predefined fraction f of the data points is selected and retained for analysis. This is
extremely simple to implement, and can be achieved in two different ways, depending upon
whether or not replacement is used.

In sampling without replacement from a data set D with n records, a total of [n - f]
records are randomly picked from the data. Thus, no duplicates are included in the sample,
unless the original data set D also contains duplicates. In sampling with replacement from
a data set D with n records, the records are sampled sequentially and independently from
the entire data set D for a total of [n - f] times. Thus, duplicates are possible because
the same record may be included in the sample over sequential selections. Generally, most
applications do not use replacement because unnecessary duplicates can be a nuisance for
some data mining applications, such as outlier detection. Some other specialized forms of
sampling are as follows:

1. Biased sampling: In biased sampling, some parts of the data are intentionally empha-
sized because of their greater importance to the analysis. A classical example is that of
temporal-decay bias where more recent records have a larger chance of being included
in the sample, and stale records have a lower chance of being included. In exponential-
decay bias, the probability p(X) of sampling a data record X, which was generated

2.4. DATA REDUCTION AND TRANSFORMATION 39

0t time units ago, is proportional to an exponential decay function value regulated by
the decay parameter \: -
p(X) oc e N0 (2.4)

Here e is the base of the natural logarithm. By using different values of A, the impact
of temporal decay can be regulated appropriately.

2. Stratified sampling: In some data sets, important parts of the data may not be suffi-

ciently represented by sampling because of their rarity. A stratified sample, therefore,
first partitions the data into a set of desired strata, and then independently samples
from each of these strata based on predefined proportions in an application-specific
way.
For example, consider a survey that measures the economic diversity of the lifestyles
of different individuals in the population. Even a sample of 1 million participants may
not capture a billionaire because of their relative rarity. However, a stratified sample
(by income) will independently sample a predefined fraction of participants from each
income group to ensure greater robustness in analysis.

Numerous other forms of biased sampling are possible. For example, in density-biased sam-
pling, points in higher-density regions are weighted less to ensure greater representativeness
of the rare regions in the sample.

2.4.1.2 Reservoir Sampling for Data Streams

A particularly interesting form of sampling is that of reservoir sampling for data streams.
In reservoir sampling, a sample of k points is dynamically maintained from a data stream.
Recall that a stream is of an extremely large volume, and therefore one cannot store it on
a disk to sample it. Therefore, for each incoming data point in the stream, one must use a
set of efficiently implementable operations to maintain the sample.

In the static case, the probability of including a data point in the sample is k/n where
k is the sample size, and n is the number of points in the “data set.” In this case, the “data
set” is not static and cannot be stored on disk. Furthermore, the value of n is constantly
increasing as more points arrive and previous data points (outside the sample) have already
been discarded. Thus, the sampling approach works with incomplete knowledge about the
previous history of the stream at any given moment in time. In other words, for each
incoming data point in the stream, we need to dynamically make two simple admission
control decisions:

1. What sampling rule should be used to decide whether to include the newly incoming
data point in the sample?

2. What rule should be used to decide how to eject a data point from the sample to
“make room” for the newly inserted data point?

Fortunately, it is relatively simple to design an algorithm for reservoir sampling in data
streams [498]. For a reservoir of size k, the first k data points in the stream are used to
initialize the reservoir. Subsequently, for the nth incoming stream data point, the following
two admission control decisions are applied:

1. Insert the nth incoming stream data point into the reservoir with probability k/n.

2. If the newly incoming data point was inserted, then eject one of the old k data points
at random to make room for the newly arriving point.

40 CHAPTER 2. DATA PREPARATION

It can be shown that the aforementioned rule maintains an unbiased reservoir sample from
the data stream.

Lemma 2.4.1 After n stream points have arrived, the probability of any stream point being
included in the reservoir is the same, and is equal to k/n.

Proof: This result is easy to show by induction. At initialization of the first & data points,
the theorem is trivially true. Let us (inductively) assume that it is also true after (n — 1)
data points have been received, and therefore the probability of each point being included
in the reservoir is k/(n — 1). The probability of the arriving point being included in the
stream is k/n, and therefore the lemma holds true for the arriving data point. It remains
to prove the result for the remaining points in the data stream. There are two disjoint case
events that can arise for an incoming data point, and the final probability of a point being
included in the reservoir is the sum of these two cases:

I: The incoming data point is not inserted into the reservoir. The probability of this is
(n—k)/n. Because the original probability of any point being included in the reservoir
by the inductive assumption, is k/(n — 1), the overall probability of a point being

included in the reservoir and Case I event, is the multiplicative value of p; = Z((Z:’Ig

II: The incoming data point is inserted into the reservoir. The probability of Case II
is equal to insertion probability k/n of incoming data points. Subsequently, existing
reservoir points are retained with probability (k — 1)/k because exactly one of them
is ejected. Because the inductive assumption implies that any of the earlier points in
the data stream was originally present in the reservoir with probability k/(n — 1),
it implies that the probability of a point being included in the reservoir and Case 11
event is given by the product ps of the three aforementioned probabilities:

k k-1 k k(k—1)
N = 2.5
n=() () G50 -y e
Therefore, the total probability of a stream point being retained in the reservoir after the
nth data point arrival is given by the sum of p; and ps. It can be shown that this is equal
to k/n. [|

It is possible to extend reservoir sampling to cases where temporal bias is present in the
data stream. In particular, the case of exponential bias has been addressed in [35].

2.4.2 Feature Subset Selection

A second method for data preprocessing is feature subset selection. Some features can
be discarded when they are known to be irrelevant. Which features are relevant? Clearly,
this decision depends on the application at hand. There are two primary types of feature
selection:

1. Unsupervised feature selection: This corresponds to the removal of noisy and redundant
attributes from the data. Unsupervised feature selection is best defined in terms of
its impact on clustering applications, though the applicability is much broader. It
is difficult to comprehensively describe such feature selection methods without using
the clustering problem as a proper context. Therefore, a discussion of methods for
unsupervised feature selection is deferred to Chap. 6 on data clustering.

2.4. DATA REDUCTION AND TRANSFORMATION 41

30

DATA POINTS

EIGENVECTOR 1
— - - - EIGENVECTOR 2
- — — EIGENVECTOR 3

20

FEATURE Z

T T T T T |
80 30 20 10 0 -10 -20 -30

FEATURE Y FEATURE X

Figure 2.2: Highly correlated data represented in a small number of dimensions in an axis
system that is rotated appropriately

2. Supervised feature selection: This type of feature selection is relevant to the problem of
data classification. In this case, only the features that can predict the class attribute
effectively are the most relevant. Such feature selection methods are often closely
integrated with analytical methods for classification. A detailed discussion is deferred
to Chap. 10 on data classification.

Feature selection is an important part of the data mining process because it defines the
quality of the input data.

2.4.3 Dimensionality Reduction with Axis Rotation

In real data sets, a significant number of correlations exist among different attributes. In
some cases, hard constraints or rules between attributes may uniquely define some attributes
in terms of others. For example, the date of birth of an individual (represented quantita-
tively) is perfectly correlated with his or her age. In most cases, the correlations may not be
quite as perfect, but significant dependencies may still exist among the different features.
Unfortunately, real data sets contain many such redundancies that escape the attention of
the analyst during the initial phase of data creation. These correlations and constraints
correspond to implicit redundancies because they imply that knowledge of some subsets
of the dimensions can be used to predict the values of the other dimensions. For example,
consider the 3-dimensional data set illustrated in Fig. 2.2. In this case, if the axis is rotated
to the orientation illustrated in the figure, the correlations and redundancies in the newly
transformed feature values are removed. As a result of this redundancy removal, the entire
data can be (approximately) represented along a 1-dimensional line. Thus, the intrinsic
dimensionality of this 3-dimensional data set is 1. The other two axes correspond to the
low-variance dimensions. If the data is represented as coordinates in the new axis system
illustrated in Fig. 2.2, then the coordinate values along these low-variance dimensions will
not vary much. Therefore, after the axis system has been rotated, these dimensions can be
removed without much information loss.

A natural question arises as to how the correlation-removing axis system such as that in
Fig. 2.2 may be determined in an automated way. Two natural methods to achieve this goal

42 CHAPTER 2. DATA PREPARATION

are those of principal component analysis (PCA) and singular value decomposition (SVD).
These two methods, while not exactly identical at the definition level, are closely related.
Although the notion of principal component analysis is intuitively easier to understand,
SVD is a more general framework and can be used to perform PCA as a special case.

2.4.3.1 Principal Component Analysis

PCA is generally applied after subtracting the mean of the data set from each data point.
However, it is also possible to use it without mean centering, as long as the mean of the
data is separately stored. This operation is referred to as mean centering, and it results in
a data set centered at the origin. The goal of PCA is to rotate the data into an axis-system
where the greatest amount of variance is captured in a small number of dimensions. It is
intuitively evident from the example of Fig. 2.2 that such an axis system is affected by
the correlations between attributes. An important observation, which we will show below,
is that the variance of a data set along a particular direction can be expressed directly in
terms of its covariance matrix.

Let C be the d x d symmetric covariance matrix of the n x d data matrix D. Thus, the
(¢,7)th entry ¢;; of C denotes the covariance between the ith and jth columns (dimensions)
of the data matrix D. Let p; represent the mean along the ith dimension. Specifically, if
z" be the mth dimension of the kth record, then the value of the covariance entry c;; is as

follows: o
> T .
:k*“—uiuj Vi,je{l...d} (2.6)
Let w = (p1 . . . pua) is the d-dimensional row vector representing the means along the different
dimensions. Then, the aforementioned d x d computations of Eq. 2.6 for different values of
7 and j can be expressed compactly in d x d matrix form as follows:

DD
—-n'p (2.7)

Note that the d diagonal entries of the matrix C' correspond to the d variances. The covari-

ance matrix C' is positive semi-definite, because it can be shown that for any d-dimensional

column vector ¥, the value of 7 C% is equal to the variance of the 1-dimensional projection

Dv of the data set D on .

(Dv)T Dv
n

Cij

C:

70T = — (Ew)? = Variance of 1-dimensional points in Dv > 0 (2.8)
In fact, the goal of PCA is to successively determine orthonormal vectors ¥ maximizing
1 C%. How can one determine such directions? Because the covariance matrix is symmetric
and positive semidefinite, it can be diagonalized as follows:

C = PAPT (2.9)

The columns of the matrix P contain the orthonormal eigenvectors of C', and A is a diagonal
matrix containing the nonnegative eigenvalues. The entry A;; is the eigenvalue corresponding
to the ith eigenvector (or column) of the matrix P. These eigenvectors represent successive
orthogonal solutions' to the aforementioned optimization model maximizing the variance
! C7 along the unit direction .

ISetting the gradient of the Lagrangian relaxation 57 CT—A(||5]|2—1) to 0 is equivalent to the eigenvector
condition CT — AT = 0. The variance along an eigenvector is 92 CT = 9L A0 = \. Therefore, one should
include the orthonormal eigenvectors in decreasing order of eigenvalue A to maximize preserved variance in
reduced subspace.

2.4. DATA REDUCTION AND TRANSFORMATION 43

An interesting property of this diagonalization is that both the eigenvectors and eigenval-
ues have a geometric interpretation in terms of the underlying data distribution. Specifically,
if the axis system of data representation is rotated to the orthonormal set of eigenvectors
in the columns of P, then it can be shown that all (;l) covariances of the newly transformed
feature values are zero. In other words, the greatest variance-preserving directions are also
the correlation-removing directions. Furthermore, the eigenvalues represent the variances
of the data along the corresponding eigenvectors. In fact, the diagonal matrix A is the
new covariance matrix after axis rotation. Therefore, eigenvectors with large eigenvalues
preserve greater variance, and are also referred to as principal components. Because of the
nature of the optimization formulation used to derive this transformation, a new axis system
containing only the eigenvectors with the largest eigenvalues is optimized to retaining the
mazimum variance in a fived number of dimensions. For example, the scatter plot of Fig. 2.2
illustrates the various eigenvectors, and it is evident that the eigenvector with the largest
variance is all that is needed to create a variance-preserving representation. It generally
suffices to retain only a small number of eigenvectors with large eigenvalues.

Without loss of generality, it can be assumed that the columns of P (and corresponding
diagonal matrix A) are arranged from left to right in such a way that they correspond to
decreasing eigenvalues. Then, the transformed data matrix D’ in the new coordinate system
after axis rotation to the orthonormal columns of P can be algebraically computed as the
following linear transformation:

D' =DpP (2.10)

While the transformed data matrix D’ is also of size n x d, only its first (leftmost) k < d
columns will show significant variation in values. Each of the remaining (d — k) columns
of D’ will be approximately equal to the mean of the data in the rotated axis system. For
mean-centered data, the values of these (d — k) columns will be almost 0. Therefore, the
dimensionality of the data can be reduced, and only the first & columns of the transformed
data matrix D’ may need to be retained? for representation purposes. Furthermore, it can
be confirmed that the covariance matrix of the transformed data D’ = DP is the diagonal
matrix A by applying the covariance definition of Eq. 2.7 to DP (transformed data) and nP
(transformed mean) instead of D and [, respectively. The resulting covariance matrix can be
expressed in terms of the original covariance matrix C' as PTCP. Substituting C = PAPT
from Eq. 2.9 shows equivalence because PT P = PPT = I. In other words, correlations have
been removed from the transformed data because A is diagonal.

The variance of the data set defined by projections along top-k eigenvectors is equal to
the sum of the k& corresponding eigenvalues. In many applications, the eigenvalues show a
precipitous drop-off after the first few values. For example, the behavior of the eigenvalues
for the 279-dimensional Arrythmia data set from the UCI Machine Learning Repository [213]
is illustrated in Fig. 2.3. Figure 2.3a shows the absolute magnitude of the eigenvalues in
increasing order, whereas Fig. 2.3b shows the total amount of variance retained in the top-k
eigenvalues. Figure 2.3b can be derived by using the cumulative sum of the smallest eigen-
values in Fig. 2.3a. It is interesting to note that the 215 smallest eigenvalues contain less
than 1% of the total variance in the data and can therefore be removed with little change
to the results of similarity-based applications. Note that the Arrythmia data set is not a
very strongly correlated data set along many pairs of dimensions. Yet, the dimensional-
ity reduction is drastic because of the cumulative effect of the correlations across many
dimensions.

2The means of the remaining columns also need be stored if the data set is not mean centered.

44 CHAPTER 2. DATA PREPARATION

.
7000 ‘ ‘ ‘ ‘ ‘ 45210
6000 4
8 35
N 5|
S 5000 2
['4
E z 3l
z >
g 4000 | Y,sl
w 3
<4(3000 | g 21
z 3 15}
@ 2000+ <4(
w =L
o
1000 | "
0.5+
0 . . . 0 . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
INCREASING INDEX OF EIGENVALUE INCREASING INDEX OF EIGENVALUE
(a) Magnitude of Eigenvalues (b) Variance in smallest k
(Increasing Index): Arrythmia Eigenvalues: Arrythmia

Figure 2.3: Variance retained with increasing number of eigenvalues for the Arrythmia data
set

The eigenvectors of the matrix C' may be determined by using any numerical method
discussed in [295] or by an off-the-shelf eigenvector solver. PCA can be extended to discov-
ering nonlinear embeddings with the use of a method known as the kernel trick. Refer to
Sect. 10.6.4.1 of Chap. 10 for a brief description of kernel PCA.

2.4.3.2 Singular Value Decomposition

Singular value decomposition (SVD) is closely related to principal component analysis
(PCA). However, these distinct methods are sometimes confused with one another because
of the close relationship. Before beginning the discussion of SVD, we state how it is related
to PCA. SVD is more general than PCA because it provides two sets of basis vectors instead
of one. SVD provides basis vectors of both the rows and columns of the data matrix, whereas
PCA only provides basis vectors of the rows of the data matrix. Furthermore, SVD provides
the same basis as PCA for the rows of the data matrix in certain special cases:

SVD provides the same basis vectors and data transformation as PCA for data sets in
which the mean of each attribute is 0.

The basis vectors of PCA are invariant to mean-translation, whereas those of SVD are
not. When the data are not mean centered, the basis vectors of SVD and PCA will not be
the same, and qualitatively different results may be obtained. SVD is often applied without
mean centering to sparse nonnegative data such as document-term matrices. A formal way
of defining SVD is as a decomposable product of (or factorization into) three matrices:

D =QxPT (2.11)

Here, @ is an n X n matrix with orthonormal columns, which are the left singular vectors.
Y is an n x d diagonal matrix containing the singular values, which are always nonnegative
and, by convention, arranged in nonincreasing order. Furthermore, P is a d X d matrix with
orthonormal columns, which are the right singular vectors. Note that the diagonal matrix X
is rectangular rather than square, but it is referred to as diagonal because only entries of the

2.4. DATA REDUCTION AND TRANSFORMATION 45

form ¥;; are nonzero. It is a fundamental fact of linear algebra that such a decomposition
always exists, and a proof may be found in [480]. The number of nonzero diagonal entries of
Y is equal to the rank of the matrix D, which is at most min{n, d}. Furthermore, because
of the orthonormality of the singular vectors, both PTP and Q7Q are identity matrices.
We make the following observations:

1. The columns of matrix), which are also the left singular vectors, are the orthonormal
eigenvectors of DDT. This is because DDT = QX(PTP)XTQT = Q¥¥TQT. There-
fore, the square of the nonzero singular values, which are diagonal entries of the n x n
diagonal matrix X7, represent the nonzero eigenvalues of DD

2. The columns of matrix P, which are also the right singular vectors, are the orthonor-
mal eigenvectors of DT D. The square of the nonzero singular values, which are rep-
resented in diagonal entries of the d x d diagonal matrix X7, are the nonzero eigen-
values of DT D. Note that the nonzero eigenvalues of DD” and D" D are the same.
The matrix P is particularly important because it provides the basis vectors, which
are analogous to the eigenvectors of the covariance matrix in PCA.

3. Because the covariance matrix of mean-centered data is £ ZD (cf. Eq. 2.7) and the
right singular vectors of SVD are eigenvectors of DT D, it follows that the eigenvectors
of PCA are the same as the right-singular vectors of SVD for mean-centered data.
Furthermore, the squared singular values in SVD are n times the eigenvalues of PCA.
This equivalence shows why SVD and PCA can provide the same transformation for
mean-centered data.

4. Without loss of generality, it can be assumed that the diagonal entries of ¥ are
arranged in decreasing order, and the columns of matrix P and @ are also ordered
accordingly. Let P and @Qj be the truncated d x k£ and n x k matrices obtained by
selecting the first k columns of P and @, respectively. Let ¥ be the k x k square
matrix containing the top k singular values. Then, the SVD factorization yields an
approzimate d-dimensional data representation of the original data set D:

D~ QX PF (2.12)

The columns of Py, represent a k-dimensional basis system for a reduced representation
of the data set. The dimensionality reduced data set in this k-dimensional basis system
is given by the n x k data set D}, = DP;, = QrXy, as in Eq. 2.10 of PCA. Each of the n
rows of Dj. contain the k coordinates of each transformed data point in this new axis
system. Typically, the value of k is much smaller than both n and d. Furthermore,
unlike PCA, the rightmost (d — k) columns of the full d-dimensional transformed data
matrix D’ = DP will be approximately 0 (rather than the data mean), whether the
data are mean centered or not. In general, PCA projects the data on a low-dimensional
hyperplane passing through the data mean, whereas SVD projects the data on a low-
dimensional hyperplane passing through the origin. PCA captures as much of the
variance (or, squared Euclidean distance about the mean) of the data as possible,
whereas SVD captures as much of the aggregate squared Euclidean distance about
the origin as possible. This method of approximating a data matrix is referred to as
truncated SVD.

In the following, we will show that truncated SVD maximizes the aggregate squared
Euclidean distances (or energy) of the transformed data points about the origin. Let ¥ be a

46 CHAPTER 2. DATA PREPARATION

LATENT
DIMENSIONS COMPONENTS
< d N < k—s LATENT

P COMPONENTS DIMENSIONS
m] ﬁ} @ % w <« k— woe——d_—
21l oriGiNaL HIEFY - i 3 £ 2 Top-k Basis
on DATA *:n ol X E§k X E§k VECTORS OF
< gls8° Sz S || rowsor D
3 SIIFE 8 1 8 PT

> £, IMPORTANCE OF

D Q LATENT COMPONENTS

Figure 2.4: Complementary basis properties of matrix factorization in SVD

d-dimensional column vector and Dv be the projection of the data set D on v. Consider the
problem of determining the unit vector v such that the sum of squared Euclidean distances
(D) (D7) of the projected data points from the origin is maximized. Setting the gradient
of the Lagrangian relaxation v7 DT Dw — \(|[]|> — 1) to 0 is equivalent to the eigenvector
condition DT Do — A\t = 0. Because the right singular vectors are eigenvectors of DT D, it
follows that the eigenvectors (right singular vectors) with the k largest eigenvalues (squared
singular values) provide a basis that maximizes the preserved energy in the transformed and
reduced data matrix Dj, = DP, = QX. Because the energy, which is the sum of squared
Euclidean distances from the origin, is invariant to axis rotation, the energy in Dj, is the
same as that in D;CPT = QkEkP,?. Therefore, k-rank SVD is a mazximum energy-preserving
factorization. This result is known as the Eckart—Young theorem.

The total preserved energy of the projection Dv of the data set D along unit right-
singular vector 7 with singular value ¢ is given by (Dv)”(Dv), which can be simplified as
follows:

(Dv)T(Dv) =77 (DT D7) = 77 (6%7) = o>

Because the energy is defined as a linearly separable sum along orthonormal directions, the
preserved energy in the data projection along the top-k singular vectors is equal to the
sum of the squares of the top-k singular values. Note that the total energy in the data set
D is always equal to the sum of the squares of all the nonzero singular values. It can be
shown that maximizing the preserved energy is the same as minimizing the squared error3
(or lost energy) of the k-rank approximation. This is because the sum of the energy in the
preserved subspace and the lost energy in the complementary (discarded) subspace is always
a constant, which is equal to the energy in the original data set D.

When viewed purely in terms of eigenvector analysis, SVD provides two different perspec-
tives for understanding the transformed and reduced data. The transformed data matrix can
either be viewed as the projection D Py, of the data matrix D on the top k basis eigenvectors
P, of the d x d scatter matriz DT D, or it can directly be viewed as the scaled eigenvec-
tors QrXr = DPy of the n x n dot-product similarity matriz DDT. While it is generally
computationally expensive to extract the eigenvectors of an n x n similarity matrix, such
an approach also generalizes to nonlinear dimensionality reduction methods where notions
of linear basis vectors do not exist in the original space. In such cases, the dot-product
similarity matrix is replaced with a more complex similarity matrix in order to extract a
nonlinear embedding (cf. Table 2.3).

SVD is more general than PCA and can be used to simultaneously determine a subset
of k basis vectors for the data matrix and its transpose with the maximum energy. The
latter can be useful in understanding complementary transformation properties of DT .

3The squared error is the sum of squares of the entries in the error matrix D — QkaPE.

2.4. DATA REDUCTION AND TRANSFORMATION 47

The orthonormal columns of Q) provide a k-dimensional basis system for (approximately)
transforming “data points” corresponding to the rows of D’ and the matrix DTQj, = P, X,
contains the corresponding coordinates. For example, in a user-item ratings matrix, one may
wish to determine either a reduced representation of the users, or a reduced representation
of the items. SVD provides the basis vectors for both reductions. Truncated SVD expresses
the data in terms of & dominant latent components. The ith latent component is expressed
in the ith basis vectors of both D and D7, and its relative importance in the data is defined
by the ith singular value. By decomposing the matrix product QkEkPg into column vectors
of Qr and Py (i.e., dominant basis vectors of DT and D), the following additive sum of the
k latent components can be obtained:

k k
QP =Y Gopi" =Y 0@ pi’) (2.13)
i=1

i=1

Here g; is the ¢th column of @, p; is the ith column of P, and o; is the i¢th diagonal entry
of 3. Each latent component o;(q; p;~) is an n x d matrix with rank 1 and energy o2. This
decomposition is referred to as spectral decomposition. The relationships of the reduced basis
vectors to SVD matrix factorization are illustrated in Fig. 2.4.

An example of a rank-2 truncated SVD of a toy 6 x 6 matrix is illustrated below:

22120 0
2 3 3 3 0
111100 -
D=19 9 9 3 1 1|~®@%k
000111
0002 1 2
041 017
~0.65 031
| -023 o013]| /84 0\ /-041 —049 —044 —0.61 —0.10 —0.12
~1-056 —0.20 (0 3.3)(021 031 026 -037 —0.44 —0.68)
010 —0.46
019 —0.78

1.55 1.87 1.67 1.91 0.10 0.04
2.46 2.98 2.66 295 0.10 —-0.03
0.89 1.08 0.96 1.04 0.01 -0.04
1.81 2.11 191 3.14 0.77 1.03
0.02 -0.05 -0.02 1.06 0.74 1.11
0.10 -0.02 0.04 1.89 1.28 1.92

Note that the rank-2 matrix is a good approximation of the original matrix. The entry with
the largest error is underlined in the final approximated matrix. Interestingly, this entry is
also inconsistent with the structure of the remaining matrix in the original data (why?).
Truncated SVD often tries to correct inconsistent entries, and this property is sometimes
leveraged for noise reduction in error-prone data sets.

2.4.3.3 Latent Semantic Analysis

Latent semantic analysis (LSA) is an application of the SVD method to the text domain.
In this case, the data matrix D is an n x d document-term matrix containing normalized

48 CHAPTER 2. DATA PREPARATION

word frequencies in the n documents, where d is the size of the lexicon. No mean centering
is used, but the results are approximately the same as PCA because of the sparsity of D.
The sparsity of D implies that most of the entries in D are 0, and the mean values of each
column are much smaller than the nonzero values. In such scenarios, it can be shown that
the covariance matrix is approximately proportional to DT D. The sparsity of the data set
also results in a low intrinsic dimensionality. Therefore, in the text domain, the reduction in
dimensionality from LSA is rather drastic. For example, it is not uncommon to be able to
represent a corpus drawn on a lexicon of 100,000 dimensions in fewer than 300 dimensions.

LSA is a classical example of how the “loss” of information from discarding some dimen-
sions can actually result in an improvement in the quality of the data representation. The
text domain suffers from two main problems corresponding to synonymy and polysemy.
Synonymy refers to the fact that two words may have the same meaning. For example, the
words “comical’” and “hilarious” mean approximately the same thing. Polysemy refers to
the fact that the same word may mean two different things. For example, the word “jaguar”
could refer to a car or a cat. Typically, the significance of a word can only be understood
in the context of other words in the document. This is a problem for similarity-based appli-
cations because the computation of similarity with the use of word frequencies may not
be completely accurate. For example, two documents containing the words “comical” and
“hilarious,” respectively, may not be deemed sufficiently similar in the original representa-
tion space. The two aforementioned issues are a direct result of synonymy and polysemy
effects. The truncated representation after LSA typically removes the noise effects of syn-
onymy and polysemy because the (high-energy) singular vectors represent the directions of
correlation in the data, and the appropriate context of the word is implicitly represented
along these directions. The variations because of individual differences in usage are implic-
itly encoded in the low-energy directions, which are truncated anyway. It has been observed
that significant qualitative improvements [184, 416] for text applications may be achieved
with the use of LSA. The improvement? is generally greater in terms of synonymy effects
than polysemy. This noise-removing behavior of SVD has also been demonstrated in general
multidimensional data sets [25].

2.4.3.4 Applications of PCA and SVD

Although PCA and SVD are primarily used for data reduction and compression, they have
many other applications in data mining. Some examples are as follows:

1. Noise reduction: While removal of the smaller eigenvectors/singular vectors in PCA
and SVD can lead to information loss, it can also lead to improvement in the quality of
data representation in surprisingly many cases. The main reason is that the variations
along the small eigenvectors are often the result of noise, and their removal is generally
beneficial. An example is the application of LSA in the text domain where the removal
of the smaller components leads to the enhancement of the semantic characteristics
of text. SVD is also used for deblurring noisy images. These text- and image-specific
results have also been shown to be true in arbitrary data domains [25]. Therefore, the
data reduction is not just space efficient but actually provides qualitative benefits in
many cases.

4Concepts that are not present predominantly in the collection will be ignored by truncation. Therefore,
alternative meanings reflecting infrequent concepts in the collection will be ignored. While this has a robust
effect on the average, it may not always be the correct or complete disambiguation of polysemous words.

2.4. DATA REDUCTION AND TRANSFORMATION 49

2. Data imputation: SVD and PCA can be used for data imputation applications [23],
such as collaborative filtering, because the reduced matrices Q, Xk, and Py can be
estimated for small values of k£ even from incomplete data matrices. Therefore, the
entire matrix can be approximately reconstructed as QkaPkT . This application is
discussed in Sect. 18.5 of Chap. 18.

3. Linear equations: Many data mining applications are optimization problems in which
the solution is recast into a system of linear equations. For any linear system Ay = 0,
any right singular vector of A with 0 singular value will satisfy the system of equations
(see Exercise 14). Therefore, any linear combination of the 0 singular vectors will
provide a solution.

4. Matrix inversion: SVD can be used for the inversion of a square d x d matrix D. Let the
decomposition of D be given by QX.PT. Then, the inverse of D is D™! = P ~1QT.
Note that ¥~! can be trivially computed from X by inverting its diagonal entries.
The approach can also be generalized to the determination of the Moore—Penrose
pseudoinverse DT of a rank-k matrix D by inverting only the nonzero diagonal entries
of 3. The approach can even be generalized to non-square matrices by performing the
additional operation of transposing Y. Such matrix inversion operations are required
in many data mining applications such as least-squares regression (cf. Sect. 11.5 of
Chap. 11) and social network analysis (cf. Chap. 19).

5. Matriz algebra: Many network mining applications require the application of alge-
braic operations such as the computation of the powers of a matrix. This is common
in random-walk methods (cf. Chap. 19), where the kth powers of the symmetric adja-
cency matrix of an undirected network may need to be computed. Such symmetric
adjacency matrices can be decomposed into the form QAQT. The kth power of this
decomposition can be efficiently computed as D* = QA*QT. In fact, any polynomial
function of the matrix can be computed efficiently.

SVD and PCA are extraordinarily useful because matrix and linear algebra operations are
ubiquitous in data mining. SVD and PCA facilitate such matrix operations by providing
convenient decompositions and basis representations. SVD has rightly been referred to [481]
as “absolutely a high point of linear algebra.”

2.4.4 Dimensionality Reduction with Type Transformation

In these methods, dimensionality reduction is coupled with type transformation. In most
cases, the data is transformed from a more complex type to a less complex type, such as
multidimensional data. Thus, these methods serve the dual purpose of data reduction and
type portability. This section will study two such transformation methods:

1. Time series to multidimensional: A number of methods, such as the discrete Fourier
transform and discrete wavelet transform are used. While these methods can also be
viewed as a rotation of an axis system defined by the various time stamps of the
contextual attribute, the data are no longer dependency oriented after the rotation.
Therefore, the resulting data set can be processed in a similar way to multidimensional
data. We will study the Haar wavelet transform because of its intuitive simplicity.

2. Weighted graphs to multidimensional: Multidimensional scaling and spectral methods
are used to embed weighted graphs in multidimensional spaces, so that the similarity
or distance values on the edges are captured by a multidimensional embedding.

50 CHAPTER 2. DATA PREPARATION

Table 2.2: An example of wavelet coefficient computation

Granularity (order k) Averages DWT coeflicients
(P values) (¢ values)
k=4 (3,6, 2 3,4,6,06,5) -
k=3 (7,25, 5, 5.5) 1, —05, -1, 05)
k=2 (4.75, 5.25) (2.25, —0.25)
k=1) (—0.25)

This section will discuss each of these techniques.

2.4.4.1 Haar Wavelet Transform

Wavelets are a well-known technique that can be used for multigranularity decomposition
and summarization of time-series data into the multidimensional representation. The Haar
wavelet is a particularly popular form of wavelet decomposition because of its intuitive
nature and ease of implementation. To understand the intuition behind wavelet decompo-
sition, an example of sensor temperatures will be used.

Suppose that a sensor measured the temperatures over the course of 12 h from the
morning until the evening. Assume that the sensor samples temperatures at the rate of
1 sample/s. Thus, over the course of a single day, a sensor will collect 12 x 60 x 60 =
43,200 readings. Clearly, this will not scale well over many days and many sensors. An
important observation is that many adjacent sensor readings will be very similar, causing
this representation to be very wasteful. So, how can we represent this data approximately
in a small amount of space?” How can we determine the key regions where “variations” in
readings occur, and store these variations instead of repeating values?

Suppose we only stored the average over the entire day. This provides some idea of the
temperature but not much else about the variation over the day. Now, if the difference in
average temperature between the first half and second half of the day is also stored, we
can derive the averages for both the first and second half of the day from these two values.
This principle can be applied recursively because the first half of the day can be divided
into the first quarter of the day and the second quarter of the day. Thus, with four stored
values, we can perfectly reconstruct the averages in four quarters of the day. This process
can be applied recursively right down to the level of granularity of the sensor readings.
These “difference values” are used to derive wavelet coefficients. Of course, we did not yet
achieve any data reduction because the number of such coefficients can be shown to be
exactly equal to the length of the original time series.

It is important to understand that large difference values tell us more about the varia-
tions in the temperature values than the small ones, and they are therefore more important
to store. Therefore, larger coefficient values are stored after a normalization for the level of
granularity. This normalization, which is discussed later, has a bias towards storing coefhi-
cients representing longer time scales because trends over longer periods of time are more
informative for (global) series reconstruction.

More formally, the wavelet technique creates a decomposition of the time series into
a set of coefficient-weighted wavelet basis vectors. Each of the coeflicients represents the
rough variation of the time series between the two halves of a particular time range. The

2.4. DATA REDUCTION AND TRANSFORMATION 51

SERIES 1 WAVELET | WAVELET I BASIS
AVERAGES | COEFFICIENT| SHAPE | VECTOR
i i i
i 0 | 1.1000000
(8,6,2,3,4,6,6,5)! 1 H T 1 1-
1 1 1
1 1 ,_l 1
P05 T 1001-10000
1 1 1
1 1 l_l 1
! 4 T 100001-100
1 1 1
1 1 l_l 1
1 1 1
05 0000001-1
i i -] i
1 1 1
1 1 1
(7,25,555)] 225 | 1 11-1-10000
1 1 1
1 1 1
Io02s ! — 1000011-1-1
1 1 1
1 1 1
(4.75,5.25)1 25 1 I 111111111
i i i
1 1 1
() i 5 N E—— 111111111
1 1 1
1 1 1

Figure 2.5: Illustration of the wavelet decomposition

wavelet basis vector is a time series that represents the temporal range of this variation in
the form of a simple step function. The wavelet coefficients are of different orders, depending
on the length of the time-series segment analyzed, which also represents the granularity of
analysis. The higher-order coefficients represent the broad trends in the series because they
correspond to larger ranges. The more localized trends are captured by the lower-order
coefficients. Before providing a more notational description, a simple recursive description
of wavelet decomposition of a time series segment S is provided below in two steps:

1. Report half the average difference of the behavioral attribute values between the first
and second temporal halves of S as a wavelet coefficient.

2. Recursively apply this approach to first and second temporal halves of S.

At the end of the process, a reduction process is performed, where larger (normalized)
coeflicients are retained. This normalization step will be described in detail later.

A more formal and notation-intensive description will be provided at this point. For ease
in discussion, assume that the length g of the series is a power of 2. For each value of k > 1,
the Haar wavelet decomposition defines 2¥~1 coefficients of order k. Each of these 2F~!
coefficients corresponds to a contiguous portion of the time series of length ¢/2*~!. The ith
of these 281 coefficients corresponds to the segment in the series starting from position
(i —1)-q/2* 1 + 1 to the position i - ¢/2*~L. Let us denote this coefficient by ¢ and the
corresponding time-series segment by Si. At the same time, let us define the average value
of the first half of the S} by a} and that of the second half by b%. Then, the value of ¢}
is given by (ai — b%)/2. More formally, if ®i denote the average value of the S}, then the
value of ¥} can be defined recursively as follows:

i = (O3 — ®Fh)/2 (2.14)

The set of Haar coefficients is defined by all the coefficients of order 1 to log,(q). In
addition, the global average ®1 is required for the purpose of perfect reconstruction. The
total number of coefficients is exactly equal to the length of the original series, and the
dimensionality reduction is obtained by discarding the smaller (normalized) coefficients.
This will be discussed later.

52 CHAPTER 2. DATA PREPARATION

SERIES

£ 81@ AVERAGE
/ +

RELEVANT 5 4 g)
,
RANGES .

i A se (7%
Iy A) 1\
/ 1 [} [
1 h 1 [
! 1 1]y T [
‘ - \ | \ A
REKEVANT RANGES i
+1 - ’;’G oA H -\
YoV ¥ ¥ ¥Y__N_Y ___\l__I
| 8 62 34 6 6 5

Figure 2.6: The error tree from the wavelet decomposition

The coefficients of different orders provide an understanding of the major trends in
the data at a particular level of granularity. For example, the coefficient 1/)}; is half the
quantity by which the first half of the segment S is larger than the second half of the same
segment. Because larger values of k£ correspond to geometrically reducing segment sizes,
one can obtain an understanding of the basic trends at different levels of granularity. This
definition of the Haar wavelet makes it very easy to compute by a sequence of averaging and
differencing operations. Table 2.2 shows the computation of the wavelet coefficients for the
sequence (8,6,2,3,4,6,6,5). This decomposition is illustrated in graphical form in Fig. 2.5.
Note that each value in the original series can be represented as a sum of log,(8) = 3
wavelet coefficients with a positive or negative sign attached in front. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the hierarchical
decomposition of the entire series. This is also referred to as the error tree. In Fig. 2.6,
the error tree for the wavelet decomposition in Table 2.2 is illustrated. The nodes in the
tree contain the values of the wavelet coefficients, except for a special super-root node that
contains the series average.

The number of wavelet coefficients in this series is 8, which is also the length of the
original series. The original series has been replicated just below the error tree in Fig. 2.6,
and can be reconstructed by adding or subtracting the values in the nodes along the path
leading to that value. Each coefficient in a node should be added, if we use the left branch
below it to reach to the series values. Otherwise, it should be subtracted. This natural
decomposition means that an entire contiguous range along the series can be reconstructed
by using only the portion of the error tree which is relevant to it.

As in all dimensionality reduction methods, smaller coefficients are ignored. We will
explain the process of discarding coefficients with the help of the notion of the basis vectors
associated with each coefficient:

The wavelet representation is a decomposition of the original time series of length q into
the weighted sum of a set of q “simpler” time series (or wavelets) that are orthogonal to
one another. These “simpler” time series are the basis vectors, and the wavelet coefficients
represent the weights of the different basis vectors in the decomposition.

Figure 2.5 shows these “simpler” time series along with their corresponding coefficients.
The number of wavelet coefficients (and basis vectors) is equal to the length of the series g.

2.4. DATA REDUCTION AND TRANSFORMATION 53

The length of the time series representing each basis vector is also ¢q. Each basis vector has
a +1 or —1 value in the contiguous time-series segment from which a particular coefficient
was derived by a differencing operation. Otherwise, the value is 0 because the wavelet is
not related to variations in that region of the time series. The first half of the nonzero
segment of the basis vector is +1, and the second half is —1. This gives it the shape of a
wavelet when it is plotted as a time series, and also reflects the differencing operation in the
relevant time-series segment. Multiplying a basis vector with the coefficient has the effect
of creating a weighted time series in which the difference between the first half and second
half reflects the average difference between the corresponding segments in the original time
series. Therefore, by adding up all these weighted wavelets over different levels of granularity
in the error tree, it is possible to reconstruct the original series. The list of basis vectors in
Fig. 2.5 are the rows of the following matrix:

1 -1 0 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 0 1 -1
1 1 -1 -1 0 0 0 0
0 0 0 0 1 1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 1 1 1 1

Note that the dot product of any pair of basis vectors is 0, and therefore these series are
orthogonal to one another. The most detailed coefficients have only one +1 and one —1,
whereas the most coarse coefficient has four +1 and —1 entries. In addition, the vector
(11111111) is needed to represent the series average.

For a time series T, let W7 .. W be the corresponding basis vectors. Then, ifa; ... a, are
the wavelet coefﬁc1ents for the ba51s vectors W .. Wq, the time series 7" can be represented

as follows: .

‘f i
7= W= WD (219

=1

The coefficients represented in Fig. 2.5 are unnormalized because the underlying basis vec-
tors do not have unit norm. While a; is the unnormalized value from Fig. 2.5, the values
a;||W;|| represent normalized coefficients. The values of ||W;]| are different for coefficients
of different orders, and are equal to v/2, v/4, or /8 in this particular example. For example,
in Fig. 2.5, the broadest level unnormalized coefficient is —0.25, whereas the corresponding
normalized value is —0.25/8. After normalization, the basis vectors W7 .. .Wq are orthonor-
mal, and, therefore, the sum of the squares of the corresponding (normalized) coefficients
is equal to the retained energy in the approximated time series. Because the normalized
coeflicients provide a new coordinate representation after axis rotation, Euclidean distances
between time series are preserved in this new representation if coefficients are not dropped.
It can be shown that by retaining the coefficients with the largest normalized values, the
error loss from the wavelet representation is minimized.

The previous discussion focused on the approximation of a single time series. In practice,
one might want to convert a database of IV time series into /N multidimensional vectors.
When a database of multiple time series is available, then two strategies can be used:

1. The coefficient for the same basis vector is selected for each series to create a mean-
ingful multidimensional database of low dimensionality. Therefore, the basis vectors

54 CHAPTER 2. DATA PREPARATION

GLOBAL 1111 75 76 75 72| SEA-SURFACE
TEMPERATURE 1111 77 73 73 74| TEMPERATURES
AVERAGE =75 1111 72 71 78 80| ALONG SPATIAL
COEFFICIENT=75 | 11 1 1 74 75 79 76| GRID
cut ALCiNG X-AXIS BASE DATA
AVERAGE
TEMPERATURE 11 (-1 -1 [BINARY
DIFFERENCE 1 1|-1 -1 |MATRICES
BETWEEN LEFT 1 1.1 -1 | REPRESENT
2- DIMENSIONAL
AND RIGHT 1 1]-1 -1| pAsiS MATRICES
BLOCKS = 7/4

COEFFICIENT=-7/8
CUT ALONG
Y-AXIS

) AVERAGE
AVERAGE TEMP. 1o o} o o1 1] Averace
DIFFERENCE H
BETWEEN TOP AND 1(0 0 0 01 1| piFFERENCE BETWEEN
BOTTOM BLOCKS =9/4| -1 -1/0 0 | 0 0[1 -1 | TOPANDBOTTOM
COEFFICIENT= 9/8 11 -10 o | 0 o0}1 -1 [BLOCKS=-19/4

L. Py COEFFICIENT = -19/8

/ . CUTALONG ,

gy XAxs

Figure 2.7: Illustration of the top levels of the wavelet decomposition for spatial data in a
grid containing sea-surface temperatures

that have the largest average normalized coefficient across the N different series are
selected.

2. The full dimensionality of the wavelet coefficient representation is retained. However,
for each time series, the largest normalized coefficients (in magnitude) are selected
individually. The remaining values are set to 0. This results in a sparse database
of high dimensionality, in which many values are 0. A method such as SVD can be
applied as a second step to further reduce the dimensionality. The second step of this
approach has the disadvantage of losing interpretability of the features of the wavelet
transform. Recall that the Haar wavelet is one of the few dimensionality reduction
transforms where the coefficients do have some interpretability in terms of specific
trends across particular time-series segments.

The wavelet decomposition method provides a natural method for dimensionality reduction
(and data-type transformation) by retaining only a small number of coefficients.

Wavelet Decomposition with Multiple Contextual Attributes

Time-series data contain a single contextual attribute, corresponding to the time value.
This helps in simplification of the wavelet decomposition. However, in some cases such as
spatial data, there may be two contextual attributes corresponding to the X-coordinate and
the Y-coordinate. For example, sea-surface temperatures are measured at spatial locations
that are described with the use of two coordinates. How can wavelet decomposition be
performed in such cases? In this section, a brief overview of the extension of wavelets to
multiple contextual attributes is provided.

Assume that the spatial data is represented in the form of a 2-dimensional grid of
size ¢ X ¢. Recall that in the 1-dimensional case, differencing operations were applied over
contiguous segments of the time series by successive division of the time series in hierarchical
fashion. The corresponding basis vectors have +1 and —1 at the relevant positions. The 2-
dimensional case is completely analogous where contiguous areas of the spatial grid are used

2.4. DATA REDUCTION AND TRANSFORMATION 55

by successive divisions. These divisions are alternately performed along the different axes.
The corresponding basis vectors are 2-dimensional matrices of size ¢ X g that regulate how
the differencing operations are performed.

An example of the strategy for 2-dimensional decomposition is illustrated in Fig. 2.7.
Only the top two levels of the decomposition are illustrated in the figure. Here, a 4 x 4 grid
of spatial temperatures is used as an example. The first division along the X-axis divides
the spatial area into two blocks of size 4 x 2 each. The corresponding two-dimensional
binary basis matrix is illustrated into the same figure. The next phase divides each of these
4 x 2 blocks into blocks of size 2 x 2 during the hierarchical decomposition process. As
in the case of 1-dimensional time series, the wavelet coefficient is half the difference in
the average temperatures between the two halves of the relevant block being decomposed.
The alternating process of division along the X-axis and the Y-axis can be carried on to
the individual data entries. This creates a hierarchical wavelet error tree, which has many
similar properties to that created in the 1-dimensional case. The overall principles of this
decomposition are almost identical to the 1-dimensional case, with the major difference in
terms of how the cuts along different dimensions are performed by alternating at different
levels. The approach can be extended to the case of k£ > 2 contextual attributes with the
use of a round-robin rotation in the axes that are selected at different levels of the tree for
the differencing operation.

2.4.4.2 Multidimensional Scaling

Graphs are a powerful mechanism for representing relationships between objects. In some
data mining scenarios, the data type of an object may be very complex and heteroge-
neous such as a time series annotated with text and other numeric attributes. However,
a crisp notion of distance between several pairs of data objects may be available based
on application-specific goals. How can one visualize the inherent similarity between these
objects? How can one visualize the “nearness” of two individuals connected in a social net-
work? A natural way of doing so is the concept of multidimensional scaling (MDS). Although
MDS was originally proposed in the context of spatial visualization of graph-structured dis-
tances, it has much broader applicability for embedding data objects of arbitrary types in
multidimensional space. Such an approach also enables the use of multidimensional data
mining algorithms on the embedded data.

For a graph with n nodes, let J;; = J;; denote the specified distance between nodes
1 and j. It is assumed that all (g) pairwise distances between nodes are specified. It is
desired to map the n nodes to n different k-dimensional vectors denoted by X ... X, so
that the distances in multidimensional space closely correspond to the (’2’) distance values
in the distance graph. In MDS, the k coordinates of each of these n points are treated as
variables that need to be optimized, so that they can fit the current set of pairwise distances.
Metric M DS, also referred to as classical MDS, attempts to solve the following optimization
(minimization) problem:

0= (Xi—Xll - d;) (2.16)
4,j:1<j
Here || - || represents Euclidean norm. In other words, each node is represented by a mul-

tidimensional data point, such that the Euclidean distances between these points reflect
the graph distances as closely as possible. In other forms of nonmetric MDS, this objective
function might be different. This optimization problem therefore has n - k variables, and it
scales with the size of the data n and the desired dimensionality k£ of the embedding. The

56

CHAPTER 2. DATA PREPARATION

Table 2.3: Scaled eigenvectors of various similarity matrices yield embeddings with different
properties

H Method \ Relevant similarity matrix H
PCA Dot product matrix DDT after mean centering D
SVD Dot product matrix DD7T

Spectral embedding | Sparsified /normalized similarity matrix A=1/2WA~1/2
(Symmetric Version) | (cf. Sect. 19.3.4 of Chap. 19)

MDS/ISOMAP Similarity matrix derived from distance matrix A with
cosine law S = —1(I - Y)A(1 - ©)

n,

Kernel PCA Centered kernel matrix S = (I — 2)K(I — Y)
(cf. Sect. 10.6.4.1 of Chap. 10)

objective function O of Eq. 2.16 is usually divided by

2 ; -
i.jiicj 01y to yield a value in (0,1).

The square root of this value is referred to as Kruskal stress.

The basic assumption in classical MDS is that the distance matrix A = [5i2j]nxn is
generated by computing pairwise Euclidean distances in some hypothetical data matrix D
for which the entries and dimensionality are unknown. The matrix D can never be recovered
completely in classical MDS because Euclidean distances are invariant to mean translation
and axis rotation. The appropriate conventions for the data mean and axis orientation will
be discussed later. While the optimization of Eq. 2.16 requires numerical techniques, a direct
solution to classical MDS can be obtained by eigen decomposition under the assumption
that the specified distance matriz is Euclidean:

1.

Any pairwise (squared) distance matrix A = [51-23-]an can be converted into a sym-
metric dot-product matrix S, x, with the help of the cosine law in Euclidean space. In
particular, if X; and 7] are the embedded representations of the ith and jth nodes,
the dot product between X; and Yj can be related to the distances as follows:

T - - .
Xi-Xj=—3 11X = X112 = (1XG112 + 11X511%)] Vi,j e {1...n} (2.17)

For a mean-centered embedding, the value of ||X;||> + || X;||? can be expressed (see
Exercise 9) in terms of the entries of the distance matrix A as follows:

S X = X |12 N D=t X = Xl 3o Y 1% — X2
n n 2

112 +11X511% =

(2.18)
A mean-centering assumption is necessary because the Euclidean distance is mean
invariant, whereas the dot product is not. By substituting Eq. 2.18 in Eq. 2.17, it is
possible to express the dot product Kfj fully in terms of the entries of the distance
matrix A. Because this condition is true for all possible values of ¢ and j, we can
conveniently express it in n X n matrix form. Let U be the n x n matrix of all 1s, and
let I be the identity matrix. Then, our argument above shows that the dot-product
matrix S is equal to —3 (I — Y)A(I— ¥). Under the Euclidean assumption, the matrix
S is always positive semidefinite because it is equal to the n x n dot-product matrix
DDT of the unobserved data matrix D, which has unknown dimensionality. Therefore,
it is desired to determine a high-quality factorization of S into the form Dy D}, where
Dy is an n x k matrix of dimensionality k.

2.4. DATA REDUCTION AND TRANSFORMATION 57

2. Such a factorization can be obtained with eigen decomposition. Let S ~ QkEﬁQT =
(Qr2r)(QrXk)T represent the approximate diagonalization of S, where Qy is an n x k
matrix containing the largest k eigenvectors of S, and E% is a k x k diagonal matrix
containing the eigenvalues. The embedded representation is given by Dy = QrXk.
Note that SVD also derives the optimal embedding as the scaled eigenvectors of the
dot-product matrix of the original data. Therefore, the squared error of representation
is minimized by this approach. This can also be shown to be equivalent to minimizing
the Kruskal stress.

The optimal solution is not unique, because we can multiply Q> with any k x k& matrix
with orthonormal columns, and the pairwise Euclidean distances will not be affected. In
other words, any representation of Q1Y) in a rotated axis system is optimal as well. MDS
finds an axis system like PCA in which the individual attributes are uncorrelated. In fact,
if classical MDS is applied to a distance matrix A, which is constructed by computing the
pairwise Euclidean distances in an actual data set, then it will yield the same embedding as
the application of PCA on that data set. MDS is useful when such a data set is not available
to begin with, and only the distance matrix A is available.

As in all dimensionality reduction methods, the value of the dimensionality k provides the
trade-off between representation size and accuracy. Larger values of the dimensionality k will
lead to lower stress. A larger number of data points typically requires a larger dimensionality
of representation to achieve the same stress. The most crucial element is, however, the
inherent structure of the distance matrix. For example, if a 10,000 x 10, 000 distance matrix
contains the pairwise driving distance between 10,000 cities, it can usually be approximated
quite well with just a 2-dimensional representation. This is because driving distances are
an approximation of Euclidean distances in 2-dimensional space. On the other hand, an
arbitrary distance matrix may not be Euclidean and the distances may not even satisfy the
triangle inequality. As a result, the matrix S might not be positive semidefinite. In such
cases, it is sometimes still possible to use the metric assumption to obtain a high-quality
embedding. Specifically, only those positive eigenvalues may be used, whose magnitude
exceeds that of the most negative eigenvalue. This approach will work reasonably well if the
negative eigenvalues have small magnitude.

MDS is commonly used in nonlinear dimensionality reduction methods such as ISOMAP
(cf. Sect. 3.2.1.7 of Chap. 3). It is noteworthy that, in conventional SVD, the scaled eigen-
vectors of the n x n dot-product similarity matrix DD” yield a low-dimensional embedded
representation of D just as the eigenvectors of S yield the embedding in MDS. The eigen
decomposition of similarity matrices is fundamental to many linear and nonlinear dimen-
sionality reduction methods such as PCA, SVD, ISOMAP, kernel PCA, and spectral embed-
ding. The specific properties of each embedding are a result of the choice of the similarity
matrix and the scaling used on the resulting eigenvectors. Table 2.3 provides a preliminary
comparison of these methods, although some of them are discussed in detail only in later
chapters.

2.4.4.3 Spectral Transformation and Embedding of Graphs

Whereas MDS methods are designed for preserving global distances, spectral methods are
designed for preserving local distances for applications such as clustering. Spectral methods
work with similarity graphs in which the weights on the edges represent similarity rather
than distances. When distance values are available they are converted to similarity values
with kernel functions such as the heat kernel discussed earlier in this chapter. The notion

58 CHAPTER 2. DATA PREPARATION

of similarity is natural to many real Web, social, and information networks because of the
notion of homophily. For example, consider a bibliographic network in which nodes cor-
respond to authors, and the edges correspond to co-authorship relations. The weight of
an edge represents the number of publications between authors and therefore represents
one possible notion of similarity in author publications. Similarity graphs can also be con-
structed between arbitrary data types. For example, a set of n time series can be converted
into a graph with n nodes, where a node represents each time series. The weight of an
edge is equal to the similarity between the two nodes, and only edges with a “sufficient”
level of similarity are retained. A discussion of the construction of the similarity graph is
provided in Sect. 2.2.2.9. Therefore, if a similarity graph can be transformed to a multidi-
mensional representation that preserves the similarity structure between nodes, it provides
a transformation that can port virtually any data type to the easily usable multidimen-
sional representation. The caveat here is that such a transformation can only be used for
similarity-based applications such as clustering or nearest neighbor classification because
the transformation is designed to preserve the local similarity structure. The local similarity
structure of a data set is nevertheless fundamental to many data mining applications.

Let G = (N, A) be an undirected graph with node set N and edge set A. It is assumed
that the node set contains n nodes. A symmetric n x n weight matrix W = [w;;] represents
the similarities between the different nodes. Unlike MDS, which works with a complete
graph of global distances, this graph is generally a sparsified representation of the similarity
of each object to its k nearest objects (cf. Sect. 2.2.2.9). The similarities to the remaining
objects are not distinguished from one another and set to 0. This is because spectral methods
preserve only the local similarity structure for applications such as clustering. All entries in
this matrix are assumed to be nonnegative, and higher values indicate greater similarity. If
an edge does not exist between a pair of nodes, then the corresponding entry is assumed to
be 0. It is desired to embed the nodes of this graph into a k-dimensional space so that the
similarity structure of the data is preserved.

First, let us discuss the much simpler problem of mapping the nodes onto a 1-dimensional
space. The generalization to the k-dimensional case is relatively straightforward. We would
like to map the nodes in N into a set of 1-dimensional real values y; ... %, on a line, so that
the distances between these points reflect the edge connectivity among the nodes. Therefore,
it is undesirable for nodes that are connected with high-weight edges, to be mapped onto
distant points on this line. Therefore, we would like to determine values of y; that minimize
the following objective function O:

0=>"> wijlyi —y;) (2.19)
i=1 j=1

This objective function penalizes the distances between y; and y; with weight proportional
to w;;. Therefore, when w;; is very large (more similar nodes), the data points y; and y; will
be more likely to be closer to one another in the embedded space. The objective function
O can be rewritten in terms of the Laplacian matriz L of weight matrix W. The Laplacian
matrix L is defined as A — W, where A is a diagonal matrix satisfying A;; = Z;lzl Wij.
Let the n-dimensional column vector of embedded values be denoted by 7 = (yy ...y,)T. It
can be shown after some algebraic simplification that the minimization objective function
O can be rewritten in terms of the Laplacian matrix:

O =27"Ly (2.20)

2.5. SUMMARY 59

The matrix L is positive semidefinite with nonnegative eigenvalues because the sum-of-
squares objective function O is always nonnegative. We need to incorporate a scaling con-
straint to ensure that the trivial value of y; = 0 for all 4, is not selected by the optimization
solution. A possible scaling constraint is as follows:

TAT =1 (2.21)

The use of the matrix A in the constraint of Eq. 2.21 is essentially a normalization constraint,
which is discussed in detail in Sect. 19.3.4 of Chap. 19.

It can be shown that the value of O is optimized by selecting ¥ as the smallest eigen-
vector of the relationship A~'Ly = \j. However, the smallest eigenvalue is always 0, and
it corresponds to the trivial solution where the node embedding ¥ is proportional to the
vector containing only 1s. This trivial eigenvector is non-informative because it corresponds
to an embedding in which every node is mapped to the same point. Therefore, it can be
discarded, and it is not used in the analysis. The second-smallest eigenvector then provides
an optimal solution that is more informative.

This solution can be generalized to finding an optimal k-dimensional embedding by
determining successive directions corresponding to eigenvectors with increasing eigenvalues.
After discarding the first trivial eigenvector €7 with eigenvalue A\; = 0, this results in a set
of k eigenvectors €3, €3 . ..€,+1, with corresponding eigenvalues Ao < A3 < ... < Ag41. Each
eigenvector is of length n and contains one coordinate value for each node. The ith value
along the jth eigenvector represents the jth coordinate of the ith node. This creates an
n X k matrix, corresponding to the k-dimensional embedding of the n nodes.

What do the small magnitude eigenvectors intuitively represent in the new transformed
space? By using the ordering of the nodes along a small magnitude eigenvector to create a
cut, the weight of the edges across the cut is likely to be small. Thus, this represents a cluster
in the space of nodes. In practice, the k smallest eigenvectors (after ignoring the first) are
selected to perform the reduction and create a k-dimensional embedding. This embedding
typically contains an excellent representation of the underlying similarity structure of the
nodes. The embedding can be used for virtually any similarity-based application, although
the most common application of this approach is spectral clustering. Many variations of
this approach exist in terms of how the Laplacian L is normalized, and in terms of how the
final clusters are generated. The spectral clustering method will be discussed in detail in
Sect. 19.3.4 of Chap. 19.

2.5 Summary

Data preparation is an important part of the data mining process because of the sensitivity
of the analytical algorithms to the quality of the input data. The data mining process
requires the collection of raw data from a variety of sources that may be in a form which
is unsuitable for direct application of analytical algorithms. Therefore, numerous methods
may need to be applied to extract features from the underlying data. The resulting data
may have significant missing values, errors, inconsistencies, and redundancies. A variety
of analytical methods and data scrubbing tools exist for imputing the missing entries or
correcting inconsistencies in the data.

Another important issue is that of data heterogeneity. The analyst may be faced with
a multitude of attributes that are distinct, and therefore the direct application of data
mining algorithms may not be easy. Therefore, data type portability is important, wherein
some subsets of attributes are converted to a predefined format. The multidimensional

60 CHAPTER 2. DATA PREPARATION

format is often preferred because of its simplicity. Virtually, any data type can be converted
to multidimensional representation with the two-step process of constructing a similarity
graph, followed by multidimensional embedding.

The data set may be very large, and it may be desirable to reduce its size both in terms
of the number of rows and the number of dimensions. The reduction in terms of the number
of rows is straightforward with the use of sampling. To reduce the number of columns in the
data, either feature subset selection or data transformation may be used. In feature subset
selection, only a smaller set of features is retained that is most suitable for analysis. These
methods are closely related to analytical methods because the relevance of a feature may
be application dependent. Therefore, the feature selection phase need to be tailored to the
specific analytical method.

There are two types of feature transformation. In the first type, the axis system may be
rotated to align with the correlations of the data and retain the directions with the greatest
variance. The second type is applied to complex data types such as graphs and time series.
In these methods, the size of the representation is reduced, and the data is also transformed
to a multidimensional representation.

2.6 Bibliographic Notes

The problem of feature extraction is an important one for the data mining process but it is
highly application specific. For example, the methods for extracting named entities from a
document data set [400] are very different from those that extract features from an image
data set [424]. An overview of some of the promising technologies for feature extraction in
various domains may be found in [245].

After the features have been extracted from different sources, they need to be inte-
grated into a single database. Numerous methods have been described in the conventional
database literature for data integration [194, 434]. Subsequently, the data needs to be
cleaned and missing entries need to be removed. A new field of probabilistic or uncertain
data has emerged [18] that models uncertain and erroneous records in the form of prob-
abilistic databases. This field is, however, still in the research stage and has not entered
the mainstream of database applications. Most of the current methods either use tools
for missing data analysis [71, 364] or more conventional data cleaning and data scrubbing
tools [222, 433, 435].

After the data has been cleaned, its size needs to be reduced either in terms of numerosity
or in terms of dimensionality. The most common and simple numerosity reduction method
is sampling. Sampling methods can be used for either static data sets or dynamic data sets.
Traditional methods for data sampling are discussed in [156]. The method of sampling has
also been extended to data streams in the form of reservoir sampling [35, 498]. The work
in [35] discusses the extension of reservoir sampling methods to the case where a biased
sample needs to be created from the data stream.

Feature selection is an important aspect of the data mining process. The approach is
often highly dependent on the particular data mining algorithm being used. For example, a
feature selection method that works well for clustering may not work well for classification.
Therefore, we have deferred the discussion of feature selection to the relevant chapters on
the topic on clustering and classification in this book. Numerous books are available on the
topic of feature selection [246, 366].

The two most common dimensionality reduction methods used for multidimensional
data are SVD [480, 481] and PCA [295]. These methods have also been extended to text in

2.7. EXERCISES 61

the form of LSA [184, 416]. It has been shown in many domains [25, 184, 416] that the use of
methods such as SVD, LSA, and PCA unexpectedly improves the quality of the underlying
representation after performing the reduction. This improvement is because of reduction
in noise effects by discarding the low-variance dimensions. Applications of SVD to data
imputation are found in [23] and Chap. 18 of this book. Other methods for dimensionality
reduction and transformation include Kalman filtering [260], Fastmap [202], and nonlinear
methods such as Laplacian eigenmaps [90], MDS [328], and ISOMAP [490].

Many dimensionality reduction methods have also been proposed in recent years that
simultaneously perform type transformation together with the reduction process. These
include wavelet transformation [475] and graph embedding methods such as ISOMAP and
Laplacian eigenmaps [90, 490]. A tutorial on spectral methods for graph embedding may be
found in [371].

2.7 Exercises

1. Consider the time-series (—3,—1,1,3,5,7,). Here, a missing entry is denoted by .
What is the estimated value of the missing entry using linear interpolation on a window
of size 37

2. Suppose you had a bunch of text documents, and you wanted to determine all the
personalities mentioned in these documents. What class of technologies would you use
to achieve this goal?

3. Download the Arrythmia data set from the UCT Machine Learning Repository [213].
Normalize all records to a mean of 0 and a standard deviation of 1. Discretize each
numerical attribute into (a) 10 equi-width ranges and (b) 10 equi-depth ranges.

4. Suppose that you had a set of arbitrary objects of different types representing different
characteristics of widgets. A domain expert gave you the similarity value between every
pair of objects. How would you convert these objects into a multidimensional data set
for clustering?

5. Suppose that you had a data set, such that each data point corresponds to sea-surface
temperatures over a square mile of resolution 10 x 10. In other words, each data record
contains a 10 x 10 grid of temperature values with spatial locations. You also have
some text associated with each 10 x 10 grid. How would you convert this data into a
multidimensional data set?

6. Suppose that you had a set of discrete biological protein sequences that are annotated
with text describing the properties of the protein. How would you create a multidi-
mensional representation from this heterogeneous data set?

7. Download the Musk data set from the UCI Machine Learning Repository [213]. Apply
PCA to the data set, and report the eigenvectors and eigenvalues.

8. Repeat the previous exercise using SVD.

9. For a mean-centered data set with points X ... X, show that the following is true:

2 X = Xl Y 1% = Xll? 3o Xga [1X = XlI?
2

[1XG] 12+ 11511 =
n n n
(2.22)

62

10.

11.

12.

13.

14.
15.

CHAPTER 2. DATA PREPARATION

Consider the time series 1,1, 3, 3,3, 3, 1, 1. Perform wavelet decomposition on the time
series. How many coefficients of the series are nonzero?

Download the Intel Research Berkeley data set. Apply a wavelet transformation to
the temperature values in the first sensor.

Treat each quantitative variable in the KDD CUP 1999 Network Intrusion Data Set
from the UCI Machine Learning Repository [213] as a time series. Perform the wavelet
decomposition of this time series.

Create samples of size n = 1,10, 100,1000, 10000 records from the data set of the
previous exercise, and determine the average value e; of each quantitative column i
using the sample. Let p; and o; be the global mean and standard deviation over the
entire data set. Compute the number of standard deviations z; by which e; varies from
-
lei — il
2= ——
05

How does z; vary with n?
Show that any right singular vector 7 of A with 0 singular value satisfies Ay = 0.

Show that the diagonalization of a square matrix is a specialized variation of SVD.

Chapter 3

Similarity and Distances

“Love is the power to see similarity in the dissimilar.”—Theodor Adorno

3.1 Introduction

Many data mining applications require the determination of similar or dissimilar objects,
patterns, attributes, and events in the data. In other words, a methodical way of quanti-
fying similarity between data objects is required. Virtually all data mining problems, such
as clustering, outlier detection, and classification, require the computation of similarity. A
formal statement of the problem of similarity or distance quantification is as follows:

Given two objects O1 and Oz, determine a value of the similarity Sim(O1,02) (or dis-
tance Dist(O1,02)) between the two objects.

In similarity functions, larger values imply greater similarity, whereas in distance func-
tions, smaller values imply greater similarity. In some domains, such as spatial data, it is
more natural to talk about distance functions, whereas in other domains, such as text, it is
more natural to talk about similarity functions. Nevertheless, the principles involved in the
design of such functions are generally invariant across different data domains. This chap-
ter will, therefore, use either of the terms “distance function” and “similarity function,”
depending on the domain at hand. Similarity and distance functions are often expressed in
closed form (e.g., Euclidean distance), but in some domains, such as time-series data, they
are defined algorithmically and cannot be expressed in closed form.

Distance functions are fundamental to the effective design of data mining algorithms,
because a poor choice in this respect may be very detrimental to the quality of the results.
Sometimes, data analysts use the Euclidean function as a “black box” without much thought
about the overall impact of such a choice. It is not uncommon for an inexperienced analyst
to invest significant effort in the algorithmic design of a data mining problem, while treating
the distance function subroutine as an afterthought. This is a mistake. As this chapter will
elucidate, poor choices of the distance function can sometimes be disastrously misleading

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8_3 63
(© Springer International Publishing Switzerland 2015

64 CHAPTER 3. SIMILARITY AND DISTANCES

depending on the application domain. Good distance function design is also crucial for type
portability. As discussed in Sect. 2.4.4.3 of Chap. 2, spectral embedding can be used to
convert a similarity graph constructed on any data type into multidimensional data.

Distance functions are highly sensitive to the data distribution, dimensionality, and data
type. In some data types, such as multidimensional data, it is much simpler to define and
compute distance functions than in other types such as time-series data. In some cases,
user intentions (or training feedback on object pairs) are available to supervise the distance
function design. Although this chapter will primarily focus on unsupervised methods, we
will also briefly touch on the broader principles of using supervised methods.

This chapter is organized as follows. Section 3.2 studies distance functions for multidi-
mensional data. This includes quantitative, categorical, and mixed attribute data. Similarity
measures for text, binary, and set data are discussed in Sect. 3.3. Temporal data is discussed
in Sect. 3.4. Distance functions for graph data are addressed in Sect. 3.5. A discussion of
supervised similarity will be provided in Sect. 3.6. Section 3.7 gives a summary.

3.2 Multidimensional Data

Although multidimensional data are the simplest form of data, there is significant diversity
in distance function design across different attribute types such as categorical or quantitative
data. This section will therefore study each of these types separately.

3.2.1 Quantitative Data

The most common distance function for quantitative data is the L,-norm. The L,-norm

between two data points X = (x1...74) and Y = (y1 ...yq) is defined as follows:

d 1/17
Dist(X,Y) = (Zm —yi|p> : (3.1)

i=1

Two special cases of the Ly-norm are the Fuclidean (p = 2) and the Manhattan (p = 1)
metrics. These special cases derive their intuition from spatial applications where they have
clear physical interpretability. The FEuclidean distance is the straight-line distance between
two data points. The Manhattan distance is the “city block” driving distance in a region in
which the streets are arranged as a rectangular grid, such as the Manhattan Island of New
York City.

A nice property of the Euclidean distance is that it is rotation-invariant because the
straight-line distance between two data points does not change with the orientation of the
axis system. This property also means that transformations, such as PCA, SVD, or the
wavelet transformation for time series (discussed in Chap. 2), can be used on the data
without affecting® the distance. Another interesting special case is that obtained by setting
p = oo. The result of this computation is to select the dimension for which the two objects
are the most distant from one another and report the absolute value of this distance. All
other features are ignored.a

The L,-norm is one of the most popular distance functions used by data mining analysts.
One of the reasons for its popularity is the natural intuitive appeal and interpretability of
Li- and Lo-norms in spatial applications. The intuitive interpretability of these distances
does not, however, mean that they are the most relevant ones, especially for the high-
dimensional case. In fact, these distance functions may not work very well when the data

IThe distances are affected after dimensions are dropped. However, the transformation itself does not
impact distances.

3.2. MULTIDIMENSIONAL DATA 65

1.6 T T T T T T T T T 35

— L1 (MANHATTAN)
- - - L2 (EUCLIDIAN)
R

L8

EN
w

-)

DISTANCE CONTRAST
o
©

DISTANCE CONTRAST

I o
S)

o
N

00 160 260 360 460 560 660 760 860 960 100 00 1b éO 3‘0 40 Sb 60 7‘0 éO 50 160
DATA DIMENSIONALITY DATA DIMENSIONALITY
(a) Contrasts with dimensionality (b) Contrasts with norms

Figure 3.1: Reduction in distance contrasts with increasing dimensionality and norms

are high dimensional because of the varying impact of data sparsity, distribution, noise,
and feature relevance. This chapter will discuss these broader principles in the context of
distance function design.

3.2.1.1 Impact of Domain-Specific Relevance

In some cases, an analyst may know which features are more important than others for a
particular application. For example, for a credit-scoring application, an attribute such as
salary is much more relevant to the design of the distance function than an attribute such
as gender, though both may have some impact. In such cases, the analyst may choose to
weight the features differently if domain-specific knowledge about the relative importance
of different features is available. This is often a heuristic process based on experience and
skill. The generalized L,-distance is most suitable for this case and is defined in a similar
way to the L,-norm, except that a coefficient a; is associated with the ith feature. This
coefficient is used to weight the corresponding feature component in the L,-norm:

d 1/p
Dist(X,Y) = (Z ai - |z — yiv’) . (3.2)
1=1

This distance is also referred to as the generalized Minkowski distance. In many cases, such
domain knowledge is not available. Therefore, the L,-norm may be used as a default option.
Unfortunately, without knowledge about the most relevant features, the L,-norm is suscep-
tible to some undesirable effects of increasing dimensionality, as discussed subsequently.

3.2.1.2 Impact of High Dimensionality

Many distance-based data mining applications lose their effectiveness as the dimensionality
of the data increases. For example, a distance-based clustering algorithm may group unre-
lated data points because the distance function may poorly reflect the intrinsic semantic
distances between data points with increasing dimensionality. As a result, distance-based
models of clustering, classification, and outlier detection are often qualitatively ineffective.
This phenomenon is referred to as the “curse of dimensionality,” a term first coined by
Richard Bellman.

66 CHAPTER 3. SIMILARITY AND DISTANCES

To better understand the impact of the dimensionality curse on distances, let us examine
a unit cube of dimensionality d that is fully located in the nonnegative quadrant, with one
corner at the origin O. What is the Manhattan distance of the corner of this cube (say, at
the origin) to a randomly chosen point X inside the cube? In this case, because one end
point is the origin, and all coordinates are nonnegative, the Manhattan distance will sum up
the coordinates of X over the different dimensions. Each of these coordinates is uniformly
distributed in [0, 1]. Therefore, if Y; represents the uniformly distributed random variable
in [0, 1], it follows that the Manhattan distance is as follows:

d
Dist(0,X) =Y (V; —0). (3.3)

i=1

The result is a random variable with a mean of © = d/2 and a standard deviation of
o = +/d/12. For large values of d, it can be shown by the law of large numbers that the vast
majority of randomly chosen points inside the cube will lie in the range [Dinin, Dimaz] =
[¢ — 30, u + 30]. Therefore, most of the points in the cube lie within a distance range of
Dvaw — Doin, = 60 = V/3d from the origin. Note that the expected Manhattan distance
grows with dimensionality at a rate that is linearly proportional to d. Therefore, the ratio
of the variation in the distances to the absolute values that is referred to as Contrast(d),
is given by:

Contrast(d) = M =+/12/d. (3.4)
This ratio can be interpreted as the distance contrast between the different data points,
in terms of how different the minimum and maximum distances from the origin might
be considered. Because the contrast reduces with v/d, it means that there is virtually no
contrast with increasing dimensionality. Lower contrasts are obviously not desirable because
it means that the data mining algorithm will score the distances between all pairs of data
points in approximately the same way and will not discriminate well between different
pairs of objects with varying levels of semantic relationships. The variation in contrast with
increasing dimensionality is shown in Fig. 3.1a. This behavior is, in fact, observed for all
Ly,-norms at different values of p, though with varying severity. These differences in severity
will be explored in a later section. Clearly, with increasing dimensionality, a direct use of
the L,-norm may not be effective.

3.2.1.3 Impact of Locally Irrelevant Features

A more fundamental way of exploring the effects of high dimensionality is by examining the
impact of irrelevant features. This is because many features are likely to be irrelevant in a
typical high-dimensional data set. Consider, for example, a set of medical records, contain-
ing patients with diverse medical conditions and very extensive quantitative measurements
about various aspects of an individual’s medical history. For a cluster containing diabetic
patients, certain attributes such as the blood glucose level are more important for the dis-
tance computation. On the other hand, for a cluster containing epileptic patients, a different
set of features will be more important. The additive effects of the natural variations in the
many attribute values may be quite significant. A distance metric such as the Euclidean
metric may unnecessarily contribute a high value from the more noisy components because
of its square-sum approach. The key point to understand here is that the precise features
that are relevant to the distance computation may sometimes be sensitive to the particular
pair of objects that are being compared. This problem cannot be solved by global feature

3.2. MULTIDIMENSIONAL DATA 67

351 15
—e—2-DIMENSIONAL

- v - 10-DIMENSIONAL
3r -+ 100-DIMENSIONAL

—o—2-DIMENSIONAL
- - 10-DIMENSIONAL
-+ 100-DIMENSIONAL

25,

0.5 To-- o

DISTANCE CONTRAST

N
NORMALIZED DISTANCE CONTRAST
T ¥ "

;/
P
”
;

4 5 6 7 8 1 2 3 4 5 6 7 8
VALUE of p VALUE of p

(a) Contrast (b) Contrast/Manhattan Contrast

Figure 3.2: Impact of p on contrast

subset selection during preprocessing, because the relevance of features is locally determined
by the pair of objects that are being considered. Globally, all features may be relevant.

When many features are irrelevant, the additive noise effects of the irrelevant features can
sometimes be reflected in the concentration of the distances. In any case, such irrelevant fea-
tures will almost always result in errors in distance computation. Because high-dimensional
data sets are often likely to contain diverse features, many of which are irrelevant, the addi-
tive effect with the use of a sum-of-squares approach, such as the Lo-norm, can be very
detrimental.

3.2.1.4 Impact of Different L,-Norms

Different L,-norms do not behave in a similar way either in terms of the impact of irrelevant
features or the distance contrast. Consider the extreme case when p = co. This translates to
using only the dimension where the two objects are the most dissimilar. Very often, this may
be the impact of the natural variations in an irrelevant attribute that is not too useful for a
similarity-based application. In fact, for a 1000-dimensional application, if two objects have
similar values on 999 attributes, such objects should be considered very similar. However,
a single irrelevant attribute on which the two objects are very different will throw off the
distance value in the case of the L., metric. In other words, local similarity properties of
the data are de-emphasized by L.,. Clearly, this is not desirable.

This behavior is generally true for larger values of p, where the irrelevant attributes
are emphasized. In fact, it can also be shown that distance contrasts are also poorer for
larger values of p for certain data distributions. In Fig. 3.1b, the distance contrasts have
been illustrated for different values of p for the L,-norm over different dimensionalities. The
figure is constructed using the same approach as Fig. 3.1a. While all L,-norms degrade with
increasing dimensionality, the degradation is much faster for the plots representing larger
values of p. This trend can be understood better from Fig. 3.2 where the value of p is used
on the X-axis. In Fig. 3.2a, the contrast is illustrated with different values of p for data of
different dimensionalities. Figure 3.2b is derived from Fig. 3.2a, except that the results show
the fraction of the Manhattan performance achieved by higher order norms. It is evident
that the rate of degradation with increasing p is higher when the dimensionality of the data
is large. For 2-dimensional data, there is very little degradation. This is the reason that the
value of p matters less in lower dimensional applications.

68 CHAPTER 3. SIMILARITY AND DISTANCES

This argument has been used to propose the concept of fractional metrics, for which

€ (0,1). Such fractional metrics can provide more effective results for the high-dimensional

case. As a rule of thumb, the larger the dimensionality, the lower the value of p. However,

no exact rule exists on the precise choice of p because dimensionality is not the only factor

in determining the proper value of p. The precise choice of p should be selected in an

application-specific way, with the use of benchmarking. The bibliographic notes contain
discussions on the use of fractional metrics.

3.2.1.5 Match-Based Similarity Computation

Because it is desirable to select locally relevant features for distance computation, a question
arises as to how this can be achieved in a meaningful and practical way for data mining
applications. A simple approach that is based on the cumulative evidence of matching many
attribute values has been shown to be effective in many scenarios. This approach is also
relatively easy to implement efficiently.

A broader principle that seems to work well for high-dimensional data is that the impact
of the noisy variation along individual attributes needs to be de-emphasized while counting
the cumulative match across many dimensions. Of course, such an approach poses challenges
for low-dimensional data, because the cumulative impact of matching cannot be counted
in a statistically robust way with a small number of dimensions. Therefore, an approach is
needed that can automatically adjust to the dimensionality of the data.

With increasing dimensionality, a record is likely to contain both relevant and irrelevant
features. A pair of semantically similar objects may contain feature values that are dissimilar
(at the level of one standard deviation along that dimension) because of the noisy variations
in irrelevant features. Conversely, a pair of objects are unlikely to have similar values across
many attributes, just by chance, unless these attributes were relevant. Interestingly, the
Euclidean metric (and L,-norm in general) achieves exactly the opposite effect by using
the squared sum of the difference in attribute values. As a result, the “noise” components
from the irrelevant attributes dominate the computation and mask the similarity effects of a
large number of relevant attributes. The L..-norm provides an extreme example of this effect
where the dimension with the largest distance value is used. In high-dimensional domains
such as text, similarity functions such as the cosine measure (discussed in Sect. 3.3), tend
to emphasize the cumulative effect of matches on many attribute values rather than large
distances along individual attributes. This general principle can also be used for quantitative
data.

One way of de-emphasizing precise levels of dissimilarity is to use proximity thresh-
olding in a dimensionality-sensitive way. To perform proximity thresholding, the data are
discretized into equidepth buckets. Each dimension is divided into k4 equidepth buckets,
containing a fraction 1/ky of the records. The number of buckets, k4, is dependent on the
data dimensionality d.

Let X = (z1...24) and Y = (y1 ...y4) be two d-dimensional records. Then, for dimen-
sion 4, if both x; and y; belong to the same bucket, the two records are said to be in
proximity on dimension i. The subset of dimensions on which X and Y map to the same
bucket is referred to as the proximity set, and it is denoted by S(X,Y, k4). Furthermore,
for each dimension i € S(X,Y, kq), let m; and n; be the upper and lower bounds of the
bucket in dimension ¢, in which the two records are proximate to one another. Then, the

3.2. MULTIDIMENSIONAL DATA 69

PRINCIPAL
COMPONENTS

S T

X <= POINT A

FEATURE Y

X <- POINT B

FEATURE X

Figure 3.3: Global data distributions impact distance computations

similarity PSelect(X,Y, k) is defined as follows:

1/p

¥ v _ |33z' - yi' P
PSelect(X,Y , kq) = > 1— =2 : (3.5)

— mi — TNy
i€S(X,Y kq)

The value of the aforementioned expression will vary between 0 and |S(X,Y, k)| because
each individual expression in the summation lies between 0 and 1. This is a similarity
function because larger values imply greater similarity.

The aforementioned similarity function guarantees a nonzero similarity component only
for dimensions mapping to the same bucket. The use of equidepth partitions ensures that
the probability of two records sharing a bucket for a particular dimension is given by 1/kq.
Thus, on average, the aforementioned summation is likely to have d/k; nonzero compo-
nents. For more similar records, the number of such components will be greater, and each
individual component is also likely to contribute more to the similarity value. The degree of
dissimilarity on the distant dimensions is ignored by this approach because it is often dom-
inated by noise. It has been shown theoretically [7] that picking k4 o d achieves a constant
level of contrast in high-dimensional space for certain data distributions. High values of kg
result in more stringent quality bounds for each dimension. These results suggest that in
high-dimensional space, it is better to aim for higher quality bounds for each dimension,
so that a smaller percentage (not number) of retained dimensions are used in similarity
computation. An interesting aspect of this distance function is the nature of its sensitivity
to data dimensionality. The choice of k4 with respect to d ensures that for low-dimensional
applications, it bears some resemblance to the L,-norm by using most of the dimensions;
whereas for high-dimensional applications, it behaves similar to text domain-like similarity
functions by using similarity on matching attributes. The distance function has also been
shown to be more effective for a prototypical nearest-neighbor classification application.

3.2.1.6 Impact of Data Distribution

The L,-norm depends only on the two data points in its argument and is invariant to the
global statistics of the remaining data points. Should distances depend on the underlying
data distribution of the remaining points in the data set? The answer is yes. To illustrate
this point, consider the distribution illustrated in Fig. 3.3 that is centered at the origin. In

70 CHAPTER 3. SIMILARITY AND DISTANCES

FEATURE Y

1t X<-POINTA ".X <~ POINT B

. . N , 2 . .
-3 -2 -1 0 1 2 3
FEATURE X

Figure 3.4: Impact of nonlinear distributions on distance computations

addition, two data points A= (1,2) and B= (1, —2) are marked in the figure. Clearly, A and
B are equidistant from the origin according to any L,-norm. However, a question arises,
as to whether A and B should truly be considered equidistant from the origin O. This is
because the straight line from O to A is aligned with a high-variance direction in the data,
and statistically, it is more likely for data points to be further away in this direction. On
the other hand, many segments of the path from O to B are sparsely populated, and the
corresponding direction is a low-variance direction. Statistically, it is much less likely for B
to be so far away from O along this direction. Therefore, the distance from O to A ought
to be less than that of O to B.

The Mahalanobis distance is based on this general principle. Let 3 be its d X d covariance
matrix of the data set. In this case, the (4, j)th entry of the covariance matrix is equal to the
covariance between the dimensions i and j. Then, the Mahalanobis distance Maha(X,Y)
between two d-dimensional data points X and Y is as follows:

Maha(X,Y) = /(X - V)51 (X — V)T

A different way of understanding the Mahalanobis distance is in terms of principal compo-
nent analysis (PCA). The Mahalanobis distance is similar to the Euclidean distance, except
that it normalizes the data on the basis of the interattribute correlations. For example, if
the axis system were to be rotated to the principal directions of the data (shown in Fig. 3.3),
then the data would have no (second order) interattribute correlations. The Mahalanobis
distance is equivalent to the Euclidean distance in such a transformed (axes-rotated) data
set after dividing each of the transformed coordinate values by the standard deviation of
the data along that direction. As a result, the data point B will have a larger distance from
the origin than data point A in Fig. 3.3.

3.2.1.7 Nonlinear Distributions: ISOMAP

We now examine the case in which the data contain nonlinear distributions of arbitrary
shape. For example, consider the global distribution illustrated in Fig. 3.4. Among the three
data points A, B, and C, which pair are the closest to one another? At first sight, it would
seem that data points A and B are the closest on the basis of Euclidean distance. However,
the global data distribution tells us otherwise. One way of understanding distances is as the
shortest length of the path from one data point to another, when using only point-to-point
jumps from data points to one of their k-nearest neighbors based on a standard metric

3.2. MULTIDIMENSIONAL DATA 71

POINT A 0.4

4 0.2
. POINT C

« 0

POINT B

-1 -5

(a) A and C seem close (b) A and C are actually far away
(original data) (ISOMAP embedding)

Figure 3.5: Impact of ISOMAP embedding on distances

such as the Euclidean measure. The intuitive rationale for this is that only short point-
to-point jumps can accurately measure minor changes in the generative process for that
point. Therefore, the overall sum of the point-to-point jumps reflects the aggregate change
(distance) from one point to another (distant) point more accurately than a straight-line
distance between the points. Such distances are referred to as geodesic distances. In the
case of Fig. 3.4, the only way to walk from A to B with short point-to-point jumps is to
walk along the entire elliptical shape of the data distribution while passing C along the way.
Therefore, A and B are actually the farthest pair of data points (from A, B, and C) on this
basis! The implicit assumption is that nonlinear distributions are locally Euclidean but are
globally far from Euclidean.

Such distances can be computed by using an approach that is derived from a nonlin-
ear dimensionality reduction and embedding method, known as ISOMAP. The approach
consists of two steps:

1. Compute the k-nearest neighbors of each point. Construct a weighted graph G with
nodes representing data points, and edge weights (costs) representing distances of
these k-nearest neighbors.

2. For any pair of points X and Y, report Dist(X,Y) as the shortest path between the
corresponding nodes in G.

These two steps are already able to compute the distances without explicitly performing
dimensionality reduction. However, an additional step of embedding the data into a multidi-
mensional space makes repeated distance computations between many pairs of points much
faster, while losing some accuracy. Such an embedding also allows the use of algorithms
that work naturally on numeric multidimensional data with predefined distance metrics.
This is achieved by using the all-pairs shortest-path problem to construct the full set of
distances between any pair of nodes in G. Subsequently, multidimensional scaling (MDS)
(cf. Sect. 2.4.4.2 of Chap. 2) is applied to embed the data into a lower dimensional space.
The overall effect of the approach is to “straighten out” the nonlinear shape of Fig. 3.4 and
embed it into a space where the data are aligned along a flat strip. In fact, a 1-dimensional
representation can approximate the data after this transformation. Furthermore, in this new
space, a distance function such as the Euclidean metric will work very well as long as metric
MDS was used in the final phase. A 3-dimensional example is illustrated in Fig. 3.5a, in
which the data are arranged along a spiral. In this figure, data points A and C seem much

72 CHAPTER 3. SIMILARITY AND DISTANCES

2
1L X<=POINT A. "
ol s 10+
ol . 9ot
OINT B >
8r wo8r
;o o
=)
7t 27t
&
6 6
il X<-POINT C °
P
i 4t .
3t sl X <-POINTD"
2r X<-POINT D B ‘ ‘ ‘ ‘ ‘ ‘
1 L L L L L L L L L L \ 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 10 1 12 FEATURE X
(a) local density variation (b) local orientation variation

Figure 3.6: Impact of local distributions on distance computations

closer to each other than data point B. However, in the ISOMAP embedding of Fig. 3.5b,
the data point B is much closer to each of A and C. This example shows the drastic effect
of data distributions on distance computation.

In general, high-dimensional data are aligned along nonlinear low-dimensional shapes,
which are also referred to as manifolds. These manifolds can be “flattened out” to a new
representation where metric distances can be used effectively. Thus, this is a data trans-
formation method that facilitates the use of standard metrics. The major computational
challenge is in performing the dimensionality reduction. However, after the one-time pre-
processing cost has been paid for, repeated distance computations can be implemented
efficiently.

Nonlinear embeddings can also be achieved with extensions of PCA. PCA can be
extended to discovering nonlinear embeddings with the use of a method known as the
kernel trick. Refer to Sect. 10.6.4.1 of Chap. 10 for a brief description of kernel PCA.

3.2.1.8 Impact of Local Data Distribution

The discussion so far addresses the impact of global distributions on the distance computa-
tions. However, the distribution of the data varies significantly with locality. This variation
may be of two types. For example, the absolute density of the data may vary significantly
with data locality, or the shape of clusters may vary with locality. The first type of variation
is illustrated in Fig. 3.6a, which has two clusters containing the same number of points, but
one of them is denser than the other. Even though the absolute distance between (A, B)
is identical to that between (C, D), the distance between C and D should be considered
greater on the basis of the local data distribution. In other words, C and D are much farther
away in the contezt of what their local distributions look like. This problem is often encoun-
tered in many distance-based methods such as outlier detection. It has been shown that
methods that adjust for the local variations in the distances typically perform much better
than those that do not adjust for local variations. One of the most well-known methods for
outlier detection, known as Local Outlier Factor (LOF), is based on this principle.

A second example is illustrated in Fig. 3.6b, which illustrates the impact of varying local
orientation of the clusters. Here, the distance between (A, B) is identical to that between
(C, D) using the Euclidean metric. However, the local clusters in each region show very
different orientation. The high-variance axis of the cluster of data points relevant to (A, B)

3.2. MULTIDIMENSIONAL DATA 73

is aligned along the path from A to B. This is not true for (C, D). As a result, the intrinsic
distance between C and D is much greater than that between A and B. For example, if
the local Mahalanobis distance is computed using the relevant cluster covariance statistics,
then the distance between C and D will evaluate to a larger value than that between A and B.

Shared Nearest-Neighbor Similarity: The first problem can be at least partially alle-
viated with the use of a shared nearest-neighbor similarity. In this approach, the k-nearest
neighbors of each data point are computed in a preprocessing phase. The shared nearest-
neighbor similarity is equal to the number of common neighbors between the two data
points. This metric is locally sensitive because it depends on the number of common neigh-
bors, and not on the absolute values of the distances. In dense regions, the k-nearest neighbor
distances will be small, and therefore data points need to be closer together to have a larger
number of shared nearest neighbors. Shared nearest-neighbor methods can be used to define
a similarity graph on the underlying data points in which pairs of data points with at least
one shared neighbor have an edge between them. Similarity graph-based methods are almost
always locality sensitive because of their local focus on the k-nearest neighbor distribution.

Generic Methods: In generic local distance computation methods, the idea is to divide
the space into a set of local regions. The distances are then adjusted in each region using
the local statistics of this region. Therefore, the broad approach is as follows:

1. Partition the data into a set of local regions.

2. For any pair of objects, determine the most relevant region for the pair, and compute
the pairwise distances using the local statistics of that region. For example, the local
Mahalanobis distance may be used in each local region.

A variety of clustering methods are used for partitioning the data into local regions. In
cases where each of the objects in the pair belongs to a different region, either the global
distribution may be used, or the average may be computed using both local regions. Another
problem is that the first step of the algorithm (partitioning process) itself requires a notion of
distances for clustering. This makes the solution circular, and calls for an iterative solution.
Although a detailed discussion of these methods is beyond the scope of this book, the
bibliographic notes at the end of this chapter provide a number of pointers.

3.2.1.9 Computational Considerations

A major consideration in the design of distance functions is the computational complexity.
This is because distance function computation is often embedded as a subroutine that is
used repeatedly in the application at hand. If the subroutine is not efficiently implementable,
the applicability becomes more restricted. For example, methods such as ISOMAP are
computationally expensive and hard to implement for very large data sets because these
methods scale with at least the square of the data size. However, they do have the merit that
a one-time transformation can create a representation that can be used efficiently by data
mining algorithms. Distance functions are executed repeatedly, whereas the preprocessing is
performed only once. Therefore, it is definitely advantageous to use a preprocessing-intensive
approach as long as it speeds up later computations. For many applications, sophisticated
methods such as ISOMAP may be too expensive even for one-time analysis. For such cases,
one of the earlier methods discussed in this chapter may need to be used. Among the
methods discussed in this section, carefully chosen L,-norms and match-based techniques
are the fastest methods for large-scale applications.

74 CHAPTER 3. SIMILARITY AND DISTANCES

3.2.2 Categorical Data

Distance functions are naturally computed as functions of value differences along dimensions
in numeric data, which is ordered. However, no ordering exists among the discrete values
of categorical data. How can distances be computed? One possibility is to transform the
categorical data to numeric data with the use of the binarization approach discussed in
Sect. 2.2.2.2 of Chap. 2. Because the binary vector is likely to be sparse (many zero values),
similarity functions can be adapted from other sparse domains such as text. For the case of
categorical data, it is more common to work with similarity functions rather than distance
functions because discrete values can be matched more naturally.

Consider two records X = (z1...74) and Y = (y; ...yq). The simplest possible similar-
ity between the records X and Y is the sum of the similarities on the individual attribute
values. In other words, if S(x;,y;) is the similarity between the attributes values z; and y;,
then the overall similarity is defined as follows:

d

Zs(xiayi)~

i=1

Sim(X,Y)

Therefore, the choice of S(x;,y;) defines the overall similarity function.

The simplest possible choice is to set S(z;,y;) to 1 when x; = y; and 0 otherwise. This is
also referred to as the overlap measure. The major drawback of this measure is that it does
not account for the relative frequencies among the different attributes. For example, consider
a categorical attribute in which the attribute value is “Normal” for 99 % of the records, and
either “Cancer” or “Diabetes” for the remaining records. Clearly, if two records have a
“Normal” value for this variable, this does not provide statistically significant information
about the similarity, because the majority of pairs are likely to show that pattern just by
chance. However, if the two records have a matching “Cancer” or “Diabetes” value for this
variable, it provides significant statistical evidence of similarity. This argument is similar
to that made earlier about the importance of the global data distribution. Similarities or
differences that are unusual are statistically more significant than those that are common.

In the context of categorical data, the aggregate statistical properties of the data set
should be used in computing similarity. This is similar to how the Mahalanobis distance
was used to compute similarity more accurately with the use of global statistics. The idea is
that matches on unusual values of a categorical attribute should be weighted more heavily
than values that appear frequently. This also forms the underlying principle of many com-
mon normalization techniques that are used in domains such as text. An example, which
is discussed in the next section, is the use of inverse document frequency (IDF) in the
information retrieval domain. An analogous measure for categorical data will be introduced
here.

The inverse occurrence frequency is a generalization of the simple matching measure.
This measure weights the similarity between the matching attributes of two records by an
inverse function of the frequency of the matched value. Thus, when x; = y;, the similarity
S(x;,y;) is equal to the inverse weighted frequency, and 0 otherwise. Let p(z) be the
fraction of records in which the kth attribute takes on the value of = in the data set. In
other words, when x; = y;, the value of S(x;,v;) is 1/px(2;)? and 0 otherwise.

1/pr(zi)?* ifx; =y
S(xi,y:) = 3.6
(i 9:) {O otherwise (36)

3.3. TEXT SIMILARITY MEASURES 75

A related measure is the Goodall measure. As in the case of the inverse occurrence
frequency, a higher similarity value is assigned to a match when the value is infrequent.
In a simple variant of this measure [104], the similarity on the kth attribute is defined as
1-— pk(xi)g, when z; = y;, and 0 otherwise.

1—pp(z)? ifz; =y
S(xi,y:) = 3.7
(s 9:) {0 otherwise (3.7)

The bibliographic notes contain pointers to various similarity measures for categorical data.

3.2.3 Mixed Quantitative and Categorical Data

It is fairly straightforward to generalize the approach to mixed data by adding the weights
of the numeric and quantitative components. The main challenge is in deciding how to
assign the weights of the quantitative and categorical components. For example, consider
two records X = (X, X.) and Y = (Y,,Y.) where X,,, Y,, are the subsets of numerical
attributes and X,, Y, are the subsets of categorical attributes. Then, the overall similarity
between X and Y is defined as follows:

Sim(X,Y) = X - NumSim(X,,,Y,) + (1 — \) - CatSim(X,,Y,). (3.8)

The parameter)\ regulates the relative importance of the categorical and numerical
attributes. The choice of A is a difficult one. In the absence of domain knowledge about
the relative importance of attributes, a natural choice is to use a value of A that is equal to
the fraction of numerical attributes in the data. Furthermore, the proximity in numerical
data is often computed with the use of distance functions rather than similarity functions.
However, distance values can be converted to similarity values as well. For a distance value
of dist, a common approach is to use a kernel mapping that yields [104] the similarity value
of 1/(1 + dist).

Further normalization is required to meaningfully compare the similarity value com-
ponents on the numerical and categorical attributes that may be on completely different
scales. One way of achieving this goal is to determine the standard deviations in the similar-
ity values over the two domains with the use of sample pairs of records. Each component of
the similarity value (numerical or categorical) is divided by its standard deviation. There-
fore, if o, and o, are the standard deviations of the similarity values in the categorical and
numerical components, then Eq. 3.8 needs to be modified as follows:

Sim(X,Y) =X NumSim(X,,,Y,)/on + (1 = A) - CatSim(X,,Y.)/o.. (3.9

By performing this normalization, the value of A becomes more meaningful, as a true relative
weight between the two components. By default, this weight can be set to be proportional
to the number of attributes in each component unless specific domain knowledge is available
about the relative importance of attributes.

3.3 Text Similarity Measures

Strictly speaking, text can be considered quantitative multidimensional data when it is
treated as a bag of words. The frequency of each word can be treated as a quantitative
attribute, and the base lexicon can be treated as the full set of attributes. However, the

76 CHAPTER 3. SIMILARITY AND DISTANCES

structure of text is sparse in which most attributes take on 0 values. Furthermore, all word
frequencies are nonnegative. This special structure of text has important implications for
similarity computation and other mining algorithms. Measures such as the L,-norm do not
adjust well to the varying length of the different documents in the collection. For example,
the Lo-distance between two long documents will almost always be larger than that between
two short documents even if the two long documents have many words in common, and the
short documents are completely disjoint. How can one normalize for such irregularities?
One way of doing so is by using the cosine measure. The cosine measure computes the angle
between the two documents, which is insensitive to the absolute length of the document.
Let X = (z1...24) and Y = (y1 ...y4) be two documents on a lexicon of size d. Then, the
cosine measure COb(X Y) between X and Y can be defined as follows:

cos(X,Y) = Ed 171 Yi (3.10)
\/Zz 1T \/Zl VYi

The aforementioned measure simply uses the raw frequencies between attributes. However,
as in other data types, it is possible to use global statistical measures to improve the
similarity computation. For example, if two documents match on an uncommon word, it is
more indicative of similarity than the case where two documents match on a word that occurs
very commonly. The inverse document frequency id;, which is a decreasing function of the
number of documents n; in which the ith word occurs, is commonly used for normalization:

id; = log(n/n;). (3.11)

Here, the number of documents in the collection is denoted by n. Another common adjust-
ment is to ensure that the excessive presence of single word does not throw off the similarity
measure. A damping function f(-), such as the square root or the logarithm, is optionally
applied to the frequencies before similarity computation.

fxi) = Vi
fxi) = log(z;)

In many cases, the damping function is not used, which is equivalent to setting f(x;) to ;.
Therefore, the normalized frequency h(x;) for the ith word may be defined as follows:

Then, the cosine measure is defined as in Eq. 3.10, except that the normalized frequencies
of the words are used:

cos(X. 7) = S () - h(y:) (3.13)
\/Zz 1 x1 \/Zz 1 yl

Another measure that is less commonly used for text is the Jaccard coefficient J(X,Y):

> i hl(i)? + Zi:l (yz) - ZZ 1 h(zi) - h(yz)

The Jaccard coefficient is rarely used for the text domain, but it is used commonly for
sparse binary data sets.

3.4. TEMPORAL SIMILARITY MEASURES 7

3.3.1 Binary and Set Data

Binary multidimensional data are a representation of set-based data, where a value of 1
indicates the presence of an element in a set. Binary data occur commonly in market-
basket domains in which transactions contain information corresponding to whether or not
an item is present in a transaction. It can be considered a special case of text data in which
word frequencies are either 0 or 1. If Sx and Sy are two sets with binary representations
X and Y, then it can be shown that applying Eq. 3.14 to the raw binary representation of
the two sets is equivalent to:

d
Zi:lxi'yi _ |Sxﬁ5y|
Y ey - ey [Sx USY]

This is a particularly intuitive measure because it carefully accounts for the number of
common and disjoint elements in the two sets.

J(X,Y) = (3.15)

3.4 Temporal Similarity Measures

Temporal data contain a single contextual attribute representing time and one or more
behavioral attributes that measure the properties varying along a particular time period.
Temporal data may be represented as continuous time series, or as discrete sequences,
depending on the application domain. The latter representation may be viewed as the
discrete version of the former. It should be pointed out that discrete sequence data are not
always temporal because the contextual attribute may represent placement. This is typically
the case in biological sequence data. Discrete sequences are also sometimes referred to as
strings. Many of the similarity measures used for time series and discrete sequences can be
reused across either domain, though some of the measures are more suited to one of the
domains. Therefore, this section will address both data types, and each similarity measure
will be discussed in a subsection on either continuous series or discrete series, based on its
most common use. For some measures, the usage is common across both data types.

3.4.1 Time-Series Similarity Measures

The design of time-series similarity measures is highly application specific. For example, the
simplest possible similarity measure between two time series of equal length is the Euclidean
metric. Although such a metric may work well in many scenarios, it does not account for
several distortion factors that are common in many applications. Some of these factors are
as follows:

1. Behavioral attribute scaling and translation: In many applications, the different time
series may not be drawn on the same scales. For example, the time series representing
various stocks prices may show similar patterns of movements, but the absolute values
may be very different both in terms of the mean and the standard deviation. For
example, the share prices of several different hypothetical stock tickers are illustrated
in Fig. 3.7. All three series show similar patterns but with different scaling and some
random variations. Clearly, they show similar patterns but cannot be meaningfully
compared if the absolute values of the series are used.

2. Temporal (contextual) attribute translation: In some applications, such as real-time
analysis of financial markets, the different time series may represent the same periods

78 CHAPTER 3. SIMILARITY AND DISTANCES

—— STOCK A
35 || - - - - STOCK B (DROPPED READINGS)
--- 8TOCKC

—— STOCK A (WARPED) /)

C i . i]
0 50 100 150 200 250 300 350 400 450 500
TIME

Figure 3.7: Impact of scaling, translation, and noise

in time. In other applications, such as the analysis of the time series obtained from
medical measurements, the absolute time stamp of when the reading was taken is not
important. In such cases, the temporal attribute value needs to be shifted in at least
one of the time series to allow more effective matching.

3. Temporal (contextual) attribute scaling: In this case, the series may need to be
stretched or compressed along the temporal axis to allow more effective matching.
This is referred to as time warping. An additional complication is that different tem-
poral segments of the series may need to be warped differently to allow for better
matching. In Fig. 3.7, the simplest case of warping is shown where the entire set
of values for stock A has been stretched. In general, the time warping can be more
complex where different windows in the same series may be stretched or compressed
differently. This is referred to as dynamic time warping (DTW).

4. Noncontiguity in matching: Long time series may have noisy segments that do not
match very well with one another. For example, one of the series in Fig. 3.7 has a
window of dropped readings because of data collection limitations. This is common
in sensor data. The distance function may need to be robust to such noise.

Some of these issues can be addressed by attribute normalization during preprocessing.

3.4.1.1 Impact of Behavioral Attribute Normalization

The translation and scaling issues are often easier to address for the behavioral attributes as
compared to contextual attributes, because they can be addressed by normalization during
preprocessing;:

1. Behavioral attribute translation: The behavioral attribute is mean centered during
preprocessing.

2. Behavioral attribute scaling: The standard deviation of the behavioral attribute is
scaled to 1 unit.

It is important to remember that these normalization issues may not be relevant to every
application. Some applications may require only translation, only scaling, or neither of
the two. Other applications may require both. In fact, in some cases, the wrong choice of

3.4. TEMPORAL SIMILARITY MEASURES 79

35 35-
= w gl REPEATED !
5 30r 5 % ELEMENTS !
2 SERIEST 3 |
o o !
: : |
5 25 < 251 !
2 2 ! !
g : g | [SEGMENT G
> , S !
% 20 . | SEGMENT B! é 20*: SEGMENT B !
u ! [SEGMENTA] . , oo :
! ’ 1 | !
! ’ I I
15} \
[, |
B " [sERES2_ |y |
| g |
! I
1ol ‘ ‘ ‘ ‘ ‘ op ‘ ‘ ‘ ‘ ‘ ‘
o 5 10 15 20 2 0 5 10 15 20 25 3
POSITION INDEX POSITION INDEX
(a) Original series (b) Warped series

Figure 3.8: Illustration of dynamic time warping by repeating elements

normalization may have detrimental effects on the interpretability of the results. Therefore,
an analyst needs to judiciously select a normalization approach depending on application-
specific needs.

3.4.1.2 L,-Norm

The L,-norm may be defined for two series X = (21...7,) and Y = (y;...y,). This
measure treats a time series as a multidimensional data point in which each time stamp is
a dimension.

n 1/p
Dist(X,Y) = (Z |z — yi|p> (3.16)
i=1
The Ly-norm can also be applied to wavelet transformations of the time series. In the
special case where p = 2, accurate distance computations are obtained with the wavelet
representation, if most of the larger wavelet coefficients are retained in the representation.
In fact, it can be shown that if no wavelet coefficients are removed, then the distances are
identical between the two representations. This is because wavelet transformations can be
viewed as a rotation of an axis system in which each dimension represents a time stamp.
Euclidean metrics are invariant to axis rotation. The major problem with L,-norms is that
they are designed for time series of equal length and cannot address distortions on the
temporal (contextual) attributes.

3.4.1.3 Dynamic Time Warping Distance

DTW stretches the series along the time axis in a varying (or dynamic) way over different
portions to enable more effective matching. An example of warping is illustrated in Fig. 3.8a,
where the two series have very similar shape in segments A, B, and C, but specific segments
in each series need to be stretched appropriately to enable better matching. The DTW
measure has been adapted from the field of speech recognition, where time warping was
deemed necessary to match different speaking speeds. DTW can be used either for time-
series or sequence data, because it addresses only the issue of contextual attribute scaling,
and it is unrelated to the nature of the behavioral attribute. The following description is a
generic one, which can be used either for time-series or sequence data.

80 CHAPTER 3. SIMILARITY AND DISTANCES

The Ly,-metric can only be defined between two time series of equal length. However,
DTW, by its very nature, allows the measurement of distances between two series of different
lengths. In the L, distance, a one-to-one mapping exists between the time stamps of the
two time series. However, in DTW, a many-to-one mapping is allowed to account for the
time warping. This many-to-one mapping can be thought of in terms of repeating some of
the elements in carefully chosen segments of either of the two time series. This can be used
to artificially create two series of the same length that have a one-to-one mapping between
them. The distances can be measured on the resulting warped series using any distance
measure such as the L,-norm. For example, in Fig. 3.8b, some elements in a few segments
of either series are repeated to create a one-to-one mapping between the two series. Note
that the two series now look much more similar than the two series in Fig. 3.8a. Of course,
this repeating can be done in many different ways, and the goal is to perform it in an
optimal way to minimize the DTW distance. The optimal choice of warping is determined
using dynamic programming.

To understand how DTW generalizes a one-to-one distance metric such as the L,-norm,
consider the L; (Manhattan) metric M (X;,Y;), computed on the first i elements of two
time series X = (z1...2,) and Y = (y; ...y,) of equal length. The value of M (X;,Y;) can
be written recursively as follows:

M(X;,Ys) = |z — il + M(Xi—1,Yi1). (3.17)

Note that the indices of both series are reduced by 1 in the right-hand side because of the
one-to-one matching. In DTW, both indices need not reduce by 1 unit because a many-to-
one mapping is allowed. Rather, any one or both indices may reduce by 1, depending on the
best match between the two time series (or sequences). The index that did not reduce by
1 corresponds to the repeated element. The choice of index reduction is naturally defined,
recursively, as an optimization over the various options.

Let DTW (4,j) be the optimal distance between the first ¢ and first j elements of two
time series X = (21 ...2,,) and Y = (y1 ...y,), respectively. Note that the two time series
are of lengths m and n, which may not be the same. Then, the value of DTW (i,) is defined
recursively as follows:

DTW(i,j—1) repeat x;
DTW (i,) = distance(x;,y;) + min < DTW (i — 1, 7) repeat y; . (3.18)
DTW(i—1,j —1) repeat neither

The value of distance(x;,y;) may be defined in a variety of ways, depending on the appli-
cation domain. For example, for continuous time series, it may be defined as |x; — y;|P, or
by a distance that accounts for (behavioral attribute) scaling and translation. For discrete
sequences, it may be defined using a categorical measure. The DTW approach is primarily
focused on warping the contertual attribute, and has little to do with the nature of the
behavioral attribute or distance function. Because of this fact, time warping can easily be
extended to multiple behavioral attributes by simply using the distances along multiple
attributes in the recursion.

Equation 3.18 yields a natural iterative approach. The approach starts by initializing
DTW (0,0) to 0, DTW(0,5) to oo for j € {1...n}, and DTW (i,0) to oo for i € {1...m}.
The algorithm computes DTW (i, j) by repeatedly executing Eq. 3.18 with increasing index
values of ¢ and j. This can be achieved by a simple nested loop in which the indices 7 and
j increase from 1 to m and 1 to n, respectively:

3.4. TEMPORAL SIMILARITY MEASURES 81

Figure 3.9: Illustration of warping paths

fori=1tom
forj=1ton
compute DTW (i, j) using Eq. 3.18

The aforementioned code snippet is a nonrecursive and iterative approach. It is also
possible to implement a recursive computer program by directly using Eq. 3.18. Therefore,
the approach requires the computation of all values of DTW (i, j) for every i € [1,m] and
every j € [1,n]. This is a m x n grid of values, and therefore the approach may require
O(m - n) iterations, where m and n are lengths of the series.

The optimal warping can be understood as an optimal path through different values of
1 and j in the m x n grid of values, as illustrated in Fig. 3.9. Three possible paths, denoted
by A, B, and C, are shown in the figure. These paths only move to the right (increasing i
and repeating y;), upward (increasing j and repeating x;), or both (repeating neither).

A number of practical constraints are often added to the DTW computation. One com-
monly used constraint is the window constraint that imposes a minimum level w of positional
alignment between matched elements. The window constraint requires that DTW (i, 5) be
computed only when |i — j| < w. Otherwise, the value may be set to co by default. For
example, the paths B and C in Fig. 3.9 no longer need to be computed. This saves the
computation of many values in the dynamic programming recursion. Correspondingly, the
computations in the inner variable j of the nested loop above can be saved by constraining
the index j, so that it is never more than w units apart from the outer loop variable 3.
Therefore, the inner loop index j is varied from max{0,7 — w} to min{n,i + w}.

The DTW distance can be extended to multiple behavioral attributes easily, if it is
assumed that the different behavioral attributes have the same time warping. In this case,
the recursion is unchanged, and the only difference is that distance(z;,7;) is computed
using a vector-based distance measure. We have used a bar on @; and ¥; to denote that
these are vectors of multiple behavioral attributes. This multivariate extension is discussed
in Sect. 16.3.4.1 of Chap. 16 for measuring distances between 2-dimensional trajectories.

82 CHAPTER 3. SIMILARITY AND DISTANCES

3.4.1.4 Window-Based Methods

The example in Fig. 3.7 illustrates a case where dropped readings may cause a gap in
the matching. Window-based schemes attempt to decompose the two series into windows
and then “stitch” together the similarity measure. The intuition here is that if two series
have many contiguous matching segments, they should be considered similar. For long time
series, a global match becomes increasingly unlikely. The only reasonable choice is the use
of windows for measurement of segment-wise similarity.

Consider two time series X and Y, and let X; ... X, and Y ...Y, be temporally ordered
and nonoverlapping windows extracted from the respective series. Note that some windows
from the base series may not be included in these segments at all. These correspond to
the noise segments that are dropped. Then, the overall similarity between X and Y can be
computed as follows:

Sim(X,Y) =Y Match(X;,Y;). (3.19)

A variety of measures discussed in this section may be used to instantiate the value
of Match(X;,Y;). Tt is tricky to determine the proper value of Match(X;,Y;) because a
contiguous match along a long window is more unusual than many short segments of the
same length. The proper choice of Match(X;,Y;) may depend on the application at hand.
Another problem is that the optimal decomposition of the series into windows may be a
difficult task. These methods are not discussed in detail here, but the interested reader is
referred to the bibliographic notes for pointers to relevant methods.

3.4.2 Discrete Sequence Similarity Measures

Discrete sequence similarity measures are based on the same general principles as time-
series similarity measures. As in the case of time-series data, discrete sequence data may
or may not have a one-to-one mapping between the positions. When a one-to-one mapping
does exist, many of the multidimensional categorical distance measures can be adapted to
this domain, just as the L,-norm can be adapted to continuous time series. However, the
application domains of discrete sequence data are most often such that a one-to-one mapping
does not exist. Aside from the DTW approach, a number of other dynamic programming
methods are commonly used.

3.4.2.1 Edit Distance

The edit distance defines the distance between two strings as the least amount of “effort”
(or cost) required to transform one sequence into another by using a series of transformation
operations, referred to as “edits.” The edit distance is also referred to as the Levenshtein
distance. The edit operations include the use of symbol insertions, deletions, and replace-
ments with specific costs. In many models, replacements are assumed to have higher cost
than insertions or deletions, though insertions and deletions are usually assumed to have
the same cost. Consider the sequences ababababab and bababababa, which are drawn on
the alphabet {a,b}. The first string can be transformed to the second in several ways. For
example, if every alphabet in the first string was replaced by the other alphabet, it would
result in the second string. The cost of doing so is that of ten replacements. However, a more
cost-efficient way of achieving the same goal is to delete the leftmost element of the string,
and insert the symbol “a” as the rightmost element. The cost of this sequence of operations
is only one insertion and one deletion. The edit distance is defined as the optimal cost to

3.4. TEMPORAL SIMILARITY MEASURES 83

transform one string to another with a sequence of insertions, deletions, and replacements.
The computation of the optimal cost requires a dynamic programming recursion.

For two sequences X = (2...7,,) and Y = (y;...y,), let the edits be performed on
sequence X to transform to Y. Note that this distance function is asymmetric because of
the directionality to the edit. For example, Edit(X,Y) may not be the same as Edit(Y, X)
if the insertion and deletion costs are not identical. In practice, however, the insertion and
deletion costs are assumed to be the same.

Let I;; be a binary indicator that is 0 when the ith symbol of X and jth symbols of Y
are the same. Otherwise, the value of this indicator is 1. Then, consider the first ¢ symbols
of X and the first j symbols of Y. Assume that these segments are represented by X; and
Y;, respectively. Let Edit(i, j) represent the optimal matching cost between these segments.
The goal is to determine what operation to perform on the last element of X; so that it
either matches an element in Vj, or it is deleted. Three possibilities arise:

1. The last element of X; is deleted, and the cost of this is [Edit(i—1, j) + Deletion Cost].
The last element of the truncated segment X;_; may or may not match the last
element of Y} at this point.

2. An element is inserted at the end of X; to match the last element of Y;, and the cost
of this is [Edit(i,j — 1) 4 Insertion Cost]. The indices of the edit term Edit(i,j — 1)
reflect the fact that the matched elements of both series can now be removed.

3. The last element of X; is flipped to that of Y; if it is different, and the cost of this
is [Edit(i — 1,5 — 1) + I;; - (Replacement Cost)]. In cases where the last elements are
the same, the additional replacement cost is not incurred, but progress is nevertheless
made in matching. This is because the matched elements (z;,y;) of both series need
not be considered further, and residual matching cost is Edit(i — 1,7 — 1).

Clearly, it is desirable to pick the minimum of these costs for the optimal matching. There-
fore, the optimal matching is defined by the following recursion:

Edit(i — 1,7) + Deletion Cost
Edit(i,j) = min{ Edit(i,j — 1) + Insertion Cost . (3.20)
Edit(i — 1,7 — 1) + I;; - (Replacement Cost)

Furthermore, the bottom of the recursion also needs to be set up. The value of Edit(i,0) is
equal to the cost of i deletions for any value of i, and that of Edit(0, j) is equal to the cost
of j insertions for any value of j. This nicely sets up the dynamic programming approach.
It is possible to write the corresponding computer program either as a nonrecursive nested
loop (as in DTW) or as a recursive computer program that directly uses the aforementioned
cases.

The aforementioned discussion assumes general insertion, deletion, and replacement
costs. In practice, however, the insertion and deletion costs are usually assumed to be
the same. In such a case, the edit function is symmetric because it does not matter which
of the two strings is edited to the other. For any sequence of edits from one string to the
other, a reverse sequence of edits, with the same cost, will exist from the other string to the
first.

The edit distance can be extended to numeric data by changing the primitive operations
of insert, delete, and replace to transformation rules that are designed for time series. Such
transformation rules can include making basic changes to the shape of the time series in

84 CHAPTER 3. SIMILARITY AND DISTANCES

window segments. This is more complex because it requires one to design the base set of
allowed time-series shape transformations and their costs. Such an approach has not found
much popularity for time-series distance computation.

3.4.2.2 Longest Common Subsequence

A subsequence of a sequence is a set of symbols drawn from the sequence in the same
order as the original sequence. A subsequence is different from a substring in that the
values of the subsequence need not be contiguous, whereas the values in the substring
need to be contiguous. Consider the sequences agbfcgdhei and afbgchdiei. In this case,
el is a substring of both sequences and also a subsequence. However, abcde and fgi are
subsequences of both strings but not substrings. Clearly, subsequences of longer length are
indicative of a greater level of matching between the strings. Unlike the edit distance, the
longest common subsequence (LCSS) is a similarity function because higher values indicate
greater similarity. The number of possible subsequences is exponentially related to the
length of a string. However, the LCSS can be computed in polynomial time with a dynamic
programming approach.

For two sequences X = (z1...2,,) and Y = (y1...¥,), consider the first i symbols of
X and the first j symbols of Y. Assume that these segments are represented by X; and Y},
respectively. Let LCSS(i,7) represent the optimal LCSS values between these segments.
The goal here is to either match the last element of X; and Tj, or delete the last element
in one of the two sequences. Two possibilities arise:

1. The last element of X; matches Yj, in which case, it cannot hurt to instantiate the
matching on the last element and then delete the last element of both sequences. The
similarity value LC'SS(i, j) can be expressed recursively as this is LC'SS(i—1,j—1)+1.

2. The last element does not match. In such a case, the last element of at least one
of the two strings needs to be deleted under the assumption that it cannot occur
in the matching. In this case, the value of LCSS(i,j) is either LCSS(i,j — 1) or
LCSS(i —1,7), depending on which string is selected for deletion.

Therefore, the optimal matching can be expressed by enumerating these cases:

LCSS(i—1,j—1)4+1 onlyifx; =y;
LCSS(i,j) =max ¢ LCSS(i —1,7) otherwise (no match on z;) . (3.21)
LCSS(i,j —1) otherwise (no match on y;)

Furthermore, the boundary conditions need to be set up. The values of LC'SS(4,0) and
LCSS(0,7) are always equal to 0 for any value of ¢ and j. As in the case of the DTW
and edit-distance computations, a nested loop can be set up to compute the final value. A
recursive computer program can also be implemented that uses the aforementioned recursive
relationship. Although the LCSS approach is defined for a discrete sequence, it can also be
applied to a continuous time series after discretizing the time-series values into a sequence
of categorical values. Alternatively, one can discretize the time-series movement between
two contiguous time stamps. The particular choice of discretization depends on the goals of
the application at hand.

3.5. GRAPH SIMILARITY MEASURES 85

Figure 3.10: Shortest path versus homophily

3.5 Graph Similarity Measures

The similarity in graphs can be measured in different ways, depending on whether the
similarity is being measured between two graphs, or between two nodes in a single graph. For
simplicity, undirected networks are assumed, though the measures can be easily generalized
to directed networks.

3.5.1 Similarity between Two Nodes in a Single Graph

Let G = (N, A) be an undirected network with node set N and edge set A. In some domains,
costs are associated with nodes, whereas in others, weights are associated with nodes. For
example, in domains such as bibliographic networks, the edges are naturally weighted, and
in road networks, the edges naturally have costs. Typically, distance functions work with
costs, whereas similarity functions work with weights. Therefore, it may be assumed that
either the cost ¢;;, or the weight w;; of the edge (i, j) is specified. It is often possible to
convert costs into weights (and vice versa) using simple heuristic kernel functions that are
chosen in an application-specific way. An example is the heat kernel K(x) = e~/

It is desired to measure the similarity between any pair of nodes 7 and j. The principle of
similarity between two nodes in a single graph is based on the concept of homophily in real
networks. The principle of homophily is that nodes are typically more similar in a network
when they are connected to one another with edges. This is common in many domains such
as the Web and social networks. Therefore, nodes that are connected via short paths and
many paths should be considered more similar. The latter criterion is closely related to the
concept of connectivity between nodes. The first criterion is relatively easy to implement
with the use of the shortest-path algorithm in networks.

3.5.1.1 Structural Distance-Based Measure

The goal here is to measure the distances from any source node s to any other node in
the network. Let SP(s,j) be the shortest-path distance from source node s to any node
j. The value of SP(s,7) is initialized to 0 for j = s and oo otherwise. Then, the distance
computation of s to all other nodes in the network may be summarized in a single step that
is performed exactly once for each node in the network in a certain order:

e Among all nodes not examined so far, select the node ¢ with the smallest value of
SP(s,i) and update the distance labels of each of its neighbors j as follows:

SP(s,j) =min{SP(s,j), SP(s,i) + ¢} (3.22)

86 CHAPTER 3. SIMILARITY AND DISTANCES

This is the essence of the well-known Dijkstra algorithm. This approach is linear in the
number of edges in the network, because it examines each node and its incident edges exactly
once. The approach provides the distances from a single node to all other nodes in a single
pass. The final value of SP(s, j) provides a quantification of the structural distance between
node s and node j. Structural distance-based measures do not leverage the multiplicity in
paths between a pair of nodes because they focus only on the raw structural distances.

3.5.1.2 Random Walk-Based Similarity

The structural measure of the previous section does not work well when pairs of nodes
have varying numbers of paths between them. For example, in Fig. 3.10, the shortest-path
length between nodes A and B is 4, whereas that between A and C is 3. Yet, node B should
be considered more similar to A because the two nodes are more tightly connected with a
multiplicity of paths. The idea of random walk-based similarity is based on this principle.

In random walk-based similarity, the approach is as follows: Imagine a random walk
that starts at source node s, and proceeds to an adjacent node with weighted probability
proportional to w;;. Furthermore, at any given node, it is allowed to “jump back” to the
source node s with a probability referred to as the restart probability. This will result in
a probability distribution that is heavily biased toward the source node s. Nodes that are
more similar to s will have higher probability of visits. Such an approach will adjust very
well to the scenario illustrated in Fig. 3.10 because the walk will visit B more frequently.

The intuition here is the following: If you were lost in a road network and drove randomly,
while taking turns randomly, which location are you more likely to reach? You are more
likely to reach a location that is close by and can be reached in multiple ways. The random-
walk measure therefore provides a result that is different from that of the shortest-path
measure because it also accounts for multiplicity in paths during similarity computation.

This similarity computation is closely related to concept of PageRank, which is used to
rank pages on the Web by search engines. The corresponding modification for measuring
similarity between nodes is also referred to as personalized PageRank, and a symmetric
variant is referred to as SimRank. This chapter will not discuss the details of PageRank
and SimRank computation, because it requires more background on the notion of ranking.
Refer to Sect. 18.4 of Chap. 18, which provides a more complete discussion.

3.5.2 Similarity Between Two Graphs

In many applications, multiple graphs are available, and it is sometimes necessary to deter-
mine the distances between multiple graphs. A complicating factor in similarity computation
is that many nodes may have the same label, which makes them indistinguishable. Such
cases arise often in domains such as chemical compound analysis. Chemical compounds
can be represented as graphs where nodes are elements, and bonds are edges. Because an
element may be repeated in a molecule, the labels on the nodes are not distinct. Deter-
mining a similarity measure on graphs is extremely challenging in this scenario, because
even the very special case of determining whether the two graphs are identical is hard.
The latter problem is referred to as the graph isomorphism problem, and is known to the
NP-hard [221]. Numerous measures, such as the graph-edit distance and substructure-based
similarity, have been proposed to address this very difficult case. The core idea in each of
these methods is as follows:

3.6. SUPERVISED SIMILARITY FUNCTIONS 87

1. Maximum common subgraph distance: When two graphs contain a large subgraph in
common, they are generally considered more similar. The maximum common subgraph
problem and the related distance functions are addressed in Sect. 17.2 of Chap. 17.

2. Substructure-based similarity: Although it is difficult to match two large graphs, it
is much easier to match smaller substructures. The core idea is to count the fre-
quently occurring substructures between the two graphs and report it as a similarity
measure. This can be considered the graph analog of subsequence-based similarity in
strings. Substructure-based similarity measures are discussed in detail in Sect. 17.3 of
Chap. 17.

3. Graph-edit distance: This distance measure is analogous to the string-edit distance
and is defined as the number of edits required to transform one graph to the other.
Because graph matching is a hard problem, this measure is difficult to implement
for large graphs. The graph-edit distance is discussed in detail in Sect. 17.2.3.2 of
Chap. 17.

4. Graph kernels: Numerous kernel functions have been defined to measure similarity
between graphs, such as the shortest-path kernel and the random-walk kernel. This
topic is discussed in detail in Sect. 17.3.3 of Chap. 17.

These methods are quite complex and require a greater background in the area of graphs.
Therefore, the discussion of these measures is deferred to Chap. 17 of this book.

3.6 Supervised Similarity Functions

The previous sections discussed similarity measures that do not require any understanding
of user intentions. In practice, the relevance of a feature or the choice of distance function
heavily depends on the domain at hand. For example, for an image data set, should the color
feature or the texture feature be weighted more heavily? These aspects cannot be modeled by
a distance function without taking the user intentions into account. Unsupervised measures,
such as the L,-norm, treat all features equally, and have little intrinsic understanding of
the end user’s semantic notion of similarity. The only way to incorporate this information
into the similarity function is to use explicit feedback about the similarity and dissimilarity
of objects. For example, the feedback can be expressed as the following sets of object pairs:

S ={(0;,0;) : O; is similar to O;}
D ={(0;,0j) : O; is dissimilar to O;}.

How can this information be leveraged to improve the computation of similarity? Many
specialized methods have been designed for supervised similarity computation. A common
approach is to assume a specific closed form of the similarity function for which the param-
eters need to be learned. An example is the weighted L,-norm in Sect. 3.2.1.1, where the
parameters represented by © correspond to the feature weights (a; ...aq). Therefore, the
first step is to create a distance function f(O;, O;, ©), where O is a set of unknown weights.
Assume that higher values of the function indicate greater dissimilarity. Therefore, this is a
distance function, rather than a similarity function. Then, it is desirable to determine the

88 CHAPTER 3. SIMILARITY AND DISTANCES
parameters ©, so that the following conditions are satisfied as closely as possible:

0 if (OL,OQ) es

. 3.23

f(0;,04,0) Z{

This can be expressed as a least squares optimization problem over O, with the following
error E:
E= Y (£(0:,0;,0)=07+ Y (f(0;0;,0)-1)> (3.24)

(0;,05)eS (0:,0;)eD

This objective function can be optimized with respect to ©® with the use of any off-the-shelf
optimization solver. If desired, the additional constraint © > 0 can be added where appropri-
ate. For example, when © represents the feature weights (a; .. .aq) in the Minkowski metric,
it is natural to make the assumption of nonnegativity of the coefficients. Such a constrained
optimization problem can be easily solved using many nonlinear optimization methods.
The use of a closed form such as f(O;, O;, ©) ensures that the function f(O;,0;,©) can be
computed efficiently after the one-time cost of computing the parameters ©.

Where possible, user feedback should be used to improve the quality of the distance
function. The problem of learning distance functions can be modeled more generally as that
of classification. The classification problem will be studied in detail in Chaps. 10 and 11.
Supervised distance function design with the use of Fisher’s method is also discussed in
detail in the section on instance-based learning in Chap. 10.

3.7 Summary

The problem of distance function design is a crucial one in the context of data mining
applications. This is because many data mining algorithms use the distance function as a
key subroutine, and the design of the function directly impacts the quality of the results.
Distance functions are highly sensitive to the type of the data, the dimensionality of the
data, and the global and local nature of the data distribution.

The L,-norm is the most common distance function used for multidimensional data.
This distance function does not seem to work well with increasing dimensionality. Higher
values of p work particularly poorly with increasing dimensionality. In some cases, it has
been shown that fractional metrics are particularly effective when p is chosen in the range
(0,1). Numerous proximity-based measures have also been shown to work effectively with
increasing dimensionality.

The data distribution also has an impact on the distance function design. The sim-
plest possible distance function that uses global distributions is the Mahalanobis metric.
This metric is a generalization of the Euclidean measure, and stretches the distance values
along the principal components according to their variance. A more sophisticated approach,
referred to as ISOMAP, uses nonlinear embeddings to account for the impact of nonlinear
data distributions. Local normalization can often provide more effective measures when the
distribution of the data is heterogeneous.

Other data types such as categorical data, text, temporal, and graph data present further
challenges. The determination of time-series and discrete-sequence similarity measures is
closely related because the latter can be considered the categorical version of the former.
The main problem is that two similar time series may exhibit different scaling of their
behavioral and contextual attributes. This needs to be accounted for with the use of different
normalization functions for the behavioral attribute, and the use of warping functions for the

3.8. BIBLIOGRAPHIC NOTES 89

contextual attribute. For the case of discrete sequence data, many distance and similarity
functions, such as the edit distance and the LCSS, are commonly used.

Because distance functions are often intended to model user notions of similarity, feed-
back should be used, where possible, to improve the distance function design. This feedback
can be used within the context of a parameterized model to learn the optimal parameters
that are consistent with the user-provided feedback.

3.8 Bibliographic Notes

The problem of similarity computation has been studied extensively by data mining
researchers and practitioners in recent years. The issues with high-dimensional data were
explored in [17, 88, 266]. In the work of [88], the impact of the distance concentration
effects on high-dimensional computation was analyzed. The work in [266] showed the rel-
ative advantages of picking distance functions that are locality sensitive. The work also
showed the advantages of the Manhattan metric over the Euclidean metric. Fractional met-
rics were proposed in [17] and generally provide more accurate results than the Manhattan
and Euclidean metric. The ISOMA P method discussed in this chapter was proposed in [490].
Numerous local methods are also possible for distance function computation. An example
of an effective local method is the instance-based method proposed in [543].

Similarity in categorical data was explored extensively in [104]. In this work, a number
of similarity measures were analyzed, and how they apply to the outlier detection problem
was tested. The Goodall measure is introduced in [232]. The work in [122] uses information
theoretic measures for computation of similarity. Most of the measures discussed in this
chapter do not distinguish between mismatches on an attribute. However, a number of
methods proposed in [74, 363, 473] distinguish between mismatches on an attribute value.
The premise is that infrequent attribute values are statistically expected to be more different
than frequent attribute values. Thus, in these methods, S(x;,y;) is not always set to 0
(or the same value) when z; and y; are different. A local similarity measure is presented
in [182]. Text similarity measures have been studied extensively in the information retrieval
literature [441].

The area of time-series similarity measures is a rich one, and a significant number of
algorithms have been designed in this context. An excellent tutorial on the topic may be
found in [241]. The use of wavelets for similarity computation in time series is discussed
in [130]. While DTW has been used extensively in the context of speech recognition, its
use in data mining applications was first proposed by [87]. Subsequently, it has been used
extensively [526] for similarity-based applications in data mining. The major challenge in
data mining applications is its computationally intensive nature. Numerous methods [307]
have been proposed in the time series data mining literature to speed up DTW. A fast
method for computing a lower bound on DTW was proposed in [308], and how this can be
used for exact indexing was shown. A window-based approach for computing similarity in
sequences with noise, scaling, and translation was proposed in [53]. Methods for similarity
search in multivariate time series and sequences were proposed in [499, 500]. The edit
distance has been used extensively in biological data for computing similarity between
sequences [244]. The use of transformation rules for time-series similarity has been studied
in [283, 432]. Such rules can be used to create edit distance-like measures for continuous
time series. Methods for the string-edit distance are proposed in [438]. It has been shown
in [141], how the L,-norm may be combined with the edit distance. Algorithms for the
LCSS problem may be found in [77, 92, 270, 280]. A survey of these algorithms is available

90 CHAPTER 3. SIMILARITY AND DISTANCES

n [92]. A variety of other measures for time series and sequence similarity are discussed
in [32].

Numerous methods are available for similarity search in graphs. A variety of efficient
shortest-path algorithms for finding distances between nodes may be found in [62]. The page
rank algorithm is discussed in the Web mining book [357]. The NP-hardness of the graph
isomorphism problem, and other closely related problems to the edit distance are discussed
in [221]. The relationship between the maximum common subgraph problem and the graph-
edit distance problem has been studied in [119, 120]. The problem of substructure similarity
search, and the use of substructures for similarity search have been addressed in [520, 521].
A notion of mutation distance has been proposed in [522] to measure the distances between
graphs. A method that uses the frequent substructures of a graph for similarity computation
in clustering is proposed in [42]. A survey on graph-matching techniques may be found
in [26].

User supervision has been studied extensively in the context of distance function learn-
ing. One of the earliest methods that parameterizes the weights of the L,-norm was proposed
n [15]. The problem of distance function learning has been formally related to that of clas-
sification and has been studied recently in great detail. A survey that covers the important
topics in distance function learning is provided in [33].

3.9 Exercises

1. Compute the L,-norm between (1,2) and (3,4) for p = 1,2, cc.

2. Show that the Mahalanobis distance between two data points is equivalent to the
Fuclidean distance on a transformed data set, where the transformation is performed
by representing the data along the principal components, and dividing by the standard
deviation of each component.

3. Download the Tonosphere data set from the UCI Machine Learning Repository [213],
and compute the L, distance between all pairs of data points, for p = 1,2, and
oo. Compute the contrast measure on the data set for the different norms. Repeat
the exercise after sampling the first r dimensions, where r varies from 1 to the full
dimensionality of the data.

4. Compute the match-based similarity, cosine similarity, and the Jaccard coefficient,
between the two sets {A, B,C} and {4,C, D, E}.

5. Let X and Y be two data points. Show that the cosine angle between the vectors X
and Y is given by:
(X[+]Y]]* = [|X - Y]?

cosine(X,Y) = | -
2| X[l

(3.25)

6. Download the KDD Cup Network Intrusion Data Set for the UCI Machine Learning
Repository [213]. Create a data set containing only the categorical attributes. Compute
the nearest neighbor for each data point using the (a) match measure, and (b) inverse
occurrence frequency measure. Compute the number of cases where there is a match
on the class label.

7. Repeat Exercise 6 using only the quantitative attributes of the data set, and using
the L,-norm for values of p = 1,2, cc.

3.9.

10.
11.
12.

13.

14.

15.

16.

EXERCISES 91

. Repeat Exercise 6 using all attributes in the data set. Use the mixed-attribute function,

and different combinations of the categorical and quantitative distance functions of
Exercises 6 and 7.

. Write a computer program to compute the edit distance.

Write a computer program to compute the LCSS distance.
Write a computer program to compute the DTW distance.

Assume that Lfldit(f, Y) represents the cost of transforming the string X to Y. Show
that Edit(X,Y) and Edit(Y, X) are the same, as long as the insertion and deletion
costs are the same.

Compute the edit distance, and LCSS similarity between: (a) ababcabc and babebe and
(b) cbacbacba and acbacbach. For the edit distance, assume equal cost of insertion,
deletion, or replacement.

Show that Edit(i,), LCSS(i,j), and DTW (i, 7) are all monotonic functions in i and
7.

Compute the cosine measure using the raw frequencies between the following two
sentences:

(a) “The sly fox jumped over the lazy dog.”
(b) “The dog jumped at the intruder.”

Suppose that insertion and deletion costs are 1, and replacement costs are 2 units
for the edit distance. Show that the optimal edit distance between two strings can be
computed only with insertion and deletion operations. Under the aforementioned cost
assumptions, show that the optimal edit distance can be expressed as a function of
the optimal LCSS distance and the lengths of the two strings.

Chapter 4

Association Pattern Mining

“The pattern of the prodigal is: rebellion, Tuin, repentance,
reconciliation, restoration.”—Edwin Louis Cole

4.1 Introduction

The classical problem of association pattern mining is defined in the context of supermarket
data containing sets of items bought by customers, which are referred to as transactions.
The goal is to determine associations between groups of items bought by customers, which
can intuitively be viewed as k-way correlations between items. The most popular model for
association pattern mining uses the frequencies of sets of items as the quantification of the
level of association. The discovered sets of items are referred to as large itemsets, frequent
itemsets, or frequent patterns. The association pattern mining problem has a wide variety
of applications:

1. Supermarket data: The supermarket application was the original motivating scenario
in which the association pattern mining problem was proposed. This is also the reason
that the term itemset is used to refer to a frequent pattern in the context of super-
market items bought by a customer. The determination of frequent itemsets provides
useful insights about target marketing and shelf placement of the items.

2. Text mining: Because text data is often represented in the bag-of-words model, fre-
quent pattern mining can help in identifying co-occurring terms and keywords. Such
co-occurring terms have numerous text-mining applications.

3. Generalization to dependency-oriented data types: The original frequent pattern min-
ing model has been generalized to many dependency-oriented data types, such as
time-series data, sequential data, spatial data, and graph data, with a few modifica-
tions. Such models are useful in applications such as Web log analysis, software bug
detection, and spatiotemporal event detection.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 4 93
(© Springer International Publishing Switzerland 2015

94 CHAPTER 4. ASSOCIATION PATTERN MINING

4. Other major data mining problems: Frequent pattern mining can be used as a subrou-
tine to provide effective solutions to many data mining problems such as clustering,
classification, and outlier analysis.

Because the frequent pattern mining problem was originally proposed in the context of
market basket data, a significant amount of terminology used to describe both the data (e.g.,
transactions) and the output (e.g., itemsets) is borrowed from the supermarket analogy.
From an application-neutral perspective, a frequent pattern may be defined as a frequent
subset, defined on the universe of all possible sets. Nevertheless, because the market basket
terminology has been used popularly, this chapter will be consistent with it.

Frequent itemsets can be used to generate association rules of the form X = Y, where
X and Y are sets of items. A famous example of an association rule, which has now become
part! of the data mining folklore, is { Beer} = {Diapers}. This rule suggests that buying
beer makes it more likely that diapers will also be bought. Thus, there is a certain direc-
tionality to the implication that is quantified as a conditional probability. Association rules
are particularly useful for a variety of target market applications. For example, if a super-
market owner discovers that { Eggs, Milk} = {Yogurt} is an association rule, he or she can
promote yogurt to customers who often buy eggs and milk. Alternatively, the supermarket
owner may place yogurt on shelves that are located in proximity to eggs and milk.

The frequency-based model for association pattern mining is very popular because of its
simplicity. However, the raw frequency of a pattern is not quite the same as the statistical
significance of the underlying correlations. Therefore, numerous models for frequent pattern
mining have been proposed that are based on statistical significance. This chapter will also
explore some of these alternative models, which are also referred to as interesting patterns.

This chapter is organized as follows. Section 4.2 introduces the basic model for associa-
tion pattern mining. The generation of association rules from frequent itemsets is discussed
in Sect. 4.3. A variety of algorithms for frequent pattern mining are discussed in Sect. 4.4.
This includes the Apriori algorithm, a number of enumeration tree algorithms, and a suffix-
based recursive approach. Methods for finding interesting frequent patterns are discussed in
Sect. 4.5. Meta-algorithms for frequent pattern mining are discussed in Sect. 4.6. Section 4.7
discusses the conclusions and summary.

4.2 The Frequent Pattern Mining Model

The problem of association pattern mining is naturally defined on unordered set-wise data.
It is assumed that the database 7 contains a set of n transactions, denoted by T} ...T,.
Each transaction T; is drawn on the universe of items U and can also be represented as
a multidimensional record of dimensionality, d = |U|, containing only binary attributes.
Each binary attribute in this record represents a particular item. The value of an attribute
in this record is 1 if that item is present in the transaction, and 0 otherwise. In practical
settings, the universe of items U is very large compared to the typical number of items in
each transaction T;. For example, a supermarket database may have tens of thousands of
items, and a single transaction will typically contain less than 50 items. This property is
often leveraged in the design of frequent pattern mining algorithms.

An dtemset is a set of items. A k-itemset is an itemset that contains exactly k items.
In other words, a k-itemset is a set of items of cardinality k. The fraction of transactions

IThis rule was derived in some early publications on supermarket data. No assertion is made here about
the likelihood of such a rule appearing in an arbitrary supermarket data set.

4.2. THE FREQUENT PATTERN MINING MODEL 95

Table 4.1: Example of a snapshot of a market basket data set

H tid \ Set of items \ Binary representation H
1 {Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Eggs, Milk} 101110
4 {Eggs, Milk,Y ogurt} 000111
5 {Cheese, Milk,Y ogurt} 001011

in Ty ...T, in which an itemset occurs as a subset provides a crisp quantification of its
frequency. This frequency is also known as the support.

Definition 4.2.1 (Support) The support of an itemset I is defined as the fraction of the
transactions in the database T = {Ty...T,} that contain I as a subset.

The support of an itemset I is denoted by sup(l). Clearly, items that are correlated will
frequently occur together in transactions. Such itemsets will have high support. Therefore,
the frequent pattern mining problem is that of determining itemsets that have the requisite
level of minimum support.

Definition 4.2.2 (Frequent Itemset Mining) Given a set of transactions T =
{Ty...T,}, where each transaction T; is a subset of items from U, determine all item-
sets I that occur as a subset of at least a predefined fraction minsup of the transactions in

T.

The predefined fraction minsup is referred to as the minimum support. While the default
convention in this book is to assume that minsup refers to a fractional relative value, it
is also sometimes specified as an absolute integer value in terms of the raw number of
transactions. This chapter will always assume the convention of a relative value, unless
specified otherwise. Frequent patterns are also referred to as frequent itemsets, or large
itemsets. This book will use these terms interchangeably.

The unique identifier of a transaction is referred to as a transaction identifier, or tid for
short. The frequent itemset mining problem may also be stated more generally in set-wise
form.

Definition 4.2.3 (Frequent Itemset Mining: Set-wise Definition) Given a set of
sets T = {Ty...T,}, where each element of the set T; is drawn on the universe of ele-
ments U, determine all sets I that occur as a subset of at least a predefined fraction minsup
of the sets in T.

As discussed in Chap. 1, binary multidimensional data and set data are equivalent. This
equivalence is because each multidimensional attribute can represent a set element (or
item). A value of 1 for a multidimensional attribute corresponds to inclusion in the set (or
transaction). Therefore, a transaction data set (or set of sets) can also be represented as a
multidimensional binary database whose dimensionality is equal to the number of items.
Consider the transactions illustrated in Table 4.1. Each transaction is associated with a
unique transaction identifier in the leftmost column, and contains a baskets of items that
were bought together at the same time. The right column in Table 4.1 contains the binary
multidimensional representation of the corresponding basket. The attributes of this binary
representation are arranged in the order { Bread, Butter, Cheese, Eggs, Milk, Yogurt}. In

96 CHAPTER 4. ASSOCIATION PATTERN MINING

this database of 5 transactions, the support of {Bread, Milk} is 2/5 = 0.4 because both
items in this basket occur in 2 out of a total of 5 transactions. Similarly, the support of
{Cheese,Y ogurt} is 0.2 because it appears in only the last transaction. Therefore, if the
minimum support is set to 0.3, then the itemset {Bread, Milk} will be reported but not
the itemset {Cheese, Y ogurt}.

The number of frequent itemsets is generally very sensitive to the minimum support
level. Consider the case where a minimum support level of 0.3 is used. Each of the items
Bread, Milk, Eggs, Cheese, and Yogurt occur in more than 2 transactions, and can
therefore be considered frequent items at a minimum support level of 0.3. These items
are frequent l-itemsets. In fact, the only item that is not frequent at a support level of
0.3 is Butter. Furthermore, the frequent 2-itemsets at a minimum support level of 0.3 are
{Bread, Milk}, {Eggs, Milk}, {Cheese, Milk}, {Eggs,Yogurt}, and { Milk,Y ogurt}. The
only 3-itemset reported at a support level of 0.3 is { Eggs, Milk,Y ogurt}. On the other hand,
if the minimum support level is set to 0.2, it corresponds to an absolute support value of
only 1. In such a case, every subset of every transaction will be reported. Therefore, the use
of lower minimum support levels yields a larger number of frequent patterns. On the other
hand, if the support level is too high, then no frequent patterns will be found. Therefore, an
appropriate choice of the support level is crucial for discovering a set of frequent patterns
with meaningful size.

When an itemset I is contained in a transaction, all its subsets will also be contained
in the transaction. Therefore, the support of any subset J of I will always be at least equal
to that of I. This property is referred to as the support monotonicity property.

Property 4.2.1 (Support Monotonicity Property) The support of every subset J of
I is at least equal to that of the support of itemset I.

sup(J) > sup(I) VJ C T (4.1)

The monotonicity property of support implies that every subset of a frequent itemset will
also be frequent. This is referred to as the downward closure property.

Property 4.2.2 (Downward Closure Property) Every subset of a frequent itemset is
also frequent.

The downward closure property of frequent patterns is algorithmically very convenient
because it provides an important constraint on the inherent structure of frequent patterns.
This constraint is often leveraged by frequent pattern mining algorithms to prune the search
process and achieve greater efficiency. Furthermore, the downward closure property can
be used to create concise representations of frequent patterns, wherein only the mazximal
frequent subsets are retained.

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a
given minimum support level minsup, if it is frequent, and no superset of it is frequent.

In the example of Table 4.1, the itemset { Eggs, Milk,Y ogurt} is a maximal frequent item-
set at a minimum support level of 0.3. However, the itemset {Eggs, Milk} is not maxi-
mal because it has a superset that is also frequent. Furthermore, the set of mazimal fre-
quent patterns at a minimum support level of 0.3 is {Bread, Milk}, {Cheese, Milk}, and
{Eggs, Milk,Y ogurt}. Thus, there are only 3 maximal frequent itemsets, whereas the num-
ber of frequent itemsets in the entire transaction database is 11. All frequent itemsets can
be derived from the maximal patterns by enumerating the subsets of the maximal frequent

4.3. ASSOCIATION RULE GENERATION FRAMEWORK 97

BORDER BETWEEN

FREQUENT AND REQUENT ITEMSETS
INFREQUENT

ITEMSETS

INFREQUENT ITEMSETS

Figure 4.1: The itemset lattice

patterns. Therefore, the maximal patterns can be considered condensed representations of
the frequent patterns. However, this condensed representation does not retain information
about the support values of the subsets. For example, the support of {Eggs, Milk,Y ogurt}
is 0.4, but it does not provide any information about the support of { Eggs, Milk}, which is
0.6. A different condensed representation, referred to as closed frequent itemsets, is able to
retain support information as well. The notion of closed frequent itemsets will be studied
in detail in Chap. 5.

An interesting property of itemsets is that they can be conceptually arranged in the form
of a lattice of itemsets. This lattice contains one node for each of the 2!Vl sets drawn from
the universe of items U. An edge exists between a pair of nodes, if the corresponding sets
differ by exactly one item. An example of an itemset lattice of size 2° = 32 on a universe of
5 items is illustrated in Fig. 4.1. The lattice represents the search space of frequent patterns.
All frequent pattern mining algorithms, implicitly or explicitly, traverse this search space
to determine the frequent patterns.

The lattice is separated into frequent and infrequent itemsets by a border, which is illus-
trated by a dashed line in Fig. 4.1. All itemsets above this border are frequent, whereas those
below the border are infrequent. Note that all maximal frequent itemsets are adjacent to
this border of itemsets. Furthermore, any valid border representing a true division between
frequent and infrequent itemsets will always respect the downward closure property.

4.3 Association Rule Generation Framework

Frequent itemsets can be used to generate association rules, with the use of a measure
known as the confidence. The confidence of a rule X = Y is the conditional probability
that a transaction contains the set of items Y, given that it contains the set X. This
probability is estimated by dividing the support of itemset X UY with that of itemset X.

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence
conf(X UY) of the rule X UY s the conditional probability of X UY occurring in a

98 CHAPTER 4. ASSOCIATION PATTERN MINING

transaction, given that the transaction contains X. Therefore, the confidence conf(X = Y)
1s defined as follows:
sup(X UY)

conf(X =Y) = sup(X)

(4.2)
The itemsets X and Y are said to be the antecedent and the consequent of the rule, respec-
tively. In the case of Table 4.1, the support of {Eggs, Milk} is 0.6, whereas the support
of {Eggs, Milk,Yogurt} is 0.4. Therefore, the confidence of the rule {Eggs, Milk} =
{Yogurt} is (0.4/0.6) = 2/3.

As in the case of support, a minimum confidence threshold minconf can be used to
generate the most relevant association rules. Association rules are defined using both support
and confidence criteria.

Definition 4.3.2 (Association Rules) Let X andY be two sets of items. Then, the rule
X =Y is said to be an association Tule at a minimum support of minsup and minimum
confidence of minconf, if it satisfies both the following criteria:

1. The support of the itemset X UY is at least minsup.
2. The confidence of the rule X =Y is at least minconf.

The first criterion ensures that a sufficient number of transactions are relevant to the rule;
therefore, it has the required critical mass for it to be considered relevant to the application
at hand. The second criterion ensures that the rule has sufficient strength in terms of con-
ditional probabilities. Thus, the two measures quantify different aspects of the association
rule.

The overall framework for association rule generation uses two phases. These phases
correspond to the two criteria in Definition 4.3.2, representing the support and confidence
constraints.

1. In the first phase, all the frequent itemsets are generated at the minimum support of
minsup.

2. In the second phase, the association rules are generated from the frequent itemsets at
the minimum confidence level of minconf.

The first phase is more computationally intensive and is, therefore, the more interesting part
of the process. The second phase is relatively straightforward. Therefore, the discussion
of the first phase will be deferred to the remaining portion of this chapter, and a quick
discussion of the (more straightforward) second phase is provided here.

Assume that a set of frequent itemsets F is provided. For each itemset I € F, a simple
way of generating the rules would be to partition the set I into all possible combinations of
sets X and Y = I — X, such that I = X UY. The confidence of each rule X = Y can then
be determined, and it can be retained if it satisfies the minimum confidence requirement.
Association rules also satisfy a confidence monotonicity property.

Property 4.3.1 (Confidence Monotonicity) Let Xi, X5, and I be itemsets such that
X1 C X5 C I. Then the confidence of Xo = I — X5 is at least that of X1 = I — X;.

conf(Xo=1—Xs) >conf(X1=1-X,) (4.3)

4.4. FREQUENT ITEMSET MINING ALGORITHMS 99

This property follows directly from definition of confidence and the property of support
monotonicity. Consider the rules {Bread} = {Butter, Milk} and {Bread, Butter} =
{Milk}. The second rule is redundant with respect to the first because it will have the
same support, but a confidence that is no less than the first. Because of confidence mono-
tonicity, it is possible to report only the non-redundant rules. This issue is discussed in
detail in the next chapter.

4.4 Frequent Itemset Mining Algorithms

In this section, a number of popular algorithms for frequent itemset generation will be
discussed. Because there are a large number of frequent itemset mining algorithms, the
focus of the chapter will be to discuss specific algorithms in detail to introduce the reader
to the key tricks in algorithmic design. These tricks are often reusable across different
algorithms because the same enumeration tree framework is used by virtually all frequent
pattern mining algorithms.

4.4.1 Brute Force Algorithms

For a universe of items U, there are a total of 2IUI — 1 distinct subsets, excluding the
empty set. All 2° subsets for a universe of 5 items are illustrated in Fig. 4.1. Therefore,
one possibility would be to generate all these candidate itemsets, and count their support
against the transaction database 7. In the frequent itemset mining literature, the term
candidate itemsets is commonly used to refer to itemsets that might possibly be frequent (or
candidates for being frequent). These candidates need to be verified against the transaction
database by support counting. To count the support of an itemset, we would need to check
whether a given itemset I is a subset of each transaction T; € 7. Such an exhaustive
approach is likely to be impractical, when the universe of items U is large. Consider the
case where d = |U| = 1000. In that case, there are a total of 21990 > 103%0 candidates.
To put this number in perspective, if the fastest computer available today were somehow
able to process one candidate in one elementary machine cycle, then the time required to
process all candidates would be hundreds of orders of magnitude greater than the age of
the universe. Therefore, this is not a practical solution.

Of course, one can make the brute-force approach faster by observing that no (k + 1)-
patterns are frequent if no k-patterns are frequent. This observation follows directly from
the downward closure property. Therefore, one can enumerate and count the support of
all the patterns with increasing length. In other words, one can enumerate and count the
support of all patterns containing one item, two items, and so on, until for a certain length [,
none of the candidates of length [turn out to be frequent. For sparse transaction databases,
the value of [is typically very small compared to |U|. At this point, one can terminate. This
is a significant improvement over the previous approach because it requires the enumeration
of Ei:l (Ilij‘) < 2IYI candidates. Because the longest frequent itemset is of much smaller
length than |U] in sparse transaction databases, this approach is orders of magnitude faster.
However, the resulting computational complexity is still not satisfactory for large values of
U. For example, when |U| = 1000 and [= 10, the value of Z}il ('gf‘) is of the order of 10%3.
This value is still quite large and outside reasonable computational capabilities available
today.

One observation is that even a very minor and rather blunt application of the downward
closure property made the algorithm hundreds of orders of magnitude faster. Many of the
fast algorithms for itemset generation use the downward closure property in a more refined
way, both to generate the candidates and to prune them before counting. Algorithms for

100 CHAPTER 4. ASSOCIATION PATTERN MINING

frequent pattern mining search the lattice of possibilities (or candidates) for frequent pat-
terns (see Fig. 4.1) and use the transaction database to count the support of candidates in
this lattice. Better efficiencies can be achieved in a frequent pattern mining algorithm by
using one or more of the following approaches:

1. Reducing the size of the explored search space (lattice of Fig. 4.1) by pruning candidate
itemsets (lattice nodes) using tricks, such as the downward closure property.

2. Counting the support of each candidate more efficiently by pruning transactions that
are known to be irrelevant for counting a candidate itemset.

3. Using compact data structures to represent either candidates or transaction databases
that support efficient counting.

The first algorithm that used an effective pruning of the search space with the use of the
downward closure property was the Apriori algorithm.

4.4.2 The Apriori Algorithm

The Aprior: algorithm uses the downward closure property in order to prune the candidate
search space. The downward closure property imposes a clear structure on the set of frequent
patterns. In particular, information about the infrequency of itemsets can be leveraged to
generate the superset candidates more carefully. Thus, if an itemset is infrequent, there is
little point in counting the support of its superset candidates. This is useful for avoiding
wasteful counting of support levels of itemsets that are known not to be frequent. The
Apriori algorithm generates candidates with smaller length k first and counts their supports
before generating candidates of length (k+1). The resulting frequent k-itemsets are used to
restrict the number of (k + 1)-candidates with the downward closure property. Candidate
generation and support counting of patterns with increasing length is interleaved in Apriori.
Because the counting of candidate supports is the most expensive part of the frequent
pattern generation process, it is extremely important to keep the number of candidates low.

For ease in description of the algorithm, it will be assumed that the items in U have a
lexicographic ordering, and therefore an itemset {a, b, ¢, d} can be treated as a (lexicograph-
ically ordered) string abed of items. This can be used to impose an ordering among itemsets
(patterns), which is the same as the order in which the corresponding strings would appear
in a dictionary.

The Apriori algorithm starts by counting the supports of the individual items to generate
the frequent 1-itemsets. The 1-itemsets are combined to create candidate 2-itemsets, whose
support is counted. The frequent 2-itemsets are retained. In general, the frequent itemsets
of length k are used to generate the candidates of length (k + 1) for increasing values
of k. Algorithms that count the support of candidates with increasing length are referred
to as level-wise algorithms. Let Fj denote the set of frequent k-itemsets, and Cj denote
the set of candidate k-itemsets. The core of the approach is to iteratively generate the
(k + 1)-candidates Cpy1 from frequent k-itemsets in Fj, already found by the algorithm.
The frequencies of these (k + 1)-candidates are counted with respect to the transaction
database. While generating the (k 4 1)-candidates, the search space may be pruned by
checking whether all k-subsets of Ci41 are included in Fj. So, how does one generate the
relevant (k 4+ 1)-candidates in Cp41 from frequent k-patterns in F?

If a pair of itemsets X and Y in Fj have (k — 1) items in common, then a join between
them using the (k — 1) common items will create a candidate itemset of size (k + 1). For
example, the two 3-itemsets {a, b, c} (or abe for short) and {a, b, d} (or abd for short), when

4.4. FREQUENT ITEMSET MINING ALGORITHMS 101

Algorithm Apriori(Transactions: 7, Minimum Support: minsup)
begin
k=1,
F1 = { All Frequent 1-itemsets };
while Fj, is not empty do begin
Generate Ci11 by joining itemset-pairs in Fy;
Prune itemsets from Cj1 that violate downward closure;
Determine Fjy1 by support counting on (Cx41,7) and retaining
itemsets from Cy11 with support at least minsup;

k=k+1;
end;
return(Ur_, F,);
end

Figure 4.2: The Apriori algorithm

joined together on the two common items a and b, will yield the candidate 4-itemset abcd.
Of course, it is possible to join other frequent patterns to create the same candidate. One
might also join abc and bed to achieve the same result. Suppose that all four of the 3-subsets
of abced are present in the set of frequent 3-itemsets. One can create the candidate 4-itemset
in (g) = 6 different ways. To avoid redundancy in candidate generation, the convention is to
impose a lexicographic ordering on the items and use the first (k — 1) items of the itemset
for the join. Thus, in this case, the only way to generate abcd would be to join using the first
two items a and b. Therefore, the itemsets abc and abd would need to be joined to create
abed. Note that, if either of abc and abd are not frequent, then abed will not be generated as
a candidate using this join approach. Furthermore, in such a case, it is assured that abed will
not be frequent because of the downward closure property of frequent itemsets. Thus, the
downward closure property ensures that the candidate set generated using this approach
does not miss any itemset that is truly frequent. As we will see later, this non-repetitive and
erhaustive way of generating candidates can be interpreted in the context of a conceptual
hierarchy of the patterns known as the enumeration tree. Another point to note is that the
joins can usually be performed very efficiently. This efficiency is because, if the set Fj is
sorted in lexicographic (dictionary) order, all itemsets with a common set of items in the
first £ — 1 positions will appear contiguously, allowing them to be located easily.

A level-wise pruning trick can be used to further reduce the size of the (k+ 1)-candidate
set. All the k-subsets (i.e., subsets of cardinality k) of an itemset I € Ciy1 need to be
present in Fj, because of the downward closure property. Otherwise, it is guaranteed that
the itemset I is not frequent. Therefore, it is checked whether all k-subsets of each itemset
I € Cy41 are present in Fj. If this is not the case, then such itemsets I are removed from
Cht1-

After the candidate itemsets Ci11 of size (k+ 1) have been generated, their support can
be determined by counting the number of occurrences of each candidate in the transaction
database 7. Only the candidate itemsets that have the required minimum support are
retained to create the set of (k + 1)-frequent itemsets Fii11 C Ciyi1. In the event that
the set Fj.1 is empty, the algorithm terminates. At termination, the union U¥_, F; of the
frequent patterns of different sizes is reported as the final output of the algorithm.

The overall algorithm is illustrated in Fig. 4.2. The heart of the algorithm is an iterative
loop that generates (k + 1)-candidates from frequent k-patterns for successively higher
values of k£ and counts them. The three main operations of the algorithm are candidate

102 CHAPTER 4. ASSOCIATION PATTERN MINING

generation, pruning, and support counting. Of these, the support counting process is the
most expensive one because it depends on the size of the transaction database 7. The level-
wise approach ensures that the algorithm is relatively efficient at least from a disk-access
cost perspective. This is because each set of candidates in Cp 1 can be counted in a single
pass over the data without the need for random disk accesses. The number of passes over
the data is, therefore, equal to the cardinality of the longest frequent itemset in the data.
Nevertheless, the counting procedure is still quite expensive especially if one were to use
the naive approach of checking whether each itemset is a subset of a transaction. Therefore,
efficient support counting procedures are necessary.

4.4.2.1 Efficient Support Counting

To perform support counting, Apriori needs to efficiently examined whether each candidate
itemset is present in a transaction. This is achieved with the use of a data structure known
as the hash tree. The hash tree is used to carefully organize the candidate patterns in Cpy1
for more efficient counting. Assume that the items in the transactions and the candidate
itemsets are sorted lexicographically. A hash tree is a tree with a fixed degree of the internal
nodes. Each internal node is associated with a random hash function that maps to the index
of the different children of that node in the tree. A leaf node of the hash tree contains a list
of lexicographically sorted itemsets, whereas an interior node contains a hash table. Every
itemset in Cpy1 is contained in exactly one leaf node of the hash tree. The hash functions
in the interior nodes are used to decide which candidate itemset belongs to which leaf node
with the use of a methodology described below.

It may be assumed that all interior nodes use the same hash function f(-) that maps to
[0...h—1]. The value of h is also the branching degree of the hash tree. A candidate itemset
in C41 is mapped to a leaf node of the tree by defining a path from the root to the leaf node
with the use of these hash functions at the internal nodes. Assume that the root of the hash
tree is level 1, and all successive levels below it increase by 1. As before, assume that the
items in the candidates and transactions are arranged in lexicographically sorted order. At
an interior node in level ¢, a hash function is applied to the ith item of a candidate itemset
I € Cky1 to decide which branch of the hash tree to follow for the candidate itemset. The
tree is constructed recursively in top-down fashion, and a minimum threshold is imposed
on the number of candidates in the leaf node to decide where to terminate the hash tree
extension. The candidate itemsets in the leaf node are stored in sorted order.

To perform the counting, all possible candidate k-itemsets in Cr41 that are subsets of
a transaction T; € T are discovered in a single exploration of the hash tree. To achieve
this goal, all possible paths in the hash tree, whose leaves might contain subset itemsets of
the transaction 7}, are discovered using a recursive traversal. The selection of the relevant
leaf nodes is performed by recursive traversal as follows. At the root node, all branches are
followed such that any of the items in the transaction 7} hash to one of the branches. At a
given interior node, if the ith item of the transaction T; was last hashed (at the parent node),
then all items following it in the transaction are hashed to determine the possible children to
follow. Thus, by following all these paths, the relevant leaf nodes in the tree are determined.
The candidates in the leaf node are stored in sorted order and can be compared efficiently
to the transaction 7T} to determine whether they are relevant. This process is repeated for
each transaction to determine the final support count of each itemset in Cy1.

4.4. FREQUENT ITEMSET MINING ALGORITHMS 103

<D
@O © ©Q @O © O

ONOJOJOIOXORONOEC

CRCPREDREPRCEIRCIRCD,
Cacd

Figure 4.3: The lexicographic or enumeration tree of frequent itemsets

4.4.3 Enumeration-Tree Algorithms

These algorithms are based on set enumeration concepts, in which the different candidate
itemsets are generated in a tree-like structure known as the enumeration tree, which is a
subgraph of the lattice of itemsets introduced in Fig. 4.1. This tree-like structure is also
referred to as a lexicographic tree because it is dependent on an upfront lexicographic order-
ing among the items. The candidate patterns are generated by growing this lexicographic
tree. This tree can be grown in a wide variety of different strategies to achieve different
trade-offs between storage, disk access costs, and computational efficiency. Because most of
the discussion in this section will use this structure as a base for algorithmic development,
this concept will be discussed in detail here. The main characteristic of the enumeration
tree (or lexicographic tree) is that it provides an abstract hierarchical representation of the
itemsets. This representation is leveraged by frequent pattern mining algorithms for sys-
tematic exploration of the candidate patterns in a non-repetitive way. The final output of
these algorithms can also be viewed as an enumeration tree structure that is defined only
on the frequent itemsets. The enumeration tree is defined on the frequent itemsets in the
following way:

1. A node exists in the tree corresponding to each frequent itemset. The root of the tree
corresponds to the null itemset.

2. Let I = {iy,...4ix} be a frequent itemset, where 41,5 ...1j are listed in lexicographic
order. The parent of the node I is the itemset {i1,...475—1}. Thus, the child of a node
can only be extended with items occurring lexicographically after all items occur-
ring in that node. The enumeration tree can also be viewed as a prefix tree on the
lexicographically ordered string representation of the itemsets.

This definition of an ancestral relationship naturally creates a tree structure on the nodes,
which is rooted at the null node. An example of the frequent portion of the enumeration
tree is illustrated in Fig. 4.3. An item that is used to extend a node to its (frequent) child in
the enumeration tree is referred to as a frequent tree extension, or simply a tree extension.
In the example of Fig. 4.3, the frequent tree extensions of node a are b, ¢, d, and f, because

104 CHAPTER 4. ASSOCIATION PATTERN MINING

these items extend node a to the frequent itemsets ab, ac, ad, and af, respectively. The
lattice provides many paths to extend the null itemset to a node, whereas an enumeration
tree provides only one path. For example, itemset ab can be extended either in the order
a — ab, or in the order b — ab in the lattice. However, only the former is possible in the
enumeration tree after the lexicographic ordering has been fixed. Thus, the lexicographic
ordering imposes a strictly hierarchical structure on the itemsets. This hierarchical structure
enables systematic and non-redundant exploration of the itemset search space by algorithms
that generate candidates by extending frequent itemsets with one item at a time. The
enumeration tree can be constructed in many ways with different lexicographic orderings of
items. The impact of this ordering will be discussed later.

Most of the enumeration tree algorithms work by growing this enumeration tree of
frequent itemsets with a predefined strategy. First, the root node of the tree is extended
by finding the frequent 1-items. Then, these nodes may be extended to create candidates.
These are checked against the transaction database to determine the ones that are frequent.
The enumeration tree framework provides an order and structure to the frequent itemset
discovery, which can be leveraged to improve the counting and pruning process of candidates.
In the following discussion, the terms “node” and “itemset” will be used interchangeably.
Therefore, the notation P will be used to denote both an itemset, and its corresponding
node in the enumeration tree.

So, how can candidates nodes be generated in a systematic way from the frequent nodes
in the enumeration tree that have already been discovered? For an item i to be considered
a candidate for extending a frequent node P to PU{i}, it must also be a frequent extension
of the parent) of P. This is because of the downward closure property, and it can be used
to systematically define the candidate extensions of a node P after the frequent extensions
of its parent @) have been determined. Let F'(Q) represent the frequent lexicographic tree
extensions of node Q. Let ¢ € F(Q) be the frequent extension item that extends frequent
node @ to frequent node P = Q U {i}. Let C(P) denote the subset of items from F(Q)
occurring lexicographically after the item i used to extend node @ to node P. The set
C(P) defines the candidate extension items of node P, which are defined as items that
can be appended at the end of P to create candidate itemsets. This provides a systematic
methodology to generate candidate children of node P. As we will see in Sect. 4.4.3.1,
the resulting candidates are identical to those generated by Apriori joins. Note that the
relationship F(P) C C(P) C F(Q) is always true. The value of F(P) in Fig. 4.3, when
P = ab, is {c,d}. The value of C(P) for P = ab is {c,d, f} because these are frequent
extensions of parent itemset @ = {a} of P occurring lexicographically after the item b.
Note that the set of candidate extensions C(ab) also contains the (infrequent) item f that
the set of frequent extensions F'(ab) does not. Such infrequent item extensions correspond to
failed candidate tests in all enumeration tree algorithms. Note that the infrequent itemset
abf is not included in the frequent itemset tree of Fig. 4.3. It is also possible to create an
enumeration tree structure on the candidate itemsets, which contains an additional layer of
infrequent candidate extensions of the nodes in Fig. 4.3. Such a tree would contain abf.

Enumeration tree algorithms iteratively grow the enumeration tree £7 of frequent pat-
terns. A very generic description of this iterative step, which is executed repeatedly to
extend the enumeration tree £7, is as follows:

Select one or more nodes P in £T;

Determine candidate extensions C'(P) for each such node P € P;
Count support of generated candidates;

Add frequent candidates to £T (tree growth);

4.4. FREQUENT ITEMSET MINING ALGORITHMS 105

Algorithm GenericEnumeration Tree(Transactions: T,
Minimum Support: minsup)
begin
Initialize enumeration tree £7 to single Null node;
while any node in £7 has not been examined do begin
Select one of more unexamined nodes P from £7 for examination;
Generate candidates extensions C'(P) of each node P € P;
Determine frequent extensions F(P) C C(P) for each P € P with support counting;
Extend each node P € P in ET with its frequent extensions in F(P);
end
return enumeration tree £7T;
end

Figure 4.4: Generic enumeration-tree growth with unspecified growth strategy and counting
method

This approach is continued until none of the nodes can be extended any further. At
this point, the algorithm terminates. A more detailed description is provided in Fig. 4.4.
Interestingly, almost all frequent pattern mining algorithms can be viewed as variations
and extensions of this simple enumeration-tree framework. Within this broader framework,
a wide variability exists both in terms of the growth strategy of the tree and the specific data
structures used for support counting. Therefore, the description of Fig. 4.4 is very generic
because none of these aspects are specified. The different choices of growth strategy and
counting methodology provide different trade-offs between efficiency, space-requirements,
and disk access costs. For example, in breadth-first strategies, the node set P selected in an
iteration of Fig. 4.4 corresponds to all nodes at one level of the tree. This approach may be
more relevant for disk-resident databases because all nodes at a single level of the tree can
be extended during one counting pass on the transaction database. Depth-first strategies
select a single node at the deepest level to create P. These strategies may have better ability
to explore the tree deeply and discover long frequent patterns early. The early discovery of
longer patterns is especially useful for computational efficiency in maximal pattern mining
and for better memory management in certain classes of projection-based algorithms.

Because the counting approach is the most expensive part, the different techniques
attempt to use growth strategies that optimize the work done during counting. Further-
more, it is crucial for the counting data structures to be efficient. This section will explore
some of the common algorithms, data structures, and pruning strategies that leverage
the enumeration-tree structure in the counting process. Interestingly, the enumeration-tree
framework is so general that even the Apriori algorithm can be interpreted within this
framework, although the concept of an enumeration tree was not used when Apriori was
proposed.

4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori

The Apriori algorithm can be viewed as the level-wise construction of the enumeration
tree in breadth-first manner. The Apriori join for generating candidate (k + 1)-itemsets is
performed in a non-redundant way by using only the first (k — 1) items from two frequent
k-itemsets. This is equivalent to joining all pairs of immediate siblings at the kth level of the
enumeration tree. For example, the children of ab in Fig. 4.3 may be obtained by joining

106 CHAPTER 4. ASSOCIATION PATTERN MINING

ab with all its frequent siblings (other children of node a) that occur lexicographically
later than it. In other words, the join operation of node P with its lexicographically later
frequent siblings produces the candidates corresponding to the extension of P with each of
its candidate tree-extensions C'(P). In fact, the candidate extensions C(P) for all nodes P
at a given level of the tree can be erhaustively and non-repetitively generated by using joins
between all pairs of frequent siblings at that level. The Apriori pruning trick then discards
some of the enumeration tree nodes because they are guaranteed not to be frequent. A
single pass over the transaction database is used to count the support of these candidate
extensions, and generate the frequent extensions F'(P) C C(P) for each node P in the
level being extended. The approach terminates when the tree cannot be grown further
in a particular pass over the database. Thus, the join operation of Apriori has a direct
interpretation in terms of the enumeration tree, and the Apriori algorithm implicitly extends
the enumeration tree in a level-wise fashion with the use of joins.

4.4.3.2 TreeProjection and DepthProject

TreeProjection is a family of methods that uses recursive projections of the transactions
down the enumeration tree structure. The goal of these recursive projections is to reuse
the counting work that has already been done at a given node of the enumeration tree
at its descendent nodes. This reduces the overall counting effort by orders of magnitude.
TreeProjection is a general framework that shows how to use database projection in the
context of a variety of different strategies for construction of the enumeration tree, such
as breadth-first, depth-first, or a combination of the two. The DepthProject approach is a
specific instantiation of this framework with the depth-first strategy. Different strategies
have different trade-offs between the memory requirements and disk-access costs.

The main observation in projection-based methods is that if a transaction does not con-
tain the itemset corresponding to an enumeration-tree node, then this transaction will not
be relevant for counting at any descendent (superset itemset) of that node. Therefore, when
counting is done at an enumeration-tree node, the information about irrelevant transac-
tions should somehow be preserved for counting at its descendent nodes. This is achieved
with the notion of projected databases. Each projected transaction database is specific to an
enumeration-tree node. Transactions that do not contain the itemset P are not included in
the projected databases at node P and its descendants. This results in a significant reduc-
tion in the number of projected transactions. Furthermore, only the candidate extension
items of P, denoted by C(P), are relevant for counting at any of the subtrees rooted at
node P. Therefore, the projected database at node P can be expressed only in terms of the
items in C(P). The size of C(P) is much smaller than the universe of items, and therefore
the projected database contains a smaller number of items per transaction with increasing
size of P. We denote the projected database at node P by T (P). For example, consider the
node P = ab in Fig. 4.3, in which the candidate items for extending ab are C'(P) = {¢,d, f}.
Then, the transaction abcfg maps to the projected transaction ¢f in 7 (P). On the other
hand, the transaction acfg is not even present in 7 (P) because P = ab is not a subset
of acfg. The special case T (Null) = T corresponds to the top level of the enumeration
tree and is equal to the full transaction database. In fact, the subproblem at node P with
transaction database 7 (P) is structurally identical to the top-level problem, except that
it is a much smaller problem focused on determining frequent patterns with a prefix of P.
Therefore, the frequent node P in the enumeration tree can be extended further by count-
ing the support of individual items in C'(P) using the relatively small database 7 (P). This

4.4. FREQUENT ITEMSET MINING ALGORITHMS 107

Algorithm Projected Enumeration Tree(Transactions: T,
Minimum Support: minsup)
begin
Initialize enumeration tree ET to a single (Null, T) root node;
while any node in £7 has not been examined do begin
Select an unexamined node (P, 7 (P)) from ET for examination;
Generate candidates item extensions C'(P) of node (P, T (P));
Determine frequent item extensions F(P) C C'(P) by support counting
of individual items in smaller projected database T (P);
Remove infrequent items in 7 (P);
for each frequent item extension i € F'(P) do begin
Generate T (P U {i}) from T (P);
Add (PU{i},T(PU{i})) as child of P in ET;
end
end
return enumeration tree £7T;
end

Figure 4.5: Generic enumeration-tree growth with unspecified growth strategy and database
projections

results in a simplified and efficient counting process of candidate 1-item extensions rather
than itemsets.

The enumeration tree can be grown with a variety of strategies such as the breadth-
first or depth-first strategies. At each node, the counting is performed with the use of the
projected database rather than the entire transaction database, and a further reduced and
projected transaction database is propagated to the children of P. At each level of the
hierarchical projection down the enumeration tree, the number of items and the number of
transactions in the projected database are reduced. The basic idea is that 7 (P) contains the
minimal portion of the transaction database that is relevant for counting the subtree rooted
at P, based on the removal of irrelevant transactions and items by the counting process
that has already been performed at higher levels of the tree. By recursively projecting the
transaction database down the enumeration tree, this counting work is reused. We refer to
this approach as projection-based reuse of counting effort.

The generic enumeration-tree algorithm with hierarchical projections is illustrated in
Fig. 4.5. This generic algorithm does not assume any specific exploration strategy, and is
quite similar to the generic enumeration-tree pseudocode shown in Fig. 4.4. There are two
differences between the pseudocodes.

1. For simplicity of notation, we have shown the exploration of a single node P at one time
in Fig. 4.5, rather than a group of nodes P (as in Fig. 4.4). However, the pseudocode
shown in Fig. 4.5 can easily be rewritten for a group of nodes P. Therefore, this is
not a significant difference.

2. The key difference is that the projected database T(P) is used to count support
at node P. Each node in the enumeration tree is now represented by the itemset
and projected database pair (P, 7 (P)). This is a very important difference because
T (P) is much smaller than the original database. Therefore, a significant amount of
information gained by counting the supports of ancestors of node P, is preserved in
T (P). Furthermore, one only needs to count the support of single item extensions of
node P in T (P) (rather than entire itemsets) in order to grow the subtree at P further.

108 CHAPTER 4. ASSOCIATION PATTERN MINING

The enumeration tree can be constructed in many different ways depending on the lexico-
graphic ordering of items. How should the items be ordered? The structure of the enumer-
ation tree has a built-in bias towards creating unbalanced trees in which the lexicograph-
ically smaller items have more descendants. For example, in Fig. 4.3, node a has many
more descendants than node f. Therefore, ordering the items from least support to greatest
support ensures that the computationally heavier branches of the enumeration tree have
fewer relevant transactions. This is helpful in maximizing the selectivity of projections and
ensuring better efficiency.

The strategy used for selection of the node P defines the order in which the nodes of
the enumeration tree are materialized. This strategy has a direct impact on memory man-
agement because projected databases, which are no longer required for future computation,
can be deleted. In depth-first strategies, the lexicographically smallest unexamined node
P is selected for extension. In this case, one only needs to maintain projected databases
along the current path of the enumeration tree being explored. In breadth-first strategies,
an entire group of nodes P corresponding to all patterns of a particular size are grown first.
In such cases, the projected databases need to be simultaneously maintained along the full
breadth of the enumeration tree £7 at the two current levels involved in the growth process.
Although it may be possible to perform the projection on such a large number of nodes for
smaller transaction databases, some modifications to the basic framework of Fig. 4.5 are
needed for the general case of larger databases.

In particular, breadth-first variations of the TreeProjection framework perform hierarchi-
cal projections on the fly during counting from their ancestor nodes. The depth-first varia-
tions of TreeProjection, such as DepthProject, achieve full projection-based reuse because the
projected transactions can be consistently maintained at each materialized node along the
relatively small path of the enumeration tree from the root to the current node. The breadth-
first variations do have the merit that they can optimize disk-access costs for arbitrarily
large databases at the expense of losing some of the power of projection-based reuse. As will
be discussed later, all (full) projection-based reuse methods face memory-management chal-
lenges with increasing database size. These additional memory requirements can be viewed
as the price for persistently storing the relevant work done in earlier iterations in the indi-
rect form of projected databases. There is usually a different trade-off between disk-access
costs and memory/computational requirements in various strategies, which is exploited by
the TreeProjection framework. The bibliographic notes contain pointers to specific details
of these optimized variations of TreeProjection.

Optimized counting at deeper level nodes: The projection-based approach enables specialized
counting techniques at deeper level nodes near the leaves of the enumeration tree. These
specialized counting methods can provide the counts of all the itemsets in a lower-level
subtree in the time required to scan the projected database. Because such nodes are more
numerous, this can lead to large computational improvements.

What is the point at which such counting methods can be used? When the number of
frequent extensions F(P) of a node P falls below a threshold ¢ such that 2* fits in memory,
an approach known as bucketing can be used. To obtain the best computational results, the
value of t used should be such that 2¢ is much smaller than the number of transactions in
the projected database. This can occur only when there are many repeated transactions in
the projected database.

A two-phase approach is used. In the first phase, the count of each distinct transaction
in the projected database is determined. This can be accomplished easily by maintaining
21F(P)l buckets or counters, scanning the transactions one by one, and adding counts to the
buckets. This phase can be completed in a simple scan of the small (projected) database

4.4. FREQUENT ITEMSET MINING ALGORITHMS 109

of transactions. Of course, this process only provides transaction counts and not itemset
counts.

In the second phase, the transaction frequency counts can be further aggregated in a
systematic way to create itemset frequency counts. Conceptually, the process of aggregating
projected transaction counts is similar to arranging all the 217 (")l possibilities in the form
of a lattice, as illustrated in Fig. 4.1. The counts of the lattice nodes, which are computed
in the first phase, are aggregated up the lattice structure by adding the count of immediate
supersets to their subsets. For small values of |F(P)|, such as 10, this phase is not the
limiting computational factor, and the overall time is dominated by that required to scan
the projected database in the first phase. An efficient implementation of the second phase
is discussed in detail below.

Consider a string composed of 0, 1, and * that refers to an itemset in which the positions
with 0 and 1 are fixed to those values (corresponding to presence or absence of items),
whereas a position with a * is a “don’t care.” Thus, all transactions can be expressed in
terms of 0 and 1 in their binary representation. On the other hand, all itemsets can be
expressed in terms of 1 and * because itemsets are traditionally defined with respect to
presence of items and ambiguity with respect to absence. Consider, for example, the case
when |F(P)| = 4, and there are four items, numbered {1,2,3,4}. An itemset containing
items 2 and 4 is denoted by #1 % 1. We start with the information on 2* = 16 bitstrings
that are composed 0 and 1. These represent all possible distinct transactions. The algorithm
aggregates the counts in |F'(P)| iterations. The count for a string with a “*” in a particular
position may be obtained by adding the counts for the strings with a 0 and 1 in those
positions. For example, the count for the string *1*1 may be expressed as the sum of the
counts of the strings 01*1 and 11*1. The positions may be processed in any order, although
the simplest approach is to aggregate them from the least significant to the most significant.

A simple pseudocode to perform the aggregation is described below. In this pseudocode,
the initial value of bucket[i] is equal to the count of the transaction corresponding to the
bitstring representation of integer i. The final value of bucket[i] is one in which the trans-
action count has been converted to an itemset count by successive aggregation. In other
words, the Os in the bitstring are replaced by “don’t cares.”

for i :== 1 to k do begin
for j := 1 to 2¥ do begin
if the ith bit of bitstring representation
of j is 0 then bucket[j] = bucket[j] + bucket[j + 2'71];
endfor
endfor

An example of bucketing for |F(P)| = 4 is illustrated in Fig. 4.6. The bucketing trick is
performed commonly at lower nodes of the tree because the value of |F'(P)| falls drastically
at the lower levels. Because the nodes at the lower levels dominate the total number of
nodes in the enumeration-tree structure, the impact of bucketing can be very significant.

Optimizations for mazimal pattern mining: The DepthProject method, which is a depth-
first variant of the approach, is particularly adaptable for maximal pattern discovery. In
this case, the enumeration tree is explored in depth-first order to maximize the advantages
of pruning the search space of regions containing only non-maximal patterns. The order of
construction of the enumeration tree is important in the particular case of maximal frequent

110 CHAPTER 4. ASSOCIATION PATTERN MINING

BITPATTERN ~ounNT

000 2 00* | 243 0** | 545 *EE110+17
001 3 001 3 0*1 | 3+1 **1 | 4+6
010 4 01* | 4+1 01* 5 *1* | 5+8
011 1 ITERATION1 | 011 1 ITERATION2 | 011 1 ITERATION3 | *11 | 1+2
100 5 : 10* | 5+4 2 1%* | 9+8 2 1** | 17
101 4 101 4 1*1 | 4+2 1*1 6
110 6 11* | 6+2 11* 8 11* 8
111 2 111 2 111 2 111 2

Figure 4.6: Performing the second phase of bucketing

pattern mining because certain kinds of non-maximal search-space pruning are optimized
with the depth-first order. The notion of lookaheads is one such optimization.

Let C(P) be the set of candidate item extensions of node P. Before support counting,
it is tested whether PUC/(P) is a subset of a frequent pattern that has already been found.
If such is indeed the case, then the pattern P U C(P) is a non-maximal frequent pattern,
and the entire subtree (of the enumeration tree) rooted at P can be pruned. This kind of
pruning is referred to as superset-based pruning. When P cannot be pruned, the supports of
its candidate extensions need to be determined. During this support counting, the support
of PUC(P) is counted along with the individual item extensions of P. If PUC(P) is found
to be frequent, then it eliminates any further work of counting the support of (non-maximal)
nodes in the subtree rooted at node P.

While lookaheads can also be used with breadth-first algorithms, they are more effective
with a depth-first strategy. In depth-first methods, longer patterns tend to be found first,
and are, therefore, already available in the frequent set for superset-based pruning. For
example, consider a frequent pattern of length 20 with 220 subsets. In a depth-first strategy,
it can be shown that the pattern of length 20 will be discovered after exploring only 19 of
its immediate prefixes. On the other hand, a breadth-first method may remain trapped by
discovery of shorter patterns. Therefore, the longer patterns become available very early in
depth-first methods such as DepthProject to prune large portions of the enumeration tree
with superset-based pruning.

4.4.3.3 Vertical Counting Methods

The Partition [446] and Monet [273] methods pioneered the concept of vertical database
representations of the transaction database T. In the wvertical representation, each item is
associated with a list of its transaction identifiers (tids). It can also be thought of as using
the transpose of the binary transaction data matrix representing the transactions so that
columns are transformed to rows. These rows are used as the new “records.” Each item,
thus, has a tid list of identifiers of transactions containing it. For example, the vertical
representation of the database of Table 4.1 is illustrated in Table 4.2. Note that the binary
matrix in Table 4.2 is the transpose of that in Table 4.1.

The intersection of two item tid lists yields a new tid list whose length is equal to the
support of that 2-itemset. Further intersection of the resulting tid list with that of another
item yields the support of 3-itemsets. For example, the intersection of the tid lists of Milk and
Yogurt yields {2,4,5} with length 3. Further intersection of the tid list of {Milk,Y ogurt}
with that of Eggs yields the tid list {2,4} of length 2. This means that the support of

4.4. FREQUENT ITEMSET MINING ALGORITHMS 111

Table 4.2: Vertical representation of market basket data set

H Item \ Set of tids \ Binary representation H

Bread {1,3} 10100
Butter {1} 10000
Cheese {3,5} 00101
Eggs {2,3,4} 01110
Milk | {1,2,3,4,5} 11111
Yogurt {2,4,5} 01011

{Milk,Yogurt} is 3/5 = 0.6 and that of {Milk, Eggs, Yogurt} is 2/5 = 0.4. Note that one
can also intersect the smaller tid lists of {Milk,Yogurt} and {Milk, Eggs} to achieve the
same result. For a pair of k-itemsets that join to create a (k + 1)-itemset, it is possible to
intersect the tid lists of the k-itemset pair to obtain the tid-list of the resulting (k + 1)-
itemset. Intersecting tid lists of k-itemsets is preferable to intersecting tid lists of 1-itemsets
because the tid lists of k-itemsets are typically smaller than those of 1-itemsets, which
makes intersection faster. Such an approach is referred to as recursive tid list intersection.
This insightful notion of recursive tid list intersection was introduced? by the Monet [273]
and Partition [446] algorithms. The Partition framework [446] proposed a vertical version
of the Apriori algorithm with tid list intersection. The pseudocode of this vertical version
of the Apriori algorithm is illustrated in Fig. 4.7. The only difference from the horizontal
Apriori algorithm is the use of recursive tid list intersections for counting. While the vertical
Apriori algorithm is computationally more efficient than horizontal Apriori, it is memory-
intensive because of the need to store tid lists with each itemset. Memory requirements
can be reduced with the use of a partitioned ensemble in which the database is divided
into smaller chunks which are independently processed. This approach reduces the memory
requirements at the expense of running-time overheads in terms of postprocessing, and it is
discussed in Sect. 4.6.2. For smaller databases, no partitioning needs to be applied. In such
cases, the vertical Apriori algorithm of Fig. 4.7 is also referred to as Partition-1, and it is
the progenitor of all modern vertical pattern mining algorithms.

The vertical database representation can, in fact, be used in almost any enumeration-
tree algorithm with a growth strategy that is different from the breadth-first method. As
in the case of the vertical Apriori algorithm, the tid lists can be stored with the itemsets
(nodes) during the growth of the tree. If the tid list of any node P is known, it can be
intersected with the tid list of a sibling node to determine the support count (and ¢id list) of
the corresponding extension of P. This provides an efficient way of performing the counting.
By varying the strategy of growing the tree, the memory overhead of storing the tid lists can
be reduced but not the number of operations. For example, while both breadth-first and
depth-first strategies will require exactly the same tid list intersections for a particular pair
of nodes, the depth-first strategy will have a smaller memory footprint because the tid lists
need to be stored only at the nodes on the tree-path being explored and their immediate
siblings. Reducing the memory footprint is, nevertheless, important because it increases the
size of the database that can be processed entirely in core.

Subsequently, many algorithms, such as Fclat and VIPER, adopted Partition’s recursive
tid list intersection approach. Fclat is a lattice-partitioned memory-optimization of the algo-

2Strictly speaking, Monet is the name of the vertical database, on top of which this (unnamed) algorithm
was built.

112 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm VerticalApriori(Transactions: T, Minimum Support: minsup)
begin
k=1,
F1 = { All Frequent 1-itemsets };
Construct vertical tid lists of each frequent item;
while Fj is not empty do begin
Generate Ci41 by joining itemset-pairs in Fy;
Prune itemsets from Cj4; that violate downward closure;
Generate tid list of each candidate itemset in Cx11 by intersecting
tid lists of the itemset-pair in Fj, that was used to create it;
Determine supports of itemsets in Cpy1 using lengths of their tid lists;
Fr+1= Frequent itemsets of Ciy1 together with their tid lists;

k=k+1,;
end;
return(UF_, F;);
end

Figure 4.7: The vertical Apriori algorithm of Savasere et al. [446]

rithm in Fig. 4.7. In Eclat [537], an independent Apriori-like breadth-first strategy is used
on each of the sublattices of itemsets with a common prefix. These groups of itemsets are
referred to as equivalence classes. Such an approach can reduce the memory requirements
by partitioning the candidate space into groups that are processed independently in con-
junction with the relevant vertical lists of their prefixes. This kind of candidate partitioning
is similar to parallel versions of Apriori, such as the Candidate Distribution algorithm [54].
Instead of using the candidate partitioning to distribute various sublattices to different
processors, the Eclat approach sequentially processes the sublattices one after another to
reduce peak memory requirements. Therefore, Eclat can avoid the postprocessing overheads
associated with Savasere et al.’s data partitioning approach, if the database is too large to
be processed in core by Partition-1, but small enough to be processed in core by Eclat. In
such cases, Fclat is faster than Partition. Note that the number of computational operations
for support counting in Partition-1 is fundamentally no different from that of Fclat because
the tid list intersections between any pair of itemsets remain the same. Furthermore, Eclat
implicitly assumes an upper bound on the database size. This is because it assumes that
multiple ¢id lists, each of size at least a fraction minsup of the number of database records,
fit in main memory. The cumulative memory overhead of the multiple tid lists always scales
proportionally with database size, whereas the memory overhead of the ensemble-based
Partition algorithm is independent of database size.

4.4.4 Recursive Suffix-Based Pattern Growth Methods

Enumeration trees are constructed by extending prefizes of itemsets that are expressed in a
lexicographic order. It is also possible to express some classes of itemset exploration meth-
ods recursively with suffiz-based exploration. Although recursive pattern-growth is often
understood as a completely different class of methods, it can be viewed as a special case of
the generic enumeration-tree algorithm presented in the previous section. This relationship
between recursive pattern-growth methods and enumeration-tree methods will be explored
in greater detail in Sect. 4.4.4.5.

4.4. FREQUENT ITEMSET MINING ALGORITHMS 113

Recursive suffix-based pattern growth methods are generally understood in the context
of the well-known FP-Tree data structure. While the FP-Tree provides a space- and time-
efficient way to implement the recursive pattern exploration, these methods can also be
implemented with the use of arrays and pointers. This section will present the recursive
pattern growth approach in a simple way without introducing any specific data structure.
We also present a number of simplified implementations® with various data structures to
facilitate better understanding. The idea is to move from the simple to the complex by
providing a top-down data structure-agnostic presentation, rather than a tightly integrated
presentation with the commonly used FP-Tree data structure. This approach provides a
clear understanding of how the search space of patterns is explored and the relational with
conventional enumeration tree algorithms.

Consider the transaction database 7 which is expressed in terms of only frequent 1-
items. It is assumed that a counting pass has already been performed on 7 to remove the
infrequent items and count the supports of the items. Therefore, the input to the recursive
procedure described here is slightly different from the other algorithms discussed in this
chapter in which this database pass has not been performed. The items in the database are
ordered with decreasing support. This lexicographic ordering is used to define the ordering
of items within itemsets and transactions. This ordering is also used to define the notion
of prefixes and suffixes of itemsets and transactions. The input to the algorithm is the
transaction database T (expressed in terms of frequent 1-items), a current frequent itemset
suffix P, and the minimum support minsup. The goal of a recursive call to the algorithm
is to determine all the frequent patterns that have the suffix P. Therefore, at the top-
level recursive call of the algorithm, the suffix P is empty. At deeper-level recursive calls,
the suffix P is not empty. The assumption for deeper-level calls is that 7 contains only
those transactions from the original database that include the itemset P. Furthermore,
each transaction in 7T is represented using only those frequent extension items of P that are
lexicographically smaller than all items of P. Therefore T is a conditional transaction set,
or projected database with respect to suffix P. This suffix-based projection is similar to the
prefix-based projection in TreeProjection and DepthProject.

In any given recursive call, the first step is to construct the itemset P; = {i} U P by
concatenating each item ¢ in the transaction database 7 to the beginning of suffix P, and
reporting it as frequent. The itemset P; is frequent because 7 is defined in terms of frequent
items of the projected database of suffix P. For each item i, it is desired to further extend
P; by using a recursive call with the projected database of the (newly extended) frequent
suffix P;. The projected database for extended suffix P; is denoted by 7;, and it is created as
follows. The first step is to extract all transactions from 7 that contain the item i. Because
it is desired to extend the suffix P; backwards, all items that are lexicographically greater
than or equal to 7 are removed from the extracted transactions in 7;. In other words, the
part of the transaction occurring lexicographically after (and including) 4 is not relevant for
counting frequent patterns ending in P;. The frequency of each item in 7; is counted, and
the infrequent items are removed.

It is easy to see that the transaction set 7; is sufficient to generate all the frequent
patterns with P; as a suffix. The problem of finding all frequent patterns ending in P;
using the transaction set 7; is an identical but smaller problem than the original one on 7.
Therefore, the original procedure is called recursively with the smaller projected database
T; and extended suffix P;. This procedure is repeated for each item ¢ in 7T .

3Variations of these strategies are actually used in some implementations of these methods. We stress
that the simplified versions are not optimized for efficiency but are provided for clarity.

114 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm RecursiveSuffizGrowth(Transactions in terms of frequent 1-items: T,
Minimum Support: minsup, Current Suffix: P)
begin
for each item ¢ in 7 do begin
report itemset P; = {i} U P as frequent;
Extract all transactions 7; from 7T containing item 4;
Remove all items from 7; that are lexicographically > ;
Remove all infrequent items from 7;;
if (T; # ¢) then RecursiveSuffizGrowth(T;, minsup, P;);
end
end

Figure 4.8: Generic recursive suffix growth on transaction database expressed in terms of
frequent 1-items

The projected transaction set 7; will become successively smaller at deeper levels of the
recursion in terms of the number of items and the number of transactions. As the number of
transactions reduces, all items in it will eventually fall below the minimum support, and the
resulting projected database (constructed on only the frequent items) will be empty. In such
cases, a recursive call with 7; is not initiated; therefore, this branch of the recursion is not
explored. For some data structures, such as the FP-Tree, it is possible to impose stronger
boundary conditions to terminate the recursion even earlier. This boundary condition will
be discussed in a later section.

The overall recursive approach is presented in Fig. 4.8. While the parameter minsup
has always been assumed to be a (relative) fractional value in this chapter, it is assumed
to be an absolute integer support value in this section and in Fig. 4.8. This deviation from
the usual convention ensures consistency of the minimum support value across different
recursive calls in which the size of the conditional transaction database reduces.

4.4.4.1 Implementation with Arrays but No Pointers

So, how can the projected database 7 be decomposed into the conditional transaction sets
Ti ... 7Tq, corresponding to d different 1-item suffixes? The simplest solution is to use arrays.
In this solution, the original transaction database T and the conditional transaction sets
Ti...7T4 can be represented in arrays. The transaction database 7 may be scanned within
the “for” loop of Fig. 4.8, and the set 7; is created from 7. The infrequent items from
T; are removed within the loop. However, it is expensive and wasteful to repeatedly scan
the database T inside a “for” loop. One alternative is to extract all projections 7; of T
corresponding to the different suffix items simultaneously in a single scan of the database
just before the “for” loop is initiated. On the other hand, the simultaneous creation of
many such item-specific projected data sets can be memory-intensive. One way of obtaining
an excellent trade-off between computational and storage requirements is by using pointers.
This approach is discussed in the next section.

4.4.4.2 Implementation with Pointers but No FP-Tree

The array-based solution either needs to repeatedly scan the database T or simultaneously
create many smaller item-specific databases in a single pass. Typically, the latter achieves

4.4. FREQUENT ITEMSET MINING ALGORITHMS 115

POINTERS FOR EACH ITEM

o RELEVANT IRRELEVANT
vV N/
ab iy ab, f—m
byl abi cde 1 ab ! P,
Sbe!l ! PULL OUT alcd CHOPOFF ! ab ! CONSOLIDATE 1 ab (2)!
oo [N r N | !
VN2 aice Y, a | Y 1al(2)
¥y ¥ g% TRANSACTIONS ! de 'RRELEVANT | . | R
T L. . WITH ITEM “c” i SUFFIX | '
212 ce
abd: ! REMOVE
MR INFREQUENT
abiie ITEMS
A

d ' 1 A
a c¢d, TRANSACTION DATABASE 1ab(2) !

1 1 1

AN WITH POINTERS ' '
v o viV - a(2)
a cie FOR EFFICIENT A R

i DECOMPOSITION byl 3

vy v A ED

' (o) S

cde AR <

P CONDITIONAL Ly N

vV POINTER BASE i ab!

c e Lab,

Figure 4.9: Illustration of recursive pattern growth with pointers and no FP-Tree

better efficiency but is more memory-intensive. One simple solution to this dilemma is to
set up a data structure in the form of pointers in the first pass, which implicitly stores
the decomposition of T into different item-specific data sets at a lower memory cost. This
data structure is set up at the time that infrequent items are removed from the transaction
database 7, and then utilized for extracting different conditional transaction sets 7; from
T. For each item 4 in 7T, a pointer threads through the transactions containing that item in
lexicographically sorted (dictionary) order. In other words, after arranging the database T
in lexicographically sorted order, each item 7 in each transaction has a pointer to the same
item ¢ in the next transaction that contains it. Because a pointer is required at each item
in each transaction, the storage overhead in this case is proportional to that of the original
transaction database 7. An additional optimization is to consolidate repeated transactions
and store them with their counts. An example of a sample database with nine transactions
on the five items {a, b, ¢, d, e} is illustrated in Fig. 4.9. It is clear from the figure that there
are five sets of pointers, one for each item in the database.

After the pointers have been set up, 7; is extracted by just “chasing” the pointer thread
for item i. The time for doing this is proportional to the number of transactions in 7;.
The infrequent items in 7; are removed, and the pointers for the conditional transaction
data need to be reconstructed to create a conditional pointer base which is basically the
conditional transaction set augmented with pointers. The modified pseudocode with the use
of pointers is illustrated in Fig. 4.10. Note that the only difference between the pseudocode
of Figs. 4.8 and 4.10 is the setting up of pointers after extraction of conditional transaction
sets and the use of these pointers to efficiently extract the conditional transaction data sets
Ti. A recursive call is initiated at the next level with the extended suffix P; = {i} U P, and
conditional database 7T;.

To illustrate how 7; can be extracted, an example of a transaction database with 5 items
and 9 transactions is illustrated in Fig. 4.9. For simplicity, we use a (raw) minimum support
value of 1. The transactions corresponding to the item ¢ are extracted, and the irrelevant
suffix including and after item ¢ are removed for further recursive calls. Note that this leads
to shorter transactions, some of which are repeated. As a result, the conditional database

116 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm Recursive GrowthPointers(Transactions in terms of frequent 1-items: 7T,
Minimum Support: minsup, Current Suffix: P)
begin
for each item ¢ in 7 do begin
report itemset P; = {i} U P as frequent;
Use pointers to extract all transactions 7;
from 7T containing item i;
Remove all items from 7; that are lexicographically > i;
Remove all infrequent items from 7;;
Set up pointers for 7;;
if (7; # ¢) then RecursiveGrowthPointers(T;, minsup, P;);
end
end

Figure 4.10: Generic recursive suffix growth with pointers

for 7; contains only two distinct transactions after consolidation. The infrequent items from
this conditional database need to be removed. No items are removed at a minimum support
of 1. Note that if the minimum support had been 3, then the item b would have been
removed. The pointers for the new conditional transaction set do need to be set up again
because they will be different for the conditional transaction database than in the original
transactions. Unlike the pseudocode of Fig. 4.8, an additional step of setting up pointers is
included in the pseudocode of Fig. 4.10.

The pointers provide an efficient way to extract the conditional transaction database.
Of course, the price for this is that the pointers are a space overhead, with size exactly
proportional to the original transaction database 7. Consolidating repeated transactions
does save some space. The FP-Tree, which will be discussed in the next section, takes this
approach one step further by consolidating not only repeated transactions, but also repeated
prefizes of transactions with the use of a trie data structure. This representation reduces
the space-overhead by consolidating prefixes of the transaction database.

4.4.4.3 Implementation with Pointers and FP-Tree

The FP-Tree is designed with the primary goal of space efficiency of the projected database.
The FP-Tree is a trie data structure representation of the conditional transaction database
by consolidating the prefixes. This trie replaces the array-based implementation of the
previous sections, but it retains the pointers. The path from the root to the leaf in the
trie represents a (possibly repeated) transaction in the database. The path from the root
to an internal node may represent either a transaction or the prefix of a transaction in
the database. Each internal node is associated with a count representing the number of
transactions in the original database that contain the prefix corresponding to the path from
the root to that node. The count on a leaf represents the number of repeated instances of
the transaction defined by the path from the root to that leaf. Thus, the FP-Tree maintains
all counts of all the repeated transactions as well as their prefixes in the database. As in a
standard trie data-structure, the prefixes are sorted in dictionary order. The lexicographic
ordering of items is from the most frequent to the least frequent to maximize the advantages
of prefix-based compression. This ordering also provides excellent selectivity in reducing the
size of various conditional transaction sets in a balanced way. An example of the FP-Tree

4.4. FREQUENT ITEMSET MINING ALGORITHMS 117

TREE OF

COUNT OF @ CONDITIONAL
PREFIX PATH PATHS ENDING PREFIX PATHS
abc=2 IN “c” /

EONN®D

7
/
/
/
/
/

,5@
|

READJUST
COUNTS

REMOVE ITEM “c” AND @
CONDITIONAL / / ALL INFREQUENT ITEMS -

FP-TREE FOR S
ITEM “c” @ RECREATE CONDITIONAL @
FP-TREE AND ADD

! POINTERS f 7

Figure 4.11: Hlustration of recursive pattern growth with pointers and FP-Tree

data structure for the same database (as the previous example of Fig. 4.9) is shown in
Fig. 4.11. In the example, the number “2” associated with the leftmost item c in the FP-
Tree, represents the count of prefix path abc, as illustrated in Fig. 4.11.

The initial FP-Tree FP7T can be constructed as follows. First the infrequent items in
the database are removed. The resulting transactions are then successively inserted into
the trie. The counts on the overlapping nodes are incremented by 1 when the prefix of
the inserted transaction overlaps with an existing path in the trie. For the non-overlapping
portion of the transaction, a new path needs to be created containing this portion. The
newly created nodes are assigned a count of 1. This process of insertion is identical to that
of trie creation, except that counts are also associated with nodes. The resulting tree is a
compressed representation because common items in the prefixes of multiple transactions
are represented by a single node.

The pointers can be constructed in an analogous way to the simpler array data structure
of the previous section. The pointer for each item points to the next occurrence of the same
item in the trie. Because a trie stores the transactions in dictionary order, it is easy to
create pointers threading each of the items. However, the number of pointers is smaller,
because many nodes have been consolidated. As an illustrative example, one can examine
the relationship between the array-based data structure of Fig. 4.9, and the FP-Tree in
Fig. 4.11. The difference is that the prefixes of the arrays in Fig. 4.9 are consolidated and
compressed into a trie in Fig. 4.11.

The conditional FP-Tree FPT; (representing the conditional database 7;) needs to be
extracted and reorganized for each item i € FPT. This extraction is required to initiate
recursive calls with conditional FP-Trees. As in the case of the simple pointer-based struc-
ture of the previous section, it is possible to use the pointers of an item to extract the subset
of the projected database containing that item. The following steps need to be performed
for extraction of the conditional FP-Tree of item i:

118 CHAPTER 4. ASSOCIATION PATTERN MINING

1. The pointers for item 7 are chased to extract the tree of conditional prefiz paths for
the item. These are the paths from the item to the root. The remaining branches are
pruned.

2. The counts of the nodes in the tree of prefix-paths are adjusted to account for the
pruned branches. The counts can be adjusted by aggregating the counts on the leaves
upwards.

3. The frequency of each item is counted by aggregating the counts over all occurrences
of that item in the tree of prefix paths. The items that do not meet the minimum
support requirement are removed from the prefix paths. Furthermore, the last item ¢
is also removed from each prefix path. The resulting conditional FP-Tree might have
a completely different organization than the extracted tree of prefix-paths because of
the removal of infrequent items. Therefore, the conditional FP-Tree may need to be
recreated by reinserting the conditional prefix paths obtained after removing infre-
quent items. The pointers for the conditional FP-Tree need to be reconstructed as
well.

Consider the example in Fig. 4.11 which is the same data set as in Fig. 4.9. As in Fig. 4.9,
it is possible to follow the pointers for item ¢ in Fig. 4.11 to extract a tree of conditional
prefix paths (shown in Fig. 4.11). The counts on many nodes in the tree of conditional
prefix paths need to be reduced because many branches from the original FP-Tree (that
do not contain the item ¢) are not included. These reduced counts can be determined by
aggregating the counts on the leaves upwards. After removing the item ¢ and infrequent
items, two frequency-annotated conditional prefix paths ab(2) and a(2) are obtained, which
are identical to the two projected and consolidated transactions of Fig. 4.9. The conditional
FP-tree is then constructed for item ¢ by reinserting these two conditional prefix paths into
a new conditional FP-Tree. Again, this conditional FP-Tree is a trie representation of the
conditional pointer base of Fig. 4.9. In this case, there are no infrequent items because a
minimum support of 1 is used. If a minimum support of 3 had been used, then the item
b would have to be removed. The resulting conditional FP-Tree is used in the next level
recursive call. After extracting the conditional FP-Tree FPT;, it is checked whether it is
empty. An empty conditional FP-Tree could occur when there are no frequent items in
the extracted tree of conditional prefix paths. If the tree is not empty, then the next level
recursive call is initiated with suffix P, = {i} U P, and the conditional FP-Tree FPT,.

The use of the FP-Tree allows an additional optimization in the form of a boundary
condition for quickly extracting frequent patterns at deeper levels of the recursion. In par-
ticular, it is checked whether all the nodes of the FP-Tree lie on a single path. In such a
case, the frequent patterns can be directly extracted from this path by extracting all com-
binations of nodes on this path together with the aggregated support counts. For example,
in the case of Fig. 4.11, all nodes on the conditional FP-Tree lie on a single path. Therefore,
in the next recursive call, the bottom of the recursion will be reached. The pseudocode
for FP-growth is illustrated in Fig. 4.12. This pseudocode is similar to the pointer-based
pseudocode of Fig. 4.10, except that a compressed FP-Tree is used.

4.4.4.4 Trade-offs with Different Data Structures

The main advantage of an FP-Tree over pointer-based implementation is one of space com-
pression. The FP-Tree requires less space than pointer-based implementation because of
trie-based compression, although it might require more space than an array-based imple-
mentation because of the pointer overhead. The precise space requirements depend on the

4.4. FREQUENT ITEMSET MINING ALGORITHMS 119

Algorithm FP-growth(FP-Tree of frequent items: FP7T, Minimum Support: minsup,
Current Suffix: P)
begin
if FPT is a single path
then determine all combinations C of nodes on the
path, and report C'U P as frequent;
else (Case when FPT is not a single path)
for each item 4 in FPT do begin
report itemset P; = {i} U P as frequent;
Use pointers to extract conditional prefix paths
from FPT containing item i;
Readjust counts of prefix paths and remove i;
Remove infrequent items from prefix paths and reconstruct
conditional FP-Tree FPT;;
if (FPT,; # ¢) then FP-growth(FPT;, minsup, P;);
end
end

Figure 4.12: The FP-growth algorithm with an FP-Tree representation of the transaction
database expressed in terms of frequent 1-items

level of consolidation at higher level nodes in the trie-like FP-Tree structure for a particular
data set. Different data structures may be more suitable for different data sets.

Because projected databases are repeatedly constructed and scanned during recursive
calls, it is crucial to maintain them in main memory. Otherwise, drastic disk-access costs
will be incurred by the potentially exponential number of recursive calls. The sizes of the
projected databases increase with the original database size. For certain kinds of databases
with limited consolidation of repeated transactions, the number of distinct transactions
in the projected database will always be approximately proportional to the number of
transactions in the original database, where the proportionality factor f is equal to the
(fractional) minimum support. For databases that are larger than a factor 1/f of the main
memory availability, projected databases may not fit in main memory either. Therefore, the
limiting factor on the use of the approach is the size of the original transaction database.
This issue is specific to almost all projection-based methods and vertical counting methods.
Memory is always at a premium in such methods and therefore it is crucial for projected
transaction data structures to be designed as compactly as possible. As we will discuss later,
the Partition framework of Savasere et al. [446] provides a partial solution to this issue at
the expense of running time.

4.4.4.5 Relationship Between FP-Growth and Enumeration-Tree Methods

FP-growth is popularly believed to be radically different from enumeration-tree methods.
This is, in part, because FP-growth was originally presented as a method that extracts
frequent patterns without candidate generation. However, such an exposition provides an
incomplete understanding of how the search space of patterns is explored. FP-growth is an
instantiation of enumeration-tree methods. All enumeration-tree methods generate candi-
date extensions to grow the tree. In the following, we will show the equivalence between
enumeration-tree methods and FP-growth.

120 CHAPTER 4. ASSOCIATION PATTERN MINING

(a) Prefix extensions with (b) FP-growth with ordering
ordering of a,b,c,d, e, f of f,e,d,c,b,a
(Enumeration Tree Prefixes shown) (Recursion Tree Suffixes shown)

Figure 4.13: Enumeration trees are identical to F'P-growth recursion trees with reverse lex-
icographic ordering

FP-growth is a recursive algorithm that extends suffixes of frequent patterns. Any recur-
sive approach has a tree-structure associated with it that is referred to as its recursion
tree, and a dynamic recursion stack that stores the recursion variables on the current path
of the recursion tree during execution. Therefore, it is instructive to examine the suffix-
based recursion tree created by the FP-growth algorithm, and compare it with the classical
prefix-based enumeration tree used by enumeration-tree algorithms.

In Fig. 4.13a, the enumeration tree from the earlier example of Fig. 4.3 has been repli-
cated. This tree of frequent patterns is counted by all enumeration-tree algorithms along
with a single layer of infrequent candidate extensions of this tree corresponding to failed
candidate tests. Each call of FP-growth discovers the set of frequent patterns extending a
particular suffix of items, just as each branch of an enumeration tree explores the itemsets
for a particular prefix. So, what is the hierarchical recursive relationship among the suffixes
whose conditional pattern bases are explored? First, we need to decide on an ordering of
items. Because the recursion is performed on suffixes and enumeration trees are constructed
on prefixes, the opposite ordering {f, e, d, c,b,a} is assumed to adjust for the different con-
vention in the two methods. Indeed, most enumeration-tree methods order items from the
least frequent to the most frequent, whereas FP-growth does the reverse. The corresponding
recursion tree of FP-growth, when the 1-itemsets are ordered from left to right in dictio-
nary order, is illustrated in Fig. 4.13b. The trees in Figs 4.13a and 4.13b are identical,
with the only difference being that they are drawn differently, to account for the opposite
lexicographic ordering. The FP-growth recursion tree on the reverse lexicographic ordering
has an identical structure to the traditional enumeration tree on the prefixes. During any
given recursive call of FP-growth, the current (recursion) stack of suffix items is the path
in the enumeration tree that is currently being explored. This enumeration tree is explored
in depth-first order by FP-growth because of its recursive nature.

Traditional enumeration-tree methods typically count the support of a single layer of
infrequent extensions of the frequent patterns in the enumeration-tree, as (failed) candidates,
to rule them out. Therefore, it is instructive to explore whether FP-growth avoids counting
these infrequent candidates. Note that when conditional transaction databases FPT; are

4.4. FREQUENT ITEMSET MINING ALGORITHMS 121

created (see Fig. 4.12), infrequent items must be removed from them. This requires the
counting of the support of these (implicitly failed) candidate extensions. In a traditional
candidate generate-and-test algorithm, the frequent candidate extensions would be reported
immediately after the counting step as a successful candidate test. However, in FP-growth,
these frequent extensions are encoded back into the conditional transaction database FPT;,
and the reporting is delayed to the next level recursive call. In the next level recursive
call, these frequent extensions are then extracted from FPT; and reported. The counting
and removal of infrequent items from conditional transaction sets is an implicit candidate
evaluation and testing step. The number of such failed candidate tests* in FP-growth is
exactly equal to that of enumeration-tree algorithms, such as Apriori (without the level-wise
pruning step). This equality follows directly from the relationship of all these algorithms to
how they explore the enumeration tree and rule out infrequent portions. All pattern-growth
methods, including F'P-growth, should be considered enumeration-tree methods, as should
Apriori. Whereas traditional enumeration trees are constructed on prefixes, the (implicit)
FP-growth enumeration trees are constructed using suffixes. This is a difference only in the
item-ordering convention.

The depth-first strategy is the approach of choice in database projection methods
because it is more memory-efficient to maintain the conditional transaction sets along a
(relatively small) depth of the enumeration (recursion) tree rather than along the (much
larger) breadth of the enumeration tree. As discussed in the previous section, memory man-
agement becomes a problem even with the depth-first strategy beyond a certain database
size. However, the specific strategy used for tree exploration does not have any impact
on the size of the enumeration tree (or candidates) explored over the course of the entire
algorithm execution. The only difference is that breadth-first methods process candidates
in large batches based on pattern size, whereas depth-first methods process candidates
in smaller batches of immediate siblings in the enumeration tree. From this perspective,
FP-growth cannot avoid the exponential candidate search space exploration required by
enumeration-tree methods, such as Apriori.

Whereas methods such as Apriori can also be interpreted as counting methods on an
enumeration-tree of exactly the same size as the recursion tree of FP-growth, the counting
work done at the higher levels of the enumeration tree is lost. This loss is because the
counting is done from scratch at each level in Apriori with the entire transaction database
rather than a projected database that remembers and reuses the work done at the higher
levels of the tree. Projection-based reuse is also utilized by Savasere et al.’s vertical count-
ing methods [446] and DepthProject. The use of a pointer-trie combination data structure
for projected transaction representation is the primary difference of FP-growth from other
projection-based methods. In the context of depth-first exploration, these methods can be
understood either as divide-and-conquer strategies or as projection-based reuse strategies.
The notion of projection-based reuse is more general because it applies to both the breadth-
first and depth-first versions of the algorithm, and it provides a clearer picture of how compu-
tational savings are achieved by avoiding wasteful and repetitive counting. Projection-based
reuse enables the efficient testing of candidate item extensions in a restricted portion of the
database rather than the testing of candidate itemsets in the full database. Therefore, the
efficiencies in FP-growth are a result of more efficient counting per candidate and not because
of fewer candidates. The only differences in search space size between various methods are

4 An ad hoc pruning optimization in FP-growth terminates the recursion when all nodes in the FP-Tree
lie on a single path. This pruning optimization reduces the number of successful candidate tests but not the
number of failed candidate tests. Failed candidate tests often dominate successful candidate tests in real
data sets.

122 CHAPTER 4. ASSOCIATION PATTERN MINING

the result of ad hoc pruning optimizations, such as level-wise pruning in Apriori, bucketing
in the DepthProject algorithm, and the single-path boundary condition of FP-growth.

The bookkeeping of the projected transaction sets can be done differently with the
use of different data structures, such as arrays, pointers, or a pointer-trie combination.
Many different data structure variations are explored in different projection algorithms,
such as TreeProjection, DepthProject, FP-growth, and H-Mine [419]. Each data structure is
associated with a different set of efficiencies and overheads.

In conclusion, the enumeration tree® is the most general framework to describe all previ-
ous frequent pattern mining algorithms. This is because the enumeration tree is a subgraph
of the lattice (candidate space) and it provides a way to explore the candidate patterns
in a systematic and non-redundant way. The support testing of the frequent portion of
the enumeration tree along with a single layer of infrequent candidate extensions of these
nodes is fundamental to all frequent itemset mining algorithms for ruling in and ruling out
possible (or candidate) frequent patterns. Any algorithm, such as FP-growth, which uses
the enumeration tree to rule in and rule out possible extensions of frequent patterns with
support counting, is a candidate generate-and-test algorithm.

4.5 Alternative Models: Interesting Patterns

The traditional model for frequent itemset generation has found widespread popularity and
acceptance because of its simplicity. The simplicity of using raw frequency counts for the
support, and that of using the conditional probabilities for the confidence is very appealing.
Furthermore, the downward closure property of frequent itemsets enables the design of
efficient algorithms for frequent itemset mining. This algorithmic convenience does not,
however, mean that the patterns found are always significant from an application-specific
perspective. Raw frequencies of itemsets do not always correspond to the most interesting
patterns.

For example, consider the transaction database illustrated in Fig. 4.1. In this database,
all the transactions contain the item Milk. Therefore, the item Milk can be appended to any
set of items, without changing its frequency. However, this does not mean that Milk is truly
associated with any set of items. Furthermore, for any set of items X, the association rule
X = {Milk} has 100% confidence. However, it would not make sense for the supermarket
merchant to assume that the basket of items X is discriminatively indicative of Milk. Herein
lies the limitation of the traditional support-confidence model.

Sometimes, it is also desirable to design measures that can adjust to the skew in the
individual item support values. This adjustment is especially important for negative pattern
mining. For example, the support of the pair of items { Milk, Butter} is very different from
that of {—Milk, ~Butter}. Here, — indicates negation. On the other hand, it can be argued
that the statistical coefficient of correlation is exactly the same in both cases. Therefore,
the measure should quantify the association between both pairs in exactly the same way.
Clearly, such measures are important for negative pattern mining. Measures that satisfy this
property are said to satisfy the bit symmetric property because values of 0 in the binary
matrix are treated in a similar way to values of 1.

5 FP-growth has been presented in a separate section from enumeration tree methods only because it
uses a different convention of constructing suffiz-based enumeration trees. It is not necessary to distinguish
“pattern growth” methods from “candidate-based” methods to meaningfully categorize various frequent
pattern mining methods. Enumeration tree methods are best categorized on the basis of their (i) tree
exploration strategy, (ii) projection-based reuse properties, and (iii) relevant data structures.

4.5. ALTERNATIVE MODELS: INTERESTING PATTERNS 123

Although it is possible to quantify the affinity of sets of items in ways that are statisti-
cally more robust than the support-confidence framework, the major computational problem
faced by most such interestingness-based models is that the downward closure property is
generally not satisfied. This makes algorithmic development rather difficult on the expo-
nentially large search space of patterns. In some cases, the measure is defined only for the
special case of 2-itemsets. In other cases, it is possible to design more efficient algorithms.
The following contains a discussion of some of these models.

4.5.1 Statistical Coefficient of Correlation

A natural statistical measure is the Pearson coefficient of correlation between a pair of
items. The Pearson coefficient of correlation between a pair of random variables X and Y
is defined as follows: BIX .V — BlX. ElY

,_ BIX Y]~ B[X] - BY] o

o(X)-a(Y)

In the case of market basket data, X and Y are binary variables whose values reflect presence
or absence of items. The notation E[X] denotes the expectation of X, and o(X) denotes the
standard deviation of X. Then, if sup(i) and sup(j) are the relative supports of individual
items, and sup({i,j} is the relative support of itemset {7, j}, then the overall correlation
can be estimated from the data as follows:

o swlhdh) sl swl) i
Pig \/sup(z') csup(g) - (1 — sup(i)) - (1 — sup(j)) (45)

The coefficient of correlation always lies in the range [—1, 1], where the value of +1 indicates
perfect positive correlation, and the value of -1 indicates perfect negative correlation. A
value near 0 indicates weakly correlated data. This measure satisfies the bit symmetric
property. While the coefficient of correlation is statistically considered the most robust way
of measuring correlations, it is often intuitively hard to interpret when dealing with items
of varying but low support values.

4.5.2 % Measure

The x? measure is another bit-symmetric measure that treats the presence and absence
of items in a similar way. Note that for a set of k binary random variables (items),
denoted by X, there are 2F-possible states representing presence or absence of different
items of X in the transaction. For example, for k = 2 items { Bread, Butter}, the 22 states
are { Bread, Butter}, { Bread, ~Butter}, {—~Bread, Butter}, and {—Bread, ~Butter}. The
expected fractional presence of each of these combinations can be quantified as the product
of the supports of the states (presence or absence) of the individual items. For a given data
set, the observed value of the support of a state may vary significantly from the expected
value of the support. Let O; and E; be the observed and expected values of the absolute
support of state i. For example, the expected support E; of { Bread, ~Butter} is given by
the total number of transactions multiplied by each of the fractional supports of Bread and
—Butter, respectively. Then, the y?-measure for set of items X is defined as follows:

2l X1

(X)) =) OB (4.6)

124 CHAPTER 4. ASSOCIATION PATTERN MINING

For example, when X = {Bread, Butter}, one would need to perform the summation
in Eq. 4.6 over the 22 = 4 states corresponding to {Bread, Butter}, {Bread, ~Butter},
{—Bread, Butter}, and {—Bread, ~Butter}. A value that is close to 0 indicates statistical
independence among the items. Larger values of this quantity indicate greater dependence
between the variables. However, large x? values do not reveal whether the dependence
between items is positive or negative. This is because the x? test measures dependence
between variables, rather than the nature of the correlation between the specific states of
these variables.

The x? measure is bit-symmetric because it treats the presence and absence of items in
a similar way. The y2-test satisfies the upward closure property because of which an efficient
algorithm can be devised for discovering interesting k-patterns. On the other hand, the
computational complexity of the measure in Eq. 4.6 increases exponentially with | X]|.

4.5.3 Interest Ratio

The interest ratio is a simple and intuitively interpretable measure. The interest ratio of a
set of items {7 ...i} is denoted as I({i1,...ix}), and is defined as follows:

Iy iy = S i) 47
e) = et o

When the items are statistically independent, the joint support in the numerator will be
equal to the product of the supports in the denominator. Therefore, an interest ratio of 1
is the break-even point. A value greater than 1 indicates that the variables are positively
correlated, whereas a ratio of less than 1 is indicative of negative correlation.

When some items are extremely rare, the interest ratio can be misleading. For example,
if an item occurs in only a single transaction in a large transaction database, each item that
co-occurs with it in that transaction can be paired with it to create a 2-itemset with a very
high interest ratio. This is statistically misleading. Furthermore, because the interest ratio
does not satisfy the downward closure property, it is difficult to design efficient algorithms
for computing it.

4.5.4 Symmetric Confidence Measures

The traditional confidence measure is asymmetric between the antecedent and consequent.
However, the support measure is symmetric. Symmetric confidence measures can be used
to replace the support-confidence framework with a single measure. Let X and Y be two
1-itemsets. Symmetric confidence measures can be derived as a function of the confidence
of X = Y and the confidence of Y = X. The various symmetric confidence measures can
be any one of the minimum, average, or maximum of these two confidence values. The min-
imum is not desirable when either X or Y is very infrequent, causing the combined measure
to be too low. The maximum is not desirable when either X or Y is very frequent, causing
the combined measure to be too high. The average provides the most robust trade-off in
many scenarios. The measures can be generalized to k-itemsets by using all k£ possible indi-
vidual items in the consequent for computation. Interestingly, the geometric mean of the
two confidences evaluates to the cosine measure, which is discussed below. The computa-
tional problem with symmetric confidence measures is that the relevant itemsets satisfying
a specific threshold on the measure do not satisfy the downward closure property.

4.5. ALTERNATIVE MODELS: INTERESTING PATTERNS 125

4.5.5 Cosine Coefficient on Columns

The cosine coefficient is usually applied to the rows to determine the similarity among trans-
actions. However, it can also be applied to the columns, to determine the similarity between
items. The cosine coefficient is best computed using the vertical t¢id list representation on
the corresponding binary vectors. The cosine value on the binary vectors computes to the

following:
cosine(i, j) = Su?({l’j}) —. (4.8)
Vsup(i) - /sup(j)
The numerator can be evaluated as the length of the intersection of the tid lists of items ¢
and j. The cosine measure can be viewed as the geometric mean of the confidences of the
rules {i} = {j} and {j} = {i}. Therefore, the cosine is a kind of symmetric confidence
measure.

4.5.6 Jaccard Coefficient and the Min-hash Trick

The Jaccard coefficient was introduced in Chap. 3 to measure similarity between sets. The
tid lists on a column can be viewed as a set, and the Jaccard coefficient between two tid lists
can be used to compute the similarity. Let S; and Sy be two sets. As discussed in Chap. 3,
the Jaccard coefficient J(S7,S2) between the two sets can be computed as follows:

|S1 N Ss|

J(51,82) = 1S1USy|" (4.9)

The Jaccard coefficient can easily be generalized to multiway sets, as follows:

NSy
US|’

J(S1...Sk) (4.10)

When the sets Sy ... Sk correspond to the tid lists of k items, the intersection and union of
the tid lists can be used to determine the numerator and denominator of the aforementioned
expression. This provides the Jaccard-based significance for that k-itemset. It is possible to
use a minimum threshold on the Jaccard coefficient to determine all the relevant itemsets.

A nice property of Jaccard-based significance is that it satisfies the set-wise monotonicity
property. The k-way Jaccard coefficient J(S; ... Sy) is always no smaller than the (k+1)-way
Jaccard coefficient J(S7 ... Skgy1). This is because the numerator of the Jaccard coefficient
is monotonically non-increasing with increasing values of k (similar to support), whereas
the denominator is monotonically non-decreasing. Therefore, the Jaccard coefficient cannot
increase with increasing values of k. Therefore, when a minimum threshold is used on the
Jaccard-based significance of an itemset, the resulting itemsets satisfy the downward closure
property, as well. This means that most of the traditional algorithms, such as Apriori and
enumeration tree methods, can be generalized to the Jaccard coefficient quite easily.

It is possible to use sampling to speed up the computation of the Jaccard coefficient
further, and transform it to a standard frequent pattern mining problem. This kind of
sampling uses hash functions to simulate sorted samples of the data. So, how can the
Jaccard coefficient be computed using sorted sampling? Let D be the n x d binary data
matrix representing the n rows and d columns. Without loss of generality, consider the case
when the Jaccard coefficient needs to be computed on the first & columns. Suppose one were
to sort the rows in D, and pick the first row in which at least one of the first k columns
in this row has a value of 1 in this column. Then, it is easy to see that the probability of

126 CHAPTER 4. ASSOCIATION PATTERN MINING

the event that all the k columns have a value of 1 is equal to the k-way Jaccard coefficient.
If one were to sort the rows multiple times, it is possible to estimate this probability as
the fraction of sorts over which the event of all £ columns taking on unit values occurs.
Of course, it is rather inefficient to do it in this way because every sort requires a pass
over the database. Furthermore, this approach can only estimate the Jaccard coefficient for
a particular set of k columns, and it does not discover all the k-itemsets that satisfy the
minimum criterion on the Jaccard coefficient.

The min-hash trick can be used to efficiently perform the sorts in an implicit way and
transform to a concise sampled representation on which traditional frequent pattern mining
algorithms can be applied to discover combinations satisfying the Jaccard threshold. The
basic idea is as follows. A random hash function h(-) is applied to each tid. For each column
of binary values, the tid, with the smallest hash function value, is selected among all entries
that have a unit value in that column. This results in a vector of d different tids. What
is the probability that the tids in the first & columns are the same? It is easy to see that
this is equal to the Jaccard coefficient because the hashing process simulates the sort, and
reports the index of the first non-zero element in the binary matrix. Therefore, by using
independent hash functions to create multiple samples, it is possible to estimate the Jaccard
coefficient. It is possible to repeat this process with r different hash functions, to create r
different samples. Note that the r hash-functions can be applied simultaneously in a single
pass over the transaction database. This creates a r X d categorical data matrix of tids.
By determining the subsets of columns where the tid value is the same with support equal
to a minimum support value, it is possible to estimate all sets of k-items whose Jaccard
coefficient is at least equal to the minimum support value. This is a standard frequent
pattern mining problem, except that it is defined on categorical values instead of a binary
data matrix.

One way of transforming this r x d categorical data matrix to a binary matrix is to
pull out the column identifiers where the tids are the same from each row and create a
new transaction of column-identifier “items.” Thus, a single row from the r X d matrix will
map to multiple transactions. The resulting transaction data set can be represented by a
new binary matrix D’. Any off-the-shelf frequent pattern mining algorithm can be applied
to this binary matrix to discover relevant column-identifier combinations. The advantage
of an off-the-shelf approach is that many efficient algorithms for the conventional frequent
pattern mining model are available. It can be shown that the accuracy of the approach
increases exponentially fast with the number of data samples.

4.5.7 Collective Strength

The collective strength of an itemset is defined in terms of its violation rate. An itemset I is
said to be in wiolation of a transaction, if some of the items are present in the transaction,
and others are not. The wiolation rate v(I) of an itemset I is the fraction of violations of
the itemset I over all transactions. The collective strength C(I) of an itemset I is defined
in terms of the violation rate as follows:

1—v(l) El()]

U= TEn@ o

(4.11)

The collective strength is a number between 0 to co. A value of 0 indicates a perfect negative
correlation, whereas a value of oo indicates a perfectly positive correlation. The value of
1 is the break-even point. The expected value of v(I) is calculated assuming statistical
independence of the individual items. No violation occurs when all items in I are included

4.6. USEFUL META-ALGORITHMS 127

in transaction, or when no items in [are included in a transaction. Therefore, if p; is the
fraction of transactions in which the item i occurs, we have:

Elp(D] =1-]]p: =[]0 —p) (4.12)

i€l i€l

Intuitively, if the violation of an itemset in a transaction is a “bad event” from the perspec-
tive of trying to establish a high correlation among items, then v(I) is the fraction of bad
events, and (1 — v(I)) is the fraction of “good events.” Therefore, collective strength may
be understood as follows:

Good Events E[Bad Events]
c(l) = . . 4.13
D) E[Good Events] Bad Events (4.13)

The concept of collective-strength may be strengthened to strongly collective itemsets.

Definition 4.5.1 An itemset I is denoted to be strongly collective at level s, if it satisfies
the following properties:

1. The collective strength C(I) of the itemset I is at least s.
2. Closure property: The collective strength C(J) of every subset J of I is at least s.

It is necessary to force the closure property to ensure that unrelated items may not be
present in an itemset. Consider, for example, the case when itemset I is {Milk, Bread}
and itemset Iy is {Diaper, Beer}. If I; and I each have a high collective strength, then it
may often be the case that the itemset I3 U I, may also have a high collective strength, even
though items such as milk and beer may be independent. Because of the closure property
of this definition, it is possible to design an Apriori-like algorithm for the problem.

4.5.8 Relationship to Negative Pattern Mining

In many applications, it is desirable to determine patterns between items or their absence.
Negative pattern mining requires the use of bit-symmetric measures that treat the presence
or absence of an item evenly. The traditional support-confidence measure is not designed for
finding such patterns. Measures such as the statistical coefficient of correlation, x? measure,
and collective strength are better suited for finding such positive or negative correlations
between items. However, many of these measures are hard to use in practice because they do
not satisfy the downward closure property. The multiway Jaccard coefficient and collective
strength are among the few measures that do satisfy the downward closure property.

4.6 Useful Meta-algorithms

A number of meta-algorithms can be used to obtain different insights from pattern mining. A
meta-algorithm is defined as an algorithm that uses a particular algorithm as a subroutine,
either to make the original algorithm more efficient (e.g., by sampling), or to gain new
insights. Two types of meta-algorithms are most common in pattern mining. The first type
uses sampling to improve the efficiency of association pattern mining algorithms. The second
uses preprocessing and postprocessing subroutines to apply the algorithm to other scenarios.
For example, after using these wrappers, standard frequent pattern mining algorithms can
be applied to quantitative or categorical data.

128 CHAPTER 4. ASSOCIATION PATTERN MINING

4.6.1 Sampling Methods

When the transaction database is very large, it cannot be stored in main memory. This
makes the application of frequent pattern mining algorithms more challenging. This is
because such databases are typically stored on disk, and only level-wise algorithms may
be used. Many depth-first algorithms on the enumeration tree may be challenged by these
scenarios because they require random access to the transactions. This is inefficient for disk-
resident data. As discussed earlier, such depth-first algorithms are usually the most efficient
for memory-resident data. By sampling, it is possible to apply many of these algorithms
in an efficient way, with only limited loss in accuracy. When a standard itemset mining
algorithm is applied to sampled data, it will encounter two main challenges:

1. False positives: These are patterns that meet the support threshold on the sample but
not on the base data.

2. False negatives: These are patterns that do not meet the support threshold on the
sample, but meet the threshold on the data.

False positives are easier to address than false negatives because the former can be removed
by scanning the disk-resident database only once. However, to address false negatives, one
needs to reduce the support thresholds. By reducing support thresholds, it is possible to
probabilistically guarantee the level of loss for specific thresholds. Pointers to these proba-
bilistic guarantees may be found in the bibliographic notes. Reducing the support thresholds
too much will lead to many spurious itemsets and increase the work in the postprocessing
phase. Typically, the number of false positives increases rapidly with small changes in sup-
port levels.

4.6.2 Data Partitioned Ensembles

One approach that can guarantee no false positives and no false negatives, is the use of
partitioned ensembles by the Partition algorithm [446]. This approach may be used either
for reduction of disk-access costs or for reduction of memory requirements of projection-
based algorithms. In partitioned ensembles, the transaction database is partitioned into
k disjoint segments, each of which is main-memory resident. The frequent itemset mining
algorithm is independently applied to each of these k different segments with the required
minimum support level. An important property is that every frequent pattern must appear
in at least one of the segments. Otherwise, its cumulative support across different segments
will not meet the minimum support requirement. Therefore, the union of the frequent
itemset generated from different segments provides a superset of the frequent patterns. In
other words, the union contains false positives but no false negatives. A postprocessing
phase of support counting can be applied to this superset to remove the false positives.
This approach is particularly useful for memory-intensive projection-based algorithms when
the projected databases do not fit in main memory. In the original Partition algorithm,
the data structure used to perform projection-based reuse was the vertical tid list. While
partitioning is almost always necessary for memory-based implementations of projection-
based algorithms in databases of arbitrarily large size, the cost of postprocessing overhead
can sometimes be significant. Therefore, one should use the minimum number of partitions
based on the available memory. Although Partition is well known mostly for its ensemble
approach, an even more significant but unrecognized contribution of the method was to
propose the notion of vertical lists. The approach is credited with recognizing the projection-
based reuse properties of recursive tid list intersections.

4.7. SUMMARY 129

4.6.3 Generalization to Other Data Types

The generalization to other data types is quite straightforward with the use of type-
transformation methods discussed in Chap. 2.

4.6.3.1 Quantitative Data

In many applications, it is desirable to discover quantitative association rules when some
of the attributes take on quantitative values. Many online merchants collect profile infor-
mation, such as age, which have numeric values. For example, in supermarket applications,
it may be desirable to relate demographic information to item attributes in the data. An
example of such a rule is as follows:

(Age = 90) = Checkers.

This rule may not have sufficient support if the transactions do not contain enough indi-
viduals of that age. However, the rule may be relevant to the broader age group. Therefore,
one possibility is to create a rule that groups the different ages into one range:

Age[85,95] = Checkers.

This rule will have the required level of minimum support. In general, for quantitative
association rule mining, the quantitative attributes are discretized and converted to binary
form. Thus, the entire data set (including the item attributes) can be represented as a
binary matrix. A challenge with the use of such an approach is that the appropriate level of
discretization is often hard to know a priori. A standard association rule mining algorithm
may be applied to this representation. Furthermore, rules on adjacent ranges can be merged
to create summarized rules on larger ranges.

4.6.3.2 Categorical Data

Categorical data is common in many application domains. For example, attributes such
as the gender and ZIP code are typical categorical. In other cases, the quantitative and
categorical data may be mixed. An example of a rule with mixed attributes is as follows:

(Gender = Male), Agel20,30] = Basketball.

Categorical data can be transformed to binary values with the use of the binarization
approach discussed in Chap. 2. For each categorical attribute value, a single binary value
is used to indicate the presence or absence of the item. This can be used to determine the
association rules. In some cases, when domain knowledge is available, clusters on categorical
values on may used as binary attributes. For example, the ZIP codes may be clustered by
geography into k clusters, and then these k clusters may be treated as binary attributes.

4.7 Summary

The problem of association rule mining is used to identify relationships between different
attributes. Association rules are typically generated using a two-phase framework. In the
first phase, all the patterns that satisfy the minimum support requirement are determined.
In the second phase, rules that satisfy the minimum confidence requirement are generated
from the patterns.

130 CHAPTER 4. ASSOCIATION PATTERN MINING

The Apriori algorithm is one of the earliest and most well known methods for frequent
pattern mining. In this algorithm, candidate patterns are generated with the use of joins
between frequent patterns. Subsequently, a number of enumeration-tree algorithms were
proposed for frequent pattern mining techniques. Many of these methods use projections to
count the support of transactions in the database more efficiently. The traditional support-
confidence framework has the shortcoming that it is not based on robust statistical measures.
Many of the patterns generated are not interesting. Therefore, a number of interest measures
have been proposed for determining more relevant patterns.

A number of sampling methods have been designed for improving the efficiency of fre-
quent pattern mining. Sampling methods result in both false positives and false negatives,
though the former can be addressed by postprocessing. A partitioned sample ensemble is
also able to avoid false negatives. Association rules can be determined in quantitative and
categorical data with the use of type transformations.

4.8 Bibliographic Notes

The problem of frequent pattern mining was first proposed in [55]. The Apriori algorithm
discussed in this chapter was first proposed in [56], and an enhanced variant of the approach
was proposed in [57]. Maximal and non-maximal frequent pattern mining algorithms are
usually different from one another primarily in terms of additional pruning steps in the
former. The MazMiner algorithm used superset-based non-maximality pruning [82] for more
efficient counting. However, the exploration is in breadth-first order, to reduce the number
of passes over the data. The DepthProject algorithm recognized that superset-based non-
maximality pruning is more effective with a depth-first approach.

The FP-growth [252] and DepthProject [3, 4] methods independently proposed the notion
of projection-based reuse in the horizontal database layout. A variety of different data struc-
tures are used by different projection-based reuse algorithms such as TreeProjection [3],
DepthProject [4], FP-growth [252], and H-Mine [419]. A method, known as Opportune-
Project [361], chooses opportunistically between array-based and tree-based structures to
represent the projected transactions. The TreeProjection framework also recognized that
breadth-first and depth-first strategies have different trade-offs. Breadth-first variations of
TreeProjection sacrifice some of the power of projection-based reuse to enable fewer disk-
based passes on arbitrarily large data sets. Depth-first variations of TreeProjection, such as
DepthProject, achieve full projection-based reuse but the projected databases need to be
consistently maintained in main memory. A book and a survey on frequent pattern mining
methods may be found in [34] and [253], respectively.

The use of the vertical representation for frequent pattern mining was independently
pioneered by Holsheimer et al. [273] and Savasere et al. [446]. These works introduced the
clever insight that recursive tid list intersections provide significant computational savings
in support counting because k-itemsets have shorter tid lists than those of (k — 1)-itemsets
or individual items. The vertical Apriori algorithm is based on an ensemble component
of the Partition framework [446]. Although the use of vertical lists by this algorithm was
mentioned [537, 534, 465] in the earliest vertical pattern mining papers, some of the contribu-
tions of the Partition algorithm and their relationship to the subsequent work seem to have
remained unrecognized by the research community over the years. Savasere et al.’s Apriori-
like algorithm, in fact, formed the basis for all vertical algorithms such as Eclat [534] and
VIPER [465]. Eclat is described as a breadth-first algorithm in the book by Han et al. [250],
and as a depth-first algorithm in the book by Zaki et al. [536]. A careful examination of the

4.8. BIBLIOGRAPHIC NOTES 131

Eclat paper [537] reveals that it is a memory optimization of the breadth-first approach by
Savasere et al. [446]. The main contribution of Eclat is a memory optimization of the indi-
vidual ensemble component of Savasere et al.’s algorithm with lattice partitioning (instead
of data partitioning), thereby increasing the maximum size of the databases that can be
processed in memory without the computational overhead of data-partitioned postprocess-
ing. The number of computational operations for support counting in a single component
version of Partition is fundamentally no different from that of Eclat. The Eclat algorithm
partitions the lattice based on common prefixes, calling them equivalence classes, and then
uses a breadth-first approach [537] over each of these smaller sublattices in main mem-
ory. This type of lattice partitioning was adopted from parallel versions of Apriori, such
as the Candidate Distribution algorithm [54], where a similar choice exists between lattice
partitioning and data partitioning. Because a breadth-first approach is used for search on
each sublattice, such an approach has significantly higher memory requirements than a pure
depth-first approach. As stated in [534], Eclat explicitly decouples the lattice decomposition
phase from the pattern search phase. This is different from a pure depth-first strategy in
which both are tightly integrated. Depth-first algorithms do not require an explicitly decou-
pled approach for reduction of memory requirements. Therefore, the lattice-partitioning in
Eclat, which was motivated by the Candidate Distribution algorithm [54], seems to have
been specifically designed with a breadth-first approach in mind for the second (pattern
search) phase. Both the conference [537] and journal versions [534] of the Eclat algorithm
state that a breadth-first (bottom-up) procedure is used in the second phase for all experi-
ments. FP-growth [252] and DepthProject [4] were independently proposed as the first depth-
first algorithms for frequent pattern mining. MAFIA was the first vertical method to use
a pure depth-first approach [123]. Other later variations of vertical algorithms, such as
GenMaz and dEclat [233, 538], also incorporated the depth-first approach. The notion of
diffsets [538, 233], which uses incremental vertical lists along the enumeration tree hierar-
chy, was also proposed in these algorithms. The approach provides memory and efficiency
advantages for certain types of data sets.

Numerous measures for finding interesting frequent patterns have been proposed. The
x? measure was one of the first such tests, and was discussed in [113]. This measure satisfies
the upward closure property. Therefore, efficient pattern mining algorithms can be devised.
The use of the min-hashing technique for determining interesting patterns without support
counting was discussed in [180]. The impact of skews in the support of individual items
has been addressed in [517]. An affinity-based algorithm for mining interesting patterns in
data with skews has been proposed in the same work. A common scenario in which there is
significant skew in support distributions is that of mining negative association rules [447].
The collective strength model was proposed in [16], and a level-wise algorithm for finding
all strongly collective itemsets was discussed in the same work. The collective strength
model can also discover negative associations from the data. The work in [486] addresses
the problem of selecting the right measure for finding interesting association rules.

Sampling is a popular approach for finding frequent patterns in an efficient way with
memory-resident algorithms. The first sampling approach was discussed in [493], and theo-
retical bounds were presented. The work in [446] enables the application of memory-based
frequent pattern mining algorithms on large data sets by using ensembles on data partitions.
The problem of finding quantitative association rules, and different kinds of patterns from
quantitative data is discussed in [476]. The CLIQUE algorithm can also be considered an
association pattern mining algorithm on quantitative data [58].

132

CHAPTER 4. ASSOCIATION PATTERN MINING

4.9 Exercises

1.

10.

11.

Consider the transaction database in the table below:
tid | Items
1 a,b,c,d
2 b,c.e, f
3 a,d,e, f
4 a,e, f
5 bd, f

Determine the absolute support of itemsets {a, e, f}, and {d, f}. Convert the absolute
support to the relative support.

. For the database in Exercise 1, compute all frequent patterns at absolute minimum

support values of 2, 3, and 4.

. For the database in Exercise 1, determine all the maximal frequent patterns at absolute

minimum support values of 2, 3, and 4.

. Represent the database of Exercise 1 in vertical format.

. Consider the transaction database in the table below:

tid items
1 a,c,d,e
2 a,d,e, f
3 | bede,f
4 b,d,e, f
5 b,e, f
6 c,d,e
7 ce, f
8 d,e, f

Determine all frequent patterns and maximal patterns at support levels of 3, 4, and
5.

. Represent the transaction database of Exercise 5 in vertical format.

. Determine the confidence of the rules {a} = {f}, and {a, e} = {f} for the transaction

database in Exercise 1.

. Determine the confidence of the rules {a} = {f}, and {a, e} = {f} for the transaction

database in Exercise 5.

. Show the candidate itemsets and the frequent itemsets in each level-wise pass of the

Apriori algorithm in Exercise 1. Assume an absolute minimum support level of 2.

Show the candidate itemsets and the frequent itemsets in each level-wise pass of the
Apriori algorithm in Exercise 5. Assume an absolute minimum support level of 3.

Show the prefix-based enumeration tree of frequent itemsets, for the data set of Exer-
cise 1 at an absolute minimum support level of 2. Assume a lexicographic ordering of
a,b,c,d, e, f. Construct the tree for the reverse lexicographic ordering.

4.9.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

EXERCISES 133

Show the prefix-based enumeration tree of frequent itemsets, for the data set in Exer-
cise (5), at an absolute minimum support of 3. Assume a lexicographic ordering of
a,b,c,d, e, f. Construct the tree for the reverse lexicographic ordering.

Show the frequent suffixes generated in the recursion tree of the generic pattern growth
method for the data set and support level in Exercise 9. Assume the lexicographic
ordering of a,b,c,d, e, f, and f,e,d,c,b,a. How do these trees compare with those
generated in Exercise 117

Show the frequent suffixes generated in the recursion tree of the generic pattern growth
method for the data set and support level in Exercise 10. Assume the lexicographic
ordering of a,b,c,d,e, f, and f,e,d,c,b,a. How do these trees compare with those
generated in Exercise 127

Construct a prefix-based FP-Tree for the lexicographic ordering a, b, ¢, d, e, f for the
data set in Exercise 1. Create the same tree for the reverse lexicographic ordering.

Construct a prefix-based FP-Tree for the lexicographic ordering a, b, ¢, d, e, f for the
data set in Exercise 5. Create the same tree for the reverse lexicographic ordering.

The pruning approach in Apriori was inherently designed for a breadth-first strategy
because all frequent k-itemsets are generated before (k+ 1)-itemsets. Discuss how one
might implement such a pruning strategy with a depth-first algorithm.

Implement the pattern growth algorithm with the use of (a) an array-based data
structure, (b) a pointer-based data structure with no FP-Tree, and (c) a pointer-
based data structure with FP-Tree.

Implement Exercise 18(c) by growing patterns from prefixes and the FP-Tree on suf-
fixes.

For the itemset {d, f} and the data set of Exercise 1, compute the (a) statistical corre-
lation coefficient, (b) interest ratio, (c) cosine coefficient, and (d) Jaccard coefficient.

For the itemset {d, f} and the data set of Exercise 1, compute the (a) statistical corre-
lation coefficient, (b) interest ratio, (c) cosine coefficient, and (d) Jaccard coefficient.

Discuss the similarities and differences between TreeProjection, DepthProject, Verti-
calApriori, and FP-growth.

Chapter 5

Association Pattern Mining: Advanced
Concepts

“Fach child is an adventure into a better life—an opportunity to
change the old pattern and make it new.”—Hubert H. Humphrey

5.1 Introduction

Association pattern mining algorithms often discover a large number of patterns, and it
is difficult to use this large output for application-specific tasks. One reason for this is
that a vast majority of the discovered associations may be uninteresting or redundant for a
specific application. This chapter discusses a number of advanced methods that are designed

to make association pattern mining more application-sensitive:

1. Summarization: The output of association pattern mining is typically very large. For
an end-user, a smaller set of discovered itemsets is much easier to understand and
assimilate. This chapter will introduce a number of summarization methods such as

finding maximal itemsets, closed itemsets, or nonredundant rules.

2. Querying: When a large number of itemsets are available, the users may wish to query
them for smaller summaries. This chapter will discuss a number of specialized sum-
marization methods that are query friendly. The idea is to use a two-phase approach
in which the data is preprocessed to create a summary. This summary is then queried.

3. Constraint incorporation: In many real scenarios, one may wish to incorporate
application-specific constraints into the itemset generation process. Although a
constraint-based algorithm may not always provide online responses, it does allow
for the use of much lower support-levels for mining, than a two-phase “preprocess-

once query-many” approach.

These topics are all related to the extraction of interesting summary information from item-
sets in different ways. For example, compressed representations of itemsets are very useful

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 5
(© Springer International Publishing Switzerland 2015

136 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

Table 5.1: Example of a snapshot of a market basket data set (Replicated from Table 4.1
of Chap. 4)

H tid \ Set of items H

1 {Bread, Butter, Milk}
{Eggs, Milk,Y ogurt}
{Bread, Cheese, Eggs, Milk}
{Eggs, Milk,Y ogurt}
{Cheese, Milk,Y ogurt}

G | W N

for querying. A query-friendly compression scheme is very different from a summarization
scheme that is designed to assure nonredundancy. Similarly, there are fewer constrained
itemsets than unconstrained itemsets. However, the shrinkage of the discovered itemsets
is because of the constraints rather than a compression or summarization scheme. This
chapter will also discuss a number of useful applications of association pattern mining.

This chapter is organized as follows. The problem of pattern summarization is addressed
in Sect. 5.2. A discussion of querying methods for pattern mining is provided in Sect. 5.3.
Section 5.4 discusses numerous applications of frequent pattern mining. The conclusions are
discussed in Sect. 5.5.

5.2 Pattern Summarization

Frequent itemset mining algorithms often discover a large number of patterns. The size of
the output creates challenges for users to assimilate the results and make meaningful infer-
ences. An important observation is that the vast majority of the generated patterns are
often redundant. This is because of the downward closure property, which ensures that all
subsets of a frequent itemset are also frequent. There are different kinds of compact repre-
sentations in frequent pattern mining that retain different levels of knowledge about the true
set of frequent patterns and their support values. The most well-known representations are
those of mazimal frequent itemsets, closed frequent itemsets, and other approximate repre-
sentations. These representations vary in the degree of information loss in the summarized
representation. Closed representations are fully lossless with respect to the support and
membership of itemsets. Maximal representations are lossy with respect to the support but
lossless with respect to membership of itemsets. Approximate condensed representations are
lossy with respect to both but often provide the best practical alternative in application-
driven scenarios.

5.2.1 Maximal Patterns

The concept of maximal itemsets was discussed briefly in the previous chapter. For conve-
nience, the definition of maximal itemsets is restated here:

Definition 5.2.1 (Maximal Frequent Itemset) A frequent itemset is mazimal at a
given minimum support level minsup if it is frequent and no superset of it is frequent.

For example, consider the example of Table 5.1, which is replicated from the example of
Table 4.1 in the previous chapter. It is evident that the itemset {Eggs, Milk,Y ogurt} is
frequent at a minimum support level of 2 and is also maximal. The support of proper
subsets of a maximal itemset is always equal to, or strictly larger than the latter because
of the support-monotonicity property. For example, the support of {Eggs, Milk}, which
is a proper subset of the itemset {Eggs, Milk,Yogurt}, is 3. Therefore, one strategy for
summarization is to mine only the maximal itemsets. The remaining itemsets are derived
as subsets of the maximal itemsets.

5.2. PATTERN SUMMARIZATION 137

Although all the itemsets can be derived from the maximal itemsets with the subsetting
approach, their support values cannot be derived. Therefore, maximal itemsets are lossy
because they do not retain information about the support values. To provide a lossless
representation in terms of the support values, the notion of closed itemset mining is used.
This concept will be discussed in the next section.

A trivial way to find all the maximal itemsets would be to use any frequent itemset
mining algorithm to find all itemsets. Then, only the maximal ones can be retained in a
postprocessing phase by examining itemsets in decreasing order of length, and removing
proper subsets. This process is continued until all itemsets have either been examined or
removed. The itemsets that have not been removed at termination are the maximal ones.
However, this approach is an inefficient solution. When the itemsets are very long, the
number of maximal frequent itemsets may be orders of magnitude smaller than the number
of frequent itemsets. In such cases, it may make sense to design algorithms that can directly
prune parts of the search space of patterns during frequent itemset discovery. Most of the
tree-enumeration methods can be modified with the concept of lookaheads to prune the
search space of patterns. This notion is discussed in the previous chapter in the context of
the DepthProject algorithm.

Although the notion of lookaheads is described in the Chap. 4, it is repeated here for
completeness. Let P be a frequent pattern in the enumeration tree of itemsets, and F(P)
represent the set of candidate extensions of P in the enumeration tree. Then, if P U F(P)
is a subset of a frequent pattern that has already been found, then it implies that the
entire enumeration tree rooted at P is frequent and can, therefore, be removed from further
consideration. In the event that the subtree is not pruned, the candidate extensions of P
need to be counted. During counting, the support of P U F(P) is counted at the same
time that the supports of single-item candidate extensions of P are counted. If P U F(P)
is frequent then the subtree rooted at P can be pruned as well. The former kind of subset-
based pruning approach is particularly effective with depth-first methods. This is because
maximal patterns are found much earlier with a depth-first strategy than with a breadth-
first strategy. For a maximal pattern of length &, the depth-first approach discovers it after
exploring only (k — 1) of its prefixes, rather than the 2* possibilities. This maximal pattern
then becomes available for subset-based pruning. The remaining subtrees containing subsets
of PU F(P) are then pruned. The superior lookahead-pruning of depth-first methods was
first noted in the context of the DepthProject algorithm.

The pruning approach provides a smaller set of patterns that includes all maximal
patterns but may also include some nonmaximal patterns despite the pruning. Therefore,
the approach discussed above may be applied to remove these nonmaximal patterns. Refer to
the bibliographic notes for pointers to various maximal frequent pattern mining algorithms.

5.2.2 Closed Patterns

A simple definition of a closed pattern, or closed itemset, is as follows:

Definition 5.2.2 (Closed Itemsets) An itemset X is closed, if none of its supersets have
exactly the same support count as X.

Closed frequent pattern mining algorithms require itemsets to be closed in addition to being
frequent. So why are closed itemsets important? Consider a closed itemset X, and the set
S(X) of itemsets which are subsets of X, and which have the same support as X. The only
itemset from S(X) that will be returned by a closed frequent itemset mining algorithm, will

138 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be X. The itemsets contained in S(X) may be referred to as the equi-support subsets of X.
An important observation is as follows:

Observation 5.2.1 Let X be a closed itemset, and S(X) be its equi-support subsets. For
any itemset Y € S(X), the set of transactions T(Y) containing Y is exactly the same.
Furthermore, there is no itemset Z outside S(X) such that the set of transactions in T (Z)
is the same as T (X).

This observation follows from the downward closed property of frequent itemsets. For any
proper subset Y of X, the set of transactions 7 (Y) is always a superset of 7 (X). However,
if the support values of X and Y are the same, then 7(X) and 7 (Y") are the same, as well.
Furthermore, if any itemset Z ¢ S(X) yields 7(Z) = T(X), then the support of Z U X
must be the same as that of X. Because Z is not a subset of X, Z U X must be a proper
superset of X. This would lead to a contradiction with the assumption that X is closed.

It is important to understand that the itemset X encodes information about all the
nonredundant counting information needed with respect to any itemset in S(X). Fvery
itemset in S(X) describes the same set of transactions, and therefore, it suffices to keep
the single representative itemset. The maximal itemset X from S(X) is retained. It should
be pointed out that Definition 5.2.2 is a simplification of a more formal definition that is
based on the use of a set-closure operator. The formal definition with the use of a set-
closure operator is directly based on Observation 5.2.1 (which was derived here from the
simplified definition). The informal approach used by this chapter is designed for better
understanding. The frequent closed itemset mining problem is defined below.

Definition 5.2.3 (Closed Frequent Itemsets) An itemset X is a closed frequent item-
set at minimum support minsup, if it is both closed and frequent.

The set of closed itemsets can be discovered in two ways:

1. The set of frequent itemsets at any given minimum support level may be determined,
and the closed frequent itemsets can be derived from this set.

2. Algorithms can be designed to directly find the closed frequent patterns during the
process of frequent pattern discovery.

While the second class of algorithms is beyond the scope of this book, a brief description
of the first approach for finding all the closed itemsets will be provided here. The reader is
referred to the bibliographic notes for algorithms of the second type.

A simple approach for finding frequent closed itemsets is to first partition all the frequent
itemsets into equi-support groups. The maximal itemsets from each equi-support group may
be reported. Consider a set of frequent patterns F, from which the closed frequent patterns
need to be determined. The frequent patterns in F are processed in increasing order of
support and either ruled in or ruled out, depending on whether or not they are closed.
Note that an increasing support ordering also ensures that closed patterns are encountered
earlier than their redundant subsets. Initially, all patterns are unmarked. When an unmarked
pattern X € F is processed (based on the increasing support order selection), it is added
to the frequent closed set CF. The proper subsets of X with the same support cannot be
closed. Therefore, all the proper subsets of X with the same support are marked. To achieve
this goal, the subset of the itemset lattice representing F can be traversed in depth-first or
breadth-first order starting at X, and exploring subsets of X. Itemsets that are subsets of X
are marked when they have the same support as X. The traversal process backtracks when
an itemset is reached with strictly larger support, or the itemset has already been marked

5.2. PATTERN SUMMARIZATION 139

by the current or a previous traversal. After the traversal is complete, the next unmarked
node is selected for further exploration and added to CF. The entire process of marking
nodes is repeated, starting from the pattern newly added to CF. At the end of the process,
the itemsets in CF represent the frequent closed patterns.

5.2.3 Approximate Frequent Patterns

Approximate frequent pattern mining schemes are almost always lossy schemes because they
do not retain all the information about the itemsets. The approximation of the patterns
may be performed in one of the following two ways:

1. Description in terms of transactions: The closure property provides a lossless descrip-
tion of the itemsets in terms of their membership in transactions. A generalization of
this idea is to allow “almost” closures, where the closure property is not exactly sat-
isfied but is approximately specified. Thus, a “play” is allowed in the support values
of the closure definition.

2. Description in terms of itemsets themselves: In this case, the frequent itemsets are
clustered, and representatives can be drawn from each cluster to provide a concise
summary. In this case, the “play” is allowed in terms of the distances between the
representatives and remaining itemsets.

These two types of descriptions yield different insights. One is defined in terms of transaction
membership, whereas the other is defined in terms of the structure of the itemset. Note that
among the subsets of a 10-itemset X, a 9-itemset may have a much higher support, but a
1-itemset may have exactly the same support as X. In the first definition, the 10-itemset
and 1-itemset are “almost” redundant with respect to each other in terms of transaction
membership. In the second definition, the 10-itemset and 9-itemset are almost redundant
with respect to each other in terms of itemset structure. The following sections will introduce
methods for discovering each of these kinds of itemsets.

5.2.3.1 Approximation in Terms of Transactions

The closure property describes itemsets in terms of transactions, and the equivalence of dif-
ferent itemsets with this criterion. The notion of “approximate closures” is a generalization
of this criterion. There are multiple ways to define “approximate closure,” and a simpler
definition is introduced here for ease in understanding.

In the earlier case of exact closures, one chooses the maximal supersets at a particu-
lar support value. In approximate closures, one does not necessarily choose the maximal
supersets at a particular support value but allows a “play” §, within a range of supports.
Therefore, all frequent itemsets F can be segmented into a disjoint set of £ “almost equi-
support” groups JFi ...Fk, such that for any pair of itemsets X,Y within any group F;,
the value of |sup(X) — sup(Y)| is at most ¢. From each group, F;, only the maximal fre-
quent representatives are reported. Clearly, when § is chosen to be 0, this is exactly the set
of closed itemsets. If desired, the exact error value obtained by removing individual items
from approximately closed itemsets is also stored. There is, of course, still some uncertainty
in support values because the support values of itemsets obtained by removing two items
cannot be ezxactly inferred from this additional data.

Note that the “almost equi-support” groups may be constructed in many different ways
when 0 > 0. This is because the ranges of the “almost equi-support” groups need not exactly

140 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be 0 but can be less than §. Of course, a greedy way of choosing the ranges is to always
pick the itemset with the lowest support and add ¢ to it to pick the upper end of the range.
This process is repeated to construct all the ranges. Then, the frequent closed itemsets can
be extracted on the basis of these ranges.

The algorithm for finding frequent “almost closed” itemsets is very similar to that of
finding frequent closed itemsets. As in the previous case, one can partition the frequent
itemsets into almost equi-support groups, and determine the maximal ones among them. A
traversal algorithm in terms of the graph lattice is as follows.

The first step is to decide the different ranges of support for the “almost equi-support”
groups. The itemsets in F are processed groupwise in increasing order of support ranges
for the “almost equi-support” groups. Within a group, unmarked itemsets are processed in
increasing order of support. When these nodes are examined they are added to the almost
closed set AC. When a pattern X € F is examined, all its proper subsets within the same
group are marked, unless they have already been marked. To achieve this goal, the subset
of the itemset lattice representing F can be traversed in the same way as discussed in the
previous case of (exactly) closed sets. This process is repeated with the next unmarked
node. At the end of the process, the set AC contains the frequent “almost closed” patterns.
A variety of other ways of defining “almost closed” itemsets are available in the literature.
The bibliographic notes contain pointers to these methods.

5.2.3.2 Approximation in Terms of Itemsets

The approximation in terms of itemsets can also be defined in many different ways and
is closely related to clustering. Conceptually, the goal is to create clusters from the set of
frequent itemsets calF', and pick representatives J = Jy...Jg from the clusters. Because
clusters are always defined with respect to a distance function Dist(X,Y’) between itemsets
X and Y, the notion of J-approximate sets is also based on a distance function.

Definition 5.2.4 (6-Approximate Sets) The set of representatives J = {Jy ...} is
d-approzimate, if for each frequent pattern X € F, and each J; € J, the following is true:

Dist(X,J;) <6 (5.1)

Any distance function for set-valued data, such as the Jaccard coefficient, may be used.
Note that the cardinality of the set k defines the level of compression. Therefore, the goal is
to determine the smallest value of k for a particular level of compression §. This objective
is closely related to the partition-based formulation of clustering, in which the value of
k is fixed, and the average distance of the individual objects to their representatives are
optimized. Conceptually, this process also creates a clustering on the frequent itemsets. The
frequent itemsets can be either strictly partitioned to their closest representative, or they can
be allowed to belong to multiple sets for which their distance to the closest representative
is at most 9.

So, how can the optimal size of the representative set be determined? It turns out that
a simple greedy solution is very effective in most scenarios. Let C(J) C F denote the set
of frequent itemsets covered by the representatives in J. An itemset in F is said to be
covered by a representative in 7, if it lies within a distance of at most 0 from at least one
representative of 7. Clearly, it is desirable to determine J so that C(J) = F and the size
of the set J is as small as possible.

The idea of the greedy algorithm is to start with J = {} and add the first element from
F to J that covers the maximum number of itemsets in F. The covered itemsets are then

5.3. PATTERN QUERYING 141

removed from F. This process is repeated iteratively by greedily adding more elements to
J to maximize coverage in the residual set F. The process terminates when the set F is
empty. It can be shown that the function f(J) = |C(J)| satisfies the submodularity property
with respect to the argument 7. In such cases, greedy algorithms are generally effective in
practice. In fact, in a minor variation of this problem in which |C(.J)| is directly optimized
for fixed size of J, a theoretical bound can also be established on the quality achieved
by the greedy algorithm. The reader is referred to the bibliographic notes for pointers on
submodularity.

5.3 Pattern Querying

Although the compression approach provides a concise summary of the frequent itemsets,
there may be scenarios in which users may wish to query the patterns with specific prop-
erties. The query responses provide the relevant sets of patterns in an application. This
relevant set is usually much smaller than the full set of patterns. Some examples are as
follows:

1. Report all the frequent patterns containing X that have a minimum support of minsup.

2. Report all the association rules containing X that have a minimum support of minsup
and a minimum confidence of minconf.

One possibility is to exhaustively scan all the frequent itemsets and report the ones satisfying
the user-specified constraints. This is, however, quite inefficient when the number of frequent
patterns is large. There are two classes of methods that are frequently used for querying
interesting subsets of patterns:

1. Preprocess-once query-many paradigm: The first approach is to mine all the itemsets
at a low level of support and arrange them in the form of a hierarchical or lattice data
structure. Because the first phase needs to be performed only once in offline fashion,
sufficient computational resources may be available. Therefore, a low level of support
is used to maximize the number of patterns preserved in the first phase. Many queries
can be addressed in the second phase with the summary created in the first phase.

2. Constraint-based pattern mining: In this case, the user-specified constraints are pushed
directly into the mining process. Although such an approach can be slower for each
query, it allows the mining of patterns at much lower values of the support than
is possible with the first approach. This is because the constraints can reduce the
pattern sizes in the intermediate steps of the itemset discovery algorithm and can,
therefore, enable the discovery of patterns at much lower values of the support than
an (unconstrained) preprocessing phase.

In this section, both types of methods will be discussed.

5.3.1 Preprocess-once Query-many Paradigm

This particular paradigm is very effective for the case of simpler queries. In such cases,
the key is to first determine all the frequent patterns at a very low value of the support.
The resulting itemsets can then be arranged in the form of a data structure for querying.
The simplest data structure is the itemset lattice, which can be considered a graph data
structure for querying. However, itemsets can also be queried with the use of data structures

142 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

BORDER BETWEEN

FREQUENT AND REQUENT ITEMSETS
INFREQUENT
ITEMSETS

INFREQUENT ITEMSETS

Figure 5.1: The itemset lattice (replicated from Fig. 4.1 of Chap. 4)

adapted from the information retrieval literature that use the bag-of-words representation.
Both options will be explored in this chapter.

5.3.1.1 Leveraging the Itemset Lattice

As discussed in the previous chapter, the space of itemsets can be expressed as a lattice.
For convenience, Fig. 4.1 of the previous chapter is replicated in Fig. 5.1. Itemsets above
the dashed border are frequent, whereas itemsets below the border are infrequent.

In the preprocess-once query-many paradigm, the itemsets are mined at the lowest
possible level of support s, so that a large frequent portion of the lattice (graph) of itemsets
can be stored in main memory. This stage is a preprocessing phase; therefore, running time
is not a primary consideration. The edges on the lattice are implemented as pointers for
efficient traversal. In addition, a hash table maps the itemsets to the nodes in the graph.
The lattice has a number of important properties, such as downward closure, which enable
the discovery of nonredundant association rules and patterns.

This structure can effectively provide responses to many queries that are posed with
support minsup > s. Some examples are as follows:

1. To determine all itemsets containing a set X at a particular level of minsup, one uses
the hash table to map to the itemset X. Then, the lattice is traversed to determine the
relevant supersets of X and report them. A similar approach can be used to determine
all the frequent itemsets contained in X by using a traversal in the opposite direction.

2. It is possible to determine maximal itemsets directly during the traversal by identi-
fying nodes that do not have edges to their immediate supersets at the user-specified
minimum support level minsup.

3. It is possible to identify nodes within a specific hamming distance of X and a specified
minimum support, by traversing the lattice structure both upward and downward from
X for a prespecified number of steps.

5.3. PATTERN QUERYING 143

item-Id, [—> [LIST OF ITEMSET IDENTIFIERS | INDEXED BY
ITEMSET ID
item-Id, [—> [LIST OF ITEMSET IDENTIFIERS |
item-Id; |—> | LIST OF ITEMSET IDENTIFIERS |
H SECONDARY
—
: [_uisT OF ITEMSET IDENTIFIERS | DATA
ltem-Id, | —>[|ST OF ITEMSET IDENTIFIERS | STRUCTURE
; CONTAINING
! > |_LIST OF ITEMSET IDENTIFIERS | ITEMSETS
1
' > |_LIST OF ITEMSET IDENTIFIERS |

Figure 5.2: Illustration of the inverted lists

It is also possible to determine nonredundant rules with the use of this approach. For
example, for any itemset Y/ C Y, the rule X = Y has a confidence and support that is no
greater than that of the rule X = Y”. Therefore, the rule X = Y” is redundant with respect
to the rule X = Y. This is referred to as strict redundancy. Furthermore, for any itemset
I, the rule I — Y’ = Y’ is redundant with respect to the rule I —Y = Y only in terms
of the confidence. This is referred to as simple redundancy. The lattice structure provides
an efficient way to identify such nonredundant rules in terms of both simple redundancy
and strict redundancy. The reader is referred to the bibliographic notes for specific search
strategies on finding such rules.

5.3.1.2 Leveraging Data Structures for Querying

In some cases, it is desirable to use disk-resident representations for querying. In such cases,
the memory-based lattice traversal process is likely to be inefficient. The two most commonly
used data structures are the inverted index and the signature table. The major drawback in
using these data structures is that they do not allow an ordered exploration of the set of
frequent patterns, as in the case of the lattice structure.

The data structures discussed in this section can be used for either transactions or item-
sets. However, some of these data structures, such as signature tables, work particularly
well for itemsets because they explicitly leverage correlations between itemsets for efficient
indexing. Note that correlations are more significant in the case of itemsets than raw trans-
actions. Both these data structures are described in some detail below.

Inverted Index: The inverted index is a data structure that is used for retrieving sparse
set-valued data, such as the bag-of-words representation of text. Because frequent patterns
are also sparse sets drawn over a much larger universe of items, they can be retrieved
efficiently with an inverted index.

Each itemset is assigned a unique itemset-id. This can easily be generated with a hash
function. This itemset-id is similar to the #id that is used to represent transactions. The
itemsets themselves may be stored in a secondary data structure that is indexed by the
itemset-id. This secondary data structure can be a hash table that is based on the same
hash function used to create the itemset-id.

The inverted list contains a list for each item. Each item points to a list of itemset-ids.
This list may be stored on disk. An example of an inverted list is illustrated in Fig. 5.2. The
inverted representation is particularly useful for inclusion queries over small sets of items.
Consider a query for all itemsets containing X, where X is a small set of items. The inverted
lists for each item in X is stored on the disk. The intersection of these lists is determined.

144 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

This provides the relevant itemset-ids but not the itemsets. If desired, the relevant itemsets
can be accessed from disk and reported. To achieve this goal, the secondary data structure
on disk needs to be accessed with the use of the recovered itemset-ids. This is an additional
overhead of the inverted data structure because it may require random access to disk. For
large query responses, such an approach may not be practical.

While inverted lists are effective for inclusion queries over small sets of items, they are
not quite as effective for similarity queries over longer itemsets. One issue with the inverted
index is that it treats each item independently, and it does not leverage the significant cor-
relations between the items in the itemset. Furthermore, the retrieval of the full itemsets
is more challenging than that of only itemset-ids. For such cases, the signature table is the
data structure of choice.

Signature Tables: Signature tables were originally designed for indexing market basket
transactions. Because itemsets have the same set-wise data structure as transactions, they
can be used in the context of signature tables. Signature tables are particularly useful for
sparse binary data in which there are significant correlations among the different items.
Because itemsets are inherently defined on the basis of correlations, and different itemsets
have large overlaps among them, signature tables are particularly useful in such scenarios.

A signature is a set of items. The set of items U in the original data is partitioned into
sets of K signatures S ...Sk, such that U = u{ilsi. The value of K is referred to as the
signature cardinality. An itemset X is said to activate a signature S; at level r if and only
if |S; N X| > r. This level r is referred to as the activation threshold. In other words, the
itemset needs to have a user-specified minimum number r of items in common with the
signature to activate it.

The super-coordinate of an itemset exists in K-dimensional space, where K is the signa-
ture cardinality. Each dimension of the super-coordinate has a unique correspondence with
a particular signature and vice versa. The value of this dimension is 0-1, which indicates
whether or not the corresponding signature is activated by that itemset. Thus, if the items
are partitioned into K signatures {S1, ... Sk}, then there are 2X possible super-coordinates.
Each itemset maps on to a unique super-coordinate, as defined by the set of signatures acti-
vated by that itemset. If S;,, Si,, ... S, be the set of signatures which an itemset activates,
then the super-coordinates of that itemset are defined by setting the [< K dimensions
{i1,142,...4;} in this super-coordinate to 1 and the remaining dimensions to 0. Thus, this
approach creates a many-to-one mapping, in which multiple itemsets may map into the same
super-coordinate. For highly correlated itemsets, only a small number of signatures will be
activated by an itemset, provided that the partitioning of U into signatures is designed to
ensure that each signature contains correlated items.

The signature table contains a set of 2 entries. One entry in the signature table corre-
sponds to each possible super-coordinate. This creates a strict partitioning of the itemsets
on the basis of the mapping of itemsets to super-coordinates. This partitioning can be used
for similarity search. The signature table can be stored in main memory because the num-
ber of distinct super-coordinates can be mapped to main memory when K is small. For
example, when K is chosen to be 20, the number of super-coordinates is about a million.
The actual itemsets that are indexed by each entry of the signature table are stored on disk.
Each entry in the signature table points to a list of pages that contain the itemsets indexed
by that super-coordinate. The signature table is illustrated in Fig. 5.3.

A signature can be understood as a small category of items from the universal set of
items U. Thus, if the items in each signature are closely correlated, then an itemset is
likely to activate a small number of signatures. These signatures provide an idea of the

5.3. PATTERN QUERYING 145

SUPER-COORDINATE, L | ITEMSETS MAPPING TO SUPER-COORDINATE, |

SUPER-COORDINATE, _>| ITEMSETS MAPPING TO SUPER-COORDINATE, |

SUPER-COORDINATE, —>| ITEMSETS MAPPING TO SUPER-COORDINATE, |

|
.

SUPER-COORDINATE, —>| ITEMSETS MAPPING TO SUPER-COORDINATE, |

—| |

d |

Figure 5.3: Illustration of the signature table

approximate pattern of buying behavior for that itemset. Thus, it is crucial to perform the
clustering of the items into signatures so that two criteria are satisfied:

1. The items within a cluster S; are correlated. This ensures a more discriminative
mapping, which provides better indexing performance.

2. The aggregate support of the items within each cluster is similar. This is necessary to
ensure that the signature table is balanced.

To construct the signature table, a graph is constructed so that each node of the graph
corresponds to an item. For every pair of items that is frequent, an edge is added to the
graph, and the weight of the edge is a function of the support of that pair of items. In
addition, the weight of a node is the support of a particular item. It is desired to deter-
mine a clustering of this graph into K partitions so that the cumulative weights of edges
across the partitions is as small as possible and the partitions are well balanced. Reduc-
ing the weights of edges across partitions ensures that correlated sets of items are grouped
together. The partitions should be as well balanced as possible so that the itemsets mapping
to each super-coordinate are as well balanced as possible. Thus, this approach transforms
the items into a similarity graph, which can be clustered into partitions. A variety of clus-
tering algorithms can be used to partition the graph into groups of items. Any of the graph
clustering algorithms discussed in Chap. 19, such as MFETIS, may be used for this pur-
pose. The bibliographic notes also contain pointers to some methods for signature table
construction.

After the signatures have been determined, the partitions of the data may be defined by
using the super-coordinates of the itemsets. Each itemset belongs to the partition that is
defined by its super-coordinate. Unlike the case of inverted lists, the itemsets are explicitly
stored within this list, rather than just their identifiers. This ensures that the secondary
data structure does not need to be accessed to explicitly recover the itemsets. This is the
reason that the signature table can be used to recover the itemsets themselves, rather than
only the identifiers of the itemsets.

The signature table is capable of handling general similarity queries that cannot be
efficiently addressed with inverted lists. Let = be the number of items in which an itemset
matches with a target @), and y be the number of items in which it differs with the target
Q. The signature table is capable of handling similarity functions of the form f(z,y) that

146 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

satisfy the following two properties, for a fixed target record Q:

L&’ Yo (5.2)
Af(x,y)
VL (5.3)

This is referred to as the monotonicity property. These intuitive conditions on the function
ensure that it is an increasing function in the number of matches and decreasing in the
hamming distance. While the match function and the hamming distance obviously satisfy
these conditions, it can be shown that other functions for set-wise similarity, such as the
cosine and the Jaccard coefficient, also satisfy them. For example, let P and @ be the sets
of items in two itemsets, where @ is the target itemset. Then, the cosine function can be
expressed as follows, in terms of x and y:

Cosine(P, Q) =

VIPI- Vi@l
Ve r+ry-eh-Viel

x
xr+y

Jaccard(P,Q) =

These functions are increasing in x and decreasing in y. These properties are important
because they allow bounds to be computed on the similarity function in terms of bounds
on the arguments. In other words, if v is an upper bound on the value of x and 6 is a lower
bound on the value of y, then it can be shown that f(v,6) is an upper (optimistic) bound
on the value of the function f(z,y). This is useful for implementing a branch-and-bound
method for similarity computation.

Let @ be the target itemset. Optimistic bounds on the match and hamming distance
from @ to the itemsets within each super-coordinate are computed. These bounds can be
shown to be a function of the target @, the activation threshold, and the choice of signatures.
The precise method for computing these bounds is described in the pointers found in the
bibliographic notes. Let the optimistic bound on the match be z; and that on distance be
y; for the ith super-coordinate. These are used to determine an optimistic bound on the
similarity f(x,y) between the target and any itemset indexed by the ith super-coordinate.
Because of the monotonicity property, this optimistic bound for the ith super-coordinate
is B; = f(x;,y:;). The super-coordinates are sorted in decreasing (worsening) order of the
optimistic bounds B;. The similarity of Q) to the itemsets that are pointed to by these super-
coordinates is computed in this sorted order. The closest itemset found so far is dynamically
maintained. The process terminates when the optimistic bound B; to a super-coordinate is
lower (worse) than the similarity value of the closest itemset found so far to the target. At
this point, the closest itemset found so far is reported.

5.3.2 Pushing Constraints into Pattern Mining

The methods discussed so far in this chapter are designed for retrieval queries with item-
specific constraints. In practice, however, the constraints may be much more general and
cannot be easily addressed with any particular data structure. In such cases, the constraints
may be need to be directly pushed into the mining process.

5.4. PUTTING ASSOCIATIONS TO WORK: APPLICATIONS 147

In all the previous methods, a preprocess-once query-many paradigm is used; therefore,
the querying process is limited by the initial minimum support chosen during the preprocess-
ing phase. Although such an approach has the advantage of providing online capabilities for
query responses, it is sometimes not effective when the constraints result in removal of most
of the itemsets. In such cases, a much lower level of minimum support may be required
than could be reasonably selected during the initial preprocessing phase. The advantage
of pushing the constraints into the mining process is that the constraints can be used to
prune out many of the intermediate itemsets during the execution of the frequent pattern
mining algorithms. This allows the use of much lower minimum support levels. The price
for this flexibility is that the resulting algorithms can no longer be considered truly online
algorithms when the data sets are very large.

Consider, for example, a scenario where the different items are tagged into different
categories, such as snacks, dairy, baking products, and so on. It is desired to determine
patterns, such that all items belong to the same category. Clearly, this is a constraint on
the discovery of the underlying patterns. Although it is possible to first mine all the patterns,
and then filter down to the relevant patterns, this is not an efficient solution. If the number
of patterns mined during the preprocessing phase is no more than 10° and the level of
selectivity of the constraint is more than 1075, then the final set returned may be empty,
or too small.

Numerous methods have been developed in the literature to address such constraints
directly in the mining process. These constraints are classified into different types, depend-
ing upon their impact on the mining algorithm. Some examples of well-known types of
constraints, include succinct, monotonic, antimonotonic, and convertible. A detailed descrip-
tion of these methods is beyond the scope of this book. The bibliographic section contains
pointers to many of these algorithms.

5.4 Putting Associations to Work: Applications

Association pattern mining has numerous applications in a wide variety of real scenarios.
This section will discuss some of these applications briefly.

5.4.1 Relationship to Other Data Mining Problems

The association model is intimately related to other data mining problems such as classifica-
tion, clustering, and outlier detection. Association patterns can be used to provide effective
solutions to these data mining problems. This section will explore these relationships briefly.
Many of the relevant algorithms are also discussed in the chapters on these different data
mining problems.

5.4.1.1 Application to Classification

The association pattern mining problem is closely related to that of classification. Rule-
based classifiers are closely related to association-rule mining. These types of classifiers are
discussed in detail in Sect. 10.4 of Chap. 10, and a brief overview is provided here.
Consider the rule X = Y, where X is the antecedent and Y is the consequent. In asso-
ciative classification, the consequent Y is a single item corresponding to the class variable,
and the antecedent contains the feature variables. These rules are mined from the training
data. Typically, the rules are not determined with the traditional support and confidence
measures. Rather, the most discriminative rules with respect to the different classes need to

148 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be determined. For example, consider an itemset X and two classes ¢; and co. Intuitively,
the itemset X is discriminative between the two classes, if the absolute difference in the
confidence of the rules X = ¢; and X = ¢ is as large as possible. Therefore, the mining
process should determine such discriminative rules.

Interestingly, it has been discovered, that even a relatively straightforward modification
of the association framework to the classification problem is quite effective. An example
of such a classifier is the CBA framework for Classification Based on Associations. More
details on rule-based classifiers are discussed in Sect. 10.4 of Chap. 10.

5.4.1.2 Application to Clustering

Because association patterns determine highly correlated subsets of attributes, they can
be applied to quantitative data after discretization to determine dense regions in the data.
The CLIQUFE algorithm, discussed in Sect. 7.4.1 of Chap. 7, uses discretization to trans-
form quantitative data into binary attributes. Association patterns are discovered on the
transformed data. The data points that overlap with these regions are reported as subspace
clusters. This approach, of course, reports clusters that are highly overlapping with one
another. Nevertheless, the resulting groups correspond to the dense regions in the data,
which provide significant insights about the underlying clusters.

5.4.1.3 Applications to Outlier Detection

Association pattern mining has also been used to determine outliers in market basket data.
The key idea here is that the outliers are defined as transactions that are not “covered”
by most of the association patterns in the data. A transaction is said to be covered by an
association pattern when the corresponding association pattern is contained in the trans-
action. This approach is particularly useful in scenarios where the data is high dimensional
and traditional distance-based algorithms cannot be easily used. Because transaction data
is inherently high dimensional, such an approach is particularly effective. This approach is
discussed in detail in Sect. 9.2.3 of Chap. 9.

5.4.2 Market Basket Analysis

The prototypical problem for which the association rule mining problem was first proposed
is that of market basket analysis. In this problem, it is desired to determine rules relating
buying behavior of customers. The knowledge of such rules can be very useful for a retailer.
For example, if an association rule reveals that the sale of beer implies a sale of diapers, then
a merchant may use this information to optimize his or her shelf placement and promotion
decisions. In particular, rules that are interesting or unexpected are the most informative for
market basket analysis. Many of the traditional and alternative models for market basket
analysis are focused on such decisions.

5.4.3 Demographic and Profile Analysis

A closely related problem is that of using demographic profiles to make recommendations.
An example is the rule discussed in Sect. 4.6.3 of Chap. 4.

Agel85,95] = Checkers

Other demographic attributes, such as the gender or the ZIP code, can be used to determine
more refined rules. Such rules are referred to as profile association rules. Profile association

5.4. PUTTING ASSOCIATIONS TO WORK: APPLICATIONS 149

rules are very useful for target marketing decisions because they can be used to identify
relevant population segments for specific products. Profile association rules can be viewed in
a similar way to classification rules, except that the antecedent of the rule typically identifies
a profile segment, and the consequent identifies a population segment for target marketing.

5.4.4 Recommendations and Collaborative Filtering

Both the aforementioned applications are closely related to the generic problem of recom-
mendation analysis and collaborative filtering. In collaborative filtering, the idea is to make
recommendations to users on the basis of the buying behavior of other similar users. In this
context, localized pattern mining is particularly useful. In localized pattern mining, the idea
is to cluster the data into segments, and then determine the patterns in these segments.
The patterns from each segment are typically more resistant to noise from the global data
distribution and provide a clearer idea of the patterns within like-minded customers. For
example, in a movie recommendation system, a particular pattern for movie titles, such as
{Gladiator, Nero, Julius Caesar}, may not have sufficient support on a global basis. How-
ever, within like-minded customers, who are interested in historical movies, such a pattern
may have sufficient support. This approach is used in applications such as collaborative
filtering. The problem of localized pattern mining is much more challenging because of the
need to simultaneously determine the clustered segments and the association rules. The bib-
liographic section contains pointers to such localized pattern mining methods. Collaborative
filtering is discussed in detail in Sect. 18.5 of Chap. 18.

5.4.5 Web Log Analysis

Web log analysis is a common scenario for pattern mining methods. For example, the set
of pages accessed during a session is no different than a market-basket data set containing
transactions. When a set of Web pages is accessed together frequently, this provides useful
insights about correlations in user behavior with respect to Web pages. Such insights can
be leveraged by site-administrators to improve the structure of the Web site. For example,
if a pair of Web pages are frequently accessed together in a session but are not currently
linked together, it may be helpful to add a link between them. The most sophisticated
forms of Web log analysis typically work with the temporal aspects of logs, beyond the
set-wise framework of frequent itemset mining. These methods will be discussed in detail
in Chaps. 15 and 18.

5.4.6 Bioinformatics

Many new technologies in bioinformatics, such as microarray and mass spectrometry tech-
nologies, allow the collection of different kinds of very high-dimensional data sets. A classical
example of this kind of data is gene-expression data, which can be expressed as an n X d
matrix, where the number of columns d is very large compared with typical market basket
applications. It is not uncommon for a microarray application to contain a hundred thou-
sand columns. The discovery of frequent patterns in such data has numerous applications
in the discovery of key biological properties that are encoded by these data sets. For such
cases, long pattern mining methods, such as maximal and closed pattern mining are very
useful. In fact, a number of methods, discussed in the bibliographic notes, have specifically
been designed for such data sets.

150 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

5.4.7 Other Applications for Complex Data Types

Frequent pattern mining algorithms have been generalized to more complex data types such
as temporal data, spatial data, and graph data. This book contains different chapters for
these complex data types. A brief discussion of these more complex applications is provided
here:

1. Temporal Web log analytics: The use of temporal information from Web logs greatly
enriches the analysis process. For example, certain patterns of accesses may occur
frequently in the logs and these can be used to build event prediction models in cases
where future events may be predicted from the current pattern of events.

2. Spatial co-location patterns: Spatial co-location patterns provide useful insights about
the spatial correlations among different individuals. Frequent pattern mining algo-
rithms have been generalized to such scenarios. Refer to Chap. 16.

3. Chemical and biological graph applications: In many real scenarios, such as chemical
and biological compounds, the determination of structural patterns provides insights
about the properties of these molecules. Such patterns are also used to create classi-
fication models. These methods are discussed in Chap. 17.

4. Software bug analysis: The structure of computer programs can often be represented as
call graphs. The analysis of the frequent patterns in the call graphs and key deviations
from these patterns provides insights about the bugs in the underlying software.

Many of the aforementioned applications will be discussed in later chapters of this book.

5.5 Summary

In order to use frequent patterns effectively in data-driven applications, it is crucial to
create concise summaries of the underlying patterns. This is because the number of returned
patterns may be very large and difficult to interpret. Numerous methods have been designed
to create a compressed summary of the frequent patterns. Maximal patterns provide a
concise summary but are lossy in terms of the support of the underlying patterns. They
can often be determined effectively by incorporating different kinds of pruning strategies in
frequent pattern mining algorithms.

Closed patterns provide a lossless description of the underlying frequent itemsets. On the
other hand, the compression obtained from closed patterns is not quite as significant as that
obtained from the use of maximal patterns. The concept of “almost closed” itemsets allows
good compression, but there is some degree of information loss in the process. A different
way of compressing itemsets is to cluster itemsets so that all itemsets can be expressed
within a prespecified distance of particular representatives.

Query processing of itemsets is important in the context of many applications. For
example, the itemset lattice can be used to resolve simple queries on itemsets. In some
cases, the lattice may not fit in main memory. For these cases, it may be desirable to use
disk resident data structures such as the inverted index or the signature table. In cases
where the constraints are arbitrary or have a high level of selectivity, it may be desirable
to push the constraints directly into the mining process.

Frequent pattern mining has many applications, including its use as a subroutine for
other data mining problems. Other applications include market basket analysis, profile

5.6. BIBLIOGRAPHIC NOTES 151

analysis, recommendations, Web log analysis, spatial data, and chemical data. Many of
these applications are discussed in later chapters of this book.

5.6 Bibliographic Notes

The first algorithm for maximal pattern mining was proposed in [82]. Subsequently, the
DepthProject [4] and GenMax [233] algorithms were also designed for maximal pattern min-
ing. DepthProject showed that the depth-first method has several advantages for determining
maximal patterns. Vertical bitmaps were used in MAFIA [123] to compress the sizes of the
underlying tid lists. The problem of closed pattern mining was first proposed in [417] in
which an Apriori-based algorithm, known as A-Close, was presented. Subsequently, numer-
ous algorithms such as CLOSET [420], CLOSET+ [504], and CHARM [539] were proposed
for closed frequent pattern mining. The last of these algorithms uses the vertical data for-
mat to mine long patterns in a more efficient way. For the case of very high-dimensional
data sets, closed pattern mining algorithms were proposed in the form of CARPENTER
and COBBLER, respectively [413, 415]. Another method, known as pattern-fusion [553],
fuses the different pattern segments together to create a long pattern.

The work in [125] shows how to use deduction rules to construct a minimal representa-
tion for all frequent itemsets. An excellent survey on condensed representations of frequent
itemsets may be found in [126]. Numerous methods have subsequently been proposed to
approximate closures in the form of §-freesets [107]. Information-theoretic methods for item-
set compression have been discussed in [470].

The use of clustering-based methods for compression focuses on the itemsets rather than
the transactions. The work in [515] clusters the patterns on the basis of their similarity and
frequency to create a condensed representation of the patterns. The submodularity property
used in the greedy algorithm for finding the best set of covering itemsets is discussed in [403].

The algorithm for using the itemset lattice for interactive rule exploration is discussed
in [37]. The concepts of simple redundancy and strict redundancy are also discussed in this
work. This method was also generalized to the case of profile association rules [38]. The
inverted index, presented in this chapter, may be found in [441]. A discussion of a market
basket-specific implementation, together with the signature table, may be found in [41]. A
compact disk structure for storing and querying frequent itemsets has been studied in [359].

A variety of constraint-based methods have been developed for pattern mining. Succinct
constraints are the easiest to address because they can be pushed directly into data selection.
Monotonic constraints need to be checked only once to restrict pattern growth [406, 332],
whereas antimonotonic constraints need to be pushed deep into the pattern mining process.
Another form of pattern mining, known as convertible constraints [422], can be addressed
by sorting items in ascending or descending order for restraining pattern growth.

The CLIQUE algorithm [58] shows how association pattern mining methods may be
used for clustering algorithms. The CBA algorithm for rule-based classification is dis-
cussed in [358]. A survey on rule-based classification methods may be found in [115].
The frequent pattern mining problem has also been used for outlier detection in very long
transactions [263]. Frequent pattern mining has also been used in the field of bioinformat-
ics [413, 415]. The determination of localized associations [27] is very useful for the problem
of recommendations and collaborative filtering. Methods for mining long frequent patterns
in the context of bioinformatics applications may be found in [413, 415, 553]. Association
rules can also be used to discover spatial co-location patterns [388]. A detailed discussion

152 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

of frequent pattern mining methods for graph applications, such as software bug analysis,
and chemical and biological data, is provided in Aggarwal and Wang [26].

5.7 Exercises

1. Consider the transaction database in the table below:

tid | items
1 a,b,c,d
2 b,c.e, f
3 |adef
4 a,e, f
5 b,d, f

Determine all maximal patterns in this transaction database at support levels of 2, 3,
and 4.

2. Write a program to determine the set of maximal patterns, from a set of frequent
patterns.

3. For the transaction database of Exercise 1, determine all the closed patterns at support
levels of 2, 3, and 4.

4. Write a computer program to determine the set of closed frequent patterns, from a
set of frequent patterns.

5. Consider the transaction database in the table below:

tid items
1 a,c,d,e
2 a,d,e, f
3 b,c,d,e, f
4 b,d,e, f
5 b,e, f
6 c,d,e
7 ce f
8 d,e, f

Determine all frequent maximal and closed patterns at support levels of 3, 4, and 5.

6. Write a computer program to implement the greedy algorithm for finding a represen-
tative itemset from a group of itemsets.

7. Write a computer program to implement an inverted index on a set of market baskets.
Implement a query to retrieve all itemsets containing a particular set of items.

8. Write a computer program to implement a signature table on a set of market baskets.
Implement a query to retrieve the closest market basket to a target basket on the
basis of the cosine similarity.

Chapter 6

Cluster Analysis

“In order to be an immaculate member of a flock of sheep,
one must, above all, be a sheep oneself.” —Albert Einstein

6.1 Introduction

Many applications require the partitioning of data points into intuitively similar groups.
The partitioning of a large number of data points into a smaller number of groups helps
greatly in summarizing the data and understanding it for a variety of data mining applica-
tions. An informal and intuitive definition of clustering is as follows:

Given a set of data points, partition them into groups containing very similar data points.

This is a very rough and intuitive definition because it does not state much about the
different ways in which the problem can be formulated, such as the number of groups, or the
objective criteria for similarity. Nevertheless, this simple description serves as the basis for
a number of models that are specifically tailored for different applications. Some examples
of such applications are as follows:

e Data summarization: At the broadest level, the clustering problem may be considered
as a form of data summarization. As data mining is all about extracting summary
information (or concise insights) from data, the clustering process is often the first step
in many data mining algorithms. In fact, many applications use the summarization
property of cluster analysis in one form or the other.

o Customer segmentation: It is often desired to analyze the common behaviors of groups
of similar customers. This is achieved by customer segmentation. An example of an
application of customer segmentation is collaborative filtering, in which the stated
or derived preferences of a similar group of customers are used to make product
recommendations within the group.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8_6 153
(© Springer International Publishing Switzerland 2015

154 CHAPTER 6. CLUSTER ANALYSIS

e Social network analysis: In the case of network data, nodes that are tightly clustered
together by linkage relationships are often similar groups of friends, or communities.
The problem of community detection is one of the most widely studied in social
network analysis, because a broader understanding of human behaviors is obtained
from an analysis of community group dynamics.

o Relationship to other data mining problems: Due to the summarized representation it
provides, the clustering problem is useful for enabling other data mining problems.
For example, clustering is often used as a preprocessing step in many classification
and outlier detection models.

A wide variety of models have been developed for cluster analysis. These different models
may work better in different scenarios and data types. A problem, which is encountered by
many clustering algorithms, is that many features may be noisy or uninformative for cluster
analysis. Such features need to be removed from the analysis early in the clustering process.
This problem is referred to as feature selection. This chapter will also study feature-selection
algorithms for clustering.

In this chapter and the next, the study of clustering will be restricted to simpler multi-
dimensional data types, such as numeric or discrete data. More complex data types, such as
temporal or network data, will be studied in later chapters. The key models differ primarily
in terms of how similarity is defined within the groups of data. In some cases, similarity is
defined explicitly with an appropriate distance measure, whereas in other cases, it is defined
implicitly with a probabilistic mixture model or a density-based model. In addition, certain
scenarios for cluster analysis, such as high-dimensional or very large-scale data sets, pose
special challenges. These issues will be discussed in the next chapter.

This chapter is organized as follows. The problem of feature selection is studied in
Sect. 6.2. Representative-based algorithms are addressed in Sect. 6.3. Hierarchical cluster-
ing algorithms are discussed in Sect. 6.4. Probabilistic and model-based methods for data
clustering are addressed in Sect. 6.5. Density-based methods are presented in Sect. 6.6.
Graph-based clustering techniques are presented in Sect. 6.7. Section 6.8 presents the non-
negative matrix factorization method for data clustering. The problem of cluster validity is
discussed in Sect. 6.9. Finally, the chapter is summarized in Sect. 6.10.

6.2 Feature Selection for Clustering

The key goal of feature selection is to remove the noisy attributes that do not cluster well.
Feature selection is generally more difficult for unsupervised problems, such as clustering,
where external validation criteria, such as labels, are not available for feature selection.
Intuitively, the problem of feature selection is intimately related to that of determining
the inherent clustering tendency of a set of features. Feature selection methods determine
subsets of features that maximize the underlying clustering tendency. There are two primary
classes of models for performing feature selection:

1. Filter models: In this case, a score is associated with each feature with the use of
a similarity-based criterion. This criterion is essentially a filter that provides a crisp
condition for feature removal. Data points that do not meet the required score are
removed from consideration. In some cases, these models may quantify the quality of
a subset of features as a combination, rather than a single feature. Such models are
more powerful because they implicitly take into account the incremental impact of
adding a feature to others.

6.2. FEATURE SELECTION FOR CLUSTERING 155

2. Wrapper models: In this case, a clustering algorithm is used to evaluate the quality
of a subset of features. This is then used to refine the subset of features on which
the clustering is performed. This is a naturally iterative approach in which a good
choice of features depends on the clusters and vice versa. The features selected will
typically be at least somewhat dependent on the particular methodology used for
clustering. Although this may seem like a disadvantage, the fact is that different
clustering methods may work better with different sets of features. Therefore, this
methodology can also optimize the feature selection to the specific clustering tech-
nique. On the other hand, the inherent informativeness of the specific features may
sometimes not be reflected by this approach due to the impact of the specific clustering
methodology.

A major distinction between filter and wrapper models is that the former can be performed
purely as a preprocessing phase, whereas the latter is integrated directly into the clus-
tering process. In the following sections, a number of filter and wrapper models will be
discussed.

6.2.1 Filter Models

In filter models, a specific criterion is used to evaluate the impact of specific features, or
subsets of features, on the clustering tendency of the data set. The following will introduce
many of the commonly used criteria.

6.2.1.1 Term Strength

Term strength is suitable for sparse domains such as text data. In such domains, it is more
meaningful to talk about presence or absence of nonzero values on the attributes (words),
rather than distances. Furthermore, it is more meaningful to use similarity functions rather
than distance functions. In this approach, pairs of documents are sampled, but a random
ordering is imposed between the pair. The term strength is defined as the fraction of similar
document pairs (with similarity greater than (), in which the term occurs in both the
documents, conditional on the fact that it appears in the first. In other words, for any term
t, and document pair (X,Y) that have been deemed to be sufficiently similar, the term
strength is defined as follows:

Term Strength = P(t € Y|t € X). (6.1)

If desired, term strength can also be generalized to multidimensional data by discretizing the
quantitative attributes into binary values. Other analogous measures use the correlations
between the overall distances and attribute-wise distances to model relevance.

6.2.1.2 Predictive Attribute Dependence

The intuitive motivation of this measure is that correlated features will always result in
better clusters than uncorrelated features. When an attribute is relevant, other attributes
can be used to predict the value of this attribute. A classification (or regression modeling)
algorithm can be used to evaluate this predictiveness. If the attribute is numeric, then a
regression modeling algorithm is used. Otherwise, a classification algorithm is used. The
overall approach for quantifying the relevance of an attribute i is as follows:

156 CHAPTER 6. CLUSTER ANALYSIS

o oS 1S 2 es & o5 4 i s o s 1 15 & 25 5 95
(a) Uniform Data (b) Clustered data

14000 : : : : : : 2x10°

QUENCY
S

RELATIVE FREQUENCY

RELATIVE FRE
o o
> ®

1 2 3 4 5 6
DISTANCE VALUE DISTANCE VALUE

3 4 5 6 7
(c) Distance distribution (uniform) (d) Distance distribution (clustered)

Figure 6.1: Impact of clustered data on distance distribution entropy

1. Use a classification algorithm on all attributes, except attribute i, to predict the value
of attribute ¢, while treating it as an artificial class variable.

2. Report the classification accuracy as the relevance of attribute s.

Any reasonable classification algorithm can be used, although a nearest neighbor classifier
is desirable because of its natural connections with similarity computation and clustering.
Classification algorithms are discussed in Chap. 10.

6.2.1.3 Entropy

The basic idea behind these methods is that highly clustered data reflects some of its
clustering characteristics on the underlying distance distributions. To illustrate this point,
two different data distributions are illustrated in Figures 6.1a and b, respectively. The first
plot depicts uniformly distributed data, whereas the second one depicts data with two
clusters. In Figures 6.1c and d, the distribution of the pairwise point-to-point distances is
illustrated for the two cases. It is evident that the distance distribution for uniform data is
arranged in the form of a bell curve, whereas that for clustered data has two different peaks
corresponding to the intercluster distributions and intracluster distributions, respectively.
The number of such peaks will typically increase with the number of clusters. The goal
of entropy-based measures is to quantify the “shape” of this distance distribution on a
given subset of features, and then pick the subset where the distribution shows behavior
that is more similar to the case of Fig. 6.1b. Therefore, such algorithms typically require

6.2. FEATURE SELECTION FOR CLUSTERING 157

a systematic way to search for the appropriate combination of features, in addition to
quantifying the distance-based entropy. So how can the distance-based entropy be quantified
on a particular subset of attributes?

A natural way of quantifying the entropy is to directly use the probability distribution
on the data points and quantify the entropy using these values. Consider a k-dimensional
subset of features. The first step is to discretize the data into a set of multidimensional grid
regions using ¢ grid regions for each dimension. This results in m = ¢* grid ranges that
are indexed from 1 through m. The value of m is approximately the same across all the
evaluated feature subsets by selecting ¢ = [m!/¥]. If p; is the fraction of data points in grid
region 4, then the probability-based entropy E is defined as follows:

E=- Z[Pilog(m) + (1 — pi)log(l — p;)]. (6.2)
i=1

A uniform distribution with poor clustering behavior has high entropy, whereas clustered
data has lower entropy. Therefore, the entropy measure provides feedback about the clus-
tering quality of a subset of features.

Although the aforementioned quantification can be used directly, the probability density
p; of grid region 7 is sometimes hard to accurately estimate from high-dimensional data. This
is because the grid regions are multidimensional, and they become increasingly sparse in
high dimensionality. It is also hard to fix the number of grid regions m over feature subsets
of varying dimensionality k because the value of ¢ = [m'/*] is rounded up to an integer
value. Therefore, an alternative is to compute the entropy on the 1-dimensional point-to-
point distance distribution on a sample of the data. This is the same as the distributions
shown in Fig. 6.1. The value of p; then represents the fraction of distances in the ith 1-
dimensional discretized range. Although this approach does not fully address the challenges
of high dimensionality, it is usually a better option for data of modest dimensionality. For
example, if the entropy is computed on the histograms in Figs. 6.1c and d, then this will
distinguish between the two distributions well. A heuristic approximation on the basis of
the raw distances is also often used. Refer to the bibliographic notes.

To determine the subset of features, for which the entropy E is minimized, a variety of
search strategies are used. For example, starting from the full set of features, a simple greedy
approach may be used to drop the feature that leads to the greatest reduction in the entropy.
Features are repeatedly dropped greedily until the incremental reduction is not significant,
or the entropy increases. Some enhancements of this basic approach, both in terms of the
quantification measure and the search strategy, are discussed in the bibliographic section.

6.2.1.4 Hopkins Statistic

The Hopkins statistic is often used to measure the clustering tendency of a data set, although
it can also be applied to a particular subset of attributes. The resulting measure can then be
used in conjunction with a feature search algorithm, such as the greedy method discussed
in the previous subsection.

Let D be the data set whose clustering tendency needs to be evaluated. A sample S of r
synthetic data points is randomly generated in the domain of the data space. At the same
time, a sample R of r data points is selected from D. Let «y ..., be the distances of the
data points in the sample R C D to their nearest neighbors within the original database D.
Similarly, let 5 ... 5, be the distances of the data points in the synthetic sample S to their

158 CHAPTER 6. CLUSTER ANALYSIS

nearest neighbors within D. Then, the Hopkins statistic H is defined as follows:

22:1 Bi
H=_—‘+FF—/"——.
Yo (i + Bi)

The Hopkins statistic will be in the range (0,1). Uniformly distributed data will have a
Hopkins statistic of 0.5 because the values of a; and ; will be similar. On the other hand,
the values of «; will typically be much lower than 3; for the clustered data. This will result
in a value of the Hopkins statistic that is closer to 1. Therefore, a high value of the Hopkins
statistic H is indicative of highly clustered data points.

One observation is that the approach uses random sampling, and therefore the measure
will vary across different random samples. If desired, the random sampling can be repeated
over multiple trials. A statistical tail confidence test can be employed to determine the
level of confidence at which the Hopkins statistic is greater than 0.5. For feature selection,
the average value of the statistic over multiple trials can be used. This statistic can be
used to evaluate the quality of any particular subset of attributes to evaluate the clustering
tendency of that subset. This criterion can be used in conjunction with a greedy approach
to discover the relevant subset of features. The greedy approach is similar to that discussed
in the case of the distance-based entropy method.

(6.3)

6.2.2 Wrapper Models

Wrapper models use an internal cluster validity criterion in conjunction with a clustering
algorithm that is applied to an appropriate subset of features. Cluster validity criteria are
used to evaluate the quality of clustering and are discussed in detail in Sect. 6.9. The idea
is to use a clustering algorithm with a subset of features, and then evaluate the quality
of this clustering with a cluster validity criterion. Therefore, the search space of different
subsets of features need to be explored to determine the optimum combination of features.
As the search space of subsets of features is exponentially related to the dimensionality,
a greedy algorithm may be used to successively drop features that result in the greatest
improvement of the cluster validity criterion. The major drawback of this approach is that
it is sensitive to the choice of the validity criterion. As you will learn in this chapter, cluster
validity criteria are far from perfect. Furthermore, the approach can be computationally
expensive.

Another simpler methodology is to select individual features with a feature selection cri-
terion that is borrowed from that used in classification algorithms. In this case, the features
are evaluated individually, rather than collectively, as a subset. The clustering approach
artificially creates a set of labels L, corresponding to the cluster identifiers of the individual
data points. A feature selection criterion may be borrowed from the classification literature
with the use of the labels in L. This criterion is used to identify the most discriminative
features:

1. Use a clustering algorithm on the current subset of selected features F', in order to fix
cluster labels L for the data points.

2. Use any supervised criterion to quantify the quality of the individual features with
respect to labels L. Select the top-k features on the basis of this quantification.

There is considerable flexibility in the aforementioned framework, where different kinds of
clustering algorithms and feature selection criteria are used in each of the aforementioned
steps. A variety of supervised criteria can be used, such as the class-based entropy or the

6.3. REPRESENTATIVE-BASED ALGORITHMS 159

Algorithm GenericRepresentative(Database: D, Number of Representatives: k)
begin
Initialize representative set .S
repeat
Create clusters (C; ...C) by assigning each
point in D to closest representative in S
using the distance function Dist(-,-);
Recreate set S by determining one representative 7] for
each C; that minimizes Zfiecj Dist(X;,Y;);
until convergence;
return (C; ...Cy);
end

Figure 6.2: Generic representative algorithm with unspecified distance function

Fisher score (cf. Sect. 10.2 of Chap. 10). The Fisher score, discussed in Sect. 10.2.1.3 of
Chap. 10, measures the ratio of the intercluster variance to the intracluster variance on any
particular attribute. Furthermore, it is possible to apply this two-step procedure iteratively.
However, some modifications to the first step are required. Instead of selecting the top-k
features, the weights of the top-k features are set to 1, and the remainder are set to a < 1.
Here, « is a user-specified parameter. In the final step, the top-k features are selected.

Wrapper models are often combined with filter models to create hybrid models for better
efficiency. In this case, candidate feature subsets are constructed with the use of filter models.
Then, the quality of each candidate feature subset is evaluated with a clustering algorithm.
The evaluation can be performed either with a cluster validity criterion or with the use of
a classification algorithm on the resulting cluster labels. The best candidate feature subset
is selected. Hybrid models provide better accuracy than filter models and are more efficient
than wrapper models.

6.3 Representative-Based Algorithms

Representative-based algorithms are the simplest of all clustering algorithms because they
rely directly on intuitive notions of distance (or similarity) to cluster data points. In
representative-based algorithms, the clusters are created in one shot, and hierarchical rela-
tionships do not exist among different clusters. This is typically done with the use of a set
of partitioning representatives. The partitioning representatives may either be created as
a function of the data points in the clusters (e.g., the mean) or may be selected from the
existing data points in the cluster. The main insight of these methods is that the discovery
of high-quality clusters in the data is equivalent to discovering a high-quality set of repre-
sentatives. Once the representatives have been determined, a distance function can be used
to assign the data points to their closest representatives.

Typically, it is assumed that the number of clusters, denoted by k, is specified by the
user. Consider a data set D containing n data points denoted by X ... X, in d-dimensional
space. The goal is to determine k representatives Y;...Y} that mlnimize the following
objective function O:

0= Z min; Dist(X;,Y})] . (6.4)
i=1

160 CHAPTER 6. CLUSTER ANALYSIS

In other words, the sum of the distances of the different data points to their closest repre-
sentatives needs to be minimized. Note that the assignment of data points to representatives
depends on the choice of the representatives Y; ...Y}. In some variations of representative
algorithms, such as k-medoid algorithms, it is assumed that the representatives Y; ...Y}, are
drawn from the original database D, although this will obviously not provide an optimal
solution. In general, the discussion in this section will not automatically assume that the
representatives are drawn from the original database D, unless specified otherwise.

One observation about the formulation of Eq. 6.4 is that the representatives Yj ...Y}
and the optimal assignment of data points to representatives are unknown a priori, but
they depend on each other in a circular way. For example, if the optimal representatives are
known, then the optimal assignment is easy to determine, and vice versa. Such optimiza-
tion problems are solved with the use of an iterative approach where candidate represen-
tatives and candidate assignments are used to improve each other. Therefore, the generic
k-representatives approach starts by initializing the k representatives S with the use of a
straightforward heuristic (such as random sampling from the original data), and then refines
the representatives and the clustering assignment, iteratively, as follows:

e (Assign step) Assign each data point to its closest representative in S using distance
function Dist(-,-), and denote the corresponding clusters by Cj . ..Cyg.

e (Optimize step) Determine the optimal representative Y; for each cluster C; that
minimizes its local objective function ZZEC,- [Dist(X;,Y;)].

It will be evident later in this chapter that this two-step procedure is very closely related
to generative models of cluster analysis in the form of expectation-mazimization algorithms.
The second step of local optimization is simplified by this two-step iterative approach,
because it no longer depends on an unknown assignment of data points to clusters as in
the global optimization problem of Eq. 6.4. Typically, the optimized representative can
be shown to be some central measure of the data points in the jth cluster C;, and the
precise measure depends on the choice of the distance function Dist(X;, VJ) In particular,
for the case of the Euclidean distance and cosine similarity functions, it can be shown
that the optimal centralized representative of each cluster is its mean. However, different
distance functions may lead to a slightly different type of centralized representative, and
these lead to different variations of this broader approach, such as the k-means and k-
medians algorithms. Thus, the k-representative approach defines a family of algorithms, in
which minor changes to the basic framework allow the use of different distance criteria.
These different criteria will be discussed below. The generic framework for representative-
based algorithms with an unspecified distance function is illustrated in the pseudocode of
Fig. 6.2. The idea is to improve the objective function over multiple iterations. Typically,
the increase is significant in early iterations, but it slows down in later iterations. When the
improvement in the objective function in an iteration is less than a user-defined threshold,
the algorithm may be allowed to terminate. The primary computational bottleneck of the
approach is the assignment step where the distances need to be computed between all point-
representative pairs. The time complexity of each iteration is O(k - n - d) for a data set of
size n and dimensionality d. The algorithm typically terminates in a small constant number
of iterations.

The inner workings of the k-representatives algorithm are illustrated with an example
in Fig. 6.3, where the data contains three natural clusters, denoted by A, B, and C. For
illustration, it is assumed that the input k£ to the algorithm is the same as the number
of natural clusters in the data, which, in this case, is 3. The Euclidean distance function

6.3. REPRESENTATIVE-BASED ALGORITHMS 161
o 0
ot 9
-CLUSTER C CLUSTER C
8l ' 8
NTATIVE 3
7t 7
ol CLUSTER A .
5t 5
_x REPRESENTATIVE 1
 _CLUSTERB e CLUSTER B
. EPRESENTATIVE 1 . P
X REPRESENTATIVE 2 REPRESENTATIVE 2
3 I I I I I I . I 3 I I I I I I . I ,
1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9
(a) Iteration 1 (b) Tteration 2
101 10
of 9
, -CLUSTER C , CLUSTER C
8r x REPRESENTATIVE 3 8 x REDHESENTATIVE 3
7t 7
CLUSTER A s CLUSTER A
61 : x REPRESENTATIVE 1
x REPRESENTATIVE 1 '
5f 5
_CLUSTER B CLUSTERB
4r %REPRESENTATIVE 2 4 % REPRESENTATIVE 2
3 I I I I I I . I 3 I I I I I I . I ,
1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9
(c) Iteration 3 (d) Tteration 4
o 10
ot _ 9
, -CLUSTER C - CLUSTER C
8l x REPRESENTATIVE 3 8 REPRESENTATIVE 3
7t 7 L
: REPRESENTATIVE 1 * .
. REPRESENTATIVE 1 . CLUSTER A
5t 5
_CLUSTER B CLUSTERB
4r i -PRESENTATIVE 2 4 EPRESENTATIVE 2
3 I I I I I I . I 3 I I I I I I I ,
1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9

(e) Tteration 5

(f) Tteration 10

Figure 6.3: Illustration of k-representative algorithm with random initialization

162 CHAPTER 6. CLUSTER ANALYSIS

is used, and therefore the “re-centering” step uses the mean of the cluster. The initial
set of representatives (or seeds) is chosen randomly from the data space. This leads to a
particularly bad initialization, where two of the representatives are close to cluster B, and
one of them lies somewhere midway between clusters A and C. As a result, the cluster B
is initially split up by the “sphere of influence” of two representatives, whereas most of the
points in clusters A and C are assigned to a single representative in the first assignment step.
This situation is illustrated in Fig. 6.3a. However, because each representative is assigned
a different number of data points from the different clusters, the representatives drift in
subsequent iterations to one of the unique clusters. For example, representative 1 steadily
drifts toward cluster A, and representative 3 steadily drifts toward cluster C. At the same
time, representative 2 becomes a better centralized representative of cluster B. As a result,
cluster B is no longer split up among different representatives by the end of iteration 10
(Fig. 6.3f). An interesting observation is that even though the initialization was so poor,
it required only 10 iterations for the k-representatives approach to create a reasonable
clustering of the data. In practice, this is generally true of k-representative methods, which
converge relatively fast toward a good clustering of the data points. However, it is possible
for k-means to converge to suboptimal solutions, especially when an outlier data point is
selected as an initial representative for the algorithm. In such a case, one of the clusters may
contain a singleton point that is not representative of the data set, or it may contain two
merged clusters. The handling of such cases is discussed in the section on implementation
issues. In the following section, some special cases and variations of this framework will be
discussed. Most of the variations of the k-representative framework are defined by the choice
of the distance function Dist(X;,Y;) between the data points X; and the representatives
Y. Each of these choices results in a different type of centralized representative of a cluster.

6.3.1 The k-Means Algorithm

In the k-means algorithm, the sum of the squares of the Euclidean distances of data points
to their closest representatives is used to quantify the objective function of the clustering.

Therefore, we have: o -
Dist(X;, ¥;) = 1% - Y13 (6.5)

Here, || - ||, represents the L,-norm. The expression Dist(X;,Y;) can be viewed as the
squared error of approximating a data point with its closest representative. Thus, the over-
all objective minimizes the sum of square errors over different data points. This is also
sometimes referred to as SSE. In such a case, it can be shown! that the optimal represen-
tative ?j for each of the “optimize” iterative steps is the mean of the data points in cluster
C;. Thus, the only difference between the generic pseudocode of Fig. 6.2 and a k-means
pseudocode is the specific instantiation of the distance function Dist(-,-), and the choice of
the representative as the local mean of its cluster.

An interesting variation of the k-means algorithm is to use the local Mahalanobis distance
for assignment of data points to clusters. This distance function is discussed in Sect. 3.2.1.6 of
Chap. 3. Each cluster C; has its dxd own covariance matrix ¥, which can be computed using
the data points assigned to that cluster in the previous iteration. The squared Mahalanobis
distance between data point X; and representative 73 with a covariance matrix ¥; is defined

1For a fized cluster assignment C1...Cr, the gradient of the clustering objective function

J=1 foiecj ||X; — Y;||?> with respect to Y; is 2226% (X; — Yj). Setting the gradient to 0 yields

the mean of cluster C; as the optimum value of ?] Note that the other clusters do not contribute to the
gradient, and, therefore, the approach effectively optimizes the local clustering objective function for C;.

6.3. REPRESENTATIVE-BASED ALGORITHMS 163

SPARSE CLUSTER

CLUSTER A MAHALANOBIS ~ ° . .
(ARBITRARY SHAPE) k-MEANS ADJUSTS KMEANS
oo e CLUSTER RADII CLUSTER 1 .
k-MEANS BREAKS oot o e WITHLOCAL ™~
UPANATURAL . i . DENSITY AN
CLUSTER AND b K-MEANS ~o
MERGES DISTINCT Sele. Fo————— -
CLUSTER PORTIONS RGE CLOSTER 2 K-MEANS o8 1 g2 K-MEANS
808 * CLUSTER2 °% ' o8 (VcTER3
o o gee L O 1 e
e e el h
CLUSTERB*™ =, ~ |
] i k-MEANS
et ke
' CLUSTER 2 DENSE CLUSTERS
(a) Varying cluster shape (b) Varying cluster density
(Bad for k-means) (Good for Mahalanobis k-means)

Figure 6.4: Strengths and weaknesses of k-means

as follows:

Dist(X:,T;) = (% - V)5 (% — 757 (6.6)
The use of the Mahalanobis distance is generally helpful when the clusters are elliptically
elongated along certain directions, as in the case of Fig. 6.3. The factor Ej_l also provides
local density normalization, which is helpful in data sets with varying local density. The
resulting algorithm is referred to as the Mahalanobis k-means algorithm.

The k-means algorithm does not work well when the clusters are of arbitrary shape. An
example is illustrated in Fig. 6.4a, in which cluster A has a nonconvex shape. The k-means
algorithm breaks it up into two parts, and also merges one of these parts with cluster B. Such
situations are common in k-means, because it is biased toward finding spherical clusters.
Even the Mahalanobis k-means algorithm does not work well in this scenario in spite of
its ability to adjust for the elongation of clusters. On the other hand, the Mahalanobis k-
means algorithm can adjust well to varying cluster density, as illustrated in Fig. 6.4b. This
is because the Mahalanobis method normalizes local distances with the use of a cluster-
specific covariance matrix. The data set of Fig. 6.4b cannot be effectively clustered by
many density-based algorithms, which are designed to discover arbitrarily shaped clusters
(cf. Sect. 6.6). Therefore, different algorithms are suitable in different application settings.

6.3.2 The Kernel k-Means Algorithm

The k-means algorithm can be extended to discovering clusters of arbitrary shape with the
use of a method known as the kernel trick. The basic idea is to implicitly transform the
data so that arbitrarily shaped clusters map to Euclidean clusters in the new space. Refer
to Sect. 10.6.4.1 of Chap. 10 for a brief description of the kernel k-means algorithm. The
main problem with the kernel k-means algorithm is that the complexity of computing the
kernel matrix alone is quadratically related to the number of data points. Such an approach
can effectively discover the arbitrarily shaped clusters of Fig. 6.4a.

164 CHAPTER 6. CLUSTER ANALYSIS

Algorithm GenericMedoids(Database: D, Number of Representatives: k)
begin
Initialize representative set S by selecting from D;
repeat
Create clusters (C; ...Cy) by assigning
each point in D to closest representative in S
using the distance function Dist(-,-);
Determine a pair X; € D and TJ € S such that
replacing Y; € S with X; leads to the
greatest possible improvement in objective function;
Perform the exchange between X; and Y; only
if improvement is positive;
until no improvement in current iteration;
return (C; ...Cg);
end

Figure 6.5: Generic k-medoids algorithm with unspecified hill-climbing strategy

6.3.3 The k-Medians Algorithm

In the k-medians algorithm, the Manhattan distance is used as the objective function of
choice. Therefore, the distance function Dist(X;,Y;) is defined as follows:

Dist(X:,¥7) = 1% - ¥y l. (6.7)

In such a case, it can be shown that the optimal representative TJ is the median of the
data points along each dimension in cluster C;. This is because the point that has the
minimum sum of Lq-distances to a set of points distributed on a line is the median of that
set. The proof of this result is simple. The definition of a median can be used to show that
a perturbation of € in either direction from the median cannot strictly reduce the sum of
Lq-distances. This implies that the median optimizes the sum of the L;-distances to the
data points in the set.

As the median is chosen independently along each dimension, the resulting d-dimensional
representative will (typically) not belong to the original data set D. The k-medians approach
is sometimes confused with the k-medoids approach, which chooses these representatives
from the original database D. In this case, the only difference between the generic pseu-
docode of Fig. 6.2, and a k-medians variation would be to instantiate the distance function
to the Manhattan distance and use the representative as the local median of the cluster
(independently along each dimension). The k-medians approach generally selects cluster
representatives in a more robust way than k-means, because the median is not as sensitive
to the presence of outliers in the cluster as the mean.

6.3.4 The k-Medoids Algorithm

Although the k-medoids algorithm also uses the notion of representatives, its algorithmic
structure is different from the generic k-representatives algorithm of Fig. 6.2. The clustering
objective function is, however, of the same form as the k-representatives algorithm. The main
distinguishing feature of the k-medoids algorithm is that the representatives are always

6.3. REPRESENTATIVE-BASED ALGORITHMS 165

selected from the database D, and this difference necessitates changes to the basic structure
of the k-representatives algorithm.

A question arises as to why it is sometimes desirable to select the representatives from
D. There are two reasons for this. One reason is that the representative of a k-means cluster
may be distorted by outliers in that cluster. In such cases, it is possible for the representative
to be located in an empty region which is unrepresentative of most of the data points in
that cluster. Such representatives may result in partial merging of different clusters, which
is clearly undesirable. This problem can, however, be partially resolved with careful outlier
handling and the use of outlier-robust variations such as the k-medians algorithm. The
second reason is that it is sometimes difficult to compute the optimal central representative
of a set of data points of a complex data type. For example, if the k-representatives clustering
algorithm were to be applied on a set of time series of varying lengths, then how should the
central representatives be defined as a function of these heterogeneous time-series? In such
cases, selecting representatives from the original data set may be very helpful. As long as
a representative object is selected from each cluster, the approach will provide reasonably
high quality results. Therefore, a key property of the k-medoids algorithm is that it can be
defined virtually on any data type, as long as an appropriate similarity or distance function
can be defined on the data type. Therefore, k-medoids methods directly relate the problem
of distance function design to clustering.

The k-medoids approach uses a generic hill-climbing strategy, in which the representative
set S is initialized to a set of points from the original database D. Subsequently, this set S
is iteratively improved by exchanging a single point from set S with a data point selected
from the database D. This iterative exchange can be viewed as a hill-climbing strategy,
because the set S implicitly defines a solution to the clustering problem, and each exchange
can be viewed as a hill-climbing step. So what should be the criteria for the exchange, and
when should one terminate?

Clearly, in order for the clustering algorithm to be successful, the hill-climbing approach
should at least improve the objective function of the problem to some extent. Several choices
arise in terms of how the exchange can be performed:

1. One can try all |S] - |D] possibilities for replacing a representative in S with a data
point in D and then select the best one. However, this is extremely expensive because
the computation of the incremental objective function change for each of the |S| - |D|
alternatives will require time proportional to the original database size.

2. A simpler solution is to use a randomly selected set of r pairs (X;,Y;) for possible
exchange, where X; is selected from the database D, and Yj; is selected from the
representative set .S. The best of these r pairs is used for the exchange.

The second solution requires time proportional to r times the database size but is usually
practically implementable for databases of modest size. The solution is said to have con-
verged when the objective function does not improve, or if the average objective function
improvement is below a user-specified threshold in the previous iteration. The k-medoids
approach is generally much slower than the k-means method but has greater applicability
to different data types. The next chapter will introduce the CLARANS algorithm, which is
a scalable version of the k-medoids framework.

Practical and Implementation Issues

A number of practical issues arise in the proper implementation of all representative-based
algorithms, such as the k-means, k-medians, and k-medoids algorithms. These issues relate

166 CHAPTER 6. CLUSTER ANALYSIS

to the initialization criteria, the choice of the number of clusters k, and the presence of
outliers.

The simplest initialization criteria is to either select points randomly from the domain
of the data space, or to sample the original database D. Sampling the original database
D is generally superior to sampling the data space, because it leads to better statistical
representatives of the underlying data. The k-representatives algorithm seems to be sur-
prisingly robust to the choice of initialization, though it is possible for the algorithm to
create suboptimal clusters. One possible solution is to sample more data points from D
than the required number k, and use a more expensive hierarchical agglomerative cluster-
ing approach to create k robust centroids. Because these centroids are more representative
of the database D, this provides a better starting point for the algorithm.

A very simple approach, which seems to work surprisingly well, is to select the initial
representatives as centroids of m randomly chosen samples of points for some user-selected
parameter m. This will ensure that the initial centroids are not too biased by any particular
outlier. Furthermore, while all these centroid representatives will be approximately equal
to the mean of the data, they will typically be slightly biased toward one cluster or another
because of random variations across different samples. Subsequent iterations of k-means will
eventually associate each of these representatives with a cluster.

The presence of outliers will typically have a detrimental impact on such algorithms.
This can happen in cases where the initialization procedure selects an outlier as one of the
initial centers. Although a k-medoids algorithm will typically discard an outlier represen-
tative during an iterative exchange, a k-center approach can become stuck with a singleton
cluster or an empty cluster in subsequent iterations. In such cases, one solution is to add
an additional step in the iterative portion of the algorithm that discards centers with very
small clusters and replaces them with randomly chosen points from the data.

The number of clusters k is a parameter used by this approach. Section 6.9.1.1 on cluster
validity provides an approximate method for selecting the number of clusters k. As discussed
in Sect. 6.9.1.1, this approach is far from perfect. The number of natural clusters is often
difficult to determine using automated methods. Because the number of natural clusters
is not known a priori, it may sometimes be desirable to use a larger value of k£ than the
analyst’s “guess” about the true natural number of clusters in the data. This will result in
the splitting of some of the data clusters into multiple representatives, but it is less likely
for clusters to be incorrectly merged. As a postprocessing step, it may be possible to merge
some of the clusters based on the intercluster distances. Some hybrid agglomerative and
partitioning algorithms include a merging step within the k-representative procedure. Refer
to the bibliographic notes for references to these algorithms.

6.4 Hierarchical Clustering Algorithms

Hierarchical algorithms typically cluster the data with distances. However, the use of dis-
tance functions is not compulsory. Many hierarchical algorithms use other clustering meth-
ods, such as density- or graph-based methods, as a subroutine for constructing the hierarchy.

So why are hierarchical clustering methods useful from an application-centric point of
view? One major reason is that different levels of clustering granularity provide different
application-specific insights. This provides a tazonomy of clusters, which may be browsed
for semantic insights. As a specific example, consider the taxonomy? of Web pages created
by the well-known Open Directory Project (ODP). In this case, the clustering has been

%http://www.dmoz . org

http://www.dmoz.org

6.4. HIERARCHICAL CLUSTERING ALGORITHMS 167

Figure 6.6: Multigranularity insights from hierarchical clustering

created by a manual volunteer effort, but it nevertheless provides a good understanding of
the multigranularity insights that may be obtained with such an approach. A small portion
of the hierarchical organization is illustrated in Fig. 6.6. At the highest level, the Web pages
are organized into topics such as arts, science, health, and so on. At the next level, the topic
of science is organized into subtopics, such as biology and physics, whereas the topic of health
is divided into topics such as fitness and medicine. This organization makes manual browsing
very convenient for a user, especially when the content of the clusters can be described in a
semantically comprehensible way. In other cases, such hi