

Data Mining: The Textbook

Charu C. Aggarwal

Data Mining

The Textbook

Charu C. Aggarwal
IBM T.J. Watson Research Center
Yorktown Heights
New York
USA

A solution manual for this book is available on Springer.com.

ISBN 978-3-319-14141-1 ISBN 978-3-319-14142-8 (eBook)
DOI 10.1007/978-3-319-14142-8

Library of Congress Control Number: 2015930833

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my wife Lata,
and my daughter Sayani

v

Contents

1 An Introduction to Data Mining 1
1.1 Introduction . 1
1.2 The Data Mining Process . 3

1.2.1 The Data Preprocessing Phase . 5
1.2.2 The Analytical Phase . 6

1.3 The Basic Data Types . 6
1.3.1 Nondependency-Oriented Data . 7

1.3.1.1 Quantitative Multidimensional Data 7
1.3.1.2 Categorical and Mixed Attribute Data 8
1.3.1.3 Binary and Set Data 8
1.3.1.4 Text Data . 8

1.3.2 Dependency-Oriented Data . 9
1.3.2.1 Time-Series Data . 9
1.3.2.2 Discrete Sequences and Strings 10
1.3.2.3 Spatial Data . 11
1.3.2.4 Network and Graph Data 12

1.4 The Major Building Blocks: A Bird’s Eye View 14
1.4.1 Association Pattern Mining . 15
1.4.2 Data Clustering . 16
1.4.3 Outlier Detection . 17
1.4.4 Data Classification . 18
1.4.5 Impact of Complex Data Types on Problem Definitions 19

1.4.5.1 Pattern Mining with Complex Data Types 20
1.4.5.2 Clustering with Complex Data Types 20
1.4.5.3 Outlier Detection with Complex Data Types 21
1.4.5.4 Classification with Complex Data Types 21

1.5 Scalability Issues and the Streaming Scenario 21
1.6 A Stroll Through Some Application Scenarios 22

1.6.1 Store Product Placement . 22
1.6.2 Customer Recommendations . 23
1.6.3 Medical Diagnosis . 23
1.6.4 Web Log Anomalies . 24

1.7 Summary . 24

vii

viii CONTENTS

1.8 Bibliographic Notes . 25
1.9 Exercises . 25

2 Data Preparation 27
2.1 Introduction . 27
2.2 Feature Extraction and Portability . 28

2.2.1 Feature Extraction . 28
2.2.2 Data Type Portability . 30

2.2.2.1 Numeric to Categorical Data: Discretization 30
2.2.2.2 Categorical to Numeric Data: Binarization 31
2.2.2.3 Text to Numeric Data 31
2.2.2.4 Time Series to Discrete Sequence Data 32
2.2.2.5 Time Series to Numeric Data 32
2.2.2.6 Discrete Sequence to Numeric Data 33
2.2.2.7 Spatial to Numeric Data 33
2.2.2.8 Graphs to Numeric Data 33
2.2.2.9 Any Type to Graphs for Similarity-Based Applications 33

2.3 Data Cleaning . 34
2.3.1 Handling Missing Entries . 35
2.3.2 Handling Incorrect and Inconsistent Entries 36
2.3.3 Scaling and Normalization . 37

2.4 Data Reduction and Transformation . 37
2.4.1 Sampling . 38

2.4.1.1 Sampling for Static Data 38
2.4.1.2 Reservoir Sampling for Data Streams 39

2.4.2 Feature Subset Selection . 40
2.4.3 Dimensionality Reduction with Axis Rotation 41

2.4.3.1 Principal Component Analysis 42
2.4.3.2 Singular Value Decomposition 44
2.4.3.3 Latent Semantic Analysis 47
2.4.3.4 Applications of PCA and SVD 48

2.4.4 Dimensionality Reduction with Type Transformation 49
2.4.4.1 Haar Wavelet Transform 50
2.4.4.2 Multidimensional Scaling 55
2.4.4.3 Spectral Transformation and Embedding of Graphs . . 57

2.5 Summary . 59
2.6 Bibliographic Notes . 60
2.7 Exercises . 61

3 Similarity and Distances 63
3.1 Introduction . 63
3.2 Multidimensional Data . 64

3.2.1 Quantitative Data . 64
3.2.1.1 Impact of Domain-Specific Relevance 65
3.2.1.2 Impact of High Dimensionality 65
3.2.1.3 Impact of Locally Irrelevant Features 66
3.2.1.4 Impact of Different Lp-Norms 67
3.2.1.5 Match-Based Similarity Computation 68
3.2.1.6 Impact of Data Distribution 69

CONTENTS ix

3.2.1.7 Nonlinear Distributions: ISOMAP 70
3.2.1.8 Impact of Local Data Distribution 72
3.2.1.9 Computational Considerations 73

3.2.2 Categorical Data . 74
3.2.3 Mixed Quantitative and Categorical Data 75

3.3 Text Similarity Measures . 75
3.3.1 Binary and Set Data . 77

3.4 Temporal Similarity Measures . 77
3.4.1 Time-Series Similarity Measures 77

3.4.1.1 Impact of Behavioral Attribute Normalization 78
3.4.1.2 Lp-Norm . 79
3.4.1.3 Dynamic Time Warping Distance 79
3.4.1.4 Window-Based Methods 82

3.4.2 Discrete Sequence Similarity Measures 82
3.4.2.1 Edit Distance . 82
3.4.2.2 Longest Common Subsequence 84

3.5 Graph Similarity Measures . 85
3.5.1 Similarity between Two Nodes in a Single Graph 85

3.5.1.1 Structural Distance-Based Measure 85
3.5.1.2 Random Walk-Based Similarity 86

3.5.2 Similarity Between Two Graphs 86
3.6 Supervised Similarity Functions . 87
3.7 Summary . 88
3.8 Bibliographic Notes . 89
3.9 Exercises . 90

4 Association Pattern Mining 93
4.1 Introduction . 93
4.2 The Frequent Pattern Mining Model . 94
4.3 Association Rule Generation Framework 97
4.4 Frequent Itemset Mining Algorithms . 99

4.4.1 Brute Force Algorithms . 99
4.4.2 The Apriori Algorithm . 100

4.4.2.1 Efficient Support Counting 102
4.4.3 Enumeration-Tree Algorithms . 103

4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori . . . 105
4.4.3.2 TreeProjection and DepthProject 106
4.4.3.3 Vertical Counting Methods 110

4.4.4 Recursive Suffix-Based Pattern Growth Methods 112
4.4.4.1 Implementation with Arrays but No Pointers 114
4.4.4.2 Implementation with Pointers but No FP-Tree 114
4.4.4.3 Implementation with Pointers and FP-Tree 116
4.4.4.4 Trade-offs with Different Data Structures 118
4.4.4.5 Relationship Between FP-Growth and Enumeration-

Tree Methods . 119
4.5 Alternative Models: Interesting Patterns 122

4.5.1 Statistical Coefficient of Correlation 123
4.5.2 χ2 Measure . 123
4.5.3 Interest Ratio . 124

x CONTENTS

4.5.4 Symmetric Confidence Measures 124
4.5.5 Cosine Coefficient on Columns . 125
4.5.6 Jaccard Coefficient and the Min-hash Trick 125
4.5.7 Collective Strength . 126
4.5.8 Relationship to Negative Pattern Mining 127

4.6 Useful Meta-algorithms . 127
4.6.1 Sampling Methods . 128
4.6.2 Data Partitioned Ensembles . 128
4.6.3 Generalization to Other Data Types 129

4.6.3.1 Quantitative Data . 129
4.6.3.2 Categorical Data . 129

4.7 Summary . 129
4.8 Bibliographic Notes . 130
4.9 Exercises . 132

5 Association Pattern Mining: Advanced Concepts 135
5.1 Introduction . 135
5.2 Pattern Summarization . 136

5.2.1 Maximal Patterns . 136
5.2.2 Closed Patterns . 137
5.2.3 Approximate Frequent Patterns 139

5.2.3.1 Approximation in Terms of Transactions 139
5.2.3.2 Approximation in Terms of Itemsets 140

5.3 Pattern Querying . 141
5.3.1 Preprocess-once Query-many Paradigm 141

5.3.1.1 Leveraging the Itemset Lattice 142
5.3.1.2 Leveraging Data Structures for Querying 143

5.3.2 Pushing Constraints into Pattern Mining 146
5.4 Putting Associations to Work: Applications 147

5.4.1 Relationship to Other Data Mining Problems 147
5.4.1.1 Application to Classification 147
5.4.1.2 Application to Clustering 148
5.4.1.3 Applications to Outlier Detection 148

5.4.2 Market Basket Analysis . 148
5.4.3 Demographic and Profile Analysis 148
5.4.4 Recommendations and Collaborative Filtering 149
5.4.5 Web Log Analysis . 149
5.4.6 Bioinformatics . 149
5.4.7 Other Applications for Complex Data Types 150

5.5 Summary . 150
5.6 Bibliographic Notes . 151
5.7 Exercises . 152

6 Cluster Analysis 153
6.1 Introduction . 153
6.2 Feature Selection for Clustering . 154

6.2.1 Filter Models . 155
6.2.1.1 Term Strength . 155
6.2.1.2 Predictive Attribute Dependence 155

CONTENTS xi

6.2.1.3 Entropy . 156
6.2.1.4 Hopkins Statistic . 157

6.2.2 Wrapper Models . 158
6.3 Representative-Based Algorithms . 159

6.3.1 The k-Means Algorithm . 162
6.3.2 The Kernel k-Means Algorithm 163
6.3.3 The k-Medians Algorithm . 164
6.3.4 The k-Medoids Algorithm . 164

6.4 Hierarchical Clustering Algorithms . 166
6.4.1 Bottom-Up Agglomerative Methods 167

6.4.1.1 Group-Based Statistics 169
6.4.2 Top-Down Divisive Methods . 172

6.4.2.1 Bisecting k-Means . 173
6.5 Probabilistic Model-Based Algorithms . 173

6.5.1 Relationship of EM to k-means and Other Representative
Methods . 176

6.6 Grid-Based and Density-Based Algorithms 178
6.6.1 Grid-Based Methods . 179
6.6.2 DBSCAN . 181
6.6.3 DENCLUE . 184

6.7 Graph-Based Algorithms . 187
6.7.1 Properties of Graph-Based Algorithms 189

6.8 Non-negative Matrix Factorization . 191
6.8.1 Comparison with Singular Value Decomposition 194

6.9 Cluster Validation . 195
6.9.1 Internal Validation Criteria . 196

6.9.1.1 Parameter Tuning with Internal Measures 198
6.9.2 External Validation Criteria . 198
6.9.3 General Comments . 201

6.10 Summary . 201
6.11 Bibliographic Notes . 201
6.12 Exercises . 202

7 Cluster Analysis: Advanced Concepts 205
7.1 Introduction . 205
7.2 Clustering Categorical Data . 206

7.2.1 Representative-Based Algorithms 207
7.2.1.1 k-Modes Clustering . 208
7.2.1.2 k-Medoids Clustering 209

7.2.2 Hierarchical Algorithms . 209
7.2.2.1 ROCK . 209

7.2.3 Probabilistic Algorithms . 211
7.2.4 Graph-Based Algorithms . 212

7.3 Scalable Data Clustering . 212
7.3.1 CLARANS . 213
7.3.2 BIRCH . 214
7.3.3 CURE . 216

7.4 High-Dimensional Clustering . 217
7.4.1 CLIQUE . 219
7.4.2 PROCLUS . 220

xii CONTENTS

7.4.3 ORCLUS . 222
7.5 Semisupervised Clustering . 224

7.5.1 Pointwise Supervision . 225
7.5.2 Pairwise Supervision . 226

7.6 Human and Visually Supervised Clustering 227
7.6.1 Modifications of Existing Clustering Algorithms 228
7.6.2 Visual Clustering . 228

7.7 Cluster Ensembles . 231
7.7.1 Selecting Different Ensemble Components 231
7.7.2 Combining Different Ensemble Components 232

7.7.2.1 Hypergraph Partitioning Algorithm 232
7.7.2.2 Meta-clustering Algorithm 232

7.8 Putting Clustering to Work: Applications 233
7.8.1 Applications to Other Data Mining Problems 233

7.8.1.1 Data Summarization 233
7.8.1.2 Outlier Analysis . 233
7.8.1.3 Classification . 233
7.8.1.4 Dimensionality Reduction 234
7.8.1.5 Similarity Search and Indexing 234

7.8.2 Customer Segmentation and Collaborative Filtering 234
7.8.3 Text Applications . 234
7.8.4 Multimedia Applications . 234
7.8.5 Temporal and Sequence Applications 234
7.8.6 Social Network Analysis . 235

7.9 Summary . 235
7.10 Bibliographic Notes . 235
7.11 Exercises . 236

8 Outlier Analysis 237
8.1 Introduction . 237
8.2 Extreme Value Analysis . 239

8.2.1 Univariate Extreme Value Analysis 240
8.2.2 Multivariate Extreme Values . 242
8.2.3 Depth-Based Methods . 243

8.3 Probabilistic Models . 244
8.4 Clustering for Outlier Detection . 246
8.5 Distance-Based Outlier Detection . 248

8.5.1 Pruning Methods . 249
8.5.1.1 Sampling Methods . 249
8.5.1.2 Early Termination Trick with Nested Loops 250

8.5.2 Local Distance Correction Methods 251
8.5.2.1 Local Outlier Factor (LOF) 252
8.5.2.2 Instance-Specific Mahalanobis Distance 254

8.6 Density-Based Methods . 255
8.6.1 Histogram- and Grid-Based Techniques 255
8.6.2 Kernel Density Estimation . 256

8.7 Information-Theoretic Models . 256
8.8 Outlier Validity . 258

8.8.1 Methodological Challenges . 258

CONTENTS xiii

8.8.2 Receiver Operating Characteristic 259
8.8.3 Common Mistakes . 261

8.9 Summary . 261
8.10 Bibliographic Notes . 262
8.11 Exercises . 262

9 Outlier Analysis: Advanced Concepts 265
9.1 Introduction . 265
9.2 Outlier Detection with Categorical Data 266

9.2.1 Probabilistic Models . 266
9.2.2 Clustering and Distance-Based Methods 267
9.2.3 Binary and Set-Valued Data . 268

9.3 High-Dimensional Outlier Detection . 268
9.3.1 Grid-Based Rare Subspace Exploration 270

9.3.1.1 Modeling Abnormal Lower Dimensional Projections . . 271
9.3.1.2 Grid Search for Subspace Outliers 271

9.3.2 Random Subspace Sampling . 273
9.4 Outlier Ensembles . 274

9.4.1 Categorization by Component Independence 275
9.4.1.1 Sequential Ensembles 275
9.4.1.2 Independent Ensembles 276

9.4.2 Categorization by Constituent Components 277
9.4.2.1 Model-Centered Ensembles 277
9.4.2.2 Data-Centered Ensembles 278

9.4.3 Normalization and Combination 278
9.5 Putting Outliers to Work: Applications . 279

9.5.1 Quality Control and Fault Detection 279
9.5.2 Financial Fraud and Anomalous Events 280
9.5.3 Web Log Analytics . 280
9.5.4 Intrusion Detection Applications 280
9.5.5 Biological and Medical Applications 281
9.5.6 Earth Science Applications . 281

9.6 Summary . 281
9.7 Bibliographic Notes . 281
9.8 Exercises . 283

10 Data Classification 285
10.1 Introduction . 285
10.2 Feature Selection for Classification . 287

10.2.1 Filter Models . 288
10.2.1.1 Gini Index . 288
10.2.1.2 Entropy . 289
10.2.1.3 Fisher Score . 290
10.2.1.4 Fisher’s Linear Discriminant 290

10.2.2 Wrapper Models . 292
10.2.3 Embedded Models . 292

10.3 Decision Trees . 293
10.3.1 Split Criteria . 294
10.3.2 Stopping Criterion and Pruning 297

xiv CONTENTS

10.3.3 Practical Issues . 298
10.4 Rule-Based Classifiers . 298

10.4.1 Rule Generation from Decision Trees 300
10.4.2 Sequential Covering Algorithms 301

10.4.2.1 Learn-One-Rule . 302
10.4.3 Rule Pruning . 304
10.4.4 Associative Classifiers . 305

10.5 Probabilistic Classifiers . 306
10.5.1 Naive Bayes Classifier . 306

10.5.1.1 The Ranking Model for Classification 309
10.5.1.2 Discussion of the Naive Assumption 310

10.5.2 Logistic Regression . 310
10.5.2.1 Training a Logistic Regression Classifier 311
10.5.2.2 Relationship with Other Linear Models 312

10.6 Support Vector Machines . 313
10.6.1 Support Vector Machines for Linearly Separable Data 313

10.6.1.1 Solving the Lagrangian Dual 318
10.6.2 Support Vector Machines with Soft Margin

for Nonseparable Data . 319
10.6.2.1 Comparison with Other Linear Models 321

10.6.3 Nonlinear Support Vector Machines 321
10.6.4 The Kernel Trick . 323

10.6.4.1 Other Applications of Kernel Methods 325
10.7 Neural Networks . 326

10.7.1 Single-Layer Neural Network: The Perceptron 326
10.7.2 Multilayer Neural Networks . 328
10.7.3 Comparing Various Linear Models 330

10.8 Instance-Based Learning . 331
10.8.1 Design Variations of Nearest Neighbor Classifiers 332

10.8.1.1 Unsupervised Mahalanobis Metric 332
10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis . 332

10.9 Classifier Evaluation . 334
10.9.1 Methodological Issues . 335

10.9.1.1 Holdout . 336
10.9.1.2 Cross-Validation . 336
10.9.1.3 Bootstrap . 337

10.9.2 Quantification Issues . 337
10.9.2.1 Output as Class Labels 338
10.9.2.2 Output as Numerical Score 339

10.10 Summary . 342
10.11 Bibliographic Notes . 342
10.12 Exercises . 343

11 Data Classification: Advanced Concepts 345
11.1 Introduction . 345
11.2 Multiclass Learning . 346
11.3 Rare Class Learning . 347

11.3.1 Example Reweighting . 348
11.3.2 Sampling Methods . 349

CONTENTS xv

11.3.2.1 Relationship Between Weighting and Sampling 350
11.3.2.2 Synthetic Oversampling: SMOTE 350

11.4 Scalable Classification . 350
11.4.1 Scalable Decision Trees . 351

11.4.1.1 RainForest . 351
11.4.1.2 BOAT . 351

11.4.2 Scalable Support Vector Machines 352
11.5 Regression Modeling with Numeric Classes 353

11.5.1 Linear Regression . 353
11.5.1.1 Relationship with Fisher’s Linear Discriminant 356

11.5.2 Principal Component Regression 356
11.5.3 Generalized Linear Models . 357
11.5.4 Nonlinear and Polynomial Regression 359
11.5.5 From Decision Trees to Regression Trees 360
11.5.6 Assessing Model Effectiveness . 361

11.6 Semisupervised Learning . 361
11.6.1 Generic Meta-algorithms . 363

11.6.1.1 Self-Training . 363
11.6.1.2 Co-training . 363

11.6.2 Specific Variations of Classification Algorithms 364
11.6.2.1 Semisupervised Bayes Classification with EM 364
11.6.2.2 Transductive Support Vector Machines 366

11.6.3 Graph-Based Semisupervised Learning 367
11.6.4 Discussion of Semisupervised Learning 367

11.7 Active Learning . 368
11.7.1 Heterogeneity-Based Models . 370

11.7.1.1 Uncertainty Sampling 370
11.7.1.2 Query-by-Committee 371
11.7.1.3 Expected Model Change 371

11.7.2 Performance-Based Models . 372
11.7.2.1 Expected Error Reduction 372
11.7.2.2 Expected Variance Reduction 373

11.7.3 Representativeness-Based Models 373
11.8 Ensemble Methods . 373

11.8.1 Why Does Ensemble Analysis Work? 375
11.8.2 Formal Statement of Bias-Variance Trade-off 377
11.8.3 Specific Instantiations of Ensemble Learning 379

11.8.3.1 Bagging . 379
11.8.3.2 Random Forests . 380
11.8.3.3 Boosting . 381
11.8.3.4 Bucket of Models . 383
11.8.3.5 Stacking . 384

11.9 Summary . 384
11.10 Bibliographic Notes . 385
11.11 Exercises . 386

xvi CONTENTS

12 Mining Data Streams 389
12.1 Introduction . 389
12.2 Synopsis Data Structures for Streams . 391

12.2.1 Reservoir Sampling . 391
12.2.1.1 Handling Concept Drift 393
12.2.1.2 Useful Theoretical Bounds for Sampling 394

12.2.2 Synopsis Structures for the Massive-Domain Scenario 398
12.2.2.1 Bloom Filter . 399
12.2.2.2 Count-Min Sketch . 403
12.2.2.3 AMS Sketch . 406
12.2.2.4 Flajolet–Martin Algorithm for Distinct Element

Counting . 408
12.3 Frequent Pattern Mining in Data Streams 409

12.3.1 Leveraging Synopsis Structures 409
12.3.1.1 Reservoir Sampling . 410
12.3.1.2 Sketches . 410

12.3.2 Lossy Counting Algorithm . 410
12.4 Clustering Data Streams . 411

12.4.1 STREAM Algorithm . 411
12.4.2 CluStream Algorithm . 413

12.4.2.1 Microcluster Definition 413
12.4.2.2 Microclustering Algorithm 414
12.4.2.3 Pyramidal Time Frame 415

12.4.3 Massive-Domain Stream Clustering 417
12.5 Streaming Outlier Detection . 417

12.5.1 Individual Data Points as Outliers 418
12.5.2 Aggregate Change Points as Outliers 419

12.6 Streaming Classification . 421
12.6.1 VFDT Family . 421
12.6.2 Supervised Microcluster Approach 424
12.6.3 Ensemble Method . 424
12.6.4 Massive-Domain Streaming Classification 425

12.7 Summary . 425
12.8 Bibliographic Notes . 425
12.9 Exercises . 426

13 Mining Text Data 429
13.1 Introduction . 429
13.2 Document Preparation and Similarity

Computation . 431
13.2.1 Document Normalization and Similarity Computation 432
13.2.2 Specialized Preprocessing for Web Documents 433

13.3 Specialized Clustering Methods for Text 434
13.3.1 Representative-Based Algorithms 434

13.3.1.1 Scatter/Gather Approach 434
13.3.2 Probabilistic Algorithms . 436
13.3.3 Simultaneous Document and Word Cluster Discovery 438

13.3.3.1 Co-clustering . 438
13.4 Topic Modeling . 440

CONTENTS xvii

13.4.1 Use in Dimensionality Reduction and Comparison with Latent
Semantic Analysis . 443

13.4.2 Use in Clustering and Comparison with Probabilistic
Clustering . 445

13.4.3 Limitations of PLSA . 446
13.5 Specialized Classification Methods for Text 446

13.5.1 Instance-Based Classifiers . 447
13.5.1.1 Leveraging Latent Semantic Analysis 447
13.5.1.2 Centroid-Based Classification 447
13.5.1.3 Rocchio Classification 448

13.5.2 Bayes Classifiers . 448
13.5.2.1 Multinomial Bayes Model 449

13.5.3 SVM Classifiers for High-Dimensional and Sparse Data 451
13.6 Novelty and First Story Detection . 453

13.6.1 Micro-clustering Method . 453
13.7 Summary . 454
13.8 Bibliographic Notes . 454
13.9 Exercises . 455

14 Mining Time Series Data 457
14.1 Introduction . 457
14.2 Time Series Preparation and Similarity . 459

14.2.1 Handling Missing Values . 459
14.2.2 Noise Removal . 460
14.2.3 Normalization . 461
14.2.4 Data Transformation and Reduction 462

14.2.4.1 Discrete Wavelet Transform 462
14.2.4.2 Discrete Fourier Transform 462
14.2.4.3 Symbolic Aggregate Approximation (SAX) 464

14.2.5 Time Series Similarity Measures 464
14.3 Time Series Forecasting . 464

14.3.1 Autoregressive Models . 467
14.3.2 Autoregressive Moving Average Models 468
14.3.3 Multivariate Forecasting with Hidden Variables 470

14.4 Time Series Motifs . 472
14.4.1 Distance-Based Motifs . 473
14.4.2 Transformation to Sequential Pattern Mining 475
14.4.3 Periodic Patterns . 476

14.5 Time Series Clustering . 476
14.5.1 Online Clustering of Coevolving Series 477
14.5.2 Shape-Based Clustering . 479

14.5.2.1 k-Means . 480
14.5.2.2 k-Medoids . 480
14.5.2.3 Hierarchical Methods 481
14.5.2.4 Graph-Based Methods 481

14.6 Time Series Outlier Detection . 481
14.6.1 Point Outliers . 482
14.6.2 Shape Outliers . 483

14.7 Time Series Classification . 485

xviii CONTENTS

14.7.1 Supervised Event Detection . 485
14.7.2 Whole Series Classification . 488

14.7.2.1 Wavelet-Based Rules 488
14.7.2.2 Nearest Neighbor Classifier 489
14.7.2.3 Graph-Based Methods 489

14.8 Summary . 489
14.9 Bibliographic Notes . 490
14.10 Exercises . 490

15 Mining Discrete Sequences 493
15.1 Introduction . 493
15.2 Sequential Pattern Mining . 494

15.2.1 Frequent Patterns to Frequent Sequences 497
15.2.2 Constrained Sequential Pattern Mining 500

15.3 Sequence Clustering . 501
15.3.1 Distance-Based Methods . 502
15.3.2 Graph-Based Methods . 502
15.3.3 Subsequence-Based Clustering . 503
15.3.4 Probabilistic Clustering . 504

15.3.4.1 Markovian Similarity-Based Algorithm: CLUSEQ . . . 504
15.3.4.2 Mixture of Hidden Markov Models 506

15.4 Outlier Detection in Sequences . 507
15.4.1 Position Outliers . 508

15.4.1.1 Efficiency Issues: Probabilistic Suffix Trees 510
15.4.2 Combination Outliers . 512

15.4.2.1 Distance-Based Models 513
15.4.2.2 Frequency-Based Models 514

15.5 Hidden Markov Models . 514
15.5.1 Formal Definition and Techniques for HMMs

. 517
15.5.2 Evaluation: Computing the Fit Probability for Observed

Sequence . 518
15.5.3 Explanation: Determining the Most Likely State Sequence

for Observed Sequence . 519
15.5.4 Training: Baum–Welch Algorithm 520
15.5.5 Applications . 521

15.6 Sequence Classification . 521
15.6.1 Nearest Neighbor Classifier . 522
15.6.2 Graph-Based Methods . 522
15.6.3 Rule-Based Methods . 523
15.6.4 Kernel Support Vector Machines 524

15.6.4.1 Bag-of-Words Kernel 524
15.6.4.2 Spectrum Kernel . 524
15.6.4.3 Weighted Degree Kernel 525

15.6.5 Probabilistic Methods: Hidden Markov Models 525
15.7 Summary . 526
15.8 Bibliographic Notes . 527
15.9 Exercises . 528

CONTENTS xix

16 Mining Spatial Data 531
16.1 Introduction . 531
16.2 Mining with Contextual Spatial Attributes 532

16.2.1 Shape to Time Series Transformation 533
16.2.2 Spatial to Multidimensional Transformation with Wavelets 537
16.2.3 Spatial Colocation Patterns . 538
16.2.4 Clustering Shapes . 539
16.2.5 Outlier Detection . 540

16.2.5.1 Point Outliers . 541
16.2.5.2 Shape Outliers . 543

16.2.6 Classification of Shapes . 544
16.3 Trajectory Mining . 544

16.3.1 Equivalence of Trajectories and Multivariate Time Series 545
16.3.2 Converting Trajectories to Multidimensional Data 545
16.3.3 Trajectory Pattern Mining . 546

16.3.3.1 Frequent Trajectory Paths 546
16.3.3.2 Colocation Patterns . 548

16.3.4 Trajectory Clustering . 549
16.3.4.1 Computing Similarity Between Trajectories 549
16.3.4.2 Similarity-Based Clustering Methods 550
16.3.4.3 Trajectory Clustering as a Sequence Clustering

Problem . 551
16.3.5 Trajectory Outlier Detection . 551

16.3.5.1 Distance-Based Methods 551
16.3.5.2 Sequence-Based Methods 552

16.3.6 Trajectory Classification . 553
16.3.6.1 Distance-Based Methods 553
16.3.6.2 Sequence-Based Methods 553

16.4 Summary . 554
16.5 Bibliographic Notes . 554
16.6 Exercises . 555

17 Mining Graph Data 557
17.1 Introduction . 557
17.2 Matching and Distance Computation in Graphs 559

17.2.1 Ullman’s Algorithm for Subgraph Isomorphism 562
17.2.1.1 Algorithm Variations and Refinements 563

17.2.2 Maximum Common Subgraph (MCG) Problem 564
17.2.3 Graph Matching Methods for Distance Computation 565

17.2.3.1 MCG-based Distances 565
17.2.3.2 Graph Edit Distance 567

17.3 Transformation-Based Distance Computation 570
17.3.1 Frequent Substructure-Based Transformation and Distance

Computation . 570
17.3.2 Topological Descriptors . 571
17.3.3 Kernel-Based Transformations and Computation 573

17.3.3.1 Random Walk Kernels 573
17.3.3.2 Shortest-Path Kernels 575

17.4 Frequent Substructure Mining in Graphs 575
17.4.1 Node-Based Join Growth . 578

xx CONTENTS

17.4.2 Edge-Based Join Growth . 578
17.4.3 Frequent Pattern Mining to Graph Pattern Mining 578

17.5 Graph Clustering . 579
17.5.1 Distance-Based Methods . 579
17.5.2 Frequent Substructure-Based Methods 580

17.5.2.1 Generic Transformational Approach 580
17.5.2.2 XProj: Direct Clustering with Frequent Subgraph

Discovery . 581
17.6 Graph Classification . 582

17.6.1 Distance-Based Methods . 583
17.6.2 Frequent Substructure-Based Methods 583

17.6.2.1 Generic Transformational Approach 583
17.6.2.2 XRules: A Rule-Based Approach 584

17.6.3 Kernel SVMs . 585
17.7 Summary . 585
17.8 Bibliographic Notes . 586
17.9 Exercises . 586

18 Mining Web Data 589
18.1 Introduction . 589
18.2 Web Crawling and Resource Discovery . 591

18.2.1 A Basic Crawler Algorithm . 591
18.2.2 Preferential Crawlers . 593
18.2.3 Multiple Threads . 593
18.2.4 Combatting Spider Traps . 593
18.2.5 Shingling for Near Duplicate Detection 594

18.3 Search Engine Indexing and Query Processing 594
18.4 Ranking Algorithms . 597

18.4.1 PageRank . 598
18.4.1.1 Topic-Sensitive PageRank 601
18.4.1.2 SimRank . 601

18.4.2 HITS . 602
18.5 Recommender Systems . 604

18.5.1 Content-Based Recommendations 606
18.5.2 Neighborhood-Based Methods for Collaborative Filtering 607

18.5.2.1 User-Based Similarity with Ratings 607
18.5.2.2 Item-Based Similarity with Ratings 608

18.5.3 Graph-Based Methods . 608
18.5.4 Clustering Methods . 609

18.5.4.1 Adapting k-Means Clustering 610
18.5.4.2 Adapting Co-Clustering 610

18.5.5 Latent Factor Models . 611
18.5.5.1 Singular Value Decomposition 612
18.5.5.2 Matrix Factorization 612

18.6 Web Usage Mining . 613
18.6.1 Data Preprocessing . 614
18.6.2 Applications . 614

18.7 Summary . 615
18.8 Bibliographic Notes . 616
18.9 Exercises . 616

CONTENTS xxi

19 Social Network Analysis 619
19.1 Introduction . 619
19.2 Social Networks: Preliminaries and Properties 620

19.2.1 Homophily . 621
19.2.2 Triadic Closure and Clustering Coefficient 621
19.2.3 Dynamics of Network Formation 622
19.2.4 Power-Law Degree Distributions 623
19.2.5 Measures of Centrality and Prestige 623

19.2.5.1 Degree Centrality and Prestige 624
19.2.5.2 Closeness Centrality and Proximity Prestige 624
19.2.5.3 Betweenness Centrality 626
19.2.5.4 Rank Centrality and Prestige 627

19.3 Community Detection . 627
19.3.1 Kernighan–Lin Algorithm . 629

19.3.1.1 Speeding Up Kernighan–Lin 630
19.3.2 Girvan–Newman Algorithm . 631
19.3.3 Multilevel Graph Partitioning: METIS 634
19.3.4 Spectral Clustering . 637

19.3.4.1 Important Observations and Intuitions 640
19.4 Collective Classification . 641

19.4.1 Iterative Classification Algorithm 641
19.4.2 Label Propagation with Random Walks 643

19.4.2.1 Iterative Label Propagation: The Spectral
Interpretation . 646

19.4.3 Supervised Spectral Methods . 646
19.4.3.1 Supervised Feature Generation with Spectral

Embedding . 647
19.4.3.2 Graph Regularization Approach 647
19.4.3.3 Connections with Random Walk Methods 649

19.5 Link Prediction . 650
19.5.1 Neighborhood-Based Measures . 650
19.5.2 Katz Measure . 652
19.5.3 Random Walk-Based Measures . 653
19.5.4 Link Prediction as a Classification Problem 653
19.5.5 Link Prediction as a Missing-Value Estimation Problem 654
19.5.6 Discussion . 654

19.6 Social Influence Analysis . 655
19.6.1 Linear Threshold Model . 656
19.6.2 Independent Cascade Model . 657
19.6.3 Influence Function Evaluation . 657

19.7 Summary . 658
19.8 Bibliographic Notes . 659
19.9 Exercises . 660

20 Privacy-Preserving Data Mining 663
20.1 Introduction . 663
20.2 Privacy During Data Collection . 664

20.2.1 Reconstructing Aggregate Distributions 665
20.2.2 Leveraging Aggregate Distributions for Data Mining 667

20.3 Privacy-Preserving Data Publishing . 667
20.3.1 The k-Anonymity Model . 670

xxii CONTENTS

20.3.1.1 Samarati’s Algorithm 673
20.3.1.2 Incognito . 675
20.3.1.3 Mondrian Multidimensional k-Anonymity 678
20.3.1.4 Synthetic Data Generation: Condensation-Based

Approach . 680
20.3.2 The �-Diversity Model . 682
20.3.3 The t-closeness Model . 684
20.3.4 The Curse of Dimensionality . 687

20.4 Output Privacy . 688
20.5 Distributed Privacy . 689
20.6 Summary . 690
20.7 Bibliographic Notes . 691
20.8 Exercises . 692

Bibliography 695

Index 727

Preface

“Data is the new oil.”– Clive Humby

The field of data mining has seen rapid strides over the past two decades, especially from
the perspective of the computer science community. While data analysis has been studied
extensively in the conventional field of probability and statistics, data mining is a term
coined by the computer science-oriented community. For computer scientists, issues such as
scalability, usability, and computational implementation are extremely important.

The emergence of data science as a discipline requires the development of a book that
goes beyond the traditional focus of books on only the fundamental data mining courses.
Recent years have seen the emergence of the job description of “data scientists,” who try to
glean knowledge from vast amounts of data. In typical applications, the data types are so
heterogeneous and diverse that the fundamental methods discussed for a multidimensional
data type may not be effective. Therefore, more emphasis needs to be placed on the different
data types and the applications that arise in the context of these different data types. A
comprehensive data mining book must explore the different aspects of data mining, starting
from the fundamentals, and then explore the complex data types, and their relationships
with the fundamental techniques. While fundamental techniques form an excellent basis
for the further study of data mining, they do not provide a complete picture of the true
complexity of data analysis. This book studies these advanced topics without compromis-
ing the presentation of fundamental methods. Therefore, this book may be used for both
introductory and advanced data mining courses. Until now, no single book has addressed
all these topics in a comprehensive and integrated way.

The textbook assumes a basic knowledge of probability, statistics, and linear algebra,
which is taught in most undergraduate curricula of science and engineering disciplines.
Therefore, the book can also be used by industrial practitioners, who have a working knowl-
edge of these basic skills. While stronger mathematical background is helpful for the more
advanced chapters, it is not a prerequisite. Special chapters are also devoted to different
aspects of data mining, such as text data, time-series data, discrete sequences, and graphs.
This kind of specialized treatment is intended to capture the wide diversity of problem
domains in which a data mining problem might arise.

The chapters of this book fall into one of three categories:

• The fundamental chapters: Data mining has four main “super problems,” which
correspond to clustering, classification, association pattern mining, and outlier anal-

xxiii

xxiv PREFACE

ysis. These problems are so important because they are used repeatedly as building
blocks in the context of a wide variety of data mining applications. As a result, a large
amount of emphasis has been placed by data mining researchers and practitioners to
design effective and efficient methods for these problems. These chapters comprehen-
sively discuss the vast diversity of methods used by the data mining community in
the context of these super problems.

• Domain chapters: These chapters discuss the specific methods used for different
domains of data such as text data, time-series data, sequence data, graph data, and
spatial data. Many of these chapters can also be considered application chapters,
because they explore the specific characteristics of the problem in a particular domain.

• Application chapters: Advancements in hardware technology and software plat-
forms have lead to a number of data-intensive applications such as streaming systems,
Web mining, social networks, and privacy preservation. These topics are studied in
detail in these chapters. The domain chapters are also focused on many different kinds
of applications that arise in the context of those data types.

Suggestions for the Instructor

The book was specifically written to enable the teaching of both the basic data mining and
advanced data mining courses from a single book. It can be used to offer various types of
data mining courses with different emphases. Specifically, the courses that could be offered
with various chapters are as follows:

• Basic data mining course and fundamentals: The basic data mining course
should focus on the fundamentals of data mining. Chapters 1, 2, 3, 4, 6, 8, and 10
can be covered. In fact, the material in these chapters is more than what is possible
to teach in a single course. Therefore, instructors may need to select topics of their
interest from these chapters. Some portions of Chaps. 5, 7, 9, and 11 can also be
covered, although these chapters are really meant for an advanced course.

• Advanced course (fundamentals): Such a course would cover advanced topics
on the fundamentals of data mining and assume that the student is already familiar
with Chaps. 1–3, and parts of Chaps. 4, 6, 8, and 10. The course can then focus on
Chaps. 5, 7, 9, and 11. Topics such as ensemble analysis are useful for the advanced
course. Furthermore, some topics from Chaps. 4, 6, 8, and 10, which were not covered
in the basic course, can be used. In addition, Chap. 20 on privacy can be offered.

• Advanced course (data types): Advanced topics such as text mining, time series,
sequences, graphs, and spatial data may be covered. The material should focus on
Chaps. 13, 14, 15, 16, and 17. Some parts of Chap. 19 (e.g., graph clustering) and
Chap. 12 (data streaming) can also be used.

• Advanced course (applications): An application course overlaps with a data type
course but has a different focus. For example, the focus in an application-centered
course would be more on the modeling aspect than the algorithmic aspect. Therefore,
the same materials in Chaps. 13, 14, 15, 16, and 17 can be used while skipping specific
details of algorithms. With less focus on specific algorithms, these chapters can be
covered fairly quickly. The remaining time should be allocated to three very important
chapters on data streams (Chap. 12), Web mining (Chap. 18), and social network
analysis (Chap. 19).

PREFACE xxv

The book is written in a simple style to make it accessible to undergraduate students and
industrial practitioners with a limited mathematical background. Thus, the book will serve
both as an introductory text and as an advanced text for students, industrial practitioners,
and researchers.

Throughout this book, a vector or a multidimensional data point (including categorical
attributes), is annotated with a bar, such as X or y. A vector or multidimensional point
may be denoted by either small letters or capital letters, as long as it has a bar. Vector dot
products are denoted by centered dots, such as X ·Y . A matrix is denoted in capital letters
without a bar, such as R. Throughout the book, the n×d data matrix is denoted by D, with
n points and d dimensions. The individual data points in D are therefore d-dimensional row
vectors. On the other hand, vectors with one component for each data point are usually
n-dimensional column vectors. An example is the n-dimensional column vector y of class
variables of n data points.

Acknowledgments

I would like to thank my wife and daughter for their love and support during the writing of
this book. The writing of a book requires significant time, which is taken away from family
members. This book is the result of their patience with me during this time.

I would also like to thank my manager Nagui Halim for providing the tremendous support
necessary for the writing of this book. His professional support has been instrumental for
my many book efforts in the past and present.

During the writing of this book, I received feedback from many colleagues. In partic-
ular, I received feedback from Kanishka Bhaduri, Alain Biem, Graham Cormode, Hongbo
Deng, Amit Dhurandhar, Bart Goethals, Alexander Hinneburg, Ramakrishnan Kannan,
George Karypis, Dominique LaSalle, Abdullah Mueen, Guojun Qi, Pierangela Samarati,
Saket Sathe, Karthik Subbian, Jiliang Tang, Deepak Turaga, Jilles Vreeken, Jieping Ye,
and Peixiang Zhao. I would like to thank them for their constructive feedback and sugges-
tions. Over the years, I have benefited from the insights of numerous collaborators. These
insights have influenced this book directly or indirectly. I would first like to thank my long-
term collaborator Philip S. Yu for my years of collaboration with him. Other researchers
with whom I have had significant collaborations include Tarek F. Abdelzaher, Jing Gao,
Quanquan Gu, Manish Gupta, Jiawei Han, Alexander Hinneburg, Thomas Huang, Nan Li,
Huan Liu, Ruoming Jin, Daniel Keim, Arijit Khan, Latifur Khan, Mohammad M. Masud,
Jian Pei, Magda Procopiuc, Guojun Qi, Chandan Reddy, Jaideep Srivastava, Karthik Sub-
bian, Yizhou Sun, Jiliang Tang, Min-Hsuan Tsai, Haixun Wang, Jianyong Wang, Min Wang,
Joel Wolf, Xifeng Yan, Mohammed Zaki, ChengXiang Zhai, and Peixiang Zhao.

I would also like to thank my advisor James B. Orlin for his guidance during my early
years as a researcher. While I no longer work in the same area, the legacy of what I learned
from him is a crucial part of my approach to research. In particular, he taught me the
importance of intuition and simplicity of thought in the research process. These are more
important aspects of research than is generally recognized. This book is written in a simple
and intuitive style, and is meant to improve accessibility of this area to both researchers
and practitioners.

I would also like to thank Lata Aggarwal for helping me with some of the figures drawn
using Microsoft Powerpoint.

xxvii

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.
J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from
IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.

He has worked extensively in the field of data mining. He has pub-
lished more than 250 papers in refereed conferences and journals
and authored over 80 patents. He is author or editor of 14 books,
including the first comprehensive book on outlier analysis, which
is written from a computer science point of view. Because of the
commercial value of his patents, he has thrice been designated a
Master Inventor at IBM. He is a recipient of an IBM Corporate
Award (2003) for his work on bio-terrorist threat detection in data
streams, a recipient of the IBM Outstanding Innovation Award
(2008) for his scientific contributions to privacy technology, a recip-
ient of the IBM Outstanding Technical Achievement Award (2009)
for his work on data streams, and a recipient of an IBM Research

Division Award (2008) for his contributions to System S. He also received the EDBT 2014
Test of Time Award for his work on condensation-based privacy-preserving data mining.

He has served as the general co-chair of the IEEE Big Data Conference, 2014, and as an
associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to
2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data,
an action editor of the Data Mining and Knowledge Discovery Journal, editor-in-chief of
the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information
Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks,
a publication by Springer. He has served as the vice-president of the SIAM Activity Group
on Data Mining. He is a fellow of the ACM and the IEEE, for “contributions to knowledge
discovery and data mining algorithms.”

xxix

Chapter 1

An Introduction to Data Mining

“Education is not the piling on of learning, information, data, facts, skills,
or abilities – that’s training or instruction – but is rather making visible
what is hidden as a seed.”—Thomas More

1.1 Introduction

Data mining is the study of collecting, cleaning, processing, analyzing, and gaining useful
insights from data. A wide variation exists in terms of the problem domains, applications,
formulations, and data representations that are encountered in real applications. Therefore,
“data mining” is a broad umbrella term that is used to describe these different aspects of
data processing.

In the modern age, virtually all automated systems generate some form of data either
for diagnostic or analysis purposes. This has resulted in a deluge of data, which has been
reaching the order of petabytes or exabytes. Some examples of different kinds of data are
as follows:

• World Wide Web: The number of documents on the indexed Web is now on the order
of billions, and the invisible Web is much larger. User accesses to such documents
create Web access logs at servers and customer behavior profiles at commercial sites.
Furthermore, the linked structure of the Web is referred to as the Web graph, which
is itself a kind of data. These different types of data are useful in various applications.
For example, the Web documents and link structure can be mined to determine asso-
ciations between different topics on the Web. On the other hand, user access logs can
be mined to determine frequent patterns of accesses or unusual patterns of possibly
unwarranted behavior.

• Financial interactions: Most common transactions of everyday life, such as using an
automated teller machine (ATM) card or a credit card, can create data in an auto-
mated way. Such transactions can be mined for many useful insights such as fraud or
other unusual activity.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 1 1
c© Springer International Publishing Switzerland 2015

2 CHAPTER 1. AN INTRODUCTION TO DATA MINING

• User interactions: Many forms of user interactions create large volumes of data. For
example, the use of a telephone typically creates a record at the telecommunication
company with details about the duration and destination of the call. Many phone
companies routinely analyze such data to determine relevant patterns of behavior
that can be used to make decisions about network capacity, promotions, pricing, or
customer targeting.

• Sensor technologies and the Internet of Things: A recent trend is the development
of low-cost wearable sensors, smartphones, and other smart devices that can commu-
nicate with one another. By one estimate, the number of such devices exceeded the
number of people on the planet in 2008 [30]. The implications of such massive data
collection are significant for mining algorithms.

The deluge of data is a direct result of advances in technology and the computerization of
every aspect of modern life. It is, therefore, natural to examine whether one can extract
concise and possibly actionable insights from the available data for application-specific goals.
This is where the task of data mining comes in. The raw data may be arbitrary, unstructured,
or even in a format that is not immediately suitable for automated processing. For example,
manually collected data may be drawn from heterogeneous sources in different formats and
yet somehow needs to be processed by an automated computer program to gain insights.

To address this issue, data mining analysts use a pipeline of processing, where the raw
data are collected, cleaned, and transformed into a standardized format. The data may be
stored in a commercial database system and finally processed for insights with the use of
analytical methods. In fact, while data mining often conjures up the notion of analytical
algorithms, the reality is that the vast majority of work is related to the data preparation
portion of the process. This pipeline of processing is conceptually similar to that of an actual
mining process from a mineral ore to the refined end product. The term “mining” derives
its roots from this analogy.

From an analytical perspective, data mining is challenging because of the wide disparity
in the problems and data types that are encountered. For example, a commercial product
recommendation problem is very different from an intrusion-detection application, even at
the level of the input data format or the problem definition. Even within related classes
of problems, the differences are quite significant. For example, a product recommendation
problem in a multidimensional database is very different from a social recommendation
problem due to the differences in the underlying data type. Nevertheless, in spite of these
differences, data mining applications are often closely connected to one of four “super-
problems” in data mining: association pattern mining, clustering, classification, and outlier
detection. These problems are so important because they are used as building blocks in a
majority of the applications in some indirect form or the other. This is a useful abstraction
because it helps us conceptualize and structure the field of data mining more effectively.

The data may have different formats or types. The type may be quantitative (e.g., age),
categorical (e.g., ethnicity), text, spatial, temporal, or graph-oriented. Although the most
common form of data is multidimensional, an increasing proportion belongs to more complex
data types. While there is a conceptual portability of algorithms between many data types
at a very high level, this is not the case from a practical perspective. The reality is that
the precise data type may affect the behavior of a particular algorithm significantly. As a
result, one may need to design refined variations of the basic approach for multidimensional
data, so that it can be used effectively for a different data type. Therefore, this book will
dedicate different chapters to the various data types to provide a better understanding of
how the processing methods are affected by the underlying data type.

1.2. THE DATA MINING PROCESS 3

A major challenge has been created in recent years due to increasing data volumes. The
prevalence of continuously collected data has led to an increasing interest in the field of data
streams. For example, Internet traffic generates large streams that cannot even be stored
effectively unless significant resources are spent on storage. This leads to unique challenges
from the perspective of processing and analysis. In cases where it is not possible to explicitly
store the data, all the processing needs to be performed in real time.

This chapter will provide a broad overview of the different technologies involved in pre-
processing and analyzing different types of data. The goal is to study data mining from the
perspective of different problem abstractions and data types that are frequently encoun-
tered. Many important applications can be converted into these abstractions.

This chapter is organized as follows. Section 1.2 discusses the data mining process with
particular attention paid to the data preprocessing phase in this section. Different data
types and their formal definition are discussed in Sect. 1.3. The major problems in data
mining are discussed in Sect. 1.4 at a very high level. The impact of data type on problem
definitions is also addressed in this section. Scalability issues are addressed in Sect. 1.5. In
Sect. 1.6, a few examples of applications are provided. Section 1.7 gives a summary.

1.2 The Data Mining Process

As discussed earlier, the data mining process is a pipeline containing many phases such as
data cleaning, feature extraction, and algorithmic design. In this section, we will study these
different phases. The workflow of a typical data mining application contains the following
phases:

1. Data collection: Data collection may require the use of specialized hardware such as a
sensor network, manual labor such as the collection of user surveys, or software tools
such as a Web document crawling engine to collect documents. While this stage is
highly application-specific and often outside the realm of the data mining analyst,
it is critically important because good choices at this stage may significantly impact
the data mining process. After the collection phase, the data are often stored in a
database, or, more generally, a data warehouse for processing.

2. Feature extraction and data cleaning: When the data are collected, they are often not
in a form that is suitable for processing. For example, the data may be encoded in
complex logs or free-form documents. In many cases, different types of data may be
arbitrarily mixed together in a free-form document. To make the data suitable for
processing, it is essential to transform them into a format that is friendly to data
mining algorithms, such as multidimensional, time series, or semistructured format.
The multidimensional format is the most common one, in which different fields of the
data correspond to the different measured properties that are referred to as features,
attributes, or dimensions. It is crucial to extract relevant features for the mining
process. The feature extraction phase is often performed in parallel with data cleaning,
where missing and erroneous parts of the data are either estimated or corrected. In
many cases, the data may be extracted from multiple sources and need to be integrated
into a unified format for processing. The final result of this procedure is a nicely
structured data set, which can be effectively used by a computer program. After the
feature extraction phase, the data may again be stored in a database for processing.

3. Analytical processing and algorithms: The final part of the mining process is to design
effective analytical methods from the processed data. In many cases, it may not be

4 CHAPTER 1. AN INTRODUCTION TO DATA MINING

DATA
PREPROCESSING ANALYTICAL PROCESSING

DATA
COLLECTION

PREPROCESSING

FEATURE
EXTRACTION

ANALYTICAL PROCESSING
OUTPUT
FOR

ANALYST

CLEANING
AND

INTEGRATION

BUILDING
BLOCK 1

BUILDING
BLOCK 2

FEEDBACK (OPTIONAL)

FEEDBACK (OPTIONAL)

(

Figure 1.1: The data processing pipeline

possible to directly use a standard data mining problem, such as the four “superprob-
lems” discussed earlier, for the application at hand. However, these four problems have
such wide coverage that many applications can be broken up into components that
use these different building blocks. This book will provide examples of this process.

The overall data mining process is illustrated in Fig. 1.1. Note that the analytical block in
Fig. 1.1 shows multiple building blocks representing the design of the solution to a particular
application. This part of the algorithmic design is dependent on the skill of the analyst and
often uses one or more of the four major problems as a building block. This is, of course,
not always the case, but it is frequent enough to merit special treatment of these four
problems within this book. To explain the data mining process, we will use an example
from a recommendation scenario.

Example 1.2.1 Consider a scenario in which a retailer has Web logs corresponding to
customer accesses to Web pages at his or her site. Each of these Web pages corresponds
to a product, and therefore a customer access to a page may often be indicative of interest
in that particular product. The retailer also stores demographic profiles for the different
customers. The retailer wants to make targeted product recommendations to customers using
the customer demographics and buying behavior.

Sample Solution Pipeline In this case, the first step for the analyst is to collect the
relevant data from two different sources. The first source is the set of Web logs at the
site. The second is the demographic information within the retailer database that were
collected during Web registration of the customer. Unfortunately, these data sets are in
a very different format and cannot easily be used together for processing. For example,
consider a sample log entry of the following form:

98.206.207.157 - - [31/Jul/2013:18:09:38 -0700] "GET /productA.htm

HTTP/1.1" 200 328177 "-" "Mozilla/5.0 (Mac OS X) AppleWebKit/536.26

(KHTML, like Gecko) Version/6.0 Mobile/10B329 Safari/8536.25"

"retailer.net"

The log may contain hundreds of thousands of such entries. Here, a customer at IP address
98.206.207.157 has accessed productA.htm. The customer from the IP address can be iden-
tified using the previous login information, by using cookies, or by the IP address itself,
but this may be a noisy process and may not always yield accurate results. The analyst
would need to design algorithms for deciding how to filter the different log entries and use
only those which provide accurate results as a part of the cleaning and extraction process.
Furthermore, the raw log contains a lot of additional information that is not necessarily

1.2. THE DATA MINING PROCESS 5

of any use to the retailer. In the feature extraction process, the retailer decides to create
one record for each customer, with a specific choice of features extracted from the Web
page accesses. For each record, an attribute corresponds to the number of accesses to each
product description. Therefore, the raw logs need to be processed, and the accesses need to
be aggregated during this feature extraction phase. Attributes are added to these records
for the retailer’s database containing demographic information in a data integration phase.
Missing entries from the demographic records need to be estimated for further data clean-
ing. This results in a single data set containing attributes for the customer demographics
and customer accesses.

At this point, the analyst has to decide how to use this cleaned data set for making
recommendations. He or she decides to determine similar groups of customers, and make
recommendations on the basis of the buying behavior of these similar groups. In particular,
the building block of clustering is used to determine similar groups. For a given customer,
the most frequent items accessed by the customers in that group are recommended. This
provides an example of the entire data mining pipeline. As you will learn in Chap. 18, there
are many elegant ways of performing the recommendations, some of which are more effective
than the others depending on the specific definition of the problem. Therefore, the entire
data mining process is an art form, which is based on the skill of the analyst, and cannot be
fully captured by a single technique or building block. In practice, this skill can be learned
only by working with a diversity of applications over different scenarios and data types.

1.2.1 The Data Preprocessing Phase

The data preprocessing phase is perhaps the most crucial one in the data mining process.
Yet, it is rarely explored to the extent that it deserves because most of the focus is on the
analytical aspects of data mining. This phase begins after the collection of the data, and it
consists of the following steps:

1. Feature extraction: An analyst may be confronted with vast volumes of raw documents,
system logs, or commercial transactions with little guidance on how these raw data
should be transformed into meaningful database features for processing. This phase
is highly dependent on the analyst to be able to abstract out the features that are
most relevant to a particular application. For example, in a credit-card fraud detection
application, the amount of a charge, the repeat frequency, and the location are often
good indicators of fraud. However, many other features may be poorer indicators
of fraud. Therefore, extracting the right features is often a skill that requires an
understanding of the specific application domain at hand.

2. Data cleaning: The extracted data may have erroneous or missing entries. Therefore,
some records may need to be dropped, or missing entries may need to be estimated.
Inconsistencies may need to be removed.

3. Feature selection and transformation: When the data are very high dimensional, many
data mining algorithms do not work effectively. Furthermore, many of the high-
dimensional features are noisy and may add errors to the data mining process. There-
fore, a variety of methods are used to either remove irrelevant features or transform
the current set of features to a new data space that is more amenable for analysis.
Another related aspect is data transformation, where a data set with a particular set
of attributes may be transformed into a data set with another set of attributes of the
same or a different type. For example, an attribute, such as age, may be partitioned
into ranges to create discrete values for analytical convenience.

6 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The data cleaning process requires statistical methods that are commonly used for miss-
ing data estimation. In addition, erroneous data entries are often removed to ensure more
accurate mining results. The topics of data cleaning is addressed in Chap. 2 on data pre-
processing.

Feature selection and transformation should not be considered a part of data preprocess-
ing because the feature selection phase is often highly dependent on the specific analytical
problem being solved. In some cases, the feature selection process can even be tightly inte-
grated with the specific algorithm or methodology being used, in the form of a wrapper
model or embedded model. Nevertheless, the feature selection phase is usually performed
before applying the specific algorithm at hand.

1.2.2 The Analytical Phase

The vast majority of this book will be devoted to the analytical phase of the mining process.
A major challenge is that each data mining application is unique, and it is, therefore, difficult
to create general and reusable techniques across different applications. Nevertheless, many
data mining formulations are repeatedly used in the context of different applications. These
correspond to the major “superproblems” or building blocks of the data mining process.
It is dependent on the skill and experience of the analyst to determine how these different
formulations may be used in the context of a particular data mining application. Although
this book can provide a good overview of the fundamental data mining models, the ability
to apply them to real-world applications can only be learned with practical experience.

1.3 The Basic Data Types

One of the interesting aspects of the data mining process is the wide variety of data types
that are available for analysis. There are two broad types of data, of varying complexity,
for the data mining process:

1. Nondependency-oriented data: This typically refers to simple data types such as multi-
dimensional data or text data. These data types are the simplest and most commonly
encountered. In these cases, the data records do not have any specified dependencies
between either the data items or the attributes. An example is a set of demographic
records about individuals containing their age, gender, and ZIP code.

2. Dependency-oriented data: In these cases, implicit or explicit relationships may exist
between data items. For example, a social network data set contains a set of vertices
(data items) that are connected together by a set of edges (relationships). On the
other hand, time series contains implicit dependencies. For example, two successive
values collected from a sensor are likely to be related to one another. Therefore, the
time attribute implicitly specifies a dependency between successive readings.

In general, dependency-oriented data are more challenging because of the complexities cre-
ated by preexisting relationships between data items. Such dependencies between data items
need to be incorporated directly into the analytical process to obtain contextually mean-
ingful results.

1.3. THE BASIC DATA TYPES 7

Table 1.1: An example of a multidimensional data set
Name Age Gender Race ZIP code

John S. 45 M African American 05139
Manyona L. 31 F Native American 10598
Sayani A. 11 F East Indian 10547
Jack M. 56 M Caucasian 10562
Wei L. 63 M Asian 90210

1.3.1 Nondependency-Oriented Data

This is the simplest form of data and typically refers to multidimensional data. This data
typically contains a set of records. A record is also referred to as a data point, instance,
example, transaction, entity, tuple, object, or feature-vector, depending on the application at
hand. Each record contains a set of fields, which are also referred to as attributes, dimen-
sions, and features. These terms will be used interchangeably throughout this book. These
fields describe the different properties of that record. Relational database systems were tra-
ditionally designed to handle this kind of data, even in their earliest forms. For example,
consider the demographic data set illustrated in Table 1.1. Here, the demographic proper-
ties of an individual, such as age, gender, and ZIP code, are illustrated. A multidimensional
data set is defined as follows:

Definition 1.3.1 (Multidimensional Data) A multidimensional data set D is a set of
n records, X1 . . . Xn, such that each record Xi contains a set of d features denoted by
(x1

i . . . x
d
i).

Throughout the early chapters of this book, we will work with multidimensional data
because it is the simplest form of data and establishes the broader principles on which
the more complex data types can be processed. More complex data types will be addressed
in later chapters of the book, and the impact of the dependencies on the mining process
will be explicitly discussed.

1.3.1.1 Quantitative Multidimensional Data

The attributes in Table 1.1 are of two different types. The age field has values that are
numerical in the sense that they have a natural ordering. Such attributes are referred to as
continuous, numeric, or quantitative. Data in which all fields are quantitative is also referred
to as quantitative data or numeric data. Thus, when each value of xj

i in Definition 1.3.1 is
quantitative, the corresponding data set is referred to as quantitative multidimensional
data. In the data mining literature, this particular subtype of data is considered the most
common, and many algorithms discussed in this book work with this subtype of data. This
subtype is particularly convenient for analytical processing because it is much easier to
work with quantitative data from a statistical perspective. For example, the mean of a set
of quantitative records can be expressed as a simple average of these values, whereas such
computations become more complex in other data types. Where possible and effective, many
data mining algorithms therefore try to convert different kinds of data to quantitative values
before processing. This is also the reason that many algorithms discussed in this (or virtually
any other) data mining textbook assume a quantitative multidimensional representation.
Nevertheless, in real applications, the data are likely to be more complex and may contain
a mixture of different data types.

8 CHAPTER 1. AN INTRODUCTION TO DATA MINING

1.3.1.2 Categorical and Mixed Attribute Data

Many data sets in real applications may contain categorical attributes that take on discrete
unordered values. For example, in Table 1.1, the attributes such as gender, race, and ZIP
code, have discrete values without a natural ordering among them. If each value of xj

i in
Definition 1.3.1 is categorical, then such data are referred to as unordered discrete-valued
or categorical. In the case of mixed attribute data, there is a combination of categorical and
numeric attributes. The full data in Table 1.1 are considered mixed-attribute data because
they contain both numeric and categorical attributes.

The attribute corresponding to gender is special because it is categorical, but with only
two possible values. In such cases, it is possible to impose an artificial ordering between
these values and use algorithms designed for numeric data for this type. This is referred to
as binary data, and it can be considered a special case of either numeric or categorical data.
Chap. 2 will explain how binary data form the “bridge” to transform numeric or categorical
attributes into a common format that is suitable for processing in many scenarios.

1.3.1.3 Binary and Set Data

Binary data can be considered a special case of either multidimensional categorical data
or multidimensional quantitative data. It is a special case of multidimensional categorical
data, in which each categorical attribute may take on one of at most two discrete values.
It is also a special case of multidimensional quantitative data because an ordering exists
between the two values. Furthermore, binary data is also a representation of setwise data,
in which each attribute is treated as a set element indicator. A value of 1 indicates that the
element should be included in the set. Such data is common in market basket applications.
This topic will be studied in detail in Chaps. 4 and 5.

1.3.1.4 Text Data

Text data can be viewed either as a string, or as multidimensional data, depending on how
they are represented. In its raw form, a text document corresponds to a string. This is a
dependency-oriented data type, which will be described later in this chapter. Each string is a
sequence of characters (or words) corresponding to the document. However, text documents
are rarely represented as strings. This is because it is difficult to directly use the ordering
between words in an efficient way for large-scale applications, and the additional advantages
of leveraging the ordering are often limited in the text domain.

In practice, a vector-space representation is used, where the frequencies of the words in
the document are used for analysis. Words are also sometimes referred to as terms. Thus, the
precise ordering of the words is lost in this representation. These frequencies are typically
normalized with statistics such as the length of the document, or the frequencies of the
individual words in the collection. These issues will be discussed in detail in Chap. 13 on
text data. The corresponding n× d data matrix for a text collection with n documents and
d terms is referred to as a document-term matrix.

When represented in vector-space form, text data can be considered multidimensional
quantitative data, where the attributes correspond to the words, and the values correspond
to the frequencies of these attributes. However, this kind of quantitative data is special
because most attributes take on zero values, and only a few attributes have nonzero values.
This is because a single document may contain only a relatively small number of words
out of a dictionary of size 105. This phenomenon is referred to as data sparsity, and it
significantly impacts the data mining process. The direct use of a quantitative data mining

1.3. THE BASIC DATA TYPES 9

algorithm is often unlikely to work with sparse data without appropriate modifications.
The sparsity also affects how the data are represented. For example, while it is possible to
use the representation suggested in Definition 1.3.1, this is not a practical approach. Most
values of xj

i in Definition 1.3.1 are 0 for the case of text data. Therefore, it is inefficient
to explicitly maintain a d-dimensional representation in which most values are 0. A bag-
of-words representation is used containing only the words in the document. In addition,
the frequencies of these words are explicitly maintained. This approach is typically more
efficient. Because of data sparsity issues, text data are often processed with specialized
methods. Therefore, text mining is often studied as a separate subtopic within data mining.
Text mining methods are discussed in Chap. 13.

1.3.2 Dependency-Oriented Data

Most of the aforementioned discussion in this chapter is about the multidimensional sce-
nario, where it is assumed that the data records can be treated independently of one another.
In practice, the different data values may be (implicitly) related to each other temporally,
spatially, or through explicit network relationship links between the data items. The knowl-
edge about preexisting dependencies greatly changes the data mining process because data
mining is all about finding relationships between data items. The presence of preexisting
dependencies therefore changes the expected relationships in the data, and what may be
considered interesting from the perspective of these expected relationships. Several types of
dependencies may exist that may be either implicit or explicit:

1. Implicit dependencies: In this case, the dependencies between data items are not
explicitly specified but are known to “typically” exist in that domain. For exam-
ple, consecutive temperature values collected by a sensor are likely to be extremely
similar to one another. Therefore, if the temperature value recorded by a sensor at a
particular time is significantly different from that recorded at the next time instant
then this is extremely unusual and may be interesting for the data mining process.
This is different from multidimensional data sets where each data record is treated as
an independent entity.

2. Explicit dependencies: This typically refers to graph or network data in which edges
are used to specify explicit relationships. Graphs are a very powerful abstraction that
are often used as an intermediate representation to solve data mining problems in the
context of other data types.

In this section, the different dependency-oriented data types will be discussed in detail.

1.3.2.1 Time-Series Data

Time-series data contain values that are typically generated by continuous measurement
over time. For example, an environmental sensor will measure the temperature continu-
ously, whereas an electrocardiogram (ECG) will measure the parameters of a subject’s
heart rhythm. Such data typically have implicit dependencies built into the values received
over time. For example, the adjacent values recorded by a temperature sensor will usually
vary smoothly over time, and this factor needs to be explicitly used in the data mining
process.

The nature of the temporal dependency may vary significantly with the application.
For example, some forms of sensor readings may show periodic patterns of the measured

10 CHAPTER 1. AN INTRODUCTION TO DATA MINING

attribute over time. An important aspect of time-series mining is the extraction of such
dependencies in the data. To formalize the issue of dependencies caused by temporal corre-
lation, the attributes are classified into two types:

1. Contextual attributes: These are the attributes that define the context on the basis
of which the implicit dependencies occur in the data. For example, in the case of
sensor data, the time stamp at which the reading is measured may be considered the
contextual attribute. Sometimes, the time stamp is not explicitly used, but a position
index is used. While the time-series data type contains only one contextual attribute,
other data types may have more than one contextual attribute. A specific example is
spatial data, which will be discussed later in this chapter.

2. Behavioral attributes: These represent the values that are measured in a particular
context. In the sensor example, the temperature is the behavioral attribute value. It is
possible to have more than one behavioral attribute. For example, if multiple sensors
record readings at synchronized time stamps, then it results in a multidimensional
time-series data set.

The contextual attributes typically have a strong impact on the dependencies between the
behavioral attribute values in the data. Formally, time-series data are defined as follows:

Definition 1.3.2 (Multivariate Time-Series Data) A time series of length n and
dimensionality d contains d numeric features at each of n time stamps t1 . . . tn. Each time-
stamp contains a component for each of the d series. Therefore, the set of values received
at time stamp ti is Yi = (y1i . . . y

d
i). The value of the jth series at time stamp ti is yji .

For example, consider the case where two sensors at a particular location monitor the
temperature and pressure every second for a minute. This corresponds to a multidimensional
series with d = 2 and n = 60. In some cases, the time stamps t1 . . . tn may be replaced by
index values from 1 through n, especially when the time-stamp values are equally spaced
apart.

Time-series data are relatively common in many sensor applications, forecasting, and
financial market analysis. Methods for analyzing time series are discussed in Chap. 14.

1.3.2.2 Discrete Sequences and Strings

Discrete sequences can be considered the categorical analog of time-series data. As in the
case of time-series data, the contextual attribute is a time stamp or a position index in the
ordering. The behavioral attribute is a categorical value. Therefore, discrete sequence data
are defined in a similar way to time-series data.

Definition 1.3.3 (Multivariate Discrete Sequence Data) A discrete sequence of length
n and dimensionality d contains d discrete feature values at each of n different time stamps
t1 . . . tn. Each of the n components Yi contains d discrete behavioral attributes (y1i . . . y

d
i),

collected at the ith time-stamp.

For example, consider a sequence of Web accesses, in which the Web page address and the
originating IP address of the request are collected for 100 different accesses. This represents
a discrete sequence of length n = 100 and dimensionality d = 2. A particularly common
case in sequence data is the univariate scenario, in which the value of d is 1. Such sequence
data are also referred to as strings.

1.3. THE BASIC DATA TYPES 11

It should be noted that the aforementioned definition is almost identical to the time-
series case, with the main difference being that discrete sequences contain categorical
attributes. In theory, it is possible to have series that are mixed between categorical and
numerical data. Another important variation is the case where a sequence does not contain
categorical attributes, but a set of any number of unordered categorical values. For example,
supermarket transactions may contain a sequence of sets of items. Each set may contain
any number of items. Such setwise sequences are not really multivariate sequences, but are
univariate sequences, in which each element of the sequence is a set as opposed to a unit
element. Thus, discrete sequences can be defined in a wider variety of ways, as compared
to time-series data because of the ability to define sets on discrete elements.

In some cases, the contextual attribute may not refer to time explicitly, but it might
be a position based on physical placement. This is the case for biological sequence data. In
such cases, the time stamp may be replaced by an index representing the position of the
value in the string, counting the leftmost position as 1. Some examples of common scenarios
in which sequence data may arise are as follows:

• Event logs: A wide variety of computer systems, Web servers, and Web applications
create event logs on the basis of user activity. An example of an event log is a sequence
of user actions at a financial Web site:

Login Password Login Password Login Password

This particular sequence may represent a scenario where a user is attempting to break
into a password-protected system, and it may be interesting from the perspective of
anomaly detection.

• Biological data: In this case, the sequences may correspond to strings of nucleotides or
amino acids. The ordering of such units provides information about the characteristics
of protein function. Therefore, the data mining process can be used to determine
interesting patterns that are reflective of different biological properties.

Discrete sequences are often more challenging for mining algorithms because they do not
have the smooth value continuity of time-series data. Methods for sequence mining are
discussed in Chap. 15.

1.3.2.3 Spatial Data

In spatial data, many nonspatial attributes (e.g., temperature, pressure, image pixel color
intensity) are measured at spatial locations. For example, sea-surface temperatures are often
collected by meteorologists to forecast the occurrence of hurricanes. In such cases, the spatial
coordinates correspond to contextual attributes, whereas attributes such as the temperature
correspond to the behavioral attributes. Typically, there are two spatial attributes. As
in the case of time-series data, it is also possible to have multiple behavioral attributes.
For example, in the sea-surface temperature application, one might also measure other
behavioral attributes such as the pressure.

Definition 1.3.4 (Spatial Data) A d-dimensional spatial data record contains d behav-
ioral attributes and one or more contextual attributes containing the spatial location. There-
fore, a d-dimensional spatial data set is a set of d dimensional records X1 . . . Xn, together
with a set of n locations L1 . . . Ln, such that the record Xi is associated with the location Li.

12 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The aforementioned definition provides broad flexibility in terms of how record Xi and
location Li may be defined. For example, the behavioral attributes in record Xi may be
numeric or categorical, or a mixture of the two. In the meteorological application, Xi may
contain the temperature and pressure attributes at location Li. Furthermore, Li may be
specified in terms of precise spatial coordinates, such as latitude and longitude, or in terms
of a logical location, such as the city or state.

Spatial data mining is closely related to time-series data mining, in that the behavioral
attributes in most commonly studied spatial applications are continuous, although some
applications may use categorical attributes as well. Therefore, value continuity is observed
across contiguous spatial locations, just as value continuity is observed across contiguous
time stamps in time-series data.

Spatiotemporal Data

A particular form of spatial data is spatiotemporal data, which contains both spatial and
temporal attributes. The precise nature of the data also depends on which of the attributes
are contextual and which are behavioral. Two kinds of spatiotemporal data are most com-
mon:

1. Both spatial and temporal attributes are contextual: This kind of data can be viewed
as a direct generalization of both spatial data and temporal data. This kind of data is
particularly useful when the spatial and temporal dynamics of particular behavioral
attributes are measured simultaneously. For example, consider the case where the
variations in the sea-surface temperature need to be measured over time. In such
cases, the temperature is the behavioral attribute, whereas the spatial and temporal
attributes are contextual.

2. The temporal attribute is contextual, whereas the spatial attributes are behavioral:
Strictly speaking, this kind of data can also be considered time-series data. However,
the spatial nature of the behavioral attributes also provides better interpretability and
more focused analysis in many scenarios. The most common form of this data arises
in the context of trajectory analysis.

It should be pointed out that any 2- or 3-dimensional time-series data can be mapped
onto trajectories. This is a useful transformation because it implies that trajectory mining
algorithms can also be used for 2- or 3-dimensional time-series data. For example, the Intel
Research Berkeley data set [556] contains readings from a variety of sensors. An example of
a pair of readings from a temperature and voltage sensor are illustrated in Figs. 1.2a and b,
respectively. The corresponding temperature–voltage trajectory is illustrated in Fig. 1.2c.
Methods for spatial and spatiotemporal data mining are discussed in Chap. 16.

1.3.2.4 Network and Graph Data

In network and graph data, the data values may correspond to nodes in the network, whereas
the relationships among the data values may correspond to the edges in the network. In
some cases, attributes may be associated with nodes in the network. Although it is also
possible to associate attributes with edges in the network, it is much less common to do so.

Definition 1.3.5 (Network Data) A network G = (N,A) contains a set of nodes N and
a set of edges A, where the edges in A represent the relationships between the nodes. In

1.3. THE BASIC DATA TYPES 13

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200
19

20

21

22

23

24

25

TIME STAMP

TE
M

P
E

R
A

TU
R

E

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200
2.6

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

V
O

LT
A

G
E

TIME STAMP

(a) Temperature (b) Voltage

19 20 21 22 23 24 25
2.6

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

TEMPERATURE

V
O

LT
A

G
E

(c) Temperature-voltage
trajectory

Figure 1.2: Mapping of multivariate time series to trajectory data

some cases, an attribute set Xi may be associated with node i, or an attribute set Yij may
be associated with edge (i, j).

The edge (i, j) may be directed or undirected, depending on the application at hand. For
example, the Web graph may contain directed edges corresponding to directions of hyper-
links between pages, whereas friendships in the Facebook social network are undirected.

A second class of graph mining problems is that of a database containing many small
graphs such as chemical compounds. The challenges in these two classes of problems are
very different. Some examples of data that are represented as graphs are as follows:

• Web graph: The nodes correspond to the Web pages, and the edges correspond to
hyperlinks. The nodes have text attributes corresponding to the content in the page.

• Social networks: In this case, the nodes correspond to social network actors, whereas
the edges correspond to friendship links. The nodes may have attributes corresponding
to social page content. In some specialized forms of social networks, such as email or

14 CHAPTER 1. AN INTRODUCTION TO DATA MINING

chat-messenger networks, the edges may have content associated with them. This
content corresponds to the communication between the different nodes.

• Chemical compound databases: In this case, the nodes correspond to the elements and
the edges correspond to the chemical bonds between the elements. The structures
in these chemical compounds are very useful for identifying important reactive and
pharmacological properties of these compounds.

Network data are a very general representation and can be used for solving many similarity-
based applications on other data types. For example, multidimensional data may be con-
verted to network data by creating a node for each record in the database, and representing
similarities between nodes by edges. Such a representation is used quite often for many
similarity-based data mining applications, such as clustering. It is possible to use commu-
nity detection algorithms to determine clusters in the network data and then map them
back to multidimensional data. Some spectral clustering methods, discussed in Chap. 19,
are based on this principle. This generality of network data comes at a price. The develop-
ment of mining algorithms for network data is generally more difficult. Methods for mining
network data are discussed in Chaps. 17, 18, and 19.

1.4 The Major Building Blocks: A Bird’s Eye View

As discussed in the introduction Sect. 1.1, four problems in data mining are considered
fundamental to the mining process. These problems correspond to clustering, classification,
association pattern mining, and outlier detection, and they are encountered repeatedly in
the context of many data mining applications. What makes these problems so special?
Why are they encountered repeatedly? To answer these questions, one must understand the
nature of the typical relationships that data scientists often try to extract from the data.

Consider a multidimensional database D with n records, and d attributes. Such a
database D may be represented as an n × d matrix D, in which each row corresponds to
one record and each column corresponds to a dimension. We generally refer to this matrix
as the data matrix. This book will use the notation of a data matrix D, and a database
D interchangeably. Broadly speaking, data mining is all about finding summary relation-
ships between the entries in the data matrix that are either unusually frequent or unusually
infrequent. Relationships between data items are one of two kinds:

• Relationships between columns: In this case, the frequent or infrequent relationships
between the values in a particular row are determined. This maps into either the
positive or negative association pattern mining problem, though the former is more
commonly studied. In some cases, one particular column of the matrix is considered
more important than other columns because it represents a target attribute of the
data mining analyst. In such cases, one tries to determine how the relationships in the
other columns relate to this special column. Such relationships can be used to predict
the value of this special column, when the value of that special column is unknown.
This problem is referred to as data classification. A mining process is referred to as
supervised when it is based on treating a particular attribute as special and predicting
it.

• Relationships between rows: In these cases, the goal is to determine subsets of rows, in
which the values in the corresponding columns are related. In cases where these subsets
are similar, the corresponding problem is referred to as clustering. On the other hand,

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 15

when the entries in a row are very different from the corresponding entries in other
rows, then the corresponding row becomes interesting as an unusual data point, or as
an anomaly. This problem is referred to as outlier analysis. Interestingly, the clustering
problem is closely related to that of classification, in that the latter can be considered
a supervised version of the former. The discrete values of a special column in the
data correspond to the group identifiers of different desired or supervised groups of
application-specific similar records in the data. For example, when the special column
corresponds to whether or not a customer is interested in a particular product, this
represents the two groups in the data that one is interested in learning, with the use
of supervision. The term “supervision” refers to the fact that the special column is
used to direct the data mining process in an application-specific way, just as a teacher
may supervise his or her student toward a specific goal.

Thus, these four problems are important because they seem to cover an exhaustive range
of scenarios representing different kinds of positive, negative, supervised, or unsupervised
relationships between the entries of the data matrix. These problems are also related to one
another in a variety of ways. For example, association patterns may be considered indirect
representations of (overlapping) clusters, where each pattern corresponds to a cluster of
data points of which it is a subset.

It should be pointed out that the aforementioned discussion assumes the (most com-
monly encountered) multidimensional data type, although these problems continue to retain
their relative importance for more complex data types. However, the more complex data
types have a wider variety of problem formulations associated with them because of their
greater complexity. This issue will be discussed in detail later in this section.

It has consistently been observed that many application scenarios determine such rela-
tionships between rows and columns of the data matrix as an intermediate step. This is the
reason that a good understanding of these building-block problems is so important for the
data mining process. Therefore, the first part of this book will focus on these problems in
detail before generalizing to complex scenarios.

1.4.1 Association Pattern Mining

In its most primitive form, the association pattern mining problem is defined in the context
of sparse binary databases, where the data matrix contains only 0/1 entries, and most entries
take on the value of 0. Most customer transaction databases are of this type. For example,
if each column in the data matrix corresponds to an item, and a customer transaction
represents a row, the (i, j)th entry is 1, if customer transaction i contains item j as one
of the items that was bought. A particularly commonly studied version of this problem
is the frequent pattern mining problem or, more generally, the association pattern mining
problem. In terms of the binary data matrix, the frequent pattern mining problem may be
formally defined as follows:

Definition 1.4.1 (Frequent Pattern Mining) Given a binary n × d data matrix D,
determine all subsets of columns such that all the values in these columns take on the
value of 1 for at least a fraction s of the rows in the matrix. The relative frequency of a
pattern is referred to as its support. The fraction s is referred to as the minimum support.

Patterns that satisfy the minimum support requirement are often referred to as frequent
patterns, or frequent itemsets. Frequent patterns represent an important class of association
patterns. Many other definitions of relevant association patterns are possible that do not use

16 CHAPTER 1. AN INTRODUCTION TO DATA MINING

absolute frequencies but use other statistical quantifications such as the χ2 measure. These
measures often lead to generation of more interesting rules from a statistical perspective.
Nevertheless, this particular definition of association pattern mining has become the most
popular one in the literature because of the ease in developing algorithms for it. This book
therefore refers to this problem as association pattern mining as opposed to frequent pattern
mining.

For example, if the columns of the data matrix D corresponding to Bread, Butter, and
Milk take on the value of 1 together frequently in a customer transaction database, then
it implies that these items are often bought together. This is very useful information for
the merchant from the perspective of physical placement of the items in the store, or from
the perspective of product promotions. Association pattern mining is not restricted to the
case of binary data and can be easily generalized to quantitative and numeric attributes by
using appropriate data transformations, which will be discussed in Chap. 4.

Association pattern mining was originally proposed in the context of association rule
mining, where an additional step was included based on a measure known as the confidence
of the rule. For example, consider two sets of items A and B. The confidence of the rule
A ⇒ B is defined as the fraction of transactions containing A, which also contain B. In
other words, the confidence is obtained by dividing the support of the pattern A∪B with the
support of pattern A. A combination of support and confidence is used to define association
rules.

Definition 1.4.2 (Association Rules) Let A and B be two sets of items. The rule A ⇒
B is said to be valid at support level s and confidence level c, if the following two conditions
are satisfied:

1. The support of the item set A is at least s.

2. The confidence of A ⇒ B is at least c.

By incorporating supervision in association rule mining algorithms, it is possible to provide
solutions for the classification problem. Many variations of association pattern mining are
also related to clustering and outlier analysis. This is a natural consequence of the fact that
horizontal and vertical analysis of the data matrix are often related to one another. In fact,
many variations of the association pattern mining problem are used as a subroutine to solve
the clustering, outlier analysis, and classification problems. These issues will be discussed
in Chaps. 4 and 5.

1.4.2 Data Clustering

A rather broad and informal definition of the clustering problem is as follows:

Definition 1.4.3 (Data Clustering) Given a data matrix D (database D), partition its
rows (records) into sets C1 . . . Ck, such that the rows (records) in each cluster are “similar”
to one another.

We have intentionally provided an informal definition here because clustering allows a wide
variety of definitions of similarity, some of which are not cleanly defined in closed form by a
similarity function. A clustering problem can often be defined as an optimization problem,
in which the variables of the optimization problem represent cluster memberships of data
points, and the objective function maximizes a concrete mathematical quantification of
intragroup similarity in terms of these variables.

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 17

An important part of the clustering process is the design of an appropriate similarity
function for the computation process. Clearly, the computation of similarity depends heavily
on the underlying data type. The issue of similarity computation will be discussed in detail
in Chap. 3. Some examples of relevant applications are as follows:

• Customer segmentation: In many applications, it is desirable to determine customers
that are similar to one another in the context of a variety of product promotion tasks.
The segmentation phase plays an important role in this process.

• Data summarization: Because clusters can be considered similar groups of records,
these similar groups can be used to create a summary of the data.

• Application to other data mining problems: Because clustering is considered an unsu-
pervised version of classification, it is often used as a building block to solve the latter.
Furthermore, this problem is also used in the context of the outlier analysis problem,
as discussed below.

The data clustering problem is discussed in detail in Chaps. 6 and 7.

1.4.3 Outlier Detection

An outlier is a data point that is significantly different from the remaining data. Hawkins
formally defined [259] the concept of an outlier as follows:
“An outlier is an observation that deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.”

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the
data mining and statistics literature. In most applications, the data are created by one
or more generating processes that can either reflect activity in the system or observations
collected about entities. When the generating process behaves in an unusual way, it results
in the creation of outliers. Therefore, an outlier often contains useful information about
abnormal characteristics of the systems and entities that impact the data-generation process.
The recognition of such unusual characteristics provides useful application-specific insights.
The outlier detection problem is informally defined in terms of the data matrix as follows:

Definition 1.4.4 (Outlier Detection) Given a data matrix D, determine the rows of the
data matrix that are very different from the remaining rows in the matrix.

The outlier detection problem is related to the clustering problem by complementarity. This
is because outliers correspond to dissimilar data points from the main groups in the data.
On the other hand, the main groups in the data are clusters. In fact, a simple methodology
to determine outliers uses clustering as an intermediate step. Some examples of relevant
applications are as follows:

• Intrusion-detection systems: In many networked computer systems, different kinds of
data are collected about the operating system calls, network traffic, or other activity
in the system. These data may show unusual behavior because of malicious activity.
The detection of such activity is referred to as intrusion detection.

• Credit card fraud: Unauthorized use of credit cards may show different patterns, such
as a buying spree from geographically obscure locations. Such patterns may show up
as outliers in credit card transaction data.

18 CHAPTER 1. AN INTRODUCTION TO DATA MINING

• Interesting sensor events: Sensors are often used to track various environmental and
location parameters in many real applications. The sudden changes in the underly-
ing patterns may represent events of interest. Event detection is one of the primary
motivating applications in the field of sensor networks.

• Medical diagnosis: In many medical applications, the data are collected from a variety
of devices such as magnetic resonance imaging (MRI), positron emission tomography
(PET) scans, or electrocardiogram (ECG) time series. Unusual patterns in such data
typically reflect disease conditions.

• Law enforcement: Outlier detection finds numerous applications in law enforcement,
especially in cases where unusual patterns can only be discovered over time through
multiple actions of an entity. The identification of fraud in financial transactions,
trading activity, or insurance claims typically requires the determination of unusual
patterns in the data generated by the actions of the criminal entity.

• Earth science: A significant amount of spatiotemporal data about weather patterns,
climate changes, or land-cover patterns is collected through a variety of mechanisms
such as satellites or remote sensing. Anomalies in such data provide significant insights
about hidden human or environmental trends that may have caused such anomalies.

The outlier detection problem is studied in detail in Chaps. 8 and 9.

1.4.4 Data Classification

Many data mining problems are directed toward a specialized goal that is sometimes rep-
resented by the value of a particular feature in the data. This particular feature is referred
to as the class label. Therefore, such problems are supervised, wherein the relationships of
the remaining features in the data with respect to this special feature are learned. The data
used to learn these relationships is referred to as the training data. The learned model may
then be used to determine the estimated class labels for records, where the label is missing.

For example, in a target marketing application, each record may be tagged by a par-
ticular label that represents the interest (or lack of it) of the customer toward a particular
product. The labels associated with customers may have been derived from the previous
buying behavior of the customer. In addition, a set of features corresponding the customer
demographics may also be available. The goal is to predict whether or not a customer, whose
buying behavior is unknown, will be interested in a particular product by relating the demo-
graphic features to the class label. Therefore, a training model is constructed, which is then
used to predict class labels. The classification problem is informally defined as follows:

Definition 1.4.5 (Data Classification) Given an n×d training data matrix D (database
D), and a class label value in {1 . . . k} associated with each of the n rows in D (records in D),
create a training model M, which can be used to predict the class label of a d-dimensional
record Y �∈ D.

The record whose class label is unknown is referred to as the test record. It is interesting to
examine the relationship between the clustering and the classification problems. In the case
of the clustering problem, the data are partitioned into k groups on the basis of similarity. In
the case of the classification problem, a (test) record is also categorized into one of k groups,
except that this is achieved by learning a model from a training database D, rather than on
the basis of similarity. In other words, the supervision from the training data redefines the

1.4. THE MAJOR BUILDING BLOCKS: A BIRD’S EYE VIEW 19

notion of a group of “similar” records. Therefore, from a learning perspective, clustering is
often referred to as unsupervised learning (because of the lack of a special training database
to “teach” the model about the notion of an appropriate grouping), whereas the classification
problem is referred to as supervised learning.

The classification problem is related to association pattern mining, in the sense that
the latter problem is often used to solve the former. This is because if the entire training
database (including the class label) is treated as an n×(d+1) matrix, then frequent patterns
containing the class label in this matrix provide useful hints about the correlations of other
features to the class label. In fact, many forms of classifiers, known as rule-based classifiers,
are based on this broader principle.

The classification problem can be mapped to a specific version of the outlier detection
problem, by incorporating supervision in the latter. While the outlier detection problem is
assumed to be unsupervised by default, many variations of the problem are either partially
or fully supervised. In supervised outlier detection, some examples of outliers are available.
Thus, such data records are tagged to belong to a rare class, whereas the remaining data
records belong to the normal class. Thus, the supervised outlier detection problem maps to
a binary classification problem, with the caveat that the class labels are highly imbalanced.

The incorporation of supervision makes the classification problem unique in terms of its
direct application specificity due to its use of application-specific class labels. Compared to
the other major data mining problems, the classification problem is relatively self-contained.
For example, the clustering and frequent pattern mining problem are more often used as
intermediate steps in larger application frameworks. Even the outlier analysis problem is
sometimes used in an exploratory way. On the other hand, the classification problem is often
used directly as a stand-alone tool in many applications. Some examples of applications
where the classification problem is used are as follows:

• Target marketing: Features about customers are related to their buying behavior with
the use of a training model.

• Intrusion detection: The sequences of customer activity in a computer system may be
used to predict the possibility of intrusions.

• Supervised anomaly detection: The rare class may be differentiated from the normal
class when previous examples of outliers are available.

The data classification problem is discussed in detail in Chaps. 10 and 11.

1.4.5 Impact of Complex Data Types on Problem Definitions

The specific data type has a profound impact on the kinds of problems that may be defined.
In particular, in dependency-oriented data types, the dependencies often play a critical role
in the problem definition, the solution, or both. This is because the contextual attributes
and dependencies are often fundamental to how the data may be evaluated. Furthermore,
because complex data types are much richer, they allow the formulation of novel problem
definitions that may not even exist in the context of multidimensional data. A tabular
summary of the different variations of data mining problems for dependency-oriented data
types is provided in Table 1.2. In the following, a brief review will be provided as to how
the different problem definitions are affected by data type.

20 CHAPTER 1. AN INTRODUCTION TO DATA MINING

Table 1.2: Some examples of variation in problem definition with data type

Problem Time series Spatial Sequence Networks

Patterns Motif- Colocation Sequential Structural
mining patterns patterns patterns
Periodic Periodic
pattern Sequence

Trajectory patterns
Clustering Shape Spatial Sequence Community

clusters clusters clusters detection
Trajectory clusters

Outliers Position outlier Position outlier Position outlier Node outlier
Shape outlier Shape outlier Combination Linkage

outlier outlier
Trajectory Community
outliers outliers

Classification Position Position Position Collective
classification classification classification classification

Shape Shape Sequence Graph
classification classification classification classification

Trajectory classification

1.4.5.1 Pattern Mining with Complex Data Types

The association pattern mining problem generally determines the patterns from the under-
lying data in the form of sets; however, this is not the case when dependencies are present in
the data. This is because the dependencies and relationships often impose ordering among
data items, and the direct use of frequent pattern mining methods fails to recognize the
relationships among the different data values. For example, when a larger number of time
series are made available, they can be used to determine different kinds of temporally fre-
quent patterns, in which a temporal ordering is imposed on the items in the pattern. Fur-
thermore, because of the presence of the additional contextual attribute representing time,
temporal patterns may be defined in a much richer way than a set-based pattern as in
association pattern mining. The patterns may be temporally contiguous, as in time-series
motifs, or they may be periodic, as in periodic patterns. Some of these methods for tempo-
ral pattern mining will be discussed in Chap. 14. A similar analogy exists for the case of
discrete sequence mining, except that the individual pattern constituents are categorical,
as opposed to continuous. It is also possible to define 2-dimensional motifs for the spatial
scenario, and such a formulation is useful for image processing. Finally, structural patterns
are commonly defined in networks that correspond to frequent subgraphs in the data. Thus,
the dependencies between the nodes are included within the definition of the patterns.

1.4.5.2 Clustering with Complex Data Types

The techniques used for clustering are also affected significantly by the underlying data
type. Most importantly, the similarity function is significantly affected by the data type.
For example, in the case of time series, sequential, or graph data, the similarity between
a pair of time series cannot be easily defined by using straightforward metrics such as
the Euclidean metric. Rather, it is necessary to use other kinds of metrics, such as the
edit distance or structural similarity. In the context of spatial data, trajectory clustering
is particularly useful in finding the relevant patterns for mobile data, or for multivariate

1.5. SCALABILITY ISSUES AND THE STREAMING SCENARIO 21

time series. For network data, the clustering problem discovers densely connected groups of
nodes, and is also referred to as community detection.

1.4.5.3 Outlier Detection with Complex Data Types

Dependencies can be used to define expected values of data items. Deviations from these
expected values are outliers. For example, a sudden jump in the value of a time series
will result in a position outlier at the specific spot at which the jump occurs. The idea in
these methods is to use prediction-based techniques to forecast the value at that position.
Significant deviation from the prediction is reported as a position outlier. Such outliers
can be defined in the context of time-series, spatial, and sequential data, where significant
deviations from the corresponding neighborhoods can be detected using autoregressive,
Markovian, or other models. In the context of graph data, outliers may correspond to
unusual properties of nodes, edges, or entire subgraphs. Thus, the complex data types show
significant richness in terms of how outliers may be defined.

1.4.5.4 Classification with Complex Data Types

The classification problem also shows a significant amount of variation in the different
complex data types. For example, class labels can be attached to specific positions in a
series, or they can be attached to the entire series. When the class labels are attached to
a specific position in the series, this can be used to perform supervised event detection,
where the first occurrence of an event-specific label (e.g., the breakdown of a machine
as suggested by the underlying temperature and pressure sensor) of a particular series
represents the occurrence of the event. For the case of network data, the labels may be
attached to individual nodes in a very large network, or to entire graphs in a collection
of multiple graphs. The former case corresponds to the classification of nodes in a social
network, and is also referred to as collective classification. The latter case corresponds to
the chemical compound classification problem, in which labels are attached to compounds
on the basis of their chemical properties.

1.5 Scalability Issues and the Streaming Scenario

Scalability is an important concern in many data mining applications due to the increasing
sizes of the data in modern-day applications. Broadly speaking, there are two important
scenarios for scalability:

1. The data are stored on one or more machines, but it is too large to process efficiently.
For example, it is easy to design efficient algorithms in cases where the entire data can
be maintained in main memory. When the data are stored on disk, it is important to
be design the algorithms in such a way that random access to the disk is minimized.
For very large data sets, big data frameworks, such as MapReduce, may need to be
used. This book will touch upon this kind of scalability at the level of disk-resident
processing, where needed.

2. The data are generated continuously over time in high volume, and it is not practical
to store it entirely. This scenario is that of data streams, in which the data need to be
processed with the use of an online approach.

22 CHAPTER 1. AN INTRODUCTION TO DATA MINING

The latter scenario requires some further exposition. The streaming scenario has become
increasingly popular because of advances in data collection technology that can collect large
amounts of data over time. For example, simple transactions of everyday life such as using
a credit card or the phone may lead to automated data collection. In such cases, the volume
of the data is so large that it may be impractical to store directly. Rather, all algorithms
must be executed in a single pass over the data. The major challenges that arise in the
context of data stream processing are as follows:

1. One-pass constraint: The algorithm needs to process the entire data set in one pass. In
other words, after a data item has been processed and the relevant summary insights
have been gleaned, the raw item is discarded and is no longer available for processing.
The amount of data that may be processed at a given time depends on the storage
available for retaining segments of the data.

2. Concept drift: In most applications, the data distribution changes over time. For exam-
ple, the pattern of sales in a given hour of a day may not be similar to that at another
hour of the day. This leads to changes in the output of the mining algorithms as well.

It is often challenging to design algorithms for such scenarios because of the varying rates at
which the patterns in the data may change over time and the continuously evolving patterns
in the underlying data. Methods for stream mining are addressed in Chap. 12.

1.6 A Stroll Through Some Application Scenarios

In this section, some common application scenarios will be discussed. The goal is to illustrate
the wide diversity of problems and applications, and how they might map onto some of the
building blocks discussed in this chapter.

1.6.1 Store Product Placement

The application scenario may be stated as follows:

Application 1.6.1 (Store Product Placement) A merchant has a set of d products
together with previous transactions from the customers containing baskets of items bought
together. The merchant would like to know how to place the product on the shelves to increase
the likelihood that items that are frequently bought together are placed on adjacent shelves.

This problem is closely related to frequent pattern mining because the analyst can use the
frequent pattern mining problem to determine groups of items that are frequently bought
together at a particular support level. An important point to note here is that the deter-
mination of the frequent patterns, while providing useful insights, does not provide the
merchant with precise guidance in terms of how the products may be placed on the differ-
ent shelves. This situation is quite common in data mining. The building block problems
often do not directly solve the problem at hand. In this particular case, the merchant may
choose from a variety of heuristic ideas in terms of how the products may be stocked on
the different shelves. For example, the merchant may already have an existing placement,
and may use the frequent patterns to create a numerical score for the quality of the place-
ment. This placement can be successively optimized by making incremental changes to the
current placement. With an appropriate initialization methodology, the frequent pattern
mining approach can be leveraged as a very useful subroutine for the problem. These parts
of data mining are often application-specific and show such wide variations across different
domains that they can only be learned through practical experience.

1.6. A STROLL THROUGH SOME APPLICATION SCENARIOS 23

1.6.2 Customer Recommendations

This is a very commonly encountered problem in the data mining literature. Many variations
of this problem exist, depending on the kind of input data available to that application. In
the following, we will examine a particular instantiation of the recommendation problem
and a straw-man solution.

Application 1.6.2 (Product Recommendations) A merchant has an n × d binary
matrix D representing the buying behavior of n customers across d items. It is assumed
that the matrix is sparse, and therefore each customer may have bought only a few items.
It is desirable to use the product associations to make recommendations to customers.

This problem is a simple version of the collaborative filtering problem that is widely studied
in the data mining and recommendation literature. There are literally hundreds of solutions
to the vanilla version of this problem, and we provide three sample examples of varying
complexity below:

1. A simple solution is to use association rule mining at particular levels of support and
confidence. For a particular customer, the relevant rules are those in which all items
in the left-hand side were previously bought by this customer. Items that appear
frequently on the right-hand side of the relevant rules are reported.

2. The previous solution does not use the similarity across different customers to make
recommendations. A second solution is to determine the most similar rows to a target
customer, and then recommend the most common item occurring in these similar
rows.

3. A final solution is to use clustering to create segments of similar customers. Within
each similar segment, association pattern mining may be used to make recommenda-
tions.

Thus, there can be multiple ways of solving a particular problem corresponding to different
analytical paths. These different paths may use different kinds of building blocks, which are
all useful in different parts of the data mining process.

1.6.3 Medical Diagnosis

Medical diagnosis has become a common application in the context of data mining. The
data types in medical diagnosis tend to be complex, and may correspond to image, time-
series, or discrete sequence data. Thus, dependency-oriented data types tend to be rather
common in medical diagnosis applications. A particular case is that of ECG readings from
heart patients.

Application 1.6.3 (Medical ECG Diagnosis) Consider a set of ECG time series that
are collected from different patients. It is desirable to determine the anomalous series from
this set.

This application can be mapped to different problems, depending upon the nature of the
input data available. For example, consider the case where no previous examples of anoma-
lous ECG series are available. In such cases, the problem can be mapped to the outlier
detection problem. A time series that differs significantly from the remaining series in the
data may be considered an outlier. However, the solution methodology changes significantly

24 CHAPTER 1. AN INTRODUCTION TO DATA MINING

if previous examples of normal and anomalous series are available. In such cases, the prob-
lem maps to a classification problem on time-series data. Furthermore, the class labels are
likely to be imbalanced because the number of abnormal series are usually far fewer than
the number of normal series.

1.6.4 Web Log Anomalies

Web logs are commonly collected at the hosts of different Web sites. Such logs can be used to
detect unusual, suspicious, or malicious activity at the site. Financial institutions regularly
analyze the logs at their site to detect intrusion attempts.

Application 1.6.4 (Web Log Anomalies) A set of Web logs is available. It is desired
to determine the anomalous sequences from the Web logs.

Because the data are typically available in the form of raw logs, a significant amount of data
cleaning is required. First, the raw logs need to be transformed into sequences of symbols.
These sequences may then need to be decomposed into smaller windows to analyze the
sequences at a particular level of granularity. Anomalous sequences may be determined by
using a sequence clustering algorithm, and then determining the sequences that do not lie
in these clusters [5]. If it is desired to find specific positions that correspond to anomalies,
then more sophisticated methods such as Markovian models may be used to determine the
anomalies [5].

As in the previous case, the analytical phase of this problem can be modeled differently,
depending on whether or not examples of Web log anomalies are available. If no previous
examples of Web log anomalies are available, then this problem maps to the unsupervised
temporal outlier detection problem. Numerous methods for solving the unsupervised case
for the temporal outlier detection problem are introduced in [5]. The topic is also briefly
discussed in Chaps. 14 and 15 of this book. On the other hand, when examples of previous
anomalies are available, then the problem maps to the rare class-detection problem. This
problem is discussed in [5] as well, and in Chap. 11 of this book.

1.7 Summary

Data mining is a complex and multistage process. These different stages are data collection,
preprocessing, and analysis. The data preprocessing phase is highly application-specific
because the different formats of the data require different algorithms to be applied to them.
The processing phase may include data integration, cleaning, and feature extraction. In
some cases, feature selection may also be used to sharpen the data representation. After the
data have been converted to a convenient format, a variety of analytical algorithms can be
used.

A number of data mining building blocks are often used repeatedly in a wide variety of
application scenarios. These correspond to the frequent pattern mining, clustering, outlier
analysis, and classification problems, respectively. The final design of a solution for a partic-
ular data mining problem is dependent on the skill of the analyst in mapping the application
to the different building blocks, or in using novel algorithms for a specific application. This
book will introduce the fundamentals required for gaining such analytical skills.

1.8. BIBLIOGRAPHIC NOTES 25

1.8 Bibliographic Notes

The problem of data mining is generally studied by multiple research communities corre-
sponding to statistics, data mining, and machine learning. These communities are highly
overlapping and often share many researchers in common. The machine learning and statis-
tics communities generally approach data mining from a theoretical and statistical perspec-
tive. Some good books written in this context may be found in [95, 256, 389]. However,
because the machine learning community is generally focused on supervised learning meth-
ods, these books are mostly focused on the classification scenario. More general data min-
ing books, which are written from a broader perspective, may be found in [250, 485, 536].
Because the data mining process often has to interact with databases, a number of relevant
database textbooks [434, 194] provide knowledge about data representation and integration
issues.

A number of books have also been written on each of the major areas of data mining.
The frequent pattern mining problem and its variations have been covered in detail in [34].
Numerous books have been written on the topic of data clustering. A well-known data clus-
tering book [284] discusses the classical techniques from the literature. Another book [219]
discusses the more recent methods for data clustering, although the material is somewhat
basic. The most recent book [32] in the literature provides a very comprehensive overview
of the different data clustering algorithms. The problem of data classification has been
addressed in the standard machine learning books [95, 256, 389]. The classification problem
has also been studied extensively by the pattern recognition community [189]. More recent
surveys on the topic may be found in [33]. The problem of outlier detection has been studied
in detail in [89, 259]. These books are, however, written from a statistical perspective and
do not address the problem from the perspective of the computer science community. The
problem has been addressed from the perspective of the computer science community in [5].

1.9 Exercises

1. An analyst collects surveys from different participants about their likes and dislikes.
Subsequently, the analyst uploads the data to a database, corrects erroneous or missing
entries, and designs a recommendation algorithm on this basis. Which of the following
actions represent data collection, data preprocessing, and data analysis? (a) Conduct-
ing surveys and uploading to database, (b) correcting missing entries, (c) designing a
recommendation algorithm.

2. What is the data type of each of the following kinds of attributes (a) Age, (b) Salary,
(c) ZIP code, (d) State of residence, (e) Height, (f) Weight?

3. An analyst obtains medical notes from a physician for data mining purposes, and then
transforms them into a table containing the medicines prescribed for each patient.
What is the data type of (a) the original data, and (b) the transformed data? (c)
What is the process of transforming the data to the new format called?

4. An analyst sets up a sensor network in order to measure the temperature of different
locations over a period. What is the data type of the data collected?

5. The same analyst as discussed in Exercise 4 above finds another database from a
different source containing pressure readings. She decides to create a single database

26 CHAPTER 1. AN INTRODUCTION TO DATA MINING

containing her own readings and the pressure readings. What is the process of creating
such a single database called?

6. An analyst processes Web logs in order to create records with the ordering information
for Web page accesses from different users. What is the type of this data?

7. Consider a data object corresponding to a set of nucleotides arranged in a certain
order. What is this type of data?

8. It is desired to partition customers into similar groups on the basis of their demo-
graphic profile. Which data mining problem is best suited to this task?

9. Suppose in Exercise 8, the merchant already knows for some of the customers whether
or not they have bought widgets. Which data mining problem would be suited to the
task of identifying groups among the remaining customers, who might buy widgets in
the future?

10. Suppose in Exercise 9, the merchant also has information for other items bought by
the customers (beyond widgets). Which data mining problem would be best suited to
finding sets of items that are often bought together with widgets?

11. Suppose that a small number of customers lie about their demographic profile, and
this results in a mismatch between the buying behavior and the demographic profile,
as suggested by comparison with the remaining data. Which data mining problem
would be best suited to finding such customers?

Chapter 2

Data Preparation

“Success depends upon previous preparation, and without such
preparation there is sure to be failure.”—Confucius

2.1 Introduction

The raw format of real data is usually widely variable. Many values may be missing, incon-
sistent across different data sources, and erroneous. For the analyst, this leads to numerous
challenges in using the data effectively. For example, consider the case of evaluating the
interests of consumers from their activity on a social media site. The analyst may first
need to determine the types of activity that are valuable to the mining process. The activ-
ity might correspond to the interests entered by the user, the comments entered by the
user, and the set of friendships of the user along with their interests. All these pieces of
information are diverse and need to be collected from different databases within the social
media site. Furthermore, some forms of data, such as raw logs, are often not directly usable
because of their unstructured nature. In other words, useful features need to be extracted
from these data sources. Therefore, a data preparation phase is needed.

The data preparation phase is a multistage process that comprises several individual
steps, some or all of which may be used in a given application. These steps are as follows:

1. Feature extraction and portability: The raw data is often in a form that is not suit-
able for processing. Examples include raw logs, documents, semistructured data, and
possibly other forms of heterogeneous data. In such cases, it may be desirable to
derive meaningful features from the data. Generally, features with good semantic
interpretability are more desirable because they simplify the ability of the analyst
to understand intermediate results. Furthermore, they are usually better tied to the
goals of the data mining application at hand. In some cases where the data is obtained
from multiple sources, it needs to be integrated into a single database for processing.
In addition, some algorithms may work only with a specific data type, whereas the
data may contain heterogeneous types. In such cases, data type portability becomes

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 2 27
c© Springer International Publishing Switzerland 2015

28 CHAPTER 2. DATA PREPARATION

important where attributes of one type are transformed to another. This results in a
more homogeneous data set that can be processed by existing algorithms.

2. Data cleaning: In the data cleaning phase, missing, erroneous, and inconsistent entries
are removed from the data. In addition, some missing entries may also be estimated
by a process known as imputation.

3. Data reduction, selection, and transformation: In this phase, the size of the data is
reduced through data subset selection, feature subset selection, or data transforma-
tion. The gains obtained in this phase are twofold. First, when the size of the data is
reduced, the algorithms are generally more efficient. Second, if irrelevant features or
irrelevant records are removed, the quality of the data mining process is improved. The
first goal is achieved by generic sampling and dimensionality reduction techniques. To
achieve the second goal, a highly problem-specific approach must be used for feature
selection. For example, a feature selection approach that works well for clustering may
not work well for classification.

Some forms of feature selection are tightly integrated with the problem at hand. Later
chapters on specific problems such as clustering and classification will contain detailed
discussions on feature selection.

This chapter is organized as follows. The feature extraction phase is discussed in Sect. 2.2.
The data cleaning phase is covered in Sect. 2.3. The data reduction phase is explained in
Sect. 2.4. A summary is given in Sect. 2.5.

2.2 Feature Extraction and Portability

The first phase of the data mining process is creating a set of features that the analyst can
work with. In cases where the data is in raw and unstructured form (e.g., raw text, sensor
signals), the relevant features need to be extracted for processing. In other cases where a
heterogeneous mixture of features is available in different forms, an “off-the-shelf” analytical
approach is often not available to process such data. In such cases, it may be desirable to
transform the data into a uniform representation for processing. This is referred to as data
type porting.

2.2.1 Feature Extraction

The first phase of feature extraction is a crucial one, though it is very application specific.
In some cases, feature extraction is closely related to the concept of data type portability,
where low-level features of one type may be transformed to higher-level features of another
type. The nature of feature extraction depends on the domain from which the data is drawn:

1. Sensor data: Sensor data is often collected as large volumes of low-level signals, which
are massive. The low-level signals are sometimes converted to higher-level features
using wavelet or Fourier transforms. In other cases, the time series is used directly
after some cleaning. The field of signal processing has an extensive literature devoted
to such methods. These technologies are also useful for porting time-series data to
multidimensional data.

2. Image data: In its most primitive form, image data are represented as pixels. At a
slightly higher level, color histograms can be used to represent the features in differ-
ent segments of an image. More recently, the use of visual words has become more

2.2. FEATURE EXTRACTION AND PORTABILITY 29

popular. This is a semantically rich representation that is similar to document data.
One challenge in image processing is that the data are generally very high dimen-
sional. Thus, feature extraction can be performed at different levels, depending on the
application at hand.

3. Web logs: Web logs are typically represented as text strings in a prespecified format.
Because the fields in these logs are clearly specified and separated, it is relatively easy
to convert Web access logs into a multidimensional representation of (the relevant)
categorical and numeric attributes.

4. Network traffic: In many intrusion-detection applications, the characteristics of the
network packets are used to analyze intrusions or other interesting activity. Depending
on the underlying application, a variety of features may be extracted from these
packets, such as the number of bytes transferred, the network protocol used, and so
on.

5. Document data: Document data is often available in raw and unstructured form, and
the data may contain rich linguistic relations between different entities. One approach
is to remove stop words, stem the data, and use a bag-of-words representation. Other
methods use entity extraction to determine linguistic relationships.

Named-entity recognition is an important subtask of information extraction. This
approach locates and classifies atomic elements in text into predefined expressions
of names of persons, organizations, locations, actions, numeric quantities, and so on.
Clearly, the ability to identify such atomic elements is very useful because they can be
used to understand the structure of sentences and complex events. Such an approach
can also be used to populate a more conventional database of relational elements or
as a sequence of atomic entities, which is more easily analyzed. For example, consider
the following sentence:

Bill Clinton lives in Chappaqua.

Here, “Bill Clinton” is the name of a person, and “Chappaqua” is the name of a
place. The word “lives” denotes an action. Each type of entity may have a different
significance to the data mining process depending on the application at hand. For
example, if a data mining application is mainly concerned with mentions of specific
locations, then the word “Chappaqua” needs to be extracted.

Popular techniques for named entity recognition include linguistic grammar-based
techniques and statistical models. The use of grammar rules is typically very effective,
but it requires work by experienced computational linguists. On the other hand, sta-
tistical models require a significant amount of training data. The techniques designed
are very often domain-specific. The area of named entity recognition is vast in its own
right, which is outside the scope of this book. The reader is referred to [400] for a
detailed discussion of different methods for entity recognition.

Feature extraction is an art form that is highly dependent on the skill of the analyst to
choose the features and their representation that are best suited to the task at hand. While
this particular aspect of data analysis typically belongs to the domain expert, it is perhaps
the most important one. If the correct features are not extracted, the analysis can only be
as good as the available data.

30 CHAPTER 2. DATA PREPARATION

2.2.2 Data Type Portability

Data type portability is a crucial element of the data mining process because the data is
often heterogeneous, and may contain multiple types. For example, a demographic data
set may contain both numeric and mixed attributes. A time-series data set collected from
an electrocardiogram (ECG) sensor may have numerous other meta-information and text
attributes associated with it. This creates a bewildering situation for an analyst who is now
faced with the difficult challenge of designing an algorithm with an arbitrary combination
of data types. The mixing of data types also restricts the ability of the analyst to use
off-the-shelf tools for processing. Note that porting data types does lose representational
accuracy and expressiveness in some cases. Ideally, it is best to customize the algorithm
to the particular combination of data types to optimize results. This is, however, time-
consuming and sometimes impractical.

This section will describe methods for converting between various data types. Because
the numeric data type is the simplest and most widely studied one for data mining algo-
rithms, it is particularly useful to focus on how different data types may be converted to
it. However, other forms of conversion are also useful in many scenarios. For example, for
similarity-based algorithms, it is possible to convert virtually any data type to a graph and
apply graph-based algorithms to this representation. The following discussion, summarized
in Table 2.1, will discuss various ways of transforming data across different types.

2.2.2.1 Numeric to Categorical Data: Discretization

The most commonly used conversion is from the numeric to the categorical data type.
This process is known as discretization. The process of discretization divides the ranges of
the numeric attribute into φ ranges. Then, the attribute is assumed to contain φ different
categorical labeled values from 1 to φ, depending on the range in which the original attribute
lies. For example, consider the age attribute. One could create ranges [0, 10], [11, 20], [21, 30],
and so on. The symbolic value for any record in the range [11, 20] is “2” and the symbolic
value for a record in the range [21, 30] is “3”. Because these are symbolic values, no ordering
is assumed between the values “2” and “3”. Furthermore, variations within a range are
not distinguishable after discretization. Thus, the discretization process does lose some
information for the mining process. However, for some applications, this loss of information is
not too debilitating. One challenge with discretization is that the data may be nonuniformly
distributed across the different intervals. For example, for the case of the salary attribute,
a large subset of the population may be grouped in the [40, 000, 80, 000] range, but very
few will be grouped in the [1, 040, 000, 1, 080, 000] range. Note that both ranges have the
same size. Thus, the use of ranges of equal size may not be very helpful in discriminating
between different data segments. On the other hand, many attributes, such as age, are not
as nonuniformly distributed, and therefore ranges of equal size may work reasonably well.
The discretization process can be performed in a variety of ways depending on application-
specific goals:

1. Equi-width ranges: In this case, each range [a, b] is chosen in such a way that b − a
is the same for each range. This approach has the drawback that it will not work for
data sets that are distributed nonuniformly across the different ranges. To determine
the actual values of the ranges, the minimum and maximum values of each attribute
are determined. This range [min,max] is then divided into φ ranges of equal length.

2. Equi-log ranges: Each range [a, b] is chosen in such a way that log(b)− log(a) has the
same value. This kinds of range selection has the effect of geometrically increasing

2.2. FEATURE EXTRACTION AND PORTABILITY 31

Table 2.1: Portability of different data types
Source data type Destination data type Methods

Numeric Categorical Discretization
Categorical Numeric Binarization

Text Numeric Latent semantic analysis (LSA)
Time series Discrete sequence SAX
Time series Numeric multidimensional DWT, DFT

Discrete sequence Numeric multidimensional DWT, DFT
Spatial Numeric multidimensional 2-d DWT
Graphs Numeric multidimensional MDS, spectral
Any type Graphs Similarity graph

(Restricted applicability)

ranges [a, a · α], [a · α, a · α2], and so on, for some α > 1. This kind of range may be
useful when the attribute shows an exponential distribution across a range. In fact,
if the attribute frequency distribution for an attribute can be modeled in functional
form, then a natural approach would be to select ranges [a, b] such that f(b) − f(a)
is the same for some function f(·). The idea is to select this function f(·) in such a
way that each range contains an approximately similar number of records. However,
in most cases, it is hard to find such a function f(·) in closed form.

3. Equi-depth ranges: In this case, the ranges are selected so that each range has an
equal number of records. The idea is to provide the same level of granularity to each
range. An attribute can be divided into equi-depth ranges by first sorting it, and
then selecting the division points on the sorted attribute value, such that each range
contains an equal number of records.

The process of discretization can also be used to convert time-series data to discrete sequence
data.

2.2.2.2 Categorical to Numeric Data: Binarization

In some cases, it is desirable to use numeric data mining algorithms on categorical data.
Because binary data is a special form of both numeric and categorical data, it is possible
to convert the categorical attributes to binary form and then use numeric algorithms on
the binarized data. If a categorical attribute has φ different values, then φ different binary
attributes are created. Each binary attribute corresponds to one possible value of the cate-
gorical attribute. Therefore, exactly one of the φ attributes takes on the value of 1, and the
remaining take on the value of 0.

2.2.2.3 Text to Numeric Data

Although the vector-space representation of text can be considered a sparse numeric data
set with very high dimensionality, this special numeric representation is not very amenable
to conventional data mining algorithms. For example, one typically uses specialized simi-
larity functions, such as the cosine, rather than the Euclidean distance for text data. This
is the reason that text mining is a distinct area in its own right with its own family of
specialized algorithms. Nevertheless, it is possible to convert a text collection into a form

32 CHAPTER 2. DATA PREPARATION

that is more amenable to the use of mining algorithms for numeric data. The first step is
to use latent semantic analysis (LSA) to transform the text collection to a nonsparse rep-
resentation with lower dimensionality. Furthermore, after transformation, each document
X = (x1 . . . xd) needs to be scaled to 1√∑d

i=1 x2
i

(x1 . . . xd). This scaling is necessary to ensure

that documents of varying length are treated in a uniform way. After this scaling, traditional
numeric measures, such as the Euclidean distance, work more effectively. LSA is discussed
in Sect. 2.4.3.3 of this chapter. Note that LSA is rarely used in conjunction with this kind
of scaling. Rather, traditional text mining algorithms are directly applied to the reduced
representation obtained from LSA.

2.2.2.4 Time Series to Discrete Sequence Data

Time-series data can be converted to discrete sequence data using an approach known as
symbolic aggregate approximation (SAX). This method comprises two steps:

1. Window-based averaging: The series is divided into windows of length w, and the
average time-series value over each window is computed.

2. Value-based discretization: The (already averaged) time-series values are discretized
into a smaller number of approximately equi-depth intervals. This is identical to the
equi-depth discretization of numeric attributes that was discussed earlier. The idea is
to ensure that each symbol has an approximately equal frequency in the time series.
The interval boundaries are constructed by assuming that the time-series values are
distributed with a Gaussian assumption. The mean and standard deviation of the
(windowed) time-series values are estimated in the data-driven manner to instantiate
the parameters of the Gaussian distribution. The quantiles of the Gaussian distribu-
tion are used to determine the boundaries of the intervals. This is more efficient than
sorting all the data values to determine quantiles, and it may be a more practical
approach for a long (or streaming) time series. The values are discretized into a small
number (typically 3 to 10) of intervals for the best results. Each such equi-depth inter-
val is mapped to a symbolic value. This creates a symbolic representation of the time
series, which is essentially a discrete sequence.

Thus, SAX might be viewed as an equi-depth discretization approach after window-based
averaging.

2.2.2.5 Time Series to Numeric Data

This particular transformation is very useful because it enables the use of multidimensional
algorithms for time-series data. A common method used for this conversion is the discrete
wavelet transform (DWT). The wavelet transform converts the time series data to multidi-
mensional data, as a set of coefficients that represent averaged differences between different
portions of the series. If desired, a subset of the largest coefficients may be used to reduce
the data size. This approach will be discussed in Sect. 2.4.4.1 on data reduction. An alterna-
tive method, known as the discrete Fourier transform (DFT), is discussed in Sect. 14.2.4.2
of Chap. 14. The common property of these transforms is that the various coefficients are
no longer as dependency oriented as the original time-series values.

2.2. FEATURE EXTRACTION AND PORTABILITY 33

2.2.2.6 Discrete Sequence to Numeric Data

This transformation can be performed in two steps. The first step is to convert the discrete
sequence to a set of (binary) time series, where the number of time series in this set is equal
to the number of distinct symbols. The second step is to map each of these time series
into a multidimensional vector using the wavelet transform. Finally, the features from the
different series are combined to create a single multidimensional record.

To convert a sequence to a binary time series, one can create a binary string in which
the value denotes whether or not a particular symbol is present at a position. For example,
consider the following nucleotide sequence, which is drawn on four symbols:

ACACACTGTGACTG

This series can be converted into the following set of four binary time series corresponding
to the symbols A, C, T, and G, respectively:

10101000001000

01010100000100

00000010100010

00000001010001

A wavelet transformation can be applied to each of these series to create a multidimensional
set of features. The features from the four different series can be appended to create a single
numeric multidimensional record.

2.2.2.7 Spatial to Numeric Data

Spatial data can be converted to numeric data by using the same approach that was used for
time-series data. The main difference is that there are now two contextual attributes (instead
of one). This requires modification of the wavelet transformation method. Section 2.4.4.1
will briefly discuss how the one-dimensional wavelet approach can be generalized when there
are two contextual attributes. The approach is fairly general and can be used for any number
of contextual attributes.

2.2.2.8 Graphs to Numeric Data

Graphs can be converted to numeric data with the use of methods such as multidimen-
sional scaling (MDS) and spectral transformations. This approach works for those appli-
cations where the edges are weighted, and represent similarity or distance relationships
between nodes. The general approach of MDS can achieve this goal, and it is discussed
in Sect. 2.4.4.2. A spectral approach can also be used to convert a graph into a multi-
dimensional representation. This is also a dimensionality reduction scheme that converts
the structural information into a multidimensional representation. This approach will be
discussed in Sect. 2.4.4.3.

2.2.2.9 Any Type to Graphs for Similarity-Based Applications

Many applications are based on the notion of similarity. For example, the clustering problem
is defined as the creation of groups of similar objects, whereas the outlier detection problem
is defined as one in which a subset of objects differing significantly from the remaining
objects are identified. Many forms of classification models, such as nearest neighbor classi-
fiers, are also dependent on the notion of similarity. The notion of pairwise similarity can

34 CHAPTER 2. DATA PREPARATION

be best captured with the use of a neighborhood graph. For a given set of data objects
O = {O1 . . . On}, a neighborhood graph is defined as follows:

1. A single node is defined for each object in O. This is defined by the node set N ,
containing n nodes where the node i corresponds to the object Oi.

2. An edge exists between Oi and Oj , if the distance d(Oi, Oj) is less than a particular
threshold ε. Alternatively, the k-nearest neighbors of each node may be used. Because
the k-nearest neighbor relationship is not symmetric, this results in a directed graph.
The directions on the edges are ignored, and the parallel edges are removed. The
weight wij of the edge (i, j) is equal to a kernelized function of the distance between
the objects Oi and Oj , so that larger weights indicate greater similarity. An example
is the heat kernel:

wij = e−d(Oi,Oj)
2/t2 (2.1)

Here, t is a user-defined parameter.

A wide variety of data mining algorithms are available for network data. All these methods
can also be used on the similarity graph. Note that the similarity graph can be crisply
defined for data objects of any type, as long as an appropriate distance function can be
defined. This is the reason that distance function design is so important for virtually any
data type. The issue of distance function design will be addressed in Chap. 3. Note that
this approach is useful only for applications that are based on the notion of similarity or
distances. Nevertheless, many data mining problems are directed or indirectly related to
notions of similarity and distances.

2.3 Data Cleaning

The data cleaning process is important because of the errors associated with the data
collection process. Several sources of missing entries and errors may arise during the data
collection process. Some examples are as follows:

1. Some data collection technologies, such as sensors, are inherently inaccurate because
of the hardware limitations associated with collection and transmission. Sometimes
sensors may drop readings because of hardware failure or battery exhaustion.

2. Data collected using scanning technologies may have errors associated with it because
optical character recognition techniques are far from perfect. Furthermore, speech-to-
text data is also prone to errors.

3. Users may not want to specify their information for privacy reasons, or they may
specify incorrect values intentionally. For example, it has often been observed that
users sometimes specify their birthday incorrectly on automated registration sites
such as those of social networks. In some cases, users may choose to leave several
fields empty.

4. A significant amount of data is created manually. Manual errors are common during
data entry.

5. The entity in charge of data collection may not collect certain fields for some records,
if it is too costly. Therefore, records may be incompletely specified.

2.3. DATA CLEANING 35

The aforementioned issues may be a significant source of inaccuracy for data mining appli-
cations. Methods are needed to remove or correct missing and erroneous entries from the
data. There are several important aspects of data cleaning:

1. Handling missing entries: Many entries in the data may remain unspecified because of
weaknesses in data collection or the inherent nature of the data. Such missing entries
may need to be estimated. The process of estimating missing entries is also referred
to as imputation.

2. Handling incorrect entries: In cases where the same information is available from
multiple sources, inconsistenciesmay be detected. Such inconsistencies can be removed
as a part of the analytical process. Another method for detecting the incorrect entries
is to use domain-specific knowledge about what is already known about the data.
For example, if a person’s height is listed as 6 m, it is most likely incorrect. More
generally, data points that are inconsistent with the remaining data distribution are
often noisy. Such data points are referred to as outliers. It is, however, dangerous
to assume that such data points are always caused by errors. For example, a record
representing credit card fraud is likely to be inconsistent with respect to the patterns
in most of the (normal) data but should not be removed as “incorrect” data.

3. Scaling and normalization: The data may often be expressed in very different scales
(e.g., age and salary). This may result in some features being inadvertently weighted
too much so that the other features are implicitly ignored. Therefore, it is important
to normalize the different features.

The following sections will discuss each of these aspects of data cleaning.

2.3.1 Handling Missing Entries

Missing entries are common in databases where the data collection methods are imperfect.
For example, user surveys are often unable to collect responses to all questions. In cases
where data contribution is voluntary, the data is almost always incompletely specified. Three
classes of techniques are used to handle missing entries:

1. Any data record containing a missing entry may be eliminated entirely. However, this
approach may not be practical when most of the records contain missing entries.

2. The missing values may be estimated or imputed. However, errors created by the
imputation process may affect the results of the data mining algorithm.

3. The analytical phase is designed in such a way that it can work with missing values.
Many data mining methods are inherently designed to work robustly with missing
values. This approach is usually the most desirable because it avoids the additional
biases inherent in the imputation process.

The problem of estimating missing entries is directly related to the classification problem.
In the classification problem, a single attribute is treated specially, and the other features
are used to estimate its value. In this case, the missing value can occur on any feature, and
therefore the problem is more challenging, although it is fundamentally not different. Many
of the methods discussed in Chaps. 10 and 11 for classification can also be used for missing
value estimation. In addition, the matrix completion methods discussed in Sect. 18.5 of
Chap. 18 may also be used.

36 CHAPTER 2. DATA PREPARATION

−2 0 2 4 6 8 10 12 14 16
3

4

5

6

7

8

9

10

11

X NOISE

X NOISE

FEATURE X

FE
A

TU
R

E
 Y

Figure 2.1: Finding noise by data-centric methods

In the case of dependency-oriented data, such as time series or spatial data, missing value
estimation is much simpler. In this case, the behavioral attribute values of contextually
nearby records are used for the imputation process. For example, in a time-series data set,
the average of the values at the time stamp just before or after the missing attribute may
be used for estimation. Alternatively, the behavioral values at the last n time-series data
stamps can be linearly interpolated to determine the missing value. For the case of spatial
data, the estimation process is quite similar, where the average of values at neighboring
spatial locations may be used.

2.3.2 Handling Incorrect and Inconsistent Entries

The key methods that are used for removing or correcting the incorrect and inconsistent
entries are as follows:

1. Inconsistency detection: This is typically done when the data is available from different
sources in different formats. For example, a person’s name may be spelled out in full in
one source, whereas the other source may only contain the initials and a last name. In
such cases, the key issues are duplicate detection and inconsistency detection. These
topics are studied under the general umbrella of data integration within the database
field.

2. Domain knowledge: A significant amount of domain knowledge is often available in
terms of the ranges of the attributes or rules that specify the relationships across
different attributes. For example, if the country field is “United States,” then the city
field cannot be “Shanghai.” Many data scrubbing and data auditing tools have been
developed that use such domain knowledge and constraints to detect incorrect entries.

3. Data-centric methods: In these cases, the statistical behavior of the data is used to
detect outliers. For example, the two isolated data points in Fig. 2.1 marked as “noise”
are outliers. These isolated points might have arisen because of errors in the data
collection process. However, this may not always be the case because the anomalies
may be the result of interesting behavior of the underlying system. Therefore, any
detected outlier may need to be manually examined before it is discarded. The use of

2.4. DATA REDUCTION AND TRANSFORMATION 37

data-centric methods for cleaning can sometimes be dangerous because they can result
in the removal of useful knowledge from the underlying system. The outlier detection
problem is an important analytical technique in its own right, and is discussed in
detail in Chaps. 8 and 9.

The methods for addressing erroneous and inconsistent entries are generally highly domain
specific.

2.3.3 Scaling and Normalization

In many scenarios, the different features represent different scales of reference and may
therefore not be comparable to one another. For example, an attribute such as age is drawn
on a very different scale than an attribute such as salary. The latter attribute is typically
orders of magnitude larger than the former. As a result, any aggregate function computed
on the different features (e.g., Euclidean distances) will be dominated by the attribute of
larger magnitude.

To address this problem, it is common to use standardization. Consider the case where
the jth attribute has mean μj and standard deviation σj . Then, the jth attribute value xj

i

of the ith record Xi may be normalized as follows:

zji =
xj
i − μj

σj
(2.2)

The vast majority of the normalized values will typically lie in the range [−3, 3] under the
normal distribution assumption.

A second approach uses min-max scaling to map all attributes to the range [0, 1]. Let
minj and maxj represent the minimum and maximum values of attribute j. Then, the jth
attribute value xj

i of the ith record Xi may be scaled as follows:

yji =
xj
i −minj

maxj −minj
(2.3)

This approach is not effective when the maximum and minimum values are extreme value
outliers because of some mistake in data collection. For example, consider the age attribute
where a mistake in data collection caused an additional zero to be appended to an age,
resulting in an age value of 800 years instead of 80. In this case, most of the scaled data
along the age attribute will be in the range [0, 0.1], as a result of which this attribute may
be de-emphasized. Standardization is more robust to such scenarios.

2.4 Data Reduction and Transformation

The goal of data reduction is to represent it more compactly. When the data size is smaller,
it is much easier to apply sophisticated and computationally expensive algorithms. The
reduction of the data may be in terms of the number of rows (records) or in terms of the
number of columns (dimensions). Data reduction does result in some loss of information.
The use of a more sophisticated algorithm may sometimes compensate for the loss in infor-
mation resulting from data reduction. Different types of data reduction are used in various
applications:

38 CHAPTER 2. DATA PREPARATION

1. Data sampling: The records from the underlying data are sampled to create a much
smaller database. Sampling is generally much harder in the streaming scenario where
the sample needs to be dynamically maintained.

2. Feature selection: Only a subset of features from the underlying data is used in the
analytical process. Typically, these subsets are chosen in an application-specific way.
For example, a feature selection method that works well for clustering may not work
well for classification and vice versa. Therefore, this section will discuss the issue of
feature subsetting only in a limited way and defer a more detailed discussion to later
chapters.

3. Data reduction with axis rotation: The correlations in the data are leveraged to repre-
sent it in a smaller number of dimensions. Examples of such data reduction methods
include principal component analysis (PCA), singular value decomposition (SVD), or
latent semantic analysis (LSA) for the text domain.

4. Data reduction with type transformation: This form of data reduction is closely related
to data type portability. For example, time series are converted to multidimensional
data of a smaller size and lower complexity by discrete wavelet transformations. Simi-
larly, graphs can be converted to multidimensional representations by using embedding
techniques.

Each of the aforementioned aspects will be discussed in different segments of this section.

2.4.1 Sampling

The main advantage of sampling is that it is simple, intuitive, and relatively easy to imple-
ment. The type of sampling used may vary with the application at hand.

2.4.1.1 Sampling for Static Data

It is much simpler to sample data when the entire data is already available, and therefore
the number of base data points is known in advance. In the unbiased sampling approach,
a predefined fraction f of the data points is selected and retained for analysis. This is
extremely simple to implement, and can be achieved in two different ways, depending upon
whether or not replacement is used.

In sampling without replacement from a data set D with n records, a total of �n · f�
records are randomly picked from the data. Thus, no duplicates are included in the sample,
unless the original data set D also contains duplicates. In sampling with replacement from
a data set D with n records, the records are sampled sequentially and independently from
the entire data set D for a total of �n · f� times. Thus, duplicates are possible because
the same record may be included in the sample over sequential selections. Generally, most
applications do not use replacement because unnecessary duplicates can be a nuisance for
some data mining applications, such as outlier detection. Some other specialized forms of
sampling are as follows:

1. Biased sampling: In biased sampling, some parts of the data are intentionally empha-
sized because of their greater importance to the analysis. A classical example is that of
temporal-decay bias where more recent records have a larger chance of being included
in the sample, and stale records have a lower chance of being included. In exponential-
decay bias, the probability p(X) of sampling a data record X, which was generated

2.4. DATA REDUCTION AND TRANSFORMATION 39

δt time units ago, is proportional to an exponential decay function value regulated by
the decay parameter λ:

p(X) ∝ e−λ·δt (2.4)

Here e is the base of the natural logarithm. By using different values of λ, the impact
of temporal decay can be regulated appropriately.

2. Stratified sampling: In some data sets, important parts of the data may not be suffi-
ciently represented by sampling because of their rarity. A stratified sample, therefore,
first partitions the data into a set of desired strata, and then independently samples
from each of these strata based on predefined proportions in an application-specific
way.

For example, consider a survey that measures the economic diversity of the lifestyles
of different individuals in the population. Even a sample of 1 million participants may
not capture a billionaire because of their relative rarity. However, a stratified sample
(by income) will independently sample a predefined fraction of participants from each
income group to ensure greater robustness in analysis.

Numerous other forms of biased sampling are possible. For example, in density-biased sam-
pling, points in higher-density regions are weighted less to ensure greater representativeness
of the rare regions in the sample.

2.4.1.2 Reservoir Sampling for Data Streams

A particularly interesting form of sampling is that of reservoir sampling for data streams.
In reservoir sampling, a sample of k points is dynamically maintained from a data stream.
Recall that a stream is of an extremely large volume, and therefore one cannot store it on
a disk to sample it. Therefore, for each incoming data point in the stream, one must use a
set of efficiently implementable operations to maintain the sample.

In the static case, the probability of including a data point in the sample is k/n where
k is the sample size, and n is the number of points in the “data set.” In this case, the “data
set” is not static and cannot be stored on disk. Furthermore, the value of n is constantly
increasing as more points arrive and previous data points (outside the sample) have already
been discarded. Thus, the sampling approach works with incomplete knowledge about the
previous history of the stream at any given moment in time. In other words, for each
incoming data point in the stream, we need to dynamically make two simple admission
control decisions:

1. What sampling rule should be used to decide whether to include the newly incoming
data point in the sample?

2. What rule should be used to decide how to eject a data point from the sample to
“make room” for the newly inserted data point?

Fortunately, it is relatively simple to design an algorithm for reservoir sampling in data
streams [498]. For a reservoir of size k, the first k data points in the stream are used to
initialize the reservoir. Subsequently, for the nth incoming stream data point, the following
two admission control decisions are applied:

1. Insert the nth incoming stream data point into the reservoir with probability k/n.

2. If the newly incoming data point was inserted, then eject one of the old k data points
at random to make room for the newly arriving point.

40 CHAPTER 2. DATA PREPARATION

It can be shown that the aforementioned rule maintains an unbiased reservoir sample from
the data stream.

Lemma 2.4.1 After n stream points have arrived, the probability of any stream point being
included in the reservoir is the same, and is equal to k/n.

Proof: This result is easy to show by induction. At initialization of the first k data points,
the theorem is trivially true. Let us (inductively) assume that it is also true after (n − 1)
data points have been received, and therefore the probability of each point being included
in the reservoir is k/(n − 1). The probability of the arriving point being included in the
stream is k/n, and therefore the lemma holds true for the arriving data point. It remains
to prove the result for the remaining points in the data stream. There are two disjoint case
events that can arise for an incoming data point, and the final probability of a point being
included in the reservoir is the sum of these two cases:

I: The incoming data point is not inserted into the reservoir. The probability of this is
(n−k)/n. Because the original probability of any point being included in the reservoir
by the inductive assumption, is k/(n − 1), the overall probability of a point being
included in the reservoir and Case I event, is the multiplicative value of p1 = k(n−k)

n(n−1) .

II: The incoming data point is inserted into the reservoir. The probability of Case II
is equal to insertion probability k/n of incoming data points. Subsequently, existing
reservoir points are retained with probability (k − 1)/k because exactly one of them
is ejected. Because the inductive assumption implies that any of the earlier points in
the data stream was originally present in the reservoir with probability k/(n − 1),
it implies that the probability of a point being included in the reservoir and Case II
event is given by the product p2 of the three aforementioned probabilities:

p2 =
(
k

n

)(
k − 1
k

)(
k

n− 1

)
=

k(k − 1)
n(n− 1)

(2.5)

Therefore, the total probability of a stream point being retained in the reservoir after the
nth data point arrival is given by the sum of p1 and p2. It can be shown that this is equal
to k/n.
It is possible to extend reservoir sampling to cases where temporal bias is present in the
data stream. In particular, the case of exponential bias has been addressed in [35].

2.4.2 Feature Subset Selection

A second method for data preprocessing is feature subset selection. Some features can
be discarded when they are known to be irrelevant. Which features are relevant? Clearly,
this decision depends on the application at hand. There are two primary types of feature
selection:

1. Unsupervised feature selection: This corresponds to the removal of noisy and redundant
attributes from the data. Unsupervised feature selection is best defined in terms of
its impact on clustering applications, though the applicability is much broader. It
is difficult to comprehensively describe such feature selection methods without using
the clustering problem as a proper context. Therefore, a discussion of methods for
unsupervised feature selection is deferred to Chap. 6 on data clustering.

2.4. DATA REDUCTION AND TRANSFORMATION 41

−30−20−10010203040

−50

0

50

−40

−30

−20

−10

0

10

20

30

FEATURE XFEATURE Y

FE
A

TU
R

E
 Z

DATA POINTS
EIGENVECTOR 1
EIGENVECTOR 2
EIGENVECTOR 3

Figure 2.2: Highly correlated data represented in a small number of dimensions in an axis
system that is rotated appropriately

2. Supervised feature selection: This type of feature selection is relevant to the problem of
data classification. In this case, only the features that can predict the class attribute
effectively are the most relevant. Such feature selection methods are often closely
integrated with analytical methods for classification. A detailed discussion is deferred
to Chap. 10 on data classification.

Feature selection is an important part of the data mining process because it defines the
quality of the input data.

2.4.3 Dimensionality Reduction with Axis Rotation

In real data sets, a significant number of correlations exist among different attributes. In
some cases, hard constraints or rules between attributes may uniquely define some attributes
in terms of others. For example, the date of birth of an individual (represented quantita-
tively) is perfectly correlated with his or her age. In most cases, the correlations may not be
quite as perfect, but significant dependencies may still exist among the different features.
Unfortunately, real data sets contain many such redundancies that escape the attention of
the analyst during the initial phase of data creation. These correlations and constraints
correspond to implicit redundancies because they imply that knowledge of some subsets
of the dimensions can be used to predict the values of the other dimensions. For example,
consider the 3-dimensional data set illustrated in Fig. 2.2. In this case, if the axis is rotated
to the orientation illustrated in the figure, the correlations and redundancies in the newly
transformed feature values are removed. As a result of this redundancy removal, the entire
data can be (approximately) represented along a 1-dimensional line. Thus, the intrinsic
dimensionality of this 3-dimensional data set is 1. The other two axes correspond to the
low-variance dimensions. If the data is represented as coordinates in the new axis system
illustrated in Fig. 2.2, then the coordinate values along these low-variance dimensions will
not vary much. Therefore, after the axis system has been rotated, these dimensions can be
removed without much information loss.

A natural question arises as to how the correlation-removing axis system such as that in
Fig. 2.2 may be determined in an automated way. Two natural methods to achieve this goal

42 CHAPTER 2. DATA PREPARATION

are those of principal component analysis (PCA) and singular value decomposition (SVD).
These two methods, while not exactly identical at the definition level, are closely related.
Although the notion of principal component analysis is intuitively easier to understand,
SVD is a more general framework and can be used to perform PCA as a special case.

2.4.3.1 Principal Component Analysis

PCA is generally applied after subtracting the mean of the data set from each data point.
However, it is also possible to use it without mean centering, as long as the mean of the
data is separately stored. This operation is referred to as mean centering, and it results in
a data set centered at the origin. The goal of PCA is to rotate the data into an axis-system
where the greatest amount of variance is captured in a small number of dimensions. It is
intuitively evident from the example of Fig. 2.2 that such an axis system is affected by
the correlations between attributes. An important observation, which we will show below,
is that the variance of a data set along a particular direction can be expressed directly in
terms of its covariance matrix.

Let C be the d× d symmetric covariance matrix of the n× d data matrix D. Thus, the
(i, j)th entry cij of C denotes the covariance between the ith and jth columns (dimensions)
of the data matrix D. Let μi represent the mean along the ith dimension. Specifically, if
xm
k be the mth dimension of the kth record, then the value of the covariance entry cij is as

follows:

cij =
∑n

k=1 x
i
kx

j
k

n
− μiμj ∀i, j ∈ {1 . . . d} (2.6)

Let μ = (μ1 . . . μd) is the d-dimensional row vector representing the means along the different
dimensions. Then, the aforementioned d× d computations of Eq. 2.6 for different values of
i and j can be expressed compactly in d× d matrix form as follows:

C =
DTD

n
− μTμ (2.7)

Note that the d diagonal entries of the matrix C correspond to the d variances. The covari-
ance matrix C is positive semi-definite, because it can be shown that for any d-dimensional
column vector v, the value of vTCv is equal to the variance of the 1-dimensional projection
Dv of the data set D on v.

vTCv =
(Dv)TDv

n
− (μ v)2 = Variance of 1-dimensional points in Dv ≥ 0 (2.8)

In fact, the goal of PCA is to successively determine orthonormal vectors v maximizing
vTCv. How can one determine such directions? Because the covariance matrix is symmetric
and positive semidefinite, it can be diagonalized as follows:

C = PΛPT (2.9)

The columns of the matrix P contain the orthonormal eigenvectors of C, and Λ is a diagonal
matrix containing the nonnegative eigenvalues. The entry Λii is the eigenvalue corresponding
to the ith eigenvector (or column) of the matrix P . These eigenvectors represent successive
orthogonal solutions1 to the aforementioned optimization model maximizing the variance
vTCv along the unit direction v.

1Setting the gradient of the Lagrangian relaxation vTCv−λ(||v||2−1) to 0 is equivalent to the eigenvector
condition Cv − λv = 0. The variance along an eigenvector is vTCv = vTλv = λ. Therefore, one should
include the orthonormal eigenvectors in decreasing order of eigenvalue λ to maximize preserved variance in
reduced subspace.

2.4. DATA REDUCTION AND TRANSFORMATION 43

An interesting property of this diagonalization is that both the eigenvectors and eigenval-
ues have a geometric interpretation in terms of the underlying data distribution. Specifically,
if the axis system of data representation is rotated to the orthonormal set of eigenvectors
in the columns of P , then it can be shown that all

(
d
2

)
covariances of the newly transformed

feature values are zero. In other words, the greatest variance-preserving directions are also
the correlation-removing directions. Furthermore, the eigenvalues represent the variances
of the data along the corresponding eigenvectors. In fact, the diagonal matrix Λ is the
new covariance matrix after axis rotation. Therefore, eigenvectors with large eigenvalues
preserve greater variance, and are also referred to as principal components. Because of the
nature of the optimization formulation used to derive this transformation, a new axis system
containing only the eigenvectors with the largest eigenvalues is optimized to retaining the
maximum variance in a fixed number of dimensions. For example, the scatter plot of Fig. 2.2
illustrates the various eigenvectors, and it is evident that the eigenvector with the largest
variance is all that is needed to create a variance-preserving representation. It generally
suffices to retain only a small number of eigenvectors with large eigenvalues.

Without loss of generality, it can be assumed that the columns of P (and corresponding
diagonal matrix Λ) are arranged from left to right in such a way that they correspond to
decreasing eigenvalues. Then, the transformed data matrix D′ in the new coordinate system
after axis rotation to the orthonormal columns of P can be algebraically computed as the
following linear transformation:

D′ = DP (2.10)

While the transformed data matrix D′ is also of size n × d, only its first (leftmost) k � d
columns will show significant variation in values. Each of the remaining (d − k) columns
of D′ will be approximately equal to the mean of the data in the rotated axis system. For
mean-centered data, the values of these (d − k) columns will be almost 0. Therefore, the
dimensionality of the data can be reduced, and only the first k columns of the transformed
data matrix D′ may need to be retained2 for representation purposes. Furthermore, it can
be confirmed that the covariance matrix of the transformed data D′ = DP is the diagonal
matrix Λ by applying the covariance definition of Eq. 2.7 to DP (transformed data) and μP
(transformed mean) instead ofD and μ, respectively. The resulting covariance matrix can be
expressed in terms of the original covariance matrix C as PTCP . Substituting C = PΛPT

from Eq. 2.9 shows equivalence because PTP = PPT = I. In other words, correlations have
been removed from the transformed data because Λ is diagonal.

The variance of the data set defined by projections along top-k eigenvectors is equal to
the sum of the k corresponding eigenvalues. In many applications, the eigenvalues show a
precipitous drop-off after the first few values. For example, the behavior of the eigenvalues
for the 279-dimensional Arrythmia data set from the UCI Machine Learning Repository [213]
is illustrated in Fig. 2.3. Figure 2.3a shows the absolute magnitude of the eigenvalues in
increasing order, whereas Fig. 2.3b shows the total amount of variance retained in the top-k
eigenvalues. Figure 2.3b can be derived by using the cumulative sum of the smallest eigen-
values in Fig. 2.3a. It is interesting to note that the 215 smallest eigenvalues contain less
than 1% of the total variance in the data and can therefore be removed with little change
to the results of similarity-based applications. Note that the Arrythmia data set is not a
very strongly correlated data set along many pairs of dimensions. Yet, the dimensional-
ity reduction is drastic because of the cumulative effect of the correlations across many
dimensions.

2The means of the remaining columns also need be stored if the data set is not mean centered.

44 CHAPTER 2. DATA PREPARATION

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

INCREASING INDEX OF EIGENVALUE

E
IG

E
N

V
A

LU
E

 M
A

G
N

IT
U

D
E

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10 4

INCREASING INDEX OF EIGENVALUE

TO
TA

L
C

U
M

U
LA

TI
V

E
 V

A
R

IA
N

C
E

(a) Magnitude of Eigenvalues (b) Variance in smallest k
(Increasing Index): Arrythmia Eigenvalues: Arrythmia

Figure 2.3: Variance retained with increasing number of eigenvalues for the Arrythmia data
set

The eigenvectors of the matrix C may be determined by using any numerical method
discussed in [295] or by an off-the-shelf eigenvector solver. PCA can be extended to discov-
ering nonlinear embeddings with the use of a method known as the kernel trick. Refer to
Sect. 10.6.4.1 of Chap. 10 for a brief description of kernel PCA.

2.4.3.2 Singular Value Decomposition

Singular value decomposition (SVD) is closely related to principal component analysis
(PCA). However, these distinct methods are sometimes confused with one another because
of the close relationship. Before beginning the discussion of SVD, we state how it is related
to PCA. SVD is more general than PCA because it provides two sets of basis vectors instead
of one. SVD provides basis vectors of both the rows and columns of the data matrix, whereas
PCA only provides basis vectors of the rows of the data matrix. Furthermore, SVD provides
the same basis as PCA for the rows of the data matrix in certain special cases:

SVD provides the same basis vectors and data transformation as PCA for data sets in
which the mean of each attribute is 0.

The basis vectors of PCA are invariant to mean-translation, whereas those of SVD are
not. When the data are not mean centered, the basis vectors of SVD and PCA will not be
the same, and qualitatively different results may be obtained. SVD is often applied without
mean centering to sparse nonnegative data such as document-term matrices. A formal way
of defining SVD is as a decomposable product of (or factorization into) three matrices:

D = QΣPT (2.11)

Here, Q is an n× n matrix with orthonormal columns, which are the left singular vectors.
Σ is an n× d diagonal matrix containing the singular values, which are always nonnegative
and, by convention, arranged in nonincreasing order. Furthermore, P is a d×d matrix with
orthonormal columns, which are the right singular vectors. Note that the diagonal matrix Σ
is rectangular rather than square, but it is referred to as diagonal because only entries of the

2.4. DATA REDUCTION AND TRANSFORMATION 45

form Σii are nonzero. It is a fundamental fact of linear algebra that such a decomposition
always exists, and a proof may be found in [480]. The number of nonzero diagonal entries of
Σ is equal to the rank of the matrix D, which is at most min{n, d}. Furthermore, because
of the orthonormality of the singular vectors, both PTP and QTQ are identity matrices.
We make the following observations:

1. The columns of matrix Q, which are also the left singular vectors, are the orthonormal
eigenvectors of DDT . This is because DDT = QΣ(PTP)ΣTQT = QΣΣTQT . There-
fore, the square of the nonzero singular values, which are diagonal entries of the n×n
diagonal matrix ΣΣT , represent the nonzero eigenvalues of DDT .

2. The columns of matrix P , which are also the right singular vectors, are the orthonor-
mal eigenvectors of DTD. The square of the nonzero singular values, which are rep-
resented in diagonal entries of the d× d diagonal matrix ΣTΣ, are the nonzero eigen-
values of DTD. Note that the nonzero eigenvalues of DDT and DTD are the same.
The matrix P is particularly important because it provides the basis vectors, which
are analogous to the eigenvectors of the covariance matrix in PCA.

3. Because the covariance matrix of mean-centered data is DTD
n (cf. Eq. 2.7) and the

right singular vectors of SVD are eigenvectors of DTD, it follows that the eigenvectors
of PCA are the same as the right-singular vectors of SVD for mean-centered data.
Furthermore, the squared singular values in SVD are n times the eigenvalues of PCA.
This equivalence shows why SVD and PCA can provide the same transformation for
mean-centered data.

4. Without loss of generality, it can be assumed that the diagonal entries of Σ are
arranged in decreasing order, and the columns of matrix P and Q are also ordered
accordingly. Let Pk and Qk be the truncated d × k and n × k matrices obtained by
selecting the first k columns of P and Q, respectively. Let Σk be the k × k square
matrix containing the top k singular values. Then, the SVD factorization yields an
approximate d-dimensional data representation of the original data set D:

D ≈ QkΣkP
T
k (2.12)

The columns of Pk represent a k-dimensional basis system for a reduced representation
of the data set. The dimensionality reduced data set in this k-dimensional basis system
is given by the n×k data set D′

k = DPk = QkΣk, as in Eq. 2.10 of PCA. Each of the n
rows of D′

k contain the k coordinates of each transformed data point in this new axis
system. Typically, the value of k is much smaller than both n and d. Furthermore,
unlike PCA, the rightmost (d−k) columns of the full d-dimensional transformed data
matrix D′ = DP will be approximately 0 (rather than the data mean), whether the
data are mean centered or not. In general, PCA projects the data on a low-dimensional
hyperplane passing through the data mean, whereas SVD projects the data on a low-
dimensional hyperplane passing through the origin. PCA captures as much of the
variance (or, squared Euclidean distance about the mean) of the data as possible,
whereas SVD captures as much of the aggregate squared Euclidean distance about
the origin as possible. This method of approximating a data matrix is referred to as
truncated SVD.

In the following, we will show that truncated SVD maximizes the aggregate squared
Euclidean distances (or energy) of the transformed data points about the origin. Let v be a

46 CHAPTER 2. DATA PREPARATION

LATENT

d
DIMENSIONS

S

k

LATENT
COMPONENTS

LATENT
COMPONENTS

k SW
S DIMENSIONS

d

n

TA
PO

IN
TS ORIGINAL

DATA

AT
A
PO

IN
T

n x k

LA
TE
N
T

O
M
PO

N
EN

TS

x

LA
TE
N
T

O
M
PO

N
EN

TS

k

O
P
k
BA

SI
S

TO
RS

O
F
RO

W
O
F
D
T TOP k BASIS

VECTORS OF
ROWS OF D

k

D
AT D
A

C COTO
V
EC
T

D
k: IMPORTANCE OF

LATENT COMPONENTSQk

PkT

Figure 2.4: Complementary basis properties of matrix factorization in SVD

d-dimensional column vector and Dv be the projection of the data set D on v. Consider the
problem of determining the unit vector v such that the sum of squared Euclidean distances
(Dv)T (Dv) of the projected data points from the origin is maximized. Setting the gradient
of the Lagrangian relaxation vTDTDv − λ(||v||2 − 1) to 0 is equivalent to the eigenvector
condition DTDv − λv = 0. Because the right singular vectors are eigenvectors of DTD, it
follows that the eigenvectors (right singular vectors) with the k largest eigenvalues (squared
singular values) provide a basis that maximizes the preserved energy in the transformed and
reduced data matrix D′

k = DPk = QkΣk. Because the energy, which is the sum of squared
Euclidean distances from the origin, is invariant to axis rotation, the energy in D′

k is the
same as that in D′

kP
T
k = QkΣkP

T
k . Therefore, k-rank SVD is a maximum energy-preserving

factorization. This result is known as the Eckart–Young theorem.
The total preserved energy of the projection Dv of the data set D along unit right-

singular vector v with singular value σ is given by (Dv)T (Dv), which can be simplified as
follows:

(Dv)T (Dv) = vT (DTDv) = vT (σ2v) = σ2

Because the energy is defined as a linearly separable sum along orthonormal directions, the
preserved energy in the data projection along the top-k singular vectors is equal to the
sum of the squares of the top-k singular values. Note that the total energy in the data set
D is always equal to the sum of the squares of all the nonzero singular values. It can be
shown that maximizing the preserved energy is the same as minimizing the squared error3

(or lost energy) of the k-rank approximation. This is because the sum of the energy in the
preserved subspace and the lost energy in the complementary (discarded) subspace is always
a constant, which is equal to the energy in the original data set D.

When viewed purely in terms of eigenvector analysis, SVD provides two different perspec-
tives for understanding the transformed and reduced data. The transformed data matrix can
either be viewed as the projection DPk of the data matrix D on the top k basis eigenvectors
Pk of the d × d scatter matrix DTD, or it can directly be viewed as the scaled eigenvec-
tors QkΣk = DPk of the n × n dot-product similarity matrix DDT . While it is generally
computationally expensive to extract the eigenvectors of an n × n similarity matrix, such
an approach also generalizes to nonlinear dimensionality reduction methods where notions
of linear basis vectors do not exist in the original space. In such cases, the dot-product
similarity matrix is replaced with a more complex similarity matrix in order to extract a
nonlinear embedding (cf. Table 2.3).

SVD is more general than PCA and can be used to simultaneously determine a subset
of k basis vectors for the data matrix and its transpose with the maximum energy. The
latter can be useful in understanding complementary transformation properties of DT .

3The squared error is the sum of squares of the entries in the error matrix D −QkΣkP
T
k .

2.4. DATA REDUCTION AND TRANSFORMATION 47

The orthonormal columns of Qk provide a k-dimensional basis system for (approximately)
transforming “data points” corresponding to the rows of DT , and the matrix DTQk = PkΣk

contains the corresponding coordinates. For example, in a user-item ratings matrix, one may
wish to determine either a reduced representation of the users, or a reduced representation
of the items. SVD provides the basis vectors for both reductions. Truncated SVD expresses
the data in terms of k dominant latent components. The ith latent component is expressed
in the ith basis vectors of both D and DT , and its relative importance in the data is defined
by the ith singular value. By decomposing the matrix product QkΣkP

T
k into column vectors

of Qk and Pk (i.e., dominant basis vectors of DT and D), the following additive sum of the
k latent components can be obtained:

QkΣkP
T
k =

k∑
i=1

qiσipi
T =

k∑
i=1

σi(qi piT) (2.13)

Here qi is the ith column of Q, pi is the ith column of P , and σi is the ith diagonal entry
of Σ. Each latent component σi(qi piT) is an n× d matrix with rank 1 and energy σ2

i . This
decomposition is referred to as spectral decomposition. The relationships of the reduced basis
vectors to SVD matrix factorization are illustrated in Fig. 2.4.

An example of a rank-2 truncated SVD of a toy 6× 6 matrix is illustrated below:

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 2 1 2 0 0
2 3 3 3 0 0
1 1 1 1 0 0
2 2 2 3 1 1
0 0 0 1 1 1
0 0 0 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

≈ Q2Σ2P
T
2

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.41 0.17
−0.65 0.31
−0.23 0.13
−0.56 −0.20
−0.10 −0.46
−0.19 −0.78

⎞
⎟⎟⎟⎟⎟⎟⎠

(
8.4 0
0 3.3

)(
−0.41 −0.49 −0.44 −0.61 −0.10 −0.12
0.21 0.31 0.26 −0.37 −0.44 −0.68

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.55 1.87 1.67 1.91 0.10 0.04
2.46 2.98 2.66 2.95 0.10 −0.03
0.89 1.08 0.96 1.04 0.01 −0.04
1.81 2.11 1.91 3.14 0.77 1.03
0.02 −0.05 −0.02 1.06 0.74 1.11
0.10 −0.02 0.04 1.89 1.28 1.92

⎞
⎟⎟⎟⎟⎟⎟⎠

Note that the rank-2 matrix is a good approximation of the original matrix. The entry with
the largest error is underlined in the final approximated matrix. Interestingly, this entry is
also inconsistent with the structure of the remaining matrix in the original data (why?).
Truncated SVD often tries to correct inconsistent entries, and this property is sometimes
leveraged for noise reduction in error-prone data sets.

2.4.3.3 Latent Semantic Analysis

Latent semantic analysis (LSA) is an application of the SVD method to the text domain.
In this case, the data matrix D is an n × d document-term matrix containing normalized

48 CHAPTER 2. DATA PREPARATION

word frequencies in the n documents, where d is the size of the lexicon. No mean centering
is used, but the results are approximately the same as PCA because of the sparsity of D.
The sparsity of D implies that most of the entries in D are 0, and the mean values of each
column are much smaller than the nonzero values. In such scenarios, it can be shown that
the covariance matrix is approximately proportional to DTD. The sparsity of the data set
also results in a low intrinsic dimensionality. Therefore, in the text domain, the reduction in
dimensionality from LSA is rather drastic. For example, it is not uncommon to be able to
represent a corpus drawn on a lexicon of 100,000 dimensions in fewer than 300 dimensions.

LSA is a classical example of how the “loss” of information from discarding some dimen-
sions can actually result in an improvement in the quality of the data representation. The
text domain suffers from two main problems corresponding to synonymy and polysemy.
Synonymy refers to the fact that two words may have the same meaning. For example, the
words “comical” and “hilarious” mean approximately the same thing. Polysemy refers to
the fact that the same word may mean two different things. For example, the word “jaguar”
could refer to a car or a cat. Typically, the significance of a word can only be understood
in the context of other words in the document. This is a problem for similarity-based appli-
cations because the computation of similarity with the use of word frequencies may not
be completely accurate. For example, two documents containing the words “comical” and
“hilarious,” respectively, may not be deemed sufficiently similar in the original representa-
tion space. The two aforementioned issues are a direct result of synonymy and polysemy
effects. The truncated representation after LSA typically removes the noise effects of syn-
onymy and polysemy because the (high-energy) singular vectors represent the directions of
correlation in the data, and the appropriate context of the word is implicitly represented
along these directions. The variations because of individual differences in usage are implic-
itly encoded in the low-energy directions, which are truncated anyway. It has been observed
that significant qualitative improvements [184, 416] for text applications may be achieved
with the use of LSA. The improvement4 is generally greater in terms of synonymy effects
than polysemy. This noise-removing behavior of SVD has also been demonstrated in general
multidimensional data sets [25].

2.4.3.4 Applications of PCA and SVD

Although PCA and SVD are primarily used for data reduction and compression, they have
many other applications in data mining. Some examples are as follows:

1. Noise reduction: While removal of the smaller eigenvectors/singular vectors in PCA
and SVD can lead to information loss, it can also lead to improvement in the quality of
data representation in surprisingly many cases. The main reason is that the variations
along the small eigenvectors are often the result of noise, and their removal is generally
beneficial. An example is the application of LSA in the text domain where the removal
of the smaller components leads to the enhancement of the semantic characteristics
of text. SVD is also used for deblurring noisy images. These text- and image-specific
results have also been shown to be true in arbitrary data domains [25]. Therefore, the
data reduction is not just space efficient but actually provides qualitative benefits in
many cases.

4Concepts that are not present predominantly in the collection will be ignored by truncation. Therefore,
alternative meanings reflecting infrequent concepts in the collection will be ignored. While this has a robust
effect on the average, it may not always be the correct or complete disambiguation of polysemous words.

2.4. DATA REDUCTION AND TRANSFORMATION 49

2. Data imputation: SVD and PCA can be used for data imputation applications [23],
such as collaborative filtering, because the reduced matrices Qk, Σk, and Pk can be
estimated for small values of k even from incomplete data matrices. Therefore, the
entire matrix can be approximately reconstructed as QkΣkP

T
k . This application is

discussed in Sect. 18.5 of Chap. 18.

3. Linear equations: Many data mining applications are optimization problems in which
the solution is recast into a system of linear equations. For any linear system Ay = 0,
any right singular vector of A with 0 singular value will satisfy the system of equations
(see Exercise 14). Therefore, any linear combination of the 0 singular vectors will
provide a solution.

4. Matrix inversion: SVD can be used for the inversion of a square d×dmatrixD. Let the
decomposition of D be given by QΣPT . Then, the inverse of D is D−1 = PΣ−1QT .
Note that Σ−1 can be trivially computed from Σ by inverting its diagonal entries.
The approach can also be generalized to the determination of the Moore–Penrose
pseudoinverse D+ of a rank-k matrix D by inverting only the nonzero diagonal entries
of Σ. The approach can even be generalized to non-square matrices by performing the
additional operation of transposing Σ. Such matrix inversion operations are required
in many data mining applications such as least-squares regression (cf. Sect. 11.5 of
Chap. 11) and social network analysis (cf. Chap. 19).

5. Matrix algebra: Many network mining applications require the application of alge-
braic operations such as the computation of the powers of a matrix. This is common
in random-walk methods (cf. Chap. 19), where the kth powers of the symmetric adja-
cency matrix of an undirected network may need to be computed. Such symmetric
adjacency matrices can be decomposed into the form QΔQT . The kth power of this
decomposition can be efficiently computed as Dk = QΔkQT . In fact, any polynomial
function of the matrix can be computed efficiently.

SVD and PCA are extraordinarily useful because matrix and linear algebra operations are
ubiquitous in data mining. SVD and PCA facilitate such matrix operations by providing
convenient decompositions and basis representations. SVD has rightly been referred to [481]
as “absolutely a high point of linear algebra.”

2.4.4 Dimensionality Reduction with Type Transformation

In these methods, dimensionality reduction is coupled with type transformation. In most
cases, the data is transformed from a more complex type to a less complex type, such as
multidimensional data. Thus, these methods serve the dual purpose of data reduction and
type portability. This section will study two such transformation methods:

1. Time series to multidimensional: A number of methods, such as the discrete Fourier
transform and discrete wavelet transform are used. While these methods can also be
viewed as a rotation of an axis system defined by the various time stamps of the
contextual attribute, the data are no longer dependency oriented after the rotation.
Therefore, the resulting data set can be processed in a similar way to multidimensional
data. We will study the Haar wavelet transform because of its intuitive simplicity.

2. Weighted graphs to multidimensional: Multidimensional scaling and spectral methods
are used to embed weighted graphs in multidimensional spaces, so that the similarity
or distance values on the edges are captured by a multidimensional embedding.

50 CHAPTER 2. DATA PREPARATION

Table 2.2: An example of wavelet coefficient computation

Granularity (order k) Averages DWT coefficients
(Φ values) (ψ values)

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) –
k = 3 (7, 2.5, 5, 5.5) (1, −0.5, −1, 0.5)
k = 2 (4.75, 5.25) (2.25, −0.25)
k = 1 (5) (−0.25)

This section will discuss each of these techniques.

2.4.4.1 Haar Wavelet Transform

Wavelets are a well-known technique that can be used for multigranularity decomposition
and summarization of time-series data into the multidimensional representation. The Haar
wavelet is a particularly popular form of wavelet decomposition because of its intuitive
nature and ease of implementation. To understand the intuition behind wavelet decompo-
sition, an example of sensor temperatures will be used.

Suppose that a sensor measured the temperatures over the course of 12 h from the
morning until the evening. Assume that the sensor samples temperatures at the rate of
1 sample/s. Thus, over the course of a single day, a sensor will collect 12 × 60 × 60 =
43, 200 readings. Clearly, this will not scale well over many days and many sensors. An
important observation is that many adjacent sensor readings will be very similar, causing
this representation to be very wasteful. So, how can we represent this data approximately
in a small amount of space? How can we determine the key regions where “variations” in
readings occur, and store these variations instead of repeating values?

Suppose we only stored the average over the entire day. This provides some idea of the
temperature but not much else about the variation over the day. Now, if the difference in
average temperature between the first half and second half of the day is also stored, we
can derive the averages for both the first and second half of the day from these two values.
This principle can be applied recursively because the first half of the day can be divided
into the first quarter of the day and the second quarter of the day. Thus, with four stored
values, we can perfectly reconstruct the averages in four quarters of the day. This process
can be applied recursively right down to the level of granularity of the sensor readings.
These “difference values” are used to derive wavelet coefficients. Of course, we did not yet
achieve any data reduction because the number of such coefficients can be shown to be
exactly equal to the length of the original time series.

It is important to understand that large difference values tell us more about the varia-
tions in the temperature values than the small ones, and they are therefore more important
to store. Therefore, larger coefficient values are stored after a normalization for the level of
granularity. This normalization, which is discussed later, has a bias towards storing coeffi-
cients representing longer time scales because trends over longer periods of time are more
informative for (global) series reconstruction.

More formally, the wavelet technique creates a decomposition of the time series into
a set of coefficient-weighted wavelet basis vectors. Each of the coefficients represents the
rough variation of the time series between the two halves of a particular time range. The

2.4. DATA REDUCTION AND TRANSFORMATION 51

SERIES
AVERAGES

WAVELET
COEFFICIENT

WAVELET
SHAPE

BASIS
VECTOR

(8, 6, 2, 3, 4, 6, 6, 5)

AVERAGES COEFFICIENT SHAPE VECTOR

1 1 1 0 0 0 0 0 0

0.5

1

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0.5

2.25(7, 2.5, 5, 5.5) 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1

0.25

0 25(4.75, 5.25)

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 10.25

5(5)

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Figure 2.5: Illustration of the wavelet decomposition

wavelet basis vector is a time series that represents the temporal range of this variation in
the form of a simple step function. The wavelet coefficients are of different orders, depending
on the length of the time-series segment analyzed, which also represents the granularity of
analysis. The higher-order coefficients represent the broad trends in the series because they
correspond to larger ranges. The more localized trends are captured by the lower-order
coefficients. Before providing a more notational description, a simple recursive description
of wavelet decomposition of a time series segment S is provided below in two steps:

1. Report half the average difference of the behavioral attribute values between the first
and second temporal halves of S as a wavelet coefficient.

2. Recursively apply this approach to first and second temporal halves of S.

At the end of the process, a reduction process is performed, where larger (normalized)
coefficients are retained. This normalization step will be described in detail later.

A more formal and notation-intensive description will be provided at this point. For ease
in discussion, assume that the length q of the series is a power of 2. For each value of k ≥ 1,
the Haar wavelet decomposition defines 2k−1 coefficients of order k. Each of these 2k−1

coefficients corresponds to a contiguous portion of the time series of length q/2k−1. The ith
of these 2k−1 coefficients corresponds to the segment in the series starting from position
(i − 1) · q/2k−1 + 1 to the position i · q/2k−1. Let us denote this coefficient by ψi

k and the
corresponding time-series segment by Si

k. At the same time, let us define the average value
of the first half of the Si

k by aik and that of the second half by bik. Then, the value of ψi
k

is given by (aik − bik)/2. More formally, if Φi
k denote the average value of the Si

k, then the
value of ψi

k can be defined recursively as follows:

ψi
k = (Φ2·i−1

k+1 − Φ2·i
k+1)/2 (2.14)

The set of Haar coefficients is defined by all the coefficients of order 1 to log2(q). In
addition, the global average Φ1

1 is required for the purpose of perfect reconstruction. The
total number of coefficients is exactly equal to the length of the original series, and the
dimensionality reduction is obtained by discarding the smaller (normalized) coefficients.
This will be discussed later.

52 CHAPTER 2. DATA PREPARATION

SERIES

0 25

5[1, 8]
SERIES
AVERAGE

+

[1 8]RELEVANT

2.25 0.25

+

[1, 8]
RANGES

[1, 4] [5, 8]

11 0.5 0.5

+ +

[1, 2] [3, 4] [5, 6] [7, 8]

568 2 3 4 66

++ + +
RELEVANT RANGES

Figure 2.6: The error tree from the wavelet decomposition

The coefficients of different orders provide an understanding of the major trends in
the data at a particular level of granularity. For example, the coefficient ψi

k is half the
quantity by which the first half of the segment Si

k is larger than the second half of the same
segment. Because larger values of k correspond to geometrically reducing segment sizes,
one can obtain an understanding of the basic trends at different levels of granularity. This
definition of the Haar wavelet makes it very easy to compute by a sequence of averaging and
differencing operations. Table 2.2 shows the computation of the wavelet coefficients for the
sequence (8, 6, 2, 3, 4, 6, 6, 5). This decomposition is illustrated in graphical form in Fig. 2.5.
Note that each value in the original series can be represented as a sum of log2(8) = 3
wavelet coefficients with a positive or negative sign attached in front. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the hierarchical
decomposition of the entire series. This is also referred to as the error tree. In Fig. 2.6,
the error tree for the wavelet decomposition in Table 2.2 is illustrated. The nodes in the
tree contain the values of the wavelet coefficients, except for a special super-root node that
contains the series average.

The number of wavelet coefficients in this series is 8, which is also the length of the
original series. The original series has been replicated just below the error tree in Fig. 2.6,
and can be reconstructed by adding or subtracting the values in the nodes along the path
leading to that value. Each coefficient in a node should be added, if we use the left branch
below it to reach to the series values. Otherwise, it should be subtracted. This natural
decomposition means that an entire contiguous range along the series can be reconstructed
by using only the portion of the error tree which is relevant to it.

As in all dimensionality reduction methods, smaller coefficients are ignored. We will
explain the process of discarding coefficients with the help of the notion of the basis vectors
associated with each coefficient:

The wavelet representation is a decomposition of the original time series of length q into
the weighted sum of a set of q “simpler” time series (or wavelets) that are orthogonal to
one another. These “simpler” time series are the basis vectors, and the wavelet coefficients
represent the weights of the different basis vectors in the decomposition.

Figure 2.5 shows these “simpler” time series along with their corresponding coefficients.
The number of wavelet coefficients (and basis vectors) is equal to the length of the series q.

2.4. DATA REDUCTION AND TRANSFORMATION 53

The length of the time series representing each basis vector is also q. Each basis vector has
a +1 or −1 value in the contiguous time-series segment from which a particular coefficient
was derived by a differencing operation. Otherwise, the value is 0 because the wavelet is
not related to variations in that region of the time series. The first half of the nonzero
segment of the basis vector is +1, and the second half is −1. This gives it the shape of a
wavelet when it is plotted as a time series, and also reflects the differencing operation in the
relevant time-series segment. Multiplying a basis vector with the coefficient has the effect
of creating a weighted time series in which the difference between the first half and second
half reflects the average difference between the corresponding segments in the original time
series. Therefore, by adding up all these weighted wavelets over different levels of granularity
in the error tree, it is possible to reconstruct the original series. The list of basis vectors in
Fig. 2.5 are the rows of the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the dot product of any pair of basis vectors is 0, and therefore these series are
orthogonal to one another. The most detailed coefficients have only one +1 and one −1,
whereas the most coarse coefficient has four +1 and −1 entries. In addition, the vector
(11111111) is needed to represent the series average.

For a time series T , letW1 . . .Wq be the corresponding basis vectors. Then, if a1 . . . aq are
the wavelet coefficients for the basis vectors W1 . . .Wq, the time series T can be represented
as follows:

T =
q∑

i=1

aiWi =
q∑

i=1

(ai||Wi||)
Wi

||Wi||
(2.15)

The coefficients represented in Fig. 2.5 are unnormalized because the underlying basis vec-
tors do not have unit norm. While ai is the unnormalized value from Fig. 2.5, the values
ai||Wi|| represent normalized coefficients. The values of ||Wi|| are different for coefficients
of different orders, and are equal to

√
2,

√
4, or

√
8 in this particular example. For example,

in Fig. 2.5, the broadest level unnormalized coefficient is −0.25, whereas the corresponding
normalized value is −0.25

√
8. After normalization, the basis vectors W1 . . .Wq are orthonor-

mal, and, therefore, the sum of the squares of the corresponding (normalized) coefficients
is equal to the retained energy in the approximated time series. Because the normalized
coefficients provide a new coordinate representation after axis rotation, Euclidean distances
between time series are preserved in this new representation if coefficients are not dropped.
It can be shown that by retaining the coefficients with the largest normalized values, the
error loss from the wavelet representation is minimized.

The previous discussion focused on the approximation of a single time series. In practice,
one might want to convert a database of N time series into N multidimensional vectors.
When a database of multiple time series is available, then two strategies can be used:

1. The coefficient for the same basis vector is selected for each series to create a mean-
ingful multidimensional database of low dimensionality. Therefore, the basis vectors

54 CHAPTER 2. DATA PREPARATION

1
1
1
1

1
1

1
1

GLOBAL
TEMPERATURE
AVERAGE 75

SEA SURFACE
TEMPERATURES

72
74

75
73

76
73

75
77

1
1
1
1

1
1

1
1

CUT ALONG X AXIS

=

BASE DATA

ALONG SPATIAL
GRID

80
76

78
79

71
75

72
74COEFFICIENT = 75

1
1
1

1
1
1

1
1
1

1
1
1

AVERAGE
TEMPERATURE
DIFFERENCE
BETWEEN LEFT

BINARY
MATRICES
REPRESENT
2 DIMENSIONAL

11 11AND RIGHT
BLOCKS = 7/4
COEFFICIENT= 7/8

CUT ALONG
Y AXIS

BASIS MATRICES

AVERAGE TEMP.
DIFFERENCE
BETWEEN TOP AND

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

AVERAGE
TEMPERATURE
DIFFERENCE BETWEEN

BOTTOM BLOCKS = 9/4
COEFFICIENT= 9/8

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

TOP AND BOTTOM
BLOCKS = 19/4
COEFFICIENT = 19/8

CUT ALONG
X AXIS

Figure 2.7: Illustration of the top levels of the wavelet decomposition for spatial data in a
grid containing sea-surface temperatures

that have the largest average normalized coefficient across the N different series are
selected.

2. The full dimensionality of the wavelet coefficient representation is retained. However,
for each time series, the largest normalized coefficients (in magnitude) are selected
individually. The remaining values are set to 0. This results in a sparse database
of high dimensionality, in which many values are 0. A method such as SVD can be
applied as a second step to further reduce the dimensionality. The second step of this
approach has the disadvantage of losing interpretability of the features of the wavelet
transform. Recall that the Haar wavelet is one of the few dimensionality reduction
transforms where the coefficients do have some interpretability in terms of specific
trends across particular time-series segments.

The wavelet decomposition method provides a natural method for dimensionality reduction
(and data-type transformation) by retaining only a small number of coefficients.

Wavelet Decomposition with Multiple Contextual Attributes

Time-series data contain a single contextual attribute, corresponding to the time value.
This helps in simplification of the wavelet decomposition. However, in some cases such as
spatial data, there may be two contextual attributes corresponding to the X-coordinate and
the Y -coordinate. For example, sea-surface temperatures are measured at spatial locations
that are described with the use of two coordinates. How can wavelet decomposition be
performed in such cases? In this section, a brief overview of the extension of wavelets to
multiple contextual attributes is provided.

Assume that the spatial data is represented in the form of a 2-dimensional grid of
size q × q. Recall that in the 1-dimensional case, differencing operations were applied over
contiguous segments of the time series by successive division of the time series in hierarchical
fashion. The corresponding basis vectors have +1 and −1 at the relevant positions. The 2-
dimensional case is completely analogous where contiguous areas of the spatial grid are used

2.4. DATA REDUCTION AND TRANSFORMATION 55

by successive divisions. These divisions are alternately performed along the different axes.
The corresponding basis vectors are 2-dimensional matrices of size q × q that regulate how
the differencing operations are performed.

An example of the strategy for 2-dimensional decomposition is illustrated in Fig. 2.7.
Only the top two levels of the decomposition are illustrated in the figure. Here, a 4× 4 grid
of spatial temperatures is used as an example. The first division along the X-axis divides
the spatial area into two blocks of size 4 × 2 each. The corresponding two-dimensional
binary basis matrix is illustrated into the same figure. The next phase divides each of these
4 × 2 blocks into blocks of size 2 × 2 during the hierarchical decomposition process. As
in the case of 1-dimensional time series, the wavelet coefficient is half the difference in
the average temperatures between the two halves of the relevant block being decomposed.
The alternating process of division along the X-axis and the Y -axis can be carried on to
the individual data entries. This creates a hierarchical wavelet error tree, which has many
similar properties to that created in the 1-dimensional case. The overall principles of this
decomposition are almost identical to the 1-dimensional case, with the major difference in
terms of how the cuts along different dimensions are performed by alternating at different
levels. The approach can be extended to the case of k > 2 contextual attributes with the
use of a round-robin rotation in the axes that are selected at different levels of the tree for
the differencing operation.

2.4.4.2 Multidimensional Scaling

Graphs are a powerful mechanism for representing relationships between objects. In some
data mining scenarios, the data type of an object may be very complex and heteroge-
neous such as a time series annotated with text and other numeric attributes. However,
a crisp notion of distance between several pairs of data objects may be available based
on application-specific goals. How can one visualize the inherent similarity between these
objects? How can one visualize the “nearness” of two individuals connected in a social net-
work? A natural way of doing so is the concept of multidimensional scaling (MDS). Although
MDS was originally proposed in the context of spatial visualization of graph-structured dis-
tances, it has much broader applicability for embedding data objects of arbitrary types in
multidimensional space. Such an approach also enables the use of multidimensional data
mining algorithms on the embedded data.

For a graph with n nodes, let δij = δji denote the specified distance between nodes
i and j. It is assumed that all

(
n
2

)
pairwise distances between nodes are specified. It is

desired to map the n nodes to n different k-dimensional vectors denoted by X1 . . . Xn, so
that the distances in multidimensional space closely correspond to the

(
n
2

)
distance values

in the distance graph. In MDS, the k coordinates of each of these n points are treated as
variables that need to be optimized, so that they can fit the current set of pairwise distances.
Metric MDS, also referred to as classical MDS, attempts to solve the following optimization
(minimization) problem:

O =
∑

i,j:i<j

(||Xi −Xj || − δij)2 (2.16)

Here || · || represents Euclidean norm. In other words, each node is represented by a mul-
tidimensional data point, such that the Euclidean distances between these points reflect
the graph distances as closely as possible. In other forms of nonmetric MDS, this objective
function might be different. This optimization problem therefore has n · k variables, and it
scales with the size of the data n and the desired dimensionality k of the embedding. The

56 CHAPTER 2. DATA PREPARATION

Table 2.3: Scaled eigenvectors of various similarity matrices yield embeddings with different
properties

Method Relevant similarity matrix

PCA Dot product matrix DDT after mean centering D
SVD Dot product matrix DDT

Spectral embedding Sparsified/normalized similarity matrix Λ−1/2WΛ−1/2

(Symmetric Version) (cf. Sect. 19.3.4 of Chap. 19)
MDS/ISOMAP Similarity matrix derived from distance matrix Δ with

cosine law S = − 1
2 (I −

U
n)Δ(I − U

n)
Kernel PCA Centered kernel matrix S = (I − U

n)K(I − U
n)

(cf. Sect. 10.6.4.1 of Chap. 10)

objective function O of Eq. 2.16 is usually divided by
∑

i,j:i<j δ
2
ij to yield a value in (0, 1).

The square root of this value is referred to as Kruskal stress.
The basic assumption in classical MDS is that the distance matrix Δ = [δ2ij]n×n is

generated by computing pairwise Euclidean distances in some hypothetical data matrix D
for which the entries and dimensionality are unknown. The matrix D can never be recovered
completely in classical MDS because Euclidean distances are invariant to mean translation
and axis rotation. The appropriate conventions for the data mean and axis orientation will
be discussed later. While the optimization of Eq. 2.16 requires numerical techniques, a direct
solution to classical MDS can be obtained by eigen decomposition under the assumption
that the specified distance matrix is Euclidean:

1. Any pairwise (squared) distance matrix Δ = [δ2ij]n×n can be converted into a sym-
metric dot-product matrix Sn×n with the help of the cosine law in Euclidean space. In
particular, if Xi and Xj are the embedded representations of the ith and jth nodes,
the dot product between Xi and Xj can be related to the distances as follows:

Xi ·Xj = −1
2
[
||Xi −Xj ||2 − (||Xi||2 + ||Xj ||2)

]
∀i, j ∈ {1 . . . n} (2.17)

For a mean-centered embedding, the value of ||Xi||2 + ||Xj ||2 can be expressed (see
Exercise 9) in terms of the entries of the distance matrix Δ as follows:

||Xi||2+ ||Xj ||2 =

∑n
p=1 ||Xi −Xp||2

n
+

∑n
q=1 ||Xj −Xq||2

n
−
∑n

p=1

∑n
q=1 ||Xp −Xq||2

n2

(2.18)
A mean-centering assumption is necessary because the Euclidean distance is mean
invariant, whereas the dot product is not. By substituting Eq. 2.18 in Eq. 2.17, it is
possible to express the dot product Xi ·Xj fully in terms of the entries of the distance
matrix Δ. Because this condition is true for all possible values of i and j, we can
conveniently express it in n×n matrix form. Let U be the n×n matrix of all 1s, and
let I be the identity matrix. Then, our argument above shows that the dot-product
matrix S is equal to − 1

2 (I−
U
n)Δ(I− U

n). Under the Euclidean assumption, the matrix
S is always positive semidefinite because it is equal to the n× n dot-product matrix
DDT of the unobserved data matrix D, which has unknown dimensionality. Therefore,
it is desired to determine a high-quality factorization of S into the form DkD

T
k , where

Dk is an n× k matrix of dimensionality k.

2.4. DATA REDUCTION AND TRANSFORMATION 57

2. Such a factorization can be obtained with eigen decomposition. Let S ≈ QkΣ2
kQ

T
k =

(QkΣk)(QkΣk)T represent the approximate diagonalization of S, where Qk is an n×k
matrix containing the largest k eigenvectors of S, and Σ2

k is a k × k diagonal matrix
containing the eigenvalues. The embedded representation is given by Dk = QkΣk.
Note that SVD also derives the optimal embedding as the scaled eigenvectors of the
dot-product matrix of the original data. Therefore, the squared error of representation
is minimized by this approach. This can also be shown to be equivalent to minimizing
the Kruskal stress.

The optimal solution is not unique, because we can multiply QkΣk with any k × k matrix
with orthonormal columns, and the pairwise Euclidean distances will not be affected. In
other words, any representation of QkΣk in a rotated axis system is optimal as well. MDS
finds an axis system like PCA in which the individual attributes are uncorrelated. In fact,
if classical MDS is applied to a distance matrix Δ, which is constructed by computing the
pairwise Euclidean distances in an actual data set, then it will yield the same embedding as
the application of PCA on that data set. MDS is useful when such a data set is not available
to begin with, and only the distance matrix Δ is available.

As in all dimensionality reduction methods, the value of the dimensionality k provides the
trade-off between representation size and accuracy. Larger values of the dimensionality k will
lead to lower stress. A larger number of data points typically requires a larger dimensionality
of representation to achieve the same stress. The most crucial element is, however, the
inherent structure of the distance matrix. For example, if a 10, 000×10, 000 distance matrix
contains the pairwise driving distance between 10,000 cities, it can usually be approximated
quite well with just a 2-dimensional representation. This is because driving distances are
an approximation of Euclidean distances in 2-dimensional space. On the other hand, an
arbitrary distance matrix may not be Euclidean and the distances may not even satisfy the
triangle inequality. As a result, the matrix S might not be positive semidefinite. In such
cases, it is sometimes still possible to use the metric assumption to obtain a high-quality
embedding. Specifically, only those positive eigenvalues may be used, whose magnitude
exceeds that of the most negative eigenvalue. This approach will work reasonably well if the
negative eigenvalues have small magnitude.

MDS is commonly used in nonlinear dimensionality reduction methods such as ISOMAP
(cf. Sect. 3.2.1.7 of Chap. 3). It is noteworthy that, in conventional SVD, the scaled eigen-
vectors of the n× n dot-product similarity matrix DDT yield a low-dimensional embedded
representation of D just as the eigenvectors of S yield the embedding in MDS. The eigen
decomposition of similarity matrices is fundamental to many linear and nonlinear dimen-
sionality reduction methods such as PCA, SVD, ISOMAP, kernel PCA, and spectral embed-
ding. The specific properties of each embedding are a result of the choice of the similarity
matrix and the scaling used on the resulting eigenvectors. Table 2.3 provides a preliminary
comparison of these methods, although some of them are discussed in detail only in later
chapters.

2.4.4.3 Spectral Transformation and Embedding of Graphs

Whereas MDS methods are designed for preserving global distances, spectral methods are
designed for preserving local distances for applications such as clustering. Spectral methods
work with similarity graphs in which the weights on the edges represent similarity rather
than distances. When distance values are available they are converted to similarity values
with kernel functions such as the heat kernel discussed earlier in this chapter. The notion

58 CHAPTER 2. DATA PREPARATION

of similarity is natural to many real Web, social, and information networks because of the
notion of homophily. For example, consider a bibliographic network in which nodes cor-
respond to authors, and the edges correspond to co-authorship relations. The weight of
an edge represents the number of publications between authors and therefore represents
one possible notion of similarity in author publications. Similarity graphs can also be con-
structed between arbitrary data types. For example, a set of n time series can be converted
into a graph with n nodes, where a node represents each time series. The weight of an
edge is equal to the similarity between the two nodes, and only edges with a “sufficient”
level of similarity are retained. A discussion of the construction of the similarity graph is
provided in Sect. 2.2.2.9. Therefore, if a similarity graph can be transformed to a multidi-
mensional representation that preserves the similarity structure between nodes, it provides
a transformation that can port virtually any data type to the easily usable multidimen-
sional representation. The caveat here is that such a transformation can only be used for
similarity-based applications such as clustering or nearest neighbor classification because
the transformation is designed to preserve the local similarity structure. The local similarity
structure of a data set is nevertheless fundamental to many data mining applications.

Let G = (N,A) be an undirected graph with node set N and edge set A. It is assumed
that the node set contains n nodes. A symmetric n×n weight matrix W = [wij] represents
the similarities between the different nodes. Unlike MDS, which works with a complete
graph of global distances, this graph is generally a sparsified representation of the similarity
of each object to its k nearest objects (cf. Sect. 2.2.2.9). The similarities to the remaining
objects are not distinguished from one another and set to 0. This is because spectral methods
preserve only the local similarity structure for applications such as clustering. All entries in
this matrix are assumed to be nonnegative, and higher values indicate greater similarity. If
an edge does not exist between a pair of nodes, then the corresponding entry is assumed to
be 0. It is desired to embed the nodes of this graph into a k-dimensional space so that the
similarity structure of the data is preserved.

First, let us discuss the much simpler problem of mapping the nodes onto a 1-dimensional
space. The generalization to the k-dimensional case is relatively straightforward. We would
like to map the nodes in N into a set of 1-dimensional real values y1 . . . yn on a line, so that
the distances between these points reflect the edge connectivity among the nodes. Therefore,
it is undesirable for nodes that are connected with high-weight edges, to be mapped onto
distant points on this line. Therefore, we would like to determine values of yi that minimize
the following objective function O:

O =
n∑

i=1

n∑
j=1

wij(yi − yj)2 (2.19)

This objective function penalizes the distances between yi and yj with weight proportional
to wij . Therefore, when wij is very large (more similar nodes), the data points yi and yj will
be more likely to be closer to one another in the embedded space. The objective function
O can be rewritten in terms of the Laplacian matrix L of weight matrix W . The Laplacian
matrix L is defined as Λ − W , where Λ is a diagonal matrix satisfying Λii =

∑n
j=1 wij .

Let the n-dimensional column vector of embedded values be denoted by y = (y1 . . . yn)T . It
can be shown after some algebraic simplification that the minimization objective function
O can be rewritten in terms of the Laplacian matrix:

O = 2yTLy (2.20)

2.5. SUMMARY 59

The matrix L is positive semidefinite with nonnegative eigenvalues because the sum-of-
squares objective function O is always nonnegative. We need to incorporate a scaling con-
straint to ensure that the trivial value of yi = 0 for all i, is not selected by the optimization
solution. A possible scaling constraint is as follows:

yTΛy = 1 (2.21)

The use of the matrix Λ in the constraint of Eq. 2.21 is essentially a normalization constraint,
which is discussed in detail in Sect. 19.3.4 of Chap. 19.

It can be shown that the value of O is optimized by selecting y as the smallest eigen-
vector of the relationship Λ−1Ly = λy. However, the smallest eigenvalue is always 0, and
it corresponds to the trivial solution where the node embedding y is proportional to the
vector containing only 1s. This trivial eigenvector is non-informative because it corresponds
to an embedding in which every node is mapped to the same point. Therefore, it can be
discarded, and it is not used in the analysis. The second-smallest eigenvector then provides
an optimal solution that is more informative.

This solution can be generalized to finding an optimal k-dimensional embedding by
determining successive directions corresponding to eigenvectors with increasing eigenvalues.
After discarding the first trivial eigenvector e1 with eigenvalue λ1 = 0, this results in a set
of k eigenvectors e2, e3 . . . ek+1, with corresponding eigenvalues λ2 ≤ λ3 ≤ . . . ≤ λk+1. Each
eigenvector is of length n and contains one coordinate value for each node. The ith value
along the jth eigenvector represents the jth coordinate of the ith node. This creates an
n× k matrix, corresponding to the k-dimensional embedding of the n nodes.

What do the small magnitude eigenvectors intuitively represent in the new transformed
space? By using the ordering of the nodes along a small magnitude eigenvector to create a
cut, the weight of the edges across the cut is likely to be small. Thus, this represents a cluster
in the space of nodes. In practice, the k smallest eigenvectors (after ignoring the first) are
selected to perform the reduction and create a k-dimensional embedding. This embedding
typically contains an excellent representation of the underlying similarity structure of the
nodes. The embedding can be used for virtually any similarity-based application, although
the most common application of this approach is spectral clustering. Many variations of
this approach exist in terms of how the Laplacian L is normalized, and in terms of how the
final clusters are generated. The spectral clustering method will be discussed in detail in
Sect. 19.3.4 of Chap. 19.

2.5 Summary

Data preparation is an important part of the data mining process because of the sensitivity
of the analytical algorithms to the quality of the input data. The data mining process
requires the collection of raw data from a variety of sources that may be in a form which
is unsuitable for direct application of analytical algorithms. Therefore, numerous methods
may need to be applied to extract features from the underlying data. The resulting data
may have significant missing values, errors, inconsistencies, and redundancies. A variety
of analytical methods and data scrubbing tools exist for imputing the missing entries or
correcting inconsistencies in the data.

Another important issue is that of data heterogeneity. The analyst may be faced with
a multitude of attributes that are distinct, and therefore the direct application of data
mining algorithms may not be easy. Therefore, data type portability is important, wherein
some subsets of attributes are converted to a predefined format. The multidimensional

60 CHAPTER 2. DATA PREPARATION

format is often preferred because of its simplicity. Virtually, any data type can be converted
to multidimensional representation with the two-step process of constructing a similarity
graph, followed by multidimensional embedding.

The data set may be very large, and it may be desirable to reduce its size both in terms
of the number of rows and the number of dimensions. The reduction in terms of the number
of rows is straightforward with the use of sampling. To reduce the number of columns in the
data, either feature subset selection or data transformation may be used. In feature subset
selection, only a smaller set of features is retained that is most suitable for analysis. These
methods are closely related to analytical methods because the relevance of a feature may
be application dependent. Therefore, the feature selection phase need to be tailored to the
specific analytical method.

There are two types of feature transformation. In the first type, the axis system may be
rotated to align with the correlations of the data and retain the directions with the greatest
variance. The second type is applied to complex data types such as graphs and time series.
In these methods, the size of the representation is reduced, and the data is also transformed
to a multidimensional representation.

2.6 Bibliographic Notes

The problem of feature extraction is an important one for the data mining process but it is
highly application specific. For example, the methods for extracting named entities from a
document data set [400] are very different from those that extract features from an image
data set [424]. An overview of some of the promising technologies for feature extraction in
various domains may be found in [245].

After the features have been extracted from different sources, they need to be inte-
grated into a single database. Numerous methods have been described in the conventional
database literature for data integration [194, 434]. Subsequently, the data needs to be
cleaned and missing entries need to be removed. A new field of probabilistic or uncertain
data has emerged [18] that models uncertain and erroneous records in the form of prob-
abilistic databases. This field is, however, still in the research stage and has not entered
the mainstream of database applications. Most of the current methods either use tools
for missing data analysis [71, 364] or more conventional data cleaning and data scrubbing
tools [222, 433, 435].

After the data has been cleaned, its size needs to be reduced either in terms of numerosity
or in terms of dimensionality. The most common and simple numerosity reduction method
is sampling. Sampling methods can be used for either static data sets or dynamic data sets.
Traditional methods for data sampling are discussed in [156]. The method of sampling has
also been extended to data streams in the form of reservoir sampling [35, 498]. The work
in [35] discusses the extension of reservoir sampling methods to the case where a biased
sample needs to be created from the data stream.

Feature selection is an important aspect of the data mining process. The approach is
often highly dependent on the particular data mining algorithm being used. For example, a
feature selection method that works well for clustering may not work well for classification.
Therefore, we have deferred the discussion of feature selection to the relevant chapters on
the topic on clustering and classification in this book. Numerous books are available on the
topic of feature selection [246, 366].

The two most common dimensionality reduction methods used for multidimensional
data are SVD [480, 481] and PCA [295]. These methods have also been extended to text in

2.7. EXERCISES 61

the form of LSA [184, 416]. It has been shown in many domains [25, 184, 416] that the use of
methods such as SVD, LSA, and PCA unexpectedly improves the quality of the underlying
representation after performing the reduction. This improvement is because of reduction
in noise effects by discarding the low-variance dimensions. Applications of SVD to data
imputation are found in [23] and Chap. 18 of this book. Other methods for dimensionality
reduction and transformation include Kalman filtering [260], Fastmap [202], and nonlinear
methods such as Laplacian eigenmaps [90], MDS [328], and ISOMAP [490].

Many dimensionality reduction methods have also been proposed in recent years that
simultaneously perform type transformation together with the reduction process. These
include wavelet transformation [475] and graph embedding methods such as ISOMAP and
Laplacian eigenmaps [90, 490]. A tutorial on spectral methods for graph embedding may be
found in [371].

2.7 Exercises

1. Consider the time-series (−3,−1, 1, 3, 5, 7, ∗). Here, a missing entry is denoted by ∗.
What is the estimated value of the missing entry using linear interpolation on a window
of size 3?

2. Suppose you had a bunch of text documents, and you wanted to determine all the
personalities mentioned in these documents. What class of technologies would you use
to achieve this goal?

3. Download the Arrythmia data set from the UCI Machine Learning Repository [213].
Normalize all records to a mean of 0 and a standard deviation of 1. Discretize each
numerical attribute into (a) 10 equi-width ranges and (b) 10 equi-depth ranges.

4. Suppose that you had a set of arbitrary objects of different types representing different
characteristics of widgets. A domain expert gave you the similarity value between every
pair of objects. How would you convert these objects into a multidimensional data set
for clustering?

5. Suppose that you had a data set, such that each data point corresponds to sea-surface
temperatures over a square mile of resolution 10×10. In other words, each data record
contains a 10 × 10 grid of temperature values with spatial locations. You also have
some text associated with each 10× 10 grid. How would you convert this data into a
multidimensional data set?

6. Suppose that you had a set of discrete biological protein sequences that are annotated
with text describing the properties of the protein. How would you create a multidi-
mensional representation from this heterogeneous data set?

7. Download the Musk data set from the UCI Machine Learning Repository [213]. Apply
PCA to the data set, and report the eigenvectors and eigenvalues.

8. Repeat the previous exercise using SVD.

9. For a mean-centered data set with points X1 . . . Xn, show that the following is true:

||Xi||2+ ||Xj ||2 =

∑n
p=1 ||Xi −Xp||2

n
+

∑n
q=1 ||Xj −Xq||2

n
−
∑n

p=1

∑n
q=1 ||Xp −Xq||2

n2

(2.22)

62 CHAPTER 2. DATA PREPARATION

10. Consider the time series 1, 1, 3, 3, 3, 3, 1, 1. Perform wavelet decomposition on the time
series. How many coefficients of the series are nonzero?

11. Download the Intel Research Berkeley data set. Apply a wavelet transformation to
the temperature values in the first sensor.

12. Treat each quantitative variable in the KDD CUP 1999 Network Intrusion Data Set
from the UCI Machine Learning Repository [213] as a time series. Perform the wavelet
decomposition of this time series.

13. Create samples of size n = 1, 10, 100, 1000, 10000 records from the data set of the
previous exercise, and determine the average value ei of each quantitative column i
using the sample. Let μi and σi be the global mean and standard deviation over the
entire data set. Compute the number of standard deviations zi by which ei varies from
μi.

zi =
|ei − μi|

σi

How does zi vary with n?

14. Show that any right singular vector y of A with 0 singular value satisfies Ay = 0.

15. Show that the diagonalization of a square matrix is a specialized variation of SVD.

Chapter 3

Similarity and Distances

“Love is the power to see similarity in the dissimilar.”—Theodor Adorno

3.1 Introduction

Many data mining applications require the determination of similar or dissimilar objects,
patterns, attributes, and events in the data. In other words, a methodical way of quanti-
fying similarity between data objects is required. Virtually all data mining problems, such
as clustering, outlier detection, and classification, require the computation of similarity. A
formal statement of the problem of similarity or distance quantification is as follows:

Given two objects O1 and O2, determine a value of the similarity Sim(O1, O2) (or dis-
tance Dist(O1, O2)) between the two objects.

In similarity functions, larger values imply greater similarity, whereas in distance func-
tions, smaller values imply greater similarity. In some domains, such as spatial data, it is
more natural to talk about distance functions, whereas in other domains, such as text, it is
more natural to talk about similarity functions. Nevertheless, the principles involved in the
design of such functions are generally invariant across different data domains. This chap-
ter will, therefore, use either of the terms “distance function” and “similarity function,”
depending on the domain at hand. Similarity and distance functions are often expressed in
closed form (e.g., Euclidean distance), but in some domains, such as time-series data, they
are defined algorithmically and cannot be expressed in closed form.

Distance functions are fundamental to the effective design of data mining algorithms,
because a poor choice in this respect may be very detrimental to the quality of the results.
Sometimes, data analysts use the Euclidean function as a “black box” without much thought
about the overall impact of such a choice. It is not uncommon for an inexperienced analyst
to invest significant effort in the algorithmic design of a data mining problem, while treating
the distance function subroutine as an afterthought. This is a mistake. As this chapter will
elucidate, poor choices of the distance function can sometimes be disastrously misleading

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 3 63
c© Springer International Publishing Switzerland 2015

64 CHAPTER 3. SIMILARITY AND DISTANCES

depending on the application domain. Good distance function design is also crucial for type
portability. As discussed in Sect. 2.4.4.3 of Chap. 2, spectral embedding can be used to
convert a similarity graph constructed on any data type into multidimensional data.

Distance functions are highly sensitive to the data distribution, dimensionality, and data
type. In some data types, such as multidimensional data, it is much simpler to define and
compute distance functions than in other types such as time-series data. In some cases,
user intentions (or training feedback on object pairs) are available to supervise the distance
function design. Although this chapter will primarily focus on unsupervised methods, we
will also briefly touch on the broader principles of using supervised methods.

This chapter is organized as follows. Section 3.2 studies distance functions for multidi-
mensional data. This includes quantitative, categorical, and mixed attribute data. Similarity
measures for text, binary, and set data are discussed in Sect. 3.3. Temporal data is discussed
in Sect. 3.4. Distance functions for graph data are addressed in Sect. 3.5. A discussion of
supervised similarity will be provided in Sect. 3.6. Section 3.7 gives a summary.

3.2 Multidimensional Data

Although multidimensional data are the simplest form of data, there is significant diversity
in distance function design across different attribute types such as categorical or quantitative
data. This section will therefore study each of these types separately.

3.2.1 Quantitative Data

The most common distance function for quantitative data is the Lp-norm. The Lp-norm
between two data points X = (x1 . . . xd) and Y = (y1 . . . yd) is defined as follows:

Dist(X,Y) =

(
d∑

i=1

|xi − yi|p
)1/p

. (3.1)

Two special cases of the Lp-norm are the Euclidean (p = 2) and the Manhattan (p = 1)
metrics. These special cases derive their intuition from spatial applications where they have
clear physical interpretability. The Euclidean distance is the straight-line distance between
two data points. The Manhattan distance is the “city block” driving distance in a region in
which the streets are arranged as a rectangular grid, such as the Manhattan Island of New
York City.

A nice property of the Euclidean distance is that it is rotation-invariant because the
straight-line distance between two data points does not change with the orientation of the
axis system. This property also means that transformations, such as PCA, SVD, or the
wavelet transformation for time series (discussed in Chap. 2), can be used on the data
without affecting1 the distance. Another interesting special case is that obtained by setting
p = ∞. The result of this computation is to select the dimension for which the two objects
are the most distant from one another and report the absolute value of this distance. All
other features are ignored.a

The Lp-norm is one of the most popular distance functions used by data mining analysts.
One of the reasons for its popularity is the natural intuitive appeal and interpretability of
L1- and L2-norms in spatial applications. The intuitive interpretability of these distances
does not, however, mean that they are the most relevant ones, especially for the high-
dimensional case. In fact, these distance functions may not work very well when the data

1The distances are affected after dimensions are dropped. However, the transformation itself does not
impact distances.

3.2. MULTIDIMENSIONAL DATA 65

Figure 3.1: Reduction in distance contrasts with increasing dimensionality and norms

are high dimensional because of the varying impact of data sparsity, distribution, noise,
and feature relevance. This chapter will discuss these broader principles in the context of
distance function design.

3.2.1.1 Impact of Domain-Specific Relevance

In some cases, an analyst may know which features are more important than others for a
particular application. For example, for a credit-scoring application, an attribute such as
salary is much more relevant to the design of the distance function than an attribute such
as gender, though both may have some impact. In such cases, the analyst may choose to
weight the features differently if domain-specific knowledge about the relative importance
of different features is available. This is often a heuristic process based on experience and
skill. The generalized Lp-distance is most suitable for this case and is defined in a similar
way to the Lp-norm, except that a coefficient ai is associated with the ith feature. This
coefficient is used to weight the corresponding feature component in the Lp-norm:

Dist(X,Y) =

(
d∑

i=1

ai · |xi − yi|p
)1/p

. (3.2)

This distance is also referred to as the generalized Minkowski distance. In many cases, such
domain knowledge is not available. Therefore, the Lp-norm may be used as a default option.
Unfortunately, without knowledge about the most relevant features, the Lp-norm is suscep-
tible to some undesirable effects of increasing dimensionality, as discussed subsequently.

3.2.1.2 Impact of High Dimensionality

Many distance-based data mining applications lose their effectiveness as the dimensionality
of the data increases. For example, a distance-based clustering algorithm may group unre-
lated data points because the distance function may poorly reflect the intrinsic semantic
distances between data points with increasing dimensionality. As a result, distance-based
models of clustering, classification, and outlier detection are often qualitatively ineffective.
This phenomenon is referred to as the “curse of dimensionality,” a term first coined by
Richard Bellman.

66 CHAPTER 3. SIMILARITY AND DISTANCES

To better understand the impact of the dimensionality curse on distances, let us examine
a unit cube of dimensionality d that is fully located in the nonnegative quadrant, with one
corner at the origin O. What is the Manhattan distance of the corner of this cube (say, at
the origin) to a randomly chosen point X inside the cube? In this case, because one end
point is the origin, and all coordinates are nonnegative, the Manhattan distance will sum up
the coordinates of X over the different dimensions. Each of these coordinates is uniformly
distributed in [0, 1]. Therefore, if Yi represents the uniformly distributed random variable
in [0, 1], it follows that the Manhattan distance is as follows:

Dist(O,X) =
d∑

i=1

(Yi − 0). (3.3)

The result is a random variable with a mean of μ = d/2 and a standard deviation of
σ =

√
d/12. For large values of d, it can be shown by the law of large numbers that the vast

majority of randomly chosen points inside the cube will lie in the range [Dmin, Dmax] =
[μ − 3σ, μ + 3σ]. Therefore, most of the points in the cube lie within a distance range of
Dmax − Dmin = 6σ =

√
3d from the origin. Note that the expected Manhattan distance

grows with dimensionality at a rate that is linearly proportional to d. Therefore, the ratio
of the variation in the distances to the absolute values that is referred to as Contrast(d),
is given by:

Contrast(d) =
Dmax −Dmin

μ
=
√

12/d. (3.4)

This ratio can be interpreted as the distance contrast between the different data points,
in terms of how different the minimum and maximum distances from the origin might
be considered. Because the contrast reduces with

√
d, it means that there is virtually no

contrast with increasing dimensionality. Lower contrasts are obviously not desirable because
it means that the data mining algorithm will score the distances between all pairs of data
points in approximately the same way and will not discriminate well between different
pairs of objects with varying levels of semantic relationships. The variation in contrast with
increasing dimensionality is shown in Fig. 3.1a. This behavior is, in fact, observed for all
Lp-norms at different values of p, though with varying severity. These differences in severity
will be explored in a later section. Clearly, with increasing dimensionality, a direct use of
the Lp-norm may not be effective.

3.2.1.3 Impact of Locally Irrelevant Features

A more fundamental way of exploring the effects of high dimensionality is by examining the
impact of irrelevant features. This is because many features are likely to be irrelevant in a
typical high-dimensional data set. Consider, for example, a set of medical records, contain-
ing patients with diverse medical conditions and very extensive quantitative measurements
about various aspects of an individual’s medical history. For a cluster containing diabetic
patients, certain attributes such as the blood glucose level are more important for the dis-
tance computation. On the other hand, for a cluster containing epileptic patients, a different
set of features will be more important. The additive effects of the natural variations in the
many attribute values may be quite significant. A distance metric such as the Euclidean
metric may unnecessarily contribute a high value from the more noisy components because
of its square-sum approach. The key point to understand here is that the precise features
that are relevant to the distance computation may sometimes be sensitive to the particular
pair of objects that are being compared. This problem cannot be solved by global feature

3.2. MULTIDIMENSIONAL DATA 67

Figure 3.2: Impact of p on contrast

subset selection during preprocessing, because the relevance of features is locally determined
by the pair of objects that are being considered. Globally, all features may be relevant.

When many features are irrelevant, the additive noise effects of the irrelevant features can
sometimes be reflected in the concentration of the distances. In any case, such irrelevant fea-
tures will almost always result in errors in distance computation. Because high-dimensional
data sets are often likely to contain diverse features, many of which are irrelevant, the addi-
tive effect with the use of a sum-of-squares approach, such as the L2-norm, can be very
detrimental.

3.2.1.4 Impact of Different Lp-Norms

Different Lp-norms do not behave in a similar way either in terms of the impact of irrelevant
features or the distance contrast. Consider the extreme case when p = ∞. This translates to
using only the dimension where the two objects are the most dissimilar. Very often, this may
be the impact of the natural variations in an irrelevant attribute that is not too useful for a
similarity-based application. In fact, for a 1000-dimensional application, if two objects have
similar values on 999 attributes, such objects should be considered very similar. However,
a single irrelevant attribute on which the two objects are very different will throw off the
distance value in the case of the L∞ metric. In other words, local similarity properties of
the data are de-emphasized by L∞. Clearly, this is not desirable.

This behavior is generally true for larger values of p, where the irrelevant attributes
are emphasized. In fact, it can also be shown that distance contrasts are also poorer for
larger values of p for certain data distributions. In Fig. 3.1b, the distance contrasts have
been illustrated for different values of p for the Lp-norm over different dimensionalities. The
figure is constructed using the same approach as Fig. 3.1a. While all Lp-norms degrade with
increasing dimensionality, the degradation is much faster for the plots representing larger
values of p. This trend can be understood better from Fig. 3.2 where the value of p is used
on the X-axis. In Fig. 3.2a, the contrast is illustrated with different values of p for data of
different dimensionalities. Figure 3.2b is derived from Fig. 3.2a, except that the results show
the fraction of the Manhattan performance achieved by higher order norms. It is evident
that the rate of degradation with increasing p is higher when the dimensionality of the data
is large. For 2-dimensional data, there is very little degradation. This is the reason that the
value of p matters less in lower dimensional applications.

68 CHAPTER 3. SIMILARITY AND DISTANCES

This argument has been used to propose the concept of fractional metrics, for which
p ∈ (0, 1). Such fractional metrics can provide more effective results for the high-dimensional
case. As a rule of thumb, the larger the dimensionality, the lower the value of p. However,
no exact rule exists on the precise choice of p because dimensionality is not the only factor
in determining the proper value of p. The precise choice of p should be selected in an
application-specific way, with the use of benchmarking. The bibliographic notes contain
discussions on the use of fractional metrics.

3.2.1.5 Match-Based Similarity Computation

Because it is desirable to select locally relevant features for distance computation, a question
arises as to how this can be achieved in a meaningful and practical way for data mining
applications. A simple approach that is based on the cumulative evidence of matching many
attribute values has been shown to be effective in many scenarios. This approach is also
relatively easy to implement efficiently.

A broader principle that seems to work well for high-dimensional data is that the impact
of the noisy variation along individual attributes needs to be de-emphasized while counting
the cumulative match across many dimensions. Of course, such an approach poses challenges
for low-dimensional data, because the cumulative impact of matching cannot be counted
in a statistically robust way with a small number of dimensions. Therefore, an approach is
needed that can automatically adjust to the dimensionality of the data.

With increasing dimensionality, a record is likely to contain both relevant and irrelevant
features. A pair of semantically similar objects may contain feature values that are dissimilar
(at the level of one standard deviation along that dimension) because of the noisy variations
in irrelevant features. Conversely, a pair of objects are unlikely to have similar values across
many attributes, just by chance, unless these attributes were relevant. Interestingly, the
Euclidean metric (and Lp-norm in general) achieves exactly the opposite effect by using
the squared sum of the difference in attribute values. As a result, the “noise” components
from the irrelevant attributes dominate the computation and mask the similarity effects of a
large number of relevant attributes. The L∞-norm provides an extreme example of this effect
where the dimension with the largest distance value is used. In high-dimensional domains
such as text, similarity functions such as the cosine measure (discussed in Sect. 3.3), tend
to emphasize the cumulative effect of matches on many attribute values rather than large
distances along individual attributes. This general principle can also be used for quantitative
data.

One way of de-emphasizing precise levels of dissimilarity is to use proximity thresh-
olding in a dimensionality-sensitive way. To perform proximity thresholding, the data are
discretized into equidepth buckets. Each dimension is divided into kd equidepth buckets,
containing a fraction 1/kd of the records. The number of buckets, kd, is dependent on the
data dimensionality d.

Let X = (x1 . . . xd) and Y = (y1 . . . yd) be two d-dimensional records. Then, for dimen-
sion i, if both xi and yi belong to the same bucket, the two records are said to be in
proximity on dimension i. The subset of dimensions on which X and Y map to the same
bucket is referred to as the proximity set, and it is denoted by S(X,Y , kd). Furthermore,
for each dimension i ∈ S(X,Y , kd), let mi and ni be the upper and lower bounds of the
bucket in dimension i, in which the two records are proximate to one another. Then, the

3.2. MULTIDIMENSIONAL DATA 69

Figure 3.3: Global data distributions impact distance computations

similarity PSelect(X,Y , kd) is defined as follows:

PSelect(X,Y , kd) =

⎡
⎣ ∑
i∈S(X,Y ,kd)

(
1− |xi − yi|

mi − ni

)p
⎤
⎦
1/p

. (3.5)

The value of the aforementioned expression will vary between 0 and |S(X,Y , kd)| because
each individual expression in the summation lies between 0 and 1. This is a similarity
function because larger values imply greater similarity.

The aforementioned similarity function guarantees a nonzero similarity component only
for dimensions mapping to the same bucket. The use of equidepth partitions ensures that
the probability of two records sharing a bucket for a particular dimension is given by 1/kd.
Thus, on average, the aforementioned summation is likely to have d/kd nonzero compo-
nents. For more similar records, the number of such components will be greater, and each
individual component is also likely to contribute more to the similarity value. The degree of
dissimilarity on the distant dimensions is ignored by this approach because it is often dom-
inated by noise. It has been shown theoretically [7] that picking kd ∝ d achieves a constant
level of contrast in high-dimensional space for certain data distributions. High values of kd
result in more stringent quality bounds for each dimension. These results suggest that in
high-dimensional space, it is better to aim for higher quality bounds for each dimension,
so that a smaller percentage (not number) of retained dimensions are used in similarity
computation. An interesting aspect of this distance function is the nature of its sensitivity
to data dimensionality. The choice of kd with respect to d ensures that for low-dimensional
applications, it bears some resemblance to the Lp-norm by using most of the dimensions;
whereas for high-dimensional applications, it behaves similar to text domain-like similarity
functions by using similarity on matching attributes. The distance function has also been
shown to be more effective for a prototypical nearest-neighbor classification application.

3.2.1.6 Impact of Data Distribution

The Lp-norm depends only on the two data points in its argument and is invariant to the
global statistics of the remaining data points. Should distances depend on the underlying
data distribution of the remaining points in the data set? The answer is yes. To illustrate
this point, consider the distribution illustrated in Fig. 3.3 that is centered at the origin. In

70 CHAPTER 3. SIMILARITY AND DISTANCES

Figure 3.4: Impact of nonlinear distributions on distance computations

addition, two data points A= (1, 2) and B= (1,−2) are marked in the figure. Clearly, A and
B are equidistant from the origin according to any Lp-norm. However, a question arises,
as to whether A and B should truly be considered equidistant from the origin O. This is
because the straight line from O to A is aligned with a high-variance direction in the data,
and statistically, it is more likely for data points to be further away in this direction. On
the other hand, many segments of the path from O to B are sparsely populated, and the
corresponding direction is a low-variance direction. Statistically, it is much less likely for B
to be so far away from O along this direction. Therefore, the distance from O to A ought
to be less than that of O to B.

The Mahalanobis distance is based on this general principle. Let Σ be its d×d covariance
matrix of the data set. In this case, the (i, j)th entry of the covariance matrix is equal to the
covariance between the dimensions i and j. Then, the Mahalanobis distance Maha(X,Y)
between two d-dimensional data points X and Y is as follows:

Maha(X,Y) =
√
(X − Y)Σ−1(X − Y)T .

A different way of understanding the Mahalanobis distance is in terms of principal compo-
nent analysis (PCA). The Mahalanobis distance is similar to the Euclidean distance, except
that it normalizes the data on the basis of the interattribute correlations. For example, if
the axis system were to be rotated to the principal directions of the data (shown in Fig. 3.3),
then the data would have no (second order) interattribute correlations. The Mahalanobis
distance is equivalent to the Euclidean distance in such a transformed (axes-rotated) data
set after dividing each of the transformed coordinate values by the standard deviation of
the data along that direction. As a result, the data point B will have a larger distance from
the origin than data point A in Fig. 3.3.

3.2.1.7 Nonlinear Distributions: ISOMAP

We now examine the case in which the data contain nonlinear distributions of arbitrary
shape. For example, consider the global distribution illustrated in Fig. 3.4. Among the three
data points A, B, and C, which pair are the closest to one another? At first sight, it would
seem that data points A and B are the closest on the basis of Euclidean distance. However,
the global data distribution tells us otherwise. One way of understanding distances is as the
shortest length of the path from one data point to another, when using only point-to-point
jumps from data points to one of their k-nearest neighbors based on a standard metric

3.2. MULTIDIMENSIONAL DATA 71

Figure 3.5: Impact of ISOMAP embedding on distances

such as the Euclidean measure. The intuitive rationale for this is that only short point-
to-point jumps can accurately measure minor changes in the generative process for that
point. Therefore, the overall sum of the point-to-point jumps reflects the aggregate change
(distance) from one point to another (distant) point more accurately than a straight-line
distance between the points. Such distances are referred to as geodesic distances. In the
case of Fig. 3.4, the only way to walk from A to B with short point-to-point jumps is to
walk along the entire elliptical shape of the data distribution while passing C along the way.
Therefore, A and B are actually the farthest pair of data points (from A, B, and C) on this
basis! The implicit assumption is that nonlinear distributions are locally Euclidean but are
globally far from Euclidean.

Such distances can be computed by using an approach that is derived from a nonlin-
ear dimensionality reduction and embedding method, known as ISOMAP. The approach
consists of two steps:

1. Compute the k-nearest neighbors of each point. Construct a weighted graph G with
nodes representing data points, and edge weights (costs) representing distances of
these k-nearest neighbors.

2. For any pair of points X and Y , report Dist(X,Y) as the shortest path between the
corresponding nodes in G.

These two steps are already able to compute the distances without explicitly performing
dimensionality reduction. However, an additional step of embedding the data into a multidi-
mensional space makes repeated distance computations between many pairs of points much
faster, while losing some accuracy. Such an embedding also allows the use of algorithms
that work naturally on numeric multidimensional data with predefined distance metrics.

This is achieved by using the all-pairs shortest-path problem to construct the full set of
distances between any pair of nodes in G. Subsequently, multidimensional scaling (MDS)
(cf. Sect. 2.4.4.2 of Chap. 2) is applied to embed the data into a lower dimensional space.
The overall effect of the approach is to “straighten out” the nonlinear shape of Fig. 3.4 and
embed it into a space where the data are aligned along a flat strip. In fact, a 1-dimensional
representation can approximate the data after this transformation. Furthermore, in this new
space, a distance function such as the Euclidean metric will work very well as long as metric
MDS was used in the final phase. A 3-dimensional example is illustrated in Fig. 3.5a, in
which the data are arranged along a spiral. In this figure, data points A and C seem much

72 CHAPTER 3. SIMILARITY AND DISTANCES

Figure 3.6: Impact of local distributions on distance computations

closer to each other than data point B. However, in the ISOMAP embedding of Fig. 3.5b,
the data point B is much closer to each of A and C. This example shows the drastic effect
of data distributions on distance computation.

In general, high-dimensional data are aligned along nonlinear low-dimensional shapes,
which are also referred to as manifolds. These manifolds can be “flattened out” to a new
representation where metric distances can be used effectively. Thus, this is a data trans-
formation method that facilitates the use of standard metrics. The major computational
challenge is in performing the dimensionality reduction. However, after the one-time pre-
processing cost has been paid for, repeated distance computations can be implemented
efficiently.

Nonlinear embeddings can also be achieved with extensions of PCA. PCA can be
extended to discovering nonlinear embeddings with the use of a method known as the
kernel trick. Refer to Sect. 10.6.4.1 of Chap. 10 for a brief description of kernel PCA.

3.2.1.8 Impact of Local Data Distribution

The discussion so far addresses the impact of global distributions on the distance computa-
tions. However, the distribution of the data varies significantly with locality. This variation
may be of two types. For example, the absolute density of the data may vary significantly
with data locality, or the shape of clusters may vary with locality. The first type of variation
is illustrated in Fig. 3.6a, which has two clusters containing the same number of points, but
one of them is denser than the other. Even though the absolute distance between (A, B)
is identical to that between (C, D), the distance between C and D should be considered
greater on the basis of the local data distribution. In other words, C and D are much farther
away in the context of what their local distributions look like. This problem is often encoun-
tered in many distance-based methods such as outlier detection. It has been shown that
methods that adjust for the local variations in the distances typically perform much better
than those that do not adjust for local variations. One of the most well-known methods for
outlier detection, known as Local Outlier Factor (LOF), is based on this principle.

A second example is illustrated in Fig. 3.6b, which illustrates the impact of varying local
orientation of the clusters. Here, the distance between (A, B) is identical to that between
(C, D) using the Euclidean metric. However, the local clusters in each region show very
different orientation. The high-variance axis of the cluster of data points relevant to (A, B)

3.2. MULTIDIMENSIONAL DATA 73

is aligned along the path from A to B. This is not true for (C, D). As a result, the intrinsic
distance between C and D is much greater than that between A and B. For example, if
the local Mahalanobis distance is computed using the relevant cluster covariance statistics,
then the distance between C and D will evaluate to a larger value than that between A and B.

Shared Nearest-Neighbor Similarity: The first problem can be at least partially alle-
viated with the use of a shared nearest-neighbor similarity. In this approach, the k-nearest
neighbors of each data point are computed in a preprocessing phase. The shared nearest-
neighbor similarity is equal to the number of common neighbors between the two data
points. This metric is locally sensitive because it depends on the number of common neigh-
bors, and not on the absolute values of the distances. In dense regions, the k-nearest neighbor
distances will be small, and therefore data points need to be closer together to have a larger
number of shared nearest neighbors. Shared nearest-neighbor methods can be used to define
a similarity graph on the underlying data points in which pairs of data points with at least
one shared neighbor have an edge between them. Similarity graph-based methods are almost
always locality sensitive because of their local focus on the k-nearest neighbor distribution.

Generic Methods: In generic local distance computation methods, the idea is to divide
the space into a set of local regions. The distances are then adjusted in each region using
the local statistics of this region. Therefore, the broad approach is as follows:

1. Partition the data into a set of local regions.

2. For any pair of objects, determine the most relevant region for the pair, and compute
the pairwise distances using the local statistics of that region. For example, the local
Mahalanobis distance may be used in each local region.

A variety of clustering methods are used for partitioning the data into local regions. In
cases where each of the objects in the pair belongs to a different region, either the global
distribution may be used, or the average may be computed using both local regions. Another
problem is that the first step of the algorithm (partitioning process) itself requires a notion of
distances for clustering. This makes the solution circular, and calls for an iterative solution.
Although a detailed discussion of these methods is beyond the scope of this book, the
bibliographic notes at the end of this chapter provide a number of pointers.

3.2.1.9 Computational Considerations

A major consideration in the design of distance functions is the computational complexity.
This is because distance function computation is often embedded as a subroutine that is
used repeatedly in the application at hand. If the subroutine is not efficiently implementable,
the applicability becomes more restricted. For example, methods such as ISOMAP are
computationally expensive and hard to implement for very large data sets because these
methods scale with at least the square of the data size. However, they do have the merit that
a one-time transformation can create a representation that can be used efficiently by data
mining algorithms. Distance functions are executed repeatedly, whereas the preprocessing is
performed only once. Therefore, it is definitely advantageous to use a preprocessing-intensive
approach as long as it speeds up later computations. For many applications, sophisticated
methods such as ISOMAP may be too expensive even for one-time analysis. For such cases,
one of the earlier methods discussed in this chapter may need to be used. Among the
methods discussed in this section, carefully chosen Lp-norms and match-based techniques
are the fastest methods for large-scale applications.

74 CHAPTER 3. SIMILARITY AND DISTANCES

3.2.2 Categorical Data

Distance functions are naturally computed as functions of value differences along dimensions
in numeric data, which is ordered. However, no ordering exists among the discrete values
of categorical data. How can distances be computed? One possibility is to transform the
categorical data to numeric data with the use of the binarization approach discussed in
Sect. 2.2.2.2 of Chap. 2. Because the binary vector is likely to be sparse (many zero values),
similarity functions can be adapted from other sparse domains such as text. For the case of
categorical data, it is more common to work with similarity functions rather than distance
functions because discrete values can be matched more naturally.

Consider two records X = (x1 . . . xd) and Y = (y1 . . . yd). The simplest possible similar-
ity between the records X and Y is the sum of the similarities on the individual attribute
values. In other words, if S(xi, yi) is the similarity between the attributes values xi and yi,
then the overall similarity is defined as follows:

Sim(X,Y) =
d∑

i=1

S(xi, yi).

Therefore, the choice of S(xi, yi) defines the overall similarity function.
The simplest possible choice is to set S(xi, yi) to 1 when xi = yi and 0 otherwise. This is

also referred to as the overlap measure. The major drawback of this measure is that it does
not account for the relative frequencies among the different attributes. For example, consider
a categorical attribute in which the attribute value is “Normal” for 99% of the records, and
either “Cancer” or “Diabetes” for the remaining records. Clearly, if two records have a
“Normal” value for this variable, this does not provide statistically significant information
about the similarity, because the majority of pairs are likely to show that pattern just by
chance. However, if the two records have a matching “Cancer” or “Diabetes” value for this
variable, it provides significant statistical evidence of similarity. This argument is similar
to that made earlier about the importance of the global data distribution. Similarities or
differences that are unusual are statistically more significant than those that are common.

In the context of categorical data, the aggregate statistical properties of the data set
should be used in computing similarity. This is similar to how the Mahalanobis distance
was used to compute similarity more accurately with the use of global statistics. The idea is
that matches on unusual values of a categorical attribute should be weighted more heavily
than values that appear frequently. This also forms the underlying principle of many com-
mon normalization techniques that are used in domains such as text. An example, which
is discussed in the next section, is the use of inverse document frequency (IDF) in the
information retrieval domain. An analogous measure for categorical data will be introduced
here.

The inverse occurrence frequency is a generalization of the simple matching measure.
This measure weights the similarity between the matching attributes of two records by an
inverse function of the frequency of the matched value. Thus, when xi = yi, the similarity
S(xi, yi) is equal to the inverse weighted frequency, and 0 otherwise. Let pk(x) be the
fraction of records in which the kth attribute takes on the value of x in the data set. In
other words, when xi = yi, the value of S(xi, yi) is 1/pk(xi)2 and 0 otherwise.

S(xi, yi) =

{
1/pk(xi)2 if xi = yi

0 otherwise
(3.6)

3.3. TEXT SIMILARITY MEASURES 75

A related measure is the Goodall measure. As in the case of the inverse occurrence
frequency, a higher similarity value is assigned to a match when the value is infrequent.
In a simple variant of this measure [104], the similarity on the kth attribute is defined as
1− pk(xi)2, when xi = yi, and 0 otherwise.

S(xi, yi) =

{
1− pk(xi)2 if xi = yi

0 otherwise
(3.7)

The bibliographic notes contain pointers to various similarity measures for categorical data.

3.2.3 Mixed Quantitative and Categorical Data

It is fairly straightforward to generalize the approach to mixed data by adding the weights
of the numeric and quantitative components. The main challenge is in deciding how to
assign the weights of the quantitative and categorical components. For example, consider
two records X = (Xn, Xc) and Y = (Yn, Yc) where Xn, Yn are the subsets of numerical
attributes and Xc, Yc are the subsets of categorical attributes. Then, the overall similarity
between X and Y is defined as follows:

Sim(X,Y) = λ ·NumSim(Xn, Yn) + (1− λ) · CatSim(Xc, Yc). (3.8)

The parameter λ regulates the relative importance of the categorical and numerical
attributes. The choice of λ is a difficult one. In the absence of domain knowledge about
the relative importance of attributes, a natural choice is to use a value of λ that is equal to
the fraction of numerical attributes in the data. Furthermore, the proximity in numerical
data is often computed with the use of distance functions rather than similarity functions.
However, distance values can be converted to similarity values as well. For a distance value
of dist, a common approach is to use a kernel mapping that yields [104] the similarity value
of 1/(1 + dist).

Further normalization is required to meaningfully compare the similarity value com-
ponents on the numerical and categorical attributes that may be on completely different
scales. One way of achieving this goal is to determine the standard deviations in the similar-
ity values over the two domains with the use of sample pairs of records. Each component of
the similarity value (numerical or categorical) is divided by its standard deviation. There-
fore, if σc and σn are the standard deviations of the similarity values in the categorical and
numerical components, then Eq. 3.8 needs to be modified as follows:

Sim(X,Y) = λ ·NumSim(Xn, Yn)/σn + (1− λ) · CatSim(Xc, Yc)/σc. (3.9)

By performing this normalization, the value of λ becomes more meaningful, as a true relative
weight between the two components. By default, this weight can be set to be proportional
to the number of attributes in each component unless specific domain knowledge is available
about the relative importance of attributes.

3.3 Text Similarity Measures

Strictly speaking, text can be considered quantitative multidimensional data when it is
treated as a bag of words. The frequency of each word can be treated as a quantitative
attribute, and the base lexicon can be treated as the full set of attributes. However, the

76 CHAPTER 3. SIMILARITY AND DISTANCES

structure of text is sparse in which most attributes take on 0 values. Furthermore, all word
frequencies are nonnegative. This special structure of text has important implications for
similarity computation and other mining algorithms. Measures such as the Lp-norm do not
adjust well to the varying length of the different documents in the collection. For example,
the L2-distance between two long documents will almost always be larger than that between
two short documents even if the two long documents have many words in common, and the
short documents are completely disjoint. How can one normalize for such irregularities?
One way of doing so is by using the cosine measure. The cosine measure computes the angle
between the two documents, which is insensitive to the absolute length of the document.
Let X = (x1 . . . xd) and Y = (y1 . . . yd) be two documents on a lexicon of size d. Then, the
cosine measure cos(X,Y) between X and Y can be defined as follows:

cos(X,Y) =
∑d

i=1 xi · yi√∑d
i=1 x

2
i ·

√∑d
i=1 y

2
i

. (3.10)

The aforementioned measure simply uses the raw frequencies between attributes. However,
as in other data types, it is possible to use global statistical measures to improve the
similarity computation. For example, if two documents match on an uncommon word, it is
more indicative of similarity than the case where two documents match on a word that occurs
very commonly. The inverse document frequency idi, which is a decreasing function of the
number of documents ni in which the ith word occurs, is commonly used for normalization:

idi = log(n/ni). (3.11)

Here, the number of documents in the collection is denoted by n. Another common adjust-
ment is to ensure that the excessive presence of single word does not throw off the similarity
measure. A damping function f(·), such as the square root or the logarithm, is optionally
applied to the frequencies before similarity computation.

f(xi) =
√
xi

f(xi) = log(xi)

In many cases, the damping function is not used, which is equivalent to setting f(xi) to xi.
Therefore, the normalized frequency h(xi) for the ith word may be defined as follows:

h(xi) = f(xi) · idi. (3.12)

Then, the cosine measure is defined as in Eq. 3.10, except that the normalized frequencies
of the words are used:

cos(X,Y) =
∑d

i=1 h(xi) · h(yi)√∑d
i=1 h(xi)2 ·

√∑d
i=1 h(yi)2

. (3.13)

Another measure that is less commonly used for text is the Jaccard coefficient J(X,Y):

J(X,Y) =
∑d

i=1 h(xi) · h(yi)∑d
i=1 h(xi)2 +

∑d
i=1 h(yi)2 −

∑d
i=1 h(xi) · h(yi)

. (3.14)

The Jaccard coefficient is rarely used for the text domain, but it is used commonly for
sparse binary data sets.

3.4. TEMPORAL SIMILARITY MEASURES 77

3.3.1 Binary and Set Data

Binary multidimensional data are a representation of set-based data, where a value of 1
indicates the presence of an element in a set. Binary data occur commonly in market-
basket domains in which transactions contain information corresponding to whether or not
an item is present in a transaction. It can be considered a special case of text data in which
word frequencies are either 0 or 1. If SX and SY are two sets with binary representations
X and Y , then it can be shown that applying Eq. 3.14 to the raw binary representation of
the two sets is equivalent to:

J(X,Y) =
∑d

i=1 xi · yi∑d
i=1 x

2
i +

∑d
i=1 y

2
i −

∑d
i=1 xi · yi

=
|SX ∩ SY |
|SX ∪ SY |

. (3.15)

This is a particularly intuitive measure because it carefully accounts for the number of
common and disjoint elements in the two sets.

3.4 Temporal Similarity Measures

Temporal data contain a single contextual attribute representing time and one or more
behavioral attributes that measure the properties varying along a particular time period.
Temporal data may be represented as continuous time series, or as discrete sequences,
depending on the application domain. The latter representation may be viewed as the
discrete version of the former. It should be pointed out that discrete sequence data are not
always temporal because the contextual attribute may represent placement. This is typically
the case in biological sequence data. Discrete sequences are also sometimes referred to as
strings. Many of the similarity measures used for time series and discrete sequences can be
reused across either domain, though some of the measures are more suited to one of the
domains. Therefore, this section will address both data types, and each similarity measure
will be discussed in a subsection on either continuous series or discrete series, based on its
most common use. For some measures, the usage is common across both data types.

3.4.1 Time-Series Similarity Measures

The design of time-series similarity measures is highly application specific. For example, the
simplest possible similarity measure between two time series of equal length is the Euclidean
metric. Although such a metric may work well in many scenarios, it does not account for
several distortion factors that are common in many applications. Some of these factors are
as follows:

1. Behavioral attribute scaling and translation: In many applications, the different time
series may not be drawn on the same scales. For example, the time series representing
various stocks prices may show similar patterns of movements, but the absolute values
may be very different both in terms of the mean and the standard deviation. For
example, the share prices of several different hypothetical stock tickers are illustrated
in Fig. 3.7. All three series show similar patterns but with different scaling and some
random variations. Clearly, they show similar patterns but cannot be meaningfully
compared if the absolute values of the series are used.

2. Temporal (contextual) attribute translation: In some applications, such as real-time
analysis of financial markets, the different time series may represent the same periods

78 CHAPTER 3. SIMILARITY AND DISTANCES

Figure 3.7: Impact of scaling, translation, and noise

in time. In other applications, such as the analysis of the time series obtained from
medical measurements, the absolute time stamp of when the reading was taken is not
important. In such cases, the temporal attribute value needs to be shifted in at least
one of the time series to allow more effective matching.

3. Temporal (contextual) attribute scaling: In this case, the series may need to be
stretched or compressed along the temporal axis to allow more effective matching.
This is referred to as time warping. An additional complication is that different tem-
poral segments of the series may need to be warped differently to allow for better
matching. In Fig. 3.7, the simplest case of warping is shown where the entire set
of values for stock A has been stretched. In general, the time warping can be more
complex where different windows in the same series may be stretched or compressed
differently. This is referred to as dynamic time warping (DTW).

4. Noncontiguity in matching: Long time series may have noisy segments that do not
match very well with one another. For example, one of the series in Fig. 3.7 has a
window of dropped readings because of data collection limitations. This is common
in sensor data. The distance function may need to be robust to such noise.

Some of these issues can be addressed by attribute normalization during preprocessing.

3.4.1.1 Impact of Behavioral Attribute Normalization

The translation and scaling issues are often easier to address for the behavioral attributes as
compared to contextual attributes, because they can be addressed by normalization during
preprocessing:

1. Behavioral attribute translation: The behavioral attribute is mean centered during
preprocessing.

2. Behavioral attribute scaling: The standard deviation of the behavioral attribute is
scaled to 1 unit.

It is important to remember that these normalization issues may not be relevant to every
application. Some applications may require only translation, only scaling, or neither of
the two. Other applications may require both. In fact, in some cases, the wrong choice of

3.4. TEMPORAL SIMILARITY MEASURES 79

Figure 3.8: Illustration of dynamic time warping by repeating elements

normalization may have detrimental effects on the interpretability of the results. Therefore,
an analyst needs to judiciously select a normalization approach depending on application-
specific needs.

3.4.1.2 Lp-Norm

The Lp-norm may be defined for two series X = (x1 . . . xn) and Y = (y1 . . . yn). This
measure treats a time series as a multidimensional data point in which each time stamp is
a dimension.

Dist(X,Y) =

(
n∑

i=1

|xi − yi|p
)1/p

(3.16)

The Lp-norm can also be applied to wavelet transformations of the time series. In the
special case where p = 2, accurate distance computations are obtained with the wavelet
representation, if most of the larger wavelet coefficients are retained in the representation.
In fact, it can be shown that if no wavelet coefficients are removed, then the distances are
identical between the two representations. This is because wavelet transformations can be
viewed as a rotation of an axis system in which each dimension represents a time stamp.
Euclidean metrics are invariant to axis rotation. The major problem with Lp-norms is that
they are designed for time series of equal length and cannot address distortions on the
temporal (contextual) attributes.

3.4.1.3 Dynamic Time Warping Distance

DTW stretches the series along the time axis in a varying (or dynamic) way over different
portions to enable more effective matching. An example of warping is illustrated in Fig. 3.8a,
where the two series have very similar shape in segments A, B, and C, but specific segments
in each series need to be stretched appropriately to enable better matching. The DTW
measure has been adapted from the field of speech recognition, where time warping was
deemed necessary to match different speaking speeds. DTW can be used either for time-
series or sequence data, because it addresses only the issue of contextual attribute scaling,
and it is unrelated to the nature of the behavioral attribute. The following description is a
generic one, which can be used either for time-series or sequence data.

80 CHAPTER 3. SIMILARITY AND DISTANCES

The Lp-metric can only be defined between two time series of equal length. However,
DTW, by its very nature, allows the measurement of distances between two series of different
lengths. In the Lp distance, a one-to-one mapping exists between the time stamps of the
two time series. However, in DTW, a many-to-one mapping is allowed to account for the
time warping. This many-to-one mapping can be thought of in terms of repeating some of
the elements in carefully chosen segments of either of the two time series. This can be used
to artificially create two series of the same length that have a one-to-one mapping between
them. The distances can be measured on the resulting warped series using any distance
measure such as the Lp-norm. For example, in Fig. 3.8b, some elements in a few segments
of either series are repeated to create a one-to-one mapping between the two series. Note
that the two series now look much more similar than the two series in Fig. 3.8a. Of course,
this repeating can be done in many different ways, and the goal is to perform it in an
optimal way to minimize the DTW distance. The optimal choice of warping is determined
using dynamic programming.

To understand how DTW generalizes a one-to-one distance metric such as the Lp-norm,
consider the L1 (Manhattan) metric M(Xi, Yi), computed on the first i elements of two
time series X = (x1 . . . xn) and Y = (y1 . . . yn) of equal length. The value of M(Xi, Yi) can
be written recursively as follows:

M(Xi, Yi) = |xi − yi|+M(Xi−1, Yi−1). (3.17)

Note that the indices of both series are reduced by 1 in the right-hand side because of the
one-to-one matching. In DTW, both indices need not reduce by 1 unit because a many-to-
one mapping is allowed. Rather, any one or both indices may reduce by 1, depending on the
best match between the two time series (or sequences). The index that did not reduce by
1 corresponds to the repeated element. The choice of index reduction is naturally defined,
recursively, as an optimization over the various options.

Let DTW (i, j) be the optimal distance between the first i and first j elements of two
time series X = (x1 . . . xm) and Y = (y1 . . . yn), respectively. Note that the two time series
are of lengths m and n, which may not be the same. Then, the value of DTW (i, j) is defined
recursively as follows:

DTW (i, j) = distance(xi, yj) + min

⎧⎪⎨
⎪⎩
DTW (i, j − 1) repeat xi

DTW (i− 1, j) repeat yj
DTW (i− 1, j − 1) repeat neither

. (3.18)

The value of distance(xi, yj) may be defined in a variety of ways, depending on the appli-
cation domain. For example, for continuous time series, it may be defined as |xi − yi|p, or
by a distance that accounts for (behavioral attribute) scaling and translation. For discrete
sequences, it may be defined using a categorical measure. The DTW approach is primarily
focused on warping the contextual attribute, and has little to do with the nature of the
behavioral attribute or distance function. Because of this fact, time warping can easily be
extended to multiple behavioral attributes by simply using the distances along multiple
attributes in the recursion.

Equation 3.18 yields a natural iterative approach. The approach starts by initializing
DTW (0, 0) to 0, DTW (0, j) to ∞ for j ∈ {1 . . . n}, and DTW (i, 0) to ∞ for i ∈ {1 . . .m}.
The algorithm computes DTW (i, j) by repeatedly executing Eq. 3.18 with increasing index
values of i and j. This can be achieved by a simple nested loop in which the indices i and
j increase from 1 to m and 1 to n, respectively:

3.4. TEMPORAL SIMILARITY MEASURES 81

Figure 3.9: Illustration of warping paths

for i = 1 to m
for j = 1 to n
compute DTW (i, j) using Eq. 3.18

The aforementioned code snippet is a nonrecursive and iterative approach. It is also
possible to implement a recursive computer program by directly using Eq. 3.18. Therefore,
the approach requires the computation of all values of DTW (i, j) for every i ∈ [1,m] and
every j ∈ [1, n]. This is a m × n grid of values, and therefore the approach may require
O(m · n) iterations, where m and n are lengths of the series.

The optimal warping can be understood as an optimal path through different values of
i and j in the m× n grid of values, as illustrated in Fig. 3.9. Three possible paths, denoted
by A, B, and C, are shown in the figure. These paths only move to the right (increasing i
and repeating yj), upward (increasing j and repeating xi), or both (repeating neither).

A number of practical constraints are often added to the DTW computation. One com-
monly used constraint is the window constraint that imposes a minimum level w of positional
alignment between matched elements. The window constraint requires that DTW (i, j) be
computed only when |i − j| ≤ w. Otherwise, the value may be set to ∞ by default. For
example, the paths B and C in Fig. 3.9 no longer need to be computed. This saves the
computation of many values in the dynamic programming recursion. Correspondingly, the
computations in the inner variable j of the nested loop above can be saved by constraining
the index j, so that it is never more than w units apart from the outer loop variable i.
Therefore, the inner loop index j is varied from max{0, i− w} to min{n, i+ w}.

The DTW distance can be extended to multiple behavioral attributes easily, if it is
assumed that the different behavioral attributes have the same time warping. In this case,
the recursion is unchanged, and the only difference is that distance(xi, yj) is computed
using a vector-based distance measure. We have used a bar on xi and yj to denote that
these are vectors of multiple behavioral attributes. This multivariate extension is discussed
in Sect. 16.3.4.1 of Chap. 16 for measuring distances between 2-dimensional trajectories.

82 CHAPTER 3. SIMILARITY AND DISTANCES

3.4.1.4 Window-Based Methods

The example in Fig. 3.7 illustrates a case where dropped readings may cause a gap in
the matching. Window-based schemes attempt to decompose the two series into windows
and then “stitch” together the similarity measure. The intuition here is that if two series
have many contiguous matching segments, they should be considered similar. For long time
series, a global match becomes increasingly unlikely. The only reasonable choice is the use
of windows for measurement of segment-wise similarity.

Consider two time series X and Y , and let X1 . . . Xr and Y1 . . . Yr be temporally ordered
and nonoverlapping windows extracted from the respective series. Note that some windows
from the base series may not be included in these segments at all. These correspond to
the noise segments that are dropped. Then, the overall similarity between X and Y can be
computed as follows:

Sim(X,Y) =
r∑

i=1

Match(Xi, Yi). (3.19)

A variety of measures discussed in this section may be used to instantiate the value
of Match(Xi, Yi). It is tricky to determine the proper value of Match(Xi, Yi) because a
contiguous match along a long window is more unusual than many short segments of the
same length. The proper choice of Match(Xi, Yi) may depend on the application at hand.
Another problem is that the optimal decomposition of the series into windows may be a
difficult task. These methods are not discussed in detail here, but the interested reader is
referred to the bibliographic notes for pointers to relevant methods.

3.4.2 Discrete Sequence Similarity Measures

Discrete sequence similarity measures are based on the same general principles as time-
series similarity measures. As in the case of time-series data, discrete sequence data may
or may not have a one-to-one mapping between the positions. When a one-to-one mapping
does exist, many of the multidimensional categorical distance measures can be adapted to
this domain, just as the Lp-norm can be adapted to continuous time series. However, the
application domains of discrete sequence data are most often such that a one-to-one mapping
does not exist. Aside from the DTW approach, a number of other dynamic programming
methods are commonly used.

3.4.2.1 Edit Distance

The edit distance defines the distance between two strings as the least amount of “effort”
(or cost) required to transform one sequence into another by using a series of transformation
operations, referred to as “edits.” The edit distance is also referred to as the Levenshtein
distance. The edit operations include the use of symbol insertions, deletions, and replace-
ments with specific costs. In many models, replacements are assumed to have higher cost
than insertions or deletions, though insertions and deletions are usually assumed to have
the same cost. Consider the sequences ababababab and bababababa, which are drawn on
the alphabet {a, b}. The first string can be transformed to the second in several ways. For
example, if every alphabet in the first string was replaced by the other alphabet, it would
result in the second string. The cost of doing so is that of ten replacements. However, a more
cost-efficient way of achieving the same goal is to delete the leftmost element of the string,
and insert the symbol “a” as the rightmost element. The cost of this sequence of operations
is only one insertion and one deletion. The edit distance is defined as the optimal cost to

3.4. TEMPORAL SIMILARITY MEASURES 83

transform one string to another with a sequence of insertions, deletions, and replacements.
The computation of the optimal cost requires a dynamic programming recursion.

For two sequences X = (x1 . . . xm) and Y = (y1 . . . yn), let the edits be performed on
sequence X to transform to Y . Note that this distance function is asymmetric because of
the directionality to the edit. For example, Edit(X,Y) may not be the same as Edit(Y ,X)
if the insertion and deletion costs are not identical. In practice, however, the insertion and
deletion costs are assumed to be the same.

Let Iij be a binary indicator that is 0 when the ith symbol of X and jth symbols of Y
are the same. Otherwise, the value of this indicator is 1. Then, consider the first i symbols
of X and the first j symbols of Y . Assume that these segments are represented by Xi and
Yj , respectively. Let Edit(i, j) represent the optimal matching cost between these segments.
The goal is to determine what operation to perform on the last element of Xi so that it
either matches an element in Yj , or it is deleted. Three possibilities arise:

1. The last element of Xi is deleted, and the cost of this is [Edit(i−1, j)+Deletion Cost].
The last element of the truncated segment Xi−1 may or may not match the last
element of Yj at this point.

2. An element is inserted at the end of Xi to match the last element of Yj , and the cost
of this is [Edit(i, j − 1) + Insertion Cost]. The indices of the edit term Edit(i, j − 1)
reflect the fact that the matched elements of both series can now be removed.

3. The last element of Xi is flipped to that of Yj if it is different, and the cost of this
is [Edit(i− 1, j − 1) + Iij · (Replacement Cost)]. In cases where the last elements are
the same, the additional replacement cost is not incurred, but progress is nevertheless
made in matching. This is because the matched elements (xi, yj) of both series need
not be considered further, and residual matching cost is Edit(i− 1, j − 1).

Clearly, it is desirable to pick the minimum of these costs for the optimal matching. There-
fore, the optimal matching is defined by the following recursion:

Edit(i, j) = min

⎧⎪⎨
⎪⎩
Edit(i− 1, j) + Deletion Cost
Edit(i, j − 1) + Insertion Cost
Edit(i− 1, j − 1) + Iij · (Replacement Cost)

. (3.20)

Furthermore, the bottom of the recursion also needs to be set up. The value of Edit(i, 0) is
equal to the cost of i deletions for any value of i, and that of Edit(0, j) is equal to the cost
of j insertions for any value of j. This nicely sets up the dynamic programming approach.
It is possible to write the corresponding computer program either as a nonrecursive nested
loop (as in DTW) or as a recursive computer program that directly uses the aforementioned
cases.

The aforementioned discussion assumes general insertion, deletion, and replacement
costs. In practice, however, the insertion and deletion costs are usually assumed to be
the same. In such a case, the edit function is symmetric because it does not matter which
of the two strings is edited to the other. For any sequence of edits from one string to the
other, a reverse sequence of edits, with the same cost, will exist from the other string to the
first.

The edit distance can be extended to numeric data by changing the primitive operations
of insert, delete, and replace to transformation rules that are designed for time series. Such
transformation rules can include making basic changes to the shape of the time series in

84 CHAPTER 3. SIMILARITY AND DISTANCES

window segments. This is more complex because it requires one to design the base set of
allowed time-series shape transformations and their costs. Such an approach has not found
much popularity for time-series distance computation.

3.4.2.2 Longest Common Subsequence

A subsequence of a sequence is a set of symbols drawn from the sequence in the same
order as the original sequence. A subsequence is different from a substring in that the
values of the subsequence need not be contiguous, whereas the values in the substring
need to be contiguous. Consider the sequences agbfcgdhei and afbgchdiei. In this case,
ei is a substring of both sequences and also a subsequence. However, abcde and fgi are
subsequences of both strings but not substrings. Clearly, subsequences of longer length are
indicative of a greater level of matching between the strings. Unlike the edit distance, the
longest common subsequence (LCSS) is a similarity function because higher values indicate
greater similarity. The number of possible subsequences is exponentially related to the
length of a string. However, the LCSS can be computed in polynomial time with a dynamic
programming approach.

For two sequences X = (x1 . . . xm) and Y = (y1 . . . yn), consider the first i symbols of
X and the first j symbols of Y . Assume that these segments are represented by Xi and Yj ,
respectively. Let LCSS(i, j) represent the optimal LCSS values between these segments.
The goal here is to either match the last element of Xi and Yj , or delete the last element
in one of the two sequences. Two possibilities arise:

1. The last element of Xi matches Yj , in which case, it cannot hurt to instantiate the
matching on the last element and then delete the last element of both sequences. The
similarity value LCSS(i, j) can be expressed recursively as this is LCSS(i−1, j−1)+1.

2. The last element does not match. In such a case, the last element of at least one
of the two strings needs to be deleted under the assumption that it cannot occur
in the matching. In this case, the value of LCSS(i, j) is either LCSS(i, j − 1) or
LCSS(i− 1, j), depending on which string is selected for deletion.

Therefore, the optimal matching can be expressed by enumerating these cases:

LCSS(i, j) = max

⎧⎪⎨
⎪⎩
LCSS(i− 1, j − 1) + 1 only if xi = yj

LCSS(i− 1, j) otherwise (no match on xi)
LCSS(i, j − 1) otherwise (no match on yj)

. (3.21)

Furthermore, the boundary conditions need to be set up. The values of LCSS(i, 0) and
LCSS(0, j) are always equal to 0 for any value of i and j. As in the case of the DTW
and edit-distance computations, a nested loop can be set up to compute the final value. A
recursive computer program can also be implemented that uses the aforementioned recursive
relationship. Although the LCSS approach is defined for a discrete sequence, it can also be
applied to a continuous time series after discretizing the time-series values into a sequence
of categorical values. Alternatively, one can discretize the time-series movement between
two contiguous time stamps. The particular choice of discretization depends on the goals of
the application at hand.

3.5. GRAPH SIMILARITY MEASURES 85

Figure 3.10: Shortest path versus homophily

3.5 Graph Similarity Measures

The similarity in graphs can be measured in different ways, depending on whether the
similarity is being measured between two graphs, or between two nodes in a single graph. For
simplicity, undirected networks are assumed, though the measures can be easily generalized
to directed networks.

3.5.1 Similarity between Two Nodes in a Single Graph

Let G = (N,A) be an undirected network with node set N and edge set A. In some domains,
costs are associated with nodes, whereas in others, weights are associated with nodes. For
example, in domains such as bibliographic networks, the edges are naturally weighted, and
in road networks, the edges naturally have costs. Typically, distance functions work with
costs, whereas similarity functions work with weights. Therefore, it may be assumed that
either the cost cij , or the weight wij of the edge (i, j) is specified. It is often possible to
convert costs into weights (and vice versa) using simple heuristic kernel functions that are
chosen in an application-specific way. An example is the heat kernel K(x) = e−x2/t2 .

It is desired to measure the similarity between any pair of nodes i and j. The principle of
similarity between two nodes in a single graph is based on the concept of homophily in real
networks. The principle of homophily is that nodes are typically more similar in a network
when they are connected to one another with edges. This is common in many domains such
as the Web and social networks. Therefore, nodes that are connected via short paths and
many paths should be considered more similar. The latter criterion is closely related to the
concept of connectivity between nodes. The first criterion is relatively easy to implement
with the use of the shortest-path algorithm in networks.

3.5.1.1 Structural Distance-Based Measure

The goal here is to measure the distances from any source node s to any other node in
the network. Let SP (s, j) be the shortest-path distance from source node s to any node
j. The value of SP (s, j) is initialized to 0 for j = s and ∞ otherwise. Then, the distance
computation of s to all other nodes in the network may be summarized in a single step that
is performed exactly once for each node in the network in a certain order:

• Among all nodes not examined so far, select the node i with the smallest value of
SP (s, i) and update the distance labels of each of its neighbors j as follows:

SP (s, j) = min{SP (s, j), SP (s, i) + cij}. (3.22)

86 CHAPTER 3. SIMILARITY AND DISTANCES

This is the essence of the well-known Dijkstra algorithm. This approach is linear in the
number of edges in the network, because it examines each node and its incident edges exactly
once. The approach provides the distances from a single node to all other nodes in a single
pass. The final value of SP (s, j) provides a quantification of the structural distance between
node s and node j. Structural distance-based measures do not leverage the multiplicity in
paths between a pair of nodes because they focus only on the raw structural distances.

3.5.1.2 Random Walk-Based Similarity

The structural measure of the previous section does not work well when pairs of nodes
have varying numbers of paths between them. For example, in Fig. 3.10, the shortest-path
length between nodes A and B is 4, whereas that between A and C is 3. Yet, node B should
be considered more similar to A because the two nodes are more tightly connected with a
multiplicity of paths. The idea of random walk-based similarity is based on this principle.

In random walk-based similarity, the approach is as follows: Imagine a random walk
that starts at source node s, and proceeds to an adjacent node with weighted probability
proportional to wij . Furthermore, at any given node, it is allowed to “jump back” to the
source node s with a probability referred to as the restart probability. This will result in
a probability distribution that is heavily biased toward the source node s. Nodes that are
more similar to s will have higher probability of visits. Such an approach will adjust very
well to the scenario illustrated in Fig. 3.10 because the walk will visit B more frequently.

The intuition here is the following: If you were lost in a road network and drove randomly,
while taking turns randomly, which location are you more likely to reach? You are more
likely to reach a location that is close by and can be reached in multiple ways. The random-
walk measure therefore provides a result that is different from that of the shortest-path
measure because it also accounts for multiplicity in paths during similarity computation.

This similarity computation is closely related to concept of PageRank, which is used to
rank pages on the Web by search engines. The corresponding modification for measuring
similarity between nodes is also referred to as personalized PageRank, and a symmetric
variant is referred to as SimRank. This chapter will not discuss the details of PageRank
and SimRank computation, because it requires more background on the notion of ranking.
Refer to Sect. 18.4 of Chap. 18, which provides a more complete discussion.

3.5.2 Similarity Between Two Graphs

In many applications, multiple graphs are available, and it is sometimes necessary to deter-
mine the distances between multiple graphs. A complicating factor in similarity computation
is that many nodes may have the same label, which makes them indistinguishable. Such
cases arise often in domains such as chemical compound analysis. Chemical compounds
can be represented as graphs where nodes are elements, and bonds are edges. Because an
element may be repeated in a molecule, the labels on the nodes are not distinct. Deter-
mining a similarity measure on graphs is extremely challenging in this scenario, because
even the very special case of determining whether the two graphs are identical is hard.
The latter problem is referred to as the graph isomorphism problem, and is known to the
NP-hard [221]. Numerous measures, such as the graph-edit distance and substructure-based
similarity, have been proposed to address this very difficult case. The core idea in each of
these methods is as follows:

3.6. SUPERVISED SIMILARITY FUNCTIONS 87

1. Maximum common subgraph distance: When two graphs contain a large subgraph in
common, they are generally considered more similar. The maximum common subgraph
problem and the related distance functions are addressed in Sect. 17.2 of Chap. 17.

2. Substructure-based similarity: Although it is difficult to match two large graphs, it
is much easier to match smaller substructures. The core idea is to count the fre-
quently occurring substructures between the two graphs and report it as a similarity
measure. This can be considered the graph analog of subsequence-based similarity in
strings. Substructure-based similarity measures are discussed in detail in Sect. 17.3 of
Chap. 17.

3. Graph-edit distance: This distance measure is analogous to the string-edit distance
and is defined as the number of edits required to transform one graph to the other.
Because graph matching is a hard problem, this measure is difficult to implement
for large graphs. The graph-edit distance is discussed in detail in Sect. 17.2.3.2 of
Chap. 17.

4. Graph kernels: Numerous kernel functions have been defined to measure similarity
between graphs, such as the shortest-path kernel and the random-walk kernel. This
topic is discussed in detail in Sect. 17.3.3 of Chap. 17.

These methods are quite complex and require a greater background in the area of graphs.
Therefore, the discussion of these measures is deferred to Chap. 17 of this book.

3.6 Supervised Similarity Functions

The previous sections discussed similarity measures that do not require any understanding
of user intentions. In practice, the relevance of a feature or the choice of distance function
heavily depends on the domain at hand. For example, for an image data set, should the color
feature or the texture feature be weighted more heavily? These aspects cannot be modeled by
a distance function without taking the user intentions into account. Unsupervised measures,
such as the Lp-norm, treat all features equally, and have little intrinsic understanding of
the end user’s semantic notion of similarity. The only way to incorporate this information
into the similarity function is to use explicit feedback about the similarity and dissimilarity
of objects. For example, the feedback can be expressed as the following sets of object pairs:

S ={(Oi, Oj) : Oi is similar to Oj}
D ={(Oi, Oj) : Oi is dissimilar to Oj}.

How can this information be leveraged to improve the computation of similarity? Many
specialized methods have been designed for supervised similarity computation. A common
approach is to assume a specific closed form of the similarity function for which the param-
eters need to be learned. An example is the weighted Lp-norm in Sect. 3.2.1.1, where the
parameters represented by Θ correspond to the feature weights (a1 . . . ad). Therefore, the
first step is to create a distance function f(Oi, Oj ,Θ), where Θ is a set of unknown weights.
Assume that higher values of the function indicate greater dissimilarity. Therefore, this is a
distance function, rather than a similarity function. Then, it is desirable to determine the

88 CHAPTER 3. SIMILARITY AND DISTANCES

parameters Θ, so that the following conditions are satisfied as closely as possible:

f(Oi, Oj ,Θ) =

{
0 if (Oi, Oj) ∈ S
1 if (Oi, Oj) ∈ D

. (3.23)

This can be expressed as a least squares optimization problem over Θ, with the following
error E:

E =
∑

(Oi,Oj)∈S
(f(Oi, Oj ,Θ)− 0)2 +

∑
(Oi,Oj)∈D

(f(Oi, Oj ,Θ)− 1)2. (3.24)

This objective function can be optimized with respect to Θ with the use of any off-the-shelf
optimization solver. If desired, the additional constraint Θ ≥ 0 can be added where appropri-
ate. For example, when Θ represents the feature weights (a1 . . . ad) in the Minkowski metric,
it is natural to make the assumption of nonnegativity of the coefficients. Such a constrained
optimization problem can be easily solved using many nonlinear optimization methods.
The use of a closed form such as f(Oi, Oj ,Θ) ensures that the function f(Oi, Oj ,Θ) can be
computed efficiently after the one-time cost of computing the parameters Θ.

Where possible, user feedback should be used to improve the quality of the distance
function. The problem of learning distance functions can be modeled more generally as that
of classification. The classification problem will be studied in detail in Chaps. 10 and 11.
Supervised distance function design with the use of Fisher’s method is also discussed in
detail in the section on instance-based learning in Chap. 10.

3.7 Summary

The problem of distance function design is a crucial one in the context of data mining
applications. This is because many data mining algorithms use the distance function as a
key subroutine, and the design of the function directly impacts the quality of the results.
Distance functions are highly sensitive to the type of the data, the dimensionality of the
data, and the global and local nature of the data distribution.

The Lp-norm is the most common distance function used for multidimensional data.
This distance function does not seem to work well with increasing dimensionality. Higher
values of p work particularly poorly with increasing dimensionality. In some cases, it has
been shown that fractional metrics are particularly effective when p is chosen in the range
(0, 1). Numerous proximity-based measures have also been shown to work effectively with
increasing dimensionality.

The data distribution also has an impact on the distance function design. The sim-
plest possible distance function that uses global distributions is the Mahalanobis metric.
This metric is a generalization of the Euclidean measure, and stretches the distance values
along the principal components according to their variance. A more sophisticated approach,
referred to as ISOMAP, uses nonlinear embeddings to account for the impact of nonlinear
data distributions. Local normalization can often provide more effective measures when the
distribution of the data is heterogeneous.

Other data types such as categorical data, text, temporal, and graph data present further
challenges. The determination of time-series and discrete-sequence similarity measures is
closely related because the latter can be considered the categorical version of the former.
The main problem is that two similar time series may exhibit different scaling of their
behavioral and contextual attributes. This needs to be accounted for with the use of different
normalization functions for the behavioral attribute, and the use of warping functions for the

3.8. BIBLIOGRAPHIC NOTES 89

contextual attribute. For the case of discrete sequence data, many distance and similarity
functions, such as the edit distance and the LCSS, are commonly used.

Because distance functions are often intended to model user notions of similarity, feed-
back should be used, where possible, to improve the distance function design. This feedback
can be used within the context of a parameterized model to learn the optimal parameters
that are consistent with the user-provided feedback.

3.8 Bibliographic Notes

The problem of similarity computation has been studied extensively by data mining
researchers and practitioners in recent years. The issues with high-dimensional data were
explored in [17, 88, 266]. In the work of [88], the impact of the distance concentration
effects on high-dimensional computation was analyzed. The work in [266] showed the rel-
ative advantages of picking distance functions that are locality sensitive. The work also
showed the advantages of the Manhattan metric over the Euclidean metric. Fractional met-
rics were proposed in [17] and generally provide more accurate results than the Manhattan
and Euclidean metric. The ISOMAPmethod discussed in this chapter was proposed in [490].
Numerous local methods are also possible for distance function computation. An example
of an effective local method is the instance-based method proposed in [543].

Similarity in categorical data was explored extensively in [104]. In this work, a number
of similarity measures were analyzed, and how they apply to the outlier detection problem
was tested. The Goodall measure is introduced in [232]. The work in [122] uses information
theoretic measures for computation of similarity. Most of the measures discussed in this
chapter do not distinguish between mismatches on an attribute. However, a number of
methods proposed in [74, 363, 473] distinguish between mismatches on an attribute value.
The premise is that infrequent attribute values are statistically expected to be more different
than frequent attribute values. Thus, in these methods, S(xi, yi) is not always set to 0
(or the same value) when xi and yi are different. A local similarity measure is presented
in [182]. Text similarity measures have been studied extensively in the information retrieval
literature [441].

The area of time-series similarity measures is a rich one, and a significant number of
algorithms have been designed in this context. An excellent tutorial on the topic may be
found in [241]. The use of wavelets for similarity computation in time series is discussed
in [130]. While DTW has been used extensively in the context of speech recognition, its
use in data mining applications was first proposed by [87]. Subsequently, it has been used
extensively [526] for similarity-based applications in data mining. The major challenge in
data mining applications is its computationally intensive nature. Numerous methods [307]
have been proposed in the time series data mining literature to speed up DTW. A fast
method for computing a lower bound on DTW was proposed in [308], and how this can be
used for exact indexing was shown. A window-based approach for computing similarity in
sequences with noise, scaling, and translation was proposed in [53]. Methods for similarity
search in multivariate time series and sequences were proposed in [499, 500]. The edit
distance has been used extensively in biological data for computing similarity between
sequences [244]. The use of transformation rules for time-series similarity has been studied
in [283, 432]. Such rules can be used to create edit distance-like measures for continuous
time series. Methods for the string-edit distance are proposed in [438]. It has been shown
in [141], how the Lp-norm may be combined with the edit distance. Algorithms for the
LCSS problem may be found in [77, 92, 270, 280]. A survey of these algorithms is available

90 CHAPTER 3. SIMILARITY AND DISTANCES

in [92]. A variety of other measures for time series and sequence similarity are discussed
in [32].

Numerous methods are available for similarity search in graphs. A variety of efficient
shortest-path algorithms for finding distances between nodes may be found in [62]. The page
rank algorithm is discussed in the Web mining book [357]. The NP-hardness of the graph
isomorphism problem, and other closely related problems to the edit distance are discussed
in [221]. The relationship between the maximum common subgraph problem and the graph-
edit distance problem has been studied in [119, 120]. The problem of substructure similarity
search, and the use of substructures for similarity search have been addressed in [520, 521].
A notion of mutation distance has been proposed in [522] to measure the distances between
graphs. A method that uses the frequent substructures of a graph for similarity computation
in clustering is proposed in [42]. A survey on graph-matching techniques may be found
in [26].

User supervision has been studied extensively in the context of distance function learn-
ing. One of the earliest methods that parameterizes the weights of the Lp-norm was proposed
in [15]. The problem of distance function learning has been formally related to that of clas-
sification and has been studied recently in great detail. A survey that covers the important
topics in distance function learning is provided in [33].

3.9 Exercises

1. Compute the Lp-norm between (1, 2) and (3, 4) for p = 1, 2,∞.

2. Show that the Mahalanobis distance between two data points is equivalent to the
Euclidean distance on a transformed data set, where the transformation is performed
by representing the data along the principal components, and dividing by the standard
deviation of each component.

3. Download the Ionosphere data set from the UCI Machine Learning Repository [213],
and compute the Lp distance between all pairs of data points, for p = 1, 2, and
∞. Compute the contrast measure on the data set for the different norms. Repeat
the exercise after sampling the first r dimensions, where r varies from 1 to the full
dimensionality of the data.

4. Compute the match-based similarity, cosine similarity, and the Jaccard coefficient,
between the two sets {A,B,C} and {A,C,D,E}.

5. Let X and Y be two data points. Show that the cosine angle between the vectors X
and Y is given by:

cosine(X,Y) =
||X||2 + ||Y ||2 − ||X − Y ||2

2||X||||Y ||
. (3.25)

6. Download the KDD Cup Network Intrusion Data Set for the UCI Machine Learning
Repository [213]. Create a data set containing only the categorical attributes. Compute
the nearest neighbor for each data point using the (a) match measure, and (b) inverse
occurrence frequency measure. Compute the number of cases where there is a match
on the class label.

7. Repeat Exercise 6 using only the quantitative attributes of the data set, and using
the Lp-norm for values of p = 1, 2,∞.

3.9. EXERCISES 91

8. Repeat Exercise 6 using all attributes in the data set. Use the mixed-attribute function,
and different combinations of the categorical and quantitative distance functions of
Exercises 6 and 7.

9. Write a computer program to compute the edit distance.

10. Write a computer program to compute the LCSS distance.

11. Write a computer program to compute the DTW distance.

12. Assume that Edit(X,Y) represents the cost of transforming the string X to Y . Show
that Edit(X,Y) and Edit(Y ,X) are the same, as long as the insertion and deletion
costs are the same.

13. Compute the edit distance, and LCSS similarity between: (a) ababcabc and babcbc and
(b) cbacbacba and acbacbacb. For the edit distance, assume equal cost of insertion,
deletion, or replacement.

14. Show that Edit(i, j), LCSS(i, j), and DTW (i, j) are all monotonic functions in i and
j.

15. Compute the cosine measure using the raw frequencies between the following two
sentences:

(a) “The sly fox jumped over the lazy dog.”

(b) “The dog jumped at the intruder.”

16. Suppose that insertion and deletion costs are 1, and replacement costs are 2 units
for the edit distance. Show that the optimal edit distance between two strings can be
computed only with insertion and deletion operations. Under the aforementioned cost
assumptions, show that the optimal edit distance can be expressed as a function of
the optimal LCSS distance and the lengths of the two strings.

Chapter 4

Association Pattern Mining

“The pattern of the prodigal is: rebellion, ruin, repentance,
reconciliation, restoration.”—Edwin Louis Cole

4.1 Introduction

The classical problem of association pattern mining is defined in the context of supermarket
data containing sets of items bought by customers, which are referred to as transactions.
The goal is to determine associations between groups of items bought by customers, which
can intuitively be viewed as k-way correlations between items. The most popular model for
association pattern mining uses the frequencies of sets of items as the quantification of the
level of association. The discovered sets of items are referred to as large itemsets, frequent
itemsets, or frequent patterns. The association pattern mining problem has a wide variety
of applications:

1. Supermarket data: The supermarket application was the original motivating scenario
in which the association pattern mining problem was proposed. This is also the reason
that the term itemset is used to refer to a frequent pattern in the context of super-
market items bought by a customer. The determination of frequent itemsets provides
useful insights about target marketing and shelf placement of the items.

2. Text mining: Because text data is often represented in the bag-of-words model, fre-
quent pattern mining can help in identifying co-occurring terms and keywords. Such
co-occurring terms have numerous text-mining applications.

3. Generalization to dependency-oriented data types: The original frequent pattern min-
ing model has been generalized to many dependency-oriented data types, such as
time-series data, sequential data, spatial data, and graph data, with a few modifica-
tions. Such models are useful in applications such as Web log analysis, software bug
detection, and spatiotemporal event detection.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 4 93
c© Springer International Publishing Switzerland 2015

94 CHAPTER 4. ASSOCIATION PATTERN MINING

4. Other major data mining problems: Frequent pattern mining can be used as a subrou-
tine to provide effective solutions to many data mining problems such as clustering,
classification, and outlier analysis.

Because the frequent pattern mining problem was originally proposed in the context of
market basket data, a significant amount of terminology used to describe both the data (e.g.,
transactions) and the output (e.g., itemsets) is borrowed from the supermarket analogy.
From an application-neutral perspective, a frequent pattern may be defined as a frequent
subset, defined on the universe of all possible sets. Nevertheless, because the market basket
terminology has been used popularly, this chapter will be consistent with it.

Frequent itemsets can be used to generate association rules of the form X ⇒ Y , where
X and Y are sets of items. A famous example of an association rule, which has now become
part1 of the data mining folklore, is {Beer} ⇒ {Diapers}. This rule suggests that buying
beer makes it more likely that diapers will also be bought. Thus, there is a certain direc-
tionality to the implication that is quantified as a conditional probability. Association rules
are particularly useful for a variety of target market applications. For example, if a super-
market owner discovers that {Eggs,Milk} ⇒ {Y ogurt} is an association rule, he or she can
promote yogurt to customers who often buy eggs and milk. Alternatively, the supermarket
owner may place yogurt on shelves that are located in proximity to eggs and milk.

The frequency-based model for association pattern mining is very popular because of its
simplicity. However, the raw frequency of a pattern is not quite the same as the statistical
significance of the underlying correlations. Therefore, numerous models for frequent pattern
mining have been proposed that are based on statistical significance. This chapter will also
explore some of these alternative models, which are also referred to as interesting patterns.

This chapter is organized as follows. Section 4.2 introduces the basic model for associa-
tion pattern mining. The generation of association rules from frequent itemsets is discussed
in Sect. 4.3. A variety of algorithms for frequent pattern mining are discussed in Sect. 4.4.
This includes the Apriori algorithm, a number of enumeration tree algorithms, and a suffix-
based recursive approach. Methods for finding interesting frequent patterns are discussed in
Sect. 4.5. Meta-algorithms for frequent pattern mining are discussed in Sect. 4.6. Section 4.7
discusses the conclusions and summary.

4.2 The Frequent Pattern Mining Model

The problem of association pattern mining is naturally defined on unordered set-wise data.
It is assumed that the database T contains a set of n transactions, denoted by T1 . . . Tn.
Each transaction Ti is drawn on the universe of items U and can also be represented as
a multidimensional record of dimensionality, d = |U |, containing only binary attributes.
Each binary attribute in this record represents a particular item. The value of an attribute
in this record is 1 if that item is present in the transaction, and 0 otherwise. In practical
settings, the universe of items U is very large compared to the typical number of items in
each transaction Ti. For example, a supermarket database may have tens of thousands of
items, and a single transaction will typically contain less than 50 items. This property is
often leveraged in the design of frequent pattern mining algorithms.

An itemset is a set of items. A k-itemset is an itemset that contains exactly k items.
In other words, a k-itemset is a set of items of cardinality k. The fraction of transactions

1This rule was derived in some early publications on supermarket data. No assertion is made here about
the likelihood of such a rule appearing in an arbitrary supermarket data set.

4.2. THE FREQUENT PATTERN MINING MODEL 95

Table 4.1: Example of a snapshot of a market basket data set

tid Set of items Binary representation

1 {Bread,Butter,Milk} 110010
2 {Eggs,Milk, Y ogurt} 000111
3 {Bread,Cheese,Eggs,Milk} 101110
4 {Eggs,Milk, Y ogurt} 000111
5 {Cheese,Milk, Y ogurt} 001011

in T1 . . . Tn in which an itemset occurs as a subset provides a crisp quantification of its
frequency. This frequency is also known as the support.

Definition 4.2.1 (Support) The support of an itemset I is defined as the fraction of the
transactions in the database T = {T1 . . . Tn} that contain I as a subset.

The support of an itemset I is denoted by sup(I). Clearly, items that are correlated will
frequently occur together in transactions. Such itemsets will have high support. Therefore,
the frequent pattern mining problem is that of determining itemsets that have the requisite
level of minimum support.

Definition 4.2.2 (Frequent Itemset Mining) Given a set of transactions T =
{T1 . . . Tn}, where each transaction Ti is a subset of items from U , determine all item-
sets I that occur as a subset of at least a predefined fraction minsup of the transactions in
T .

The predefined fraction minsup is referred to as the minimum support. While the default
convention in this book is to assume that minsup refers to a fractional relative value, it
is also sometimes specified as an absolute integer value in terms of the raw number of
transactions. This chapter will always assume the convention of a relative value, unless
specified otherwise. Frequent patterns are also referred to as frequent itemsets, or large
itemsets. This book will use these terms interchangeably.

The unique identifier of a transaction is referred to as a transaction identifier, or tid for
short. The frequent itemset mining problem may also be stated more generally in set-wise
form.

Definition 4.2.3 (Frequent Itemset Mining: Set-wise Definition) Given a set of
sets T = {T1 . . . Tn}, where each element of the set Ti is drawn on the universe of ele-
ments U , determine all sets I that occur as a subset of at least a predefined fraction minsup
of the sets in T .

As discussed in Chap. 1, binary multidimensional data and set data are equivalent. This
equivalence is because each multidimensional attribute can represent a set element (or
item). A value of 1 for a multidimensional attribute corresponds to inclusion in the set (or
transaction). Therefore, a transaction data set (or set of sets) can also be represented as a
multidimensional binary database whose dimensionality is equal to the number of items.

Consider the transactions illustrated in Table 4.1. Each transaction is associated with a
unique transaction identifier in the leftmost column, and contains a baskets of items that
were bought together at the same time. The right column in Table 4.1 contains the binary
multidimensional representation of the corresponding basket. The attributes of this binary
representation are arranged in the order {Bread, Butter, Cheese, Eggs,Milk, Y ogurt}. In

96 CHAPTER 4. ASSOCIATION PATTERN MINING

this database of 5 transactions, the support of {Bread,Milk} is 2/5 = 0.4 because both
items in this basket occur in 2 out of a total of 5 transactions. Similarly, the support of
{Cheese, Y ogurt} is 0.2 because it appears in only the last transaction. Therefore, if the
minimum support is set to 0.3, then the itemset {Bread,Milk} will be reported but not
the itemset {Cheese, Y ogurt}.

The number of frequent itemsets is generally very sensitive to the minimum support
level. Consider the case where a minimum support level of 0.3 is used. Each of the items
Bread, Milk, Eggs, Cheese, and Y ogurt occur in more than 2 transactions, and can
therefore be considered frequent items at a minimum support level of 0.3. These items
are frequent 1-itemsets. In fact, the only item that is not frequent at a support level of
0.3 is Butter. Furthermore, the frequent 2-itemsets at a minimum support level of 0.3 are
{Bread,Milk}, {Eggs,Milk}, {Cheese,Milk}, {Eggs, Y ogurt}, and {Milk, Y ogurt}. The
only 3-itemset reported at a support level of 0.3 is {Eggs,Milk, Y ogurt}. On the other hand,
if the minimum support level is set to 0.2, it corresponds to an absolute support value of
only 1. In such a case, every subset of every transaction will be reported. Therefore, the use
of lower minimum support levels yields a larger number of frequent patterns. On the other
hand, if the support level is too high, then no frequent patterns will be found. Therefore, an
appropriate choice of the support level is crucial for discovering a set of frequent patterns
with meaningful size.

When an itemset I is contained in a transaction, all its subsets will also be contained
in the transaction. Therefore, the support of any subset J of I will always be at least equal
to that of I. This property is referred to as the support monotonicity property.

Property 4.2.1 (Support Monotonicity Property) The support of every subset J of
I is at least equal to that of the support of itemset I.

sup(J) ≥ sup(I) ∀J ⊆ I (4.1)

The monotonicity property of support implies that every subset of a frequent itemset will
also be frequent. This is referred to as the downward closure property.

Property 4.2.2 (Downward Closure Property) Every subset of a frequent itemset is
also frequent.

The downward closure property of frequent patterns is algorithmically very convenient
because it provides an important constraint on the inherent structure of frequent patterns.
This constraint is often leveraged by frequent pattern mining algorithms to prune the search
process and achieve greater efficiency. Furthermore, the downward closure property can
be used to create concise representations of frequent patterns, wherein only the maximal
frequent subsets are retained.

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a
given minimum support level minsup, if it is frequent, and no superset of it is frequent.

In the example of Table 4.1, the itemset {Eggs,Milk, Y ogurt} is a maximal frequent item-
set at a minimum support level of 0.3. However, the itemset {Eggs,Milk} is not maxi-
mal because it has a superset that is also frequent. Furthermore, the set of maximal fre-
quent patterns at a minimum support level of 0.3 is {Bread,Milk}, {Cheese,Milk}, and
{Eggs,Milk, Y ogurt}. Thus, there are only 3 maximal frequent itemsets, whereas the num-
ber of frequent itemsets in the entire transaction database is 11. All frequent itemsets can
be derived from the maximal patterns by enumerating the subsets of the maximal frequent

4.3. ASSOCIATION RULE GENERATION FRAMEWORK 97

Figure 4.1: The itemset lattice

patterns. Therefore, the maximal patterns can be considered condensed representations of
the frequent patterns. However, this condensed representation does not retain information
about the support values of the subsets. For example, the support of {Eggs,Milk, Y ogurt}
is 0.4, but it does not provide any information about the support of {Eggs,Milk}, which is
0.6. A different condensed representation, referred to as closed frequent itemsets, is able to
retain support information as well. The notion of closed frequent itemsets will be studied
in detail in Chap. 5.

An interesting property of itemsets is that they can be conceptually arranged in the form
of a lattice of itemsets. This lattice contains one node for each of the 2|U | sets drawn from
the universe of items U . An edge exists between a pair of nodes, if the corresponding sets
differ by exactly one item. An example of an itemset lattice of size 25 = 32 on a universe of
5 items is illustrated in Fig. 4.1. The lattice represents the search space of frequent patterns.
All frequent pattern mining algorithms, implicitly or explicitly, traverse this search space
to determine the frequent patterns.

The lattice is separated into frequent and infrequent itemsets by a border, which is illus-
trated by a dashed line in Fig. 4.1. All itemsets above this border are frequent, whereas those
below the border are infrequent. Note that all maximal frequent itemsets are adjacent to
this border of itemsets. Furthermore, any valid border representing a true division between
frequent and infrequent itemsets will always respect the downward closure property.

4.3 Association Rule Generation Framework

Frequent itemsets can be used to generate association rules, with the use of a measure
known as the confidence. The confidence of a rule X ⇒ Y is the conditional probability
that a transaction contains the set of items Y , given that it contains the set X. This
probability is estimated by dividing the support of itemset X ∪ Y with that of itemset X.

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence
conf(X ∪ Y) of the rule X ∪ Y is the conditional probability of X ∪ Y occurring in a

98 CHAPTER 4. ASSOCIATION PATTERN MINING

transaction, given that the transaction contains X. Therefore, the confidence conf(X ⇒ Y)
is defined as follows:

conf(X ⇒ Y) =
sup(X ∪ Y)
sup(X)

. (4.2)

The itemsets X and Y are said to be the antecedent and the consequent of the rule, respec-
tively. In the case of Table 4.1, the support of {Eggs,Milk} is 0.6, whereas the support
of {Eggs,Milk, Y ogurt} is 0.4. Therefore, the confidence of the rule {Eggs,Milk} ⇒
{Y ogurt} is (0.4/0.6) = 2/3.

As in the case of support, a minimum confidence threshold minconf can be used to
generate the most relevant association rules. Association rules are defined using both support
and confidence criteria.

Definition 4.3.2 (Association Rules) Let X and Y be two sets of items. Then, the rule
X ⇒ Y is said to be an association rule at a minimum support of minsup and minimum
confidence of minconf , if it satisfies both the following criteria:

1. The support of the itemset X ∪ Y is at least minsup.

2. The confidence of the rule X ⇒ Y is at least minconf .

The first criterion ensures that a sufficient number of transactions are relevant to the rule;
therefore, it has the required critical mass for it to be considered relevant to the application
at hand. The second criterion ensures that the rule has sufficient strength in terms of con-
ditional probabilities. Thus, the two measures quantify different aspects of the association
rule.

The overall framework for association rule generation uses two phases. These phases
correspond to the two criteria in Definition 4.3.2, representing the support and confidence
constraints.

1. In the first phase, all the frequent itemsets are generated at the minimum support of
minsup.

2. In the second phase, the association rules are generated from the frequent itemsets at
the minimum confidence level of minconf.

The first phase is more computationally intensive and is, therefore, the more interesting part
of the process. The second phase is relatively straightforward. Therefore, the discussion
of the first phase will be deferred to the remaining portion of this chapter, and a quick
discussion of the (more straightforward) second phase is provided here.

Assume that a set of frequent itemsets F is provided. For each itemset I ∈ F , a simple
way of generating the rules would be to partition the set I into all possible combinations of
sets X and Y = I −X, such that I = X ∪ Y . The confidence of each rule X ⇒ Y can then
be determined, and it can be retained if it satisfies the minimum confidence requirement.
Association rules also satisfy a confidence monotonicity property.

Property 4.3.1 (Confidence Monotonicity) Let X1, X2, and I be itemsets such that
X1 ⊂ X2 ⊂ I. Then the confidence of X2 ⇒ I −X2 is at least that of X1 ⇒ I −X1.

conf(X2 ⇒ I −X2) ≥ conf(X1 ⇒ I −X1) (4.3)

4.4. FREQUENT ITEMSET MINING ALGORITHMS 99

This property follows directly from definition of confidence and the property of support
monotonicity. Consider the rules {Bread} ⇒ {Butter,Milk} and {Bread,Butter} ⇒
{Milk}. The second rule is redundant with respect to the first because it will have the
same support, but a confidence that is no less than the first. Because of confidence mono-
tonicity, it is possible to report only the non-redundant rules. This issue is discussed in
detail in the next chapter.

4.4 Frequent Itemset Mining Algorithms

In this section, a number of popular algorithms for frequent itemset generation will be
discussed. Because there are a large number of frequent itemset mining algorithms, the
focus of the chapter will be to discuss specific algorithms in detail to introduce the reader
to the key tricks in algorithmic design. These tricks are often reusable across different
algorithms because the same enumeration tree framework is used by virtually all frequent
pattern mining algorithms.

4.4.1 Brute Force Algorithms

For a universe of items U , there are a total of 2|U | − 1 distinct subsets, excluding the
empty set. All 25 subsets for a universe of 5 items are illustrated in Fig. 4.1. Therefore,
one possibility would be to generate all these candidate itemsets, and count their support
against the transaction database T . In the frequent itemset mining literature, the term
candidate itemsets is commonly used to refer to itemsets that might possibly be frequent (or
candidates for being frequent). These candidates need to be verified against the transaction
database by support counting. To count the support of an itemset, we would need to check
whether a given itemset I is a subset of each transaction Ti ∈ T . Such an exhaustive
approach is likely to be impractical, when the universe of items U is large. Consider the
case where d = |U | = 1000. In that case, there are a total of 21000 > 10300 candidates.
To put this number in perspective, if the fastest computer available today were somehow
able to process one candidate in one elementary machine cycle, then the time required to
process all candidates would be hundreds of orders of magnitude greater than the age of
the universe. Therefore, this is not a practical solution.

Of course, one can make the brute-force approach faster by observing that no (k + 1)-
patterns are frequent if no k-patterns are frequent. This observation follows directly from
the downward closure property. Therefore, one can enumerate and count the support of
all the patterns with increasing length. In other words, one can enumerate and count the
support of all patterns containing one item, two items, and so on, until for a certain length l,
none of the candidates of length l turn out to be frequent. For sparse transaction databases,
the value of l is typically very small compared to |U |. At this point, one can terminate. This
is a significant improvement over the previous approach because it requires the enumeration
of

∑l
i=1

(|U |
i

)
� 2|U | candidates. Because the longest frequent itemset is of much smaller

length than |U | in sparse transaction databases, this approach is orders of magnitude faster.
However, the resulting computational complexity is still not satisfactory for large values of
U . For example, when |U | = 1000 and l = 10, the value of

∑10
i=1

(|U |
i

)
is of the order of 1023.

This value is still quite large and outside reasonable computational capabilities available
today.

One observation is that even a very minor and rather blunt application of the downward
closure property made the algorithm hundreds of orders of magnitude faster. Many of the
fast algorithms for itemset generation use the downward closure property in a more refined
way, both to generate the candidates and to prune them before counting. Algorithms for

100 CHAPTER 4. ASSOCIATION PATTERN MINING

frequent pattern mining search the lattice of possibilities (or candidates) for frequent pat-
terns (see Fig. 4.1) and use the transaction database to count the support of candidates in
this lattice. Better efficiencies can be achieved in a frequent pattern mining algorithm by
using one or more of the following approaches:

1. Reducing the size of the explored search space (lattice of Fig. 4.1) by pruning candidate
itemsets (lattice nodes) using tricks, such as the downward closure property.

2. Counting the support of each candidate more efficiently by pruning transactions that
are known to be irrelevant for counting a candidate itemset.

3. Using compact data structures to represent either candidates or transaction databases
that support efficient counting.

The first algorithm that used an effective pruning of the search space with the use of the
downward closure property was the Apriori algorithm.

4.4.2 The Apriori Algorithm

The Apriori algorithm uses the downward closure property in order to prune the candidate
search space. The downward closure property imposes a clear structure on the set of frequent
patterns. In particular, information about the infrequency of itemsets can be leveraged to
generate the superset candidates more carefully. Thus, if an itemset is infrequent, there is
little point in counting the support of its superset candidates. This is useful for avoiding
wasteful counting of support levels of itemsets that are known not to be frequent. The
Apriori algorithm generates candidates with smaller length k first and counts their supports
before generating candidates of length (k+1). The resulting frequent k-itemsets are used to
restrict the number of (k + 1)-candidates with the downward closure property. Candidate
generation and support counting of patterns with increasing length is interleaved in Apriori.
Because the counting of candidate supports is the most expensive part of the frequent
pattern generation process, it is extremely important to keep the number of candidates low.

For ease in description of the algorithm, it will be assumed that the items in U have a
lexicographic ordering, and therefore an itemset {a, b, c, d} can be treated as a (lexicograph-
ically ordered) string abcd of items. This can be used to impose an ordering among itemsets
(patterns), which is the same as the order in which the corresponding strings would appear
in a dictionary.

The Apriori algorithm starts by counting the supports of the individual items to generate
the frequent 1-itemsets. The 1-itemsets are combined to create candidate 2-itemsets, whose
support is counted. The frequent 2-itemsets are retained. In general, the frequent itemsets
of length k are used to generate the candidates of length (k + 1) for increasing values
of k. Algorithms that count the support of candidates with increasing length are referred
to as level-wise algorithms. Let Fk denote the set of frequent k-itemsets, and Ck denote
the set of candidate k-itemsets. The core of the approach is to iteratively generate the
(k + 1)-candidates Ck+1 from frequent k-itemsets in Fk already found by the algorithm.
The frequencies of these (k + 1)-candidates are counted with respect to the transaction
database. While generating the (k + 1)-candidates, the search space may be pruned by
checking whether all k-subsets of Ck+1 are included in Fk. So, how does one generate the
relevant (k + 1)-candidates in Ck+1 from frequent k-patterns in Fk?

If a pair of itemsets X and Y in Fk have (k− 1) items in common, then a join between
them using the (k − 1) common items will create a candidate itemset of size (k + 1). For
example, the two 3-itemsets {a, b, c} (or abc for short) and {a, b, d} (or abd for short), when

4.4. FREQUENT ITEMSET MINING ALGORITHMS 101

Algorithm Apriori(Transactions: T , Minimum Support: minsup)
begin
k = 1;
F1 = { All Frequent 1-itemsets };
while Fk is not empty do begin

Generate Ck+1 by joining itemset-pairs in Fk;
Prune itemsets from Ck+1 that violate downward closure;
Determine Fk+1 by support counting on (Ck+1, T) and retaining

itemsets from Ck+1 with support at least minsup;
k = k + 1;

end;
return(∪k

i=1Fi);
end

Figure 4.2: The Apriori algorithm

joined together on the two common items a and b, will yield the candidate 4-itemset abcd.
Of course, it is possible to join other frequent patterns to create the same candidate. One
might also join abc and bcd to achieve the same result. Suppose that all four of the 3-subsets
of abcd are present in the set of frequent 3-itemsets. One can create the candidate 4-itemset
in
(
4
2

)
= 6 different ways. To avoid redundancy in candidate generation, the convention is to

impose a lexicographic ordering on the items and use the first (k − 1) items of the itemset
for the join. Thus, in this case, the only way to generate abcd would be to join using the first
two items a and b. Therefore, the itemsets abc and abd would need to be joined to create
abcd. Note that, if either of abc and abd are not frequent, then abcd will not be generated as
a candidate using this join approach. Furthermore, in such a case, it is assured that abcd will
not be frequent because of the downward closure property of frequent itemsets. Thus, the
downward closure property ensures that the candidate set generated using this approach
does not miss any itemset that is truly frequent. As we will see later, this non-repetitive and
exhaustive way of generating candidates can be interpreted in the context of a conceptual
hierarchy of the patterns known as the enumeration tree. Another point to note is that the
joins can usually be performed very efficiently. This efficiency is because, if the set Fk is
sorted in lexicographic (dictionary) order, all itemsets with a common set of items in the
first k − 1 positions will appear contiguously, allowing them to be located easily.

A level-wise pruning trick can be used to further reduce the size of the (k+1)-candidate
set. All the k-subsets (i.e., subsets of cardinality k) of an itemset I ∈ Ck+1 need to be
present in Fk because of the downward closure property. Otherwise, it is guaranteed that
the itemset I is not frequent. Therefore, it is checked whether all k-subsets of each itemset
I ∈ Ck+1 are present in Fk. If this is not the case, then such itemsets I are removed from
Ck+1.

After the candidate itemsets Ck+1 of size (k+1) have been generated, their support can
be determined by counting the number of occurrences of each candidate in the transaction
database T . Only the candidate itemsets that have the required minimum support are
retained to create the set of (k + 1)-frequent itemsets Fk+1 ⊆ Ck+1. In the event that
the set Fk+1 is empty, the algorithm terminates. At termination, the union ∪k

i=1Fi of the
frequent patterns of different sizes is reported as the final output of the algorithm.

The overall algorithm is illustrated in Fig. 4.2. The heart of the algorithm is an iterative
loop that generates (k + 1)-candidates from frequent k-patterns for successively higher
values of k and counts them. The three main operations of the algorithm are candidate

102 CHAPTER 4. ASSOCIATION PATTERN MINING

generation, pruning, and support counting. Of these, the support counting process is the
most expensive one because it depends on the size of the transaction database T . The level-
wise approach ensures that the algorithm is relatively efficient at least from a disk-access
cost perspective. This is because each set of candidates in Ck+1 can be counted in a single
pass over the data without the need for random disk accesses. The number of passes over
the data is, therefore, equal to the cardinality of the longest frequent itemset in the data.
Nevertheless, the counting procedure is still quite expensive especially if one were to use
the naive approach of checking whether each itemset is a subset of a transaction. Therefore,
efficient support counting procedures are necessary.

4.4.2.1 Efficient Support Counting

To perform support counting, Apriori needs to efficiently examined whether each candidate
itemset is present in a transaction. This is achieved with the use of a data structure known
as the hash tree. The hash tree is used to carefully organize the candidate patterns in Ck+1

for more efficient counting. Assume that the items in the transactions and the candidate
itemsets are sorted lexicographically. A hash tree is a tree with a fixed degree of the internal
nodes. Each internal node is associated with a random hash function that maps to the index
of the different children of that node in the tree. A leaf node of the hash tree contains a list
of lexicographically sorted itemsets, whereas an interior node contains a hash table. Every
itemset in Ck+1 is contained in exactly one leaf node of the hash tree. The hash functions
in the interior nodes are used to decide which candidate itemset belongs to which leaf node
with the use of a methodology described below.

It may be assumed that all interior nodes use the same hash function f(·) that maps to
[0 . . . h−1]. The value of h is also the branching degree of the hash tree. A candidate itemset
in Ck+1 is mapped to a leaf node of the tree by defining a path from the root to the leaf node
with the use of these hash functions at the internal nodes. Assume that the root of the hash
tree is level 1, and all successive levels below it increase by 1. As before, assume that the
items in the candidates and transactions are arranged in lexicographically sorted order. At
an interior node in level i, a hash function is applied to the ith item of a candidate itemset
I ∈ Ck+1 to decide which branch of the hash tree to follow for the candidate itemset. The
tree is constructed recursively in top-down fashion, and a minimum threshold is imposed
on the number of candidates in the leaf node to decide where to terminate the hash tree
extension. The candidate itemsets in the leaf node are stored in sorted order.

To perform the counting, all possible candidate k-itemsets in Ck+1 that are subsets of
a transaction Tj ∈ T are discovered in a single exploration of the hash tree. To achieve
this goal, all possible paths in the hash tree, whose leaves might contain subset itemsets of
the transaction Tj , are discovered using a recursive traversal. The selection of the relevant
leaf nodes is performed by recursive traversal as follows. At the root node, all branches are
followed such that any of the items in the transaction Tj hash to one of the branches. At a
given interior node, if the ith item of the transaction Tj was last hashed (at the parent node),
then all items following it in the transaction are hashed to determine the possible children to
follow. Thus, by following all these paths, the relevant leaf nodes in the tree are determined.
The candidates in the leaf node are stored in sorted order and can be compared efficiently
to the transaction Tj to determine whether they are relevant. This process is repeated for
each transaction to determine the final support count of each itemset in Ck+1.

4.4. FREQUENT ITEMSET MINING ALGORITHMS 103

Figure 4.3: The lexicographic or enumeration tree of frequent itemsets

4.4.3 Enumeration-Tree Algorithms

These algorithms are based on set enumeration concepts, in which the different candidate
itemsets are generated in a tree-like structure known as the enumeration tree, which is a
subgraph of the lattice of itemsets introduced in Fig. 4.1. This tree-like structure is also
referred to as a lexicographic tree because it is dependent on an upfront lexicographic order-
ing among the items. The candidate patterns are generated by growing this lexicographic
tree. This tree can be grown in a wide variety of different strategies to achieve different
trade-offs between storage, disk access costs, and computational efficiency. Because most of
the discussion in this section will use this structure as a base for algorithmic development,
this concept will be discussed in detail here. The main characteristic of the enumeration
tree (or lexicographic tree) is that it provides an abstract hierarchical representation of the
itemsets. This representation is leveraged by frequent pattern mining algorithms for sys-
tematic exploration of the candidate patterns in a non-repetitive way. The final output of
these algorithms can also be viewed as an enumeration tree structure that is defined only
on the frequent itemsets. The enumeration tree is defined on the frequent itemsets in the
following way:

1. A node exists in the tree corresponding to each frequent itemset. The root of the tree
corresponds to the null itemset.

2. Let I = {i1, . . . ik} be a frequent itemset, where i1, i2 . . . ik are listed in lexicographic
order. The parent of the node I is the itemset {i1, . . . ik−1}. Thus, the child of a node
can only be extended with items occurring lexicographically after all items occur-
ring in that node. The enumeration tree can also be viewed as a prefix tree on the
lexicographically ordered string representation of the itemsets.

This definition of an ancestral relationship naturally creates a tree structure on the nodes,
which is rooted at the null node. An example of the frequent portion of the enumeration
tree is illustrated in Fig. 4.3. An item that is used to extend a node to its (frequent) child in
the enumeration tree is referred to as a frequent tree extension, or simply a tree extension.
In the example of Fig. 4.3, the frequent tree extensions of node a are b, c, d, and f , because

104 CHAPTER 4. ASSOCIATION PATTERN MINING

these items extend node a to the frequent itemsets ab, ac, ad, and af , respectively. The
lattice provides many paths to extend the null itemset to a node, whereas an enumeration
tree provides only one path. For example, itemset ab can be extended either in the order
a → ab, or in the order b → ab in the lattice. However, only the former is possible in the
enumeration tree after the lexicographic ordering has been fixed. Thus, the lexicographic
ordering imposes a strictly hierarchical structure on the itemsets. This hierarchical structure
enables systematic and non-redundant exploration of the itemset search space by algorithms
that generate candidates by extending frequent itemsets with one item at a time. The
enumeration tree can be constructed in many ways with different lexicographic orderings of
items. The impact of this ordering will be discussed later.

Most of the enumeration tree algorithms work by growing this enumeration tree of
frequent itemsets with a predefined strategy. First, the root node of the tree is extended
by finding the frequent 1-items. Then, these nodes may be extended to create candidates.
These are checked against the transaction database to determine the ones that are frequent.
The enumeration tree framework provides an order and structure to the frequent itemset
discovery, which can be leveraged to improve the counting and pruning process of candidates.
In the following discussion, the terms “node” and “itemset” will be used interchangeably.
Therefore, the notation P will be used to denote both an itemset, and its corresponding
node in the enumeration tree.

So, how can candidates nodes be generated in a systematic way from the frequent nodes
in the enumeration tree that have already been discovered? For an item i to be considered
a candidate for extending a frequent node P to P ∪{i}, it must also be a frequent extension
of the parent Q of P . This is because of the downward closure property, and it can be used
to systematically define the candidate extensions of a node P after the frequent extensions
of its parent Q have been determined. Let F (Q) represent the frequent lexicographic tree
extensions of node Q. Let i ∈ F (Q) be the frequent extension item that extends frequent
node Q to frequent node P = Q ∪ {i}. Let C(P) denote the subset of items from F (Q)
occurring lexicographically after the item i used to extend node Q to node P . The set
C(P) defines the candidate extension items of node P , which are defined as items that
can be appended at the end of P to create candidate itemsets. This provides a systematic
methodology to generate candidate children of node P . As we will see in Sect. 4.4.3.1,
the resulting candidates are identical to those generated by Apriori joins. Note that the
relationship F (P) ⊆ C(P) ⊂ F (Q) is always true. The value of F (P) in Fig. 4.3, when
P = ab, is {c, d}. The value of C(P) for P = ab is {c, d, f} because these are frequent
extensions of parent itemset Q = {a} of P occurring lexicographically after the item b.
Note that the set of candidate extensions C(ab) also contains the (infrequent) item f that
the set of frequent extensions F (ab) does not. Such infrequent item extensions correspond to
failed candidate tests in all enumeration tree algorithms. Note that the infrequent itemset
abf is not included in the frequent itemset tree of Fig. 4.3. It is also possible to create an
enumeration tree structure on the candidate itemsets, which contains an additional layer of
infrequent candidate extensions of the nodes in Fig. 4.3. Such a tree would contain abf .

Enumeration tree algorithms iteratively grow the enumeration tree ET of frequent pat-
terns. A very generic description of this iterative step, which is executed repeatedly to
extend the enumeration tree ET , is as follows:

Select one or more nodes P in ET ;
Determine candidate extensions C(P) for each such node P ∈ P;
Count support of generated candidates;
Add frequent candidates to ET (tree growth);

4.4. FREQUENT ITEMSET MINING ALGORITHMS 105

Algorithm GenericEnumerationTree(Transactions: T ,
Minimum Support: minsup)

begin
Initialize enumeration tree ET to single Null node;
while any node in ET has not been examined do begin

Select one of more unexamined nodes P from ET for examination;
Generate candidates extensions C(P) of each node P ∈ P;
Determine frequent extensions F (P) ⊆ C(P) for each P ∈ P with support counting;
Extend each node P ∈ P in ET with its frequent extensions in F (P);

end
return enumeration tree ET ;

end

Figure 4.4: Generic enumeration-tree growth with unspecified growth strategy and counting
method

This approach is continued until none of the nodes can be extended any further. At
this point, the algorithm terminates. A more detailed description is provided in Fig. 4.4.
Interestingly, almost all frequent pattern mining algorithms can be viewed as variations
and extensions of this simple enumeration-tree framework. Within this broader framework,
a wide variability exists both in terms of the growth strategy of the tree and the specific data
structures used for support counting. Therefore, the description of Fig. 4.4 is very generic
because none of these aspects are specified. The different choices of growth strategy and
counting methodology provide different trade-offs between efficiency, space-requirements,
and disk access costs. For example, in breadth-first strategies, the node set P selected in an
iteration of Fig. 4.4 corresponds to all nodes at one level of the tree. This approach may be
more relevant for disk-resident databases because all nodes at a single level of the tree can
be extended during one counting pass on the transaction database. Depth-first strategies
select a single node at the deepest level to create P. These strategies may have better ability
to explore the tree deeply and discover long frequent patterns early. The early discovery of
longer patterns is especially useful for computational efficiency in maximal pattern mining
and for better memory management in certain classes of projection-based algorithms.

Because the counting approach is the most expensive part, the different techniques
attempt to use growth strategies that optimize the work done during counting. Further-
more, it is crucial for the counting data structures to be efficient. This section will explore
some of the common algorithms, data structures, and pruning strategies that leverage
the enumeration-tree structure in the counting process. Interestingly, the enumeration-tree
framework is so general that even the Apriori algorithm can be interpreted within this
framework, although the concept of an enumeration tree was not used when Apriori was
proposed.

4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori

The Apriori algorithm can be viewed as the level-wise construction of the enumeration
tree in breadth-first manner. The Apriori join for generating candidate (k + 1)-itemsets is
performed in a non-redundant way by using only the first (k − 1) items from two frequent
k-itemsets. This is equivalent to joining all pairs of immediate siblings at the kth level of the
enumeration tree. For example, the children of ab in Fig. 4.3 may be obtained by joining

106 CHAPTER 4. ASSOCIATION PATTERN MINING

ab with all its frequent siblings (other children of node a) that occur lexicographically
later than it. In other words, the join operation of node P with its lexicographically later
frequent siblings produces the candidates corresponding to the extension of P with each of
its candidate tree-extensions C(P). In fact, the candidate extensions C(P) for all nodes P
at a given level of the tree can be exhaustively and non-repetitively generated by using joins
between all pairs of frequent siblings at that level. The Apriori pruning trick then discards
some of the enumeration tree nodes because they are guaranteed not to be frequent. A
single pass over the transaction database is used to count the support of these candidate
extensions, and generate the frequent extensions F (P) ⊆ C(P) for each node P in the
level being extended. The approach terminates when the tree cannot be grown further
in a particular pass over the database. Thus, the join operation of Apriori has a direct
interpretation in terms of the enumeration tree, and the Apriori algorithm implicitly extends
the enumeration tree in a level-wise fashion with the use of joins.

4.4.3.2 TreeProjection and DepthProject

TreeProjection is a family of methods that uses recursive projections of the transactions
down the enumeration tree structure. The goal of these recursive projections is to reuse
the counting work that has already been done at a given node of the enumeration tree
at its descendent nodes. This reduces the overall counting effort by orders of magnitude.
TreeProjection is a general framework that shows how to use database projection in the
context of a variety of different strategies for construction of the enumeration tree, such
as breadth-first, depth-first, or a combination of the two. The DepthProject approach is a
specific instantiation of this framework with the depth-first strategy. Different strategies
have different trade-offs between the memory requirements and disk-access costs.

The main observation in projection-based methods is that if a transaction does not con-
tain the itemset corresponding to an enumeration-tree node, then this transaction will not
be relevant for counting at any descendent (superset itemset) of that node. Therefore, when
counting is done at an enumeration-tree node, the information about irrelevant transac-
tions should somehow be preserved for counting at its descendent nodes. This is achieved
with the notion of projected databases. Each projected transaction database is specific to an
enumeration-tree node. Transactions that do not contain the itemset P are not included in
the projected databases at node P and its descendants. This results in a significant reduc-
tion in the number of projected transactions. Furthermore, only the candidate extension
items of P , denoted by C(P), are relevant for counting at any of the subtrees rooted at
node P . Therefore, the projected database at node P can be expressed only in terms of the
items in C(P). The size of C(P) is much smaller than the universe of items, and therefore
the projected database contains a smaller number of items per transaction with increasing
size of P . We denote the projected database at node P by T (P). For example, consider the
node P = ab in Fig. 4.3, in which the candidate items for extending ab are C(P) = {c, d, f}.
Then, the transaction abcfg maps to the projected transaction cf in T (P). On the other
hand, the transaction acfg is not even present in T (P) because P = ab is not a subset
of acfg. The special case T (Null) = T corresponds to the top level of the enumeration
tree and is equal to the full transaction database. In fact, the subproblem at node P with
transaction database T (P) is structurally identical to the top-level problem, except that
it is a much smaller problem focused on determining frequent patterns with a prefix of P .
Therefore, the frequent node P in the enumeration tree can be extended further by count-
ing the support of individual items in C(P) using the relatively small database T (P). This

4.4. FREQUENT ITEMSET MINING ALGORITHMS 107

Algorithm ProjectedEnumerationTree(Transactions: T ,
Minimum Support: minsup)

begin
Initialize enumeration tree ET to a single (Null, T) root node;
while any node in ET has not been examined do begin

Select an unexamined node (P, T (P)) from ET for examination;
Generate candidates item extensions C(P) of node (P, T (P));
Determine frequent item extensions F (P) ⊆ C(P) by support counting

of individual items in smaller projected database T (P);
Remove infrequent items in T (P);
for each frequent item extension i ∈ F (P) do begin
Generate T (P ∪ {i}) from T (P);
Add (P ∪ {i}, T (P ∪ {i})) as child of P in ET ;

end
end
return enumeration tree ET ;

end

Figure 4.5: Generic enumeration-tree growth with unspecified growth strategy and database
projections

results in a simplified and efficient counting process of candidate 1-item extensions rather
than itemsets.

The enumeration tree can be grown with a variety of strategies such as the breadth-
first or depth-first strategies. At each node, the counting is performed with the use of the
projected database rather than the entire transaction database, and a further reduced and
projected transaction database is propagated to the children of P . At each level of the
hierarchical projection down the enumeration tree, the number of items and the number of
transactions in the projected database are reduced. The basic idea is that T (P) contains the
minimal portion of the transaction database that is relevant for counting the subtree rooted
at P , based on the removal of irrelevant transactions and items by the counting process
that has already been performed at higher levels of the tree. By recursively projecting the
transaction database down the enumeration tree, this counting work is reused. We refer to
this approach as projection-based reuse of counting effort.

The generic enumeration-tree algorithm with hierarchical projections is illustrated in
Fig. 4.5. This generic algorithm does not assume any specific exploration strategy, and is
quite similar to the generic enumeration-tree pseudocode shown in Fig. 4.4. There are two
differences between the pseudocodes.

1. For simplicity of notation, we have shown the exploration of a single node P at one time
in Fig. 4.5, rather than a group of nodes P (as in Fig. 4.4). However, the pseudocode
shown in Fig. 4.5 can easily be rewritten for a group of nodes P. Therefore, this is
not a significant difference.

2. The key difference is that the projected database T (P) is used to count support
at node P . Each node in the enumeration tree is now represented by the itemset
and projected database pair (P, T (P)). This is a very important difference because
T (P) is much smaller than the original database. Therefore, a significant amount of
information gained by counting the supports of ancestors of node P , is preserved in
T (P). Furthermore, one only needs to count the support of single item extensions of
node P in T (P) (rather than entire itemsets) in order to grow the subtree at P further.

108 CHAPTER 4. ASSOCIATION PATTERN MINING

The enumeration tree can be constructed in many different ways depending on the lexico-
graphic ordering of items. How should the items be ordered? The structure of the enumer-
ation tree has a built-in bias towards creating unbalanced trees in which the lexicograph-
ically smaller items have more descendants. For example, in Fig. 4.3, node a has many
more descendants than node f . Therefore, ordering the items from least support to greatest
support ensures that the computationally heavier branches of the enumeration tree have
fewer relevant transactions. This is helpful in maximizing the selectivity of projections and
ensuring better efficiency.

The strategy used for selection of the node P defines the order in which the nodes of
the enumeration tree are materialized. This strategy has a direct impact on memory man-
agement because projected databases, which are no longer required for future computation,
can be deleted. In depth-first strategies, the lexicographically smallest unexamined node
P is selected for extension. In this case, one only needs to maintain projected databases
along the current path of the enumeration tree being explored. In breadth-first strategies,
an entire group of nodes P corresponding to all patterns of a particular size are grown first.
In such cases, the projected databases need to be simultaneously maintained along the full
breadth of the enumeration tree ET at the two current levels involved in the growth process.
Although it may be possible to perform the projection on such a large number of nodes for
smaller transaction databases, some modifications to the basic framework of Fig. 4.5 are
needed for the general case of larger databases.

In particular, breadth-first variations of the TreeProjection framework perform hierarchi-
cal projections on the fly during counting from their ancestor nodes. The depth-first varia-
tions of TreeProjection, such as DepthProject, achieve full projection-based reuse because the
projected transactions can be consistently maintained at each materialized node along the
relatively small path of the enumeration tree from the root to the current node. The breadth-
first variations do have the merit that they can optimize disk-access costs for arbitrarily
large databases at the expense of losing some of the power of projection-based reuse. As will
be discussed later, all (full) projection-based reuse methods face memory-management chal-
lenges with increasing database size. These additional memory requirements can be viewed
as the price for persistently storing the relevant work done in earlier iterations in the indi-
rect form of projected databases. There is usually a different trade-off between disk-access
costs and memory/computational requirements in various strategies, which is exploited by
the TreeProjection framework. The bibliographic notes contain pointers to specific details
of these optimized variations of TreeProjection.

Optimized counting at deeper level nodes: The projection-based approach enables specialized
counting techniques at deeper level nodes near the leaves of the enumeration tree. These
specialized counting methods can provide the counts of all the itemsets in a lower-level
subtree in the time required to scan the projected database. Because such nodes are more
numerous, this can lead to large computational improvements.

What is the point at which such counting methods can be used? When the number of
frequent extensions F (P) of a node P falls below a threshold t such that 2t fits in memory,
an approach known as bucketing can be used. To obtain the best computational results, the
value of t used should be such that 2t is much smaller than the number of transactions in
the projected database. This can occur only when there are many repeated transactions in
the projected database.

A two-phase approach is used. In the first phase, the count of each distinct transaction
in the projected database is determined. This can be accomplished easily by maintaining
2|F (P)| buckets or counters, scanning the transactions one by one, and adding counts to the
buckets. This phase can be completed in a simple scan of the small (projected) database

4.4. FREQUENT ITEMSET MINING ALGORITHMS 109

of transactions. Of course, this process only provides transaction counts and not itemset
counts.

In the second phase, the transaction frequency counts can be further aggregated in a
systematic way to create itemset frequency counts. Conceptually, the process of aggregating
projected transaction counts is similar to arranging all the 2|F (P)| possibilities in the form
of a lattice, as illustrated in Fig. 4.1. The counts of the lattice nodes, which are computed
in the first phase, are aggregated up the lattice structure by adding the count of immediate
supersets to their subsets. For small values of |F (P)|, such as 10, this phase is not the
limiting computational factor, and the overall time is dominated by that required to scan
the projected database in the first phase. An efficient implementation of the second phase
is discussed in detail below.

Consider a string composed of 0, 1, and ∗ that refers to an itemset in which the positions
with 0 and 1 are fixed to those values (corresponding to presence or absence of items),
whereas a position with a ∗ is a “don’t care.” Thus, all transactions can be expressed in
terms of 0 and 1 in their binary representation. On the other hand, all itemsets can be
expressed in terms of 1 and ∗ because itemsets are traditionally defined with respect to
presence of items and ambiguity with respect to absence. Consider, for example, the case
when |F (P)| = 4, and there are four items, numbered {1, 2, 3, 4}. An itemset containing
items 2 and 4 is denoted by ∗1 ∗ 1. We start with the information on 24 = 16 bitstrings
that are composed 0 and 1. These represent all possible distinct transactions. The algorithm
aggregates the counts in |F (P)| iterations. The count for a string with a “*” in a particular
position may be obtained by adding the counts for the strings with a 0 and 1 in those
positions. For example, the count for the string *1*1 may be expressed as the sum of the
counts of the strings 01*1 and 11*1. The positions may be processed in any order, although
the simplest approach is to aggregate them from the least significant to the most significant.

A simple pseudocode to perform the aggregation is described below. In this pseudocode,
the initial value of bucket[i] is equal to the count of the transaction corresponding to the
bitstring representation of integer i. The final value of bucket[i] is one in which the trans-
action count has been converted to an itemset count by successive aggregation. In other
words, the 0s in the bitstring are replaced by “don’t cares.”

for i := 1 to k do begin
for j := 1 to 2k do begin

if the ith bit of bitstring representation
of j is 0 then bucket[j] = bucket[j] + bucket[j + 2i−1];

endfor
endfor

An example of bucketing for |F (P)| = 4 is illustrated in Fig. 4.6. The bucketing trick is
performed commonly at lower nodes of the tree because the value of |F (P)| falls drastically
at the lower levels. Because the nodes at the lower levels dominate the total number of
nodes in the enumeration-tree structure, the impact of bucketing can be very significant.

Optimizations for maximal pattern mining: The DepthProject method, which is a depth-
first variant of the approach, is particularly adaptable for maximal pattern discovery. In
this case, the enumeration tree is explored in depth-first order to maximize the advantages
of pruning the search space of regions containing only non-maximal patterns. The order of
construction of the enumeration tree is important in the particular case of maximal frequent

110 CHAPTER 4. ASSOCIATION PATTERN MINING

Figure 4.6: Performing the second phase of bucketing

pattern mining because certain kinds of non-maximal search-space pruning are optimized
with the depth-first order. The notion of lookaheads is one such optimization.

Let C(P) be the set of candidate item extensions of node P . Before support counting,
it is tested whether P ∪C(P) is a subset of a frequent pattern that has already been found.
If such is indeed the case, then the pattern P ∪ C(P) is a non-maximal frequent pattern,
and the entire subtree (of the enumeration tree) rooted at P can be pruned. This kind of
pruning is referred to as superset-based pruning. When P cannot be pruned, the supports of
its candidate extensions need to be determined. During this support counting, the support
of P ∪C(P) is counted along with the individual item extensions of P . If P ∪C(P) is found
to be frequent, then it eliminates any further work of counting the support of (non-maximal)
nodes in the subtree rooted at node P .

While lookaheads can also be used with breadth-first algorithms, they are more effective
with a depth-first strategy. In depth-first methods, longer patterns tend to be found first,
and are, therefore, already available in the frequent set for superset-based pruning. For
example, consider a frequent pattern of length 20 with 220 subsets. In a depth-first strategy,
it can be shown that the pattern of length 20 will be discovered after exploring only 19 of
its immediate prefixes. On the other hand, a breadth-first method may remain trapped by
discovery of shorter patterns. Therefore, the longer patterns become available very early in
depth-first methods such as DepthProject to prune large portions of the enumeration tree
with superset-based pruning.

4.4.3.3 Vertical Counting Methods

The Partition [446] and Monet [273] methods pioneered the concept of vertical database
representations of the transaction database T . In the vertical representation, each item is
associated with a list of its transaction identifiers (tids). It can also be thought of as using
the transpose of the binary transaction data matrix representing the transactions so that
columns are transformed to rows. These rows are used as the new “records.” Each item,
thus, has a tid list of identifiers of transactions containing it. For example, the vertical
representation of the database of Table 4.1 is illustrated in Table 4.2. Note that the binary
matrix in Table 4.2 is the transpose of that in Table 4.1.

The intersection of two item tid lists yields a new tid list whose length is equal to the
support of that 2-itemset. Further intersection of the resulting tid list with that of another
item yields the support of 3-itemsets. For example, the intersection of the tid lists ofMilk and
Yogurt yields {2, 4, 5} with length 3. Further intersection of the tid list of {Milk, Y ogurt}
with that of Eggs yields the tid list {2, 4} of length 2. This means that the support of

4.4. FREQUENT ITEMSET MINING ALGORITHMS 111

Table 4.2: Vertical representation of market basket data set

Item Set of tids Binary representation

Bread {1, 3} 10100
Butter {1} 10000
Cheese {3, 5} 00101
Eggs {2, 3, 4} 01110
Milk {1, 2, 3, 4, 5} 11111
Y ogurt {2, 4, 5} 01011

{Milk, Y ogurt} is 3/5 = 0.6 and that of {Milk,Eggs, Y ogurt} is 2/5 = 0.4. Note that one
can also intersect the smaller tid lists of {Milk, Y ogurt} and {Milk,Eggs} to achieve the
same result. For a pair of k-itemsets that join to create a (k + 1)-itemset, it is possible to
intersect the tid lists of the k-itemset pair to obtain the tid-list of the resulting (k + 1)-
itemset. Intersecting tid lists of k-itemsets is preferable to intersecting tid lists of 1-itemsets
because the tid lists of k-itemsets are typically smaller than those of 1-itemsets, which
makes intersection faster. Such an approach is referred to as recursive tid list intersection.
This insightful notion of recursive tid list intersection was introduced2 by the Monet [273]
and Partition [446] algorithms. The Partition framework [446] proposed a vertical version
of the Apriori algorithm with tid list intersection. The pseudocode of this vertical version
of the Apriori algorithm is illustrated in Fig. 4.7. The only difference from the horizontal
Apriori algorithm is the use of recursive tid list intersections for counting. While the vertical
Apriori algorithm is computationally more efficient than horizontal Apriori, it is memory-
intensive because of the need to store tid lists with each itemset. Memory requirements
can be reduced with the use of a partitioned ensemble in which the database is divided
into smaller chunks which are independently processed. This approach reduces the memory
requirements at the expense of running-time overheads in terms of postprocessing, and it is
discussed in Sect. 4.6.2. For smaller databases, no partitioning needs to be applied. In such
cases, the vertical Apriori algorithm of Fig. 4.7 is also referred to as Partition-1, and it is
the progenitor of all modern vertical pattern mining algorithms.

The vertical database representation can, in fact, be used in almost any enumeration-
tree algorithm with a growth strategy that is different from the breadth-first method. As
in the case of the vertical Apriori algorithm, the tid lists can be stored with the itemsets
(nodes) during the growth of the tree. If the tid list of any node P is known, it can be
intersected with the tid list of a sibling node to determine the support count (and tid list) of
the corresponding extension of P . This provides an efficient way of performing the counting.
By varying the strategy of growing the tree, the memory overhead of storing the tid lists can
be reduced but not the number of operations. For example, while both breadth-first and
depth-first strategies will require exactly the same tid list intersections for a particular pair
of nodes, the depth-first strategy will have a smaller memory footprint because the tid lists
need to be stored only at the nodes on the tree-path being explored and their immediate
siblings. Reducing the memory footprint is, nevertheless, important because it increases the
size of the database that can be processed entirely in core.

Subsequently, many algorithms, such as Eclat and VIPER, adopted Partition’s recursive
tid list intersection approach. Eclat is a lattice-partitioned memory-optimization of the algo-

2Strictly speaking, Monet is the name of the vertical database, on top of which this (unnamed) algorithm
was built.

112 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm VerticalApriori(Transactions: T , Minimum Support: minsup)
begin
k = 1;
F1 = { All Frequent 1-itemsets };
Construct vertical tid lists of each frequent item;
while Fk is not empty do begin

Generate Ck+1 by joining itemset-pairs in Fk;
Prune itemsets from Ck+1 that violate downward closure;
Generate tid list of each candidate itemset in Ck+1 by intersecting

tid lists of the itemset-pair in Fk that was used to create it;
Determine supports of itemsets in Ck+1 using lengths of their tid lists;
Fk+1= Frequent itemsets of Ck+1 together with their tid lists;
k = k + 1;

end;
return(∪k

i=1Fi);
end

Figure 4.7: The vertical Apriori algorithm of Savasere et al. [446]

rithm in Fig. 4.7. In Eclat [537], an independent Apriori-like breadth-first strategy is used
on each of the sublattices of itemsets with a common prefix. These groups of itemsets are
referred to as equivalence classes. Such an approach can reduce the memory requirements
by partitioning the candidate space into groups that are processed independently in con-
junction with the relevant vertical lists of their prefixes. This kind of candidate partitioning
is similar to parallel versions of Apriori, such as the Candidate Distribution algorithm [54].
Instead of using the candidate partitioning to distribute various sublattices to different
processors, the Eclat approach sequentially processes the sublattices one after another to
reduce peak memory requirements. Therefore, Eclat can avoid the postprocessing overheads
associated with Savasere et al.’s data partitioning approach, if the database is too large to
be processed in core by Partition-1, but small enough to be processed in core by Eclat. In
such cases, Eclat is faster than Partition. Note that the number of computational operations
for support counting in Partition-1 is fundamentally no different from that of Eclat because
the tid list intersections between any pair of itemsets remain the same. Furthermore, Eclat
implicitly assumes an upper bound on the database size. This is because it assumes that
multiple tid lists, each of size at least a fraction minsup of the number of database records,
fit in main memory. The cumulative memory overhead of the multiple tid lists always scales
proportionally with database size, whereas the memory overhead of the ensemble-based
Partition algorithm is independent of database size.

4.4.4 Recursive Suffix-Based Pattern Growth Methods

Enumeration trees are constructed by extending prefixes of itemsets that are expressed in a
lexicographic order. It is also possible to express some classes of itemset exploration meth-
ods recursively with suffix-based exploration. Although recursive pattern-growth is often
understood as a completely different class of methods, it can be viewed as a special case of
the generic enumeration-tree algorithm presented in the previous section. This relationship
between recursive pattern-growth methods and enumeration-tree methods will be explored
in greater detail in Sect. 4.4.4.5.

4.4. FREQUENT ITEMSET MINING ALGORITHMS 113

Recursive suffix-based pattern growth methods are generally understood in the context
of the well-known FP-Tree data structure. While the FP-Tree provides a space- and time-
efficient way to implement the recursive pattern exploration, these methods can also be
implemented with the use of arrays and pointers. This section will present the recursive
pattern growth approach in a simple way without introducing any specific data structure.
We also present a number of simplified implementations3 with various data structures to
facilitate better understanding. The idea is to move from the simple to the complex by
providing a top-down data structure-agnostic presentation, rather than a tightly integrated
presentation with the commonly used FP-Tree data structure. This approach provides a
clear understanding of how the search space of patterns is explored and the relational with
conventional enumeration tree algorithms.

Consider the transaction database T which is expressed in terms of only frequent 1-
items. It is assumed that a counting pass has already been performed on T to remove the
infrequent items and count the supports of the items. Therefore, the input to the recursive
procedure described here is slightly different from the other algorithms discussed in this
chapter in which this database pass has not been performed. The items in the database are
ordered with decreasing support. This lexicographic ordering is used to define the ordering
of items within itemsets and transactions. This ordering is also used to define the notion
of prefixes and suffixes of itemsets and transactions. The input to the algorithm is the
transaction database T (expressed in terms of frequent 1-items), a current frequent itemset
suffix P , and the minimum support minsup. The goal of a recursive call to the algorithm
is to determine all the frequent patterns that have the suffix P . Therefore, at the top-
level recursive call of the algorithm, the suffix P is empty. At deeper-level recursive calls,
the suffix P is not empty. The assumption for deeper-level calls is that T contains only
those transactions from the original database that include the itemset P . Furthermore,
each transaction in T is represented using only those frequent extension items of P that are
lexicographically smaller than all items of P . Therefore T is a conditional transaction set,
or projected database with respect to suffix P . This suffix-based projection is similar to the
prefix-based projection in TreeProjection and DepthProject.

In any given recursive call, the first step is to construct the itemset Pi = {i} ∪ P by
concatenating each item i in the transaction database T to the beginning of suffix P , and
reporting it as frequent. The itemset Pi is frequent because T is defined in terms of frequent
items of the projected database of suffix P . For each item i, it is desired to further extend
Pi by using a recursive call with the projected database of the (newly extended) frequent
suffix Pi. The projected database for extended suffix Pi is denoted by Ti, and it is created as
follows. The first step is to extract all transactions from T that contain the item i. Because
it is desired to extend the suffix Pi backwards, all items that are lexicographically greater
than or equal to i are removed from the extracted transactions in Ti. In other words, the
part of the transaction occurring lexicographically after (and including) i is not relevant for
counting frequent patterns ending in Pi. The frequency of each item in Ti is counted, and
the infrequent items are removed.

It is easy to see that the transaction set Ti is sufficient to generate all the frequent
patterns with Pi as a suffix. The problem of finding all frequent patterns ending in Pi

using the transaction set Ti is an identical but smaller problem than the original one on T .
Therefore, the original procedure is called recursively with the smaller projected database
Ti and extended suffix Pi. This procedure is repeated for each item i in T .

3Variations of these strategies are actually used in some implementations of these methods. We stress
that the simplified versions are not optimized for efficiency but are provided for clarity.

114 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm RecursiveSuffixGrowth(Transactions in terms of frequent 1-items: T ,
Minimum Support: minsup, Current Suffix: P)

begin
for each item i in T do begin
report itemset Pi = {i} ∪ P as frequent;
Extract all transactions Ti from T containing item i;
Remove all items from Ti that are lexicographically ≥ i;
Remove all infrequent items from Ti;
if (Ti �= φ) then RecursiveSuffixGrowth(Ti,minsup, Pi);

end
end

Figure 4.8: Generic recursive suffix growth on transaction database expressed in terms of
frequent 1-items

The projected transaction set Ti will become successively smaller at deeper levels of the
recursion in terms of the number of items and the number of transactions. As the number of
transactions reduces, all items in it will eventually fall below the minimum support, and the
resulting projected database (constructed on only the frequent items) will be empty. In such
cases, a recursive call with Ti is not initiated; therefore, this branch of the recursion is not
explored. For some data structures, such as the FP-Tree, it is possible to impose stronger
boundary conditions to terminate the recursion even earlier. This boundary condition will
be discussed in a later section.

The overall recursive approach is presented in Fig. 4.8. While the parameter minsup
has always been assumed to be a (relative) fractional value in this chapter, it is assumed
to be an absolute integer support value in this section and in Fig. 4.8. This deviation from
the usual convention ensures consistency of the minimum support value across different
recursive calls in which the size of the conditional transaction database reduces.

4.4.4.1 Implementation with Arrays but No Pointers

So, how can the projected database T be decomposed into the conditional transaction sets
T1 . . . Td, corresponding to d different 1-item suffixes? The simplest solution is to use arrays.
In this solution, the original transaction database T and the conditional transaction sets
T1 . . . Td can be represented in arrays. The transaction database T may be scanned within
the “for” loop of Fig. 4.8, and the set Ti is created from T . The infrequent items from
Ti are removed within the loop. However, it is expensive and wasteful to repeatedly scan
the database T inside a “for” loop. One alternative is to extract all projections Ti of T
corresponding to the different suffix items simultaneously in a single scan of the database
just before the “for” loop is initiated. On the other hand, the simultaneous creation of
many such item-specific projected data sets can be memory-intensive. One way of obtaining
an excellent trade-off between computational and storage requirements is by using pointers.
This approach is discussed in the next section.

4.4.4.2 Implementation with Pointers but No FP-Tree

The array-based solution either needs to repeatedly scan the database T or simultaneously
create many smaller item-specific databases in a single pass. Typically, the latter achieves

4.4. FREQUENT ITEMSET MINING ALGORITHMS 115

Figure 4.9: Illustration of recursive pattern growth with pointers and no FP-Tree

better efficiency but is more memory-intensive. One simple solution to this dilemma is to
set up a data structure in the form of pointers in the first pass, which implicitly stores
the decomposition of T into different item-specific data sets at a lower memory cost. This
data structure is set up at the time that infrequent items are removed from the transaction
database T , and then utilized for extracting different conditional transaction sets Ti from
T . For each item i in T , a pointer threads through the transactions containing that item in
lexicographically sorted (dictionary) order. In other words, after arranging the database T
in lexicographically sorted order, each item i in each transaction has a pointer to the same
item i in the next transaction that contains it. Because a pointer is required at each item
in each transaction, the storage overhead in this case is proportional to that of the original
transaction database T . An additional optimization is to consolidate repeated transactions
and store them with their counts. An example of a sample database with nine transactions
on the five items {a, b, c, d, e} is illustrated in Fig. 4.9. It is clear from the figure that there
are five sets of pointers, one for each item in the database.

After the pointers have been set up, Ti is extracted by just “chasing” the pointer thread
for item i. The time for doing this is proportional to the number of transactions in Ti.
The infrequent items in Ti are removed, and the pointers for the conditional transaction
data need to be reconstructed to create a conditional pointer base which is basically the
conditional transaction set augmented with pointers. The modified pseudocode with the use
of pointers is illustrated in Fig. 4.10. Note that the only difference between the pseudocode
of Figs. 4.8 and 4.10 is the setting up of pointers after extraction of conditional transaction
sets and the use of these pointers to efficiently extract the conditional transaction data sets
Ti. A recursive call is initiated at the next level with the extended suffix Pi = {i} ∪ P , and
conditional database Ti.

To illustrate how Ti can be extracted, an example of a transaction database with 5 items
and 9 transactions is illustrated in Fig. 4.9. For simplicity, we use a (raw) minimum support
value of 1. The transactions corresponding to the item c are extracted, and the irrelevant
suffix including and after item c are removed for further recursive calls. Note that this leads
to shorter transactions, some of which are repeated. As a result, the conditional database

116 CHAPTER 4. ASSOCIATION PATTERN MINING

Algorithm RecursiveGrowthPointers(Transactions in terms of frequent 1-items: T ,
Minimum Support: minsup, Current Suffix: P)

begin
for each item i in T do begin
report itemset Pi = {i} ∪ P as frequent;
Use pointers to extract all transactions Ti

from T containing item i;
Remove all items from Ti that are lexicographically ≥ i;
Remove all infrequent items from Ti;
Set up pointers for Ti;
if (Ti �= φ) then RecursiveGrowthPointers(Ti,minsup, Pi);

end
end

Figure 4.10: Generic recursive suffix growth with pointers

for Ti contains only two distinct transactions after consolidation. The infrequent items from
this conditional database need to be removed. No items are removed at a minimum support
of 1. Note that if the minimum support had been 3, then the item b would have been
removed. The pointers for the new conditional transaction set do need to be set up again
because they will be different for the conditional transaction database than in the original
transactions. Unlike the pseudocode of Fig. 4.8, an additional step of setting up pointers is
included in the pseudocode of Fig. 4.10.

The pointers provide an efficient way to extract the conditional transaction database.
Of course, the price for this is that the pointers are a space overhead, with size exactly
proportional to the original transaction database T . Consolidating repeated transactions
does save some space. The FP-Tree, which will be discussed in the next section, takes this
approach one step further by consolidating not only repeated transactions, but also repeated
prefixes of transactions with the use of a trie data structure. This representation reduces
the space-overhead by consolidating prefixes of the transaction database.

4.4.4.3 Implementation with Pointers and FP-Tree

The FP-Tree is designed with the primary goal of space efficiency of the projected database.
The FP-Tree is a trie data structure representation of the conditional transaction database
by consolidating the prefixes. This trie replaces the array-based implementation of the
previous sections, but it retains the pointers. The path from the root to the leaf in the
trie represents a (possibly repeated) transaction in the database. The path from the root
to an internal node may represent either a transaction or the prefix of a transaction in
the database. Each internal node is associated with a count representing the number of
transactions in the original database that contain the prefix corresponding to the path from
the root to that node. The count on a leaf represents the number of repeated instances of
the transaction defined by the path from the root to that leaf. Thus, the FP-Tree maintains
all counts of all the repeated transactions as well as their prefixes in the database. As in a
standard trie data-structure, the prefixes are sorted in dictionary order. The lexicographic
ordering of items is from the most frequent to the least frequent to maximize the advantages
of prefix-based compression. This ordering also provides excellent selectivity in reducing the
size of various conditional transaction sets in a balanced way. An example of the FP-Tree

4.4. FREQUENT ITEMSET MINING ALGORITHMS 117

Figure 4.11: Illustration of recursive pattern growth with pointers and FP-Tree

data structure for the same database (as the previous example of Fig. 4.9) is shown in
Fig. 4.11. In the example, the number “2” associated with the leftmost item c in the FP-
Tree, represents the count of prefix path abc, as illustrated in Fig. 4.11.

The initial FP-Tree FPT can be constructed as follows. First the infrequent items in
the database are removed. The resulting transactions are then successively inserted into
the trie. The counts on the overlapping nodes are incremented by 1 when the prefix of
the inserted transaction overlaps with an existing path in the trie. For the non-overlapping
portion of the transaction, a new path needs to be created containing this portion. The
newly created nodes are assigned a count of 1. This process of insertion is identical to that
of trie creation, except that counts are also associated with nodes. The resulting tree is a
compressed representation because common items in the prefixes of multiple transactions
are represented by a single node.

The pointers can be constructed in an analogous way to the simpler array data structure
of the previous section. The pointer for each item points to the next occurrence of the same
item in the trie. Because a trie stores the transactions in dictionary order, it is easy to
create pointers threading each of the items. However, the number of pointers is smaller,
because many nodes have been consolidated. As an illustrative example, one can examine
the relationship between the array-based data structure of Fig. 4.9, and the FP-Tree in
Fig. 4.11. The difference is that the prefixes of the arrays in Fig. 4.9 are consolidated and
compressed into a trie in Fig. 4.11.

The conditional FP-Tree FPT i (representing the conditional database Ti) needs to be
extracted and reorganized for each item i ∈ FPT . This extraction is required to initiate
recursive calls with conditional FP-Trees. As in the case of the simple pointer-based struc-
ture of the previous section, it is possible to use the pointers of an item to extract the subset
of the projected database containing that item. The following steps need to be performed
for extraction of the conditional FP-Tree of item i:

118 CHAPTER 4. ASSOCIATION PATTERN MINING

1. The pointers for item i are chased to extract the tree of conditional prefix paths for
the item. These are the paths from the item to the root. The remaining branches are
pruned.

2. The counts of the nodes in the tree of prefix-paths are adjusted to account for the
pruned branches. The counts can be adjusted by aggregating the counts on the leaves
upwards.

3. The frequency of each item is counted by aggregating the counts over all occurrences
of that item in the tree of prefix paths. The items that do not meet the minimum
support requirement are removed from the prefix paths. Furthermore, the last item i
is also removed from each prefix path. The resulting conditional FP-Tree might have
a completely different organization than the extracted tree of prefix-paths because of
the removal of infrequent items. Therefore, the conditional FP-Tree may need to be
recreated by reinserting the conditional prefix paths obtained after removing infre-
quent items. The pointers for the conditional FP-Tree need to be reconstructed as
well.

Consider the example in Fig. 4.11 which is the same data set as in Fig. 4.9. As in Fig. 4.9,
it is possible to follow the pointers for item c in Fig. 4.11 to extract a tree of conditional
prefix paths (shown in Fig. 4.11). The counts on many nodes in the tree of conditional
prefix paths need to be reduced because many branches from the original FP-Tree (that
do not contain the item c) are not included. These reduced counts can be determined by
aggregating the counts on the leaves upwards. After removing the item c and infrequent
items, two frequency-annotated conditional prefix paths ab(2) and a(2) are obtained, which
are identical to the two projected and consolidated transactions of Fig. 4.9. The conditional
FP-tree is then constructed for item c by reinserting these two conditional prefix paths into
a new conditional FP-Tree. Again, this conditional FP-Tree is a trie representation of the
conditional pointer base of Fig. 4.9. In this case, there are no infrequent items because a
minimum support of 1 is used. If a minimum support of 3 had been used, then the item
b would have to be removed. The resulting conditional FP-Tree is used in the next level
recursive call. After extracting the conditional FP-Tree FPT i, it is checked whether it is
empty. An empty conditional FP-Tree could occur when there are no frequent items in
the extracted tree of conditional prefix paths. If the tree is not empty, then the next level
recursive call is initiated with suffix Pi = {i} ∪ P , and the conditional FP-Tree FPT i.

The use of the FP-Tree allows an additional optimization in the form of a boundary
condition for quickly extracting frequent patterns at deeper levels of the recursion. In par-
ticular, it is checked whether all the nodes of the FP-Tree lie on a single path. In such a
case, the frequent patterns can be directly extracted from this path by extracting all com-
binations of nodes on this path together with the aggregated support counts. For example,
in the case of Fig. 4.11, all nodes on the conditional FP-Tree lie on a single path. Therefore,
in the next recursive call, the bottom of the recursion will be reached. The pseudocode
for FP-growth is illustrated in Fig. 4.12. This pseudocode is similar to the pointer-based
pseudocode of Fig. 4.10, except that a compressed FP-Tree is used.

4.4.4.4 Trade-offs with Different Data Structures

The main advantage of an FP-Tree over pointer-based implementation is one of space com-
pression. The FP-Tree requires less space than pointer-based implementation because of
trie-based compression, although it might require more space than an array-based imple-
mentation because of the pointer overhead. The precise space requirements depend on the

4.4. FREQUENT ITEMSET MINING ALGORITHMS 119

Algorithm FP-growth(FP-Tree of frequent items: FPT , Minimum Support: minsup,
Current Suffix: P)

begin
if FPT is a single path

then determine all combinations C of nodes on the
path, and report C ∪ P as frequent;

else (Case when FPT is not a single path)
for each item i in FPT do begin
report itemset Pi = {i} ∪ P as frequent;
Use pointers to extract conditional prefix paths

from FPT containing item i;
Readjust counts of prefix paths and remove i;
Remove infrequent items from prefix paths and reconstruct

conditional FP-Tree FPT i;
if (FPT i �= φ) then FP-growth(FPT i,minsup, Pi);

end
end

Figure 4.12: The FP-growth algorithm with an FP-Tree representation of the transaction
database expressed in terms of frequent 1-items

level of consolidation at higher level nodes in the trie-like FP-Tree structure for a particular
data set. Different data structures may be more suitable for different data sets.

Because projected databases are repeatedly constructed and scanned during recursive
calls, it is crucial to maintain them in main memory. Otherwise, drastic disk-access costs
will be incurred by the potentially exponential number of recursive calls. The sizes of the
projected databases increase with the original database size. For certain kinds of databases
with limited consolidation of repeated transactions, the number of distinct transactions
in the projected database will always be approximately proportional to the number of
transactions in the original database, where the proportionality factor f is equal to the
(fractional) minimum support. For databases that are larger than a factor 1/f of the main
memory availability, projected databases may not fit in main memory either. Therefore, the
limiting factor on the use of the approach is the size of the original transaction database.
This issue is specific to almost all projection-based methods and vertical counting methods.
Memory is always at a premium in such methods and therefore it is crucial for projected
transaction data structures to be designed as compactly as possible. As we will discuss later,
the Partition framework of Savasere et al. [446] provides a partial solution to this issue at
the expense of running time.

4.4.4.5 Relationship Between FP-Growth and Enumeration-Tree Methods

FP-growth is popularly believed to be radically different from enumeration-tree methods.
This is, in part, because FP-growth was originally presented as a method that extracts
frequent patterns without candidate generation. However, such an exposition provides an
incomplete understanding of how the search space of patterns is explored. FP-growth is an
instantiation of enumeration-tree methods. All enumeration-tree methods generate candi-
date extensions to grow the tree. In the following, we will show the equivalence between
enumeration-tree methods and FP-growth.

120 CHAPTER 4. ASSOCIATION PATTERN MINING

Figure 4.13: Enumeration trees are identical to FP-growth recursion trees with reverse lex-
icographic ordering

FP-growth is a recursive algorithm that extends suffixes of frequent patterns. Any recur-
sive approach has a tree-structure associated with it that is referred to as its recursion
tree, and a dynamic recursion stack that stores the recursion variables on the current path
of the recursion tree during execution. Therefore, it is instructive to examine the suffix-
based recursion tree created by the FP-growth algorithm, and compare it with the classical
prefix-based enumeration tree used by enumeration-tree algorithms.

In Fig. 4.13a, the enumeration tree from the earlier example of Fig. 4.3 has been repli-
cated. This tree of frequent patterns is counted by all enumeration-tree algorithms along
with a single layer of infrequent candidate extensions of this tree corresponding to failed
candidate tests. Each call of FP-growth discovers the set of frequent patterns extending a
particular suffix of items, just as each branch of an enumeration tree explores the itemsets
for a particular prefix. So, what is the hierarchical recursive relationship among the suffixes
whose conditional pattern bases are explored? First, we need to decide on an ordering of
items. Because the recursion is performed on suffixes and enumeration trees are constructed
on prefixes, the opposite ordering {f, e, d, c, b, a} is assumed to adjust for the different con-
vention in the two methods. Indeed, most enumeration-tree methods order items from the
least frequent to the most frequent, whereas FP-growth does the reverse. The corresponding
recursion tree of FP-growth, when the 1-itemsets are ordered from left to right in dictio-
nary order, is illustrated in Fig. 4.13b. The trees in Figs 4.13a and 4.13b are identical,
with the only difference being that they are drawn differently, to account for the opposite
lexicographic ordering. The FP-growth recursion tree on the reverse lexicographic ordering
has an identical structure to the traditional enumeration tree on the prefixes. During any
given recursive call of FP-growth, the current (recursion) stack of suffix items is the path
in the enumeration tree that is currently being explored. This enumeration tree is explored
in depth-first order by FP-growth because of its recursive nature.

Traditional enumeration-tree methods typically count the support of a single layer of
infrequent extensions of the frequent patterns in the enumeration-tree, as (failed) candidates,
to rule them out. Therefore, it is instructive to explore whether FP-growth avoids counting
these infrequent candidates. Note that when conditional transaction databases FPT i are

4.4. FREQUENT ITEMSET MINING ALGORITHMS 121

created (see Fig. 4.12), infrequent items must be removed from them. This requires the
counting of the support of these (implicitly failed) candidate extensions. In a traditional
candidate generate-and-test algorithm, the frequent candidate extensions would be reported
immediately after the counting step as a successful candidate test. However, in FP-growth,
these frequent extensions are encoded back into the conditional transaction database FPT i,
and the reporting is delayed to the next level recursive call. In the next level recursive
call, these frequent extensions are then extracted from FPT i and reported. The counting
and removal of infrequent items from conditional transaction sets is an implicit candidate
evaluation and testing step. The number of such failed candidate tests4 in FP-growth is
exactly equal to that of enumeration-tree algorithms, such as Apriori (without the level-wise
pruning step). This equality follows directly from the relationship of all these algorithms to
how they explore the enumeration tree and rule out infrequent portions. All pattern-growth
methods, including FP-growth, should be considered enumeration-tree methods, as should
Apriori. Whereas traditional enumeration trees are constructed on prefixes, the (implicit)
FP-growth enumeration trees are constructed using suffixes. This is a difference only in the
item-ordering convention.

The depth-first strategy is the approach of choice in database projection methods
because it is more memory-efficient to maintain the conditional transaction sets along a
(relatively small) depth of the enumeration (recursion) tree rather than along the (much
larger) breadth of the enumeration tree. As discussed in the previous section, memory man-
agement becomes a problem even with the depth-first strategy beyond a certain database
size. However, the specific strategy used for tree exploration does not have any impact
on the size of the enumeration tree (or candidates) explored over the course of the entire
algorithm execution. The only difference is that breadth-first methods process candidates
in large batches based on pattern size, whereas depth-first methods process candidates
in smaller batches of immediate siblings in the enumeration tree. From this perspective,
FP-growth cannot avoid the exponential candidate search space exploration required by
enumeration-tree methods, such as Apriori.

Whereas methods such as Apriori can also be interpreted as counting methods on an
enumeration-tree of exactly the same size as the recursion tree of FP-growth, the counting
work done at the higher levels of the enumeration tree is lost. This loss is because the
counting is done from scratch at each level in Apriori with the entire transaction database
rather than a projected database that remembers and reuses the work done at the higher
levels of the tree. Projection-based reuse is also utilized by Savasere et al.’s vertical count-
ing methods [446] and DepthProject. The use of a pointer-trie combination data structure
for projected transaction representation is the primary difference of FP-growth from other
projection-based methods. In the context of depth-first exploration, these methods can be
understood either as divide-and-conquer strategies or as projection-based reuse strategies.
The notion of projection-based reuse is more general because it applies to both the breadth-
first and depth-first versions of the algorithm, and it provides a clearer picture of how compu-
tational savings are achieved by avoiding wasteful and repetitive counting. Projection-based
reuse enables the efficient testing of candidate item extensions in a restricted portion of the
database rather than the testing of candidate itemsets in the full database. Therefore, the
efficiencies in FP-growth are a result of more efficient counting per candidate and not because
of fewer candidates. The only differences in search space size between various methods are

4 An ad hoc pruning optimization in FP-growth terminates the recursion when all nodes in the FP-Tree
lie on a single path. This pruning optimization reduces the number of successful candidate tests but not the
number of failed candidate tests. Failed candidate tests often dominate successful candidate tests in real
data sets.

122 CHAPTER 4. ASSOCIATION PATTERN MINING

the result of ad hoc pruning optimizations, such as level-wise pruning in Apriori, bucketing
in the DepthProject algorithm, and the single-path boundary condition of FP-growth.

The bookkeeping of the projected transaction sets can be done differently with the
use of different data structures, such as arrays, pointers, or a pointer-trie combination.
Many different data structure variations are explored in different projection algorithms,
such as TreeProjection, DepthProject, FP-growth, and H-Mine [419]. Each data structure is
associated with a different set of efficiencies and overheads.

In conclusion, the enumeration tree5 is the most general framework to describe all previ-
ous frequent pattern mining algorithms. This is because the enumeration tree is a subgraph
of the lattice (candidate space) and it provides a way to explore the candidate patterns
in a systematic and non-redundant way. The support testing of the frequent portion of
the enumeration tree along with a single layer of infrequent candidate extensions of these
nodes is fundamental to all frequent itemset mining algorithms for ruling in and ruling out
possible (or candidate) frequent patterns. Any algorithm, such as FP-growth, which uses
the enumeration tree to rule in and rule out possible extensions of frequent patterns with
support counting, is a candidate generate-and-test algorithm.

4.5 Alternative Models: Interesting Patterns

The traditional model for frequent itemset generation has found widespread popularity and
acceptance because of its simplicity. The simplicity of using raw frequency counts for the
support, and that of using the conditional probabilities for the confidence is very appealing.
Furthermore, the downward closure property of frequent itemsets enables the design of
efficient algorithms for frequent itemset mining. This algorithmic convenience does not,
however, mean that the patterns found are always significant from an application-specific
perspective. Raw frequencies of itemsets do not always correspond to the most interesting
patterns.

For example, consider the transaction database illustrated in Fig. 4.1. In this database,
all the transactions contain the itemMilk. Therefore, the itemMilk can be appended to any
set of items, without changing its frequency. However, this does not mean that Milk is truly
associated with any set of items. Furthermore, for any set of items X, the association rule
X ⇒ {Milk} has 100% confidence. However, it would not make sense for the supermarket
merchant to assume that the basket of itemsX is discriminatively indicative ofMilk. Herein
lies the limitation of the traditional support-confidence model.

Sometimes, it is also desirable to design measures that can adjust to the skew in the
individual item support values. This adjustment is especially important for negative pattern
mining. For example, the support of the pair of items {Milk,Butter} is very different from
that of {¬Milk,¬Butter}. Here, ¬ indicates negation. On the other hand, it can be argued
that the statistical coefficient of correlation is exactly the same in both cases. Therefore,
the measure should quantify the association between both pairs in exactly the same way.
Clearly, such measures are important for negative pattern mining. Measures that satisfy this
property are said to satisfy the bit symmetric property because values of 0 in the binary
matrix are treated in a similar way to values of 1.

5FP-growth has been presented in a separate section from enumeration tree methods only because it
uses a different convention of constructing suffix-based enumeration trees. It is not necessary to distinguish
“pattern growth” methods from “candidate-based” methods to meaningfully categorize various frequent
pattern mining methods. Enumeration tree methods are best categorized on the basis of their (i) tree
exploration strategy, (ii) projection-based reuse properties, and (iii) relevant data structures.

4.5. ALTERNATIVE MODELS: INTERESTING PATTERNS 123

Although it is possible to quantify the affinity of sets of items in ways that are statisti-
cally more robust than the support-confidence framework, the major computational problem
faced by most such interestingness-based models is that the downward closure property is
generally not satisfied. This makes algorithmic development rather difficult on the expo-
nentially large search space of patterns. In some cases, the measure is defined only for the
special case of 2-itemsets. In other cases, it is possible to design more efficient algorithms.
The following contains a discussion of some of these models.

4.5.1 Statistical Coefficient of Correlation

A natural statistical measure is the Pearson coefficient of correlation between a pair of
items. The Pearson coefficient of correlation between a pair of random variables X and Y
is defined as follows:

ρ =
E[X · Y]− E[X] · E[Y]

σ(X) · σ(Y)
. (4.4)

In the case of market basket data,X and Y are binary variables whose values reflect presence
or absence of items. The notation E[X] denotes the expectation of X, and σ(X) denotes the
standard deviation of X. Then, if sup(i) and sup(j) are the relative supports of individual
items, and sup({i, j} is the relative support of itemset {i, j}, then the overall correlation
can be estimated from the data as follows:

ρij =
sup({i, j})− sup(i) · sup(j)√

sup(i) · sup(j) · (1− sup(i)) · (1− sup(j))
. (4.5)

The coefficient of correlation always lies in the range [−1, 1], where the value of +1 indicates
perfect positive correlation, and the value of -1 indicates perfect negative correlation. A
value near 0 indicates weakly correlated data. This measure satisfies the bit symmetric
property. While the coefficient of correlation is statistically considered the most robust way
of measuring correlations, it is often intuitively hard to interpret when dealing with items
of varying but low support values.

4.5.2 χ2 Measure

The χ2 measure is another bit-symmetric measure that treats the presence and absence
of items in a similar way. Note that for a set of k binary random variables (items),
denoted by X, there are 2k-possible states representing presence or absence of different
items of X in the transaction. For example, for k = 2 items {Bread,Butter}, the 22 states
are {Bread,Butter}, {Bread,¬Butter}, {¬Bread,Butter}, and {¬Bread,¬Butter}. The
expected fractional presence of each of these combinations can be quantified as the product
of the supports of the states (presence or absence) of the individual items. For a given data
set, the observed value of the support of a state may vary significantly from the expected
value of the support. Let Oi and Ei be the observed and expected values of the absolute
support of state i. For example, the expected support Ei of {Bread,¬Butter} is given by
the total number of transactions multiplied by each of the fractional supports of Bread and
¬Butter, respectively. Then, the χ2-measure for set of items X is defined as follows:

χ2(X) =
2|X|∑
i=1

(Oi − Ei)2

Ei
. (4.6)

124 CHAPTER 4. ASSOCIATION PATTERN MINING

For example, when X = {Bread,Butter}, one would need to perform the summation
in Eq. 4.6 over the 22 = 4 states corresponding to {Bread,Butter}, {Bread,¬Butter},
{¬Bread,Butter}, and {¬Bread,¬Butter}. A value that is close to 0 indicates statistical
independence among the items. Larger values of this quantity indicate greater dependence
between the variables. However, large χ2 values do not reveal whether the dependence
between items is positive or negative. This is because the χ2 test measures dependence
between variables, rather than the nature of the correlation between the specific states of
these variables.

The χ2 measure is bit-symmetric because it treats the presence and absence of items in
a similar way. The χ2-test satisfies the upward closure property because of which an efficient
algorithm can be devised for discovering interesting k-patterns. On the other hand, the
computational complexity of the measure in Eq. 4.6 increases exponentially with |X|.

4.5.3 Interest Ratio

The interest ratio is a simple and intuitively interpretable measure. The interest ratio of a
set of items {i1 . . . ik} is denoted as I({i1, . . . ik}), and is defined as follows:

I({i1 . . . ik}) =
sup({i1 . . . ik})∏k

j=1 sup(ij)
. (4.7)

When the items are statistically independent, the joint support in the numerator will be
equal to the product of the supports in the denominator. Therefore, an interest ratio of 1
is the break-even point. A value greater than 1 indicates that the variables are positively
correlated, whereas a ratio of less than 1 is indicative of negative correlation.

When some items are extremely rare, the interest ratio can be misleading. For example,
if an item occurs in only a single transaction in a large transaction database, each item that
co-occurs with it in that transaction can be paired with it to create a 2-itemset with a very
high interest ratio. This is statistically misleading. Furthermore, because the interest ratio
does not satisfy the downward closure property, it is difficult to design efficient algorithms
for computing it.

4.5.4 Symmetric Confidence Measures

The traditional confidence measure is asymmetric between the antecedent and consequent.
However, the support measure is symmetric. Symmetric confidence measures can be used
to replace the support-confidence framework with a single measure. Let X and Y be two
1-itemsets. Symmetric confidence measures can be derived as a function of the confidence
of X ⇒ Y and the confidence of Y ⇒ X. The various symmetric confidence measures can
be any one of the minimum, average, or maximum of these two confidence values. The min-
imum is not desirable when either X or Y is very infrequent, causing the combined measure
to be too low. The maximum is not desirable when either X or Y is very frequent, causing
the combined measure to be too high. The average provides the most robust trade-off in
many scenarios. The measures can be generalized to k-itemsets by using all k possible indi-
vidual items in the consequent for computation. Interestingly, the geometric mean of the
two confidences evaluates to the cosine measure, which is discussed below. The computa-
tional problem with symmetric confidence measures is that the relevant itemsets satisfying
a specific threshold on the measure do not satisfy the downward closure property.

4.5. ALTERNATIVE MODELS: INTERESTING PATTERNS 125

4.5.5 Cosine Coefficient on Columns

The cosine coefficient is usually applied to the rows to determine the similarity among trans-
actions. However, it can also be applied to the columns, to determine the similarity between
items. The cosine coefficient is best computed using the vertical tid list representation on
the corresponding binary vectors. The cosine value on the binary vectors computes to the
following:

cosine(i, j) =
sup({i, j})√

sup(i) ·
√

sup(j)
. (4.8)

The numerator can be evaluated as the length of the intersection of the tid lists of items i
and j. The cosine measure can be viewed as the geometric mean of the confidences of the
rules {i} ⇒ {j} and {j} ⇒ {i}. Therefore, the cosine is a kind of symmetric confidence
measure.

4.5.6 Jaccard Coefficient and the Min-hash Trick

The Jaccard coefficient was introduced in Chap. 3 to measure similarity between sets. The
tid lists on a column can be viewed as a set, and the Jaccard coefficient between two tid lists
can be used to compute the similarity. Let S1 and S2 be two sets. As discussed in Chap. 3,
the Jaccard coefficient J(S1, S2) between the two sets can be computed as follows:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

. (4.9)

The Jaccard coefficient can easily be generalized to multiway sets, as follows:

J(S1 . . . Sk) =
| ∩ Si|
| ∪ Si|

. (4.10)

When the sets S1 . . . Sk correspond to the tid lists of k items, the intersection and union of
the tid lists can be used to determine the numerator and denominator of the aforementioned
expression. This provides the Jaccard-based significance for that k-itemset. It is possible to
use a minimum threshold on the Jaccard coefficient to determine all the relevant itemsets.

A nice property of Jaccard-based significance is that it satisfies the set-wise monotonicity
property. The k-way Jaccard coefficient J(S1 . . . Sk) is always no smaller than the (k+1)-way
Jaccard coefficient J(S1 . . . Sk+1). This is because the numerator of the Jaccard coefficient
is monotonically non-increasing with increasing values of k (similar to support), whereas
the denominator is monotonically non-decreasing. Therefore, the Jaccard coefficient cannot
increase with increasing values of k. Therefore, when a minimum threshold is used on the
Jaccard-based significance of an itemset, the resulting itemsets satisfy the downward closure
property, as well. This means that most of the traditional algorithms, such as Apriori and
enumeration tree methods, can be generalized to the Jaccard coefficient quite easily.

It is possible to use sampling to speed up the computation of the Jaccard coefficient
further, and transform it to a standard frequent pattern mining problem. This kind of
sampling uses hash functions to simulate sorted samples of the data. So, how can the
Jaccard coefficient be computed using sorted sampling? Let D be the n × d binary data
matrix representing the n rows and d columns. Without loss of generality, consider the case
when the Jaccard coefficient needs to be computed on the first k columns. Suppose one were
to sort the rows in D, and pick the first row in which at least one of the first k columns
in this row has a value of 1 in this column. Then, it is easy to see that the probability of

126 CHAPTER 4. ASSOCIATION PATTERN MINING

the event that all the k columns have a value of 1 is equal to the k-way Jaccard coefficient.
If one were to sort the rows multiple times, it is possible to estimate this probability as
the fraction of sorts over which the event of all k columns taking on unit values occurs.
Of course, it is rather inefficient to do it in this way because every sort requires a pass
over the database. Furthermore, this approach can only estimate the Jaccard coefficient for
a particular set of k columns, and it does not discover all the k-itemsets that satisfy the
minimum criterion on the Jaccard coefficient.

The min-hash trick can be used to efficiently perform the sorts in an implicit way and
transform to a concise sampled representation on which traditional frequent pattern mining
algorithms can be applied to discover combinations satisfying the Jaccard threshold. The
basic idea is as follows. A random hash function h(·) is applied to each tid. For each column
of binary values, the tid, with the smallest hash function value, is selected among all entries
that have a unit value in that column. This results in a vector of d different tids. What
is the probability that the tids in the first k columns are the same? It is easy to see that
this is equal to the Jaccard coefficient because the hashing process simulates the sort, and
reports the index of the first non-zero element in the binary matrix. Therefore, by using
independent hash functions to create multiple samples, it is possible to estimate the Jaccard
coefficient. It is possible to repeat this process with r different hash functions, to create r
different samples. Note that the r hash-functions can be applied simultaneously in a single
pass over the transaction database. This creates a r × d categorical data matrix of tids.
By determining the subsets of columns where the tid value is the same with support equal
to a minimum support value, it is possible to estimate all sets of k-items whose Jaccard
coefficient is at least equal to the minimum support value. This is a standard frequent
pattern mining problem, except that it is defined on categorical values instead of a binary
data matrix.

One way of transforming this r × d categorical data matrix to a binary matrix is to
pull out the column identifiers where the tids are the same from each row and create a
new transaction of column-identifier “items.” Thus, a single row from the r× d matrix will
map to multiple transactions. The resulting transaction data set can be represented by a
new binary matrix D′. Any off-the-shelf frequent pattern mining algorithm can be applied
to this binary matrix to discover relevant column-identifier combinations. The advantage
of an off-the-shelf approach is that many efficient algorithms for the conventional frequent
pattern mining model are available. It can be shown that the accuracy of the approach
increases exponentially fast with the number of data samples.

4.5.7 Collective Strength

The collective strength of an itemset is defined in terms of its violation rate. An itemset I is
said to be in violation of a transaction, if some of the items are present in the transaction,
and others are not. The violation rate v(I) of an itemset I is the fraction of violations of
the itemset I over all transactions. The collective strength C(I) of an itemset I is defined
in terms of the violation rate as follows:

C(I) =
1− v(I)

1− E[v(I)]
· E[v(I)]

v(I)
. (4.11)

The collective strength is a number between 0 to ∞. A value of 0 indicates a perfect negative
correlation, whereas a value of ∞ indicates a perfectly positive correlation. The value of
1 is the break-even point. The expected value of v(I) is calculated assuming statistical
independence of the individual items. No violation occurs when all items in I are included

4.6. USEFUL META-ALGORITHMS 127

in transaction, or when no items in I are included in a transaction. Therefore, if pi is the
fraction of transactions in which the item i occurs, we have:

E[v(I)] = 1−
∏
i∈I

pi −
∏
i∈I

(1− pi). (4.12)

Intuitively, if the violation of an itemset in a transaction is a “bad event” from the perspec-
tive of trying to establish a high correlation among items, then v(I) is the fraction of bad
events, and (1 − v(I)) is the fraction of “good events.” Therefore, collective strength may
be understood as follows:

C(I) =
Good Events

E[Good Events]
· E[Bad Events]

Bad Events
. (4.13)

The concept of collective-strength may be strengthened to strongly collective itemsets.

Definition 4.5.1 An itemset I is denoted to be strongly collective at level s, if it satisfies
the following properties:

1. The collective strength C(I) of the itemset I is at least s.

2. Closure property: The collective strength C(J) of every subset J of I is at least s.

It is necessary to force the closure property to ensure that unrelated items may not be
present in an itemset. Consider, for example, the case when itemset I1 is {Milk,Bread}
and itemset I2 is {Diaper,Beer}. If I1 and I2 each have a high collective strength, then it
may often be the case that the itemset I1∪I2 may also have a high collective strength, even
though items such as milk and beer may be independent. Because of the closure property
of this definition, it is possible to design an Apriori-like algorithm for the problem.

4.5.8 Relationship to Negative Pattern Mining

In many applications, it is desirable to determine patterns between items or their absence.
Negative pattern mining requires the use of bit-symmetric measures that treat the presence
or absence of an item evenly. The traditional support-confidence measure is not designed for
finding such patterns. Measures such as the statistical coefficient of correlation, χ2 measure,
and collective strength are better suited for finding such positive or negative correlations
between items. However, many of these measures are hard to use in practice because they do
not satisfy the downward closure property. The multiway Jaccard coefficient and collective
strength are among the few measures that do satisfy the downward closure property.

4.6 Useful Meta-algorithms

A number of meta-algorithms can be used to obtain different insights from pattern mining. A
meta-algorithm is defined as an algorithm that uses a particular algorithm as a subroutine,
either to make the original algorithm more efficient (e.g., by sampling), or to gain new
insights. Two types of meta-algorithms are most common in pattern mining. The first type
uses sampling to improve the efficiency of association pattern mining algorithms. The second
uses preprocessing and postprocessing subroutines to apply the algorithm to other scenarios.
For example, after using these wrappers, standard frequent pattern mining algorithms can
be applied to quantitative or categorical data.

128 CHAPTER 4. ASSOCIATION PATTERN MINING

4.6.1 Sampling Methods

When the transaction database is very large, it cannot be stored in main memory. This
makes the application of frequent pattern mining algorithms more challenging. This is
because such databases are typically stored on disk, and only level-wise algorithms may
be used. Many depth-first algorithms on the enumeration tree may be challenged by these
scenarios because they require random access to the transactions. This is inefficient for disk-
resident data. As discussed earlier, such depth-first algorithms are usually the most efficient
for memory-resident data. By sampling, it is possible to apply many of these algorithms
in an efficient way, with only limited loss in accuracy. When a standard itemset mining
algorithm is applied to sampled data, it will encounter two main challenges:

1. False positives: These are patterns that meet the support threshold on the sample but
not on the base data.

2. False negatives: These are patterns that do not meet the support threshold on the
sample, but meet the threshold on the data.

False positives are easier to address than false negatives because the former can be removed
by scanning the disk-resident database only once. However, to address false negatives, one
needs to reduce the support thresholds. By reducing support thresholds, it is possible to
probabilistically guarantee the level of loss for specific thresholds. Pointers to these proba-
bilistic guarantees may be found in the bibliographic notes. Reducing the support thresholds
too much will lead to many spurious itemsets and increase the work in the postprocessing
phase. Typically, the number of false positives increases rapidly with small changes in sup-
port levels.

4.6.2 Data Partitioned Ensembles

One approach that can guarantee no false positives and no false negatives, is the use of
partitioned ensembles by the Partition algorithm [446]. This approach may be used either
for reduction of disk-access costs or for reduction of memory requirements of projection-
based algorithms. In partitioned ensembles, the transaction database is partitioned into
k disjoint segments, each of which is main-memory resident. The frequent itemset mining
algorithm is independently applied to each of these k different segments with the required
minimum support level. An important property is that every frequent pattern must appear
in at least one of the segments. Otherwise, its cumulative support across different segments
will not meet the minimum support requirement. Therefore, the union of the frequent
itemset generated from different segments provides a superset of the frequent patterns. In
other words, the union contains false positives but no false negatives. A postprocessing
phase of support counting can be applied to this superset to remove the false positives.
This approach is particularly useful for memory-intensive projection-based algorithms when
the projected databases do not fit in main memory. In the original Partition algorithm,
the data structure used to perform projection-based reuse was the vertical tid list. While
partitioning is almost always necessary for memory-based implementations of projection-
based algorithms in databases of arbitrarily large size, the cost of postprocessing overhead
can sometimes be significant. Therefore, one should use the minimum number of partitions
based on the available memory. Although Partition is well known mostly for its ensemble
approach, an even more significant but unrecognized contribution of the method was to
propose the notion of vertical lists. The approach is credited with recognizing the projection-
based reuse properties of recursive tid list intersections.

4.7. SUMMARY 129

4.6.3 Generalization to Other Data Types

The generalization to other data types is quite straightforward with the use of type-
transformation methods discussed in Chap. 2.

4.6.3.1 Quantitative Data

In many applications, it is desirable to discover quantitative association rules when some
of the attributes take on quantitative values. Many online merchants collect profile infor-
mation, such as age, which have numeric values. For example, in supermarket applications,
it may be desirable to relate demographic information to item attributes in the data. An
example of such a rule is as follows:

(Age = 90) ⇒ Checkers.

This rule may not have sufficient support if the transactions do not contain enough indi-
viduals of that age. However, the rule may be relevant to the broader age group. Therefore,
one possibility is to create a rule that groups the different ages into one range:

Age[85, 95] ⇒ Checkers.

This rule will have the required level of minimum support. In general, for quantitative
association rule mining, the quantitative attributes are discretized and converted to binary
form. Thus, the entire data set (including the item attributes) can be represented as a
binary matrix. A challenge with the use of such an approach is that the appropriate level of
discretization is often hard to know a priori. A standard association rule mining algorithm
may be applied to this representation. Furthermore, rules on adjacent ranges can be merged
to create summarized rules on larger ranges.

4.6.3.2 Categorical Data

Categorical data is common in many application domains. For example, attributes such
as the gender and ZIP code are typical categorical. In other cases, the quantitative and
categorical data may be mixed. An example of a rule with mixed attributes is as follows:

(Gender = Male), Age[20, 30] ⇒ Basketball.

Categorical data can be transformed to binary values with the use of the binarization
approach discussed in Chap. 2. For each categorical attribute value, a single binary value
is used to indicate the presence or absence of the item. This can be used to determine the
association rules. In some cases, when domain knowledge is available, clusters on categorical
values on may used as binary attributes. For example, the ZIP codes may be clustered by
geography into k clusters, and then these k clusters may be treated as binary attributes.

4.7 Summary

The problem of association rule mining is used to identify relationships between different
attributes. Association rules are typically generated using a two-phase framework. In the
first phase, all the patterns that satisfy the minimum support requirement are determined.
In the second phase, rules that satisfy the minimum confidence requirement are generated
from the patterns.

130 CHAPTER 4. ASSOCIATION PATTERN MINING

The Apriori algorithm is one of the earliest and most well known methods for frequent
pattern mining. In this algorithm, candidate patterns are generated with the use of joins
between frequent patterns. Subsequently, a number of enumeration-tree algorithms were
proposed for frequent pattern mining techniques. Many of these methods use projections to
count the support of transactions in the database more efficiently. The traditional support-
confidence framework has the shortcoming that it is not based on robust statistical measures.
Many of the patterns generated are not interesting. Therefore, a number of interest measures
have been proposed for determining more relevant patterns.

A number of sampling methods have been designed for improving the efficiency of fre-
quent pattern mining. Sampling methods result in both false positives and false negatives,
though the former can be addressed by postprocessing. A partitioned sample ensemble is
also able to avoid false negatives. Association rules can be determined in quantitative and
categorical data with the use of type transformations.

4.8 Bibliographic Notes

The problem of frequent pattern mining was first proposed in [55]. The Apriori algorithm
discussed in this chapter was first proposed in [56], and an enhanced variant of the approach
was proposed in [57]. Maximal and non-maximal frequent pattern mining algorithms are
usually different from one another primarily in terms of additional pruning steps in the
former. TheMaxMiner algorithm used superset-based non-maximality pruning [82] for more
efficient counting. However, the exploration is in breadth-first order, to reduce the number
of passes over the data. The DepthProject algorithm recognized that superset-based non-
maximality pruning is more effective with a depth-first approach.

The FP-growth [252] and DepthProject [3, 4] methods independently proposed the notion
of projection-based reuse in the horizontal database layout. A variety of different data struc-
tures are used by different projection-based reuse algorithms such as TreeProjection [3],
DepthProject [4], FP-growth [252], and H-Mine [419]. A method, known as Opportune-
Project [361], chooses opportunistically between array-based and tree-based structures to
represent the projected transactions. The TreeProjection framework also recognized that
breadth-first and depth-first strategies have different trade-offs. Breadth-first variations of
TreeProjection sacrifice some of the power of projection-based reuse to enable fewer disk-
based passes on arbitrarily large data sets. Depth-first variations of TreeProjection, such as
DepthProject, achieve full projection-based reuse but the projected databases need to be
consistently maintained in main memory. A book and a survey on frequent pattern mining
methods may be found in [34] and [253], respectively.

The use of the vertical representation for frequent pattern mining was independently
pioneered by Holsheimer et al. [273] and Savasere et al. [446]. These works introduced the
clever insight that recursive tid list intersections provide significant computational savings
in support counting because k-itemsets have shorter tid lists than those of (k − 1)-itemsets
or individual items. The vertical Apriori algorithm is based on an ensemble component
of the Partition framework [446]. Although the use of vertical lists by this algorithm was
mentioned [537, 534, 465] in the earliest vertical pattern mining papers, some of the contribu-
tions of the Partition algorithm and their relationship to the subsequent work seem to have
remained unrecognized by the research community over the years. Savasere et al.’s Apriori-
like algorithm, in fact, formed the basis for all vertical algorithms such as Eclat [534] and
VIPER [465]. Eclat is described as a breadth-first algorithm in the book by Han et al. [250],
and as a depth-first algorithm in the book by Zaki et al. [536]. A careful examination of the

4.8. BIBLIOGRAPHIC NOTES 131

Eclat paper [537] reveals that it is a memory optimization of the breadth-first approach by
Savasere et al. [446]. The main contribution of Eclat is a memory optimization of the indi-
vidual ensemble component of Savasere et al.’s algorithm with lattice partitioning (instead
of data partitioning), thereby increasing the maximum size of the databases that can be
processed in memory without the computational overhead of data-partitioned postprocess-
ing. The number of computational operations for support counting in a single component
version of Partition is fundamentally no different from that of Eclat. The Eclat algorithm
partitions the lattice based on common prefixes, calling them equivalence classes, and then
uses a breadth-first approach [537] over each of these smaller sublattices in main mem-
ory. This type of lattice partitioning was adopted from parallel versions of Apriori, such
as the Candidate Distribution algorithm [54], where a similar choice exists between lattice
partitioning and data partitioning. Because a breadth-first approach is used for search on
each sublattice, such an approach has significantly higher memory requirements than a pure
depth-first approach. As stated in [534], Eclat explicitly decouples the lattice decomposition
phase from the pattern search phase. This is different from a pure depth-first strategy in
which both are tightly integrated. Depth-first algorithms do not require an explicitly decou-
pled approach for reduction of memory requirements. Therefore, the lattice-partitioning in
Eclat, which was motivated by the Candidate Distribution algorithm [54], seems to have
been specifically designed with a breadth-first approach in mind for the second (pattern
search) phase. Both the conference [537] and journal versions [534] of the Eclat algorithm
state that a breadth-first (bottom-up) procedure is used in the second phase for all experi-
ments. FP-growth [252] and DepthProject [4] were independently proposed as the first depth-
first algorithms for frequent pattern mining. MAFIA was the first vertical method to use
a pure depth-first approach [123]. Other later variations of vertical algorithms, such as
GenMax and dEclat [233, 538], also incorporated the depth-first approach. The notion of
diffsets [538, 233], which uses incremental vertical lists along the enumeration tree hierar-
chy, was also proposed in these algorithms. The approach provides memory and efficiency
advantages for certain types of data sets.

Numerous measures for finding interesting frequent patterns have been proposed. The
χ2 measure was one of the first such tests, and was discussed in [113]. This measure satisfies
the upward closure property. Therefore, efficient pattern mining algorithms can be devised.
The use of the min-hashing technique for determining interesting patterns without support
counting was discussed in [180]. The impact of skews in the support of individual items
has been addressed in [517]. An affinity-based algorithm for mining interesting patterns in
data with skews has been proposed in the same work. A common scenario in which there is
significant skew in support distributions is that of mining negative association rules [447].
The collective strength model was proposed in [16], and a level-wise algorithm for finding
all strongly collective itemsets was discussed in the same work. The collective strength
model can also discover negative associations from the data. The work in [486] addresses
the problem of selecting the right measure for finding interesting association rules.

Sampling is a popular approach for finding frequent patterns in an efficient way with
memory-resident algorithms. The first sampling approach was discussed in [493], and theo-
retical bounds were presented. The work in [446] enables the application of memory-based
frequent pattern mining algorithms on large data sets by using ensembles on data partitions.
The problem of finding quantitative association rules, and different kinds of patterns from
quantitative data is discussed in [476]. The CLIQUE algorithm can also be considered an
association pattern mining algorithm on quantitative data [58].

132 CHAPTER 4. ASSOCIATION PATTERN MINING

4.9 Exercises

1. Consider the transaction database in the table below:

tid Items
1 a, b, c, d
2 b, c, e, f
3 a, d, e, f
4 a, e, f
5 b, d, f

Determine the absolute support of itemsets {a, e, f}, and {d, f}. Convert the absolute
support to the relative support.

2. For the database in Exercise 1, compute all frequent patterns at absolute minimum
support values of 2, 3, and 4.

3. For the database in Exercise 1, determine all the maximal frequent patterns at absolute
minimum support values of 2, 3, and 4.

4. Represent the database of Exercise 1 in vertical format.

5. Consider the transaction database in the table below:

tid items
1 a, c, d, e
2 a, d, e, f
3 b, c, d, e, f
4 b, d, e, f
5 b, e, f
6 c, d, e
7 c, e, f
8 d, e, f

Determine all frequent patterns and maximal patterns at support levels of 3, 4, and
5.

6. Represent the transaction database of Exercise 5 in vertical format.

7. Determine the confidence of the rules {a} ⇒ {f}, and {a, e} ⇒ {f} for the transaction
database in Exercise 1.

8. Determine the confidence of the rules {a} ⇒ {f}, and {a, e} ⇒ {f} for the transaction
database in Exercise 5.

9. Show the candidate itemsets and the frequent itemsets in each level-wise pass of the
Apriori algorithm in Exercise 1. Assume an absolute minimum support level of 2.

10. Show the candidate itemsets and the frequent itemsets in each level-wise pass of the
Apriori algorithm in Exercise 5. Assume an absolute minimum support level of 3.

11. Show the prefix-based enumeration tree of frequent itemsets, for the data set of Exer-
cise 1 at an absolute minimum support level of 2. Assume a lexicographic ordering of
a, b, c, d, e, f . Construct the tree for the reverse lexicographic ordering.

4.9. EXERCISES 133

12. Show the prefix-based enumeration tree of frequent itemsets, for the data set in Exer-
cise (5), at an absolute minimum support of 3. Assume a lexicographic ordering of
a, b, c, d, e, f . Construct the tree for the reverse lexicographic ordering.

13. Show the frequent suffixes generated in the recursion tree of the generic pattern growth
method for the data set and support level in Exercise 9. Assume the lexicographic
ordering of a, b, c, d, e, f , and f, e, d, c, b, a. How do these trees compare with those
generated in Exercise 11?

14. Show the frequent suffixes generated in the recursion tree of the generic pattern growth
method for the data set and support level in Exercise 10. Assume the lexicographic
ordering of a, b, c, d, e, f , and f, e, d, c, b, a. How do these trees compare with those
generated in Exercise 12?

15. Construct a prefix-based FP-Tree for the lexicographic ordering a, b, c, d, e, f for the
data set in Exercise 1. Create the same tree for the reverse lexicographic ordering.

16. Construct a prefix-based FP-Tree for the lexicographic ordering a, b, c, d, e, f for the
data set in Exercise 5. Create the same tree for the reverse lexicographic ordering.

17. The pruning approach in Apriori was inherently designed for a breadth-first strategy
because all frequent k-itemsets are generated before (k+1)-itemsets. Discuss how one
might implement such a pruning strategy with a depth-first algorithm.

18. Implement the pattern growth algorithm with the use of (a) an array-based data
structure, (b) a pointer-based data structure with no FP-Tree, and (c) a pointer-
based data structure with FP-Tree.

19. Implement Exercise 18(c) by growing patterns from prefixes and the FP-Tree on suf-
fixes.

20. For the itemset {d, f} and the data set of Exercise 1, compute the (a) statistical corre-
lation coefficient, (b) interest ratio, (c) cosine coefficient, and (d) Jaccard coefficient.

21. For the itemset {d, f} and the data set of Exercise 1, compute the (a) statistical corre-
lation coefficient, (b) interest ratio, (c) cosine coefficient, and (d) Jaccard coefficient.

22. Discuss the similarities and differences between TreeProjection, DepthProject, Verti-
calApriori, and FP-growth.

Chapter 5

Association Pattern Mining: Advanced
Concepts

“Each child is an adventure into a better life—an opportunity to
change the old pattern and make it new.”—Hubert H. Humphrey

5.1 Introduction

Association pattern mining algorithms often discover a large number of patterns, and it
is difficult to use this large output for application-specific tasks. One reason for this is
that a vast majority of the discovered associations may be uninteresting or redundant for a
specific application. This chapter discusses a number of advanced methods that are designed
to make association pattern mining more application-sensitive:

1. Summarization: The output of association pattern mining is typically very large. For
an end-user, a smaller set of discovered itemsets is much easier to understand and
assimilate. This chapter will introduce a number of summarization methods such as
finding maximal itemsets, closed itemsets, or nonredundant rules.

2. Querying: When a large number of itemsets are available, the users may wish to query
them for smaller summaries. This chapter will discuss a number of specialized sum-
marization methods that are query friendly. The idea is to use a two-phase approach
in which the data is preprocessed to create a summary. This summary is then queried.

3. Constraint incorporation: In many real scenarios, one may wish to incorporate
application-specific constraints into the itemset generation process. Although a
constraint-based algorithm may not always provide online responses, it does allow
for the use of much lower support-levels for mining, than a two-phase “preprocess-
once query-many” approach.

These topics are all related to the extraction of interesting summary information from item-
sets in different ways. For example, compressed representations of itemsets are very useful

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 5 135
c© Springer International Publishing Switzerland 2015

136 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

Table 5.1: Example of a snapshot of a market basket data set (Replicated from Table 4.1
of Chap. 4)

tid Set of items

1 {Bread,Butter,Milk}
2 {Eggs,Milk, Y ogurt}
3 {Bread,Cheese,Eggs,Milk}
4 {Eggs,Milk, Y ogurt}
5 {Cheese,Milk, Y ogurt}

for querying. A query-friendly compression scheme is very different from a summarization
scheme that is designed to assure nonredundancy. Similarly, there are fewer constrained
itemsets than unconstrained itemsets. However, the shrinkage of the discovered itemsets
is because of the constraints rather than a compression or summarization scheme. This
chapter will also discuss a number of useful applications of association pattern mining.

This chapter is organized as follows. The problem of pattern summarization is addressed
in Sect. 5.2. A discussion of querying methods for pattern mining is provided in Sect. 5.3.
Section 5.4 discusses numerous applications of frequent pattern mining. The conclusions are
discussed in Sect. 5.5.

5.2 Pattern Summarization

Frequent itemset mining algorithms often discover a large number of patterns. The size of
the output creates challenges for users to assimilate the results and make meaningful infer-
ences. An important observation is that the vast majority of the generated patterns are
often redundant. This is because of the downward closure property, which ensures that all
subsets of a frequent itemset are also frequent. There are different kinds of compact repre-
sentations in frequent pattern mining that retain different levels of knowledge about the true
set of frequent patterns and their support values. The most well-known representations are
those of maximal frequent itemsets, closed frequent itemsets, and other approximate repre-
sentations. These representations vary in the degree of information loss in the summarized
representation. Closed representations are fully lossless with respect to the support and
membership of itemsets. Maximal representations are lossy with respect to the support but
lossless with respect to membership of itemsets. Approximate condensed representations are
lossy with respect to both but often provide the best practical alternative in application-
driven scenarios.

5.2.1 Maximal Patterns

The concept of maximal itemsets was discussed briefly in the previous chapter. For conve-
nience, the definition of maximal itemsets is restated here:

Definition 5.2.1 (Maximal Frequent Itemset) A frequent itemset is maximal at a
given minimum support level minsup if it is frequent and no superset of it is frequent.

For example, consider the example of Table 5.1, which is replicated from the example of
Table 4.1 in the previous chapter. It is evident that the itemset {Eggs,Milk, Y ogurt} is
frequent at a minimum support level of 2 and is also maximal. The support of proper
subsets of a maximal itemset is always equal to, or strictly larger than the latter because
of the support-monotonicity property. For example, the support of {Eggs,Milk}, which
is a proper subset of the itemset {Eggs,Milk, Y ogurt}, is 3. Therefore, one strategy for
summarization is to mine only the maximal itemsets. The remaining itemsets are derived
as subsets of the maximal itemsets.

5.2. PATTERN SUMMARIZATION 137

Although all the itemsets can be derived from the maximal itemsets with the subsetting
approach, their support values cannot be derived. Therefore, maximal itemsets are lossy
because they do not retain information about the support values. To provide a lossless
representation in terms of the support values, the notion of closed itemset mining is used.
This concept will be discussed in the next section.

A trivial way to find all the maximal itemsets would be to use any frequent itemset
mining algorithm to find all itemsets. Then, only the maximal ones can be retained in a
postprocessing phase by examining itemsets in decreasing order of length, and removing
proper subsets. This process is continued until all itemsets have either been examined or
removed. The itemsets that have not been removed at termination are the maximal ones.
However, this approach is an inefficient solution. When the itemsets are very long, the
number of maximal frequent itemsets may be orders of magnitude smaller than the number
of frequent itemsets. In such cases, it may make sense to design algorithms that can directly
prune parts of the search space of patterns during frequent itemset discovery. Most of the
tree-enumeration methods can be modified with the concept of lookaheads to prune the
search space of patterns. This notion is discussed in the previous chapter in the context of
the DepthProject algorithm.

Although the notion of lookaheads is described in the Chap. 4, it is repeated here for
completeness. Let P be a frequent pattern in the enumeration tree of itemsets, and F (P)
represent the set of candidate extensions of P in the enumeration tree. Then, if P ∪ F (P)
is a subset of a frequent pattern that has already been found, then it implies that the
entire enumeration tree rooted at P is frequent and can, therefore, be removed from further
consideration. In the event that the subtree is not pruned, the candidate extensions of P
need to be counted. During counting, the support of P ∪ F (P) is counted at the same
time that the supports of single-item candidate extensions of P are counted. If P ∪ F (P)
is frequent then the subtree rooted at P can be pruned as well. The former kind of subset-
based pruning approach is particularly effective with depth-first methods. This is because
maximal patterns are found much earlier with a depth-first strategy than with a breadth-
first strategy. For a maximal pattern of length k, the depth-first approach discovers it after
exploring only (k− 1) of its prefixes, rather than the 2k possibilities. This maximal pattern
then becomes available for subset-based pruning. The remaining subtrees containing subsets
of P ∪ F (P) are then pruned. The superior lookahead-pruning of depth-first methods was
first noted in the context of the DepthProject algorithm.

The pruning approach provides a smaller set of patterns that includes all maximal
patterns but may also include some nonmaximal patterns despite the pruning. Therefore,
the approach discussed above may be applied to remove these nonmaximal patterns. Refer to
the bibliographic notes for pointers to various maximal frequent pattern mining algorithms.

5.2.2 Closed Patterns

A simple definition of a closed pattern, or closed itemset, is as follows:

Definition 5.2.2 (Closed Itemsets) An itemset X is closed, if none of its supersets have
exactly the same support count as X.

Closed frequent pattern mining algorithms require itemsets to be closed in addition to being
frequent. So why are closed itemsets important? Consider a closed itemset X, and the set
S(X) of itemsets which are subsets of X, and which have the same support as X. The only
itemset from S(X) that will be returned by a closed frequent itemset mining algorithm, will

138 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be X. The itemsets contained in S(X) may be referred to as the equi-support subsets of X.
An important observation is as follows:

Observation 5.2.1 Let X be a closed itemset, and S(X) be its equi-support subsets. For
any itemset Y ∈ S(X), the set of transactions T (Y) containing Y is exactly the same.
Furthermore, there is no itemset Z outside S(X) such that the set of transactions in T (Z)
is the same as T (X).

This observation follows from the downward closed property of frequent itemsets. For any
proper subset Y of X, the set of transactions T (Y) is always a superset of T (X). However,
if the support values of X and Y are the same, then T (X) and T (Y) are the same, as well.
Furthermore, if any itemset Z �∈ S(X) yields T (Z) = T (X), then the support of Z ∪ X
must be the same as that of X. Because Z is not a subset of X, Z ∪X must be a proper
superset of X. This would lead to a contradiction with the assumption that X is closed.

It is important to understand that the itemset X encodes information about all the
nonredundant counting information needed with respect to any itemset in S(X). Every
itemset in S(X) describes the same set of transactions, and therefore, it suffices to keep
the single representative itemset. The maximal itemset X from S(X) is retained. It should
be pointed out that Definition 5.2.2 is a simplification of a more formal definition that is
based on the use of a set-closure operator. The formal definition with the use of a set-
closure operator is directly based on Observation 5.2.1 (which was derived here from the
simplified definition). The informal approach used by this chapter is designed for better
understanding. The frequent closed itemset mining problem is defined below.

Definition 5.2.3 (Closed Frequent Itemsets) An itemset X is a closed frequent item-
set at minimum support minsup, if it is both closed and frequent.

The set of closed itemsets can be discovered in two ways:

1. The set of frequent itemsets at any given minimum support level may be determined,
and the closed frequent itemsets can be derived from this set.

2. Algorithms can be designed to directly find the closed frequent patterns during the
process of frequent pattern discovery.

While the second class of algorithms is beyond the scope of this book, a brief description
of the first approach for finding all the closed itemsets will be provided here. The reader is
referred to the bibliographic notes for algorithms of the second type.

A simple approach for finding frequent closed itemsets is to first partition all the frequent
itemsets into equi-support groups. The maximal itemsets from each equi-support group may
be reported. Consider a set of frequent patterns F , from which the closed frequent patterns
need to be determined. The frequent patterns in F are processed in increasing order of
support and either ruled in or ruled out, depending on whether or not they are closed.
Note that an increasing support ordering also ensures that closed patterns are encountered
earlier than their redundant subsets. Initially, all patterns are unmarked. When an unmarked
pattern X ∈ F is processed (based on the increasing support order selection), it is added
to the frequent closed set CF . The proper subsets of X with the same support cannot be
closed. Therefore, all the proper subsets of X with the same support are marked. To achieve
this goal, the subset of the itemset lattice representing F can be traversed in depth-first or
breadth-first order starting at X, and exploring subsets of X. Itemsets that are subsets of X
are marked when they have the same support as X. The traversal process backtracks when
an itemset is reached with strictly larger support, or the itemset has already been marked

5.2. PATTERN SUMMARIZATION 139

by the current or a previous traversal. After the traversal is complete, the next unmarked
node is selected for further exploration and added to CF . The entire process of marking
nodes is repeated, starting from the pattern newly added to CF . At the end of the process,
the itemsets in CF represent the frequent closed patterns.

5.2.3 Approximate Frequent Patterns

Approximate frequent pattern mining schemes are almost always lossy schemes because they
do not retain all the information about the itemsets. The approximation of the patterns
may be performed in one of the following two ways:

1. Description in terms of transactions: The closure property provides a lossless descrip-
tion of the itemsets in terms of their membership in transactions. A generalization of
this idea is to allow “almost” closures, where the closure property is not exactly sat-
isfied but is approximately specified. Thus, a “play” is allowed in the support values
of the closure definition.

2. Description in terms of itemsets themselves: In this case, the frequent itemsets are
clustered, and representatives can be drawn from each cluster to provide a concise
summary. In this case, the “play” is allowed in terms of the distances between the
representatives and remaining itemsets.

These two types of descriptions yield different insights. One is defined in terms of transaction
membership, whereas the other is defined in terms of the structure of the itemset. Note that
among the subsets of a 10-itemset X, a 9-itemset may have a much higher support, but a
1-itemset may have exactly the same support as X. In the first definition, the 10-itemset
and 1-itemset are “almost” redundant with respect to each other in terms of transaction
membership. In the second definition, the 10-itemset and 9-itemset are almost redundant
with respect to each other in terms of itemset structure. The following sections will introduce
methods for discovering each of these kinds of itemsets.

5.2.3.1 Approximation in Terms of Transactions

The closure property describes itemsets in terms of transactions, and the equivalence of dif-
ferent itemsets with this criterion. The notion of “approximate closures” is a generalization
of this criterion. There are multiple ways to define “approximate closure,” and a simpler
definition is introduced here for ease in understanding.

In the earlier case of exact closures, one chooses the maximal supersets at a particu-
lar support value. In approximate closures, one does not necessarily choose the maximal
supersets at a particular support value but allows a “play” δ, within a range of supports.
Therefore, all frequent itemsets F can be segmented into a disjoint set of k “almost equi-
support” groups F1 . . .Fk, such that for any pair of itemsets X,Y within any group Fi,
the value of |sup(X) − sup(Y)| is at most δ. From each group, Fi, only the maximal fre-
quent representatives are reported. Clearly, when δ is chosen to be 0, this is exactly the set
of closed itemsets. If desired, the exact error value obtained by removing individual items
from approximately closed itemsets is also stored. There is, of course, still some uncertainty
in support values because the support values of itemsets obtained by removing two items
cannot be exactly inferred from this additional data.

Note that the “almost equi-support” groups may be constructed in many different ways
when δ > 0. This is because the ranges of the “almost equi-support” groups need not exactly

140 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be δ but can be less than δ. Of course, a greedy way of choosing the ranges is to always
pick the itemset with the lowest support and add δ to it to pick the upper end of the range.
This process is repeated to construct all the ranges. Then, the frequent closed itemsets can
be extracted on the basis of these ranges.

The algorithm for finding frequent “almost closed” itemsets is very similar to that of
finding frequent closed itemsets. As in the previous case, one can partition the frequent
itemsets into almost equi-support groups, and determine the maximal ones among them. A
traversal algorithm in terms of the graph lattice is as follows.

The first step is to decide the different ranges of support for the “almost equi-support”
groups. The itemsets in F are processed groupwise in increasing order of support ranges
for the “almost equi-support” groups. Within a group, unmarked itemsets are processed in
increasing order of support. When these nodes are examined they are added to the almost
closed set AC. When a pattern X ∈ F is examined, all its proper subsets within the same
group are marked, unless they have already been marked. To achieve this goal, the subset
of the itemset lattice representing F can be traversed in the same way as discussed in the
previous case of (exactly) closed sets. This process is repeated with the next unmarked
node. At the end of the process, the set AC contains the frequent “almost closed” patterns.
A variety of other ways of defining “almost closed” itemsets are available in the literature.
The bibliographic notes contain pointers to these methods.

5.2.3.2 Approximation in Terms of Itemsets

The approximation in terms of itemsets can also be defined in many different ways and
is closely related to clustering. Conceptually, the goal is to create clusters from the set of
frequent itemsets calF , and pick representatives J = J1 . . . Jk from the clusters. Because
clusters are always defined with respect to a distance function Dist(X,Y) between itemsets
X and Y , the notion of δ-approximate sets is also based on a distance function.

Definition 5.2.4 (δ-Approximate Sets) The set of representatives J = {J1 . . . Jk} is
δ-approximate, if for each frequent pattern X ∈ F , and each Ji ∈ J , the following is true:

Dist(X, Ji) ≤ δ (5.1)

Any distance function for set-valued data, such as the Jaccard coefficient, may be used.
Note that the cardinality of the set k defines the level of compression. Therefore, the goal is
to determine the smallest value of k for a particular level of compression δ. This objective
is closely related to the partition-based formulation of clustering, in which the value of
k is fixed, and the average distance of the individual objects to their representatives are
optimized. Conceptually, this process also creates a clustering on the frequent itemsets. The
frequent itemsets can be either strictly partitioned to their closest representative, or they can
be allowed to belong to multiple sets for which their distance to the closest representative
is at most δ.

So, how can the optimal size of the representative set be determined? It turns out that
a simple greedy solution is very effective in most scenarios. Let C(J) ⊆ F denote the set
of frequent itemsets covered by the representatives in J . An itemset in F is said to be
covered by a representative in J , if it lies within a distance of at most δ from at least one
representative of J . Clearly, it is desirable to determine J so that C(J) = F and the size
of the set J is as small as possible.

The idea of the greedy algorithm is to start with J = {} and add the first element from
F to J that covers the maximum number of itemsets in F . The covered itemsets are then

5.3. PATTERN QUERYING 141

removed from F . This process is repeated iteratively by greedily adding more elements to
J to maximize coverage in the residual set F . The process terminates when the set F is
empty. It can be shown that the function f(J) = |C(J)| satisfies the submodularity property
with respect to the argument J . In such cases, greedy algorithms are generally effective in
practice. In fact, in a minor variation of this problem in which |C(J)| is directly optimized
for fixed size of J , a theoretical bound can also be established on the quality achieved
by the greedy algorithm. The reader is referred to the bibliographic notes for pointers on
submodularity.

5.3 Pattern Querying

Although the compression approach provides a concise summary of the frequent itemsets,
there may be scenarios in which users may wish to query the patterns with specific prop-
erties. The query responses provide the relevant sets of patterns in an application. This
relevant set is usually much smaller than the full set of patterns. Some examples are as
follows:

1. Report all the frequent patterns containingX that have a minimum support ofminsup.

2. Report all the association rules containing X that have a minimum support of minsup
and a minimum confidence of minconf.

One possibility is to exhaustively scan all the frequent itemsets and report the ones satisfying
the user-specified constraints. This is, however, quite inefficient when the number of frequent
patterns is large. There are two classes of methods that are frequently used for querying
interesting subsets of patterns:

1. Preprocess-once query-many paradigm: The first approach is to mine all the itemsets
at a low level of support and arrange them in the form of a hierarchical or lattice data
structure. Because the first phase needs to be performed only once in offline fashion,
sufficient computational resources may be available. Therefore, a low level of support
is used to maximize the number of patterns preserved in the first phase. Many queries
can be addressed in the second phase with the summary created in the first phase.

2. Constraint-based pattern mining: In this case, the user-specified constraints are pushed
directly into the mining process. Although such an approach can be slower for each
query, it allows the mining of patterns at much lower values of the support than
is possible with the first approach. This is because the constraints can reduce the
pattern sizes in the intermediate steps of the itemset discovery algorithm and can,
therefore, enable the discovery of patterns at much lower values of the support than
an (unconstrained) preprocessing phase.

In this section, both types of methods will be discussed.

5.3.1 Preprocess-once Query-many Paradigm

This particular paradigm is very effective for the case of simpler queries. In such cases,
the key is to first determine all the frequent patterns at a very low value of the support.
The resulting itemsets can then be arranged in the form of a data structure for querying.
The simplest data structure is the itemset lattice, which can be considered a graph data
structure for querying. However, itemsets can also be queried with the use of data structures

142 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

NullBORDER BETWEEN
FREQUENT AND

INFREQUENT
FREQUENT ITEMSETS

aITEMSETS eb c d

ab ac ad ae bc bd be cd ce de

acdabe edcdba edbcba adeace bcebcd

abcd bcdeacdeabdeabce

INFREQUENT ITEMSETS

abcde
Q

Figure 5.1: The itemset lattice (replicated from Fig. 4.1 of Chap. 4)

adapted from the information retrieval literature that use the bag-of-words representation.
Both options will be explored in this chapter.

5.3.1.1 Leveraging the Itemset Lattice

As discussed in the previous chapter, the space of itemsets can be expressed as a lattice.
For convenience, Fig. 4.1 of the previous chapter is replicated in Fig. 5.1. Itemsets above
the dashed border are frequent, whereas itemsets below the border are infrequent.

In the preprocess-once query-many paradigm, the itemsets are mined at the lowest
possible level of support s, so that a large frequent portion of the lattice (graph) of itemsets
can be stored in main memory. This stage is a preprocessing phase; therefore, running time
is not a primary consideration. The edges on the lattice are implemented as pointers for
efficient traversal. In addition, a hash table maps the itemsets to the nodes in the graph.
The lattice has a number of important properties, such as downward closure, which enable
the discovery of nonredundant association rules and patterns.

This structure can effectively provide responses to many queries that are posed with
support minsup ≥ s. Some examples are as follows:

1. To determine all itemsets containing a set X at a particular level of minsup, one uses
the hash table to map to the itemset X. Then, the lattice is traversed to determine the
relevant supersets of X and report them. A similar approach can be used to determine
all the frequent itemsets contained in X by using a traversal in the opposite direction.

2. It is possible to determine maximal itemsets directly during the traversal by identi-
fying nodes that do not have edges to their immediate supersets at the user-specified
minimum support level minsup.

3. It is possible to identify nodes within a specific hamming distance of X and a specified
minimum support, by traversing the lattice structure both upward and downward from
X for a prespecified number of steps.

5.3. PATTERN QUERYING 143

Item Id1 LIST OF ITEMSET IDENTIFIERS INDEXED BY

Item Id2

Item Id3 LIST OF ITEMSET IDENTIFIERS

LIST OF ITEMSET IDENTIFIERS
ITEMSET ID

SECONDARY

Item Idr

LIST OF ITEMSET IDENTIFIERS

LIST OF ITEMSET IDENTIFIERS

DATA
STRUCTURE
CONTAINING

LIST OF ITEMSET IDENTIFIERS

LIST OF ITEMSET IDENTIFIERS

ITEMSETS

Figure 5.2: Illustration of the inverted lists

It is also possible to determine nonredundant rules with the use of this approach. For
example, for any itemset Y ′ ⊆ Y , the rule X ⇒ Y has a confidence and support that is no
greater than that of the rule X ⇒ Y ′. Therefore, the rule X ⇒ Y ′ is redundant with respect
to the rule X ⇒ Y . This is referred to as strict redundancy. Furthermore, for any itemset
I, the rule I − Y ′ ⇒ Y ′ is redundant with respect to the rule I − Y ⇒ Y only in terms
of the confidence. This is referred to as simple redundancy. The lattice structure provides
an efficient way to identify such nonredundant rules in terms of both simple redundancy
and strict redundancy. The reader is referred to the bibliographic notes for specific search
strategies on finding such rules.

5.3.1.2 Leveraging Data Structures for Querying

In some cases, it is desirable to use disk-resident representations for querying. In such cases,
the memory-based lattice traversal process is likely to be inefficient. The two most commonly
used data structures are the inverted index and the signature table. The major drawback in
using these data structures is that they do not allow an ordered exploration of the set of
frequent patterns, as in the case of the lattice structure.

The data structures discussed in this section can be used for either transactions or item-
sets. However, some of these data structures, such as signature tables, work particularly
well for itemsets because they explicitly leverage correlations between itemsets for efficient
indexing. Note that correlations are more significant in the case of itemsets than raw trans-
actions. Both these data structures are described in some detail below.

Inverted Index: The inverted index is a data structure that is used for retrieving sparse
set-valued data, such as the bag-of-words representation of text. Because frequent patterns
are also sparse sets drawn over a much larger universe of items, they can be retrieved
efficiently with an inverted index.

Each itemset is assigned a unique itemset-id. This can easily be generated with a hash
function. This itemset-id is similar to the tid that is used to represent transactions. The
itemsets themselves may be stored in a secondary data structure that is indexed by the
itemset-id. This secondary data structure can be a hash table that is based on the same
hash function used to create the itemset-id.

The inverted list contains a list for each item. Each item points to a list of itemset-ids.
This list may be stored on disk. An example of an inverted list is illustrated in Fig. 5.2. The
inverted representation is particularly useful for inclusion queries over small sets of items.
Consider a query for all itemsets containing X, where X is a small set of items. The inverted
lists for each item in X is stored on the disk. The intersection of these lists is determined.

144 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

This provides the relevant itemset-ids but not the itemsets. If desired, the relevant itemsets
can be accessed from disk and reported. To achieve this goal, the secondary data structure
on disk needs to be accessed with the use of the recovered itemset-ids. This is an additional
overhead of the inverted data structure because it may require random access to disk. For
large query responses, such an approach may not be practical.

While inverted lists are effective for inclusion queries over small sets of items, they are
not quite as effective for similarity queries over longer itemsets. One issue with the inverted
index is that it treats each item independently, and it does not leverage the significant cor-
relations between the items in the itemset. Furthermore, the retrieval of the full itemsets
is more challenging than that of only itemset-ids. For such cases, the signature table is the
data structure of choice.

Signature Tables: Signature tables were originally designed for indexing market basket
transactions. Because itemsets have the same set-wise data structure as transactions, they
can be used in the context of signature tables. Signature tables are particularly useful for
sparse binary data in which there are significant correlations among the different items.
Because itemsets are inherently defined on the basis of correlations, and different itemsets
have large overlaps among them, signature tables are particularly useful in such scenarios.

A signature is a set of items. The set of items U in the original data is partitioned into
sets of K signatures S1 . . . SK , such that U = ∪K

i=1Si. The value of K is referred to as the
signature cardinality. An itemset X is said to activate a signature Si at level r if and only
if |Si ∩ X| ≥ r. This level r is referred to as the activation threshold. In other words, the
itemset needs to have a user-specified minimum number r of items in common with the
signature to activate it.

The super-coordinate of an itemset exists in K-dimensional space, where K is the signa-
ture cardinality. Each dimension of the super-coordinate has a unique correspondence with
a particular signature and vice versa. The value of this dimension is 0–1, which indicates
whether or not the corresponding signature is activated by that itemset. Thus, if the items
are partitioned into K signatures {S1, . . . SK}, then there are 2K possible super-coordinates.
Each itemset maps on to a unique super-coordinate, as defined by the set of signatures acti-
vated by that itemset. If Si1 , Si2 , . . . Sil be the set of signatures which an itemset activates,
then the super-coordinates of that itemset are defined by setting the l ≤ K dimensions
{i1, i2, . . . il} in this super-coordinate to 1 and the remaining dimensions to 0. Thus, this
approach creates a many-to-one mapping, in which multiple itemsets may map into the same
super-coordinate. For highly correlated itemsets, only a small number of signatures will be
activated by an itemset, provided that the partitioning of U into signatures is designed to
ensure that each signature contains correlated items.

The signature table contains a set of 2K entries. One entry in the signature table corre-
sponds to each possible super-coordinate. This creates a strict partitioning of the itemsets
on the basis of the mapping of itemsets to super-coordinates. This partitioning can be used
for similarity search. The signature table can be stored in main memory because the num-
ber of distinct super-coordinates can be mapped to main memory when K is small. For
example, when K is chosen to be 20, the number of super-coordinates is about a million.
The actual itemsets that are indexed by each entry of the signature table are stored on disk.
Each entry in the signature table points to a list of pages that contain the itemsets indexed
by that super-coordinate. The signature table is illustrated in Fig. 5.3.

A signature can be understood as a small category of items from the universal set of
items U . Thus, if the items in each signature are closely correlated, then an itemset is
likely to activate a small number of signatures. These signatures provide an idea of the

5.3. PATTERN QUERYING 145

ITEMSETS MAPPING TO SUPER COORDINATESUPER COORDINATE1

SUPER COORDINATE2

1

ITEMSETS MAPPING TO SUPER COORDINATE2

SUPER COORDINATE3 ITEMSETS MAPPING TO SUPER COORDINATE3

SUPER COORDINATEr ITEMSETS MAPPING TO SUPER COORDINATEr

Figure 5.3: Illustration of the signature table

approximate pattern of buying behavior for that itemset. Thus, it is crucial to perform the
clustering of the items into signatures so that two criteria are satisfied:

1. The items within a cluster Si are correlated. This ensures a more discriminative
mapping, which provides better indexing performance.

2. The aggregate support of the items within each cluster is similar. This is necessary to
ensure that the signature table is balanced.

To construct the signature table, a graph is constructed so that each node of the graph
corresponds to an item. For every pair of items that is frequent, an edge is added to the
graph, and the weight of the edge is a function of the support of that pair of items. In
addition, the weight of a node is the support of a particular item. It is desired to deter-
mine a clustering of this graph into K partitions so that the cumulative weights of edges
across the partitions is as small as possible and the partitions are well balanced. Reduc-
ing the weights of edges across partitions ensures that correlated sets of items are grouped
together. The partitions should be as well balanced as possible so that the itemsets mapping
to each super-coordinate are as well balanced as possible. Thus, this approach transforms
the items into a similarity graph, which can be clustered into partitions. A variety of clus-
tering algorithms can be used to partition the graph into groups of items. Any of the graph
clustering algorithms discussed in Chap. 19, such as METIS, may be used for this pur-
pose. The bibliographic notes also contain pointers to some methods for signature table
construction.

After the signatures have been determined, the partitions of the data may be defined by
using the super-coordinates of the itemsets. Each itemset belongs to the partition that is
defined by its super-coordinate. Unlike the case of inverted lists, the itemsets are explicitly
stored within this list, rather than just their identifiers. This ensures that the secondary
data structure does not need to be accessed to explicitly recover the itemsets. This is the
reason that the signature table can be used to recover the itemsets themselves, rather than
only the identifiers of the itemsets.

The signature table is capable of handling general similarity queries that cannot be
efficiently addressed with inverted lists. Let x be the number of items in which an itemset
matches with a target Q, and y be the number of items in which it differs with the target
Q. The signature table is capable of handling similarity functions of the form f(x, y) that

146 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

satisfy the following two properties, for a fixed target record Q:

Δf(x, y)
Δx

≥ 0 (5.2)

Δf(x, y)
Δy

≤ 0 (5.3)

This is referred to as the monotonicity property. These intuitive conditions on the function
ensure that it is an increasing function in the number of matches and decreasing in the
hamming distance. While the match function and the hamming distance obviously satisfy
these conditions, it can be shown that other functions for set-wise similarity, such as the
cosine and the Jaccard coefficient, also satisfy them. For example, let P and Q be the sets
of items in two itemsets, where Q is the target itemset. Then, the cosine function can be
expressed as follows, in terms of x and y:

Cosine(P,Q) =
x√

|P | ·
√
|Q|

=
x√

(2 · x+ y − |Q|) ·
√

|Q|
Jaccard(P,Q) =

x

x+ y

These functions are increasing in x and decreasing in y. These properties are important
because they allow bounds to be computed on the similarity function in terms of bounds
on the arguments. In other words, if γ is an upper bound on the value of x and θ is a lower
bound on the value of y, then it can be shown that f(γ, θ) is an upper (optimistic) bound
on the value of the function f(x, y). This is useful for implementing a branch-and-bound
method for similarity computation.

Let Q be the target itemset. Optimistic bounds on the match and hamming distance
from Q to the itemsets within each super-coordinate are computed. These bounds can be
shown to be a function of the target Q, the activation threshold, and the choice of signatures.
The precise method for computing these bounds is described in the pointers found in the
bibliographic notes. Let the optimistic bound on the match be xi and that on distance be
yi for the ith super-coordinate. These are used to determine an optimistic bound on the
similarity f(x, y) between the target and any itemset indexed by the ith super-coordinate.
Because of the monotonicity property, this optimistic bound for the ith super-coordinate
is Bi = f(xi, yi). The super-coordinates are sorted in decreasing (worsening) order of the
optimistic bounds Bi. The similarity of Q to the itemsets that are pointed to by these super-
coordinates is computed in this sorted order. The closest itemset found so far is dynamically
maintained. The process terminates when the optimistic bound Bi to a super-coordinate is
lower (worse) than the similarity value of the closest itemset found so far to the target. At
this point, the closest itemset found so far is reported.

5.3.2 Pushing Constraints into Pattern Mining

The methods discussed so far in this chapter are designed for retrieval queries with item-
specific constraints. In practice, however, the constraints may be much more general and
cannot be easily addressed with any particular data structure. In such cases, the constraints
may be need to be directly pushed into the mining process.

5.4. PUTTING ASSOCIATIONS TO WORK: APPLICATIONS 147

In all the previous methods, a preprocess-once query-many paradigm is used; therefore,
the querying process is limited by the initial minimum support chosen during the preprocess-
ing phase. Although such an approach has the advantage of providing online capabilities for
query responses, it is sometimes not effective when the constraints result in removal of most
of the itemsets. In such cases, a much lower level of minimum support may be required
than could be reasonably selected during the initial preprocessing phase. The advantage
of pushing the constraints into the mining process is that the constraints can be used to
prune out many of the intermediate itemsets during the execution of the frequent pattern
mining algorithms. This allows the use of much lower minimum support levels. The price
for this flexibility is that the resulting algorithms can no longer be considered truly online
algorithms when the data sets are very large.

Consider, for example, a scenario where the different items are tagged into different
categories, such as snacks, dairy, baking products, and so on. It is desired to determine
patterns, such that all items belong to the same category. Clearly, this is a constraint on
the discovery of the underlying patterns. Although it is possible to first mine all the patterns,
and then filter down to the relevant patterns, this is not an efficient solution. If the number
of patterns mined during the preprocessing phase is no more than 106 and the level of
selectivity of the constraint is more than 10−6, then the final set returned may be empty,
or too small.

Numerous methods have been developed in the literature to address such constraints
directly in the mining process. These constraints are classified into different types, depend-
ing upon their impact on the mining algorithm. Some examples of well-known types of
constraints, include succinct,monotonic, antimonotonic, and convertible. A detailed descrip-
tion of these methods is beyond the scope of this book. The bibliographic section contains
pointers to many of these algorithms.

5.4 Putting Associations to Work: Applications

Association pattern mining has numerous applications in a wide variety of real scenarios.
This section will discuss some of these applications briefly.

5.4.1 Relationship to Other Data Mining Problems

The association model is intimately related to other data mining problems such as classifica-
tion, clustering, and outlier detection. Association patterns can be used to provide effective
solutions to these data mining problems. This section will explore these relationships briefly.
Many of the relevant algorithms are also discussed in the chapters on these different data
mining problems.

5.4.1.1 Application to Classification

The association pattern mining problem is closely related to that of classification. Rule-
based classifiers are closely related to association-rule mining. These types of classifiers are
discussed in detail in Sect. 10.4 of Chap. 10, and a brief overview is provided here.

Consider the rule X ⇒ Y , where X is the antecedent and Y is the consequent. In asso-
ciative classification, the consequent Y is a single item corresponding to the class variable,
and the antecedent contains the feature variables. These rules are mined from the training
data. Typically, the rules are not determined with the traditional support and confidence
measures. Rather, the most discriminative rules with respect to the different classes need to

148 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

be determined. For example, consider an itemset X and two classes c1 and c2. Intuitively,
the itemset X is discriminative between the two classes, if the absolute difference in the
confidence of the rules X ⇒ c1 and X ⇒ c2 is as large as possible. Therefore, the mining
process should determine such discriminative rules.

Interestingly, it has been discovered, that even a relatively straightforward modification
of the association framework to the classification problem is quite effective. An example
of such a classifier is the CBA framework for Classification Based on Associations. More
details on rule-based classifiers are discussed in Sect. 10.4 of Chap. 10.

5.4.1.2 Application to Clustering

Because association patterns determine highly correlated subsets of attributes, they can
be applied to quantitative data after discretization to determine dense regions in the data.
The CLIQUE algorithm, discussed in Sect. 7.4.1 of Chap. 7, uses discretization to trans-
form quantitative data into binary attributes. Association patterns are discovered on the
transformed data. The data points that overlap with these regions are reported as subspace
clusters. This approach, of course, reports clusters that are highly overlapping with one
another. Nevertheless, the resulting groups correspond to the dense regions in the data,
which provide significant insights about the underlying clusters.

5.4.1.3 Applications to Outlier Detection

Association pattern mining has also been used to determine outliers in market basket data.
The key idea here is that the outliers are defined as transactions that are not “covered”
by most of the association patterns in the data. A transaction is said to be covered by an
association pattern when the corresponding association pattern is contained in the trans-
action. This approach is particularly useful in scenarios where the data is high dimensional
and traditional distance-based algorithms cannot be easily used. Because transaction data
is inherently high dimensional, such an approach is particularly effective. This approach is
discussed in detail in Sect. 9.2.3 of Chap. 9.

5.4.2 Market Basket Analysis

The prototypical problem for which the association rule mining problem was first proposed
is that of market basket analysis. In this problem, it is desired to determine rules relating
buying behavior of customers. The knowledge of such rules can be very useful for a retailer.
For example, if an association rule reveals that the sale of beer implies a sale of diapers, then
a merchant may use this information to optimize his or her shelf placement and promotion
decisions. In particular, rules that are interesting or unexpected are the most informative for
market basket analysis. Many of the traditional and alternative models for market basket
analysis are focused on such decisions.

5.4.3 Demographic and Profile Analysis

A closely related problem is that of using demographic profiles to make recommendations.
An example is the rule discussed in Sect. 4.6.3 of Chap. 4.

Age[85, 95] ⇒ Checkers

Other demographic attributes, such as the gender or the ZIP code, can be used to determine
more refined rules. Such rules are referred to as profile association rules. Profile association

5.4. PUTTING ASSOCIATIONS TO WORK: APPLICATIONS 149

rules are very useful for target marketing decisions because they can be used to identify
relevant population segments for specific products. Profile association rules can be viewed in
a similar way to classification rules, except that the antecedent of the rule typically identifies
a profile segment, and the consequent identifies a population segment for target marketing.

5.4.4 Recommendations and Collaborative Filtering

Both the aforementioned applications are closely related to the generic problem of recom-
mendation analysis and collaborative filtering. In collaborative filtering, the idea is to make
recommendations to users on the basis of the buying behavior of other similar users. In this
context, localized pattern mining is particularly useful. In localized pattern mining, the idea
is to cluster the data into segments, and then determine the patterns in these segments.
The patterns from each segment are typically more resistant to noise from the global data
distribution and provide a clearer idea of the patterns within like-minded customers. For
example, in a movie recommendation system, a particular pattern for movie titles, such as
{Gladiator,Nero, Julius Caesar}, may not have sufficient support on a global basis. How-
ever, within like-minded customers, who are interested in historical movies, such a pattern
may have sufficient support. This approach is used in applications such as collaborative
filtering. The problem of localized pattern mining is much more challenging because of the
need to simultaneously determine the clustered segments and the association rules. The bib-
liographic section contains pointers to such localized pattern mining methods. Collaborative
filtering is discussed in detail in Sect. 18.5 of Chap. 18.

5.4.5 Web Log Analysis

Web log analysis is a common scenario for pattern mining methods. For example, the set
of pages accessed during a session is no different than a market-basket data set containing
transactions. When a set of Web pages is accessed together frequently, this provides useful
insights about correlations in user behavior with respect to Web pages. Such insights can
be leveraged by site-administrators to improve the structure of the Web site. For example,
if a pair of Web pages are frequently accessed together in a session but are not currently
linked together, it may be helpful to add a link between them. The most sophisticated
forms of Web log analysis typically work with the temporal aspects of logs, beyond the
set-wise framework of frequent itemset mining. These methods will be discussed in detail
in Chaps. 15 and 18.

5.4.6 Bioinformatics

Many new technologies in bioinformatics, such as microarray and mass spectrometry tech-
nologies, allow the collection of different kinds of very high-dimensional data sets. A classical
example of this kind of data is gene-expression data, which can be expressed as an n × d
matrix, where the number of columns d is very large compared with typical market basket
applications. It is not uncommon for a microarray application to contain a hundred thou-
sand columns. The discovery of frequent patterns in such data has numerous applications
in the discovery of key biological properties that are encoded by these data sets. For such
cases, long pattern mining methods, such as maximal and closed pattern mining are very
useful. In fact, a number of methods, discussed in the bibliographic notes, have specifically
been designed for such data sets.

150 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

5.4.7 Other Applications for Complex Data Types

Frequent pattern mining algorithms have been generalized to more complex data types such
as temporal data, spatial data, and graph data. This book contains different chapters for
these complex data types. A brief discussion of these more complex applications is provided
here:

1. Temporal Web log analytics: The use of temporal information from Web logs greatly
enriches the analysis process. For example, certain patterns of accesses may occur
frequently in the logs and these can be used to build event prediction models in cases
where future events may be predicted from the current pattern of events.

2. Spatial co-location patterns: Spatial co-location patterns provide useful insights about
the spatial correlations among different individuals. Frequent pattern mining algo-
rithms have been generalized to such scenarios. Refer to Chap. 16.

3. Chemical and biological graph applications: In many real scenarios, such as chemical
and biological compounds, the determination of structural patterns provides insights
about the properties of these molecules. Such patterns are also used to create classi-
fication models. These methods are discussed in Chap. 17.

4. Software bug analysis: The structure of computer programs can often be represented as
call graphs. The analysis of the frequent patterns in the call graphs and key deviations
from these patterns provides insights about the bugs in the underlying software.

Many of the aforementioned applications will be discussed in later chapters of this book.

5.5 Summary

In order to use frequent patterns effectively in data-driven applications, it is crucial to
create concise summaries of the underlying patterns. This is because the number of returned
patterns may be very large and difficult to interpret. Numerous methods have been designed
to create a compressed summary of the frequent patterns. Maximal patterns provide a
concise summary but are lossy in terms of the support of the underlying patterns. They
can often be determined effectively by incorporating different kinds of pruning strategies in
frequent pattern mining algorithms.

Closed patterns provide a lossless description of the underlying frequent itemsets. On the
other hand, the compression obtained from closed patterns is not quite as significant as that
obtained from the use of maximal patterns. The concept of “almost closed” itemsets allows
good compression, but there is some degree of information loss in the process. A different
way of compressing itemsets is to cluster itemsets so that all itemsets can be expressed
within a prespecified distance of particular representatives.

Query processing of itemsets is important in the context of many applications. For
example, the itemset lattice can be used to resolve simple queries on itemsets. In some
cases, the lattice may not fit in main memory. For these cases, it may be desirable to use
disk resident data structures such as the inverted index or the signature table. In cases
where the constraints are arbitrary or have a high level of selectivity, it may be desirable
to push the constraints directly into the mining process.

Frequent pattern mining has many applications, including its use as a subroutine for
other data mining problems. Other applications include market basket analysis, profile

5.6. BIBLIOGRAPHIC NOTES 151

analysis, recommendations, Web log analysis, spatial data, and chemical data. Many of
these applications are discussed in later chapters of this book.

5.6 Bibliographic Notes

The first algorithm for maximal pattern mining was proposed in [82]. Subsequently, the
DepthProject [4] and GenMax [233] algorithms were also designed for maximal pattern min-
ing. DepthProject showed that the depth-first method has several advantages for determining
maximal patterns. Vertical bitmaps were used in MAFIA [123] to compress the sizes of the
underlying tid lists. The problem of closed pattern mining was first proposed in [417] in
which an Apriori-based algorithm, known as A-Close, was presented. Subsequently, numer-
ous algorithms such as CLOSET [420], CLOSET+ [504], and CHARM [539] were proposed
for closed frequent pattern mining. The last of these algorithms uses the vertical data for-
mat to mine long patterns in a more efficient way. For the case of very high-dimensional
data sets, closed pattern mining algorithms were proposed in the form of CARPENTER
and COBBLER, respectively [413, 415]. Another method, known as pattern-fusion [553],
fuses the different pattern segments together to create a long pattern.

The work in [125] shows how to use deduction rules to construct a minimal representa-
tion for all frequent itemsets. An excellent survey on condensed representations of frequent
itemsets may be found in [126]. Numerous methods have subsequently been proposed to
approximate closures in the form of δ-freesets [107]. Information-theoretic methods for item-
set compression have been discussed in [470].

The use of clustering-based methods for compression focuses on the itemsets rather than
the transactions. The work in [515] clusters the patterns on the basis of their similarity and
frequency to create a condensed representation of the patterns. The submodularity property
used in the greedy algorithm for finding the best set of covering itemsets is discussed in [403].

The algorithm for using the itemset lattice for interactive rule exploration is discussed
in [37]. The concepts of simple redundancy and strict redundancy are also discussed in this
work. This method was also generalized to the case of profile association rules [38]. The
inverted index, presented in this chapter, may be found in [441]. A discussion of a market
basket-specific implementation, together with the signature table, may be found in [41]. A
compact disk structure for storing and querying frequent itemsets has been studied in [359].

A variety of constraint-based methods have been developed for pattern mining. Succinct
constraints are the easiest to address because they can be pushed directly into data selection.
Monotonic constraints need to be checked only once to restrict pattern growth [406, 332],
whereas antimonotonic constraints need to be pushed deep into the pattern mining process.
Another form of pattern mining, known as convertible constraints [422], can be addressed
by sorting items in ascending or descending order for restraining pattern growth.

The CLIQUE algorithm [58] shows how association pattern mining methods may be
used for clustering algorithms. The CBA algorithm for rule-based classification is dis-
cussed in [358]. A survey on rule-based classification methods may be found in [115].
The frequent pattern mining problem has also been used for outlier detection in very long
transactions [263]. Frequent pattern mining has also been used in the field of bioinformat-
ics [413, 415]. The determination of localized associations [27] is very useful for the problem
of recommendations and collaborative filtering. Methods for mining long frequent patterns
in the context of bioinformatics applications may be found in [413, 415, 553]. Association
rules can also be used to discover spatial co-location patterns [388]. A detailed discussion

152 CHAPTER 5. ASSOCIATION PATTERN MINING: ADVANCED CONCEPTS

of frequent pattern mining methods for graph applications, such as software bug analysis,
and chemical and biological data, is provided in Aggarwal and Wang [26].

5.7 Exercises

1. Consider the transaction database in the table below:

tid items
1 a, b, c, d
2 b, c, e, f
3 a, d, e, f
4 a, e, f
5 b, d, f

Determine all maximal patterns in this transaction database at support levels of 2, 3,
and 4.

2. Write a program to determine the set of maximal patterns, from a set of frequent
patterns.

3. For the transaction database of Exercise 1, determine all the closed patterns at support
levels of 2, 3, and 4.

4. Write a computer program to determine the set of closed frequent patterns, from a
set of frequent patterns.

5. Consider the transaction database in the table below:

tid items
1 a, c, d, e
2 a, d, e, f
3 b, c, d, e, f
4 b, d, e, f
5 b, e, f
6 c, d, e
7 c, e, f
8 d, e, f

Determine all frequent maximal and closed patterns at support levels of 3, 4, and 5.

6. Write a computer program to implement the greedy algorithm for finding a represen-
tative itemset from a group of itemsets.

7. Write a computer program to implement an inverted index on a set of market baskets.
Implement a query to retrieve all itemsets containing a particular set of items.

8. Write a computer program to implement a signature table on a set of market baskets.
Implement a query to retrieve the closest market basket to a target basket on the
basis of the cosine similarity.

Chapter 6

Cluster Analysis

“In order to be an immaculate member of a flock of sheep,
one must, above all, be a sheep oneself.” —Albert Einstein

6.1 Introduction

Many applications require the partitioning of data points into intuitively similar groups.
The partitioning of a large number of data points into a smaller number of groups helps
greatly in summarizing the data and understanding it for a variety of data mining applica-
tions. An informal and intuitive definition of clustering is as follows:

Given a set of data points, partition them into groups containing very similar data points.

This is a very rough and intuitive definition because it does not state much about the
different ways in which the problem can be formulated, such as the number of groups, or the
objective criteria for similarity. Nevertheless, this simple description serves as the basis for
a number of models that are specifically tailored for different applications. Some examples
of such applications are as follows:

• Data summarization: At the broadest level, the clustering problem may be considered
as a form of data summarization. As data mining is all about extracting summary
information (or concise insights) from data, the clustering process is often the first step
in many data mining algorithms. In fact, many applications use the summarization
property of cluster analysis in one form or the other.

• Customer segmentation: It is often desired to analyze the common behaviors of groups
of similar customers. This is achieved by customer segmentation. An example of an
application of customer segmentation is collaborative filtering, in which the stated
or derived preferences of a similar group of customers are used to make product
recommendations within the group.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 6 153
c© Springer International Publishing Switzerland 2015

154 CHAPTER 6. CLUSTER ANALYSIS

• Social network analysis: In the case of network data, nodes that are tightly clustered
together by linkage relationships are often similar groups of friends, or communities.
The problem of community detection is one of the most widely studied in social
network analysis, because a broader understanding of human behaviors is obtained
from an analysis of community group dynamics.

• Relationship to other data mining problems: Due to the summarized representation it
provides, the clustering problem is useful for enabling other data mining problems.
For example, clustering is often used as a preprocessing step in many classification
and outlier detection models.

A wide variety of models have been developed for cluster analysis. These different models
may work better in different scenarios and data types. A problem, which is encountered by
many clustering algorithms, is that many features may be noisy or uninformative for cluster
analysis. Such features need to be removed from the analysis early in the clustering process.
This problem is referred to as feature selection. This chapter will also study feature-selection
algorithms for clustering.

In this chapter and the next, the study of clustering will be restricted to simpler multi-
dimensional data types, such as numeric or discrete data. More complex data types, such as
temporal or network data, will be studied in later chapters. The key models differ primarily
in terms of how similarity is defined within the groups of data. In some cases, similarity is
defined explicitly with an appropriate distance measure, whereas in other cases, it is defined
implicitly with a probabilistic mixture model or a density-based model. In addition, certain
scenarios for cluster analysis, such as high-dimensional or very large-scale data sets, pose
special challenges. These issues will be discussed in the next chapter.

This chapter is organized as follows. The problem of feature selection is studied in
Sect. 6.2. Representative-based algorithms are addressed in Sect. 6.3. Hierarchical cluster-
ing algorithms are discussed in Sect. 6.4. Probabilistic and model-based methods for data
clustering are addressed in Sect. 6.5. Density-based methods are presented in Sect. 6.6.
Graph-based clustering techniques are presented in Sect. 6.7. Section 6.8 presents the non-
negative matrix factorization method for data clustering. The problem of cluster validity is
discussed in Sect. 6.9. Finally, the chapter is summarized in Sect. 6.10.

6.2 Feature Selection for Clustering

The key goal of feature selection is to remove the noisy attributes that do not cluster well.
Feature selection is generally more difficult for unsupervised problems, such as clustering,
where external validation criteria, such as labels, are not available for feature selection.
Intuitively, the problem of feature selection is intimately related to that of determining
the inherent clustering tendency of a set of features. Feature selection methods determine
subsets of features that maximize the underlying clustering tendency. There are two primary
classes of models for performing feature selection:

1. Filter models: In this case, a score is associated with each feature with the use of
a similarity-based criterion. This criterion is essentially a filter that provides a crisp
condition for feature removal. Data points that do not meet the required score are
removed from consideration. In some cases, these models may quantify the quality of
a subset of features as a combination, rather than a single feature. Such models are
more powerful because they implicitly take into account the incremental impact of
adding a feature to others.

6.2. FEATURE SELECTION FOR CLUSTERING 155

2. Wrapper models: In this case, a clustering algorithm is used to evaluate the quality
of a subset of features. This is then used to refine the subset of features on which
the clustering is performed. This is a naturally iterative approach in which a good
choice of features depends on the clusters and vice versa. The features selected will
typically be at least somewhat dependent on the particular methodology used for
clustering. Although this may seem like a disadvantage, the fact is that different
clustering methods may work better with different sets of features. Therefore, this
methodology can also optimize the feature selection to the specific clustering tech-
nique. On the other hand, the inherent informativeness of the specific features may
sometimes not be reflected by this approach due to the impact of the specific clustering
methodology.

A major distinction between filter and wrapper models is that the former can be performed
purely as a preprocessing phase, whereas the latter is integrated directly into the clus-
tering process. In the following sections, a number of filter and wrapper models will be
discussed.

6.2.1 Filter Models

In filter models, a specific criterion is used to evaluate the impact of specific features, or
subsets of features, on the clustering tendency of the data set. The following will introduce
many of the commonly used criteria.

6.2.1.1 Term Strength

Term strength is suitable for sparse domains such as text data. In such domains, it is more
meaningful to talk about presence or absence of nonzero values on the attributes (words),
rather than distances. Furthermore, it is more meaningful to use similarity functions rather
than distance functions. In this approach, pairs of documents are sampled, but a random
ordering is imposed between the pair. The term strength is defined as the fraction of similar
document pairs (with similarity greater than β), in which the term occurs in both the
documents, conditional on the fact that it appears in the first. In other words, for any term
t, and document pair (X,Y) that have been deemed to be sufficiently similar, the term
strength is defined as follows:

Term Strength = P (t ∈ Y |t ∈ X). (6.1)

If desired, term strength can also be generalized to multidimensional data by discretizing the
quantitative attributes into binary values. Other analogous measures use the correlations
between the overall distances and attribute-wise distances to model relevance.

6.2.1.2 Predictive Attribute Dependence

The intuitive motivation of this measure is that correlated features will always result in
better clusters than uncorrelated features. When an attribute is relevant, other attributes
can be used to predict the value of this attribute. A classification (or regression modeling)
algorithm can be used to evaluate this predictiveness. If the attribute is numeric, then a
regression modeling algorithm is used. Otherwise, a classification algorithm is used. The
overall approach for quantifying the relevance of an attribute i is as follows:

156 CHAPTER 6. CLUSTER ANALYSIS

Figure 6.1: Impact of clustered data on distance distribution entropy

1. Use a classification algorithm on all attributes, except attribute i, to predict the value
of attribute i, while treating it as an artificial class variable.

2. Report the classification accuracy as the relevance of attribute i.

Any reasonable classification algorithm can be used, although a nearest neighbor classifier
is desirable because of its natural connections with similarity computation and clustering.
Classification algorithms are discussed in Chap. 10.

6.2.1.3 Entropy

The basic idea behind these methods is that highly clustered data reflects some of its
clustering characteristics on the underlying distance distributions. To illustrate this point,
two different data distributions are illustrated in Figures 6.1a and b, respectively. The first
plot depicts uniformly distributed data, whereas the second one depicts data with two
clusters. In Figures 6.1c and d, the distribution of the pairwise point-to-point distances is
illustrated for the two cases. It is evident that the distance distribution for uniform data is
arranged in the form of a bell curve, whereas that for clustered data has two different peaks
corresponding to the intercluster distributions and intracluster distributions, respectively.
The number of such peaks will typically increase with the number of clusters. The goal
of entropy-based measures is to quantify the “shape” of this distance distribution on a
given subset of features, and then pick the subset where the distribution shows behavior
that is more similar to the case of Fig. 6.1b. Therefore, such algorithms typically require

6.2. FEATURE SELECTION FOR CLUSTERING 157

a systematic way to search for the appropriate combination of features, in addition to
quantifying the distance-based entropy. So how can the distance-based entropy be quantified
on a particular subset of attributes?

A natural way of quantifying the entropy is to directly use the probability distribution
on the data points and quantify the entropy using these values. Consider a k-dimensional
subset of features. The first step is to discretize the data into a set of multidimensional grid
regions using φ grid regions for each dimension. This results in m = φk grid ranges that
are indexed from 1 through m. The value of m is approximately the same across all the
evaluated feature subsets by selecting φ = �m1/k�. If pi is the fraction of data points in grid
region i, then the probability-based entropy E is defined as follows:

E = −
m∑
i=1

[pilog(pi) + (1− pi)log(1− pi)]. (6.2)

A uniform distribution with poor clustering behavior has high entropy, whereas clustered
data has lower entropy. Therefore, the entropy measure provides feedback about the clus-
tering quality of a subset of features.

Although the aforementioned quantification can be used directly, the probability density
pi of grid region i is sometimes hard to accurately estimate from high-dimensional data. This
is because the grid regions are multidimensional, and they become increasingly sparse in
high dimensionality. It is also hard to fix the number of grid regions m over feature subsets
of varying dimensionality k because the value of φ = �m1/k� is rounded up to an integer
value. Therefore, an alternative is to compute the entropy on the 1-dimensional point-to-
point distance distribution on a sample of the data. This is the same as the distributions
shown in Fig. 6.1. The value of pi then represents the fraction of distances in the ith 1-
dimensional discretized range. Although this approach does not fully address the challenges
of high dimensionality, it is usually a better option for data of modest dimensionality. For
example, if the entropy is computed on the histograms in Figs. 6.1c and d, then this will
distinguish between the two distributions well. A heuristic approximation on the basis of
the raw distances is also often used. Refer to the bibliographic notes.

To determine the subset of features, for which the entropy E is minimized, a variety of
search strategies are used. For example, starting from the full set of features, a simple greedy
approach may be used to drop the feature that leads to the greatest reduction in the entropy.
Features are repeatedly dropped greedily until the incremental reduction is not significant,
or the entropy increases. Some enhancements of this basic approach, both in terms of the
quantification measure and the search strategy, are discussed in the bibliographic section.

6.2.1.4 Hopkins Statistic

The Hopkins statistic is often used to measure the clustering tendency of a data set, although
it can also be applied to a particular subset of attributes. The resulting measure can then be
used in conjunction with a feature search algorithm, such as the greedy method discussed
in the previous subsection.

Let D be the data set whose clustering tendency needs to be evaluated. A sample S of r
synthetic data points is randomly generated in the domain of the data space. At the same
time, a sample R of r data points is selected from D. Let α1 . . . αr be the distances of the
data points in the sample R ⊆ D to their nearest neighbors within the original database D.
Similarly, let β1 . . . βr be the distances of the data points in the synthetic sample S to their

158 CHAPTER 6. CLUSTER ANALYSIS

nearest neighbors within D. Then, the Hopkins statistic H is defined as follows:

H =
∑r

i=1 βi∑r
i=1(αi + βi)

. (6.3)

The Hopkins statistic will be in the range (0, 1). Uniformly distributed data will have a
Hopkins statistic of 0.5 because the values of αi and βi will be similar. On the other hand,
the values of αi will typically be much lower than βi for the clustered data. This will result
in a value of the Hopkins statistic that is closer to 1. Therefore, a high value of the Hopkins
statistic H is indicative of highly clustered data points.

One observation is that the approach uses random sampling, and therefore the measure
will vary across different random samples. If desired, the random sampling can be repeated
over multiple trials. A statistical tail confidence test can be employed to determine the
level of confidence at which the Hopkins statistic is greater than 0.5. For feature selection,
the average value of the statistic over multiple trials can be used. This statistic can be
used to evaluate the quality of any particular subset of attributes to evaluate the clustering
tendency of that subset. This criterion can be used in conjunction with a greedy approach
to discover the relevant subset of features. The greedy approach is similar to that discussed
in the case of the distance-based entropy method.

6.2.2 Wrapper Models

Wrapper models use an internal cluster validity criterion in conjunction with a clustering
algorithm that is applied to an appropriate subset of features. Cluster validity criteria are
used to evaluate the quality of clustering and are discussed in detail in Sect. 6.9. The idea
is to use a clustering algorithm with a subset of features, and then evaluate the quality
of this clustering with a cluster validity criterion. Therefore, the search space of different
subsets of features need to be explored to determine the optimum combination of features.
As the search space of subsets of features is exponentially related to the dimensionality,
a greedy algorithm may be used to successively drop features that result in the greatest
improvement of the cluster validity criterion. The major drawback of this approach is that
it is sensitive to the choice of the validity criterion. As you will learn in this chapter, cluster
validity criteria are far from perfect. Furthermore, the approach can be computationally
expensive.

Another simpler methodology is to select individual features with a feature selection cri-
terion that is borrowed from that used in classification algorithms. In this case, the features
are evaluated individually, rather than collectively, as a subset. The clustering approach
artificially creates a set of labels L, corresponding to the cluster identifiers of the individual
data points. A feature selection criterion may be borrowed from the classification literature
with the use of the labels in L. This criterion is used to identify the most discriminative
features:

1. Use a clustering algorithm on the current subset of selected features F , in order to fix
cluster labels L for the data points.

2. Use any supervised criterion to quantify the quality of the individual features with
respect to labels L. Select the top-k features on the basis of this quantification.

There is considerable flexibility in the aforementioned framework, where different kinds of
clustering algorithms and feature selection criteria are used in each of the aforementioned
steps. A variety of supervised criteria can be used, such as the class-based entropy or the

6.3. REPRESENTATIVE-BASED ALGORITHMS 159

Algorithm GenericRepresentative(Database: D, Number of Representatives: k)
begin
Initialize representative set S;
repeat
Create clusters (C1 . . . Ck) by assigning each

point in D to closest representative in S
using the distance function Dist(·, ·);

Recreate set S by determining one representative Yj for
each Cj that minimizes

∑
Xi∈Cj

Dist(Xi, Yj);
until convergence;
return (C1 . . . Ck);

end

Figure 6.2: Generic representative algorithm with unspecified distance function

Fisher score (cf. Sect. 10.2 of Chap. 10). The Fisher score, discussed in Sect. 10.2.1.3 of
Chap. 10, measures the ratio of the intercluster variance to the intracluster variance on any
particular attribute. Furthermore, it is possible to apply this two-step procedure iteratively.
However, some modifications to the first step are required. Instead of selecting the top-k
features, the weights of the top-k features are set to 1, and the remainder are set to α < 1.
Here, α is a user-specified parameter. In the final step, the top-k features are selected.

Wrapper models are often combined with filter models to create hybrid models for better
efficiency. In this case, candidate feature subsets are constructed with the use of filter models.
Then, the quality of each candidate feature subset is evaluated with a clustering algorithm.
The evaluation can be performed either with a cluster validity criterion or with the use of
a classification algorithm on the resulting cluster labels. The best candidate feature subset
is selected. Hybrid models provide better accuracy than filter models and are more efficient
than wrapper models.

6.3 Representative-Based Algorithms

Representative-based algorithms are the simplest of all clustering algorithms because they
rely directly on intuitive notions of distance (or similarity) to cluster data points. In
representative-based algorithms, the clusters are created in one shot, and hierarchical rela-
tionships do not exist among different clusters. This is typically done with the use of a set
of partitioning representatives. The partitioning representatives may either be created as
a function of the data points in the clusters (e.g., the mean) or may be selected from the
existing data points in the cluster. The main insight of these methods is that the discovery
of high-quality clusters in the data is equivalent to discovering a high-quality set of repre-
sentatives. Once the representatives have been determined, a distance function can be used
to assign the data points to their closest representatives.

Typically, it is assumed that the number of clusters, denoted by k, is specified by the
user. Consider a data set D containing n data points denoted by X1 . . . Xn in d-dimensional
space. The goal is to determine k representatives Y1 . . . Yk that minimize the following
objective function O:

O =
n∑

i=1

[
minjDist(Xi, Yj)

]
. (6.4)

160 CHAPTER 6. CLUSTER ANALYSIS

In other words, the sum of the distances of the different data points to their closest repre-
sentatives needs to be minimized. Note that the assignment of data points to representatives
depends on the choice of the representatives Y1 . . . Yk. In some variations of representative
algorithms, such as k-medoid algorithms, it is assumed that the representatives Y1 . . . Yk are
drawn from the original database D, although this will obviously not provide an optimal
solution. In general, the discussion in this section will not automatically assume that the
representatives are drawn from the original database D, unless specified otherwise.

One observation about the formulation of Eq. 6.4 is that the representatives Y1 . . . Yk

and the optimal assignment of data points to representatives are unknown a priori, but
they depend on each other in a circular way. For example, if the optimal representatives are
known, then the optimal assignment is easy to determine, and vice versa. Such optimiza-
tion problems are solved with the use of an iterative approach where candidate represen-
tatives and candidate assignments are used to improve each other. Therefore, the generic
k-representatives approach starts by initializing the k representatives S with the use of a
straightforward heuristic (such as random sampling from the original data), and then refines
the representatives and the clustering assignment, iteratively, as follows:

• (Assign step) Assign each data point to its closest representative in S using distance
function Dist(·, ·), and denote the corresponding clusters by C1 . . . Ck.

• (Optimize step) Determine the optimal representative Yj for each cluster Cj that
minimizes its local objective function

∑
Xi∈Cj

[
Dist(Xi, Yj)

]
.

It will be evident later in this chapter that this two-step procedure is very closely related
to generative models of cluster analysis in the form of expectation-maximization algorithms.
The second step of local optimization is simplified by this two-step iterative approach,
because it no longer depends on an unknown assignment of data points to clusters as in
the global optimization problem of Eq. 6.4. Typically, the optimized representative can
be shown to be some central measure of the data points in the jth cluster Cj , and the
precise measure depends on the choice of the distance function Dist(Xi, Yj). In particular,
for the case of the Euclidean distance and cosine similarity functions, it can be shown
that the optimal centralized representative of each cluster is its mean. However, different
distance functions may lead to a slightly different type of centralized representative, and
these lead to different variations of this broader approach, such as the k-means and k-
medians algorithms. Thus, the k-representative approach defines a family of algorithms, in
which minor changes to the basic framework allow the use of different distance criteria.
These different criteria will be discussed below. The generic framework for representative-
based algorithms with an unspecified distance function is illustrated in the pseudocode of
Fig. 6.2. The idea is to improve the objective function over multiple iterations. Typically,
the increase is significant in early iterations, but it slows down in later iterations. When the
improvement in the objective function in an iteration is less than a user-defined threshold,
the algorithm may be allowed to terminate. The primary computational bottleneck of the
approach is the assignment step where the distances need to be computed between all point-
representative pairs. The time complexity of each iteration is O(k · n · d) for a data set of
size n and dimensionality d. The algorithm typically terminates in a small constant number
of iterations.

The inner workings of the k-representatives algorithm are illustrated with an example
in Fig. 6.3, where the data contains three natural clusters, denoted by A, B, and C. For
illustration, it is assumed that the input k to the algorithm is the same as the number
of natural clusters in the data, which, in this case, is 3. The Euclidean distance function

6.3. REPRESENTATIVE-BASED ALGORITHMS 161

Figure 6.3: Illustration of k-representative algorithm with random initialization

162 CHAPTER 6. CLUSTER ANALYSIS

is used, and therefore the “re-centering” step uses the mean of the cluster. The initial
set of representatives (or seeds) is chosen randomly from the data space. This leads to a
particularly bad initialization, where two of the representatives are close to cluster B, and
one of them lies somewhere midway between clusters A and C. As a result, the cluster B
is initially split up by the “sphere of influence” of two representatives, whereas most of the
points in clusters A and C are assigned to a single representative in the first assignment step.
This situation is illustrated in Fig. 6.3a. However, because each representative is assigned
a different number of data points from the different clusters, the representatives drift in
subsequent iterations to one of the unique clusters. For example, representative 1 steadily
drifts toward cluster A, and representative 3 steadily drifts toward cluster C. At the same
time, representative 2 becomes a better centralized representative of cluster B. As a result,
cluster B is no longer split up among different representatives by the end of iteration 10
(Fig. 6.3f). An interesting observation is that even though the initialization was so poor,
it required only 10 iterations for the k-representatives approach to create a reasonable
clustering of the data. In practice, this is generally true of k-representative methods, which
converge relatively fast toward a good clustering of the data points. However, it is possible
for k-means to converge to suboptimal solutions, especially when an outlier data point is
selected as an initial representative for the algorithm. In such a case, one of the clusters may
contain a singleton point that is not representative of the data set, or it may contain two
merged clusters. The handling of such cases is discussed in the section on implementation
issues. In the following section, some special cases and variations of this framework will be
discussed. Most of the variations of the k-representative framework are defined by the choice
of the distance function Dist(Xi, Yj) between the data points Xi and the representatives
Yj . Each of these choices results in a different type of centralized representative of a cluster.

6.3.1 The k-Means Algorithm

In the k-means algorithm, the sum of the squares of the Euclidean distances of data points
to their closest representatives is used to quantify the objective function of the clustering.
Therefore, we have:

Dist(Xi, Yj) = ||Xi − Yj ||22. (6.5)

Here, || · ||p represents the Lp-norm. The expression Dist(Xi, Yj) can be viewed as the
squared error of approximating a data point with its closest representative. Thus, the over-
all objective minimizes the sum of square errors over different data points. This is also
sometimes referred to as SSE. In such a case, it can be shown1 that the optimal represen-
tative Yj for each of the “optimize” iterative steps is the mean of the data points in cluster
Cj. Thus, the only difference between the generic pseudocode of Fig. 6.2 and a k-means
pseudocode is the specific instantiation of the distance function Dist(·, ·), and the choice of
the representative as the local mean of its cluster.

An interesting variation of the k-means algorithm is to use the localMahalanobis distance
for assignment of data points to clusters. This distance function is discussed in Sect. 3.2.1.6 of
Chap. 3. Each cluster Cj has its d×d own covariance matrix Σj , which can be computed using
the data points assigned to that cluster in the previous iteration. The squared Mahalanobis
distance between data point Xi and representative Yj with a covariance matrix Σj is defined

1For a fixed cluster assignment C1 . . . Ck, the gradient of the clustering objective function∑k
j=1

∑
Xi∈Cj

||Xi − Yj ||2 with respect to Yj is 2
∑

Xi∈Cj
(Xi − Yj). Setting the gradient to 0 yields

the mean of cluster Cj as the optimum value of Yj . Note that the other clusters do not contribute to the
gradient, and, therefore, the approach effectively optimizes the local clustering objective function for Cj .

6.3. REPRESENTATIVE-BASED ALGORITHMS 163

Figure 6.4: Strengths and weaknesses of k-means

as follows:
Dist(Xi, Yj) = (Xi − Yj)Σ−1

j (Xi − Yj)T . (6.6)

The use of the Mahalanobis distance is generally helpful when the clusters are elliptically
elongated along certain directions, as in the case of Fig. 6.3. The factor Σ−1

j also provides
local density normalization, which is helpful in data sets with varying local density. The
resulting algorithm is referred to as the Mahalanobis k-means algorithm.

The k-means algorithm does not work well when the clusters are of arbitrary shape. An
example is illustrated in Fig. 6.4a, in which cluster A has a nonconvex shape. The k-means
algorithm breaks it up into two parts, and also merges one of these parts with cluster B. Such
situations are common in k-means, because it is biased toward finding spherical clusters.
Even the Mahalanobis k-means algorithm does not work well in this scenario in spite of
its ability to adjust for the elongation of clusters. On the other hand, the Mahalanobis k-
means algorithm can adjust well to varying cluster density, as illustrated in Fig. 6.4b. This
is because the Mahalanobis method normalizes local distances with the use of a cluster-
specific covariance matrix. The data set of Fig. 6.4b cannot be effectively clustered by
many density-based algorithms, which are designed to discover arbitrarily shaped clusters
(cf. Sect. 6.6). Therefore, different algorithms are suitable in different application settings.

6.3.2 The Kernel k-Means Algorithm

The k-means algorithm can be extended to discovering clusters of arbitrary shape with the
use of a method known as the kernel trick. The basic idea is to implicitly transform the
data so that arbitrarily shaped clusters map to Euclidean clusters in the new space. Refer
to Sect. 10.6.4.1 of Chap. 10 for a brief description of the kernel k-means algorithm. The
main problem with the kernel k-means algorithm is that the complexity of computing the
kernel matrix alone is quadratically related to the number of data points. Such an approach
can effectively discover the arbitrarily shaped clusters of Fig. 6.4a.

164 CHAPTER 6. CLUSTER ANALYSIS

Algorithm GenericMedoids(Database: D, Number of Representatives: k)
begin
Initialize representative set S by selecting from D;
repeat
Create clusters (C1 . . . Ck) by assigning
each point in D to closest representative in S
using the distance function Dist(·, ·);

Determine a pair Xi ∈ D and Yj ∈ S such that
replacing Yj ∈ S with Xi leads to the
greatest possible improvement in objective function;

Perform the exchange between Xi and Yj only
if improvement is positive;

until no improvement in current iteration;
return (C1 . . . Ck);

end

Figure 6.5: Generic k-medoids algorithm with unspecified hill-climbing strategy

6.3.3 The k-Medians Algorithm

In the k-medians algorithm, the Manhattan distance is used as the objective function of
choice. Therefore, the distance function Dist(Xi, Yj) is defined as follows:

Dist(Xi, Yj) = ||Xi − Yj ||1. (6.7)

In such a case, it can be shown that the optimal representative Yj is the median of the
data points along each dimension in cluster Cj . This is because the point that has the
minimum sum of L1-distances to a set of points distributed on a line is the median of that
set. The proof of this result is simple. The definition of a median can be used to show that
a perturbation of ε in either direction from the median cannot strictly reduce the sum of
L1-distances. This implies that the median optimizes the sum of the L1-distances to the
data points in the set.

As the median is chosen independently along each dimension, the resulting d-dimensional
representative will (typically) not belong to the original data set D. The k-medians approach
is sometimes confused with the k-medoids approach, which chooses these representatives
from the original database D. In this case, the only difference between the generic pseu-
docode of Fig. 6.2, and a k-medians variation would be to instantiate the distance function
to the Manhattan distance and use the representative as the local median of the cluster
(independently along each dimension). The k-medians approach generally selects cluster
representatives in a more robust way than k-means, because the median is not as sensitive
to the presence of outliers in the cluster as the mean.

6.3.4 The k-Medoids Algorithm

Although the k-medoids algorithm also uses the notion of representatives, its algorithmic
structure is different from the generic k-representatives algorithm of Fig. 6.2. The clustering
objective function is, however, of the same form as the k-representatives algorithm. The main
distinguishing feature of the k-medoids algorithm is that the representatives are always

6.3. REPRESENTATIVE-BASED ALGORITHMS 165

selected from the database D, and this difference necessitates changes to the basic structure
of the k-representatives algorithm.

A question arises as to why it is sometimes desirable to select the representatives from
D. There are two reasons for this. One reason is that the representative of a k-means cluster
may be distorted by outliers in that cluster. In such cases, it is possible for the representative
to be located in an empty region which is unrepresentative of most of the data points in
that cluster. Such representatives may result in partial merging of different clusters, which
is clearly undesirable. This problem can, however, be partially resolved with careful outlier
handling and the use of outlier-robust variations such as the k-medians algorithm. The
second reason is that it is sometimes difficult to compute the optimal central representative
of a set of data points of a complex data type. For example, if the k-representatives clustering
algorithm were to be applied on a set of time series of varying lengths, then how should the
central representatives be defined as a function of these heterogeneous time-series? In such
cases, selecting representatives from the original data set may be very helpful. As long as
a representative object is selected from each cluster, the approach will provide reasonably
high quality results. Therefore, a key property of the k-medoids algorithm is that it can be
defined virtually on any data type, as long as an appropriate similarity or distance function
can be defined on the data type. Therefore, k-medoids methods directly relate the problem
of distance function design to clustering.

The k-medoids approach uses a generic hill-climbing strategy, in which the representative
set S is initialized to a set of points from the original database D. Subsequently, this set S
is iteratively improved by exchanging a single point from set S with a data point selected
from the database D. This iterative exchange can be viewed as a hill-climbing strategy,
because the set S implicitly defines a solution to the clustering problem, and each exchange
can be viewed as a hill-climbing step. So what should be the criteria for the exchange, and
when should one terminate?

Clearly, in order for the clustering algorithm to be successful, the hill-climbing approach
should at least improve the objective function of the problem to some extent. Several choices
arise in terms of how the exchange can be performed:

1. One can try all |S| · |D| possibilities for replacing a representative in S with a data
point in D and then select the best one. However, this is extremely expensive because
the computation of the incremental objective function change for each of the |S| · |D|
alternatives will require time proportional to the original database size.

2. A simpler solution is to use a randomly selected set of r pairs (Xi, Yj) for possible
exchange, where Xi is selected from the database D, and Yj is selected from the
representative set S. The best of these r pairs is used for the exchange.

The second solution requires time proportional to r times the database size but is usually
practically implementable for databases of modest size. The solution is said to have con-
verged when the objective function does not improve, or if the average objective function
improvement is below a user-specified threshold in the previous iteration. The k-medoids
approach is generally much slower than the k-means method but has greater applicability
to different data types. The next chapter will introduce the CLARANS algorithm, which is
a scalable version of the k-medoids framework.

Practical and Implementation Issues

A number of practical issues arise in the proper implementation of all representative-based
algorithms, such as the k-means, k-medians, and k-medoids algorithms. These issues relate

166 CHAPTER 6. CLUSTER ANALYSIS

to the initialization criteria, the choice of the number of clusters k, and the presence of
outliers.

The simplest initialization criteria is to either select points randomly from the domain
of the data space, or to sample the original database D. Sampling the original database
D is generally superior to sampling the data space, because it leads to better statistical
representatives of the underlying data. The k-representatives algorithm seems to be sur-
prisingly robust to the choice of initialization, though it is possible for the algorithm to
create suboptimal clusters. One possible solution is to sample more data points from D
than the required number k, and use a more expensive hierarchical agglomerative cluster-
ing approach to create k robust centroids. Because these centroids are more representative
of the database D, this provides a better starting point for the algorithm.

A very simple approach, which seems to work surprisingly well, is to select the initial
representatives as centroids of m randomly chosen samples of points for some user-selected
parameter m. This will ensure that the initial centroids are not too biased by any particular
outlier. Furthermore, while all these centroid representatives will be approximately equal
to the mean of the data, they will typically be slightly biased toward one cluster or another
because of random variations across different samples. Subsequent iterations of k-means will
eventually associate each of these representatives with a cluster.

The presence of outliers will typically have a detrimental impact on such algorithms.
This can happen in cases where the initialization procedure selects an outlier as one of the
initial centers. Although a k-medoids algorithm will typically discard an outlier represen-
tative during an iterative exchange, a k-center approach can become stuck with a singleton
cluster or an empty cluster in subsequent iterations. In such cases, one solution is to add
an additional step in the iterative portion of the algorithm that discards centers with very
small clusters and replaces them with randomly chosen points from the data.

The number of clusters k is a parameter used by this approach. Section 6.9.1.1 on cluster
validity provides an approximate method for selecting the number of clusters k. As discussed
in Sect. 6.9.1.1, this approach is far from perfect. The number of natural clusters is often
difficult to determine using automated methods. Because the number of natural clusters
is not known a priori, it may sometimes be desirable to use a larger value of k than the
analyst’s “guess” about the true natural number of clusters in the data. This will result in
the splitting of some of the data clusters into multiple representatives, but it is less likely
for clusters to be incorrectly merged. As a postprocessing step, it may be possible to merge
some of the clusters based on the intercluster distances. Some hybrid agglomerative and
partitioning algorithms include a merging step within the k-representative procedure. Refer
to the bibliographic notes for references to these algorithms.

6.4 Hierarchical Clustering Algorithms

Hierarchical algorithms typically cluster the data with distances. However, the use of dis-
tance functions is not compulsory. Many hierarchical algorithms use other clustering meth-
ods, such as density- or graph-based methods, as a subroutine for constructing the hierarchy.

So why are hierarchical clustering methods useful from an application-centric point of
view? One major reason is that different levels of clustering granularity provide different
application-specific insights. This provides a taxonomy of clusters, which may be browsed
for semantic insights. As a specific example, consider the taxonomy2 of Web pages created
by the well-known Open Directory Project (ODP). In this case, the clustering has been

2http://www.dmoz.org

http://www.dmoz.org

6.4. HIERARCHICAL CLUSTERING ALGORITHMS 167

Figure 6.6: Multigranularity insights from hierarchical clustering

created by a manual volunteer effort, but it nevertheless provides a good understanding of
the multigranularity insights that may be obtained with such an approach. A small portion
of the hierarchical organization is illustrated in Fig. 6.6. At the highest level, the Web pages
are organized into topics such as arts, science, health, and so on. At the next level, the topic
of science is organized into subtopics, such as biology and physics, whereas the topic of health
is divided into topics such as fitness and medicine. This organization makes manual browsing
very convenient for a user, especially when the content of the clusters can be described in a
semantically comprehensible way. In other cases, such hierarchical organizations can be used
by indexing algorithms. Furthermore, such methods can sometimes also be used for creating
better “flat” clusters. Some agglomerative hierarchical methods and divisive methods, such
as bisecting k-means, can provide better quality clusters than partitioning methods such as
k-means, albeit at a higher computational cost.

There are two types of hierarchical algorithms, depending on how the hierarchical tree
of clusters is constructed:

1. Bottom-up (agglomerative) methods: The individual data points are successively
agglomerated into higher-level clusters. The main variation among the different meth-
ods is in the choice of objective function used to decide the merging of the clusters.

2. Top-down (divisive) methods: A top-down approach is used to successively partition
the data points into a tree-like structure. A flat clustering algorithm may be used
for the partitioning in a given step. Such an approach provides tremendous flexibility
in terms of choosing the trade-off between the balance in the tree structure and the
balance in the number of data points in each node. For example, a tree-growth strategy
that splits the heaviest node will result in leaf nodes with a similar number of data
points in them. On the other hand, a tree-growth strategy that constructs a balanced
tree structure with the same number of children at each node will lead to leaf nodes
with varying numbers of data points.

In the following sections, both types of hierarchical methods will be discussed.

6.4.1 Bottom-Up Agglomerative Methods

In bottom-up methods, the data points are successively agglomerated into higher level clus-
ters. The algorithm starts with individual data points in their own clusters and successively

168 CHAPTER 6. CLUSTER ANALYSIS

Algorithm AgglomerativeMerge(Data: D)
begin
Initialize n× n distance matrix M using D;
repeat
Pick closest pair of clusters i and j using M ;
Merge clusters i and j;
Delete rows/columns i and j from M and create
a new row and column for newly merged cluster;

Update the entries of new row and column of M ;
until termination criterion;
return current merged cluster set;

end

Figure 6.7: Generic agglomerative merging algorithm with unspecified merging criterion

agglomerates them into higher level clusters. In each iteration, two clusters are selected
that are deemed to be as close as possible. These clusters are merged and replaced with a
newly created merged cluster. Thus, each merging step reduces the number of clusters by
1. Therefore, a method needs to be designed for measuring proximity between clusters con-
taining multiple data points, so that they may be merged. It is in this choice of computing
the distances between clusters, that most of the variations among different methods arise.

Let n be the number of data points in the d-dimensional database D, and nt = n− t be
the number of clusters after t agglomerations. At any given point, the method maintains an
nt×nt distance matrixM between the current clusters in the data. The precise methodology
for computing and maintaining this distance matrix will be described later. In any given
iteration of the algorithm, the (nondiagonal) entry in the distance matrix with the least
distance is selected, and the corresponding clusters are merged. This merging will require
the distance matrix to be updated to a smaller (nt−1)×(nt−1) matrix. The dimensionality
reduces by 1 because the rows and columns for the two merged clusters need to be deleted,
and a new row and column of distances, corresponding to the newly created cluster, needs
to be added to the matrix. This corresponds to the newly created cluster in the data. The
algorithm for determining the values of this newly created row and column depends on
the cluster-to-cluster distance computation in the merging procedure and will be described
later. The incremental update process of the distance matrix is a more efficient option
than that of computing all distances from scratch. It is, of course, assumed that sufficient
memory is available to maintain the distance matrix. If this is not the case, then the distance
matrix will need to be fully recomputed in each iteration, and such agglomerative methods
become less attractive. For termination, either a maximum threshold can be used on the
distances between two merged clusters or a minimum threshold can be used on the number
of clusters at termination. The former criterion is designed to automatically determine the
natural number of clusters in the data but has the disadvantage of requiring the specification
of a quality threshold that is hard to guess intuitively. The latter criterion has the advantage
of being intuitively interpretable in terms of the number of clusters in the data. The order
of merging naturally creates a hierarchical tree-like structure illustrating the relationship
between different clusters, which is referred to as a dendrogram. An example of a dendrogram
on successive merges on six data points, denoted by A, B, C, D, E, and F, is illustrated in
Fig. 6.8a.

6.4. HIERARCHICAL CLUSTERING ALGORITHMS 169

Figure 6.8: Illustration of hierarchical clustering steps

The generic agglomerative procedure with an unspecified merging criterion is illustrated
in Fig. 6.7. The distances are encoded in the nt × nt distance matrix M . This matrix
provides the pairwise cluster distances computed with the use of the merging criterion. The
different choices for the merging criteria will be described later. The merging of two clusters
corresponding to rows (columns) i and j in the matrix M requires the computation of some
measure of distances between their constituent objects. For two clusters containing mi and
mj objects, respectively, there are mi · mj pairs of distances between constituent objects.
For example, in Fig. 6.8b, there are 2 × 4 = 8 pairs of distances between the constituent
objects, which are illustrated by the corresponding edges. The overall distance between the
two clusters needs to be computed as a function of these mi · mj pairs. In the following,
different ways of computing the distances will be discussed.

6.4.1.1 Group-Based Statistics

The following discussion assumes that the indices of the two clusters to be merged are
denoted by i and j, respectively. In group-based criteria, the distance between two groups
of objects is computed as a function of the mi ·mj pairs of distances among the constituent
objects. The different ways of computing distances between two groups of objects are as
follows:

1. Best (single) linkage: In this case, the distance is equal to the minimum distance
between all mi · mj pairs of objects. This corresponds to the closest pair of objects
between the two groups. After performing the merge, the matrix M of pairwise dis-
tances needs to be updated. The ith and jth rows and columns are deleted and replaced
with a single row and column representing the merged cluster. The new row (column)
can be computed using the minimum of the values in the previously deleted pair of
rows (columns) in M . This is because the distance of the other clusters to the merged
cluster is the minimum of their distances to the individual clusters in the best-linkage
scenario. For any other cluster k �= i, j, this is equal to min{Mik,Mjk} (for rows) and
min{Mki,Mkj} (for columns). The indices of the rows and columns are then updated
to account for the deletion of the two clusters and their replacement with a new one.
The best linkage approach is one of the instantiations of agglomerative methods that
is very good at discovering clusters of arbitrary shape. This is because the data points
in clusters of arbitrary shape can be successively merged with chains of data point
pairs at small pairwise distances to each other. On the other hand, such chaining may
also inappropriately merge distinct clusters when it results from noisy points.

170 CHAPTER 6. CLUSTER ANALYSIS

2. Worst (complete) linkage: In this case, the distance between two groups of objects is
equal to the maximum distance between all mi ·mj pairs of objects in the two groups.
This corresponds to the farthest pair in the two groups. Correspondingly, the matrix
M is updated using the maximum values of the rows (columns) in this case. For any
value of k �= i, j, this is equal to max{Mik,Mjk} (for rows), and max{Mki,Mkj} (for
columns). The worst-linkage criterion implicitly attempts to minimize the maximum
diameter of a cluster, as defined by the largest distance between any pair of points in
the cluster. This method is also referred to as the complete linkage method.

3. Group-average linkage: In this case, the distance between two groups of objects is
equal to the average distance between all mi · mj pairs of objects in the groups. To
compute the row (column) for the merged cluster in M , a weighted average of the ith
and jth rows (columns) in the matrix M is used. For any value of k �= i, j, this is
equal to mi·Mik+mj ·Mjk

mi+mj
(for rows), and mi·Mki+mj ·Mkj

mi+mj
(for columns).

4. Closest centroid: In this case, the closest centroids are merged in each iteration. This
approach is not desirable, however, because the centroids lose information about the
relative spreads of the different clusters. For example, such a method will not discrim-
inate between merging pairs of clusters of varying sizes, as long as their centroid pairs
are at the same distance. Typically, there is a bias toward merging pairs of larger
clusters because centroids of larger clusters are statistically more likely to be closer
to each other.

5. Variance-based criterion: This criterion minimizes the change in the objective function
(such as cluster variance) as a result of the merging. Merging always results in a
worsening of the clustering objective function value because of the loss of granularity.
It is desired to merge clusters where the change (degradation) in the objective function
as a result of merging is as little as possible. To achieve this goal, the zeroth, first,
and second order moment statistics are maintained with each cluster. The average
squared error SEi of the ith cluster can be computed as a function of the number mi

of points in the cluster (zeroth-order moment), the sum Fir of the data points in the
cluster i along each dimension r (first-order moment), and the squared sum Sir of the
data points in the cluster i across each dimension r (second-order moment) according
to the following relationship;

SEi =
d∑

r=1

(Sir/mi − F 2
ir/m

2
i). (6.8)

This relationship can be shown using the basic definition of variance and is used by
many clustering algorithms such as BIRCH (cf. Chap. 7). Therefore, for each cluster,
one only needs to maintain these cluster-specific statistics. Such statistics are easy to
maintain across merges because the moment statistics of a merge of the two clusters i
and j can be computed easily as the sum of their moment statistics. Let SEi∪j denote
the variance of a potential merge between the two clusters i and j. Therefore, the
change in variance on executing a merge of clusters i and j is as follows:

ΔSEi∪j = SEi∪j − SEi − SEj . (6.9)

This change can be shown to always be a positive quantity. The cluster pair with the
smallest increase in variance because of the merge is selected as the relevant pair to

6.4. HIERARCHICAL CLUSTERING ALGORITHMS 171

CLUSTER A

SUCCESSIVE SINGLE

CLUSTER A
(ARBITRARY SHAPE)

LINKAGE MERGES
WILL DISCOVER

CORRECT CLUSTERS

CLUSTER B

CLUSTER ACLUSTER A
(ARBITRARY SHAPE)

SUCCESSIVE SINGLE
LINKAGE MERGES

ALONG NOISY
BRIDGE MIGHT
PREMATURELY

CHAIN DISTINCT

CLUSTER B
CLUSTERS

(a) Good case with no noise (b) Bad case with noise

Figure 6.9: Good and bad cases for single-linkage clustering

be merged. As before, a matrix M of pairwise values of ΔSEi∪j is maintained along
with moment statistics. After each merge of the ith and jth clusters, the ith and
jth rows and columns of M are deleted and a new column for the merged cluster
is added. The kth row (column) entry (k �= i, j) in M of this new column is equal
to SEi∪j∪k − SEi∪j − SEk. These values are computed using the cluster moment
statistics. After computing the new row and column, the indices of the matrix M are
updated to account for its reduction in size.

6. Ward’s method: Instead of using the change in variance, one might also use the
(unscaled) sum of squared error as the merging criterion. This is equivalent to setting
the RHS of Eq. 6.8 to

∑d
r=1(miSir − F 2

ir). Surprisingly, this approach is a variant of
the centroid method. The objective function for merging is obtained by multiplying
the (squared) Euclidean distance between centroids with the harmonic mean of the
number of points in each of the pair. Because larger clusters are penalized by this
additional factor, the approach performs more effectively than the centroid method.

The various criteria have different advantages and disadvantages. For example, the single
linkage method is able to successively merge chains of closely related points to discover
clusters of arbitrary shape. However, this property can also (inappropriately) merge two
unrelated clusters, when the chaining is caused by noisy points between two clusters. Exam-
ples of good and bad cases for single-linkage clustering are illustrated in Figs. 6.9a and b,
respectively. Therefore, the behavior of single-linkage methods depends on the impact and
relative presence of noisy data points. Interestingly, the well-known DBSCAN algorithm (cf.
Sect. 6.6.2) can be viewed as a robust variant of single-linkage methods, and it can therefore
find arbitrarily shaped clusters. The DBSCAN algorithm excludes the noisy points between
clusters from the merging process to avoid undesirable chaining effects.

The complete (worst-case) linkage method attempts to minimize the maximum distance
between any pair of points in a cluster. This quantification can implicitly be viewed as an
approximation of the diameter of a cluster. Because of its focus on minimizing the diameter,
it will try to create clusters so that all of them have a similar diameter. However, if some of
the natural clusters in the data are larger than others, then the approach will break up the
larger clusters. It will also be biased toward creating clusters of spherical shape irrespective
of the underlying data distribution. Another problem with the complete linkage method is
that it gives too much importance to data points at the noisy fringes of a cluster because
of its focus on the maximum distance between any pair of points in the cluster. The group-
average, variance, and Ward’s methods are more robust to noise due to the use of multiple
linkages in the distance computation.

172 CHAPTER 6. CLUSTER ANALYSIS

The agglomerative method requires the maintenance of a heap of sorted distances to
efficiently determine the minimum distance value in the matrix. The initial distance matrix
computation requires O(n2 · d) time, and the maintenance of a sorted heap data structure
requires O(n2 · log(n)) time over the course of the algorithm because there will be a total of
O(n2) additions and deletions into the heap. Therefore, the overall running time is O(n2 ·
d+n2 · log(n)). The required space for the distance matrix is O(n2). The space-requirement
is particularly problematic for large data sets. In such cases, a similarity matrix M cannot
be incrementally maintained, and the time complexity of many hierarchical methods will
increase dramatically to O(n3 ·d). This increase occurs because the similarity computations
between clusters need to be performed explicitly at the time of the merging. Nevertheless, it
is possible to speed up the algorithm in such cases by approximating the merging criterion.
The CURE method, discussed in Sect. 7.3.3 of Chap. 7, provides a scalable single-linkage
implementation of hierarchical methods and can discover clusters of arbitrary shape. This
improvement is achieved by using carefully chosen representative points from clusters to
approximately compute the single-linkage criterion.

Practical Considerations

Agglomerative hierarchical methods naturally lead to a binary tree of clusters. It is gen-
erally difficult to control the structure of the hierarchical tree with bottom-up methods as
compared to the top-down methods. Therefore, in cases where a taxonomy of a specific
structure is desired, bottom-up methods are less desirable.

A problem with hierarchical methods is that they are sensitive to a small number of
mistakes made during the merging process. For example, if an incorrect merging decision is
made at some stage because of the presence of noise in the data set, then there is no way to
undo it, and the mistake may further propagate in successive merges. In fact, some variants
of hierarchical clustering, such as single-linkage methods, are notorious for successively
merging neighboring clusters because of the presence of a small number of noisy points.
Nevertheless, there are numerous ways to reduce these effects by treating noisy data points
specially.

Agglomerative methods can become impractical from a space- and time-efficiency per-
spective for larger data sets. Therefore, these methods are often combined with sampling
and other partitioning methods to efficiently provide solutions of high quality.

6.4.2 Top-Down Divisive Methods

Although bottom-up agglomerative methods are typically distance-based methods, top-
down hierarchical methods can be viewed as general-purpose meta-algorithms that can use
almost any clustering algorithm as a subroutine. Because of the top-down approach, greater
control is achieved on the global structure of the tree in terms of its degree and balance
between different branches.

The overall approach for top-down clustering uses a general-purpose flat-clustering algo-
rithm A as a subroutine. The algorithm initializes the tree at the root node containing all
the data points. In each iteration, the data set at a particular node of the current tree is
split into multiple nodes (clusters). By changing the criterion for node selection, one can
create trees balanced by height or trees balanced by the number of clusters. If the algorithm
A is randomized, such as the k-means algorithm (with random seeds), it is possible to use
multiple trials of the same algorithm at a particular node and select the best one. The
generic pseudocode for a top-down divisive strategy is illustrated in Fig. 6.10. The algo-

6.5. PROBABILISTIC MODEL-BASED ALGORITHMS 173

Algorithm GenericTopDownClustering(Data: D, Flat Algorithm: A)
begin
Initialize tree T to root containing D;
repeat
Select a leaf node L in T based on pre-defined criterion;
Use algorithm A to split L into L1 . . . Lk;
Add L1 . . . Lk as children of L in T ;

until termination criterion;
end

Figure 6.10: Generic top-down meta-algorithm for clustering

rithm recursively splits nodes with a top-down approach until either a certain height of the
tree is achieved or each node contains fewer than a predefined number of data objects. A
wide variety of algorithms can be designed with different instantiations of the algorithm A
and growth strategy. Note that the algorithm A can be any arbitrary clustering algorithm,
and not just a distance-based algorithm.

6.4.2.1 Bisecting k-Means

The bisecting k-means algorithm is a top-down hierarchical clustering algorithm in which
each node is split into exactly two children with a 2-means algorithm. To split a node into
two children, several randomized trial runs of the split are used, and the split that has the
best impact on the overall clustering objective is used. Several variants of this approach use
different growth strategies for selecting the node to be split. For example, the heaviest node
may be split first, or the node with the smallest distance from the root may be split first.
These different choices lead to balancing either the cluster weights or the tree height.

6.5 Probabilistic Model-Based Algorithms

Most clustering algorithms discussed in this book are hard clustering algorithms in which
each data point is deterministically assigned to a particular cluster. Probabilistic model-
based algorithms are soft algorithms in which each data point may have a nonzero assign-
ment probability to many (typically all) clusters. A soft solution to a clustering problem
may be converted to a hard solution by assigning a data point to a cluster with respect to
which it has the largest assignment probability.

The broad principle of a mixture-based generative model is to assume that the data was
generated from a mixture of k distributions with probability distributions G1 . . .Gk. Each
distribution Gi represents a cluster and is also referred to as a mixture component. Each
data point Xi, where i ∈ {1 . . . n}, is generated by this mixture model as follows:

1. Select a mixture component with prior probability αi = P (Gi), where i ∈ {1 . . . k}.
Assume that the rth one is selected.

2. Generate a data point from Gr.

This generative model will be denoted by M. The different prior probabilities αi and the
parameters of the different distributions Gr are not known in advance. Each distribution
Gi is often assumed to be the Gaussian, although any arbitrary (and different) family of

174 CHAPTER 6. CLUSTER ANALYSIS

distributions may be assumed for each Gi. The choice of distribution Gi is important because
it reflects the user’s a priori understanding about the distribution and shape of the indi-
vidual clusters (mixture components). The parameters of the distribution of each mixture
component, such as its mean and variance, need to be estimated from the data, so that the
overall data has the maximum likelihood of being generated by the model. This is achieved
with the expectation-maximization (EM) algorithm. The parameters of the different mixture
components can be used to describe the clusters. For example, the estimation of the mean
of each Gaussian component is analogous to determine the mean of each cluster center in
a k-representative algorithm. After the parameters of the mixture components have been
estimated, the posterior generative (or assignment) probabilities of data points with respect
to each mixture component (cluster) can be determined.

Assume that the probability density function of mixture component Gi is denoted by
f i(·). The probability (density function) of the data point Xj being generated by the model
is given by the weighted sum of the probability densities over different mixture components,
where the weight is the prior probability αi = P (Gi) of the mixture components:

fpoint(Xj |M) =
k∑

i=1

αi · f i(Xj). (6.10)

Then, for a data set D containing n data points, denoted by X1 . . . Xn, the probability
density of the data set being generated by the model M is the product of all the point-
specific probability densities:

fdata(D|M) =
n∏

j=1

fpoint(Xj |M). (6.11)

The log-likelihood fit L(D|M) of the data set D with respect to model M is the logarithm
of the aforementioned expression and can be (more conveniently) represented as a sum
of values over different data points. The log-likelihood fit is preferred for computational
reasons.

L(D|M) = log(
n∏

j=1

fpoint(Xj |M)) =
n∑

j=1

log(
k∑

i=1

αif
i(Xj)). (6.12)

This log-likelihood fit needs to maximized to determine the model parameters. A salient
observation is that if the probabilities of data points being generated from different clusters
were known, then it becomes relatively easy to determine the optimal model parameters
separately for each component of the mixture. At the same time, the probabilities of data
points being generated from different components are dependent on these optimal model
parameters. This circularity is reminiscent of a similar circularity in optimizing the objec-
tive function of partitioning algorithms in Sect. 6.3. In that case, the knowledge of a hard
assignment of data points to clusters provides the ability to determine optimal cluster repre-
sentatives locally for each cluster. In this case, the knowledge of a soft assignment provides
the ability to estimate the optimal (maximum likelihood) model parameters locally for each
cluster. This naturally suggests an iterative EM algorithm, in which the model parameters
and probabilistic assignments are iteratively estimated from one another.

Let Θ be a vector, representing the entire set of parameters describing all components
of the mixture model. For example, in the case of the Gaussian mixture model, Θ contains
all the component mixture means, variances, covariances, and the prior generative proba-
bilities α1 . . . αk. Then, the EM algorithm starts with an initial set of values of Θ (possibly

6.5. PROBABILISTIC MODEL-BASED ALGORITHMS 175

corresponding to random assignments of data points to mixture components), and proceeds
as follows:

1. (E-step) Given the current value of the parameters in Θ, estimate the posterior proba-
bility P (Gi|Xj ,Θ) of the component Gi having been selected in the generative process,
given that we have observed data point Xj . The quantity P (Gi|Xj ,Θ) is also the soft
cluster assignment probability that we are trying to estimate. This step is executed
for each data point Xj and mixture component Gi.

2. (M-step) Given the current probabilities of assignments of data points to clusters, use
the maximum likelihood approach to determine the values of all the parameters in Θ
that maximize the log-likelihood fit on the basis of current assignments.

The two steps are executed repeatedly in order to improve the maximum likelihood criterion.
The algorithm is said to converge when the objective function does not improve significantly
in a certain number of iterations. The details of the E-step and the M-step will now be
explained.

The E-step uses the currently available model parameters to compute the probability
density of the data point Xj being generated by each component of the mixture. This proba-
bility density is used to compute the Bayes probability that the data point Xj was generated
by component Gi (with model parameters fixed to the current set of the parameters Θ):

P (Gi|Xj ,Θ) =
P (Gi) · P (Xj |Gi,Θ)∑k

r=1 P (Gr) · P (Xj |Gr,Θ)
=

αi · f i,Θ(Xj)∑k
r=1 αr · fr,Θ(Xj)

. (6.13)

As you will learn in Chap. 10 on classification, Eq. 6.13 is exactly the mechanism with
which a Bayes classifier assigns previously unseen data points to categories (classes). A
superscript Θ has been added to the probability density functions to denote the fact that
they are evaluated for current model parameters Θ.

The M-step requires the optimization of the parameters for each probability distribu-
tion under the assumption that the E-step has provided the “correct” soft assignment. To
optimize the fit, the partial derivative of the log-likelihood fit with respect to corresponding
model parameters needs to be computed and set to zero. Without specifically describing
the details of these algebraic steps, the values of the model parameters that are computed
as a result of the optimization are described here.

The value of each αi is estimated as the current weighted fraction of points assigned to
cluster i, where a weight of P (Gi|Xj ,Θ) is associated with data point Xj . Therefore, we
have:

αi = P (Gi) =

∑n
j=1 P (Gi|Xj ,Θ)

n
. (6.14)

In practice, in order to obtain more robust results for smaller data sets, the expected number
of data points belonging to each cluster in the numerator is augmented by 1, and the total
number of points in the denominator is n+ k. Therefore, the estimated value is as follows:

αi =
1 +

∑n
j=1 P (Gi|Xj ,Θ)
k + n

. (6.15)

This approach is also referred to as Laplacian smoothing.
To determine the other parameters for component i, the value of P (Gi|Xj ,Θ) is treated

as a weight of that data point. Consider a Gaussian mixture model in d dimensions, in
which the distribution of the ith component is defined as follows:

f i,Θ(Xj) =
1√

|Σi|(2 · π)(d/2)
e−

1
2 (Xj−μi)Σ

−1
i (Xj−μi). (6.16)

176 CHAPTER 6. CLUSTER ANALYSIS

Here, μi is the d-dimensional mean vector of the ith Gaussian component, and Σi is the
d× d covariance matrix of the generalized Gaussian distribution of the ith component. The
notation |Σi| denotes the determinant of the covariance matrix. It can be shown3 that the
maximum-likelihood estimation of μi and Σi yields the (probabilistically weighted) means
and covariance matrix of the data points in that component. These probabilistic weights
were derived from the assignment probabilities in the E-step. Interestingly, this is exactly
how the representatives and covariance matrices of the Mahalanobis k-means approach are
derived in Sect. 6.3. The only difference was that the data points were not weighted because
hard assignments were used by the deterministic k-means algorithm. Note that the term in
the exponent of the Gaussian distribution is the square of the Mahalanobis distance.

The E-step and the M-step can be iteratively executed to convergence to determine the
optimal parameter set Θ. At the end of the process, a probabilistic model is obtained that
describes the entire data set in terms of a generative model. The model also provides soft
assignment probabilities P (Gi|Xj ,Θ) of the data points, on the basis of the final execution
of the E-step.

In practice, to minimize the number of estimated parameters, the non-diagonal entries
of Σi are often set to 0. In such cases, the determinant of Σi simplifies to the product of
the variances along the individual dimensions. This is equivalent to using the square of the
Minkowski distance in the exponent. If all diagonal entries are further constrained to have
the same value, then it is equivalent to using the Euclidean distance, and all components
of the mixture will have spherical clusters. Thus, different choices and complexities of mix-
ture model distributions provide different levels of flexibility in representing the probability
distribution of each component.

This two-phase iterative approach is similar to representative-based algorithms. The
E-step can be viewed as a soft version of the assign step in distance-based partitioning
algorithms. The M-step is reminiscent of the optimize step, in which optimal component-
specific parameters are learned on the basis of the fixed assignment. The distance term
in the exponent of the probability distribution provides the natural connection between
probabilistic and distance-based algorithms. This connection is discussed in the next section.

6.5.1 Relationship of EM to k-means and Other Representative
Methods

The EM algorithm provides an extremely flexible framework for probabilistic clustering, and
certain special cases can be viewed as soft versions of distance-based clustering methods.
As a specific example, consider the case where all a priori generative probabilities αi are
fixed to 1/k as a part of the model setting. Furthermore, all components of the mixture
have the same radius σ along all directions, and the mean of the jth cluster is assumed to
be Yj . Thus, the only parameters to be learned are σ, and Y1 . . . Yk. In that case, the jth
component of the mixture has the following distribution:

f j,Θ(Xi) =
1

(σ
√
2 · π)d

e
−

(
||Xi−Yj ||2

2σ2

)

. (6.17)

This model assumes that all mixture components have the same radius σ, and the cluster in
each component is spherical. Note that the exponent in the distribution is the scaled square

3This is achieved by setting the partial derivative of L(D|M) (see Eq. 6.12) with respect to each parameter
in μi and Σ to 0.

6.5. PROBABILISTIC MODEL-BASED ALGORITHMS 177

of the Euclidean distance. How do the E-step and M-step compare to the assignment and
re-centering steps of the k-means algorithm?

1. (E-step) Each data point i has a probability belonging to cluster j, which is propor-
tional to the scaled and exponentiated Euclidean distance to each representative Yj .
In the k-means algorithm, this is done in a hard way, by picking the best Euclidean
distance to any representative Yj .

2. (M-step) The center Yj is the weighted mean over all the data points where the weight
is defined by the probability of assignment to cluster j. The hard version of this is
used in k-means, where each data point is either assigned to a cluster or not assigned
to a cluster (i.e., analogous to 0-1 probabilities).

When the mixture distribution is defined with more general forms of the Gaussian distribu-
tion, the corresponding k-representative algorithm is the Mahalanobis k-means algorithm.
It is noteworthy that the exponent of the general Gaussian distribution is the Mahalanobis
distance. This implies that special cases of the EM algorithm are equivalent to a soft version
of the k-means algorithm, where the exponentiated k-representative distances are used to
define soft EM assignment probabilities.

The E-step is structurally similar to the Assign step, and the M-step is similar to
the Optimize step in k-representative algorithms. Many mixture component distribu-
tions can be expressed in the form K1 · e−K2·Dist(Xi,Yj), where K1 and K2 are regu-
lated by distribution parameters. The log-likelihood of such an exponentiated distribu-
tion directly maps to an additive distance term Dist(Xi, Yj) in the M-step objective func-
tion, which is structurally identical to the corresponding additive optimization term in
k-representative methods. For many EM models with mixture probability distributions of
the form K1 · e−K2·Dist(Xi,Yj), a corresponding k-representative algorithm can be defined
with a distance function Dist(Xi, Yj).

Practical Considerations

The major practical consideration in mixture modeling is the level of the desired flexibility
in defining the mixture components. For example, when each mixture component is defined
as a generalized Gaussian, it is more effective at finding clusters of arbitrary shape and
orientation. On the other hand, this requires the learning of a larger number of parameters,
such as a d× d covariance matrix Σj . When the amount of data available is small, such an
approach will not work very well because of overfitting. Overfitting refers to the situation
where the parameters learned on a small sample of the true generative model are not
reflective of this model because of the noisy variations within the data. Furthermore, as in
k-means algorithms, the EM-algorithm can converge to a local optimum.

At the other extreme end, one can pick a spherical Gaussian where each component of
the mixture has an identical radius, and also fix the a priori generative probability αi to 1/k.
In this case, the EM model will work quite effectively even on very small data sets, because
only a single parameter needs to be learned by the algorithm. However, if the different
clusters have different shapes, sizes, and orientations, the clustering will be poor even on a
large data set. The general rule of thumb is to tailor the model complexity to the available
data size. Larger data sets allow more complex models. In some cases, an analyst may have
domain knowledge about the distribution of data points in clusters. In these scenarios, the
best option is to select the mixture components on the basis of this domain knowledge.

178 CHAPTER 6. CLUSTER ANALYSIS

Figure 6.11: Clusters of arbitrary shape and grid partitions of different granularity

6.6 Grid-Based and Density-Based Algorithms

One of the major problems with distance-based and probabilistic methods is that the shape
of the underlying clusters is already defined implicitly by the underlying distance function
or probability distribution. For example, a k-means algorithm implicitly assumes a spherical
shape for the cluster. Similarly, an EM algorithm with the generalized Gaussian assumes
elliptical clusters. In practice, the clusters may be hard to model with a prototypical shape
implied by a distance function or probability distribution. To understand this point, consider
the clusters illustrated in Fig. 6.11a. It is evident that there are two clusters of sinusoidal
shape in the data. However, virtually any choice of representatives in a k-means algorithm
will result in the representatives of one of the clusters pulling away data points from the
other.

Density-based algorithms are very helpful in such scenarios. The core idea in such algo-
rithms is to first identify fine-grained dense regions in the data. These form the “build-
ing blocks” for constructing the arbitrarily-shaped clusters. These can also be considered
pseudo-data points that need to be re-clustered together carefully into groups of arbitrary
shape. Thus, most density-based methods can be considered two-level hierarchical algo-
rithms. Because there are a fewer building blocks in the second phase, as compared to the
number of data points in the first phase, it is possible to organize them together into com-
plex shapes using more detailed analysis. This detailed analysis (or postprocessing) phase
is conceptually similar to a single-linkage agglomerative algorithm, which is usually better

6.6. GRID-BASED AND DENSITY-BASED ALGORITHMS 179

tailored to determining arbitrarily-shaped clusters from a small number of (pseudo)-data
points. Many variations of this broader principle exist, depending on the particular type of
building blocks that are chosen. For example, in grid-based methods, the fine-grained clus-
ters are grid-like regions in the data space. When pre-selected data points in dense regions
are clustered with a single-linkage method, the approach is referred to as DBSCAN. Other
more sophisticated density-based methods, such as DENCLUE, use gradient ascent on the
kernel-density estimates to create the building blocks.

6.6.1 Grid-Based Methods

In this technique, the data is discretized into p intervals that are typically equi-width inter-
vals. Other variations such as equi-depth intervals are possible, though they are often not
used in order to retain the intuitive notion of density. For a d-dimensional data set, this
leads to a total of pd hyper-cubes in the underlying data. Examples of grids of different
granularity with p = 3, 25, and 80 are illustrated in Figures 6.11b, c, and d, respectively.
The resulting hyper-cubes (rectangles in Fig. 6.11) are the building blocks in terms of which
the clustering is defined. A density threshold τ is used to determine the subset of the pd

hyper-cubes that are dense. In most real data sets, an arbitrarily shaped cluster will result
in multiple dense regions that are connected together by a side or at least a corner. There-
fore, two grid regions are said to be adjacently connected, if they share a side in common.
A weaker version of this definition considers two regions to be adjacently connected if they
share a corner in common. Many grid-clustering algorithms use the strong definition of
adjacent connectivity, where a side is used instead of a corner. In general, for data points
in k-dimensional space, two k-dimensional cubes may be defined as adjacent, if they have
share a surface of dimensionality at least r, for some user-defined parameter r < k.

This directly adjacent connectivity can be generalized to indirect density connectivity
between grid regions that are not immediately adjacent to one another. Two grid regions
are density connected, if a path can be found from one grid to the other containing only
a sequence of adjacently connected grid regions. The goal of grid-based clustering is to
determine the connected regions created by such grid cells. It is easy to determine such
connected grid regions by using a graph-based model on the grids. Each dense grid node is
associated with a node in the graph, and each edge represents adjacent connectivity. The
connected components in the graph may be determined by using breadth-first or depth-first
traversal on the graph, starting from nodes in different components. The data points in these
connected components are reported as the final clusters. An example of the construction of
the clusters of arbitrary shape from the building blocks is illustrated in Fig. 6.13. Note that
the corners of the clusters found are artificially rectangular, which is one of the limitations
of grid-based methods. The generic pseudocode for the grid-based approach is discussed in
Fig. 6.12.

One desirable property of grid-based (and most other density-based) algorithms is that
the number of data clusters is not pre-defined in advance, as in k-means algorithms. Rather,
the goal is to return the natural clusters in the data together with their corresponding
shapes. On the other hand, two different parameters need to be defined corresponding
to the number of grid ranges p and the density threshold τ . The correct choice of these
parameters is often difficult and semantically un-intuitive to guess. An inaccurate choice
can lead to unintended consequences:

1. When the number of grid ranges selected is too small, as in Fig. 6.11b, the data points
from multiple clusters will be present in the same grid region. This will result in the

180 CHAPTER 6. CLUSTER ANALYSIS

Algorithm GenericGrid(Data: D, Ranges: p, Density: τ)
begin
Discretize each dimension of data D into p ranges;
Determine dense grid cells at density level τ ;
Create graph in which dense grids are connected if they are adjacent;
Determine connected components of graph;
return points in each connected component as a cluster;

end

Figure 6.12: Generic grid-based algorithm

(a) Data points and grid (b) Agglomerating adjacent grids

Figure 6.13: Agglomerating adjacent grids

undesirable merging of clusters. When the number of grid ranges selected is too large,
as in Fig. 6.11d, this will result in many empty grid cells even within the clusters. As
a result, natural clusters in the data may be disconnected by the algorithm. A larger
number of grid ranges also leads to computational challenges because of the increasing
number of grid cells.

2. The choice of the density threshold has a similar effect on the clustering. For example,
when the density threshold τ is too low, all clusters, including the ambient noise, will
be merged into a single large cluster. On the other hand, an unnecessarily high density
can partially or entirely miss a cluster.

The two drawbacks discussed above are serious ones, especially when there are significant
variations in the cluster size and density over different local regions.

Practical Issues

Grid-based methods do not require the specification of the number of clusters, and also
do not assume any specific shape for the clusters. However, this comes at the expense of
having to specify a density parameter τ , which is not always intuitive from an analytical
perspective. The choice of grid resolution is also challenging because it is not clear how it
can be related to the density τ . As will be evident later, this is much easier with DBSCAN,

6.6. GRID-BASED AND DENSITY-BASED ALGORITHMS 181

Figure 6.14: Impact of local distributions on density-based methods

where the resolution of the density-based approach is more easily related to the specified
density threshold.

A major challenge with many density-based methods, including grid-based methods, is
that they use a single density parameter τ globally. However, the clusters in the underlying
data may have varying density, as illustrated in Fig. 6.14. In this particular case, if the
density threshold is selected to be too high, then cluster C may be missed. On the other
hand, if the density threshold is selected to be too low, then clusters A and B may be merged
artificially. In such cases, distance-based algorithms, such as k-means, may be more effective
than a density-based approach. This problem is not specific to the grid-based method but
is generally encountered by all density-based methods.

The use of rectangular grid regions is an approximation of this class of methods. This
approximation degrades with increasing dimensionality because high-dimensional rectan-
gular regions are poor approximations of the underlying clusters. Furthermore, grid-based
methods become computationally infeasible in high dimensions because the number of grid
cells increase exponentially with the underlying data dimensionality.

6.6.2 DBSCAN

The DBSCAN approach works on a very similar principle as grid-based methods. However,
unlike grid-based methods, the density characteristics of data points are used to merge them
into clusters. Therefore, the individual data points in dense regions are used as building
blocks after classifying them on the basis of their density.

The density of a data point is defined by the number of points that lie within a radius
Eps of that point (including the point itself). The densities of these spherical regions are
used to classify the data points into core, border, or noise points. These notions are defined
as follows:

1. Core point: A data point is defined as a core point, if it contains4 at least τ data
points.

2. Border point: A data point is defined as a border point, if it contains less than τ points,
but it also contains at least one core point within a radius Eps.

4The parameter MinPts is used in the original DBSCAN description. However, the notation τ is used
here to retain consistency with the grid-clustering description.

182 CHAPTER 6. CLUSTER ANALYSIS

Algorithm DBSCAN(Data: D, Radius: Eps, Density: τ)
begin
Determine core, border and noise points of D at level (Eps, τ);
Create graph in which core points are connected
if they are within Eps of one another;

Determine connected components in graph;
Assign each border point to connected component
with which it is best connected;

return points in each connected component as a cluster;
end

Figure 6.15: Basic DBSCAN algorithm

3. Noise point: A data point that is neither a core point nor a border point is defined as
a noise point.

Examples of core points, border points, and noise points are illustrated in Fig. 6.16 for
τ = 10. The data point A is a core point because it contains 10 data points within the
illustrated radius Eps. On the other hand, data point B contains only 6 points within a
radius of Eps, but it contains the core point A. Therefore, it is a border point. The data
point C is a noise point because it contains only 4 points within a radius of Eps, and it
does not contain any core point.

After the core, border, and noise points have been determined, the DBSCAN clustering
algorithm proceeds as follows. First, a connectivity graph is constructed with respect to the
core points, in which each node corresponds to a core point, and an edge is added between
a pair of core points, if and only if they are within a distance of Eps from one another. Note
that the graph is constructed on the data points rather than on partitioned regions, as in
grid-based algorithms. All connected components of this graph are identified. These corre-
spond to the clusters constructed on the core points. The border points are then assigned to
the cluster with which they have the highest level of connectivity. The resulting groups are
reported as clusters and noise points are reported as outliers. The basic DBSCAN algorithm
is illustrated in Fig. 6.15. It is noteworthy that the first step of graph-based clustering is
identical to a single-linkage agglomerative clustering algorithm with termination-criterion
of Eps-distance, which is applied only to the core points. Therefore, the DBSCAN algorithm
may be viewed as an enhancement of single-linkage agglomerative clustering algorithms by
treating marginal (border) and noisy points specially. This special treatment can reduce the
outlier-sensitive chaining characteristics of single-linkage algorithms without losing the abil-
ity to create clusters of arbitrary shape. For example, in the pathological case of Fig. 6.9(b),
the bridge of noisy data points will not be used in the agglomerative process if Eps and τ
are selected appropriately. In such cases, DBSCAN will discover the correct clusters in spite
of the noise in the data.

Practical Issues

The DBSCAN approach is very similar to grid-based methods, except that it uses circular
regions as building blocks. The use of circular regions generally provides a smoother contour
to the discovered clusters. Nevertheless, at more detailed levels of granularity, the two
methods will tend to become similar. The strengths and weaknesses of DBSCAN are also

6.6. GRID-BASED AND DENSITY-BASED ALGORITHMS 183

Figure 6.16: Examples of core, border, and noise points

similar to those of grid-based methods. The DBSCAN method can discover clusters of
arbitrary shape, and it does not require the number of clusters as an input parameter. As in
the case of grid-based methods, it is susceptible to variations in the local cluster density. For
example, in Figs. 6.4b and 6.14, DBSCAN will either not discover the sparse cluster, or it
might merge the two dense clusters. In such cases, algorithms such as Mahalanobis k-means
are more effective because of their ability to normalize the distances with local density. On
the other hand, DBSCAN will be able to effectively discover the clusters of Fig. 6.4a, which
is not possible with the Mahalanobis k-means method.

The major time complexity of DBSCAN is in finding the neighbors of the different
data points within a distance of Eps. For a database of size n, the time complexity can be
O(n2) in the worst case. However, for some special cases, the use of a spatial index for finding
the nearest neighbors can reduce this to approximately O(n · log(n)) distance computations.
The O(log(n)) query performance is realized only for low-dimensional data, in which nearest
neighbor indexes work well. In general, grid-based methods are more efficient because they
partition the space, rather than opting for the more computationally intensive approach of
finding the nearest neighbors.

The parameters τ and Eps are related to one another in an intuitive way, which is
useful for parameter setting. In particular, after the value of τ has been set by the user,
the value of Eps can be determined in a data-driven way. The idea is to use a value of Eps
that can capture most of the data points in clusters as core points. This can be achieved
as follows. For each data point, its τ -nearest neighbor distance is determined. Typically,
the vast majority of the data points inside clusters will have a small value of the τ -nearest
neighbor distance. However, the value of the τ -nearest neighbor often increases suddenly
for a small number of noisy points (or points at the fringes of clusters). Therefore, the key
is to identify the tail of the distribution of τ -nearest neighbor distances. Statistical tests,
such as the Z-value test, can be used in order to determine the value of Eps at which the
τ -nearest neighbor distance starts increasing abruptly. This value of the τ -nearest neighbor
distance at this cutoff point provides a suitable value of Eps.

184 CHAPTER 6. CLUSTER ANALYSIS

Algorithm DENCLUE(Data: D, Density: τ)
begin
Determine density attractor of each data point in D with

gradient-ascent of Equation 6.20;
Create clusters of data points that converge to the same

density attractor;
Discard clusters whose density attractors have density less

than τ and report as outliers;
Merge clusters whose density attractors are connected with

a path of density at least τ ;
return points in each cluster;

end

Figure 6.17: Basic DENCLUE algorithm

6.6.3 DENCLUE

The DENCLUE algorithm is based on firm statistical foundations that are rooted in kernel-
density estimation. Kernel-density estimation can be used to create a smooth profile of
the density distribution. In kernel-density estimation, the density f(X) at coordinate X is
defined as a sum of the influence (kernel) functions K(·) over the n different data points in
the database D:

f(X) =
1
n

n∑
i=1

K(X −Xi). (6.18)

A wide variety of kernel functions may be used, and a common choice is the Gaussian kernel.
For a d-dimensional data set, the Gaussian kernel is defined as follows:

K(X −Xi) =
(

1
h
√
2π

)d

e−
||X−Xi||2

2·h2 . (6.19)

The term ||X − Xi|| represents the Euclidean distance between these d-dimensional data
points. Intuitively, the effect of kernel-density estimation is to replace each discrete data
point with a smooth “bump,” and the density at a point is the sum of these “bumps.”
This results in a smooth profile of the data in which the random artifacts of the data
are suppressed, and a smooth estimate of the density is obtained. Here, h represents the
bandwidth of the estimation that regulates the smoothness of the estimation. Large values
of the bandwidth h smooth out the noisy artifacts but may also lose some detail about the
distribution. In practice, the value of h is chosen heuristically in a data-driven manner. An
example of a kernel-density estimate in a data set with three natural clusters is illustrated
in Fig. 6.18.

The goal is to determine clusters by using a density threshold τ that intersects this
smooth density profile. Examples are illustrated in Figs. 6.18 and 6.19. The data points
that lie in each (arbitrarily shaped) connected contour of this intersection will belong to the
corresponding cluster. Some of the border data points of a cluster that lie just outside this
contour may also be included because of the way in which data points are associated with
clusters with the use of a hill-climbing approach. The choice of the density threshold will
impact the number of clusters in the data. For example, in Fig. 6.18, a low-density threshold
is used, and therefore two distinct clusters are merged. As a result, the approach will report

6.6. GRID-BASED AND DENSITY-BASED ALGORITHMS 185

Figure 6.18: Density-based profile with
lower density threshold

Figure 6.19: Density-based profile with
higher density threshold

only two clusters. In Fig. 6.19, a higher density threshold is used, and therefore the approach
will report three clusters. Note that, if the density threshold is increased further, one or
more of the clusters will be completely missed. Such a cluster, whose peak density is lower
than the user-specified threshold, is considered a noise cluster, and not reported by the
DENCLUE algorithm.

The DENCLUE algorithm uses the notion of density attractors to partition data points
into clusters. The idea is to treat each local peak of the density distribution as a density
attractor, and associate each data point with its relevant peak by hill climbing toward its
relevant peak. The different peaks that are connected by a path of density at least τ are
then merged. For example, in each of Figs. 6.18 and 6.19, there are three density attractors.
However, for the density threshold of Fig 6.18, only two clusters will be discovered because
of the merging of a pair of peaks.

The DENCLUE algorithm uses an iterative gradient ascent approach in which each data
point X ∈ D is iteratively updated by using the gradient of the density profile with respect
to X. Let X(t) be the updated value of X in the tth iteration. The value of X(t) is updated
as follows:

X(t+1) = X(t) + α∇f(X(t)). (6.20)

Here, ∇f(X(t)) denotes the d-dimensional vector of partial derivatives of the kernel density
with respect to each coordinate, and α is the step size. The data points are continually
updated using the aforementioned rule, until they converge to a local optimum, which will
always be one of the density attractors. Therefore, multiple data points may converge to the
same density attractor. This creates an implicit clustering of the points, corresponding to
the different density attractors (or local peaks). The density at each attractor is computed
according to Eq. 6.18. Those attractors whose density does not meet the user-specified
threshold τ are excluded because they are deemed to be small “noise” clusters. Furthermore,
any pair of clusters whose density attractors are connected to each other by a path of density
at least τ will be merged. This step addresses the merging of multiple density peaks, as
illustrated in Fig. 6.18, and is analogous to the postprocessing step used in grid-based
methods and DBSCAN. The overall DENCLUE algorithm is illustrated in Fig. 6.17.

186 CHAPTER 6. CLUSTER ANALYSIS

One advantage of kernel-density estimation is that the gradient values ∇f(X) can be
computed easily using the gradient of the constituent kernel-density values:

∇f(X) =
1
n

n∑
i=1

∇K(X −Xi). (6.21)

The precise value of the gradient will depend on the choice of kernel function, though the
differences across different choices are often not significant when the number of data points
is large. In the particular case of the Gaussian kernel, the gradient can be shown to take on
the following special form because of the presence of the negative squared distance in the
exponent:

∇K(X −Xi) ∝ (Xi −X)K(X −Xi). (6.22)

This is because the derivative of an exponential function is itself, and the gradient of the
negative squared distance is proportional to (Xi − X). The gradient of the kernel is the
product of these two terms. Note that the constant of proportionality in Eq. 6.22 is irrelevant
because it is indirectly included in the step size α of the gradient-ascent method.

A different way of determining the local optimum is by setting the gradient ∇f(X) to 0
as the optimization condition for f(X), and solving the resulting system of equations using
an iterative method, but using different starting points corresponding to the various data
points. For example, by setting the gradient in Eq. 6.21 for the Gaussian kernel to 0, we
obtain the following by substituting Eq. 6.22 in Eq. 6.21:

n∑
i=1

XK(X −Xi) =
n∑

i=1

XiK(X −Xi). (6.23)

This is a nonlinear system of equations in terms of the d coordinates of X and it will have
multiple solutions corresponding to different density peaks (or local optima). Such systems
of equations can be solved numerically using iterative update methods and the choice of the
starting point will yield different peaks. When a particular data point is used as the starting
point in the iterations, it will always reach its density attractor. Therefore, one obtains the
following modified update rule instead of the gradient ascent method:

X(t+1) =
∑n

i=1 XiK(X(t) −Xi)∑n
i=1 K(X(t) −Xi)

. (6.24)

This update rule replaces Eq. 6.20 and has a much faster rate of convergence. Interestingly,
this update rule is widely known as the mean-shift method. Thus, there are interesting con-
nections between DENCLUE and the mean-shift method. The bibliographic notes contain
pointers to this optimized method and the mean-shift method.

The approach requires the computation of the density at each data point, which is O(n).
Therefore, the overall computational complexity is O(n2). This computational complexity
can be reduced by observing that the density of a data point is mostly influenced only by
its neighboring data points, and that the influence of distant data points is relatively small
for exponential kernels such as the Gaussian kernel. In such cases, the data is discretized
into grids, and the density of a point is computed only on the basis of the data points inside
its grid and immediately neighboring grids. Because the grids can be efficiently accessed
with the use of an index structure, this implementation is more efficient. Interestingly, the
clustering of the DBSCAN method can be shown to be a special case of DENCLUE by using
a binary kernel function that takes on the value of 1 within a radius of Eps of a point, and
0 otherwise.

6.7. GRAPH-BASED ALGORITHMS 187

Practical Issues

The DENCLUE method can be more effective than other density-based methods, when
the number of data points is relatively small, and, therefore, a smooth estimate provides a
more accurate understanding of the density distribution. DENCLUE is also able to handle
data points at the borders of clusters in a more elegant way by using density attractors to
attract relevant data points from the fringes of the cluster, even if they have density less
than τ . Small groups of noisy data points will be appropriately discarded if their density
attractor does not meet the user-specified density threshold τ . The approach also shares
many advantages of other density-based algorithms. For example, the approach is able to
discover arbitrarily shaped clusters, and it does not require the specification of the number
of clusters. On the other hand, as in all density-based methods, it requires the specification
of density threshold τ , which is difficult to determine in many real applications. As discussed
earlier in the context of Fig. 6.14, local variations of density can be a significant challenge
for any density-based algorithm. However, by varying the density threshold τ , it is possible
to create a hierarchical dendrogram of clusters. For example, the two different values of τ
in Figs. 6.18 and 6.19 will create a natural hierarchical arrangement of the clusters.

6.7 Graph-Based Algorithms

Graph-based methods provide a general meta-framework, in which data of virtually any
type can be clustered. As discussed in Chap. 2, data of virtually any type can be converted
to similarity graphs for analysis. This transformation is the key that allows the implicit
clustering of any data type by performing the clustering on the corresponding transformed
graph.

This transformation will be revisited in the following discussion. The notion of pairwise
similarity is defined with the use of a neighborhood graph. Consider a set of data objects
O = {O1 . . . On}, on which a neighborhood graph can be defined. Note that these objects
can be of any type, such as time series or discrete sequences. The main constraint is that it
should be possible to define a distance function on these objects. The neighborhood graph
is constructed as follows:

1. A single node is defined for each object in O. This is defined by the node set N ,
containing n nodes, where the node i corresponds to the object Oi.

2. An edge exists between Oi and Oj , if the distance d(Oi, Oj) is less than a particular
threshold ε. A better approach is to compute the k-nearest neighbors of both Oi and
Oj , and add an edge when either one is a k-nearest neighbor of the other. The weight
wij of the edge (i, j) is equal to a kernelized function of the distance between the
objects Oi and Oj , so that larger weights indicate greater similarity. An example is
the heat kernel, which is defined in terms of a parameter t:

wij = e−d(Oi,Oj)
2/t2 . (6.25)

For multidimensional data, the Euclidean distance is typically used to instantiate
d(Oi, Oj).

3. (Optional step) This step can be helpful for reducing the impact of local density vari-
ations such as those discussed in Fig. 6.14. Note that the quantity deg(i) =

∑n
r=1 wir

can be viewed as a proxy for the local kernel-density estimate near object Oi. Each

188 CHAPTER 6. CLUSTER ANALYSIS

Algorithm GraphMetaFramework(Data: D)
begin
Construct the neighborhood graph G on D;
Determine clusters (communities) on the nodes in G;
return clusters corresponding to the node partitions;

end

Figure 6.20: Generic graph-based meta-algorithm

edge weight wij is normalized by dividing it with
√

deg(i) · deg(j). Such an approach
ensures that the clustering is performed after normalization of the similarity values
with local densities. This step is not essential when algorithms such as normalized
spectral clustering are used for finally clustering nodes in the neighborhood graph.
This is because spectral clustering methods perform a similar normalization under
the covers.

After the neighborhood graph has been constructed, any network clustering or community
detection algorithm (cf. Sect. 19.3 of Chap. 19) can be used to cluster the nodes in the
neighborhood graph. The clusters on the nodes can be used to map back to clusters on
the original data objects. The spectral clustering method, which is a specific instantiation
of the final node clustering step, is discussed in some detail below. However, the graph-
based approach should be treated as a generic meta-algorithm that can use any community
detection algorithm in the final node clustering step. The overall meta-algorithm for graph-
based clustering is provided in Fig. 6.20.

Let G = (N,A) be the undirected graph with node set N and edge set A, which is
created by the aforementioned neighborhood-based transformation. A symmetric n × n
weight matrix W defines the corresponding node similarities, based on the specific choice of
neighborhood transformation, as in Eq. 6.25. All entries in this matrix are assumed to be
non-negative, and higher values indicate greater similarity. If an edge does not exist between
a pair of nodes, then the corresponding entry is assumed to be 0. It is desired to embed
the nodes of this graph into a k-dimensional space, so that the similarity structure of the
data is approximately preserved for the clustering process. This embedding is then used for
a second phase of clustering.

First, let us discuss the much simpler problem of mapping the nodes into a 1-dimensional
space. The generalization to the k-dimensional case is relatively straightforward. We would
like to map the nodes in N into a set of 1-dimensional real values y1 . . . yn on a line, so
that the distances between these points reflect the connectivity among the nodes. It is
undesirable for nodes that are connected with high-weight edges to be mapped onto distant
points on this line. Therefore, we would like to determine values of yi that minimize the
following objective function O:

O =
n∑

i=1

n∑
j=1

wij · (yi − yj)2. (6.26)

This objective function penalizes the distances between yi and yj with weight proportional
to wij . Therefore, when wij is very large (more similar nodes), the data points yi and yj will
be more likely to be closer to one another in the embedded space. The objective function
O can be rewritten in terms of the Laplacian matrix L of the weight matrix W = [wij].

6.7. GRAPH-BASED ALGORITHMS 189

The Laplacian matrix L is defined as Λ − W , where Λ is a diagonal matrix satisfying
Λii =

∑n
j=1 wij . Let the n-dimensional column vector of embedded values be denoted by

y = (y1 . . . yn)T . It can be shown after some algebraic simplification that the objective
function O can be rewritten in terms of the Laplacian matrix:

O = 2yTLy. (6.27)

The Laplacian matrix L is positive semi-definite with non-negative eigenvalues because
the sum-of-squares objective function O is always non-negative. We need to incorporate a
scaling constraint to ensure that the trivial value of yi = 0 for all i is not selected by the
optimization solution. A possible scaling constraint is as follows:

yTΛy = 1. (6.28)

The presence of Λ in the constraint ensures better local normalization of the embedding. It
can be shown using constrained optimization techniques, that the optimal solution for y that
minimizes the objective function O is equal to the smallest eigenvector of Λ−1L, satisfying
the relationship Λ−1Ly = λy. Here, λ is an eigenvalue. However, the smallest eigenvalue
of Λ−1L is always 0, and it corresponds to the trivial solution where y is proportional to
the vector containing only 1s. This trivial eigenvector is non-informative because it embeds
every node to the same point on the line. Therefore, it can be discarded, and it is not used
in the analysis. The second-smallest eigenvector then provides an optimal solution that is
more informative.

This optimization formulation and the corresponding solution can be generalized to find-
ing an optimal k-dimensional embedding. This is achieved by determining eigenvectors of
Λ−1L with successively increasing eigenvalues. After discarding the first trivial eigenvec-
tor e1 with eigenvalue λ1 = 0, this results in a set of k eigenvectors e2, e3 . . . ek+1, with
corresponding eigenvalues λ2 ≤ λ3 ≤ . . . ≤ λk+1. Each eigenvector is an n-dimensional
vector and is scaled to unit norm. The ith component of the jth eigenvector represents the
jth coordinate of the ith data point. Because a total of k eigenvectors were selected, this
approach creates an n × k matrix, corresponding to a new k-dimensional representation
of each of the n data points. A k-means clustering algorithm can then be applied to the
transformed representation.

Why is the transformed representation more suitable for an off-the-shelf k-means algo-
rithm than the original data? It is important to note that the spherical clusters naturally
found by the Euclidean-based k-means in the new embedded space may correspond to arbi-
trarily shaped clusters in the original space. As discussed in the next section, this behavior is
a direct result of the way in which the similarity graph and objective function O are defined.
This is also one of the main advantages of using a transformation to similarity graphs. For
example, if the approach is applied to the arbitrarily shaped clusters in Fig. 6.11, the simi-
larity graph will be such that a k-means algorithm on the transformed data (or a community
detection algorithm on the similarity graph) will typically result in the correct arbitrarily-
shaped clusters in the original space. Many variations of the spectral approach are discussed
in detail in Sect. 19.3.4 of Chap. 19.

6.7.1 Properties of Graph-Based Algorithms

One interesting property of graph-based algorithms is that clusters of arbitrary shape can
be discovered with the approach. This is because the neighborhood graph encodes the rele-
vant local distances (or k-nearest neighbors), and therefore the communities in the induced

190 CHAPTER 6. CLUSTER ANALYSIS

CLUSTER A

THE TWO DENSELY

CLUSTER A
(ARBITRARY SHAPE)

CONNECTED
COMMUNITIES OF
THE k NEAREST
NEIGHBOR GRAPH

CLUSTER B

CLUSTER C (SPARSE)

THE THREE DENSELY
CONNECTED

COMMUNITIES OF
THE k NEAREST

C S (S)

THE k NEAREST
NEIGHBOR GRAPH

CLUSTER D (DENSE)
CLUSTER E (DENSE)

(a) Varying cluster shape (b) Varying cluster density

Figure 6.21: The merits of the k-nearest neighbor graph for handling clusters of varying
shape and density

neighborhood graph are implicitly determined by agglomerating locally dense regions. As
discussed in the previous section on density-based clustering, the agglomeration of locally
dense regions corresponds to arbitrarily shaped clusters. For example, in Fig. 6.21a, the
data points in the arbitrarily shaped cluster A will be densely connected to one another in
the k-nearest neighbor graph, but they will not be significantly connected to data points in
cluster B. As a result, any community detection algorithm will be able to discover the two
clusters A and B on the graph representation.

Graph-based methods are also able to adjust much better to local variations in data
density (see Fig. 6.14) when they use the k-nearest neighbors to construct the neighborhood
graph rather than an absolute distance threshold. This is because the k-nearest neighbors
of a node are chosen on the basis of relative comparison of distances within the locality
of a data point whether they are large or small. For example, in Fig. 6.21b, even though
clusters D and E are closer to each other than any pair of data points in sparse cluster C,
all three clusters should be considered distinct clusters. Interestingly, a k-nearest neighbor
graph will not create too many cross-connections between these clusters for small values of
k. Therefore, all three clusters will be found by a community detection algorithm on the k-
nearest neighbor graph in spite of their varying density. Therefore, graph-based methods can
provide better results than algorithms such as DBSCAN because of their ability to adjust
to varying local density in addition to their ability to discover arbitrarily shaped clusters.
This desirable property of k-nearest neighbor graph algorithms is not restricted to the use of
spectral clustering methods in the final phase. Many other graph-based algorithms have also
been shown to discover arbitrarily shaped clusters in a locality-sensitive way. These desirable
properties are therefore embedded within the k-nearest neighbor graph representation and
are generalizable5 to other data mining problems such as outlier analysis. Note that the
locality-sensitivity of the shared nearest neighbor similarity function (cf. Sect. 3.2.1.8 of
Chap. 3) is also due to the same reason. The locality-sensitivity of many classical clustering
algorithms, such as k-medoids, bottom-up algorithms, and DBSCAN, can be improved by
incorporating graph-based similarity functions such as the shared nearest neighbor method.

On the other hand, high computational costs are the major drawback of graph-based
algorithms. It is often expensive to apply the approach to an n × n matrix of similari-
ties. Nevertheless, because similarity graphs are sparse, many recent community detection
methods can exploit this sparsity to provide more efficient solutions.

5See [257], which is a graph-based alternative to the LOF algorithm for locality-sensitive outlier analysis.

6.8. NON-NEGATIVE MATRIX FACTORIZATION 191

6.8 Non-negative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimensionality reduction method that is tai-
lored to clustering. In other words, it embeds the data into a latent space that makes it
more amenable to clustering. This approach is suitable for data matrices that are non-
negative and sparse. For example, the n × d document-term matrix in text applications
always contains non-negative entries. Furthermore, because most word frequencies are zero,
this matrix is also sparse.

Nonnegative matrix factorization creates a new basis system for data representation, as
in all dimensionality reduction methods. However, a distinguishing feature of NMF com-
pared to many other dimensionality reduction methods is that the basis system does not
necessarily contain orthonormal vectors. Furthermore, the basis system of vectors and the
coordinates of the data records in this system are non-negative. The non-negativity of the
representation is highly interpretable and well-suited for clustering. Therefore, non-negative
matrix factorization is one of the dimensionality reduction methods that serves the dual
purpose of enabling data clustering.

Consider the common use-case of NMF in the text domain, where the n×d data matrix
D is a document-term matrix. In other words, there are n documents defined on a lexicon
of size d. NMF transforms the data to a reduced k-dimensional basis system, in which
each basis vector is a topic. Each such basis vector is a vector of nonnegatively weighted
words that define that topic. Each document has a non-negative coordinate with respect
to each basis vector. Therefore, the cluster membership of a document may be determined
by examining the largest coordinate of the document along any of the k vectors. This
provides the “topic” to which the document is most related and therefore defines its cluster.
An alternative way of performing the clustering is to apply another clustering method
such as k-means on the transformed representation. Because the transformed representation
better discriminates between the clusters, the k-means approach will be more effective. The
expression of each document as an additive and non-negative combination of the underlying
topics also provides semantic interpretability to this representation. This is why the non-
negativity of matrix factorization is so desirable.

So how are the basis system and the coordinate system determined? The non-negative
matrix factorization method attempts to determine the matrices U and V that minimize
the following objective function:

J =
1
2
||D − UV T ||2. (6.29)

Here, || · ||2 represents the (squared) Frobenius norm, which is the sum of the squares of all
the elements in the matrix, U is an n×k non-negative matrix, and V is a d×k non-negative
matrix. The value of k is the dimensionality of the embedding. The matrix U provides the
new k-dimensional coordinates of the rows of D in the transformed basis system, and the
matrix V provides the basis vectors in terms of the original lexicon. Specifically, the rows
of U provide the k-dimensional coordinates for each of the n documents, and the columns
of V provide the k d-dimensional basis vectors.

What is the significance of the aforementioned optimization problem? Note that by
minimizing J , the goal is to factorize the document-term matrix D as follows:

D ≈ UV T . (6.30)

192 CHAPTER 6. CLUSTER ANALYSIS

Figure 6.22: An example of non-negative matrix factorization

For each row Xi of D (document vector), and each k-dimensional row Yi of U (transformed
document vector), the aforementioned equation can be rewritten as follows:

Xi ≈ YiV
T . (6.31)

This is exactly in the same form as any standard dimensionality reduction method, where the
columns of V provide the basis space and row-vector Yi represents the reduced coordinates.
In other words, the document vector Xi can be rewritten as an approximate (non-negative)
linear combination of the k basis vectors. The value of k is typically small compared to
the full dimensionality because the column vectors of V discover the latent structure in the
data. Furthermore, the non-negativity of the matrices U and V ensures that the documents
are expressed as a non-negative combination of the key concepts (or, clustered regions) in
the term-based feature space.

An example of NMF for a toy 6× 6 document-term matrix D is illustrated in Fig. 6.22.
The rows correspond to 6 documents {X1 . . . X6} and the 6 words correspond to columns.
The matrix entries correspond to word frequencies in the documents. The documents
{X1, X2, X3} are related to cats, the documents {X5, X6} are related to cars, and the
document X4 is related to both. Thus, there are two natural clusters in the data, and
the matrix is correspondingly factorized into two matrices U and V T with rank k = 2.
An approximately optimal factorization, with each entry rounded to the nearest integer,
is illustrated in Fig. 6.22. Note that most of the entries in the factorized matrices will not
be exactly 0 in a real-world example, but many of them might be close to 0, and almost
all will be non-integer values. It is evident that the columns and rows, respectively, of U
and V map to either the car or the cat cluster in the data. The 6 × 2 matrix U provides
information about the relationships of 6 documents to 2 clusters, whereas the 6× 2 matrix
V provides information about the corresponding relationships of 6 words to 2 clusters. Each
document can be assigned to the cluster for which it has the largest coordinate in U .

The rank-k matrix factorization UV T can be decomposed into k components by express-
ing the matrix product in terms of the k columns Ui and Vi, respectively, of U and V :

UV T =
k∑

i=1

Ui Vi
T
. (6.32)

Each n × d matrix Ui Vi
T

is rank-1 matrix, which corresponds to a latent component in
the data. Because of the interpretable nature of non-negative decomposition, it is easy

6.8. NON-NEGATIVE MATRIX FACTORIZATION 193

Figure 6.23: The interpretable matrix decomposition of NMF

to map these latent components to clusters. For example, the two latent components of
the aforementioned example corresponding to cats and cars, respectively, are illustrated in
Fig. 6.23.

It remains to be explained how the aforementioned optimization problem for J is solved.
The squared norm of any matrix Q can be expressed as the trace of the matrix QQT .
Therefore, the objective function J can be expressed as follows:

J =
1
2
tr
[
(D − UV T)(D − UV T)T

]
(6.33)

=
1
2
[
tr(DDT)− tr(DV UT)− tr(UV TDT) + tr(UV TV UT)

]
(6.34)

This is an optimization problem with respect to the matrices U = [uij] and V = [vij]. There-
fore, the matrix entries uij and vij are the optimization variables. In addition, the constraints
uij ≥ 0 and vij ≥ 0 ensure non-negativity. This is a typical constrained non-linear optimiza-
tion problem and can be solved using the Lagrangian relaxation, which relaxes these non-
negativity constraints and replaces them in the objective function with constraint-violation
penalties. The Lagrange parameters are the multipliers of these new penalty terms. Let
Pα = [αij]n×k and Pβ = [βij]d×k be matrices with the same dimensions as U and V , respec-
tively. The elements of the matrices Pα and Pβ are the corresponding Lagrange multipliers
for the non-negativity conditions on the different elements of U and V , respectively. Fur-
thermore, note that tr(PαU

T) is equal to
∑

i,j αijuij , and tr(PβV
T) is equal to

∑
i,j βijvij .

These correspond to the Lagrangian penalties for the non-negativity constraints on U and
V , respectively. Then, the augmented objective function with constraint penalties can be
expressed as follows:

L = J + tr(PαU
T) + tr(PβV

T). (6.35)

194 CHAPTER 6. CLUSTER ANALYSIS

To optimize this problem, the partial derivative of L with respect to U and V are computed
and set to 0. Matrix calculus on the trace-based objective function yields the following:

∂L

∂U
= −DV + UV TV + Pα = 0 (6.36)

∂L

∂V
= −DTU + V UTU + Pβ = 0 (6.37)

The aforementioned expressions provide twomatrices of constraints. The (i, j)th entry of the
above (two matrices of) conditions correspond to the partial derivatives of L with respect
to uij and vij , respectively. These constraints are multiplied by uij and vij , respectively. By
using the Kuhn-Tucker optimality conditions αijuij = 0 and βijvij = 0, the (i, j)th pair of
constraints can be written as follows:

(DV)ijuij − (UV TV)ijuij = 0 ∀i ∈ {1 . . . n},∀j ∈ {1 . . . k} (6.38)

(DTU)ijvij − (V UTU)ijvij = 0 ∀i ∈ {1 . . . d},∀j ∈ {1 . . . k} (6.39)

These conditions are independent of Pα and Pβ , and they provide a system of equations in
terms of the entries of U and V . Such systems of equations are often solved using iterative
methods. It can be shown that this particular system can be solved by using the following
multiplicative update rules for uij and vij , respectively:

uij =
(DV)ijuij

(UV TV)ij
∀i ∈ {1 . . . n},∀j ∈ {1 . . . k} (6.40)

vij =
(DTU)ijvij
(V UTU)ij

∀i ∈ {1 . . . d},∀j ∈ {1 . . . k} (6.41)

The entries of U and V are initialized to random values in (0, 1), and the iterations are
executed to convergence.

One interesting observation about the matrix factorization technique is that it can also
be used to determine word-clusters instead of document clusters. Just as the columns of V
provide a basis that can be used to discover document clusters, one can use the columns
of U to discover a basis that corresponds to word clusters. Thus, this approach provides
complementary insights into spaces where the dimensionality is very large.

6.8.1 Comparison with Singular Value Decomposition

Singular value decomposition (cf. Sect. 2.4.3.2 of Chap. 2) is a matrix factorization method.
SVD factorizes the data matrix into three matrices instead of two. Equation 2.12 of Chap. 2
is replicated here:

D ≈ QkΣkP
T
k . (6.42)

It is instructive to compare this factorization to that of Eq. 6.30 for non-negative matrix
factorization. The n × k matrix QkΣk is analogous to the n × k matrix U in non-negative
matrix factorization. The d × k matrix Pk is analogous to the d × k matrix V in matrix
factorization. Both representations minimize the squared-error of data representation. The
main differences between SVD and NMF arise from the different constraints in the corre-
sponding optimization formulations. SVD can be viewed as a matrix-factorization in which
the objective function is the same, but the optimization formulation imposes orthogonality
constraints on the basis vectors rather than non-negativity constraints. Many other kinds
of constraints can be used to design different forms of matrix factorization. Furthermore,

6.9. CLUSTER VALIDATION 195

one can change the objective function to be optimized. For example, PLSA (cf. Sect. 13.4
of Chap. 13) interprets the non-negative elements of the (scaled) matrix as probabilities
and maximizes the likelihood estimate of a generative model with respect to the observed
matrix elements. The different variations of matrix factorization provide different types of
utility in various applications:

1. The latent factors in NMF are more easily interpretable for clustering applications,
because of non-negativity. For example, in application domains such as text clustering,
each of the k columns in U and V can be associated with document clusters and word
clusters, respectively. The magnitudes of the non-negative (transformed) coordinates
reflect which concepts are strongly expressed in a document. This “additive parts”
representation of NMF is highly interpretable, especially in domains such as text, in
which the features have semantic meaning. This is not possible with SVD in which
transformed coordinate values and basis vector components may be negative. This
is also the reason that NMF transformations are more useful than those of SVD
for clustering. Similarly, the probabilistic forms of non-negative matrix factorization,
such as PLSA, are also used commonly for clustering. It is instructive to compare the
example of Fig. 6.22, with the SVD of the same matrix at the end of Sect. 2.4.3.2 in
Chap. 2. Note that the NMF factorization is more easily interpretable.

2. Unlike SVD, the k latent factors of NMF are not orthogonal to one another. This
is a disadvantage of NMF because orthogonality of the axis-system allows intuitive
interpretations of the data transformation as an axis-rotation. It is easy to project
out-of-sample data points (i.e., data points not included in D) on an orthonormal
basis system. Furthermore, distance computations between transformed data points
are more meaningful in SVD.

3. The addition of a constraint, such as non-negativity, to any optimization problem usu-
ally reduces the quality of the solution found. However, the addition of orthogonality
constraints, as in SVD, do not affect the theoretical global optimum of the uncon-
strained matrix factorization formulation (see Exercise 13). Therefore, SVD provides
better rank-k approximations than NMF. Furthermore, it is much easier in practice
to determine the global optimum of SVD, as compared to unconstrained matrix fac-
torization for matrices that are completely specified. Thus, SVD provides one of the
alternate global optima of unconstrained matrix factorization, which is computation-
ally easy to determine.

4. SVD is generally hard to implement for incomplete data matrices as compared to
many other variations of matrix factorization. This is relevant in recommender sys-
tems where rating matrices are incomplete. The use of latent factor models for rec-
ommendations is discussed in Sect. 18.5.5 of Chap. 18.

Thus, SVD and NMF have different advantages and disadvantages and may be more suitable
for different applications.

6.9 Cluster Validation

After a clustering of the data has been determined, it is important to evaluate its quality.
This problem is referred to as cluster validation. Cluster validation is often difficult in real
data sets because the problem is defined in an unsupervised way. Therefore, no external

196 CHAPTER 6. CLUSTER ANALYSIS

validation criteria may be available to evaluate a clustering. Thus, a number of internal
criteria may be defined to validate the quality of a clustering. The major problem with
internal criteria is that they may be biased toward one algorithm or the other, depending
on how they are defined. In some cases, external validation criteria may be available when
a test data set is synthetically generated, and therefore the true (ground-truth) clusters are
known. Alternatively, for real data sets, the class labels, if available, may be used as proxies
for the cluster identifiers. In such cases, the evaluation is more effective. Such criteria are
referred to as external validation criteria.

6.9.1 Internal Validation Criteria

Internal validation criteria are used when no external criteria are available to evaluate the
quality of a clustering. In most cases, the criteria used to validate the quality of the algorithm
are borrowed directly from the objective function, which is optimized by a particular clus-
tering model. For example, virtually any of the objective functions in the k-representatives,
EM algorithms, and agglomerative methods could be used for validation purposes. The
problem with the use of these criteria is obvious in comparing algorithms with disparate
methodologies. A validation criterion will always favor a clustering algorithm that uses a
similar kind of objective function for its optimization. Nevertheless, in the absence of exter-
nal validation criteria, this is the best that one can hope to achieve. Such criteria can also
be effective in comparing two algorithms using the same broad approach. The commonly
used internal evaluation criteria are as follows:

1. Sum of square distances to centroids: In this case, the centroids of the different clusters
are determined, and the sum of squared (SSQ) distances are reported as the corre-
sponding objective function. Smaller values of this measure are indicative of better
cluster quality. This measure is obviously more optimized to distance-based algo-
rithms, such as k-means, as opposed to a density-based method, such as DBSCAN.
Another problem with SSQ is that the absolute distances provide no meaningful infor-
mation to the user about the quality of the underlying clusters.

2. Intracluster to intercluster distance ratio: This measure is more detailed than the SSQ
measure. The idea is to sample r pairs of data points from the underlying data. Of
these, let P be the set of pairs that belong to the same cluster found by the algorithm.
The remaining pairs are denoted by set Q. The average intercluster distance and
intracluster distance are defined as follows:

Intra =
∑

(Xi,Xj)∈P

dist(Xi, Xj)/|P | (6.43)

Inter =
∑

(Xi,Xj)∈Q

dist(Xi, Xj)/|Q|. (6.44)

Then the ratio of the average intracluster distance to the intercluster distance is given
by Intra/Inter. Small values of this measure indicate better clustering behavior.

3. Silhouette coefficient: Let Davgini be the average distance of Xi to data points within
the cluster of Xi. The average distance of data point Xi to the points in each cluster
(other than its own) is also computed. Let Dminout

i represent the minimum of these

6.9. CLUSTER VALIDATION 197

(average) distances, over the other clusters. Then, the silhouette coefficient Si specific
to the ith object, is as follows:

Si =
Dminout

i −Davgini
max{Dminout

i , Davgini } . (6.45)

The overall silhouette coefficient is the average of the data point-specific coefficients.
The silhouette coefficient will be drawn from the range (−1, 1). Large positive values
indicate highly separated clustering, and negative values are indicative of some level
of “mixing” of data points from different clusters. This is because Dminout

i will be
less than Davgini only in cases where data point Xi is closer to at least one other
cluster than its own cluster. One advantage of this coefficient is that the absolute
values provide a good intuitive feel of the quality of the clustering.

4. Probabilistic measure: In this case, the goal is to use a mixture model to estimate
the quality of a particular clustering. The centroid of each mixture component is
assumed to be the centroid of each discovered cluster, and the other parameters of
each component (such as the covariance matrix) are computed from the discovered
clustering using a method similar to the M-step of EM algorithms. The overall log-
likelihood of the measure is reported. Such a measure is useful when it is known
from domain-specific knowledge that the clusters ought to have a specific shape, as is
suggested by the distribution of each component in the mixture.

The major problem with internal measures is that they are heavily biased toward particular
clustering algorithms. For example, a distance-based measure, such as the silhouette coeffi-
cient, will not work well for clusters of arbitrary shape. Consider the case of the clustering
in Fig. 6.11. In this case, some of the point-specific coefficients might have a negative value
for the correct clustering. Even the overall silhouette coefficient for the correct clustering
might not be as high as an incorrect k-means clustering, which mixes points from different
clusters. This is because the clusters in Fig. 6.11 are of arbitrary shape that do not conform
to the quality metrics of distance-based measures. On the other hand, if a density-based
criterion were designed, it would also be biased toward density-based algorithms. The major
problem in relative comparison of different methodologies with internal criteria is that all
criteria attempt to define a “prototype” model for goodness. The quality measure very often
only tells us how well the prototype validation model matches the model used for discovering
clusters, rather than anything intrinsic about the underlying clustering. This can be viewed
as a form of overfitting, which significantly affects such evaluations. At the very least, this
phenomenon creates uncertainty about the reliability of the evaluation, which defeats the
purpose of evaluation in the first place. This problem is fundamental to the unsupervised
nature of data clustering, and there are no completely satisfactory solutions to this issue.

Internal validation measures do have utility in some practical scenarios. For example,
they can be used to compare clusterings by a similar class of algorithms, or different runs
of the same algorithm. Finally, these measures are also sensitive to the number of clusters
found by the algorithm. For example, two different clusterings cannot be compared on
a particular criterion when the number of clusters determined by different algorithms is
different. A fine-grained clustering will typically be associated with superior values of many
internal qualitative measures. Therefore, these measures should be used with great caution,
because of their tendency to favor specific algorithms, or different settings of the same
algorithm. Keep in mind that clustering is an unsupervised problem, which, by definition,
implies that there is no well-defined notion of a “correct” model of clustering in the absence
of external criteria.

198 CHAPTER 6. CLUSTER ANALYSIS

Figure 6.24: Inflection points in validity measures for parameter tuning

6.9.1.1 Parameter Tuning with Internal Measures

All clustering algorithms use a number of parameters as input, such as the number of
clusters or the density. Although internal measures are inherently flawed, a limited amount
of parameter tuning can be performed with these measures. The idea here is that the
variation in the validity measure may show an inflection point (or “elbow”) at the correct
choice of parameter. Of course, because these measures are flawed to begin with, such
techniques should be used with great caution. Furthermore, the shape of the inflection point
may vary significantly with the nature of the parameter being tuned, and the validation
measure being used. Consider the case of k-means clustering where the parameter being
tuned is the number of clusters k. In such a case, the SSQ measure will always reduce
with the number of clusters, though it will reduce at a sharply lower rate after the inflection
point. On the other hand, for a measure such as the ratio of the intra-cluster to inter-cluster
distance, the measure will reduce until the inflection point and then may increase slightly. An
example of these two kinds of inflections are illustrated in Fig. 6.24. TheX-axis indicates the
parameter being tuned (number of clusters), and the Y -axis illustrates the (relative) values
of the validation measures. In many cases, if the validation model does not reflect either
the natural shape of the clusters in the data, or the algorithmic model used to create the
clusters very well, such inflection points may either be misleading, or not even be observed.
However, plots such as those illustrated in Fig. 6.24 can be used in conjunction with visual
inspection of the scatter plot of the data and the algorithm partitioning to determine the
correct number of clusters in many cases. Such tuning techniques with internal measures
should be used as an informal rule of thumb, rather than as a strict criterion.

6.9.2 External Validation Criteria

Such criteria are used when ground truth is available about the true clusters in the under-
lying data. In general, this is not possible in most real data sets. However, when synthetic
data is generated from known benchmarks, it is possible to associate cluster identifiers with
the generated records. In the context of real data sets, these goals can be approximately
achieved with the use of class labels when they are available. The major risk with the use of
class labels is that these labels are based on application-specific properties of that data set
and may not reflect the natural clusters in the underlying data. Nevertheless, such criteria

6.9. CLUSTER VALIDATION 199

Cluster Indices 1 2 3 4
1 97 0 2 1
2 5 191 1 3
3 4 3 87 6
4 0 0 5 195

Figure 6.25: Confusion matrix for a cluster-
ing of good quality

Cluster Indices 1 2 3 4
1 33 30 17 20
2 51 101 24 24
3 24 23 31 22
4 46 40 44 70

Figure 6.26: Confusion matrix for a cluster-
ing of poor quality

are still preferable to internal methods because they can usually avoid consistent bias in
evaluations, when used over multiple data sets. In the following discussion, the term “class
labels” will be used interchangeably to refer to either cluster identifiers in a synthetic data
set or class labels in a real data set.

One of the problems is that the number of natural clusters in the data may not reflect
the number of class labels (or cluster identifiers). The number of class labels is denoted by
kt, which represents the true or ground-truth number of clusters. The number of clusters
determined by the algorithm is denoted by kd. In some settings, the number of true clusters
kt is equal to the number of algorithm-determined clusters kd, though this is often not the
case. In cases where kd = kt, it is particularly helpful to create a confusion matrix, which
relates the mapping of the true clusters to those determined by the algorithm. Each row i
corresponds to the class label (ground-truth cluster) i, and each column j corresponds to
the points in algorithm-determined cluster j. Therefore, the (i, j)th entry of this matrix is
equal to the number of data points in the true cluster i, which are mapped to the algorithm-
determined cluster j. The sum of the values across a particular row i will always be the same
across different clustering algorithms because it reflects the size of ground-truth cluster i in
the data set.

When the clustering is of high quality, it is usually possible to permute the rows and
columns of this confusion matrix, so that only the diagonal entries are large. On the other
hand, when the clustering is of poor quality, the entries across the matrix will be more
evenly distributed. Two examples of confusion matrices are illustrated in Figs. 6.25 and 6.26,
respectively. The first clustering is obviously of much better quality than the second.

The confusion matrix provides an intuitive method to visually assess the clustering.
However, for larger confusion matrices, this may not be a practical solution. Furthermore,
while confusion matrices can also be created for cases where kd �= kt, it is much harder to
assess the quality of a particular clustering by visual inspection. Therefore, it is important to
design hard measures to evaluate the overall quality of the confusion matrix. Two commonly
used measures are the cluster purity, and class-based Gini index. Let mij represent the
number of data points from class (ground-truth cluster) i that are mapped to (algorithm-
determined) cluster j. Here, i is drawn from the range [1, kt], and j is drawn from the range
[1, kd]. Also assume that the number of data points in true cluster i are denoted by Ni, and
the number of data points in algorithm-determined cluster j are denoted by Mj . Therefore,
the number of data points in different clusters can be related as follows:

Ni =
kd∑
j=1

mij ∀i = 1 . . . kt (6.46)

Mj =
kt∑
i=1

mij ∀j = 1 . . . kd (6.47)

200 CHAPTER 6. CLUSTER ANALYSIS

A high-quality algorithm-determined cluster j should contain data points that are largely
dominated by a single class. Therefore, for a given algorithm-determined cluster j, the
number of data points Pj in its dominant class is equal to the maximum of the values of
mij over different values of ground truth cluster i:

Pj = maximij . (6.48)

A high-quality clustering will result in values of Pj ≤ Mj , which are very close to Mj . Then,
the overall purity is given by the following:

Purity =

∑kd

j=1 Pj∑kd

j=1 Mj

. (6.49)

High values of the purity are desirable. The cluster purity can be computed in two differ-
ent ways. The method discussed above computes the purity of each algorithm-determined
cluster (with respect to ground-truth clusters), and then computes the aggregate purity
on this basis. The second way can compute the purity of each ground-truth cluster with
respect to the algorithm-determined clusters. The two methods will not lead to the same
results, especially when the values of kd and kt are significantly different. The mean of the
two values may also be used as a single measure in such cases. The first of these measures,
according to Eq. 6.49, is the easiest to intuitively interpret, and it is therefore the most
popular.

One of the major problems with the purity-based measure is that it only accounts for
the dominant label in the cluster and ignores the distribution of the remaining points. For
example, a cluster that contains data points predominantly drawn from two classes, is better
than one in which the data points belong to many different classes, even if the cluster purity
is the same. To account for the variation across the different classes, the Gini index may
be used. This measure is closely related to the notion of entropy, and it measures the level
of inequality (or confusion) in the distribution of the entries in a row (or column) of the
confusion matrix. As in the case of the purity measure, it can be computed with a row-wise
method or a column-wise method, and it will evaluate to different values. Here the column-
wise method is described. The Gini index Gj for column (algorithm-determined cluster) j
is defined as follows:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

. (6.50)

The value of Gj will be close to 0 when the entries in a column of a confusion matrix are
skewed, as in the case of Fig. 6.25. When the entries are evenly distributed, the value will be
close to 1− 1/kt, which is also the upper bound on this value. The average Gini coefficient
is the weighted average of these different column-wise values where the weight of Gj is Mj :

Gaverage =

∑kd

j=1 Gj ·Mj∑kd

j=1 Mj

. (6.51)

Low values of the Gini index are desirable. The notion of the Gini index is closely related
to the notion of entropy Ej (of algorithm-determined cluster j), which measures the same
intuitive characteristics of the data:

Ej = −
kt∑
i=1

(
mij

Mj

)
· log

(
mij

Mj

)
. (6.52)

6.10. SUMMARY 201

Lower values of the entropy are indicative of a higher quality clustering. The overall entropy
is computed in a similar way to the Gini index, with the use of cluster specific entropies.

Eaverage =

∑kd

j=1 Ej ·Mj∑kd

j=1 Mj

. (6.53)

Finally, a pairwise precision and pairwise recall measure can be used to evaluate the quality
of a clustering. To compute this measure, all pairs of data points within the same algorithm-
determined cluster are generated. The fraction of pairs which belong to the same ground-
truth clusters is the precision. To determine the recall, pairs of points within the same
ground-truth clusters are sampled, and the fraction that appear in the same algorithm-
determined cluster are computed. A unified measure is the Fowlkes-Mallows measure, which
reports the geometric mean of the precision and recall.

6.9.3 General Comments

Although cluster validation is a widely studied problem in the clustering literature, most
methods for cluster validation are rather imperfect. Internal measures are imperfect because
they are typically biased toward one algorithm or the other. External measures are imperfect
because they work with class labels that may not reflect the true clusters in the data.
Even when synthetic data is generated, the method of generation will implicitly favor one
algorithm or the other. These challenges arise because clustering is an unsupervised problem,
and it is notoriously difficult to validate the quality of such algorithms. Often, the only true
measure of clustering quality is its ability to meet the goals of a specific application.

6.10 Summary

A wide variety of algorithms have been designed for the problem of data clustering, such as
representative-based methods, hierarchical methods, probabilistic methods, density-based
methods, graph-based methods, and matrix factorization-based methods. All methods typ-
ically require the algorithm to specify some parameters, such as the number of clusters,
the density, or the rank of the matrix factorization. Representative-based methods, and
probabilistic methods restrict the shape of the clusters but adjust better to varying cluster
density. On the other hand, agglomerative and density-based methods adjust better to the
shape of the clusters but do not adjust to varying density of the clusters. Graph-based
methods provide the best adjustment to varying shape and density but are typically more
expensive to implement. The problem of cluster validation is a notoriously difficult one for
unsupervised problems, such as clustering. Although external and internal validation crite-
ria are available for the clustering, they are often biased toward different algorithms, or may
not accurately reflect the internal clusters in the underlying data. Such measures should be
used with caution.

6.11 Bibliographic Notes

The problem of clustering has been widely studied in the data mining and machine learn-
ing literature. The classical books [74, 284, 303] discuss most of the traditional clustering
methods. These books present many of the classical algorithms, such as the partitioning and
hierarchical algorithms, in great detail. Another book [219] discusses more recent methods

202 CHAPTER 6. CLUSTER ANALYSIS

for data clustering. An excellent survey on data clustering may be found in [285]. The most
recent book [32] in the literature provides a very comprehensive overview of the different
data clustering algorithms. A detailed discussion on feature selection methods is provided
in [366]. The distance-based entropy measure is discussed in [169]. Various validity mea-
sures derived from spectral clustering and the cluster scatter matrix can be used for feature
selection [262, 350, 550]. The second chapter in the clustering book [32] provides a detailed
review of feature selection methods.

A classical survey [285] provides an excellent review of k-means algorithms. The problem
of refining the initial data points for k-means type algorithms is discussed in [108]. The
problem of discovering the correct number of clusters in a k-means algorithm is addressed
in [423]. Other notable criteria for representative algorithms include the use of Bregman
divergences [79].

The three main density-based algorithms presented in this chapter are STING [506],
DBSCAN [197], and DENCLUE [267]. The faster update rule for DENCLUE appears
in [269]. The faster update rule was independently discovered earlier in [148, 159] as
mean-shift clustering. Among the grid-based algorithms, the most common ones include
WaveCluster [464] and MAFIA [231]. The incremental version of DBSCAN is addressed
in [198]. The OPTICS algorithm [76] performs density-based clustering based on ordering
of the data points. It is also useful for hierarchical clustering and visualization. Another
variation of the DBSCAN algorithm is the GDBSCAN method [444] that can work with
more general kinds of data.

One of the most well-known graph-based algorithms is the Chameleon algorithm [300].
Shared nearest neighbor algorithms [195], are inherently graph-based algorithms, and adjust
well to the varying density in different data localities. A well-known top-down hierar-
chical multilevel clustering algorithm is the METIS algorithm [301]. An excellent survey
on spectral clustering methods may be found in [371]. Matrix factorization and its vari-
ations [288, 440, 456] are closely related to spectral clustering [185]. Methods for com-
munity detection in graphs are discussed in [212]. Any of these methods can be used for
the last phase of graph-based clustering algorithms. Cluster validity methods are discussed
in [247, 248]. In addition, the problem of cluster validity is studied in detail in [32].

6.12 Exercises

1. Consider the 1-dimensional data set with 10 data points {1, 2, 3, . . . 10}. Show three
iterations of the k-means algorithms when k = 2, and the random seeds are initialized
to {1, 2}.

2. Repeat Exercise 1 with an initial seed set of {2, 9}. How did the different choice of
the seed set affect the quality of the results?

3. Write a computer program to implement the k-representative algorithm. Use a mod-
ular program structure, in which the distance function and centroid determination
are separate subroutines. Instantiate these subroutines to the cases of (i) the k-means
algorithm, and (ii) the k-medians algorithm.

4. Implement the Mahalanobis k-means algorithm.

5. Consider the 1-dimensional data set {1 . . . 10}. Apply a hierarchical agglomerative
approach, with the use of minimum, maximum, and group average criteria for merging.
Show the first six merges.

6.12. EXERCISES 203

6. Write a computer program to implement a hierarchical merging algorithm with the
single-linkage merging criterion.

7. Write a computer program to implement the EM algorithm, in which there are two
spherical Gaussian clusters with the same radius. Download the Ionosphere data set
from the UCI Machine Learning Repository [213]. Apply the algorithm to the data
set (with randomly chosen centers), and record the centroid of the Gaussian in each
iteration. Now apply the k-means algorithm implemented in Exercise 3, with the same
set of initial seeds as Gaussian centroids. How do the centroids in the two algorithms
compare over the different iterations?

8. Implement the computer program of Exercise 7 with a general Gaussian distribution,
rather than a spherical Gaussian.

9. Consider a 1-dimensional data set with three natural clusters. The first cluster contains
the consecutive integers {1 . . . 5}. The second cluster contains the consecutive integers
{8 . . . 12}. The third cluster contains the data points {24, 28, 32, 36, 40}. Apply a k-
means algorithm with initial centers of 1, 11, and 28. Does the algorithm determine
the correct clusters?

10. If the initial centers are changed to 1, 2, and 3, does the algorithm discover the correct
clusters? What does this tell you?

11. Use the data set of Exercise 9 to show how hierarchical algorithms are sensitive to
local density variations.

12. Use the data set of Exercise 9 to show how grid-based algorithms are sensitive to local
density variations.

13. It is a fundamental fact of linear algebra that any rank-k matrix has a singular value
decomposition in which exactly k singular values are non-zero. Use this result to
show that the lowest error of rank-k approximation in SVD is the same as that of
unconstrained matrix factorization in which basis vectors are not constrained to be
orthogonal. Assume that the Frobenius norm of the error matrix is used in both cases
to compute the approximation error.

14. Suppose that you constructed a k-nearest neighbor similarity graph from a data set
with weights on edges. Describe the bottom-up single-linkage algorithm in terms of
the similarity graph.

15. Suppose that a shared nearest neighbor similarity function (see Chap. 3) is used in
conjunction with the k-medoids algorithm to discover k clusters from n data points.
The number of nearest neighbors used to define shared nearest neighbor similarity is
m. Describe how a reasonable value of m may be selected in terms of k and n, so as
to not result in poor algorithm performance.

16. Suppose that matrix factorization is used to approximately represent a data matrix
D as D ≈ D′ = UV T . Show that one or more of the rows/columns of U and V can be
multiplied with constant factors, so as represent D′ = UV T in an infinite number of
different ways. What would be a reasonable choice of U and V among these solutions?

204 CHAPTER 6. CLUSTER ANALYSIS

17. Explain how each of the internal validity criteria is biased toward one of the algorithms.

18. Suppose that you generate a synthetic data set containing arbitrarily oriented Gaus-
sian clusters. How well does the SSQ criterion reflect the quality of the clusters?

19. Which algorithms will perform best for the method of synthetic data generation in
Exercise 18?

Chapter 7

Cluster Analysis: Advanced Concepts

“The crowd is just as important as the group. It takes
everything to make it work.”—Levon Helm

7.1 Introduction

In the previous chapter, the basic data clustering methods were introduced. In this chapter,
several advanced clustering scenarios will be studied, such as the impact of the size, dimen-
sionality, or type of the underlying data. In addition, it is possible to obtain significant
insights with the use of advanced supervision methods, or with the use of ensemble-based
algorithms. In particular, two important aspects of clustering algorithms will be addressed:

1. Difficult clustering scenarios: Many data clustering scenarios are more challenging.
These include the clustering of categorical data, high-dimensional data, and massive
data. Discrete data are difficult to cluster because of the challenges in distance com-
putation, and in appropriately defining a “central” cluster representative from a set
of categorical data points. In the high-dimensional case, many irrelevant dimensions
may cause challenges for the clustering process. Finally, massive data sets are more
difficult for clustering due to scalability issues.

2. Advanced insights: Because the clustering problem is an unsupervised one, it is often
difficult to evaluate the quality of the underlying clusters in a meaningful way. This
weakness of cluster validity methods was discussed in the previous chapter. Many
alternative clusterings may exist, and it may be difficult to evaluate their relative
quality. There are many ways of improving application-specific relevance and robust-
ness by using external supervision, human supervision, or meta-algorithms such as
ensemble clustering that combine multiple clusterings of the data.

The difficult clustering scenarios are typically caused by particular aspects of the data that
make the analysis more challenging. These aspects are as follows:

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 7 205
c© Springer International Publishing Switzerland 2015

206 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

1. Categorical data clustering: Categorical data sets are more challenging for cluster-
ing because the notion of similarity is harder to define in such scenarios. Further-
more, many intermediate steps in clustering algorithms, such as the determination of
the mean of a cluster, are not quite as naturally defined for categorical data as for
numeric data.

2. Scalable clustering: Many clustering algorithms require multiple passes over the data.
This can create a challenge when the data are very large and resides on disk.

3. High-dimensional clustering: As discussed in Sect. 3.2.1.2 of Chap. 3, the computation
of similarity between high-dimensional data points often does not reflect the intrinsic
distance because of many irrelevant attributes and concentration effects. Therefore,
many methods have been designed that use projections to determine the clusters in
relevant subsets of dimensions.

Because clustering is an unsupervised problem, the quality of the clusters may be difficult
to evaluate in many real scenarios. Furthermore, when the data are noisy, the quality may
also be poor. Therefore, a variety of methods are used to either supervise the clustering, or
gain advanced insights from the clustering process. These methods are as follows:

1. Semisupervised clustering: In some cases, partial information may be available about
the underlying clusters. This information may be available in the form of labels or other
external feedback. Such information can be used to greatly improve the clustering
quality.

2. Interactive and visual clustering: In these cases, feedback from the user may be utilized
to improve the quality of the clustering. In the case of clustering, this feedback is
typically achieved with the help of visual interaction. For example, an interactive
approach may explore the data in different subspace projections and isolate the most
relevant clusters.

3. Ensemble clustering: As discussed in the previous chapter, the different models for
clustering may produce clusters that are very different from one another. Which of
these clusterings is the best solution? Often, there is no single answer to this question.
Rather the knowledge from multiple models may be combined to gain a more unified
insight from the clustering process. Ensemble clustering can be viewed as a meta-
algorithm, which is used to gain more significant insights from multiple models.

This chapter is organized as follows: Section 7.2 discusses algorithms for clustering cat-
egorical data. Scalable clustering algorithms are discussed in Sect. 7.3. High-dimensional
algorithms are addressed in Sect. 7.4. Semisupervised clustering algorithms are discussed in
Sect. 7.5. Interactive and visual clustering algorithms are discussed in Sect. 7.6. Ensemble
clustering methods are presented in Sect. 7.7. Section 7.8 discusses the different applications
of data clustering. Section 7.9 provides a summary.

7.2 Clustering Categorical Data

The problem of categorical (or discrete) data clustering is challenging because most of
the primitive operations in data clustering, such as distance computation, representative
determination, and density estimation, are naturally designed for numeric data. A salient
observation is that categorical data can always be converted to binary data with the use of

7.2. CLUSTERING CATEGORICAL DATA 207

Table 7.1: Example of a 2-dimensional cat-
egorical data cluster

Data (Color, Shape)

1 (Blue, Square)
2 (Red, Circle)
3 (Green, Cube)
4 (Blue, Cube)
5 (Green, Square)
6 (Red, Circle)
7 (Blue, Square)
8 (Green, Cube)
9 (Blue, Circle)
10 (Green, Cube)

Table 7.2: Mean histogram and modes for
categorical data cluster

Attribute Histogram Mode

Color Blue= 0.4 Blue or
Green = 0.4 Green
Red = 0.2

Shape Cube = 0.4 Cube
Square = 0.3
Circle = 0.3

the binarization process discussed in Chap. 2. It is often easier to work with binary data
because it is also a special case of numeric data. However, in such cases, the algorithms
need to be tailored to binary data.

This chapter will discuss a wide variety of algorithms for clustering categorical data. The
specific challenges associated with applying the various classical methods to categorical data
will be addressed in detail along with the required modifications.

7.2.1 Representative-Based Algorithms

The centroid-based representative algorithms, such as k-means, require the repeated deter-
mination of centroids of clusters, and the determination of similarity between the centroids
and the original data points. As discussed in Sect. 6.3 of the previous chapter, these algo-
rithms iteratively determine the centroids of clusters, and then assign data points to their
closest centroid. At a higher level, these steps remain the same for categorical data. However,
the specifics of both steps are affected by the categorical data representation as follows:

1. Centroid of a categorical data set: All representative-based algorithms require the
determination of a central representative of a set of objects. In the case of numerical
data, this is achieved very naturally by averaging. However, for categorical data, the
equivalent centroid is a probability histogram of values on each attribute. For each
attribute i, and possible value vj , the histogram value pij represents the fraction of
the number of objects in the cluster for which attribute i takes on value vj . Therefore,
for a d-dimensional data set, the centroid of a cluster of points is a set of d differ-
ent histograms, representing the probability distribution of categorical values of each
attribute in the cluster. If ni is the number of distinct values of attribute i, then such
an approach will require O(ni) space to represent the centroid of the ith attribute.
A cluster of 2-dimensional data points with attributes Color and Shape is illustrated
in Table 7.1. The corresponding histograms for the Color and Shape attributes are
illustrated in Table 7.2. Note that the probability values over a particular attribute
always sum to one unit.

2. Calculating similarity to centroids: A variety of similarity functions between a pair of
categorical records are introduced in Sect. 3.2.2 of Chap. 3. The simplest of these is
match-based similarity. However, in this case, the goal is to determine the similarity

208 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

between a probability histogram (corresponding to a representative) and a categor-
ical attribute value. If the attribute i takes on the value vj for a particular data
record, then the analogous match-based similarity is its histogram-based probabil-
ity pij . These probabilities are summed up over the different attributes to determine
the total similarity. Each data record is assigned to the centroid with the greatest
similarity.

The other steps of the k-means algorithm remain the same as for the case of numeric
data. The effectiveness of a k-means algorithm is highly dependent on the distribution
of the attribute values in the underlying data. For example, if the attribute values are
highly skewed, as in the case of market basket data, the histogram-based variation of the
match-based measure may perform poorly. This is because this measure treats all attribute
values evenly, however, rare attribute values should be treated with greater importance in
such cases. This can be achieved by a prekshiprocessing phase that assigns a weight to
each categorical attribute value, which is the inverse of its global frequency. Therefore, the
categorical data records now have weights associated with each attribute. The presence of
these weights will affect both probability histogram generation and match-based similarity
computation.

7.2.1.1 k-Modes Clustering

In k-modes clustering, each attribute value for a representative is chosen as the mode of the
categorical values for that attribute in the cluster. The mode of a set of categorical values is
the value with the maximum frequency in the set. The modes of each attribute for the cluster
of ten points in Table 7.1 are illustrated in Table 7.2. Intuitively, this corresponds to the cat-
egorical value vj for each attribute i for which the frequency histogram has the largest value
of pij . The mode of an attribute may not be unique if two categorical values have the same
frequency. In the case of Table 7.2, two possible values of the mode are (Blue, Cube), and
(Green,Cube). Any of these could be used as the representative, if a random tie-breaking
criterion is used. The mode-based representative may not be drawn from the original data
set because the mode of each attribute is determined independently. Therefore, the partic-
ular combination of d-dimensional modes obtained for the representative may not belong
to the original data. One advantage of the mode-based approach is that the representative
is also a categorical data record, rather than a histogram. Therefore, it is easier to use a
richer set of similarity functions for computing the distances between data points and their
modes. For example, the inverse occurrence frequency-based similarity function, described
in Chap. 3, may be used to normalize for the skew in the attribute values. On the other hand,
when the attribute values in a categorical data set are naturally skewed, as in market basket
data, the use of modes may not be informative. For example, for a market basket data set,
all item attributes for the representative point may be set to the value of 0 because of the
natural sparsity of the data set. Nevertheless, for cases where the attribute values are more
evenly distributed, the k-modes approach can be used effectively. One way of making the
k-modes algorithm work well in cases where the attribute values are distributed unevenly,
is by dividing the cluster-specific frequency of an attribute by its (global) occurrence fre-
quency to determine a normalized frequency. This essentially corrects for the differential
global distribution of different attribute values. The modes of this normalized frequency
are used. The most commonly used similarity function is the match-based similarity met-
ric, discussed in Sect. 3.2.2 of Chap. 3. However, for biased categorical data distributions,
the inverse occurrence frequency should be used for normalizing the similarity function,
as discussed in Chap. 3. This can be achieved indirectly by weighting each attribute of

7.2. CLUSTERING CATEGORICAL DATA 209

each data point with the inverse occurrence frequency of the corresponding attribute value.
With normalized modes and weights associated with each attribute of each data point, the
straightforward match-based similarity computation will provide effective results.

7.2.1.2 k-Medoids Clustering

The medoid-based clustering algorithms are easier to generalize to categorical data sets
because the representative data point is chosen from the input database. The broad descrip-
tion of the medoids approach remains the same as that described in Sect. 6.3.4 of the pre-
vious chapter. The only difference is in terms of how the similarity is computed between a
pair of categorical data points, as compared to numeric data. Any of the similarity functions
discussed in Sect. 3.2.2 of Chap. 3 can be used for this purpose. As in the case of k-modes
clustering, because the representative is also a categorical data point (as opposed to a his-
togram), it is easier to directly use the categorical similarity functions of Chap. 3. These
include the use of inverse occurrence frequency-based similarity functions that normalize
for the skew across different attribute values.

7.2.2 Hierarchical Algorithms

Hierarchical algorithms are discussed in Sect. 6.4 of Chap. 6. Agglomerative bottom-up
algorithms have been used successfully for categorical data. The approach in Sect. 6.4 has
been described in a general way with a distance matrix of values. As long as a distance
(or similarity) matrix can be defined for the case of categorical attributes, most of the
algorithms discussed in the previous chapter can be easily applied to this case. An interesting
hierarchical algorithm that works well for categorical data is ROCK.

7.2.2.1 ROCK

The ROCK (RObust Clustering using linKs) algorithm is based on an agglomerative
bottom-up approach in which the clusters are merged on the basis of a similarity crite-
rion. The ROCK algorithm uses a criterion that is based on the shared nearest-neighbor
metric. Because agglomerative methods are somewhat expensive, the ROCK method applies
the approach to only a sample of data points to discover prototype clusters. The remaining
data points are assigned to one of these prototype clusters in a final pass.

The first step of the ROCK algorithm is to convert the categorical data to a binary
representation using the binarization approach introduced in Chap. 2. For each value vj of
categorical attribute i, a new pseudo-item is created, which has a value of 1, only if attribute
i takes on the value vj . Therefore, if the ith attribute in a d-dimensional categorical data set
has ni different values, such an approach will create a binary data set with

∑d
i=1 ni binary

attributes. When the value of each ni is high, this binary data set will be sparse, and it
will resemble a market basket data set. Thus, each data record can be treated as a binary
transaction, or a set of items. The similarity between the two transactions is computed with
the use of the Jaccard coefficient between the corresponding sets:

Sim(Ti, Tj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

. (7.1)

Subsequently, two data points Ti and Tj are defined to be neighbors, if the similarity
Sim(Ti, Tj) between them is greater than a threshold θ. Thus, the concept of neighbors
implicitly defines a graph structure on the data items, where the nodes correspond to

210 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

the data items, and the links correspond to the neighborhood relations. The notation
Link(Ti, Tj) denotes a shared nearest-neighbor similarity function, which is equal to the
number of shared nearest neighbors between Ti and Tj .

The similarity function Link(Ti, Tj) provides a merging criterion for agglomerative algo-
rithms. The algorithm starts with each data point (from the initially chosen sample) in its
own cluster and then hierarchically merges clusters based on a similarity criterion between
clusters. Intuitively, two clusters C1 and C2 should be merged, if the cumulative number
of shared nearest neighbors between objects in C1 and C2 is large. Therefore, it is possible
to generalize the notion of link-based similarity using clusters as arguments, as opposed to
individual data points:

GroupLink(Ci, Cj) =
∑

Tu∈Ci,Tv∈Cj

Link(Tu, Tv). (7.2)

Note that this criterion has a slight resemblance to the group-average linkage criterion
discussed in the previous chapter. However, this measure is not yet normalized because
the expected number of cross-links between larger clusters is greater. Therefore, one must
normalize by the expected number of cross-links between a pair of clusters to ensure that
the merging of larger clusters is not unreasonably favored. Therefore, the normalized linkage
criterion V (Ci, Cj) is as follows:

V (Ci, Cj) =
GroupLink(Ci, Cj)

E[CrossLinks(Ci, Cj)]
. (7.3)

The expected number of cross-links between Ci and Cj can be computed as function of the
expected number of intracluster links Intra(·) in individual clusters as follows:

E[CrossLinks(Ci, Cj)] = E[Intra(Ci ∪ Cj)]− E[Intra(Ci)]− E[Intra(Cj)]. (7.4)

The expected number of intracluster links is specific to a single cluster and is more easily
estimated as a function of cluster size qi and θ. The number of intracluster links in a cluster
containing qi data points is heuristically estimated by the ROCK algorithm as q

1+2·f(θ)
i .

Here, the function f(θ) is a property of both the data set, and the kind of clusters that one
is interested in. The value of f(θ) is heuristically defined as follows:

f(θ) =
1− θ

1 + θ
. (7.5)

Therefore, by substituting the expected number of cross-links in Eq. 7.3, one obtains the
following merging criterion V (Ci, Cj):

V (Ci, Cj) =
GroupLink(Ci, Cj)

(qi + qj)1+2·f(θ) − q
1+2·f(θ)
i − q

1+2·f(θ)
j

. (7.6)

The denominator explicitly normalizes for the sizes of the clusters being merged by penal-
izing larger clusters. The goal of this kind of normalization is to prevent the imbalanced
preference toward successively merging only large clusters.

The merges are successively performed until a total of k clusters remain in the data.
Because the agglomerative approach is applied only to a sample of the data, it remains to
assign the remaining data points to one of the clusters. This can be achieved by assigning
each disk-resident data point to the cluster with which it has the greatest similarity. This
similarity is computed using the same quality criterion in Eq. 7.6 as was used for cluster–
cluster merges. In this case, similarity is computed between clusters and individual data
points by treating each data point as a singleton cluster.

7.2. CLUSTERING CATEGORICAL DATA 211

7.2.3 Probabilistic Algorithms

The probabilistic approach to data clustering is introduced in Sect. 6.5 of Chap. 6. Gen-
erative models can be generalized to virtually any data type as long as an appropriate
generating probability distribution can be defined for each mixture component. This pro-
vides unprecedented flexibility in adapting probabilistic clustering algorithms to various
data types. After the mixture distribution model has been defined, the E- and M-steps
need to be defined for the corresponding expectation–maximization (EM) approach. The
main difference from numeric clustering is that the soft assignment process in the E-step,
and the parameter estimation process in the M-step will depend on the relevant probability
distribution model for the corresponding data type.

Let the k components of the mixture be denoted by G1 . . .Gk. Then, the generative
process for each point in the data set D uses the following two steps:

1. Select a mixture component with prior probability αi, where i ∈ {1 . . . k}.

2. If the mth component of the mixture was selected in the first step, then generate a
data point from Gm.

The values of αi denote the prior probabilities P (Gi), which need to be estimated along with
other model parameters in a data-driven manner. The main difference from the numerical
case is in the mathematical form of the generative model for the mth cluster (or mixture
component) Gm, which is now a discrete probability distribution rather than the probability
density function used in the numeric case. This difference reflects the corresponding differ-
ence in data type. One reasonable choice for the discrete probability distribution of Gm is
to assume that the jth categorical value of ith attribute is independently generated by mix-
ture component (cluster) m with probability pijm. Consider a data point X containing the
attribute value indices j1 . . . jd for its d dimensions. In other words, the rth attribute takes
on the jrth possible categorical value. For convenience, the entire set of model parameters
is denoted by the generic notation Θ. Then, the discrete probability distribution gm,Θ(X)
from cluster m is given by the following expression:

gm,Θ(X) =
d∏

r=1

prjrm. (7.7)

The discrete probability distribution is gm,Θ(·), which is analogous to the continuous density
function fm,Θ(·) of the EM model in the previous chapter. Correspondingly, the posterior
probability P (Gm|X,Θ) of the component Gm having generated observed data point X may
be estimated as follows:

P (Gm|Xj ,Θ) =
αm · gm,Θ(X)∑k
r=1 αr · gr,Θ(X)

. (7.8)

This defines the E-step for categorical data, and it provides a soft assignment probability
of the data point to a cluster.

After the soft assignment probability has been determined, the M-step applies maximum
likelihood estimation to the individual components of the mixture to estimate the probability
pijm. While estimating the parameters for cluster m, the weight of a record is assumed
to be equal to its assignment probability P (Gm|X,Θ) to cluster m. For each cluster m,
the weighted number wijm of data points for which attribute i takes on its jth possible
categorical value is estimated. This is equal to the sum of the assignment probabilities (to

212 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

cluster m) of data points that do take on the jth value. By dividing this value with the
aggregate assignment probability of all data points to cluster m, the probability pijm may
be estimated as follows:

pijm =
wijm∑

X∈D P (Gm|X,Θ)
. (7.9)

The parameter αm is estimated as the average assignment probabilities of data points to
cluster m. The aforementioned formulas for estimation may be derived from maximum
likelihood estimation methods. Refer to the bibliographic notes for detailed derivations.

Sometimes, the estimation of Eq. 7.9 can be inaccurate because the available data may
be limited, or particular values of categorical attributes may be rare. In such cases, some
of the attribute values may not appear in a cluster (or wijm ≈ 0). This can lead to poor
parameter estimation, or overfitting. The Laplacian smoothing method is commonly used to
address such ill-conditioned probabilities. This is achieved by adding a small positive value
β to the estimated values of wijm, where β is the smoothing parameter. This will generally
lead to more robust estimation. This type of smoothing is also applied in the estimation of
the prior probabilities αm when the data sets are very small. This completes the description
of the M-step. As in the case of numerical data, the E-step and M-step are iterated to
convergence.

7.2.4 Graph-Based Algorithms

Because graph-based methods are meta-algorithms, the broad description of these algo-
rithms remains virtually the same for categorical data as for numeric data. Therefore, the
approach described in Sect. 6.7 of the previous chapter applies to this case as well. The only
difference is in terms of how the edges and values on the similarity graph are constructed.
The first step is the determination of the k-nearest neighbors of each data record, and sub-
sequent assignment of similarity values to edges. Any of the similarity functions described
in Sect. 3.2.2 of Chap. 3 can be used to compute similarity values along the edges of the
graph. These similarity measures could include the inverse occurrence frequency measure
discussed in Chap. 3, which corrects for the natural skew in the different attribute values. As
discussed in the previous chapter, one of the major advantages of graph-based algorithms
is that they can be leveraged for virtually any kind of data type as long as a similarity
function can be defined on that data type.

7.3 Scalable Data Clustering

In many applications, the size of the data is very large. Typically, the data cannot be stored
in main memory, but it need to reside on disk. This is a significant challenge, because it
imposes a constraint on the algorithmic design of clustering algorithms. This section will
discuss the CLARANS, BIRCH, and CURE algorithms. These algorithms are all scalable
implementations of one of the basic types of clustering algorithms discussed in the pre-
vious chapter. For example, the CLARANS approach is a scalable implementation of the
k-medoids algorithm for clustering. The BIRCH algorithm is a top-down hierarchical gen-
eralization of the k-means algorithm. The CURE algorithm is a bottom-up agglomerative
approach to clustering. These different algorithms inherit the advantages and disadvan-
tages of the base classes of algorithms that they are generalized from. For example, while
the CLARANS algorithm has the advantage of being more easily generalizable to different
data types (beyond numeric data), it inherits the relatively high computational complexity

7.3. SCALABLE DATA CLUSTERING 213

of k-medoids methods. The BIRCH algorithm is much faster because it is based on the
k-means methodology, and its hierarchical clustering structure can be tightly controlled
because of its top-down partitioning approach. This can be useful for indexing applications.
On the other hand, BIRCH is not designed for arbitrary data types or clusters of arbi-
trary shape. The CURE algorithm can determine clusters of arbitrary shape because of its
bottom-up hierarchical approach. The choice of the most suitable algorithm depends on the
application at hand. This section will provide an overview of these different methods.

7.3.1 CLARANS

The CLARA and CLARANS methods are two generalizations of the k-medoids approach
to clustering. Readers are referred to Sect. 6.3.4 of the previous chapter for a description
of the generic k-medoids approach. Recall that the k-medoids approach works with a set
of representatives, and iteratively exchanges one of the medoids with a non-medoid in each
iteration to improve the clustering quality. The generic k-medoids algorithm allows consid-
erable flexibility in deciding how this exchange might be executed.

The Clustering LARge Applications (CLARA) method is based on a particular instan-
tiation of the k-medoids method known as Partitioning Around Medoids (PAM). In this
method, to exchange a medoid with another non-medoid representative, all possible k·(n−k)
pairs are tried for a possible exchange to improve the clustering objective function. The best
improvement of these pairs is selected for an exchange. This exchange is performed until the
algorithm converges to a locally optimal value. The exchange process requires O(k ·n2) dis-
tance computations. Therefore, each iteration requires O(k ·n2 · d) time for a d-dimensional
data set, which can be rather expensive. Because the complexity is largely dependent on
the number of data points, it can be reduced by applying the algorithm to a smaller sample.
Therefore, the CLARA approach applies PAM to a smaller sampled data set of size f ·n to
discover the medoids. The value of f is a sampling fraction, which is much smaller than 1.
The remaining nonsampled data points are assigned to the optimal medoids discovered by
applying PAM to the smaller sample. This overall approach is applied repeatedly over inde-
pendently chosen samples of data points of the same size f ·n. The best clustering over these
independently chosen samples is selected as the optimal solution. Because the complexity
of each iteration is O(k · f2 · n2 · d+ k · (n− k)), the approach may be orders of magnitude
faster for small values of the sampling fraction f . The main problem with CLARA occurs
when each of the preselected samples does not include good choices of medoids.

The Clustering Large Applications based on RANdomized Search (CLARANS) approach
works with the full data set for the clustering in order to avoid the problem with prese-
lected samples. The approach iteratively attempts exchanges between random medoids with
random non-medoids. After a randomly chosen non-medoid is tried for an exchange with a
randomly chosen medoid, it is checked if the quality improves. If the quality does improve,
then this exchange is made final. Otherwise, the number of unsuccessful exchange attempts
is counted. A local optimal solution is said to have been found when a user-specified number
of unsuccessful attempts MaxAttempt have been reached. This entire process of finding the
local optimum is repeated for a user-specified number of iterations, denoted by MaxLocal.
The clustering objective function of each of these MaxLocal locally optimal solutions is eval-
uated. The best among these local optima is selected as the optimal solution. The advantage
of CLARANS over CLARA is that a greater diversity of the search space is explored.

214 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

Figure 7.1: The CF-Tree

7.3.2 BIRCH

The Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) approach can
be viewed as a combination of top-down hierarchical and k-means clustering. To achieve
this goal, the approach introduces a hierarchical data structure, known as the CF-Tree. This
is a height-balanced data structure organizing the clusters hierarchically. Each node has a
branching factor of at most B, which corresponds to its (at most) B children subclusters.
This structure shares a resemblance to the B-Tree data structure commonly used in database
indexing. This is by design because the CF-Tree is inherently designed to support dynamic
insertions into the hierarchical clustering structure. An example of the CF-Tree is illustrated
in Fig. 7.1.

Each node contains a concise summary of each of the at most B subclusters that it
points to. This concise summary of a cluster is referred to as its cluster feature (CF), or
cluster feature vector. The summary contains the triple (SS,LS,m), where SS is a vector1

containing the sum of the square of the points in the cluster (second-order moment), LS is
a vector containing the linear sum of the points in the cluster (first-order moment), and m
is the number of points in the cluster (zeroth-order moment). Thus, the size of the summary
is (2 · d+1) for a d-dimensional data set and is also referred to as a CF-vector. The cluster
feature vector thus contains all moments of order at most 2. This summary has two very
important properties:

1. Each cluster feature can be represented as a linear sum of the cluster features of the
individual data points. Furthermore, the cluster feature of a parent node in the CF-
Tree is the sum of the cluster features of its children. The cluster feature of a merged
cluster can also be computed as the sum of the cluster features of the constituent
clusters. Therefore, incremental updates of the cluster feature vector can be efficiently
achieved by adding the cluster feature vector of a data point to that of the cluster.

2. The cluster features can be used to compute useful properties of a cluster, such as
its radius and centroid. Note that these are the only two computations required by
a centroid-based algorithm, such as k-means or BIRCH. These computations are dis-
cussed below.

To understand how the cluster feature can be used to measure the radius of a cluster,
consider a set of data points denoted by X1 . . . Xm, where Xi = (x1

i . . . x
d
i). The mean and

1It is possible to store the sum of the values in SS across the d dimensions in lieu of SS, without affecting
the usability of the cluster feature. This would result in a cluster feature of size (d+2) instead of (2 · d+1).

7.3. SCALABLE DATA CLUSTERING 215

variance of any set of points can be expressed in terms of the their first and second moments.
It is easy to see that the centroid (vector) of the cluster is simply LS/m. The variance of
a random variable Z is defined to be E[Z2] − E[Z]2, where E[·] denotes expected values.
Therefore, the variances along the ith dimension can be expressed as SSi/m − (LSi/m)2.
Here SSi and LSi represent the component of the corresponding moment vector along the
ith dimension. The sum of these dimension-specific variances yields the variance of the entire
cluster. Furthermore, the distance of any point to the centroid can be computed using the
cluster feature by using the computed centroid LS/m. Therefore, the cluster feature vector
contains all the information needed to insert a data point into the CF-Tree.

Each leaf node in the CF-Tree has a diameter threshold T . The diameter2 can be any
spread measure of the cluster such as its radius or variance, as long as it can be computed
directly from the cluster feature vector. The value of T regulates the granularity of the
clustering, the height of the tree, and the aggregate number of clusters at the leaf nodes.
Lower values of T will result in a larger number of fine-grained clusters. Because the CF-Tree
is always assumed to be main-memory resident, the size of the data set will typically have
a critical impact on the value of T . Smaller data sets will allow the use of a small threshold
T , whereas a larger data set will require a larger value of the threshold T . Therefore, an
incremental approach such as BIRCH gradually increases the value of T to balance the
greater need for memory with increasing data size. In other words, the value of T may need
to be increased whenever the tree can no longer be kept within main-memory availability.

The incremental insertion of a data point into the tree is performed with a top-down
approach. Specifically, the closest centroid is selected at each level for insertion into the tree
structure. This approach is similar to the insertion process in a traditional database index
such as a B-Tree. The cluster feature vectors are updated along the corresponding path
of the tree by simple addition. At the leaf node, the data point is inserted into its closest
cluster only if the insertion does not increase the cluster diameter beyond the threshold T .
Otherwise, a new cluster must be created containing only that data point. This new cluster
is added to the leaf node, if it is not already full. If the leaf node is already full, then it
needs to be split into two nodes. Therefore, the cluster feature entries in the old leaf node
need to be assigned to one of the two new nodes. The two cluster features in the leaf node,
whose centroids are the furthest apart, can serve as the seeds for the split. The remaining
entries are assigned to the seed node to which they are closest. As a result, the branching
factor of the parent node of the leaf increases by 1. Therefore, the split might result in
the branching factor of the parent increasing beyond B. If this is the case, then the parent
would need to be split as well in a similar way. Thus, the split may be propagated upward
until the branching factors of all nodes are below B. If the split propagates all the way to
the root node, then the height of the CF-Tree increases by 1.

These repeated splits may sometimes result in the tree running out of main memory. In
such cases, the CF-Tree needs to be rebuilt by increasing the threshold T , and reinserting
the old leaf nodes into a new tree with a higher threshold T . Typically, this reinsertion
will result in the merging of some older clusters into larger clusters that meet the new
modified threshold T . Therefore, the memory requirement of the new tree is lower. Because
the old leaf nodes are reinserted with the use of cluster feature vectors, this step can be
accomplished without reading the original database from disk. Note that the cluster feature

2The original BIRCH algorithm proposes to use the pairwise root mean square (RMS) distance between
cluster data points as the diameter. This is one possible measure of the intracluster distance. This value

can also be shown to be computable from the CF vector as

√
∑d

i=1(2·m·SSi−2·LS2
i)

m·(m−1)
.

216 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

vectors allow the computation of the diameters resulting from the merge of two clusters
without using the original data points.

An optional cluster refinement phase can be used to group related clusters within the
leaf nodes and remove small outlier clusters. This can be achieved with the use of an
agglomerative hierarchical clustering algorithm. Many agglomerative merging criteria, such
as the variance-based merging criterion (see Sect. 6.4.1 of Chap. 6), can be easily computed
from the CF-vectors. Finally, an optional refinement step reassigns all data points to their
closest center, as produced by the global clustering step. This requires an additional scan
of the data. If desired, outliers can be removed during this phase.

The BIRCH algorithm is very fast because the basic approach (without refinement)
requires only one scan over the data, and each insertion is an efficient operation, which
resembles the insertion operation in a traditional index structure. It is also highly adaptive
to the underlying main-memory requirements. However, it implicitly assumes a spherical
shape of the underlying clusters.

7.3.3 CURE

The Clustering Using REpresentatives (CURE) algorithm is an agglomerative hierarchical
algorithm. Recall from the discussion in Sect. 6.4.1 of Chap. 6 that single-linkage imple-
mentation of bottom-up hierarchical algorithms can discover clusters of arbitrary shape.
As in all agglomerative methods, a current set of clusters is maintained, which are succes-
sively merged with one another, based on single-linkage distance between clusters. How-
ever, instead of directly computing distances between all pairs of points in the two clusters
for agglomerative merging, the algorithm uses a set of representatives to achieve better
efficiency. These representatives are carefully chosen to capture the shape of each of the
current clusters, so that the ability of agglomerative methods to capture clusters of arbi-
trary shape is retained even with the use of a smaller number of representatives. The first
representative is chosen to be a data point that is farthest from the center of the cluster,
the second representative is farthest to the first, the third is chosen to be the one that has
the largest distance to the closest of two representatives, and so on. In particular, the rth
representative is a data point that has the largest distance to the closest of the current set
of (r − 1) representatives. As a result, the representatives tend to be arranged along the
contours of the cluster. Typically, a small number of representatives (such as ten) are cho-
sen from each cluster. This farthest distance approach does have the unfortunate effect of
favoring selection of outliers. After the representatives have been selected, they are shrunk
toward the cluster center to reduce the impact of outliers. This shrinking is performed by
replacing a representative with a new synthetic data point on the line segment L joining the
representative to the cluster center. The distance between the synthetic representative and
the original representative is a fraction α ∈ (0, 1) of the length of line segment L. Shrinking
is particularly useful in single-linkage implementations of agglomerative clustering because
of the sensitivity of such methods to noisy representatives at the fringes of a cluster. Such
noisy representatives may chain together unrelated clusters. Note that if the representatives
are shrunk too far (α ≈ 1), the approach will reduce to centroid-based merging, which is
also known to work poorly (see Sect. 6.4.1 of Chap. 6).

The clusters are merged using an agglomerative bottom-up approach. To perform the
merging, the minimum distance between any pair of representative data points is used.
This is the single-linkage approach of Sect. 6.4.1 in Chap. 6, which is most well suited to
discovering clusters of arbitrary shape. By using a smaller number of representative data
points, the CURE algorithm is able to significantly reduce the complexity of the merging

7.4. HIGH-DIMENSIONAL CLUSTERING 217

criterion in agglomerative hierarchical algorithms. The merging can be performed until the
number of remaining clusters is equal to k. The value of k is an input parameter specified
by the user. CURE can handle outliers by periodically eliminating small clusters during
the merging process. The idea here is that the clusters remain small because they contain
mostly outliers.

To further improve the complexity, the CURE algorithm draws a random sample from
the underlying data, and performs the clustering on this random sample. In a final phase of
the algorithm, all the data points are assigned to one of the remaining clusters by choosing
the cluster with the closest representative data point.

Larger sample sizes can be efficiently used with a partitioning trick. In this case, the
sample is further divided into a set of p partitions. Each partition is hierarchically clustered
until a desired number of clusters is reached, or some merging quality criterion is met. These
intermediate clusters (across all partitions) are then reclustered together hierarchically to
create the final set of k clusters from the sampled data. The final assignment phase is
applied to the representatives of the resulting clusters. Therefore, the overall process may
be described by the following steps:

1. Sample s points from the database D of size n.

2. Divide the sample s into p partitions of size s/p each.

3. Cluster each partition independently using the hierarchical merging to k′ clusters in
each partition. The overall number k′ · p of clusters across all partitions is still larger
than the user-desired target k.

4. Perform hierarchical clustering over the k′ · p clusters derived across all partitions to
the user-desired target k.

5. Assign each of the (n− s) nonsample data points to the cluster containing the closest
representative.

The CURE algorithm is able to discover clusters of arbitrary shape unlike other scalable
methods such as BIRCH and CLARANS. Experimental results have shown that CURE is
also faster than these methods.

7.4 High-Dimensional Clustering

High-dimensional data contain many irrelevant features that cause noise in the clustering
process. The feature selection section of the previous chapter discussed how the irrelevant
features may be removed to improve the quality of clustering. When a large number of
features are irrelevant, the data cannot be separated into meaningful and cohesive clusters.
This scenario is especially likely to occur when features are uncorrelated with one another.
In such cases, the distances between all pairs of data points become very similar. The
corresponding phenomenon is referred to as the concentration of distances.

The feature selection methods discussed in the previous chapter can reduce the detri-
mental impact of the irrelevant features. However, it may often not be possible to remove
any particular set of features a priori when the optimum choice of features depends on the
underlying data locality. Consider the case illustrated in Fig. 7.2a. In this case, cluster A
exists in the XY-plane, whereas cluster B exists in the YZ-plane. Therefore, the feature
relevance is local, and it is no longer possible to remove any feature globally without losing

218 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

Figure 7.2: Illustration of axis-parallel and arbitrarily oriented (correlated) projected
clusters

relevant features for some of the data localities. The concept of projected clustering was
introduced to address this issue.

In conventional clustering methods, each cluster is a set of points. In projected clustering,
each cluster is defined as a set of points together with a set of dimensions (or subspace).
For example, the projected cluster A in Fig. 7.2a would be defined as its relevant set of
points, together with the subspace corresponding to the X and Y dimensions. Similarly, the
projected cluster B in Fig. 7.2a is defined as its relevant set of points, together with the
subspace corresponding to the Y and Z dimensions. Therefore, a projected cluster is defined
as the pair (Ci, Ei), where Ci is a set of points, and the subspace Ei is the subspace defined
by a set of dimensions.

An even more challenging situation is illustrated in Fig. 7.2b in which the clusters do
not exist in axis-parallel subspaces, but they exist in arbitrarily oriented subspaces of the
data. This problem is also a generalization of the principal component analysis (PCA)
method discussed in Chap. 2, where a single global projection with the largest variance
is found to retain the greatest information about the data. In this case, it is desired to
retain the best local projections with the least variance to determine the subspaces in
which each set of data points is tightly clustered. These types of clusters are referred to as
arbitrarily oriented projected clusters, generalized projected clusters, or correlation clusters.
Thus, the subspace Ei for each cluster Ci cannot be described in terms of the original
set of dimensions. Furthermore, the orthogonal subspace to Ei provides the subspace for
performing local dimensionality reduction. This is an interesting problem in its own right.
Local dimensionality reduction provides enhanced reduction of data dimensionality because
of the local selection of the subspaces for dimensionality reduction.

This problem has two different variations, which are referred to as subspace clustering
and projected clustering, respectively.

1. Subspace clustering: In this case, overlaps are allowed among the points drawn from
the different clusters. This problem is much closer to pattern mining, wherein the asso-
ciation patterns are mined from the numeric data after discretization. Each pattern
therefore corresponds to a hypercube within a subspace of the numeric data, and the
data points within this cube represent the subspace cluster. Typically, the number of
subspace clusters mined can be very large, depending upon a user-defined parameter,
known as the density threshold.

7.4. HIGH-DIMENSIONAL CLUSTERING 219

Algorithm CLIQUE(Data: D, Ranges: p, Density: τ)
begin
Discretize each dimension of data set D into p ranges;
Determine dense combinations of grid cells at minimum support τ
using any frequent pattern mining algorithm;

Create graph in which dense grid combinations are
connected if they are adjacent;

Determine connected components of graph;
return (point set, subspace) pair for each connected component;

end

Figure 7.3: The CLIQUE algorithm

2. Projected clustering: In this case, no overlaps are allowed among the points drawn
from the different clusters. This definition provides a concise summary of the data.
Therefore, this model is much closer, in principle, to the original goals of the clustering
framework of data summarization.

In this section, three different clustering algorithms will be described. The first of these
is CLIQUE, which is a subspace clustering method. The other two are PROCLUS and
ORCLUS, which are the first projected clustering methods proposed for the axis-parallel
and the correlated versions of the problem, respectively.

7.4.1 CLIQUE

The CLustering In QUEst (CLIQUE) technique is a generalization of grid-based methods
discussed in the previous chapter. The input to the method is the number of grid ranges p
for each dimension, and the density τ . This density τ represents the minimum number of
data points in a dense grid cell and can also be viewed as a minimum support requirement
of the grid cell. As in all grid-based methods, the first phase of discretization is used to
create a grid structure. In full-dimensional grid-based methods, the relevant dense regions
are based on the intersection of the discretization ranges across all dimensions. The main
difference of CLIQUE from these methods is that it is desired to determine the ranges only
over a relevant subset of dimensions with density greater than τ . This is the same as the
frequent pattern mining problem, where each discretized range is treated as an “item,” and
the support is set to τ . In the original CLIQUE algorithm, the Apriori method was used,
though any other frequent pattern mining method could be used in principle. As in generic
grid-based methods, the adjacent grid cells (defined on the same subspace) are put together.
This process is also identical to the generic grid-based methods, except that two grids have
to be defined on the same subspace for them to even be considered for adjacency. All the
found patterns are returned together with the data points in them. The CLIQUE algorithm
is illustrated in Fig. 7.3. An easily understandable description can also be generated for
each set of k-dimensional connected grid regions by decomposing it into a minimal set of
k-dimensional hypercubes. This problem is NP-hard. Refer to the bibliographic notes for
efficient heuristics.

Strictly speaking, CLIQUE is a quantitative frequent pattern mining method rather
than a clustering method. The output of CLIQUE can be very large and can sometimes be
greater than the size of the data set, as is common in frequent pattern mining. Clustering

220 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

and frequent pattern mining are related but different problems with different objectives. The
primary goal of frequent pattern mining is that of finding dimension correlation, whereas
the primary goal of clustering is summarization. From this semantic point of view, the
approach does not seem to achieve the primary application-specific goal of data summariza-
tion. The worst-case complexity of the approach and the number of discovered patterns can
be exponentially related to the number of dimensions. The approach may not terminate at
low values of the density (support) threshold τ .

7.4.2 PROCLUS

The PROjected CLUStering (PROCLUS) algorithm uses a medoid-based approach to clus-
tering. The algorithm proceeds in three phases: an initialization phase, an iterative phase,
and a cluster refinement phase. The initialization phase selects a small candidate set M of
medoids, which restricts the search space for hill climbing. In other words, the final medoid
set will be a subset of the candidate set M . The iterative phase uses a medoid-based tech-
nique for hill climbing to better solutions until convergence. The final refinement phase
assigns data points to the optimal medoids and removes outliers.

A small candidate set M of medoids is selected during initialization as follows:

1. A random sample M of data points of size proportional to the number of clusters k is
picked. Let the size of this subset be denoted by A · k, where A is a constant greater
than 1.

2. A greedy method is used to further reduce the size of the set M to B · k, where
A > B > 1. Specifically, a farthest distance approach is applied, where points are
iteratively selected by selecting the data point with the farthest distance to the closest
of the previously selected points.

Although the selection of a small candidate medoid set M greatly reduces the complexity
of the search space, it also tends to include many outliers because of its farthest distance
approach. Nevertheless, the farthest distance approach ensures well-separated seeds, which
also tend to separate out the clusters well.

The algorithm starts by choosing a random subset S of k medoids from M , and it pro-
gressively improves the quality of medoids by iteratively replacing the “bad” medoids in the
current set with new points from M . The best set of medoids found so far is always stored
in Sbest. Each medoid in S is associated with a set of dimensions based on the statistical
distribution of data points in its locality. This set of dimensions represents the subspace
specific to the corresponding cluster. The algorithm determines a set of “bad” medoids in
Sbest, using an approach described later. These bad medoids are replaced with randomly
selected replacement points from M and the impact on the objective function is measured.
If the objective function improves, then the current best set of medoids Sbest is updated to
S. Otherwise, another randomly selected replacement set is tried for exchanging with the
bad medoids in Sbest in the next iteration. If the medoids in Sbest do not improve for a
predefined number of successive replacement attempts, then the algorithm terminates. All
computations, such as the assignment and objective function computation, are executed in
the subspace associated with each medoid. The overall algorithm is illustrated in Fig. 7.4.
Next, we provide a detailed description of each of the aforementioned steps.

Determining projected dimensions for a medoid: The aforementioned approach requires the
determination of the quality of a particular set of medoids. This requires the assignment of

7.4. HIGH-DIMENSIONAL CLUSTERING 221

Algorithm PROCLUS(Database: D, Clusters: k, Dimensions: l)
begin
Select candidate medoids M ⊆ D with a farthest distance approach;
S = Random subset of M of size k;
BestObjective = ∞;
repeat
Compute dimensions (subspace) associated with each medoid in S;
Assign points in D to closest medoids in S using projected distance;
CurrentObjective = Mean projected distance of points to cluster centroids;
if (CurrentObjective < BestObjective) then begin
Sbest = S;
BestObjective = CurrentObjective;

end;
Recompute S by replacing bad medoids in Sbest with random points from M ;

until termination criterion;
Assign data points to medoids in Sbest using refined subspace computations;
return all cluster-subspace pairs;

end

Figure 7.4: The PROCLUS algorithm

data points to medoids by computing the distance of the data point to each medoid i in the
subspace Ei relevant to the ith medoid. First, the locality of each medoid in S is defined.
The locality of the medoid is defined as the set of data points that lies in a sphere of radius
equal to the distance to the closest medoid. The (statistically normalized) average distance
along each dimension from the medoid to the points in its locality is computed. Let rij
be the average distance of the data points in the locality of medoid i to medoid i along

dimension j. The mean μi =
∑d

j=1 rij/d and standard deviation σi =
√∑d

j=1(rij−μi)2

d−1 of
these distance values rij are computed, specific to each locality. This can then be converted
into a statistically normalized value zij :

zij =
rij − μi

σi
. (7.10)

The reason for this locality-specific normalization is that different data localities have differ-
ent natural sizes, and it is difficult to compare dimensions from different localities without
normalization. Negative values of zij are particularly desirable because they suggest smaller
average distances than expectation for a medoid-dimension pair. The basic idea is to select
the smallest (most negative) k · l values of zij to determine the relevant cluster-specific
dimensions. Note that this may result in the assignment of a different number of dimen-
sions to the different clusters. The sum of the total number of dimensions associated with
the different medoids must be equal to k · l. An additional constraint is that the number of
dimensions associated with a medoid must be at least 2. To achieve this, all the zij values
are sorted in increasing order, and the two smallest ones are selected for each medoid i.
Then, the remaining k · (l− 2) medoid-dimension pairs are greedily selected as the smallest
ones from the remaining values of zij .

222 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

Assignment of data points to clusters and cluster evaluation: Given the medoids and their
associated sets of dimensions, the data points are assigned to the medoids using a single
pass over the database. The distance of the data points to the medoids is computed using
the Manhattan segmental distance. The Manhattan segmental distance is the same as the
Manhattan distance, except that it is normalized for the varying number of dimensions
associated with each medoid. To compute this distance, the Manhattan distance is com-
puted using only the relevant set of dimensions, and then divided by the number of relevant
dimensions. A data point is assigned to the medoid with which it has the least Manhattan
segmental distance. After determining the clusters, the objective function of the clustering
is evaluated as the average Manhattan segmental distance of data points to the centroids
of their respective clusters. If the clustering objective improves, then Sbest is updated.

Determination of bad medoids: The determination of “bad” medoids from Sbest is per-
formed as follows: The medoid of the cluster with the least number of points is bad. In
addition, the medoid of any cluster with less than (n/k) · minDeviation points is bad,
where minDeviation is a constant smaller than 1. The typical value was set to 0.1. The
assumption here is that bad medoids have small clusters either because they are outliers or
because they share points with another cluster. The bad medoids are replaced with random
points from the candidate medoid set M .

Refinement phase: After the best set of medoids is found, a final pass is performed over
the data to improve the quality of the clustering. The dimensions associated with each
medoid are computed differently than in the iterative phase. The main difference is that to
analyze the dimensions associated with each medoid, the distribution of the points in the
clusters at the end of the iterative phase is used, as opposed to the localities of the medoids.
After the new dimensions have been computed, the points are reassigned to medoids based
on the Manhattan segmental distance with respect to the new set of dimensions. Outliers
are also handled during this final pass over the data. For each medoid i, its closest other
medoid is computed using the Manhattan segmental distance in the relevant subspace of
medoid i. The corresponding distance is referred to as its sphere of influence. If the Man-
hattan segmental distance of a data point to each medoid is greater than the latter’s sphere
of influence, then the data point is discarded as an outlier.

7.4.3 ORCLUS

The arbitrarily ORiented projected CLUStering (ORCLUS) algorithm finds clusters in arbi-
trarily oriented subspaces, as illustrated in Fig. 7.2b. Clearly, such clusters cannot be found
by axis-parallel projected clustering. Such clusters are also referred to as correlation clus-
ters. The algorithm uses the number of clusters k, and the dimensionality l of each subspace
Ei as an input parameter. Therefore, the algorithm returns k different pairs (Ci, Ei), where
the clusterCi is defined in the arbitrarily oriented subspace Ei. In addition, the algorithm
reports a set of outliers O. This method is also referred to as correlation clustering. Another
difference between the PROCLUS and ORCLUS models is the simplifying assumption in
the latter that the dimensionality of each subspace is fixed to the same value l. In the former
case, the value of l is simply the average dimensionality of the cluster-specific subspaces.

The ORCLUS algorithm uses a combination of hierarchical and k-means clustering in
conjunction with subspace refinement. While hierarchical merging algorithms are generally
more effective, they are expensive. Therefore, the algorithm uses hierarchical representatives
that are successively merged. The algorithm starts with kc = k0 initial seeds, denoted by S.

7.4. HIGH-DIMENSIONAL CLUSTERING 223

Algorithm ORCLUS(Data: D, Clusters: k, Dimensions: l)
begin
Sample set S of k0 > k points from D;
kc = k0; lc = d;
Set each Ei to the full data dimensionality;
α = 0.5; β = e−log(d/l)·log(1/α)/log(k0/k);
while (kc > k) do
begin
Assign each data point in D to closest seed in S using
projected distance in Ei to create Ci;

Re-center each seed in S to centroid of cluster Ci;
Use PCA to determine subspace Ei associated with Ci by selecting
smallest lc eigenvectors of covariance matrix of Ci;

kc = max{k, kc · α}; lc = max{l, lc · β};
Repeatedly merge clusters to reduce number of clusters to
the new reduced value of kc;

end;
Perform final assignment pass of points to clusters;
return cluster-subspace pairs (Ci, Ei) for each i ∈ {1 . . . k};

end

Figure 7.5: The ORCLUS algorithm

The current number of seeds, kc, are reduced over successive merging iterations. Methods
from representative-based clustering are used to assign data points to these seeds, except
that the distance of a data point to its seed is measured in its associated subspace Ei. Ini-
tially, the current dimensionality, lc, of each cluster is equal to the full data dimensionality.
The value lc is reduced gradually to the user-specified dimensionality l by successive reduc-
tion over different iterations. The idea behind this gradual reduction is that in the first
few iterations, the clusters may not necessarily correspond very well to the natural lower
dimensional subspace clusters in the data; so a larger subspace is retained to avoid loss of
information. In later iterations, the clusters are more refined, and therefore subspaces of
lower rank may be extracted.

The overall algorithm consists of a number of iterations, in each of which a sequence of
merging operations is alternated with a k-means style assignment with projected distances.
The number of current clusters is reduced by the factor α < 1, and the dimensionality of
current cluster Ci is reduced by β < 1 in a given iteration. The first few iterations correspond
to a higher dimensionality, and each successive iteration continues to peel off more and more
noisy subspaces for the different clusters. The values of α and β are related in such a way
that the reduction from k0 to k clusters occurs in the same number of iterations as the
reduction from l0 = d to l dimensions. The value of α is 0.5, and the derived value of β
is indicated in Fig. 7.5. The overall description of the algorithm is also illustrated in this
figure.

The overall procedure uses the three alternating steps of assignment, subspace recom-
putation, and merging in each iteration. Therefore, the algorithm uses concepts from both
hierarchical and k-means methods in conjunction with subspace refinement. The assign-
ment step assigns each data point to its closest seed, by comparing the projected distance

224 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

of a data point to the ith seed in S, using the subspace Ei. After the assignment, all the
seeds in S are re-centered to the centroids of the corresponding clusters. At this point, the
subspace Ei of dimensionality lc associated with each cluster Ci is computed. This is done
by using PCA on cluster Ci. The subspace Ei is defined by the lc orthonormal eigenvectors
of the covariance matrix of cluster Ci with the least eigenvalues. To perform the merging,
the algorithm computes the projected energy (variance) of the union of the two clusters
in the corresponding least spread subspace. The pair with the least energy is selected to
perform the merging. Note that this is a subspace generalization of the variance criterion
for hierarchical merging algorithms (see Sect. 6.4.1 of Chap. 6).

The algorithm terminates when the merging process over all the iterations has reduced
the number of clusters to k. At this point, the dimensionality lc of the subspace Ei associated
with each cluster Ci is also equal to l. The algorithm performs one final pass over the database
to assign data points to their closest seed based on the projected distance. Outliers are
handled during the final phase. A data point is considered an outlier when its projected
distance to the closest seed i is greater than the projected distance of other seeds to seed i
in subspace Ei.

A major computational challenge is that the merging technique requires the computation
of the eigenvectors of the union of clusters, which can be expensive. To efficiently perform the
merging, the ORCLUS approach extends the concept of cluster feature vectors from BIRCH
to covariance matrices. The idea is to store not only the moments in the cluster feature
vector but also the sum of the products of attribute values for each pair of dimensions.
The covariance matrix can be computed from this extended cluster feature vector. This
approach can be viewed as a covariance- and subspace-based generalization of the variance-
based merging implementation of Sect. 6.4.1 in Chap. 6. For details on this optimization,
the reader is referred to the bibliographic section.

Depending on the value of k0 chosen, the time complexity is dominated by either the
merges or the assignments. The merges require eigenvector computation, which can be
expensive. With an efficient implementation based on cluster feature vectors, the merges
can be implemented in O(k20 ·d ·(k0+d2)) time, whereas the assignment step always requires
O(k0 · n · d) time. This can be made faster with the use of optimized eigenvector compu-
tations. For smaller values of k0, the computational complexity of the method is closer
to k-means, whereas for larger values of k0, the complexity is closer to hierarchical meth-
ods. The ORCLUS algorithm does not assume the existence of an incrementally updatable
similarity matrix, as is common with bottom-up hierarchical methods. At the expense of
additional space, the maintenance of such a similarity matrix can reduce the O(k30 · d) term
to O(k20 · log(k0) · d).

7.5 Semisupervised Clustering

One of the challenges with clustering is that a wide variety of alternative solutions may
be found by various algorithms. The quality of these alternative clusterings may be ranked
differently by different internal validation criteria depending on the alignment between the
clustering criterion and validation criterion. This is a major problem with any unsupervised
algorithm. Semisupervision, therefore, relies on external application-specific criteria to guide
the clustering process.

It is important to understand that different clusterings may not be equally useful from
an application-specific perspective. The utility of a clustering result is, after all, based on the
ability to use it effectively for a given application. One way of guiding the clustering results

7.5. SEMISUPERVISED CLUSTERING 225

toward an application-specific goal is with the use of supervision. For example, consider
the case where an analyst wishes to segment a set of documents approximately along the
lines of the Open Directory Project (ODP),3 where users have already manually labeled
documents into a set of predefined categories. One may want to use this directory only as soft
guiding principle because the number of clusters and their topics in the analyst’s collection
may not always be exactly the same as in the ODP clusters. One way of incorporating
supervision is to download example documents from each category of ODP and mix them
with the documents that need to be clustered. This newly downloaded set of documents are
labeled with their category and provide information about how the features are related to
the different clusters (categories). The added set of labeled documents, therefore, provides
supervision to the clustering process in the same way that a teacher guides his or her
students toward a specific goal.

A different scenario is one in which it is known from background knowledge that certain
documents should belong to the same class, and others should not. Correspondingly, two
types of semisupervision are commonly used in clustering:

1. Pointwise supervision: Labels are associated with individual data points and provide
information about the category (or cluster) of the object. This version of the problem
is closely related to that of data classification.

2. Pairwise supervision: “Must-link” and “cannot-link” constraints are provided for the
individual data points. This provides information about cases where pairs of objects
are allowed to be in the same cluster or are forbidden to be in the same cluster,
respectively. This form of supervision is also sometimes referred to as constrained
clustering.

For each of these variations, a number of simple semisupervised clustering methods are
described in the following sections.

7.5.1 Pointwise Supervision

Pointwise supervision is significantly easier to address than pairwise supervision because
the labels associated with the data points can be used more naturally in conjunction with
existing clustering algorithms. In soft supervision, the labels are used as guidance, but
data points with different labels are allowed to mix. In hard supervision, data points with
different labels are not allowed to mix. Some examples of different ways of modifying existing
clustering algorithms are as follows:

1. Semisupervised clustering by seeding: In this case, the initial seeds for a k-means algo-
rithm are chosen as data points of different labels. These are used to execute a stan-
dard k-means algorithm. The biased initialization has a significant impact on the final
results, even when labeled data points are allowed to be assigned to a cluster whose
initial seed had a different label (soft supervision). In hard supervision, clusters are
explicitly associated with labels corresponding to their initial seeds. The assignment
of labeled data points is constrained so that such points can be assigned to a cluster
with the same label. In some cases, the weights of the unlabeled points are discounted
while computing cluster centers to increase the impact of supervision. The second
form of semisupervision is closely related to semisupervised classification, which is

3http://www.dmoz.org/.

http://www.dmoz.org/.

226 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

discussed in Chap. 11. An EM algorithm, which performs semisupervised classifica-
tion with labeled and unlabeled data, uses a similar approach. Refer to Sect. 11.6 of
Chap. 11 for a discussion of this algorithm. For more robust initialization, an unsu-
pervised clustering can be separately applied to each labeled data segment to create
the seeds.

2. EM algorithms: Because the EM algorithm is a soft version of the k-means method,
the changes required to EM methods are exactly identical to those in the case of k-
means. The initialization of the EM algorithm is performed with mixtures centered at
the labeled data points. In addition, for hard supervision, the posterior probabilities
of labeled data points are always set to 0 for mixture components that do not belong
to the same label. Furthermore, the unlabeled data points are discounted during com-
putation of model parameters. This approach is discussed in detail in Sect. 11.6 of
Chap. 11.

3. Agglomerative algorithms: Agglomerative algorithms can be generalized easily to the
semisupervised case. In cases where the merging allows the mixing of different labels
(soft supervision), the distance function between clusters during the clustering can
incorporate the similarity in their class label distributions across the two components
being merged by providing an extra credit to clusters with the same label. The amount
of this credit regulates the level of supervision. Many different choices are also available
to incorporate the supervision more strongly in the merging criterion. For example,
the merging criterion may require that only clusters containing the same label are
merged together (hard supervision).

4. Graph-based algorithms: Graph-based algorithms can be modified to work in the
semisupervised scenario by changing the similarity graph to incorporate supervision.
The edges joining data points with the same label have an extra weight of α. The
value of α regulates the level of supervision. Increased values of α will be closer to
hard supervision, whereas smaller values of α will be closer to soft supervision. All
other steps in the clustering algorithm remain identical. A different form of graph-
based supervision, known as collective classification, is used for the semisupervised
classification problem (cf. Sect. 19.4 of Chap. 19).

Thus, pointwise supervision is easily incorporated in most clustering algorithms.

7.5.2 Pairwise Supervision

In pairwise supervision, “must-link” and “cannot-link” constraints are specified between
pairs of objects. An immediate observation is that it is not necessary for a feasible and
consistent solution to exist for an arbitrary set of constraints. Consider the case where
three data points A, B, and C are such that (A,B), and (A,C) are both “must-link” pairs,
whereas (B,C) is a “cannot-link” pair. It is evident that no feasible clustering can be found
that satisfies all three constraints. The problem of finding clusters with pairwise constraints
is generally more difficult than one in which pointwise constraints are specified. In cases
where only “must-link” constraints are specified, the problem can be approximately reduced
to the case of pointwise supervision.

The k-means algorithm can be modified to handle pairwise supervision quite easily. The
basic idea is to start with an initial set of randomly chosen centroids. The data points are
processed in a random order for assignment to the seeds. Each data point is assigned to

7.6. HUMAN AND VISUALLY SUPERVISED CLUSTERING 227

its closest seed that does not violate any of the constraints implied by the assignments
that have already been executed. In the event that the data point cannot be assigned to
any cluster in a consistent way, the algorithm terminates. In this case, the clusters in the
last iteration where a feasible solution was found are reported. In some cases, no feasible
solution may be found even in the first iteration, depending on the choice of seeds. Therefore,
the constrained k-means approach may be executed multiple times, and the best solution
over these executions is reported. Numerous other methods are available in the literature,
both in terms of the kinds of constraints that are specified, and in terms of the solution
methodology. The bibliographic notes contain pointers to many of these methods.

7.6 Human and Visually Supervised Clustering

The previous section discussed ways of incorporating supervision in the input data in the
form of constraints or labels. A different way of incorporating supervision is to use direct
feedback from the user during the clustering process, based on an understandable summary
of the clusters.

The core idea is that semantically meaningful clusters are often difficult to isolate using
fully automated methods in which rigid mathematical formalizations are used as the only
criteria. The utility of clusters is based on their application-specific usability, which is often
semantically interpretable. In such cases, human involvement is necessary to incorporate the
intuitive and semantically meaningful aspects during the cluster discovery process. Cluster-
ing is a problem that requires both the computational power of a computer and the intuitive
understanding of a human. Therefore, a natural solution is to divide the clustering task in
such a way that each entity performs the task that it is most well suited to. In the interactive
approach, the computer performs the computationally intensive analysis, which is leveraged
to provide the user with an intuitively understandable summary of the clustering structure.
The user utilizes this summary to provide feedback about the key choices that should be
made by a clustering algorithm. The result of this cooperative technique is a system that
can perform the task of clustering better than either a human or a computer.

There are two natural ways of providing feedback during the clustering process:

1. Semantic feedback as an intermediate process in standard clustering algorithms: Such
an approach is relevant in domains where the objects are semantically interpretable
(e.g., documents or images), and the user provides feedback at specific stages in a
clustering algorithm when critical choices are made. For example, in a k-means algo-
rithm, a user may choose to drop some clusters during each iteration and manually
specify new seeds reflecting uncovered segments of the data.

2. Visual feedback in algorithms specifically designed for human–computer interaction:
In many high-dimensional data sets, the number of attributes is very large, and it is
difficult to associate direct semantic interpretability with the objects. In such cases,
the user must be provided visual representations of the clustering structure of the
data in different subsets of attributes. The user may leverage these representatives
to provide feedback to the clustering process. This approach can be viewed as an
interactive version of projected clustering methods.

In the following section, each of these different types of algorithms will be addressed in
detail.

228 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

7.6.1 Modifications of Existing Clustering Algorithms

Most clustering algorithms use a number of key decision steps in which choices need to be
made, such as the choice of merges in a hierarchical clustering algorithm, or the resolution
of close ties in assignment of data points to clusters. When these choices are made on the
basis of stringent and predefined clustering criteria, the resulting clusters may not reflect
the natural structure of clusters in the data. Therefore, the goal in this kind of approach
is to present the user with a small number of alternatives corresponding to critical choices
in the clustering process. Some examples of simple modifications of the existing clustering
algorithms are as follows:

1. Modifications to k-means and related methods: A number of critical decision points in
the k-means algorithm can be utilized to improve the clustering process. For example,
after each iteration, representative data points from each cluster can be presented
to the user. The user may choose to manually discard either clusters with very few
data points or clusters that are closely related to others. The corresponding seeds
may be dropped and replaced with randomly chosen seeds in each iteration. Such an
approach works well when the representative data points presented to the user have
clear semantic interpretability. This is true in many domains such as image data or
document data.

2. Modifications to hierarchical methods: In the bottom-up hierarchical algorithms, the
clusters are successively merged by selecting the closest pair for merging. The key
here is that if a bottom-up algorithm makes an error in the merging process, the
merging decision is final, resulting in a lower quality clustering. Therefore, one way
of reducing such mistakes is to present the users with the top-ranking choices for the
merge corresponding to a small number of different pairs of clusters. These choices
can be made by the user on the basis of semantic interpretability.

It is important to point out that the key steps at which a user may provide the feedback
depend on the level of semantic interpretability of the objects in the underlying clusters. In
some cases, such semantic interpretability may not be available.

7.6.2 Visual Clustering

Visual clustering is particularly helpful in scenarios, such as high-dimensional data, where
the semantic interpretability of the individual objects is low. In such cases, it is useful to
visualize lower dimensional projections of the data to determine subspaces in which the
data are clustered. The ability to discover such lower dimensional projections is based on
a combination of the computational ability of a computer and the intuitive feedback of the
user. IPCLUS is an approach that combines interactive projected clustering methods with
visualization methods derived from density-based methods.

One challenge with high-dimensional clustering is that the density, distribution, and
shapes of the clusters may be quite different in different data localities and subspaces. Fur-
thermore, it may not be easy to decide the optimum density threshold at which to separate
out the clusters in any particular subspace. This is a problem even for full-dimensional
clustering algorithms where any particular density threshold4 may either merge clusters or
completely miss clusters. While subspace clustering methods such as CLIQUE address these
issues by reporting a huge number of overlapping clusters, projected clustering methods such

4See discussion in Chap. 6 about Fig. 6.14.

7.6. HUMAN AND VISUALLY SUPERVISED CLUSTERING 229

Algorithm IPCLUS(Data Set: D, Polarization Points: k)
begin
while not(termination criterion) do
begin
Randomly sample k points Y1 . . . Yk from D;
Compute 2-dimensional subspace E polarized around Y1 . . . Yk;
Generate density profile in E and present to user;
Record membership statistics of clusters based on

user-specified density-based feedback;
end;
return consensus clusters from membership statistics;

end

Figure 7.6: The IPCLUS algorithm

as PROCLUS address these issues by making hard decisions about how the data should be
most appropriately summarized. Clearly, such decisions can be made more effectively by
interactive user exploration of these alternative views and creating a final consensus from
these different views. The advantage of involving the user is the greater intuition available
in terms of the quality of feedback provided to the clustering process. The result of this
cooperative technique is a system that can perform the clustering task better than either a
human or a computer.

The idea behind the Interactive Projected CLUStering algorithm (IPCLUS) is to provide
the user with a set of meaningful visualizations in lower dimensional projections together
with the ability to decide how to separate the clusters. The overall algorithm is illustrated
in Fig. 7.6. The interactive projected clustering algorithm works in a series of iterations;
in each, a projection is determined in which there are distinct sets of points that can be
clearly distinguished from one another. Such projections are referred to as well polarized.
In a well-polarized projection, it is easier for the user to clearly distinguish a set of clusters
from the rest of the data. Examples of the data density distribution of a well-polarized
projection and a poorly polarized projection are illustrated in Fig. 7.7a and b, respectively.

These polarized projections are determined by randomly selecting a set of k records
from the database that are referred to as the polarization anchors. The number of polariza-
tion anchors k is one of the inputs to the algorithm. A 2-dimensional subspace of the data
is determined such that the data are clustered around each of these polarization anchors.
Specifically, a 2-dimensional subspace is selected so that the mean square radius of assign-
ments of data points to the polarization points as anchors is minimized. Different projections
are repeatedly determined with different sampled anchors in which the user can provide feed-
back. A consensus clustering is then determined from the different clusterings generated by
the user over multiple subspace views of the data.

The polarization subspaces can be determined either in axis-parallel subspaces or arbi-
trary subspaces, although the former provides greater interpretability. The overall approach
for determining polarization subspaces starts with the full dimensionality and iteratively
reduces the dimensionality of the current subspace until a 2-dimensional subspace is
obtained. This is achieved by iteratively assigning data points to their closest subspace-
specific anchor points in each iteration, while discarding the most noisy (high variance)
dimensions in each iteration about the polarization points. The dimensionality is reduced

230 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

Figure 7.7: Polarizations of different quality and flexibility of user interaction

by a constant factor of 2 in each iteration. Thus, this is a k-medoids type approach, which
reduces the dimensionality of the subspaces for distance computation, but not the seeds in
each iteration. This typically results in the discovery of a 2-dimensional subspace that is
highly clustered around the polarization anchors. Of course, if the polarization anchors are
poorly sampled, then this will result in poorly separated clusters. Nevertheless, repeated
sampling of polarization points ensures that good subspaces will be selected in at least a
few iterations.

After the projection subspace has been found, kernel density estimation techniques can
be used to determine the data density at each point in a 2-dimensional grid of values in
the relevant subspace. The density values at these grid points are used to create a surface
plot. Examples of such plots are illustrated in Fig. 7.7. Because clusters correspond to dense
regions in the data, they are represented by peaks in the density profile. To actually separate
out the clusters, the user can visually specify density value thresholds that correspond to
noise levels at which clusters can be separated from one another. Specifically, a cluster may
be defined to be a connected region in the space with density above a certain noise threshold
τ that is specified by the user. This cluster may be of arbitrary shape, and the points
inside it can be determined. Note that when the density distribution varies significantly
with locality, different numbers, shapes, and sizes of clusters will be discovered by different
density thresholds. Examples of density thresholding are illustrated in Fig. 7.7c and 7.7d,

7.7. CLUSTER ENSEMBLES 231

where clusters of different numbers and shapes are discovered at different thresholds. It
is in this step that the user intuition is very helpful, both in terms of deciding which
polarized projections are most relevant, and in terms of deciding what density thresholds to
specify. If desired, the user may discard a projection altogether or specify multiple thresholds
in the same projection to discover clusters of different density in different localities. The
specification of the density threshold τ need not be done directly by value. The density
separator hyperplane can be visually superposed on the density profile with the help of a
graphical interface.

Each feedback of the user results in the generation of connected sets of points within
the density contours. These sets of points can be viewed as one or more binary “transac-
tions” drawn on the “item” space of data points. The key is to determine the consensus
clusters from these newly created transactions that encode user feedback. While the prob-
lem of finding consensus clusters from multiple clusterings will be discussed in detail in the
next section, a very simple way of doing this is to use either frequent pattern mining (to
find overlapping clusters) or a second level of clustering on the transactions to generate
nonoverlapping clusters. Because this new set of transactions encodes the user preferences,
the quality of the clusters found with such an approach will typically be quite high.

7.7 Cluster Ensembles

The previous section illustrated how different views of the data can lead to different solutions
to the clustering problem. This notion is closely related to the concept ofmultiview clustering
or ensemble clustering, which studies this issue from a broader perspective. It is evident
from the discussion in this chapter and the previous one that clustering is an unsupervised
problem with many alternative solutions. In spite of the availability of a large number of
validation criteria, the ability to truly test the quality of a clustering algorithm remains
elusive. The goal in ensemble clustering is to combine the results of many clustering models
to create a more robust clustering. The idea is that no single model or criterion truly captures
the optimal clustering, but an ensemble of models will provide a more robust solution.

Most ensemble models use the following two steps to generate the clustering solution:

1. Generate k different clusterings with the use of different models or data selection
mechanisms. These represent the different ensemble components.

2. Combine the different results into a single and more robust clustering.

The following section provides a brief overview of the different ways in which the alternative
clusterings can be constructed.

7.7.1 Selecting Different Ensemble Components

The different ensemble components can be selected in a wide variety of ways. They can be
either modelbased or data-selection based. In model-based ensembles, the different compo-
nents of the ensemble reflect different models, such as the use of different clustering models,
different settings of the same model, or different clusterings provided by different runs of
the same randomized algorithm. Some examples follow:

1. The different components can be a variety of models such as partitioning methods,
hierarchical methods, and density-based methods. The qualitative differences between
the models will be data set-specific.

232 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

2. The different components can correspond to different settings of the same algorithm.
An example is the use of different initializations for algorithms such as k-means or EM,
the use of different mixture models for EM, or the use of different parameter settings
of the same algorithm, such as the choice of the density threshold in DBSCAN. An
ensemble approach is useful because the optimum choice of parameter settings is also
hard to determine in an unsupervised problem such as clustering.

3. The different components could be obtained from a single algorithm. For example,
a 2-means clustering applied to the 1-dimensional embedding obtained from spectral
clustering will yield a different clustering solution for each eigenvector. Therefore, the
smallest k nontrivial eigenvectors will provide k different solutions that are often quite
different as a result of the orthogonality of the eigenvectors.

A second way of selecting the different components of the ensemble is with the use of data
selection. Data selection can be performed in two different ways:

1. Point selection: Different subsets of the data are selected, either via random sampling,
or by systematic selection for the clustering process.

2. Dimension selection: Different subsets of dimensions are selected to perform the clus-
tering. An example is the IPCLUS method discussed in the previous section.

After the individual ensemble components have been constructed, it is often a challenge to
combine the results from these different components to create a consensus clustering.

7.7.2 Combining Different Ensemble Components

After the different clustering solutions have been obtained, it is desired to create a robust
consensus from the different solutions. In the following section, some simple methods are
described that use the base clusterings as input for the generation of the final set of clusters.

7.7.2.1 Hypergraph Partitioning Algorithm

Each object in the data is represented by a vertex. A cluster in any of the ensemble compo-
nents is represented as a hyperedge. A hyperedge is a generalization of the notion of edge,
because it connects more than two nodes in the form of a complete clique. Any off-the-
shelf hypergraph clustering algorithm such as HMETIS [302] can be used to determine the
optimal partitioning. Constraints are added to ensure a balanced partitioning. One major
challenge with hypergraph partitioning is that a hyperedge can be “broken” by a partition-
ing in many different ways, not all of which are qualitatively equivalent. Most hypergraph
partitioning algorithms use a constant penalty for breaking a hyperedge. This can sometimes
be undesirable from a qualitative perspective.

7.7.2.2 Meta-clustering Algorithm

This is also a graph-based approach, except that vertices are associated with each cluster in
the ensemble components. For example, if there are k1 . . . kr different clusters in each of the r
ensemble components, then a total of

∑r
i=1 ki vertices will be created. Each vertex therefore

represents a set of data objects. An edge is added between a pair of vertices if the Jaccard
coefficient between the corresponding object sets is nonzero. The weight of the edge is equal
to the Jaccard coefficient. This is therefore an r-partite graph because there are no edges

7.8. PUTTING CLUSTERING TO WORK: APPLICATIONS 233

between two vertices from the same ensemble component. A graph partitioning algorithm
is applied to this graph to create the desired number of clusters. Each data point has r
different instances corresponding to the different ensemble components. The distribution
of the membership of different instances of the data point to the meta-partitions can be
used to determine its meta-cluster membership, or soft assignment probability. Balancing
constraints may be added to the meta-clustering phase to ensure that the resulting clusters
are balanced.

7.8 Putting Clustering to Work: Applications

Clustering can be considered a specific type of data summarization where the summaries of
the data points are constructed on the basis of similarity. Because summarization is a first
step to many data mining applications, such summaries can be widely useful. This section
will discuss the many applications of data clustering.

7.8.1 Applications to Other Data Mining Problems

Clustering is intimately related to other data mining problems and is used as a first summa-
rization step in these cases. In particular, it is used quite often for the data mining problems
of outlier analysis and classification. These specific applications are discussed below.

7.8.1.1 Data Summarization

Although many forms of data summarization, such as sampling, histograms, and wavelets
are available for different kinds of data, clustering is the only natural form of summariza-
tion based on the notion of similarity. Because the notion of similarity is fundamental to
many data mining applications, such summaries are very useful for similarity-based applica-
tions. Specific applications include recommendation analysis methods, such as collaborative
filtering. This application is discussed later in this chapter, and in Chap. 18 on Web mining.

7.8.1.2 Outlier Analysis

Outliers are defined as data points that are generated by a different mechanism than the
normal data points. This can be viewed as a complementary problem to clustering where the
goal is to determine groups of closely related data points generated by the same mechanism.
Therefore, outliers may be defined as data points that do not lie in any particular cluster.
This is of course a simplistic abstraction but is nevertheless a powerful principle as a starting
point. Sections 8.3 and 8.4 of Chap. 8 discuss how many algorithms for outlier analysis can
be viewed as variations of clustering algorithms.

7.8.1.3 Classification

Many forms of clustering are used to improve the accuracy of classification methods. For
example, nearest-neighbor classifiers report the class label of the closest set of training data
points to a given test instance. Clustering can help speed up this process by replacing the
data points with centroids of fine-grained clusters belonging to a particular class. In addition,
semisupervised methods can also be used to perform categorization in many domains such
as text. The bibliographic notes contain pointers to these methods.

234 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

7.8.1.4 Dimensionality Reduction

Clustering methods, such as nonnegative matrix factorization, are related to the problem
of dimensionality reduction. In fact, the dual output of this algorithm is a set of concepts,
together with a set of clusters. Another related approach is probabilistic latent semantic
indexing, which is discussed in Chap. 13 on mining text data. These methods show the
intimate relationship between clustering and dimensionality reduction and that common
solutions can be exploited by both problems.

7.8.1.5 Similarity Search and Indexing

A hierarchical clustering such as CF-Tree can sometimes be used as an index, at least from
a heuristic perspective. For any given target record, only the branches of the tree that are
closest to the relevant clusters are searched, and the most relevant data points are returned.
This can be useful in many scenarios where it is not practical to build exact indexes with
guaranteed accuracy.

7.8.2 Customer Segmentation and Collaborative Filtering

In customer segmentation applications, similar customers are grouped together on the basis
of the similarity of their profiles or other actions at a given site. Such segmentation methods
are very useful in cases where the data analysis is naturally focused on similar segments of
the data. A specific example is the case of collaborative filtering applications in which ratings
are provided by different customers based on their items of interest. Similar customers are
grouped together, and recommendations are made to the customers in a cluster on the basis
of the distribution of ratings in a particular group.

7.8.3 Text Applications

Many Web portals need to organize the material at their Web sites on the basis of simi-
larity in content. Text clustering methods can be useful for organization and browsing of
text documents. Hierarchical clustering methods can be used to organize the documents in
an exploration-friendly tree structure. Many hierarchical directories in Web sites are con-
structed with a combination of user labeling and semisupervised clustering methods. The
semantic insights provided by hierarchical cluster organizations are very useful in many
applications.

7.8.4 Multimedia Applications

With the increasing proliferation of electronic forms of multimedia data, such as images,
photos, and music, numerous methods have been designed in the literature for finding
clusters in such scenarios. Clusters of such multimedia data also provide the user the ability
to search for relevant objects in social media Web sites containing this kind of data. This
is because heuristic indexes can be constructed with the use of clustering methods. Such
indexes are useful for effective retrieval.

7.8.5 Temporal and Sequence Applications

Many forms of temporal data, such as time-series data, and Web logs can be clustered
for effective analysis. For example, clusters of sequences in a Web log provide insights

7.10. BIBLIOGRAPHIC NOTES 235

about the normal patterns of users. This can be used to reorganize the site, or optimize its
structure. In some cases, such information about normal patterns can be used to discover
anomalies that do not conform to the normal patterns of interaction. A related domain is
that of biological sequence data where clusters of sequences are related to their underlying
biological properties.

7.8.6 Social Network Analysis

Clustering methods are useful for finding related communities of users in social-networking
Web sites. This problem is known as community detection. Community detection has a wide
variety of other applications in network science, such as anomaly detection, classification,
influence analysis, and link prediction. These applications are discussed in detail in Chap. 19
on social network analysis.

7.9 Summary

This chapter discusses a number of advanced scenarios for cluster analysis. These scenarios
include the clustering of advanced data types such as categorical data, large-scale data,
and high-dimensional data. Many traditional clustering algorithms can be modified to work
with categorical data by making changes to specific criteria, such as the similarity function
or mixture model. Scalable algorithms require a change in algorithm design to reduce the
number of passes over the data. High-dimensional data is the most difficult case because of
the presence of many irrelevant features in the underlying data.

Because clustering algorithms yield many alternative solutions, supervision can help
guide the cluster discovery process. This supervision can either be in the form of background
knowledge or user interaction. In some cases, the alternative clusterings can be combined to
create a consensus clustering that is more robust than the solution obtained from a single
model.

7.10 Bibliographic Notes

The problem of clustering categorical data is closely related to that of finding suit-
able similarity measures [104, 182], because many clustering algorithms use similarity
measures as a subroutine. The k-modes and a fuzzy version of the algorithm may be
found in [135, 278]. Popular clustering algorithms include ROCK [238], CACTUS [220],
LIMBO [75], and STIRR [229]. The three scalable clustering algorithms discussed in this
book are CLARANS [407], BIRCH [549], and CURE [239]. The high-dimensional clus-
tering algorithms discussed in this chapter include CLIQUE [58], PROCLUS [19], and
ORCLUS [22]. Detailed surveys on many different types of categorical, scalable, and high-
dimensional clustering algorithms may be found in [32].

Methods for semisupervised clustering with the use of seeding, constraints, metric learn-
ing, probabilistic learning, and graph-based learning are discussed in [80, 81, 94, 329]. The
IPCLUS method presented in this chapter was first presented in [43]. Two other tools
that are able to discover clusters by visualizing lower dimensional subspaces include HD-
Eye [268] and RNavGraph [502]. The cluster ensemble framework was first proposed in [479].
The hypergraph partitioning algorithm HMETIS, which is used in ensemble clustering, was
proposed in [302]. Subsequently, the utility of the method has also been demonstrated for
high-dimensional data [205].

236 CHAPTER 7. CLUSTER ANALYSIS: ADVANCED CONCEPTS

7.11 Exercises

1. Implement the k-modes algorithm. Download the KDD CUP 1999 Network Intrusion
Data Set [213] from the UCI Machine Learning Repository, and apply the algorithm
to the categorical attributes of the data set. Compute the cluster purity with respect
to class labels.

2. Repeat the previous exercise with an implementation of the ROCK algorithm.

3. What changes would be required to the BIRCH algorithm to implement it with the use
of the Mahalanobis distance, to compute distances between data points and centroids?
The diameter of a cluster is computed as its RMS Mahalanobis radius.

4. Discuss the connection between high-dimensional clustering algorithms, such as PRO-
CLUS and ORCLUS, and wrapper models for feature selection.

5. Show how to create an implementation of the cluster feature vector that allows the
incremental computation of the covariance matrix of the cluster. Use this to create an
incremental and scalable version of the Mahalanobis k-means algorithm.

6. Implement the k-means algorithm, with an option of selecting any of the points from
the original data as seeds. Apply the approach to the quantitative attributes of the
data set in Exercise 1, and select one data point from each class as a seed. Compute
the cluster purity with respect to an implementation that uses random seeds.

7. Describe an automated way to determine whether a set of “must-link” and “cannot-
link” constraints are consistent.

Chapter 8

Outlier Analysis

“You are unique, and if that is not fulfilled, then
something has been lost.”—Martha Graham

8.1 Introduction

An outlier is a data point that is very different from most of the remaining data. Hawkins
formally defined the notion of an outlier as follows:

“An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism.”

Outliers can be viewed as a complementary concept to that of clusters. While clustering
attempts to determine groups of data points that are similar, outliers are individual data
points that are different from the remaining data. Outliers are also referred to as abnor-
malities, discordants, deviants, or anomalies in the data mining and statistics literature.
Outliers have numerous applications in many data mining scenarios:

1. Data cleaning: Outliers often represent noise in the data. This noise may arise as a
result of errors in the data collection process. Outlier detection methods are, therefore,
useful for removing such noise.

2. Credit card fraud: Unusual patterns of credit card activity may often be a result of
fraud. Because such patterns are much rarer than the normal patterns, they can be
detected as outliers.

3. Network intrusion detection: The traffic on many networks can be considered as a
stream of multidimensional records. Outliers are often defined as unusual records in
this stream or unusual changes in the underlying trends.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 8 237
c© Springer International Publishing Switzerland 2015

238 CHAPTER 8. OUTLIER ANALYSIS

Most outlier detection methods create a model of normal patterns. Examples of such models
include clustering, distance-based quantification, or dimensionality reduction. Outliers are
defined as data points that do not naturally fit within this normal model. The “outlierness”
of a data point is quantified by a numeric value, known as the outlier score. Consequently,
most outlier detection algorithms produce an output that can be one of two types:

1. Real-valued outlier score: Such a score quantifies the tendency for a data point to
be considered an outlier. Higher values of the score make it more (or, in some cases,
less) likely that a given data point is an outlier. Some algorithms may even output a
probability value quantifying the likelihood that a given data point is an outlier.

2. Binary label: A binary value is output, indicating whether or not a data point is an
outlier. This type of output contains less information than the first one because a
threshold can be imposed on the outlier scores to convert them into binary labels.
However, the reverse is not possible. Therefore, outlier scores are more general than
binary labels. Nevertheless, a binary score is required as the end result in most appli-
cations because it provides a crisp decision.

The generation of an outlier score requires the construction of a model of the normal pat-
terns. In some cases, a model may be designed to produce specialized types of outliers based
on a very restrictive model of normal patterns. Examples of such outliers are extreme values,
and they are useful only for certain specific types of applications. In the following, some of
the key models for outlier analysis are summarized. These will be discussed in more detail
in later sections.

1. Extreme values: A data point is an extreme value, if it lies at one of the two ends of a
probability distribution. Extreme values can also be defined equivalently for multidi-
mensional data by using a multivariate probability distribution, instead of a univariate
one. These are very specialized types of outliers but are useful in general outlier anal-
ysis because of their utility in converting scores to labels.

2. Clustering models: Clustering is considered a complementary problem to outlier anal-
ysis. The former problem looks for data points that occur together in a group, whereas
the latter problem looks for data points that are isolated from groups. In fact, many
clustering models determine outliers as a side-product of the algorithm. It is also
possible to optimize clustering models to specifically detect outliers.

3. Distance-based models: In these cases, the k-nearest neighbor distribution of a data
point is analyzed to determine whether it is an outlier. Intuitively, a data point is an
outlier, if its k-nearest neighbor distance is much larger than that of other data points.
Distance-based models can be considered a more fine-grained and instance-centered
version of clustering models.

4. Density-based models: In these models, the local density of a data point is used to
define its outlier score. Density-based models are intimately connected to distance-
based models because the local density at a given data point is low only when its
distance to its nearest neighbors is large.

5. Probabilistic models: Probabilistic algorithms for clustering are discussed in Chap. 6.
Because outlier analysis can be considered a complementary problem to clustering, it
is natural to use probabilistic models for outlier analysis as well. The steps are almost
analogous to those of clustering algorithms, except that the EM algorithm is used for

8.2. EXTREME VALUE ANALYSIS 239

clustering, and the probabilistic fit values are used to quantify the outlier scores of
data points (instead of distance values).

6. Information-theoretic models: These models share an interesting relationship with
other models. Most of the other methods fix the model of normal patterns and
then quantify outliers in terms of deviations from the model. On the other hand,
information-theoretic methods constrain the maximum deviation allowed from the
normal model and then examine the difference in space requirements for constructing
a model with or without a specific data point. If the difference is large, then this point
is reported as an outlier.

In the following sections, these different types of models will be discussed in detail. Repre-
sentative algorithms from each of these classes of algorithms will also be introduced.

It should be pointed out that this chapter defines outlier analysis as an unsupervised
problem in which previous examples of anomalies and normal data points are not available.
The supervised scenario, in which examples of previous anomalies are available, is a special
case of the classification problem. That case will be discussed in detail in Chap. 11.

This chapter is organized as follows. Section 8.2 discusses methods for extreme value
analysis. Probabilistic methods are introduced in Sect. 8.3. These can be viewed as mod-
ifications of EM-clustering methods that leverage the connections between the clustering
and outlier analysis problem for detecting outliers. This issue is discussed more formally in
Sect. 8.4. Distance-based models for outlier detection are discussed in Sect. 8.5. Density-
based models are discussed in Sect. 8.6. Information-theoretic models are addressed in
Sect. 8.7. The problem of cluster validity is discussed in Sect. 8.8. A summary is given in
Sect. 8.9.

8.2 Extreme Value Analysis

Extreme value analysis is a very specific kind of outlier analysis where the data points at the
outskirts of the data are reported as outliers. Such outliers correspond to the statistical tails
of probability distributions. Statistical tails are more naturally defined for 1-dimensional
distributions, although an analogous concept can be defined for the multidimensional case.

It is important to understand that extreme values are very specialized types of outliers;
in other words, all extreme values are outliers, but the reverse may not be true. The tradi-
tional definition of outliers is based on Hawkins’s definition of generative probabilities. For
example, consider the 1-dimensional data set corresponding to {1, 3, 3, 3, 50, 97, 97, 97, 100}.
Here, the values 1 and 100 may be considered extreme values. The value 50 is the mean of
the data set and is therefore not an extreme value. However, it is the most isolated point in
the data set and should, therefore, be considered an outlier from a generative perspective.

A similar argument applies to the case of multivariate data where the extreme values lie
in the multivariate tail area of the distribution. It is more challenging to formally define the
concept of multivariate tails, although the basic concept is analogous to that of univariate
tails. Consider the example illustrated in Fig. 8.1. Here, data point A may be considered
an extreme value, and also an outlier. However, data point B is also isolated, and should,
therefore, be considered an outlier. However, it cannot be considered a multivariate extreme
value.

Extreme value analysis has important applications in its own right, and, therefore, plays
an integral role in outlier analysis. An example of an important application of extreme value
analysis is that of converting outlier scores to binary labels by identifying those outlier scores
that are extreme values. Multivariate extreme value analysis is often useful in multicriteria

240 CHAPTER 8. OUTLIER ANALYSIS

Figure 8.1: Multivariate extreme values

outlier-detection algorithms where it can be utilized to unify multiple outlier scores into a
single value, and also generate a binary label as the output. For example, consider a meteo-
rological application where outlier scores of spatial regions have been generated on the basis
of analyzing their temperature and pressure variables independently. These evidences need
to be unified into a single outlier score for the spatial region, or a binary label. Multivariate
extreme value analysis is very useful in these scenarios. In the following discussion, methods
for univariate and multivariate extreme value analysis will be discussed.

8.2.1 Univariate Extreme Value Analysis

Univariate extreme value analysis is intimately related to the notion of statistical tail con-
fidence tests. Typically, statistical tail confidence tests assume that the 1-dimensional data
are described by a specific distribution. These methods attempt to determine the fraction
of the objects expected to be more extreme than the data point, based on these distribu-
tion assumptions. This quantification provides a level of confidence about whether or not a
specific data point is an extreme value.

How is the “tail” of a distribution defined? For distributions that are not symmetric, it is
often meaningful to talk about an upper tail and a lower tail, which may not have the same
probability. The upper tail is defined as all extreme values larger than a particular threshold,
and the lower tail is defined as all extreme values lower than a particular threshold. Consider
the density distribution fX(x). In general, the tail may be defined as the two extreme regions
of the distribution for which fX(x) ≤ θ, for some user defined threshold θ. Examples of the
lower tail and the upper tail for symmetric and asymmetric distributions are illustrated in
Fig. 8.2a and b, respectively. As evident from Fig. 8.2b, the area in the upper tail and the
lower tail of an asymmetric distribution may not be the same. Furthermore, some regions in
the interior of the distribution of Fig. 8.2b have density below the density threshold θ, but
are not extreme values because they do not lie in the tail of the distribution. The data points
in this region may be considered outliers, but not extreme values. The areas inside the upper
tail or lower tail in Fig. 8.2a and b represent the cumulative probability of these extreme
regions. In symmetric probability distributions, the tail is defined in terms of this area,
rather than a density threshold. However, the concept of density threshold is the defining
characteristic of the tail, especially in the case of asymmetric univariate or multivariate

8.2. EXTREME VALUE ANALYSIS 241

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

VALUE

P
R

O
B

A
B

IL
IT

Y
 D

E
N

S
IT

Y

UPPER
TAIL

LOWER
TAIL

DENSITY THRESHOLD

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

VALUE

P
R

O
B

A
B

IL
IT

Y
 D

E
N

S
IT

Y

OUTLIERS
BUT NOT
EXTREME VALUES

DENSITY
THRESHOLD

LOWER UPPER

(a) Symmetric distribution (b) Asymmetric distribution

Figure 8.2: Tails of a symmetric and asymmetric distribution

distributions. Some asymmetric distributions, such as an exponential distribution, may not
even have a tail at one end of the distribution.

A model distribution is selected for quantifying the tail probability. The most commonly
used model is the normal distribution. The density function fX(x) of the normal distribution
with mean μ and standard deviation σ is defined as follows:

fX(x) =
1

σ ·
√
2 · π

· e
−(x−μ)2

2·σ2 . (8.1)

A standard normal distribution is one in which the mean is 0, and the standard deviation σ
is 1. In some application scenarios, the mean μ and standard deviation σ of the distribution
may be known through prior domain knowledge. Alternatively, when a large number of data
samples is available, the mean and standard deviation may be estimated very accurately.
These can be used to compute the Z-value for a random variable. The Z-number zi of an
observed value xi can be computed as follows:

zi = (xi − μ)/σ. (8.2)

Large positive values of zi correspond to the upper tail, whereas large negative values
correspond to the lower tail. The normal distribution can be expressed directly in terms
of the Z-number because it corresponds to a scaled and translated random variable with
a mean 0 and standard deviation of 1. The normal distribution of Eq. 8.3 can be written
directly in terms of the Z-number, with the use of a standard normal distribution as follows:

fX(zi) =
1

σ ·
√
2 · π

· e
−z2i
2 . (8.3)

This implies that the cumulative normal distribution may be used to determine the area of
the tail that is larger than zi. As a rule of thumb, if the absolute values of the Z-number
are greater than 3, the corresponding data points are considered extreme values. At this
threshold, the cumulative area inside the tail can be shown to be less than 0.01% for the
normal distribution.

When a smaller number n of data samples is available for estimating the mean μ and
standard deviations σ, the aforementioned methodology can be used with a minor modifi-
cation. The value of zi is computed as before, and the student t-distribution with n degrees

242 CHAPTER 8. OUTLIER ANALYSIS

Figure 8.3: Multivariate extreme values

of freedom is used to quantify the cumulative distribution in the tail instead of the nor-
mal distribution. Note that, when n is large, the t-distribution converges to the normal
distribution.

8.2.2 Multivariate Extreme Values

Strictly speaking, tails are defined for univariate distributions. However, just as the uni-
variate tails are defined as extreme regions with probability density less than a particular
threshold, an analogous concept can also be defined for multivariate distributions. The
concept is more complex than the univariate case and is defined for unimodal probability
distributions with a single peak. As in the previous case, a multivariate Gaussian model
is used, and the corresponding parameters are estimated in a data-driven manner. The
implicit modeling assumption of multivariate extreme value analysis is that all data points
are located in a probability distribution with a single peak (i.e., single Gaussian cluster),
and data points in all directions that are as far away as possible from the center of the
cluster should be considered extreme values.

Let μ be the d-dimensional mean vector of a d-dimensional data set, and Σ be its
d × d covariance matrix. Thus, the (i, j)th entry of the covariance matrix is equal to the
covariance between the dimensions i and j. These represent the estimated parameters of
the multivariate Gaussian distribution. Then, the probability distribution f(X) for a d-
dimensional data point X can be defined as follows:

f(X) =
1√

|Σ| · (2 · π)(d/2)
· e− 1

2 ·(X−μ)Σ−1(X−μ)T . (8.4)

The value of |Σ| denotes the determinant of the covariance matrix. The term in the exponent
is half the square of the Mahalanobis distance between data point X and the mean μ of
the data. In other words, if Maha(X,μ,Σ) represents the Mahalanobis distance between
X and μ, with respect to the covariance matrix Σ, then the probability density function of
the normal distribution is as follows:

f(X) =
1√

|Σ| · (2 · π)(d/2)
· e− 1

2 ·Maha(X,μ,Σ)2 . (8.5)

8.2. EXTREME VALUE ANALYSIS 243

For the probability density to fall below a particular threshold, the Mahalanobis distance
needs to be larger than a particular threshold. Thus, the Mahalanobis distance to the mean
of the data can be used as an extreme-value score. The relevant extreme values are defined
by the multidimensional region of the data for which the Mahalanobis distance to the mean
is larger than a particular threshold. This region is illustrated in Fig. 8.3b. Therefore, the
extreme value score for a data point can be reported as the Mahalanobis distance between
that data point and the mean. Larger values imply more extreme behavior. In some cases,
one might want a more intuitive probability measure. Correspondingly, the extreme value
probability of a data pointX is defined by the cumulative probability of the multidimensional
region for which the Mahalanobis distance to the mean μ of the data is greater than that
between X and μ. How can one estimate this cumulative probability?

As discussed in Chap. 3, the Mahalanobis distance is similar to the Euclidean distance
except that it standardizes the data along uncorrelated directions. For example, if the
axis system of the data were to be rotated to the principal directions (shown in Fig. 8.3),
then the transformed coordinates in this new axis system would have no interattribute
correlations (i.e., a diagonal covariance matrix). The Mahalanobis distance is simply equal
to the Euclidean distance in such a transformed (axes-rotated) data set after dividing each
of the transformed coordinate values by the standard deviation along its direction. This
approach provides a neat way to model the probability distribution of the Mahalanobis
distance, and it also provides a concrete estimate of the cumulative probability in the
multivariate tail.

Because of the scaling by the standard deviation, each of the independent components
of the Mahalanobis distances along the principal correlation directions can be modeled as
a 1-dimensional standard normal distribution with mean 0 and variance 1. The sum of
the squares of d variables, drawn independently from standard normal distributions, will
result in a variable drawn from an χ2 distribution with d degrees of freedom. Therefore,
the cumulative probability of the region of the χ2 distribution with d degrees of freedom,
for which the value is greater than Maha(X,μ,Σ), can be reported as the extreme value
probability of X. Smaller values of the probability imply greater likelihood of being an
extreme value.

Intuitively, this approach models the data distribution along the various uncorrelated
directions as statistically independent normal distributions and standardizes them so as to
provide each such direction equal importance in the outlier score. In Fig. 8.3a, data point B
can be more reasonably considered a multivariate extreme value than data point A, on the
basis of the natural correlations in the data. On the other hand, the data point B is closer to
the centroid of the data (than data point A) on the basis of Euclidean distance but not on
the basis of the Mahalanobis distance. This shows the utility of the Mahalanobis distance
in using the underlying statistical distribution of the data to infer the outlier behavior of
the data points more effectively.

8.2.3 Depth-Based Methods

Depth-based methods are based on the general principle that the convex hull of a set of
data points represents the pareto-optimal extremes of this set. A depth-based algorithm
proceeds in an iterative fashion, where during the k-th iteration, all points at the corners
of the convex hull of the data set are removed. The index of the iteration k also provides
an outlier score where smaller values indicate a greater tendency for a data point to be
an outlier. These steps are repeated until the data set is empty. The outlier score may be
converted to a binary label by reporting all data points with depth at most r as outliers.

244 CHAPTER 8. OUTLIER ANALYSIS

Algorithm FindDepthOutliers(Data Set: D, Score Threshold: r)
begin
k = 1;
repeat
Find set S of corners of convex hull of D;
Assign depth k to points in S;
D = D − S;
k = k + 1;

until(D is empty);
Report points with depth at most r as outliers;

end

Figure 8.4: Depth-based methods

The value of r may itself need to be determined by univariate extreme value analysis. The
steps of the depth-based approach are illustrated in Fig. 8.4.

A pictorial illustration of the depth-based method is illustrated in Fig. 8.5. The process
can be viewed as analogous to peeling the different layers of an onion (as shown in Fig. 8.5b)
where the outermost layers define the outliers. Depth-based methods try to achieve the same
goal as the multivariate method of the previous section, but it generally tends to be less
effective both in terms of quality and computational efficiency. From a qualitative perspec-
tive, depth-based methods do not normalize for the characteristics of the statistical data
distribution, as is the case for multivariate methods based on the Mahalanobis distance. All
data points at the corners of a convex hull are treated equally. This is clearly not desirable,
and the scores of many data points are indistinguishable because of ties. Furthermore, the
fraction of data points at the corners of the convex hull generally increases with dimen-
sionality. For very high dimensionality, it may not be uncommon for the majority of the
data points to be located at the corners of the outermost convex hull. As a result, it is no
longer possible to distinguish the outlier scores of different data points. The computational
complexity of convex-hull methods increases significantly with dimensionality. The combi-
nation of qualitative and computational issues associated with this method make it a poor
alternative to the multivariate methods based on the Mahalanobis distance.

8.3 Probabilistic Models

Probabilistic models are based on a generalization of the multivariate extreme values analy-
sis methods discussed in Sect. 8.2.2. The Mahalanobis distance-based multivariate extreme
value analysis method can be viewed as a Gaussian mixture model with a single component
in the mixture. By generalizing this model to multiple mixture components, it is possible to
determine general outliers, rather than multivariate extreme values. This idea is intimately
related to the EM-clustering algorithm discussed in Sect. 6.5 of Chap. 6. At an intuitive
level, data points that do not naturally fit any cluster in the probabilistic sense may be
reported as outliers. The reader is referred to Sect. 6.5 of Chap. 6 for a more detailed
discussion of the EM algorithm, though a brief outline is provided here for convenience.

The broad principle of a mixture-based generative model is to assume that the data were
generated from a mixture of k distributions with the probability distributions G1 . . .Gk based
on the following process:

8.3. PROBABILISTIC MODELS 245

Figure 8.5: Depth-based outlier detection

1. Select a mixture component with prior probability αi, where i ∈ {1 . . . k}. Assume
that the rth one is selected.

2. Generate a data point from Gr.

This generative model will be denoted by M, and it generates each point in the data set D.
The data set D is used to estimate the parameters of the model. Although it is natural to use
Gaussians to represent each component of the mixture, other models may be used if desired.
This flexibility is very useful to apply the approach to different data types. For example, in
a categorical data set, a categorical probability distribution may be used for each mixture
component instead of the Gaussian distribution. After the parameters of the model have
been estimated, outliers are defined as those data points in D that are highly unlikely to be
generated by this model. Note that such an assumption exactly reflects Hawkins’s definition
of outliers, as stated at the beginning of this chapter.

Next, we discuss the estimation of the various parameters of the model such as the
estimation of different values of αi and the parameters of the different distributions Gr.
The objective function of this estimation process is to ensure that the full data D has the
maximum likelihood fit to the generative model. Assume that the density function of Gi is
given by f i(·). The probability (density function) of the data point Xj being generated by
the model is given by the following:

fpoint(Xj |M) =
k∑

i=1

αi · f i(Xj). (8.6)

Note that the density value fpoint(Xj |M) provides an estimate of the outlier score of the
data point. Data points that are outliers will naturally have low fit values. Examples of the
relationship of the fit values to the outlier scores are illustrated in Fig. 8.6. Data points A
and B will typically have very low fit to the mixture model and will be considered outliers
because the data points A and B do not naturally belong to any of the mixture components.
Data point C will have high fit to the mixture model and will, therefore, not be considered
an outlier. The parameters of the model M are estimated using a maximum likelihood
criterion, which is discussed below.

For data set D containing n data points, denoted by X1 . . . Xn, the probability density
of the data set being generated by model M is the product of the various point-specific

246 CHAPTER 8. OUTLIER ANALYSIS

Figure 8.6: Likelihood fit values versus outlier scores

probability densities:

fdata(D|M) =
n∏

j=1

fpoint(Xj |M). (8.7)

The log-likelihood fit L(D|M) of the data set D with respect to M is the logarithm of the
aforementioned expression, and can be (more conveniently) represented as a sum of values
over the different data points:

L(D|M) = log(
n∏

j=1

fpoint(Xj |M)) =
n∑

j=1

log(
k∑

i=1

αi · f i(Xj)). (8.8)

This log-likelihood fit needs to be optimized to determine the model parameters. This
objective function maximizes the fit of the data points to the generative model. For this
purpose, the EM algorithm discussed in Sect. 6.5 of Chap. 6 is used.

After the parameters of the model have been determined, the value of fpoint(Xj |M) (or
its logarithm) may be reported as the outlier score. The major advantage of such mixture
models is that the mixture components can also incorporate domain knowledge about the
shape of each individual mixture component. For example, if it is known that the data points
in a particular cluster are correlated in a certain way, then this fact can be incorporated
in the mixture model by fixing the appropriate parameters of the covariance matrix, and
learning the remaining parameters. On the other hand, when the available data is limited,
mixture models may overfit the data. This will cause data points that are truly outliers to
be missed.

8.4 Clustering for Outlier Detection

The probabilistic algorithm of the previous section provides a preview of the relationship
between clustering and outlier detection. Clustering is all about finding “crowds” of data
points, whereas outlier analysis is all about finding data points that are far away from
these crowds. Clustering and outlier detection, therefore, share a well-known complementary
relationship. A simplistic view is that every data point is either a member of a cluster or
an outlier. Clustering algorithms often have an “outlier handling” option that removes data

8.4. CLUSTERING FOR OUTLIER DETECTION 247

Figure 8.7: Small isolated groups of anomalies

points outside the clusters. The detection of outliers as a side-product of clustering methods
is, however, not an appropriate approach because clustering algorithms are not optimized for
outlier detection. Data points on the boundary regions of a cluster may also be considered
weak outliers but are rarely useful in most application-specific scenarios.

Clustering models do have some advantages as well. Outliers often tend to occur in small
clusters of their own. This is because the anomaly in the generating process may be repeated
a few times. As a result, a small group of related outliers may be created. An example of a
small set of isolated outliers is illustrated in Fig. 8.7. As will be discussed later, clustering
methods are generally robust to such scenarios because such groups often do not have the
critical mass required to form clusters of their own.

A simple way of defining the outlier score of a data point is to first cluster the data
set and then use the raw distance of the data point to its closest cluster centroid. One
can, however, do better when the clusters are elongated or have varying density over the
data set. As discussed in Chap. 3, the local data distribution often distorts the distances,
and, therefore, it is not optimal to use the raw distance. This broader principle is used in
multivariate extreme value analysis where the global Mahalanobis distance defines outlier
scores. In this case, the local Mahalanobis distance can be used with respect to the centroid
of the closest cluster.

Consider a data set in which k clusters have been discovered with the use of a clus-
tering algorithm. Assume that the rth cluster in d-dimensional space has a corresponding
d-dimensional mean vector μr, and a d× d covariance matrix Σr. The (i, j)th entry of this
matrix is the covariance between the dimensions i and j in that cluster. Then, the Maha-
lanobis distance Maha(X,μr,Σr) between a data point X and cluster centroid μr is defined
as follows:

Maha(X,μr,Σr) =
√
(X − μr)Σ−1

r (X − μr)T . (8.9)

This distance is reported as the outlier score. Larger values of the outlier score indicate a
greater outlier tendency. After the outlier score has been determined, univariate extreme
value analysis may be used to convert the scores to binary labels.

The justification for using the Mahalanobis distance is exactly analogous to the case of
extreme value analysis of multivariate distances, as discussed in Sect. 8.2. The only difference
is that the local cluster-specific Mahalanobis distances are more relevant to determination of

248 CHAPTER 8. OUTLIER ANALYSIS

general outliers, whereas global Mahalanobis distances are more relevant to determination of
specific types of outliers, such as extreme values. The use of the local Mahalanobis distance
also has an interesting connection to the likelihood fit criterion of EM algorithm where the
(squared) Mahalanobis distance occurs in the exponent of each Gaussian mixture. Thus,
the sum of the inverse exponentiated Mahalanobis distances of a data point to different
mixture component means (cluster means) are used to determine the outlier score in the
EM algorithm. Such a score can be viewed as a soft version of the score determined by hard
clustering algorithms.

Clustering methods are based on global analysis. Therefore, small, closely related groups
of data points will not form their own clusters in most cases. For example, the four isolated
points in Fig. 8.7 will not typically be considered a cluster. Most clustering algorithms
require a minimum critical mass for a set of data points to be considered a cluster. As a
result, these points will have a high outlier score. This means that clustering methods are
able to detect these small and closely related groups of data points meaningfully and report
them as outliers. This is not the case for some of the density-based methods that are based
purely on local analysis.

The major problem with clustering algorithms is that they are sometimes not able to
properly distinguish between a data point that is ambient noise and a data point that is a
truly isolated anomaly. Clearly, the latter is a much stronger anomaly than the former. Both
these types of points will not reside in a cluster. Therefore, the distance to the closest cluster
centroid will often not be very representative of their local distribution (or instance-specific
distribution). In these cases, distance-based methods are more effective.

8.5 Distance-Based Outlier Detection

Because outliers are defined as data points that are far away from the “crowded regions” (or
clusters) in the data, a natural and instance-specific way of defining an outlier is as follows:

The distance-based outlier score of an object O is its distance to its kth nearest neighbor.

The aforementioned definition, which uses the k-nearest neighbor distance, is the most
common one. Other variations of this definition are sometimes used, such as the average
distance to the k-nearest neighbors. The value of k is a user-defined parameter. Selecting a
value of k larger than 1 helps identify isolated groups of outliers. For example, in Fig. 8.7,
as long as k is fixed to any value larger than 3, all data points within the small groups of
closely related points will have a high outlier score. Note that the target data point, for
which the outlier score is computed, is itself not included among its k-nearest neighbors.
This is done to avoid scenarios where a 1-nearest neighbor method will always yield an
outlier score of 0.

Distance-based methods typically use a finer granularity of analysis than clustering
methods and can therefore distinguish between ambient noise and truly isolated anomalies.
This is because ambient noise will typically have a lower k-nearest neighbor distance than
a truly isolated anomaly. This distinction is lost in clustering methods where the distance
to the closest cluster centroid does not accurately reflect the instance-specific isolation of
the underlying data point.

The price of this better granularity is higher computational complexity. Consider a
data set D containing n data points. The determination of the k-nearest neighbor distance
requires O(n) time for each data point, when a sequential scan is used. Therefore, the

8.5. DISTANCE-BASED OUTLIER DETECTION 249

determination of the outlier scores of all data points may require O(n2) time. This is clearly
not a feasible option for very large data sets. Therefore, a variety of methods are used to
speed up the computation:

1. Index structures: Index structures can be used to determine kth nearest neighbor
distances efficiently. This is, however, not an option, if the data is high dimensional.
In such cases, the effectiveness of index structures tends to degrade.

2. Pruning tricks: In most applications, the outlier scores of all the data points are not
required. It may suffice to return binary labels for the top-r outliers, together with
their scores. The outlier scores of the remaining data points are irrelevant. In such
cases, it may be possible to terminate a k-nearest neighbor sequential scan for an
outlier candidate when its current upper bound estimate on the k-nearest neighbor
distance value falls below the rth best outlier score found so far. This is because such
a candidate is guaranteed to be not among the top-r outliers. This methodology is
referred to as the “early termination trick,” and it is described in detail later in this
section.

In some cases, it is also possible to combine the pruning approach with index structures.

8.5.1 Pruning Methods

Pruning methods are used only for the case where the top-r ranked outliers need to be
returned, and the outlier scores of the remaining data points are irrelevant. Thus, pruning
methods can be used only for the binary-decision version of the algorithm. The basic idea
in pruning methods is to reduce the time required for the k-nearest neighbor distance
computations by ruling out data points quickly that are obviously nonoutliers even with
approximate computation.

8.5.1.1 Sampling Methods

The first step is to pick a sample S of size s � n from the data D, and compute all pairwise
distances between the data points in sample S and those in database D. There are a total
of n · s such pairs. This process requires O(n · s) � O(n2) distance computations. Thus, for
each of the sampled points in S, the k-nearest neighbor distance is already known exactly.
The top rth ranked outlier in sample S is determined, where r is the number of outliers
to be returned. The score of the rth rank outlier provides a lower bound1 L on the rth
ranked outlier score over the entire data set D. For the data points in D−S, only an upper
bound V k(X) on the k-nearest neighbor distance is known. This upper bound is equal to
the k-nearest neighbor distance of each point in D − S to the sample S ⊂ D. However,
if this upper bound V k(X) is no larger than the lower bound L already determined, then
such a data point X ∈ D−S can be excluded from further consideration as a top-r outlier.
Typically, this will result in the removal of a large number of outlier candidates from D−S
immediately, as long as the underlying data set is clustered well. This is because most of
the data points in clusters will be removed, as long as at least one point from each cluster is
included in the sample S, and at least r points in S are located in somewhat sparse regions.
This can often be achieved with modest values of the sample size s in real-world data sets.
After removing these data points from D − S, the remaining set of points is R ⊆ D − S.
The k-nearest neighbor approach can be applied to a much smaller set of candidates R.

1Note that higher k-nearest neighbor distances indicate greater outlierness.

250 CHAPTER 8. OUTLIER ANALYSIS

The top-r ranked outliers in R∪S are returned as the final output. Depending on the level
of pruning already achieved, this can result in a very significant reduction in computational
time, especially when |R ∪ S| � |D|.

8.5.1.2 Early Termination Trick with Nested Loops

The approach discussed in the previous section can be improved even further by speeding
up the second phase of computing the k-nearest neighbor distances of each data point in
R. The idea is that the computation of the k-nearest neighbor distance of any data point
X ∈ R need not be followed through to termination once it has been determined that X
cannot possibly be among the top-r outliers. In such cases, the scan of the database D for
computation of the k-nearest neighbor of X can be terminated early.

Note that one already has an estimate (upper bound) V k(X) of the k-nearest neighbor
distance of every X ∈ R, based on distances to sample S. Furthermore, the k-nearest neigh-
bor distance of the rth best outlier in S provides a lower bound on the “cut-off” required
to make it to the top-r outliers. This lower-bound is denoted by L. This estimate V k(X) of
the k-nearest neighbor distance of X is further tightened (reduced) as the database D − S
is scanned, and the distance of X is computed to each point in D−S. Because this running
estimate V k(X) is always an upper bound on the true k-nearest neighbor distance of X, the
process of determining the k-nearest neighbor of X can be terminated as soon as V k(X)
falls below the known lower bound L on the top-r outlier distance. This is referred to as
early termination and provides significant computational savings. Then, the next data point
in R can be processed. In cases where early termination is not achieved, the data point X
will almost2 always be among the top-r (current) outliers. Therefore, in this case, the lower
bound L can be tightened (increased) as well, to the new rth best outlier score. This will
result in even better pruning when the next data point from R is processed to determine its
k-nearest neighbor distance value. To maximize the benefits of pruning, the data points in
R should not be processed in arbitrary order. Rather, they should be processed in decreas-
ing order of the initially sampled estimate V k(·) of the k-nearest neighbor distances (based
on S). This ensures that the outliers in R are found early on, and the global bound L is
tightened as fast as possible for even better pruning. Furthermore, in the inner loop, the
data points Y in D−S can be ordered in the opposite direction, based on increasing value
of V k(Y). Doing so ensures that the k-nearest neighbor distances are updated as fast as
possible, and the advantage of early termination is maximized. The nested loop approach
can also be implemented without the first phase3 of sampling, but such an approach will
not have the advantage of proper ordering of the data points processed. Starting with an
initial lower bound L on the rth best outlier score obtained from the sampling phase, the
nested loop is executed as follows:

2We say “almost,” because the very last distance computation for X may bring V (X) below L. This
scenario is unusual, but might occasionally occur.

3Most descriptions in the literature omit the first phase of sampling, which is very important for efficiency
maximization. A number of implementations in time-series analysis [306] do order the data points more
carefully but not with sampling.

8.5. DISTANCE-BASED OUTLIER DETECTION 251

for each X ∈ R do begin
for each Y ∈ D − S do begin
Update current k-nearest neighbor distance estimate V k(X) by
computing distance of Y to X;

if V k(X) ≤ L then terminate inner loop;
endfor
if V k(X) > L then
include X in current r best outliers and update L to
the new rth best outlier score;

endfor

Note that the k-nearest neighbors of a data point X do not include the data point itself.
Therefore, care must be taken in the nested loop structure to ignore the trivial cases where
X = Y while updating k-nearest neighbor distances.

8.5.2 Local Distance Correction Methods

Section 3.2.1.8 of Chap. 3 provides a detailed discussion of the impact of the local data
distribution on distance computation. In particular, it is shown that straightforward mea-
sures, such as the Euclidean distance, do not reflect the intrinsic distances between data
points when the density and shape of the clusters vary significantly with data locality. This
principle was also used in Sect. 8.4 to justify the use of the local Mahalanobis distance for
measuring the distances to cluster centroids, rather than the Euclidean distance. One of the
earliest methods that recognized this principle in the context of varying data density was
the Local Outlier Factor (LOF) method. A formal justification is based on the generative
principles of data sets, but only an intuitive understanding will be provided here. It should
be pointed out that the use of the Mahalanobis distance (instead of the Euclidean distance)
for multivariate extreme value analysis (Sect. 8.2.2) is also based on generative principles
of the likelihood of a data point conforming to the statistical properties of the underlying
distribution. The main difference is that the analysis was global in that case, whereas the
analysis is local in this case. The reader is also advised to revisit Sect. 3.2.1.8 of Chap. 3 for
a discussion of the impact of data distributions on intrinsic distances between data points.

To motivate the principles of local distance correction in the context of outlier analysis,
two examples will be used. One of these examples illustrates the impact of varying local
distribution density, whereas another example illustrates the impact of varying local cluster
shape. Both these aspects can be addressed with different kinds of local normalization of
distance computations. In Fig. 8.8a, two different clusters have been shown, one of which
is much sparser than the other. In this case, both data points A and B are clearly outliers.
While the outlier B will be easily detected by most distance-based algorithms, a challenge
arises in the detection of outlier A. This is because the nearest neighbor distance of many
data points in the sparser cluster is at least as large as the nearest neighbor distance
of outlier A. As a result, depending on the distance-threshold used, a k-nearest neighbor
algorithm will either falsely report portions of the sparse cluster, or will completely miss
outlier A. Simply speaking, the ranking of the outliers by distance-based algorithms is an
incorrect one. This is because the true distance of points in cluster A should be computed
in a normalized way, based on its local data distribution. This aspect is relevant to the
discussion in Sect. 3.2.1.8 of Chap. 3 on the impact of local data distributions on distance
function design, and it is important for many distance-based data mining problems. The key

252 CHAPTER 8. OUTLIER ANALYSIS

Figure 8.8: Impact of local variations in data distribution on distance-based outlier detection

issue here is the generative principle, that data point A is much less likely to be generated
by its closest (tightly knit) cluster than many slightly isolated data points belonging to the
relatively diffuse cluster are likely to be generated by their cluster. Hawkins’s definition of
outliers, stated at the beginning of this chapter, was formulated on the basis of generative
principles. It should be pointed out that the probabilistic EM algorithm of Sect. 8.3 does a
much better job at recognizing these generative differences. However, the probabilistic EM
method is often not used practically because of overfitting issues with smaller data sets. The
LOF approach is the first method that recognized the importance of incorporating these
generative principles in nonparametric distance-based algorithms.

This point can be emphasized further by examining clusters of different local shape and
orientation in Fig. 8.8b. In this case, a distance-based algorithm will report one of the data
points along the long axis of one of the elongated clusters, as the strongest outlier, if the
1-nearest neighbor distance is used. This data point is far more likely to be generated by its
closest cluster, than the outlier marked by “X.” However, the latter has a smaller 1-nearest
neighbor distance. Therefore, the significant problem with distance-based algorithms is that
they do not account for the local generative behavior of the underlying data. In this section,
two methods will be discussed for addressing this issue. One of them is LOF, and the other
is a direct generalization of the global Mahalanobis method for extreme value analysis. The
first method can adjust for the generative variations illustrated in Fig. 8.8a, and the second
method can adjust for the generative variations illustrated in Fig. 8.8b.

8.5.2.1 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) approach adjusts for local variations in cluster density
by normalizing distances with the average point-specific distances in a data locality. It
is often understood popularly as a density-based approach, although, in practice, it is a
(normalized) distance-based approach where the normalization factor corresponds to the
average local data density. This normalization is the key to addressing the challenges posed
by the scenario of Fig. 8.8a.

For a given data point X, let V k(X) be the distance to its k-nearest neighbor, and let
Lk(X) be the set of points within the k-nearest neighbor distance of X. The set Lk(X) will

8.5. DISTANCE-BASED OUTLIER DETECTION 253

typically contain k points, but may sometimes contain more than k points because of ties
in the k-nearest neighbor distance.

Then, the reachability distance Rk(X,Y) of object X with respect to Y is defined as the
maximum of the distance Dist(X,Y), between the pair (X,Y) and the k-nearest neighbor
distance of Y .

Rk(X,Y) = max{Dist(X,Y), V k(Y)} (8.10)

The reachability distance is not symmetric between X and Y . Intuitively, when Y is in a
dense region and the distance between X and Y is large, the reachability distance of X
with respect to it is equal to the true distance Dist(X,Y). On the other hand, when the
distances between X and Y are small, then the reachability distance is smoothed out by
the k-nearest neighbor distance of Y . The larger the value of k, the greater the smoothing.
Correspondingly, the reachability distances with respect to different points will also become
more similar. The reason for using this smoothing is that it makes the intermediate distance
computations more stable. This is especially important when the distances between X and
Y are small, and it will result in greater statistical fluctuations in the raw distances. At a
conceptual level, it is possible to define a version of LOF directly in terms of raw distances,
rather than reachability distances. However, such a version would be missing the stability
provided by smoothing.

The average reachability distance ARk(X) of data point X with respect to its neigh-
borhood Lk(X) is defined as the average of its reachability distances to all objects in its
neighborhood.

ARk(X) = MEANY ∈Lk(X)Rk(X,Y) (8.11)

Here, the MEAN function simply represents the mean value over the entire set Lk(X).
The Local Outlier Factor LOFk(X) is then equal to the mean ratio of ARk(X) to the
corresponding values of all points in the k-neighborhood of X.

LOFk(X) = MEANY ∈Lk(X)

ARk(X)
ARk(Y)

(8.12)

The use of distance ratios in the definition ensures that the local distance behavior is well
accounted for in this definition. As a result, the LOF values for the objects in a cluster
are often close to 1 when the data points in the cluster are homogeneously distributed. For
example, in the case of Fig. 8.8a, the LOF values of data points in both clusters will be
quite close to 1, even though the densities of the two clusters are different. On the other
hand, the LOF values of both the outlying points will be much higher because they will be
computed in terms of the ratios to the average neighbor reachability distances. In practice,
the maximum value of LOFk(X) over a range of different values of k is used as the outlier
score to determine the best size of the neighborhood.

One observation about the LOF method is that while it is popularly understood in
the literature as a density-based approach, it can be more simply understood as a relative
distance-based approach with smoothing. The smoothing is really a refinement to make
distance computations more stable. The basic LOF method will work reasonably well on
many data sets, even if the raw distances are used instead of reachability distances, for the
aforementioned computations of Eq. 8.11.

The LOF method, therefore, has the ability to adjust well to regions of varying density
because of this relative normalization in the denominator of each term of Eq. 8.12. In the
original presentation of the LOF algorithm (see bibliographic notes), the LOF is defined
in terms of a density variable. The density variable is loosely defined as the inverse of the

254 CHAPTER 8. OUTLIER ANALYSIS

average of the smoothed reachability distances. This is, of course, not a precise definition
of density. Density is traditionally defined in terms of the number of data points within a
specified area or volume. This book provides exactly the same definition of LOF but presents
it slightly differently by omitting the intermediate density variable. This is done both for
simplicity, and for a definition of LOF directly in terms of (normalized) distances. The real
connection of LOF to data density lies in its insightful ability to adjust to varying data
density with the use of relative distances. Therefore, this book has classified this approach
as a (normalized) distance-based method, rather than as a density-based method.

8.5.2.2 Instance-Specific Mahalanobis Distance

The instance-specific Mahalanobis distance is designed for adjusting to varying shapes of
the distributions in the locality of a particular data point, as illustrated in Fig. 8.8b. The
Mahalanobis distance is directly related to shape of the data distribution, although it is tra-
ditionally used in the global sense. Of course, it is also possible to use the local Mahalanobis
distance by using the covariance structure of the neighborhood of a data point.

The problem here is that the neighborhood of a data point is hard to define with the
Euclidean distance when the shape of the neighborhood cluster is not spherical. For exam-
ple, the use of the Euclidean distance to a data point is biased toward capturing the circular
region around that point, rather than an elongated cluster. To address this issue, an agglom-
erative approach is used to determine the k-neighborhood Lk(X) of a data point X. First,
data point X is added to Lk(X). Then, data points are iteratively added to Lk(X) that
have the smallest distance to their closest point in Lk(X). This approach can be viewed
as a special case of single-linkage hierarchical clustering methods, where singleton points
are merged with clusters. Single-linkage methods are well-known for creating clusters of
arbitrary shape. Such an approach tends to “grow” the neighborhood with the same shape
as the cluster. The mean μk(X) and covariance matrix Σk(X) of the neighborhood Lk(X)
are computed. Then, the instance-specific Mahalanobis score LMahak(X) of a data point
X provides its outlier score. This score is defined as the Mahalanobis distance of X to the
mean μk(X) of data points in Lk(X).

LMahak(X) = Maha(X,μk(X),Σk(X)) (8.13)

The only difference between this computation and that of the global Mahalanobis distance
for extreme value analysis is that the local neighborhood set Lk(X) is used as the “relevant”
data for comparison in the former. While the clustering approach of Sect. 8.4 does use a
Mahalanobis metric on the local neighborhood, the computation is subtly different in this
case. In the case of clustering-based outlier detection, a preprocessing approach predefines
a limited number of clusters as the universe of possible neighborhoods. In this case, the
neighborhood is constructed in an instance-specific way. Different points will have slightly
different neighborhoods, and they may not neatly correspond to a predefined cluster. This
additional granularity allows more refined analysis. At a conceptual level, this approach
computes whether data point X can be regarded as an extreme value with respect to its
local cluster. As in the case of the LOF method, the approach can be applied for different
values of k, and the highest outlier score for each data point can be reported.

If this approach is applied to the example of Fig. 8.8b, the method will correctly deter-
mine the outlier because of the local Mahalanobis normalization with the appropriate (local)
covariance matrix for each data point. No distance normalizations are necessary for vary-
ing data density (scenario of Fig. 8.8a) because the Mahalanobis distance already performs
these local normalizations under the covers. Therefore, such a method can be used for the

8.6. DENSITY-BASED METHODS 255

scenario of Fig. 8.8a as well. The reader is referred to the bibliographic notes for variations of
LOF that use the concept of varying local cluster shapes with agglomerative neighborhood
computation.

8.6 Density-Based Methods

Density-based methods are loosely based on similar principles as density-based clustering.
The idea is to determine sparse regions in the underlying data in order to report out-
liers. Correspondingly, histogram-based, grid-based, or kernel density-based methods can
be used. Histograms can be viewed as 1-dimensional special cases of grid-based methods.
These methods have not, however, found significant popularity because of their difficulty
in adjusting to variations of density in different data localities. The definition of density
also becomes more challenging with increasing dimensionality. Nevertheless, these meth-
ods are used more frequently in the univariate case because of their natural probabilistic
interpretation.

8.6.1 Histogram- and Grid-Based Techniques

Histograms are simple and easy to construct for univariate data, and are therefore used quite
frequently in many application domains. In this case, the data is discretized into bins, and
the frequency of each bin is estimated. Data points that lie in bins with very low frequency
are reported as outliers. If a continuous outlier score is desired, then the number of other
data points in the bin for data point X is reported as the outlier score for X. Therefore, the
count for a bin does not include the point itself in order to minimize overfitting for smaller
bin widths or smaller number of data points. In other words, the outlier score for each data
point is one less than its bin count.

In the context of multivariate data, a natural generalization is the use of a grid-structure.
Each dimension is partitioned into p equi-width ranges. As in the previous case, the number
of points in a particular grid region is reported as the outlier score. Data points that have
density less than τ in any particular grid region are reported as outliers. The appropriate
value of τ can be determined by using univariate extreme value analysis.

The major challenge with histogram-based techniques is that it is often hard to determine
the optimal histogram width well. Histograms that are too wide, or too narrow, will not
model the frequency distribution well. These are similar issues to those encountered with
the use of grid-structures for clustering. When the bins are too narrow, the normal data
points falling in these bins will be declared outliers. On the other hand, when the bins are
too wide, anomalous data points and high-density regions may be merged into a single bin.
Therefore, such anomalous data points may not be declared outliers.

A second issue with the use of histogram techniques is that they are too local in nature,
and often do not take the global characteristics of the data into account. For example,
for the case of Fig. 8.7, a multivariate grid-based approach may not be able to classify
an isolated group of data points as outliers, unless the resolution of the grid structure is
calibrated carefully. This is because the density of the grid only depends on the data points
inside it, and an isolated group of points may create an artificially dense grid cell when
the granularity of representation is high. Furthermore, when the density distribution varies
significantly with data locality, grid-based methods may find it difficult to normalize for
local variations in density.

256 CHAPTER 8. OUTLIER ANALYSIS

Finally, histogram methods do not work very well in high dimensionality because of
the sparsity of the grid structure with increasing dimensionality, unless the outlier score is
computed with respect to carefully chosen lower dimensional projections. For example, a d-
dimensional space will contain at least 2d grid-cells, and, therefore, the number of data points
expected to populate each cell reduces exponentially with increasing dimensionality. These
problems with grid-based methods are well known, and are also frequently encountered in
the context of other data mining applications such as clustering.

8.6.2 Kernel Density Estimation

Kernel density estimation methods are similar to histogram techniques in terms of building
density profiles, though the major difference is that a smoother version of the density
profile is constructed. In kernel density estimation, a continuous estimate of the density is
generated at a given point. The value of the density at a given point is estimated as the
sum of the smoothed values of kernel functions Kh(·) associated with each point in the data
set. Each kernel function is associated with a kernel width h that determines the level of
smoothing created by the function. The kernel estimation f(X) based on n data points of
dimensionality d, and kernel function Kh(·) is defined as follows:

f(X) =
1
n
·

n∑
i=1

Kh(X −Xi). (8.14)

Thus, each discrete point Xi in the data set is replaced by a continuous function Kh(·) that
peaks at Xi and has a variance determined by the smoothing parameter h. An example of
such a distribution is the Gaussian kernel with width h.

Kh(X −Xi) =
(

1√
2π · h

)d

· e−||X−Xi||2/(2h2) (8.15)

The estimation error is defined by the kernel width h, which is chosen in a data-driven man-
ner. It has been shown that for most smooth functionsKh(·), when the number of data points
goes to infinity, the estimate asymptotically converges to the true density value, provided
that the width h is chosen appropriately. The density at each data point is computed with-
out including the point itself in the density computation. The value of the density is reported
as the outlier score. Low values of the density indicate greater tendency to be an outlier.

Density-based methods have similar challenges as histogram- and grid-based techniques.
In particular, the use of a global kernel width h to estimate density may not work very well
in cases where there are wide variations in local density, such as those in Figs. 8.7 and 8.8.
This is because of the myopic nature of density-based methods, in which the variations in the
density distribution are not well accounted for. Nevertheless, kernel-density-based methods
can be better generalized to data with local variations, especially if the bandwidth is chosen
locally. As in the case of grid-based methods, these techniques are not very effective for
higher dimensionality. The reason is that the accuracy of the density estimation approach
degrades with increasing dimensionality.

8.7 Information-Theoretic Models

Outliers are data points that do not naturally fit the remaining data distribution. Therefore,
if a data set were to be somehow compressed with the use of the “normal” patterns in the

8.7. INFORMATION-THEORETIC MODELS 257

data distribution, the outliers would increase the minimum code length required to describe
it. For example, consider the following two strings:

ABABABABABABABABABABABABABABABABAB

ABABACABABABABABABABABABABABABABAB

The second string is of the same length as the first and is different at only a single position
containing the unique symbol C. The first string can be described concisely as “AB 17
times.” However, the second string has a single position corresponding to the symbol C.
Therefore, the second string can no longer be described as concisely. In other words, the
presence of the symbol C somewhere in the string increases its minimum description length.
It is also easy to see that this symbol corresponds to an outlier. Information-theoretic models
are based on this general principle because they measure the increase in model size required
to describe the data as concisely as possible.

Information-theoretic models can be viewed as almost equivalent to conventional
deviation-based models, except that the outlier score is defined by the model size for a
fixed deviation, rather than the deviation for a fixed model. In conventional models, out-
liers are always defined on the basis of a “summary” model of normal patterns. When a
data point deviates significantly from the estimations of the summary model, then this
deviation value is reported as the outlier score. Clearly, a trade-off exists between the size
of the summary model and the level of deviation. For example, if a clustering model is used,
then a larger number of cluster centroids (model size) will result in lowering the maximum
deviation of any data point (including the outlier) from its nearest centroid. Therefore, in
conventional models, the same clustering is used to compute deviation values (scores) for
the different data points. A slightly different way of computing the outlier score is to fix
the maximum allowed deviation (instead of the number of cluster centroids) and compute
the number of cluster centroids required to achieve the same level of deviation, with and
without a particular data point. It is this increase that is reported as the outlier score in the
information-theoretic version of the same model. The idea here is that each point can be
estimated by its closest cluster centroid, and the cluster centroids serve as a “code-book”
in terms of which the data is compressed in a lossy way.

Information-theoretic models can be viewed as a complementary version of conventional
models where a different aspect of the space-deviation trade-off curve is examined. Virtu-
ally every conventional model can be converted into an information-theoretic version by
examining the bi-criteria space-deviation trade-off in terms of space rather than deviation.
The bibliographic notes will also provide specific examples of each of the cases below:

1. The probabilistic model of Sect. 8.3 models the normal patterns in terms of genera-
tive model parameters such as the mixture means and covariance matrices. The space
required by the model is defined by its complexity (e.g., number of mixture com-
ponents), and the deviation corresponds to the probabilistic fit. In an information-
theoretic version of the model, the complementary approach is to examine the size of
the model required to achieve a fixed level of fit.

2. A clustering or density-based summarization model describes a data set in terms of
cluster descriptions, histograms or other summarized representations. The granularity
of these representations (number of cluster centroids, or histogram bins) controls the
space, whereas the error in approximating the data point with a central element of
the cluster (bin) defines the deviation. In conventional models, the size of the model
(number of bins or clusters) is fixed, whereas in the information-theoretic version, the

258 CHAPTER 8. OUTLIER ANALYSIS

maximum allowed deviation is fixed, and the required model size is reported as the
outlier score.

3. A frequent pattern mining model describes the data in terms of an underlying code-
book of frequent patterns. The larger the size of the code-book (by using frequent pat-
terns of lower support), the more accurately the data can be described. These models
are particularly popular, and some pointers are provided in the bibliographic notes.

All these models represent the data approximately in terms of individual condensed compo-
nents representing aggregate trends. In general, outliers increase the length of the descrip-
tion in terms of these condensed components to achieve the same level of approximation.
For example, a data set with outliers will require a larger number of mixture parame-
ters, clusters, or frequent patterns to achieve the same level of approximation. Therefore,
in information-theoretic methods, the components of these summary models are loosely
referred to as “code books.” Outliers are defined as data points whose removal results in
the largest decrease in description length for the same error. The actual construction of the
coding is often heuristic, and is not very different from the summary models used in conven-
tional outlier analysis. In some cases, the description length for a data set can be estimated
without explicitly constructing a code book, or building a summary model. An example is
that of the entropy of a data set, or the Kolmogorov complexity of a string. Readers are
referred to the bibliographic notes for examples of such methods.

While information-theoretic models are approximately equivalent to conventional models
in that they explore the same trade-off in a slightly different way, they do have an advantage
in some cases. These are cases where an accurate summary model of the data is hard to
explicitly construct, and measures such as the entropy or Kolmogorov complexity can be
used to estimate the compressed space requirements of the data set indirectly. In such cases,
information-theoretic methods can be useful. In cases where the summary models can be
explicitly constructed, it is better to use conventional models because the outlier scores
are directly optimized to point-specific deviations rather than the more blunt measure of
differential space impact. The bibliographic notes provide specific examples of some of the
aforementioned methods.

8.8 Outlier Validity

As in the case of clustering models, it is desirable to determine the validity of outliers
determined by a particular algorithm. Although the relationship between clustering and
outlier analysis is complementary, the measures for outlier validity cannot easily be designed
in a similar complementary way. In fact, validity analysis is much harder in outlier detection
than data clustering. The reasons for this are discussed in the next section.

8.8.1 Methodological Challenges

As in the case of data clustering, outlier analysis is an unsupervised problem. Unsupervised
problems are hard to validate because of the lack of external criteria, unless such criteria are
synthetically generated, or some rare aspects of real data sets are used as proxies. Therefore,
a natural question arises, as to whether internal criteria can be defined for outlier validation,
as is the case for data clustering.

However, internal criteria are rarely used in outlier analysis. While such criteria are well-
known to be flawed even in the context of data clustering, these flaws become significant

8.8. OUTLIER VALIDITY 259

enough to make these criteria unusable for outlier analysis. The reader is advised to refer
to Sect. 6.9.1 of Chap. 6 for a discussion of the challenges of internal cluster validity. Most
of these challenges are related to the fact that cluster validity criteria are derived from the
objective function criteria of clustering algorithms. Therefore, a particular validity measure
will favor (or overfit) a clustering algorithm using a similar objective function criterion.
These problems become magnified in outlier analysis because of the small sample solution
space. A model only needs to be correct on a few outlier data points to be considered a
good model. Therefore, the overfitting of internal validity criteria, which is significant even
in clustering, becomes even more problematic in outlier analysis. As a specific example,
if one used the k-nearest neighbor distance as an internal validity measure, then a pure
distance-based outlier detector will always outperform a locally normalized detector such
as LOF. This is, of course, not consistent with known experience in real settings, where
LOF usually provides more meaningful results. One can try to reduce the overfitting effect
by designing a validity measure which is different from the outlier detection models being
compared. However, this is not a satisfactory solution because significant uncertainty always
remains about the impact of hidden interrelationships between such measures and outlier
detection models. The main problem with internal measures is that the relative bias in
evaluation of various algorithms is consistently present, even when the data set is varied. A
biased selection of internal measures can easily be abused in algorithm benchmarking.

Internal measures are almost never used in outlier analysis, although they are often used
in clustering evaluation. Even in clustering, the use of internal validity measures is question-
able in spite of its wider acceptance. Therefore, most of the validity measures used for outlier
analysis are based on external measures such as the Receiver Operating Characteristic curve.

8.8.2 Receiver Operating Characteristic

Outlier detection algorithms are typically evaluated with the use of external measures where
the known outlier labels from a synthetic data set or the rare class labels from a real data set
are used as the ground-truth. This ground-truth is compared systematically with the outlier
score to generate the final output. While such rare classes may not always reflect all the
natural outliers in the data, the results are usually reasonably representative of algorithm
quality, when evaluated over many data sets.

In outlier detection models, a threshold is typically used on the outlier score to generate
a binary label. If the threshold is picked too restrictively to minimize the number of declared
outliers then the algorithm will miss true outlier points (false-negatives). On the other hand,
if the threshold is chosen in a more relaxed way, this will lead to too many false-positives.
This leads to a trade-off between the false-positives and false-negatives. The problem is
that the “correct” threshold to use is never known exactly in a real scenario. However, this
entire trade-off curve can be generated, and various algorithms can be compared over the
entire trade-off curve. One example of such a curve is the Receiver Operating Characteristic
(ROC) curve.

For any given threshold t on the outlier score, the declared outlier set is denoted by S(t).
As t changes, the size of S(t) changes as well. Let G represent the true set (ground-truth
set) of outliers in the data set. The true-positive rate, which is also referred to as the recall,
is defined as the percentage of ground-truth outliers that have been reported as outliers at
threshold t.

TPR(t) = Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

260 CHAPTER 8. OUTLIER ANALYSIS

Table 8.1: ROC construction with rank of ground-truth outliers

Algorithm Rank of ground-truth outliers

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5

The false positive rate FPR(t) is the percentage of the falsely reported positives out of
the ground-truth negatives. Therefore, for a data set D with ground-truth positives G, this
measure is defined as follows:

FPR(t) = 100 ∗ |S(t)− G|
|D − G| . (8.16)

The ROC curve is defined by plotting the FPR(t) on the X-axis, and TPR(t) on the Y -axis
for varying values of t. Note that the end points of the ROC curve are always at (0, 0) and
(100, 100), and a random method is expected to exhibit performance along the diagonal line
connecting these points. The lift obtained above this diagonal line provides an idea of the
accuracy of the approach. The area under the ROC curve provides a concrete quantitative
evaluation of the effectiveness of a particular method.

To illustrate the insights gained from these different graphical representations, consider
an example of a data set with 100 points from which 5 points are outliers. Two algorithms,
A and B, are applied to this data set that rank all data points from 1 to 100, with lower
rank representing greater propensity to be an outlier. Thus, the true-positive rate and false-
positive rate values can be generated by determining the ranks of the 5 ground-truth outlier
points. In Table 8.1, some hypothetical ranks for the five ground-truth outliers have been
illustrated for the different algorithms. In addition, the ranks of the ground-truth outliers for
a random algorithm have been indicated. The random algorithm outputs a random outlier
score for each data point. Similarly, the ranks for a “perfect oracle” algorithm, which ranks
the correct top 5 points as outliers, have also been illustrated in the table. The corresponding
ROC curves are illustrated in Fig. 8.9.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms, and the random
algorithm is inferior to all the other algorithms. On the other hand, algorithms A and B
show domination at different parts of the ROC curve. In such cases, it is hard to say that
one algorithm is strictly superior. From Table 8.1, it is clear that Algorithm A, ranks three
of the correct ground-truth outliers very highly, but the remaining two outliers are ranked
poorly. In the case of Algorithm B, the highest ranked outliers are not as well ranked as
the case of Algorithm A, though all five outliers are determined much earlier in terms of
rank threshold. Correspondingly, Algorithm A dominates on the earlier part of the ROC
curve whereas Algorithm B dominates on the later part. Some practitioners use the area
under the ROC curve as a proxy for the overall effectiveness of the algorithm, though such
a measure should be used very carefully because all parts of the ROC curve may not be
equally important for different applications.

8.9. SUMMARY 261

Figure 8.9: Receiver operating characteristic

8.8.3 Common Mistakes

A common mistake in benchmarking outlier analysis applications is that the area under the
ROC curve is used repeatedly to tune the parameters of the outlier analysis algorithm. Note
that such an approach implicitly uses the ground-truth labels for model construction, and
it is, therefore, no longer an unsupervised algorithm. For problems such as clustering and
outlier detection, it is not acceptable to use external labels in any way to tune the algorithm.
In the particular case of outlier analysis, the accuracy can be drastically overestimated with
such a tuning approach because the relative scores of a small number of outlier points have
a very large influence on the ROC curve.

8.9 Summary

The problem of outlier analysis is an important one because of its applicability to a variety
of problem domains. The common models in outlier detection include probabilistic models,
clustering models, distance-based models, density-based models, and information-theoretic
models. Among these, distance models are the most popular, but are computationally more
expensive. A number of speed-up tricks have been proposed to make these models much
faster. Local variations of distance-based models generally tend to be more effective because
of their sensitivity to the generative aspects of the underlying data. Information-theoretic
models are closely related to conventional models, and explore a different aspect of the
space-deviation trade-off than conventional models.

Outlier validation is a difficult problem because of the challenges associated with the
unsupervised nature of outlier detection, and the small sample-space problem. Typically,
external validation criteria are used. The effectiveness of an outlier analysis algorithm is
quantified with the use of the receiver operating characteristic curve that shows the trade-
off between the false-positives and false-negatives for different thresholds on the outlier
score. The area under this curve provides a quantitative evaluation of the outlier detection
algorithm.

262 CHAPTER 8. OUTLIER ANALYSIS

8.10 Bibliographic Notes

A number of books and surveys have been written on the problem of outlier analysis. The
classical books [89, 259] in this area have mostly been written from the perspective of
the statistics community. Most of these books were written before the wider adoption of
database technology and are therefore not written from a computational perspective. More
recently, this problem has been studied extensively by the computer science community.
These works consider practical aspects of outlier detection corresponding to the cases where
the data may be very large, or may have very high dimensionality. A recent book [5] also
studies this area from the perspective of the computer science community. Numerous surveys
have also been written that discuss the concept of outliers from different points of view,
methodologies, or data types [61, 84, 131, 378, 380]. Among these, the survey by Chandola et
al. [131] is the most recent and, arguably, the most comprehensive. It is an excellent review
that covers the work on outlier detection quite broadly from the perspective of multiple
communities.

The Z-value test is used commonly in the statistical literature, and numerous extensions,
such as the t-value test are available [118]. While this test makes the normal distribution
assumption for large data sets, it has been used fairly extensively as a good heuristic even
for data distributions that do not satisfy the normal distribution assumption.

A variety of distance-based methods for outlier detection are proposed in [319, 436], and
distance-correction methods for outlier detection are proposed in [109]. The determination
of arbitrarily-shape clusters in the context of the LOF algorithm is explored in [487]. The
agglomerative algorithm for discovering arbitrarily shaped neighborhoods, in the section on
instance-specific Mahalanobis distance, is based on that approach. However, this method
uses a connectivity-outlier factor, rather than the instance-specific Mahalanobis distance.
The use of the Mahalanobis distance as a model for outlier detection was proposed in [468],
though these methods are global, rather than local. A graph-based algorithm for local outlier
detection is discussed in [257]. The ORCLUS algorithm also shows how to determine outliers
in the presence of arbitrarily shaped clusters [22]. Methods for interpreting distance-based
outliers were first proposed in [320].

A variety of information-theoretic methods for outlier detection are discussed in [68,
102, 160, 340, 472]. Many of these different models can be viewed in a complementary
way to traditional models. For example, the work in [102] explores probabilistic methods
in the context of information-theoretic models. The works in [68, 472] use code books
of frequent-patterns for the modeling process. The connection between frequent patterns
and compression has been explored in [470]. The use of measures such as entropy and
Kolmogorov complexity for outlier analysis is explored in [340, 305]. The concept of coding
complexity is explored in [129] in the context of set-based sequences.

Evaluation methods for outlier analysis are essentially identical to the techniques used
in information retrieval for understanding precision-recall trade-offs, or in classification for
ROC curve analysis. A detailed discussion may be found in [204].

8.11 Exercises

1. Suppose a particular random variable has mean 3 and standard deviation 2. Compute
the Z-number for the values -1, 3. and 9. Which of these values can be considered the
most extreme value?

8.11. EXERCISES 263

2. Define the Mahalanobis-based extreme value measure when the d dimensions are sta-
tistically independent of one another, in terms of the dimension-specific standard
deviations σ1 . . . σd.

3. Consider the four 2-dimensional data points (0, 0), (0, 1), (1, 0), and (100, 100). Plot
them using mathematical software such as MATLAB. Which data point visually seems
like an extreme value? Which data point is reported by the Mahalanobis measure as
the strongest extreme value? Which data points are reported by depth-based measure?

4. Implement the EM algorithm for clustering, and use it to implement a computation
of the probabilistic outlier scores.

5. Implement the Mahalanobis k-means algorithm, and use it to implement a compu-
tation of the outlier score in terms of the local Mahalanobis distance to the closest
cluster centroids.

6. Discuss the connection between the algorithms implemented in Exercises 4 and 5.

7. Discuss the advantages and disadvantages of clustering models over distance-based
models.

8. Implement a naive distance-based outlier detection algorithm with no pruning.

9. What is the effect of the parameter k in k-nearest neighbor outlier detection? When
do small values of k work well and when do larger values of k work well?

10. Design an outlier detection approach with the use of the NMF method of Chap. 6.

11. Discuss the relative effectiveness of pruning of distance-based algorithms in data sets
which are (a) uniformly distributed, and (b) highly clustered with modest ambient
noise and outliers.

12. Implement the LOF-algorithm for outlier detection.

13. Consider the set of 1-dimensional data points {1, 2, 2, 2, 2, 2, 6, 8, 10, 12, 14}. What are
the data point(s) with the highest outlier score for a distance-based algorithm, using
k = 2? What are the data points with highest outlier score using the LOF algorithm?
Why the difference?

14. Implement the instance-specific Mahalanobis method for outlier detection.

15. Given a set of ground-truth labels, and outlier scores, implement a computer program
to compute the ROC curve for a set of data points.

16. Use the objective function criteria of various outlier detection algorithms to design
corresponding internal validity measures. Discuss the bias in these measures towards
favoring specific algorithms.

17. Suppose that you construct a directed k-nearest neighbor graph from a data set. How
can you use the degrees of the nodes to obtain an outlier score? What characteristics
does this algorithm share with LOF?

Chapter 9

Outlier Analysis: Advanced Concepts

“If everyone is thinking alike, then somebody
isn’t thinking.”—George S. Patton

9.1 Introduction

Many scenarios for outlier analysis cannot be addressed with the use of the techniques
discussed in the previous chapter. For example, the data type has a critical impact on the
outlier detection algorithm. In order to use an outlier detection algorithm on categorical
data, it may be necessary to change the distance function or the family of distributions used
in expectation–maximization (EM) algorithms. In many cases, these changes are exactly
analogous to those required in the context of the clustering problem.

Other cases are more challenging. For example, when the data is very high dimensional,
it is often difficult to apply outlier analysis because of the masking behavior of the noisy and
irrelevant dimensions. In such cases, a new class of methods, referred to as subspacemethods,
needs to be used. In these methods, the outlier analysis is performed in lower dimensional
projections of the data. In many cases, it is hard to discover these projections, and therefore
results from multiple subspaces may need to be combined for better robustness.

The combination of results from multiple models is more generally referred to as ensemble
analysis. Ensemble analysis is also used for other data mining problems such as clustering
and classification. In principle, ensemble analysis in outlier detection is analogous to that in
data clustering or classification. However, in the case of outlier detection, ensemble analysis
is especially challenging. This chapter will study the following three classes of challenging
problems in outlier analysis:

1. Outlier detection in categorical data: Because outlier models use notions such as near-
est neighbor computation and clustering, these models need to be adjusted to the data
type at hand. This chapter will address the changes required to handle categorical data
types.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 9 265
c© Springer International Publishing Switzerland 2015

266 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

2. High-dimensional data: This is a very challenging scenario for outlier detection because
of the “curse-of-dimensionality.” Many of the attributes are irrelevant and contribute
to the errors in model construction. A common approach to address these issues is
that of subspace outlier detection.

3. Outlier ensembles: In many cases, the robustness of an outlier detection algorithm
can be improved with ensemble analysis. This chapter will study the fundamental
principles of ensemble analysis for outlier detection.

Outlier analysis has numerous applications in a very wide variety of domains such as data
cleaning, fraud detection, financial markets, intrusion detection, and law enforcement. This
chapter will also study some of the more common applications of outlier analysis.

This chapter is organized as follows: Section 9.2 discusses outlier detection models for
categorical data. The difficult case of high-dimensional data is discussed in Sect. 9.3. Outlier
ensembles are studied in Sect. 9.4. A variety of applications of outlier detection are discussed
in Sect. 9.5. Section 9.6 provides the summary.

9.2 Outlier Detection with Categorical Data

As in the case of other problems in data mining, the type of the underlying data has a
significant impact on the specifics of the algorithm used for solving it. Outlier analysis is no
exception. However, in the case of outlier detection, the changes required are relatively minor
because, unlike clustering, many of the outlier detection algorithms (such as distance-based
algorithms) use very simple definitions of outliers. These definitions can often be modified
to work with categorical data with small modifications. In this section, some of the models
discussed in the previous chapter will be revisited for categorical data.

9.2.1 Probabilistic Models

Probabilistic models can be modified easily to work with categorical data. A probabilistic
model represents the data as a mixture of cluster components. Therefore, each component
of the mixture needs to reflect a set of discrete attributes rather than numerical attributes.
In other words, a generative mixture model of categorical data needs to be designed. Data
points that do not fit this mixture model are reported as outliers.

The k components of the mixture model are denoted by G1 . . .Gk. The generative process
uses the following two steps to generate each point in the d-dimensional data set D:

1. Select a mixture component with prior probability αi, where i ∈ {1 . . . k}.

2. If the rth component of the mixture was selected in the first step, then generate a
data point from Gr.

The values of αi denote the prior probabilities. An example of a model for the mixture
component is one in which the jth value of the ith attribute is generated by cluster m with
probability pijm. The set of all model parameters is collectively denoted by the notation Θ.

Consider a data point X containing the attribute value indices j1 . . . jd where the rth
attribute takes on the value jr. Then, the value of the generative probability gm,Θ(X) of a
data point from cluster m is given by the following expression:

gm,Θ(X) =
d∏

r=1

prjrm. (9.1)

9.2. OUTLIER DETECTION WITH CATEGORICAL DATA 267

The fit probability of the data point to the rth component is given by αr ·gr,Θ(X). Therefore,
the sum of the fits over all components is given by

∑k
r=1 αr ·gr,Θ(X). This fit represents the

likelihood of the data point being generated by the model. Therefore, it is used as the outlier
score. However, in order to compute this fit value, one needs to estimate the parameters Θ.
This is achieved with the EM algorithm.

The assignment (or posterior) probability P (Gm|X,Θ) for the mth cluster may be esti-
mated as follows:

P (Gm|X,Θ) =
αm · gm,Θ(X)∑k
r=1 αr · gr,Θ(X)

. (9.2)

This step provides a soft assignment probability of the data point to a cluster, and it
corresponds to the E-step.

The soft-assignment probability is used to estimate the probability pijm. While esti-
mating the parameters for cluster m, the weight of a data point is assumed to be equal
to its assignment probability P (Gm|X,Θ) to cluster m. The value αm is estimated to be
the average assignment probability to cluster m over all data points. For each cluster m,
the weighted number wijm of records for which the ith attribute takes on the jth possible
discrete value in cluster m is estimated. The value of wijm is estimated as the sum of the
posterior probabilities P (Gm|X,Θ) for all records X in which the ith attribute takes on the
jth value. Then, the value of the probability pijm may be estimated as follows:

pijm =
wijm∑

X∈D P (Gm|X,Θ)
. (9.3)

When the number of data points is small, the estimation of Eq. 9.3 can be difficult to
perform in practice. In such cases, some of the attribute values may not appear in a cluster
(or wijm ≈ 0). This situation can lead to poor parameter estimation, or overfitting. The
Laplacian smoothing method is commonly used to address such ill-conditioned probabilities.
Let mi be the number of distinct attribute values of categorical attribute i. In Laplacian
smoothing, a small value β is added to the numerator, and mi · β is added to the denom-
inator of Eq. 9.3. Here, β is a parameter that controls the level of smoothing. This form
of smoothing is also sometimes applied in the estimation of the prior probabilities αi when
the data sets are very small. This completes the description of the M-step. As in the case of
numerical data, the E- and M-steps are iterated to convergence. The maximum likelihood
fit value is reported as the outlier score.

9.2.2 Clustering and Distance-Based Methods

Most of the clustering- and distance-based methods can be generalized easily from numerical
to categorical data. Two main modifications required are as follows:

1. Categorical data requires specialized clustering methods that are typically different
from those of numerical data. This is discussed in detail in Chap. 7. Any of these mod-
els can be used to create the initial set of clusters. If a distance- or similarity-based clus-
tering algorithm is used, then the same distance or similarity function should be used
to compute the distance (similarity) of the candidate point to the cluster centroids.

2. The choice of the similarity function is important in the context of categorical data,
whether a centroid-based algorithm is used or a raw, distance-based algorithm is used.
The distance functions in Sect. 3.2.2 of Chap. 3 can be very useful for this task. The
pruning tricks for distance-based algorithms are agnostic to the choice of distance

268 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

function and can therefore be generalized to this case. Many of the local methods,
such as LOF, can be generalized to this case as well with the use of this modified
definition of distances.

Therefore, clustering and distance-based methods can be generalized to the scenario of
categorical data with relatively modest modifications.

9.2.3 Binary and Set-Valued Data

Binary data are a special kind of categorical data, which occur quite frequently in many
real scenarios. The chapters on frequent pattern mining were based on these kind of data.
Furthermore, both categorical and numerical data can always be converted to binary data.
One common characteristic of this domain is that, while the number of attributes is large,
the number of nonzero values of the attribute is small in a typical transaction.

Frequent pattern mining is used as a subroutine for the problem of outlier detection
in these cases. The basic idea is that frequent patterns are much less likely to occur in
outlier transactions. Therefore, one possible measure is to use the sum of all the supports
of frequent patterns occurring in a particular transaction. The total sum is normalized by
dividing with the number of frequent patterns. This provides an outlier score for the pattern.
Strictly speaking, the normalization can be omitted from the final score, because it is the
same across all transactions.

Let D be a transaction database containing the transactions denoted by T1 . . . TN . Let
s(X,D) represent the support of itemset X in D. Therefore, if FPS(D, sm) represents the
set of frequent patterns in the database D at minimum support level sm, then, the frequent
pattern outlier factor FPOF (Ti) of a transaction Ti ∈ D at minimum support sm is defined
as follows:

FPOF (Ti) =

∑
X∈FPS(D,sm),X⊆Ti

s(X,D)

|FPS(D, sm)| . (9.4)

Intuitively, a transaction containing a large number of frequent patterns with high support
will have a high value of FPOF (Ti). Such a transaction is unlikely to be an outlier because
it reflects the major patterns in the data. Therefore, lower scores indicate greater propensity
to be an outlier.

Such an approach is analogous to nonmembership of data points in clusters to define
outliers rather than determining the deviation or sparsity level of the transactions in a more
direct way. The problem with this approach is that it may not be able to distinguish between
truly isolated data points and ambient noise. This is because neither of these kinds of data
points will be likely to contain many frequent patterns. As a result, such an approach may
sometimes not be able to effectively determine the strongest anomalies in the data.

9.3 High-Dimensional Outlier Detection

High-dimensional outlier detection can be particularly challenging because of the varying
importance of the different attributes with data locality. The idea is that the causality of an
anomaly can be typically perceived in only a small subset of the dimensions. The remaining
dimensions are irrelevant and only add noise to the anomaly-detection process. Furthermore,
different subsets of dimensions may be relevant to different anomalies. As a result, full-
dimensional analysis often does not properly expose the outliers in high-dimensional data.

This concept is best understood with a motivating example. In Fig. 9.1, four different
2-dimensional views of a hypothetical data set have been illustrated. Each of these views

9.3. HIGH-DIMENSIONAL OUTLIER DETECTION 269

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

FEATURE X

F
E

A
T

U
R

E
 Y

X <− POINT A

X <− POINT B

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

FEATURE X

F
E

A
T

U
R

E
 Y X <− POINT A

X <− POINT B

(a) View 1 (b) View 2
Point A is outlier No outliers

2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

8

9

10

FEATURE X

F
E

A
T

U
R

E
 Y

X <− POINT A

X <− POINT B

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

FEATURE X

F
E

A
T

U
R

E
 Y

X <− POINT A

X <− POINT B

(c) View 3 (d) View 4
No outliers Point B is outlier

Figure 9.1: Impact of irrelevant attributes on outlier analysis

corresponds to a disjoint set of dimensions. As a result, these views look very different from
one another. Data point A is exposed as an outlier in the first view of the data set, whereas
point B is exposed as an outlier in the fourth view of the data set. However, data points A
and B are not exposed as outliers in the second and third views of the data set. These views
are therefore not very useful from the perspective of measuring the outlierness of either A or
B. Furthermore, from the perspective of any specific data point (e.g., point A), three of the
four views are irrelevant. Therefore, the outliers are lost in the random distributions within
these views when the distance measurements are performed in full dimensionality. In many
scenarios, the proportion of irrelevant views (features) may increase with dimensionality. In
such cases, outliers are lost in low-dimensional subspaces of the data because of irrelevant
attributes.

The physical interpretation of this situation is quite clear in many application-specific
scenarios. For example, consider a credit card fraud application in which different features
such as a customer’s purchase location, frequency of purchase, and size of purchase are being
tracked over time. In the case of one particular customer, the anomaly may be tracked by
examining the location and purchase frequency attributes. In another anomalous customer,

270 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

the size and timing of the purchase may be relevant. Therefore, all the features are useful
from a global perspective but only a small subset of features is useful from a local perspective.

The major problem here is that the dilution effects of the vast number of “normally
noisy” dimensions will make the detection of outliers difficult. In other words, outliers
are lost in low-dimensional subspaces when full-dimensional analysis is used because of the
masking and dilution effects of the noise in full-dimensional computations. A similar problem
is also discussed in Chap. 7 in the context of data clustering.

In the case of data clustering, this problem is solved by defining subspace-specific clus-
ters, or projected clusters. This approach also provides a natural path for outlier analysis in
high dimensions. In other words, an outlier can now be defined by associating it with one
or more subspaces that are specific to that outlier. While there is a clear analogy between
the problems of subspace clustering and subspace outlier detection, the difficulty levels of
the two problems are not even remotely similar.

Clustering is, after all, about the determination of frequent groups of data points, whereas
outliers are about determination of rare groups of data points. As a rule, statistical learning
methods find it much easier to determine frequent characteristics than rare characteristics of
a data set. This problem is further magnified in high dimensionality. The number of possible
subspaces of a d-dimensional data point is 2d. Of these, only a small fraction will expose
the outlier behavior of individual data points. In the case of clustering, dense subspaces can
be easily determined by aggregate statistical analysis of the data points. This is not true
of outlier detection, where the subspaces need to be explicitly explored in a way that is
specific to the individual data points.

An effective outlier detection method would need to search the data points and dimen-
sions in an integrated way to reveal the most relevant outliers. This is because different
subsets of dimensions may be relevant to different outliers, as is evident from the example
of Fig. 9.1. The integration of point and subspace exploration leads to a further expansion
in the number of possibilities that need to be examined for outlier analysis. This chapter
will explore two methods for subspace exploration, though many other methods are pointed
out in the bibliographic notes. These methods are as follows:

1. Grid-based rare subspace exploration: In this case, rare subspaces of the data are
explored after discretizing the data into a grid-like structure.

2. Random subspace sampling: In this case, subspaces of the data are sampled to discover
the most relevant outliers.

The following subsections will discuss each of these methods in detail.

9.3.1 Grid-Based Rare Subspace Exploration

Projected outliers are determined by finding localized regions of the data in low-dimensional
space that have abnormally low density. Because this is a density-based approach, a grid-
based technique is the method of choice. To do so, nonempty grid-based subspaces need to
be identified, whose density is very low. This is complementary to the definitions that were
used for subspace clustering methods such as CLIQUE. In those cases, frequent subspaces
were reported. It should be pointed out that the determination of frequent subspaces is
a much simpler problem than the determination of rare subspaces, simply because there
are many more rare subspaces than there are dense ones in a typical data set. This results
in a combinatorial explosion of the number of possibilities, and level-wise algorithms, such
as those used in CLIQUE, are no longer practical avenues for finding rare subspaces. The
first step in all these models is to determine a proper statistical definition of rare lower
dimensional projections.

9.3. HIGH-DIMENSIONAL OUTLIER DETECTION 271

9.3.1.1 Modeling Abnormal Lower Dimensional Projections

An abnormal lower dimensional projection is one in which the density of the data is excep-
tionally lower than the average. The concept of Z-number, introduced in the previous chap-
ter, comes in very handy in this respect. The first step is to discretize the data. Each
attribute of the data is divided into p ranges. These ranges are constructed on an equidepth
basis. In other words, each range contains a fraction f = 1/p of the records.

When k different intervals from different dimensions are selected, it creates a grid cell
of dimensionality k. The expected fraction of the data records in this grid cell is equal to
fk, if the attributes are statistically independent. In practice, the data are not statistically
independent, and, therefore, the distribution of the points in the cube differs significantly
from the expected value. Deviations that correspond to rare regions in the data are of
particular interest.

Let D be a database with n records, and dimensionality d. Under the independence
assumption mentioned earlier, the presence or absence of any point in a k-dimensional cube
is a Bernoulli random variable with probability fk. The expected number and standard
deviation of the points in a k-dimensional cube are given by n · fk and

√
n · fk · (1− fk).

When the value of n is large, the number of data points in a cube is a random variable
that is approximated by a normal distribution, with the aforementioned mean and standard
deviation.

Let R represent a cube in k-dimensional space, and nR represent the number of data
points inside this cube. Then, the sparsity coefficient S(R) of the cube R can be computed
as follows:

S(R) =
nR − n · fk√
n · fk · (1− fk)

. (9.5)

A negative value of the sparsity coefficient indicates that the presence of data points in the
cube is significantly lower than expected. Because nR is assumed to fit a normal distribution,
the normal distribution can be used to quantify the probabilistic level of significance of
its deviation. This is only a heuristic approximation because the assumption of a normal
distribution is generally not true in practice.

9.3.1.2 Grid Search for Subspace Outliers

As discussed earlier, level-wise algorithms are not practical for rare subspace discovery.
Another challenge is that lower dimensional projections provide no information about the
statistical behavior of combinations of dimensions, especially in the context of subspace
analysis.

For example, consider a data set containing student scores in an examination. Each
attribute represents a score in a particular subject. The scores in some of the subjects are
likely to be highly correlated. For example, a student scoring well in a course on probability
theory would likely also score well in a course on statistics. However, it would be extremely
uncommon to find a student who scored well in one, but not the other. The problem here
is that the individual dimensions provide no information about the combination of the
dimensions. The rare nature of outliers makes such unpredictable scenarios common. This
lack of predictability about the behavior of combinations of dimensions necessitates the use
of evolutionary (genetic) algorithms to explore the search space.

Genetic algorithms mimic the process of biological evolution to solve optimization prob-
lems. Evolution is, after all, nature’s great optimization experiment in which only the fittest
individuals survive, thereby leading to more “optimal” organisms. Correspondingly, every

272 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

solution to an optimization problem can be disguised as an individual in an evolutionary
system. The measure of fitness of this “individual” is equal to the objective function value
of the corresponding solution. The competing population with an individual is the group
of other solutions to the optimization problem. In general, fitter organisms are more likely
to survive and multiply in the population. This corresponds to the selection operator. The
other two operators that are commonly used are crossover and mutation. Each feasible solu-
tion is encoded in the form of a string, and is considered the chromosome representation of
the solution. This is also referred to as encoding.

Thus, each string is a solution that is associated with a particular objective function
value. In genetic algorithms, this objective function value is also referred to as the fitness
function. The idea here is that the selection operator should favor strings with better fitness
(objective function value). This is similar to hill-climbing algorithms, except that genetic
algorithms work with a population of solutions instead of a single one. Furthermore, instead
of only checking the neighborhood (as in hill-climbing methods), genetic algorithms use
crossover and mutation operators to explore a more complex concept of a neighborhood.

Therefore, evolutionary algorithms are set up to repeat the process of selection, crossover,
and mutation to improve the fitness (objective) function value. As the process of evolution
progresses, all the individuals in the population typically improve in fitness and also become
more similar to each other. The convergence of a particular position in the string is defined
as the stage at which a predefined fraction of the population has the same value for that
gene. The population is said to have converged when all positions in the string representation
have converged.

So, how does all this map to finding rare patterns? The relevant localized subspace
patterns can be easily represented as strings of length d, where d denotes the dimension-
ality of the data. Each position in the string represents the index of an equi-depth range.
Therefore, each position in the string can take on any value from 1 through p, where p is
the granularity of the discretization. It can also take on the value ∗ (“don’t care”), which
indicates that the dimension is not included in the subspace corresponding to that string.
The fitness of a string is based on the sparsity coefficient discussed earlier. Highly negative
values of the objective function (sparsity coefficient) indicate greater fitness because one is
searching for sparse subspaces. The only caveat is that the subspaces need to be nonempty
to be considered fit. This is because empty subspaces are not useful for finding anomalous
data points.

Consider a 4-dimensional problem in which the data have been discretized into ten
ranges. Then, the string will be of length 4, and each position can take on one of 11
possible values (including the “*”). Therefore, there are a total of 114 strings, each of which
corresponds to a subspace. For example, the string *2*6 is a 2-dimensional subspace on the
second and fourth dimensions.

The evolutionary algorithm uses the dimensionality of the projection k as an input
parameter. Therefore, for a d-dimensional data set, the string of length d will contain k
specified position and (d − k) “don’t care” positions. The fitness for the corresponding
solution may be computed using the sparsity coefficient discussed earlier. The evolutionary
search technique starts with a population of Q random solutions and iteratively uses the
processes of selection, crossover, and mutation to perform a combination of hill climbing,
solution recombination, and random search over the space of possible projections. The
process is continued until the population converges, based on the criterion discussed above.

At each stage of the algorithm, the m best projection solutions (most negative sparsity
coefficients) are kept track of. At the end of the algorithm, these solutions are reported as
the best projections in the data. The following operators are defined for selection, crossover,
and mutation:

9.3. HIGH-DIMENSIONAL OUTLIER DETECTION 273

1. Selection: This step achieves the hill climbing required by the method, though quite
differently from traditional hill-climbing methods. The copies of a solution are repli-
cated by ordering them by rank and biasing them in the population in the favor of
higher ranked solutions. This is referred to as rank selection. This results in a bias in
favor of more optimal solutions.

2. Crossover: The crossover technique is key to the success of the algorithm because it
implicitly defines the subspace exploration process. One solution is to use a uniform
two-point crossover to create the recombinant children strings. It can be viewed as the
process of combining the characteristics of two solutions to create two new recombinant
solutions. Traditional hill-climbing methods only test an adjacent solution for a single
string. The recombinant crossover approach examines a more complex neighborhood
by combining the characteristics of two different strings, to yield two new neighborhood
points.

The two-point crossover mechanism works by determining a point in the string at
random, called the crossover point, and exchanging the segments to the right of this
point. This is equivalent to creating two new subspaces, by sampling subspaces from
both solutions and combining them. However, such a blind recombination process
may create poor solutions too often. Therefore, an optimized crossover mechanism is
defined. In this mechanism, it is guaranteed that both children solutions correspond to
a feasible k-dimensional projection, and the children typically have high fitness values.
This is achieved by examining a subset of the different possibilities for recombination
and picking the best among them.

3. Mutation: In this case, random positions in the string are flipped with a predefined
mutation probability. Care must be taken to ensure that the dimensionality of the
projection does not change after the flipping process. This is an exact analogue of
traditional hill-climbing except that it is done to a population of solutions to ensure
robustness. Thus, while genetic algorithms try to achieve the same goals as hill climb-
ing, they do so in a different way to achieve better solutions.

At termination, the algorithm is followed by a postprocessing phase. In the postprocess-
ing phase, all data points containing the abnormal projections are reported by the algorithm
as the outliers. The approach also provides the relevant projections that provide the causal-
ity (or intensional knowledge) for the outlier behavior of a data point. Thus, this approach
also has a high degree of interpretability in terms of providing the reasoning for why a data
point should be considered an outlier.

9.3.2 Random Subspace Sampling

The determination of the rare subspaces is a very difficult task, as is evident from the
unusual genetic algorithm designed discussed in the previous section. A different way of
addressing the same problem is to explore many possible subspaces and examine if at least
one of them contains outliers. One such well known approach is feature bagging. The broad
approach is to repeatedly apply the following two steps:

1. Randomly, select between (d/2) and d features from the underlying data set in itera-
tion t to create a data set Dt in the tth iteration.

2. Apply the outlier detection algorithm Ot on the data set Dt to create score vectors St.

274 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

Virtually any algorithm Ot can be used to determine the outlier score, as long as the scores
across different instantiations are comparable. From this perspective, the LOF algorithm is
the ideal algorithm to use because of its normalized scores. At the end of the process, the
outlier scores from the different algorithms need to be combined. Two distinct methods are
used to combine the different subspaces:

1. Breadth-first approach: The ranking of the data points returned by the different algo-
rithms is used for combination purposes. The top-ranked outliers over all the different
algorithm executions are ranked first, followed by the second-ranked outliers (with
repetitions removed), and so on. Minor variations could exist because of tie-breaking
between the outliers within a particular rank. This is equivalent to using the best rank
for each data point over all executions as the final outlier score.

2. Cumulative sum approach: The outlier scores over the different algorithm executions
are summed up. The top-ranked outliers are reported on this basis.

At first sight, it seems that the random subspace sampling approach does not attempt to
optimize the discovery of subspaces to finding rare instances at all. However, the idea here
is that it is often hard to discover the rare subspaces anyway, even with the use of heuristic
optimization methods. The robustness resulting from multiple subspace sampling is clearly
a very desirable quality of the approach. Such methods are common in high-dimensional
analysis where multiple subspaces are sampled for greater robustness. This is related to the
field of ensemble analysis, which will be discussed in the next section.

9.4 Outlier Ensembles

Several algorithms in outlier analysis, such as the high-dimensional methods discussed in
the previous section, combine the scores from different executions of outlier detection algo-
rithms. These algorithms can be viewed as different forms of ensemble analysis. Some exam-
ples are enumerated below:

1. Parameter tuning in LOF: Parameter tuning in the LOF algorithm (cf. Sect. 8.5.2.1 of
Chap. 8) can be viewed as a form of ensemble analysis. This is because the algorithm
is executed over different values of the neighborhood size k, and the highest LOF
score over each data point is selected. As a result, a more robust ensemble model
is constructed. In fact, many parameter-tuning algorithms in outlier analysis can be
viewed as ensemble methods.

2. Random subspace sampling: The random subspace sampling method applies the
approach to multiple random subspaces of the data to determine the outlier scores as
a combination function of the original scores. Even the evolutionary high-dimensional
outlier detection algorithm can be shown to be an ensemble with a maximization
combination function.

Ensemble analysis is a popular approach in many data mining problems such as clustering,
classification, and outlier detection. On the other hand, ensemble analysis is not quite well
studied in the context of outlier analysis. Furthermore, ensemble analysis is particularly
important in the context of outlier analysis because of the rare nature of outliers, and a
corresponding possibility of overfitting. A typical outlier ensemble contains a number of
different components:

9.4. OUTLIER ENSEMBLES 275

1. Model components: These are the individual methodologies or algorithms that are
integrated to create an ensemble. For example, a random subspace sampling method
combines many LOF algorithms that are each applied to different subspace projec-
tions.

2. Normalization: Different methods may create outlier scores on very different scales.
In some cases, the scores may be in ascending order. In others, the scores may be in
descending order. In such cases, normalization is important for meaningfully combin-
ing the scores, so that the scores from different components are roughly comparable.

3. Model combination: The combination process refers to the approach used to integrate
the outlier score from different components. For example, in random subspace sam-
pling, the cumulative outlier score over different ensemble components is reported.
Other combination functions include the use of the maximum score, or the highest
rank of the score among all ensembles. It is assumed that higher ranks imply greater
propensity to be an outlier. Therefore, the highest rank is similar to the maximum
outlier score, except that the rank is used instead of the raw score. The highest-rank
combination function is also used by random subspace sampling.

Outlier ensemble methods can be categorized into different types, depending on the depen-
dencies among different components and the process of selecting a specific model. The
following section will study some of the common methods.

9.4.1 Categorization by Component Independence

This categorization examines whether or not the components are developed independently.

1. In sequential ensembles, a given algorithm or set of algorithms is applied sequentially,
so that future applications of the algorithm are influenced by previous applications.
This influence may be realized in terms of either modifications of the base data for
analysis, or in terms of the specific choices of the algorithms. The final result is either
a weighted combination of, or the final result of the last application of the outlier
algorithm component. The typical scenario for sequential ensembles is that of model
refinement, where successive iterations continue to improve a particular base model.

2. In independent ensembles, different algorithms, or different instantiations of the same
algorithm, are independently applied to either the complete data or portions of the
data. In other words, the various ensemble components are independent of the results
of each other’s executions.

In this section, both types of ensembles will be studied in detail.

9.4.1.1 Sequential Ensembles

In sequential ensembles, one or more outlier detection algorithms are applied sequentially
to either all or portions of the data. The idea is that the result of a particular algorithmic
execution may provide insights that may help refine future executions. Thus, depending
upon the approach, either the data set or the algorithm may be changed in sequential
executions. For example, consider the case where a clustering model is created for outlier
detection. Because outliers interfere with the robust cluster generation, one possibility would
be to apply the method to a successively refined data set after removing the obvious outliers
through the insights gained in earlier iterations of the ensemble. Typically, the quality of the

276 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

Algorithm SequentialEnsemble(Data Set: D
Base Algorithms: A1 . . .Ar)

begin
j = 1;
repeat
Pick an algorithm Qj ∈ {A1 . . .Ar} based

on results from past executions;
Create a new data set fj(D) from D based

on results from past executions;
Apply Qj to fj(D);
j = j + 1;

until(termination);
return outliers based on combinations of results

from previous executions;
end

Figure 9.2: Sequential ensemble framework

outliers in later iterations will be better. This also facilitates a more robust outlier detection
model. Thus, the sequential nature of the approach is used for successive refinement. If
desired, this approach can either be applied for a fixed number of times or used to converge
to a more robust solution. The broad framework of a sequential ensemble approach is
provided in Fig. 9.2.

It is instructive to examine the execution of the algorithm in Fig. 9.2 in some detail. In
each iteration, a successively refined algorithm may be used on a refined data set, based on
the results from previous executions. The function fj(·) is used to create a refinement of the
data, which could correspond to data subset selection, attribute-subset selection, or a generic
data transformation method. The generality of the aforementioned description ensures that
many natural variations of the method can be explored with the use of this ensemble. For
example, while the algorithm of Fig. 9.2 assumes that many different algorithms A1 . . .Ar

are available, it is possible to select only one of them, and use it on successive modifications
of the data. Sequential ensembles are often hard to use effectively in outlier analysis because
of the lack of available groundtruth in interpreting the intermediate results. In many cases,
the distribution of the outlier scores is used as a proxy for these insights.

9.4.1.2 Independent Ensembles

In independent ensembles, different instantiations of the algorithm or different portions of
the data are executed independently for outlier analysis. Alternatively, the same algorithm
may be applied, but with either a different initialization, parameter set, or even random
seed in the case of a randomized algorithm. The LOF method, the high-dimensional evolu-
tionary exploration method, and the random subspace sampling method discussed earlier
are all examples of independent ensembles. Independent ensembles are more common in
outlier analysis than sequential ensembles. In this case, the combination function requires
careful normalization, especially if the different components of the ensemble are heteroge-
neous. A general-purpose description of independent ensemble algorithms is provided in the
pseudocode description of Fig. 9.3.

9.4. OUTLIER ENSEMBLES 277

Algorithm IndependentEnsemble(Data Set: D
Base Algorithms: A1 . . .Ar)

begin
j = 1;
repeat
Pick an algorithm Qj ∈ {A1 . . .Ar};
Create a new data set fj(D) from D;
Apply Qj to fj(D);
j = j + 1;

until(termination);
return outliers based on combination of results

from previous executions;
end

Figure 9.3: Independent ensemble framework

The broad principle of independent ensembles is that different ways of looking at the
same problem provide more robust results that are not dependent on specific artifacts of a
particular algorithm or data set. Independent ensembles are used commonly for parameter
tuning of outlier detection algorithms. Another application is that of exploring outlier scores
over multiple subspaces, and then providing the best result.

9.4.2 Categorization by Constituent Components

A second way of categorizing ensemble analysis algorithms is on the basis of their constituent
components. In general, these two ways of categorization are orthogonal to one another, and
an ensemble algorithm may be any of the four combinations created by these two forms of
categorization.

Consider the case of parameter tuning in LOF and the case of subspace sampling in
the feature bagging method. In the first case, each model is an application of the LOF
model with a different parameter choice. Therefore, each component can itself be viewed
as an outlier analysis model. On the other hand, in the random subspace method, the
same algorithm is applied to a different selection (projection) of the data. In principle,
it is possible to create an ensemble with both types of components, though this is rarely
done in practice. Therefore, the categorization by component independence leads to either
model-centered ensembles, or data-centered ensembles.

9.4.2.1 Model-Centered Ensembles

Model-centered ensembles combine the outlier scores from different models built on the same
data set. The example of parameter tuning for LOF can be considered a model-centered
ensemble. Thus, it is an independent ensemble based on one form or categorization, and a
model-centered ensemble, based on another.

One advantage of using LOF in an ensemble algorithm is that the scores are roughly
comparable to one another. This may not be true for an arbitrary algorithm. For example,
if the raw k-nearest neighbor distance were used, the parameter tuning ensemble would
always favor larger values of k when using a combination function that picks the maximum

278 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

value of the outlier score. This is because the scores across different components would
not be comparable to one another. Therefore, it is crucial to use normalization during the
combination process. This is an issue that will be discussed in some detail in Sect. 9.4.3.

9.4.2.2 Data-Centered Ensembles

In data-centered ensembles, different parts, samples, or functions of the data are explored
to perform the analysis. A function of the data could include either a sample of the data
(horizontal sample) or a relevant subspace (vertical sample). The random subspace sampling
approach of the previous section is an example of a data-centered ensemble. More general
functions of the data are also possible, though are rarely used. Each function of the data may
provide different insights about a specific part of the data. This is the key to the success of
the approach. It should be pointed out that a data-centered ensemble may also be considered
a model-centered ensemble by incorporating a preprocessing phase that generates a specific
function of the data as a part of the model.

9.4.3 Normalization and Combination

The final stage of ensemble analysis is to put together the scores derived from the different
models. The major challenge in model combination arises when the scores across different
models are not comparable with one another. For example, in a model-centered ensemble, if
the different components of the model are heterogeneous, the scores will not be comparable
to one another. A k-nearest neighbor outlier score is not comparable to an LOF score.
Therefore, normalization is important. In this context, univariate extreme value analysis is
required to convert scores to normalized values. Two methods of varying levels of complexity
are possible:

1. The univariate extreme value analysis methods in Sect. 8.2.1 of Chap. 8 may be used.
In this case, a Z-number may be computed for each data point. While such a model
makes the normal distribution approximation, it still provides better scores than using
raw values.

2. If more refined scores are desired, and some insights are available about “typical”
distributions of outlier scores, then the mixture model of Sect. 6.5 in Chap. 6 may
be used to generate probabilistically interpretable fit values. The bibliographic notes
provide a specific example of one such method.

Another problem is that the ordering of the outlier scores may vary with the outlier detection
algorithm (ensemble component) at hand. In some algorithms, high scores indicate greater
outlierness, whereas the reverse is true in other algorithms. In the former case, the Z-number
of the outlier score is computed, whereas in the latter case, the negative of the Z-number is
computed. These two values are on the same scale and more easily comparable.

The final step is to combine the scores from the different ensemble components. The
method of combination may, in general, depend upon the composition of the ensemble. For
example, in sequential ensembles, the final outlier score may be the score from the last
execution of the ensemble. However, in general, the scores from the different components
are combined together with the use of a combination function. In the following, the conven-
tion assumed is that higher (normalized) scores are indicative of greater abnormality. Two
combination functions are particularly common.

9.5. PUTTING OUTLIERS TO WORK: APPLICATIONS 279

1. Maximum function: The score is the maximum of the outlier scores from the different
components.

2. Average function: The score is the average of the outlier scores from the different
components.

Both the LOF method and the random subspace sampling method use the maximum func-
tion, either on the outlier scores or the ranks1 of the outlier scores, to avoid dilution of the
score from irrelevant models. The LOF research paper [109] provides a convincing argu-
ment as to why the maximum combination function has certain advantages. Although the
average combination function will do better at discovering many “easy” outliers that are
discoverable in many ensemble components, the maximum function will do better at finding
well-hidden outliers. While there might be relatively fewer well-hidden outliers in a given
data set, they are often the most interesting ones in outlier analysis. A common misconcep-
tion2 is that the maximum function might overestimate the absolute outlier scores, or that
it might declare normal points as outliers because it computes the maximum score over
many ensemble components. This is not an issue because outlier scores are relative, and
the key is to make sure that the maximum is computed over an equal number of ensemble
components for each data point. Absolute scores are irrelevant because outlier scores are
comparable on a relative basis only over a fixed data set and not across multiple data sets.
If desired, the combination scores can be standardized to zero mean and unit variance. The
random subspace ensemble method has been implemented [334] with a rudimentary (rank-
based) maximization and an average-based combination function as well. The experimental
results show that the relative performance of the maximum and average combination func-
tions is data specific. Therefore, either the maximum or average scores can achieve better
performance, depending on the data set, but the maximum combination function will be
consistently better at discovering well-hidden outliers. This is the reason that many methods
such as LOF have advocated the use of the maximum combination function.

9.5 Putting Outliers to Work: Applications

The applications of outlier analysis are very diverse, and they extend to a variety of domains
such as fault detection, intrusion detection, financial fraud, and Web log analytics. Many of
these applications are defined for complex data types, and cannot be fully solved with the
methodologies introduced in this chapter. Nevertheless, it will be evident from the discussion
in later chapters that analogous methodologies can be defined for complex data types. In
many cases, other data types can be converted to multidimensional data for analysis.

9.5.1 Quality Control and Fault Detection

Numerous applications arise in outlier analysis in the context of quality control and fault
detection. Some of these applications typically require simple univariate extreme value anal-
ysis, whereas others require more complex methods. For example, anomalies in the manu-
facturing process may be detected by evaluating the number of defective units produced by
each machine in a day. When the number of defective units is too large, it can be indicative
of an anomaly. Univariate extreme value analysis is useful in such scenarios.

1In the case of ranks, if the maximum function is used, then outliers occurring early in the ranking are
assigned larger rank values. Therefore, the most abnormal data point is assigned a score (rank) of n out of
n data points.

2This is a common misunderstanding of the Bonferroni principle [343].

280 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

Other applications include the detection of faults in machine engines, where the engine
measurements are tracked to determine faults. The system may be continuously monitored
on a variety of parameters such as rotor speed, temperature, pressure, performance, and so
on. It is desired to detect a fault in the engine system as soon as it occurs. Such applications
are often temporal, and the outlier detection approach needs to be adapted to temporal data
types. These methods will be discussed in detail in Chaps. 14 and 15.

9.5.2 Financial Fraud and Anomalous Events

Financial fraud is one of the more common applications of outlier analysis. Such outliers may
arise in the context of credit card fraud, insurance transactions, and insider trading. A credit
card company maintains the data corresponding to the card transactions by the different
users. Each transaction contains a set of attributes corresponding to the user identifier,
amount spent, geographical location, and so on. It is desirable to determine fraudulent
transactions from the data. Typically, the fraudulent transactions often show up as unusual
combinations of attributes. For example, high frequency transactions in a particular location
may be more indicative of fraud. In such cases, subspace analysis can be very useful because
the number of attributes tracked is very large, and only a particular subset of attributes may
be relevant to a specific user. A similar argument applies to the case of related applications
such as insurance fraud.

More complex temporal scenarios can be captured with the use of time-series data
streams. An example is the case of financial markets, where the stock tickers correspond
to the movements of different stocks. A sudden movement, or an anomalous crash, may be
detected with the use of temporal outlier detection methods. Alternatively, time-series data
may be transformed to multidimensional data with the use of the data portability methods
discussed in Chap. 2. A particular example is wavelet transformation. The multidimensional
outlier detection techniques discussed in this chapter can be applied to the transformed data.

9.5.3 Web Log Analytics

The user behavior at different Web sites is often tracked in an automated way. The anoma-
lies in these behaviors may be determined with the use of Web log analytics. For example,
consider a user trying to break into a password-protected Web site. The sequence of actions
performed by the user is unusual, compared to the actions of the majority of users that are
normal. The most effective methods for outlier detection work with optimized models for
sequence data (see Chap. 15). Alternatively, sequence data can be transformed to multidi-
mensional data, using a variation of the wavelet method, as discussed in Chap. 2. Anomalies
can be detected on the transformed multidimensional data.

9.5.4 Intrusion Detection Applications

Intrusions correspond to different kinds of malicious security violations over a network
or a computer system. Two common scenarios are host-based intrusions, and network-based
intrusions. In host-based intrusions, the operating system call logs of a computer system are
analyzed to determine anomalies. Such applications are typically discrete sequence mining
applications that are not very different from Web log analytics. In network-based intrusions,
the temporal relationships between the data values are much weaker, and the data can be
treated as a stream of multidimensional data records. Such applications require streaming
outlier detection methods, which are addressed in Chap. 12.

9.7. BIBLIOGRAPHIC NOTES 281

9.5.5 Biological and Medical Applications

Most of the data types produced in the biological data are complex data types. Such data
types are studied in later chapters. Many diagnostic tools, such as sensor data and medical
imaging, produce one or more complex data types. Some examples are as follows:

1. Many diagnostic tools used commonly in emergency rooms, such as electrocardiogram
(ECG), are temporal sensor data. Unusual shapes in these readings may be used to
make predictions.

2. Medical imaging applications are able to store 2-dimensional and 3-dimensional spa-
tial representations of various tissues. Examples include magnetic resonance imaging
(MRI) and computerized axial tomography (CAT) scans. These representations may
be utilized to determine anomalous conditions.

3. Genetic data are represented in the form of discrete sequences. Unusual mutations
are indicative of specific diseases, the determination of which are useful for diagnostic
and research purposes.

Most of the aforementioned applications relate to the complex data types, and are discussed
in detail later in this book.

9.5.6 Earth Science Applications

Anomaly detection is useful in detecting anomalies in earth science applications such as the
unusual variations of temperature and pressure in the environment. These variations can be
used to detect unusual changes in the climate, or important events, such as the detection
of hurricanes. Another interesting application is that of determining land cover anomalies,
where interesting changes in the forest cover patterns are determined with the use of outlier
analysis methods. Such applications typically require the use of spatial outlier detection
methods, which are discussed in Chap. 16.

9.6 Summary

Outlier detection methods can be generalized to categorical data with the use of simi-
lar methodologies that are used for cluster analysis. Typically, it requires a change in the
mixture model for probabilistic models, and a change in the distance function for distance-
based models. High-dimensional outlier detection is a particularly difficult case because
of the large number of irrelevant attributes that interfere with the outlier detection pro-
cess. Therefore, subspace methods need to be designed. Many of the subspace exploration
methods use insights from multiple views of the data to determine outliers. Most high-
dimensional methods are ensemble methods. Ensemble methods can be applied beyond
high-dimensional scenarios to applications such as parameter tuning. Outlier analysis has
numerous applications to diverse domains, such as fault detection, financial fraud, Web log
analytics, medical applications, and earth science. Many of these applications are based on
complex data types, which are discussed in later chapters.

9.7 Bibliographic Notes

A mixture model algorithm for outlier detection in categorical data is proposed in [518].
This algorithm is also able to address mixed data types with the use of a joint mixture
model between quantitative and categorical attributes. Any of the categorical data clustering

282 CHAPTER 9. OUTLIER ANALYSIS: ADVANCED CONCEPTS

methods discussed in Chap. 7 can be applied to outlier analysis as well. Popular clustering
algorithms include k-modes [135, 278], ROCK [238], CACTUS [220], LIMBO [75], and
STIRR [229]. Distance-based outlier detection methods require the redesign of the distance
function. Distance functions for categorical data are discussed in [104, 182]. In particular, the
work in [104] explores categorical distance functions in the context of the outlier detection
problem. A detailed description of outlier detection algorithms for categorical data may be
found in [5].

Subspace outlier detection explores the effectiveness issue of outlier analysis, and was
first proposed in [46]. In the context of high-dimensional data, there are two distinct
lines of research, one of which investigates the efficiency of high-dimensional outlier detec-
tion [66, 501], and the other investigates the more fundamental issue of the effectiveness
of high-dimensional outlier detection [46]. The masking behavior of the noisy and irrel-
evant dimensions was discussed by Aggarwal and Yu [46]. The efficiency-based methods
often design more effective indexes, which are tuned toward determining nearest neighbors,
and pruning more efficiently for distance-based algorithms. The random subspace sampling
method discussed in this book was proposed in [334]. An isolation-forest approach was pro-
posed in [365]. A number of ranking methods for subspace outlier exploration have been
proposed in [396, 397]. In these methods, outliers are determined in multiple subspaces of
the data. Different subspaces may provide information either about different outliers or
about the same outliers. Therefore, the goal is to combine the information from these dif-
ferent subspaces in a robust way to report the final set of outliers. The OUTRES algorithm
proposed in [396] uses recursive subspace exploration to determine all the subspaces relevant
to a particular data point. The outlier scores from these different subspaces are combined
to provide a final value. A more recent method for using multiple views of the data for
subspace outlier detection is proposed in [397].

Recently, the problem of outlier detection has also been studied in the context of dynamic
data and data streams. The SPOT approach was proposed in [546], which is able to deter-
mine projected outliers from high-dimensional data streams. This approach employs a
window-based time model and decaying cell summaries to capture statistics from the data
stream. A set of top sparse subspaces is obtained by a variety of supervised and unsupervised
learning processes. These are used to detect the projected outliers. A multiobjective genetic
algorithm is employed for finding outlying subspaces from training data. The problem of
high-dimensional outlier detection has also been extended to other application-specific sce-
narios such as astronomical data [265] and transaction data [264]. A detailed description of
the high-dimensional case for outlier detection may be found in [5].

The problem of outlier ensembles is generally less well developed in the context of out-
lier analysis, than in the context of problems such as clustering and classification. Many
outlier ensemble methods, such the LOF method [109], do not explicitly state the ensemble
component in their algorithms. The issue of score normalization has been studied in [223],
and can be used for combining ensembles. A recent position paper has formalized the con-
cept of outlier ensembles, and defined different categories of outlier ensembles [24]. Because
outlier detection problems are evaluated in a similar way to classification problems, most
classification ensemble algorithms, such as different variants of bagging/subsampling, will
also improve outlier detection at least from a benchmarking perspective. While the results
do reflect an improved quality of outliers in many cases, they should be interpreted with
caution. Many recent subspace outlier detection methods [46, 396, 397] can also be consid-
ered ensemble methods. The first algorithm on high-dimensional outlier detection [46] may
also be considered an ensemble method. A detailed description of different applications of
outlier analysis may be found in the last chapter of [5].

9.8. EXERCISES 283

9.8 Exercises

1. Suppose that algorithm A is designed for outlier detection in numeric data, whereas
algorithm B is designed for outlier detection in categorical data. Show how you can
use these algorithms to perform outlier detection in a mixed-attribute data set.

2. Design an algorithm for categorical outlier detection using the Mahalanobis distance.
What are the advantages of such an approach?

3. Implement a distance-based outlier detection algorithm with the use of match-based
similarity.

4. Design a feature bagging approach that uses arbitrary subspaces of the data rather
than axis-parallel ones. Show how arbitrary subspaces may be efficiently sampled in
a data distribution-sensitive way.

5. Compare and contrast multiview clustering with subspace ensembles in outlier detec-
tion.

6. Implement any two outlier detection algorithms of your choice. Convert the scores to
Z-numbers. Combine the scores using the max function.

Chapter 10

Data Classification

“Science is the systematic classification of experience.”—George Henry Lewes

10.1 Introduction

The classification problem is closely related to the clustering problem discussed in Chaps. 6
and 7. While the clustering problem is that of determining similar groups of data points,
the classification problem is that of learning the structure of a data set of examples, already
partitioned into groups, that are referred to as categories or classes. The learning of these
categories is typically achieved with a model. This model is used to estimate the group
identifiers (or class labels) of one or more previously unseen data examples with unknown
labels. Therefore, one of the inputs to the classification problem is an example data set that
has already been partitioned into different classes. This is referred to as the training data,
and the group identifiers of these classes are referred to as class labels. In most cases, the
class labels have a clear semantic interpretation in the context of a specific application, such
as a group of customers interested in a specific product, or a group of data objects with
a desired property of interest. The model learned is referred to as the training model. The
previously unseen data points that need to be classified are collectively referred to as the
test data set. The algorithm that creates the training model for prediction is also sometimes
referred to as the learner.

Classification is, therefore, referred to as supervised learning because an example data
set is used to learn the structure of the groups, just as a teacher supervises his or her
students towards a specific goal. While the groups learned by a classification model may
often be related to the similarity structure of the feature variables, as in clustering, this
need not necessarily be the case. In classification, the example training data is paramount
in providing the guidance of how groups are defined. Given a data set of test examples,
the groups created by a classification model on the test examples will try to mirror the
number and structure of the groups available in the example data set of training instances.
Therefore, the classification problem may be intuitively stated as follows:

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 10 285
c© Springer International Publishing Switzerland 2015

286 CHAPTER 10. DATA CLASSIFICATION

Given a set of training data points, each of which is associated with a class label, deter-
mine the class label of one or more previously unseen test instances.

Most classification algorithms typically have two phases:

1. Training phase: In this phase, a training model is constructed from the training
instances. Intuitively, this can be understood as a summary mathematical model of
the labeled groups in the training data set.

2. Testing phase: In this phase, the training model is used to determine the class label
(or group identifier) of one or more unseen test instances.

The classification problem is more powerful than clustering because, unlike clustering, it
captures a user-defined notion of grouping from an example data set. Such an approach
has almost direct applicability to a wide variety of problems, in which groups are defined
naturally based on external application-specific criteria. Some examples are as follows:

1. Customer target marketing: In this case, the groups (or labels) correspond to the user
interest in a particular product. For example, one group may correspond to customers
interested in a product, and the other group may contain the remaining customers.
In many cases, training examples of previous buying behavior are available. These
can be used to provide examples of customers who may or may not be interested in a
specific product. The feature variables may correspond to the demographic profiles of
the customers. These training examples are used to learn whether or not a customer,
with a known demographic profile, but unknown buying behavior, may be interested
in a particular product.

2. Medical disease management: In recent years, the use of data mining methods in
medical research has gained increasing traction. The features may be extracted from
patient medical tests and treatments, and the class label may correspond to treatment
outcomes. In these cases, it is desired to predict treatment outcomes with models
constructed on the features.

3. Document categorization and filtering: Many applications, such as newswire services,
require real-time classification of documents. These are used to organize the docu-
ments under specific topics in Web portals. Previous examples of documents from
each topic may be available. The features correspond to the words in the document.
The class labels correspond to the various topics, such as politics, sports, current
events, and so on.

4. Multimedia data analysis: It is often desired to perform classification of large volumes
of multimedia data such as photos, videos, audio, or other more complex multimedia
data. Previous examples of particular activities of users associated with example videos
may be available. These may be used to determine whether a particular video describes
a specific activity. Therefore, this problem can be modeled as a binary classification
problem containing two groups corresponding to the occurrence or nonoccurrence of
a specific activity.

The applications of classification are diverse because of the ability to learn by example.
It is assumed that the training data set is denoted by D with n data points and d

features, or dimensions. In addition, each of the data points in D is associated with a
label drawn from {1 . . . k}. In some models, the label is assumed to be binary (k = 2) for

10.2. FEATURE SELECTION FOR CLASSIFICATION 287

simplicity. In the latter case, a commonly used convention is to assume that the labels are
drawn from {−1,+1}. However, it is sometimes notationally convenient to assume that the
labels are drawn from {0, 1}. This chapter will use either of these conventions depending
on the classifier. A training model is constructed from D, which is used to predict the label
of unseen test instances. The output of a classification algorithm can be one of two types:

1. Label prediction: In this case, a label is predicted for each test instance.

2. Numerical score: In most cases, the learner assigns a score to each instance–label
combination that measures the propensity of the instance to belong to a particular
class. This score can be easily converted to a label prediction by using either the
maximum value, or a cost-weighted maximum value of the numerical score across
different classes. One advantage of using a score is that different test instances can
be compared and ranked by their propensity to belong to a particular class. Such
scores are particularly useful in situations where one of the classes is very rare, and a
numerical score provides a way to determine the top ranked candidates belonging to
that class.

A subtle but important distinction exists in the design process of these two types of models,
especially when numerical scores are used for ranking different test instances. In the first
model, the training model does not need to account for the relative classification propensity
across different test instances. The model only needs to worry about the relative propensity
towards different labels for a specific instance. The second model also needs to properly
normalize the classification scores across different test instances so that they can be mean-
ingfully compared for ranking. Minor variations of most classification models are able to
handle either the labeling or the ranking scenario.

When the training data set is small, the performance of classification models is sometimes
poor. In such cases, the model may describe the specific random characteristics of the
training data set, and it may not generalize to the group structure of previously unseen test
instances. In other words, such models might accurately predict the labels of instances used
to construct them, but they perform poorly on unseen test instances. This phenomenon
is referred to as overfitting. This issue will be revisited several times in this chapter and
the next.

Various models have been designed for data classification. The most well-known ones
include decision trees, rule-based classifiers, probabilistic models, instance-based classifiers,
support vector machines, and neural networks. The modeling phase is often preceded by a
feature selection phase to identify the most informative features for classification. Each of
these methods will be addressed in this chapter.

This chapter is organized as follows. Section 10.2 introduces some of the common models
used for feature selection. Decision trees are introduced in Sect. 10.3. Rule-based classifiers
are introduced in Sect. 10.4. Section 10.5 discusses probabilistic models for data classi-
fication. Section 10.6 introduces support vector machines. Neural network classifiers are
discussed in Sect. 10.7. Instance-based learning methods are explained in Sect. 10.8. Eval-
uation methods are discussed in Sect. 10.9. The summary is presented in Sect. 10.10.

10.2 Feature Selection for Classification

Feature selection is the first stage in the classification process. Real data may contain
features of varying relevance for predicting class labels. For example, the gender of a person
is less relevant for predicting a disease label such as “diabetes,” as compared to his or

288 CHAPTER 10. DATA CLASSIFICATION

her age. Irrelevant features will typically harm the accuracy of the classification model
in addition to being a source of computational inefficiency. Therefore, the goal of feature
selection algorithms is to select the most informative features with respect to the class label.
Three primary types of methods are used for feature selection in classification.

1. Filter models: A crisp mathematical criterion is available to evaluate the quality of
a feature or a subset of features. This criterion is then used to filter out irrelevant
features.

2. Wrapper models: It is assumed that a classification algorithm is available to evaluate
how well the algorithm performs with a particular subset of features. A feature search
algorithm is then wrapped around this algorithm to determine the relevant set of
features.

3. Embedded models: The solution to a classification model often contains useful hints
about the most relevant features. Such features are isolated, and the classifier is
retrained on the pruned features.

In the following discussion, each of these models will be explained in detail.

10.2.1 Filter Models

In filter models, a feature or a subset of features is evaluated with the use of a class-sensitive
discriminative criterion. The advantage of evaluating a group of features at one time is
that redundancies are well accounted for. Consider the case where two feature variables
are perfectly correlated with one another, and therefore each can be predicted using the
other. In such a case, it makes sense to use only one of these features because the other
adds no incremental knowledge with respect to the first. However, such methods are often
expensive because there are 2d possible subsets of features on which a search may need to
be performed. Therefore, in practice, most feature selection methods evaluate the features
independently of one another and select the most discriminative ones.

Some feature selection methods, such as linear discriminant analysis, create a linear
combination of the original features as a new set of features. Such analytical methods can
be viewed either as stand-alone classifiers or as dimensionality reduction methods that are
used before classification, depending on how they are used. These methods will also be
discussed in this section.

10.2.1.1 Gini Index

The Gini index is commonly used to measure the discriminative power of a particular
feature. Typically, it is used for categorical variables, but it can be generalized to numeric
attributes by the process of discretization. Let v1 . . . vr be the r possible values of a particular
categorical attribute, and let pj be the fraction of data points containing attribute value vi
that belong to the class j ∈ {1 . . . k} for the attribute value vi. Then, the Gini index G(vi)
for the value vi of a categorical attribute is defined as follows:

G(vi) = 1−
k∑

j=1

p2j . (10.1)

When the different classes are distributed evenly for a particular attribute value, the value
of the Gini index is 1 − 1/k. On the other hand, if all data points for an attribute value

10.2. FEATURE SELECTION FOR CLASSIFICATION 289

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FRACTION OF FIRST CLASS

C
R

IT
E

R
IO

N
 V

A
LU

E

GINI INDEX

ENTROPY

Figure 10.1: Variation of two feature selection criteria with class distribution skew

vi belong to the same class, then the Gini index is 0. Therefore, lower values of the Gini
index imply greater discrimination. An example of the Gini index for a two-class problem
for varying values of p1 is illustrated in Fig. 10.1. Note that the index takes on its maximum
value at p1 = 0.5.

The value-specific Gini index is converted into an attributewise Gini index. Let ni be
the number of data points that take on the value vi for the attribute. Then, for a data set
containing

∑r
i=1 ni = n data points, the overall Gini index G for the attribute is defined as

the weighted average over the different attribute values as follows:

G =
r∑

i=1

niG(vi)/n. (10.2)

Lower values of the Gini index imply greater discriminative power. The Gini index is typi-
cally defined for a particular feature rather than a subset of features.

10.2.1.2 Entropy

The class-based entropy measure is related to notions of information gain resulting from
fixing a specific attribute value. The entropy measure achieves a similar goal as the Gini
index at an intuitive level, but it is based on sound information-theoretic principles. As
before, let pj be the fraction of data points belonging to the class j for attribute value vi.
Then, the class-based entropy E(vi) for the attribute value vi is defined as follows:

E(vi) = −
k∑

j=1

pj log2(pj). (10.3)

The class-based entropy value lies in the interval [0, log2(k)]. Higher values of the entropy
imply greater “mixing” of different classes. A value of 0 implies perfect separation, and,
therefore, the largest possible discriminative power. An example of the entropy for a two-
class problem with varying values of the probability p1 is illustrated in Fig. 10.1. As in
the case of the Gini index, the overall entropy E of an attribute is defined as the weighted

290 CHAPTER 10. DATA CLASSIFICATION

average over the r different attribute values:

E =
r∑

i=1

niE(vi)/n. (10.4)

Here, ni is the frequency of attribute value vi.

10.2.1.3 Fisher Score

The Fisher score is naturally designed for numeric attributes to measure the ratio of the
average interclass separation to the average intraclass separation. The larger the Fisher
score, the greater the discriminatory power of the attribute. Let μj and σj , respectively, be
the mean and standard deviation of data points belonging to class j for a particular feature,
and let pj be the fraction of data points belonging to class j. Let μ be the global mean of
the data on the feature being evaluated. Then, the Fisher score F for that feature may be
defined as the ratio of the interclass separation to intraclass separation:

F =

∑k
j=1 pj(μj − μ)2∑k

j=1 pjσ
2
j

. (10.5)

The numerator quantifies the average interclass separation, whereas the denominator quan-
tifies the average intraclass separation. The attributes with the largest value of the Fisher
score may be selected for use with the classification algorithm.

10.2.1.4 Fisher’s Linear Discriminant

Fisher’s linear discriminant may be viewed as a generalization of the Fisher score in which
newly created features correspond to linear combinations of the original features rather
than a subset of the original features. This direction is designed to have a high level of
discriminatory power with respect to the class labels. Fisher’s discriminant can be viewed
as a supervised dimensionality reduction method in contrast to PCA, which maximizes the
preserved variance in the feature space but does not maximize the class-specific discrimi-
nation. For example, the most discriminating direction is aligned with the highest variance
direction in Fig. 10.2a, but it is aligned with the lowest variance direction in Fig. 10.2b. In
each case, if the data were to be projected along the most discriminating direction W , then
the ratio of interclass to intraclass separation is maximized. How can we determine such a
d-dimensional vector W?

The selection of a direction with high discriminative power is based on the same quan-
tification as the Fisher score. Fisher’s discriminant is naturally defined for the two-class
scenario, although generalizations exist for the case of multiple classes. Let μ0 and μ1 be
the d-dimensional row vectors representing the means of the data points in the two classes,
and let Σ0 and Σ1 be the corresponding d × d covariance matrices in which the (i, j)th
entry represents the covariance between dimensions i and j for that class. The fractional
presence of the two classes are denoted by p0 and p1, respectively. Then, the equivalent
Fisher score FS(W) for a d-dimensional row vector W may be written in terms of scatter
matrices, which are weighted versions of covariance matrices:

FS(W) =
Between Class Scatter along W

Within Class Scatter along W
∝ (W · μ1 −W · μ0)2

p0[Variance(Class 0)] + p1[Variance(Class 1)]

=
W [(μ1 − μ0)T (μ1 − μ0)]W

T

p0[WΣ0W
T
] + p1[WΣ1W

T
]
=

[W · (μ1 − μ0)]2

W (p0Σ0 + p1Σ1)W
T
.

10.2. FEATURE SELECTION FOR CLASSIFICATION 291

(a) Discriminating direction is aligned (b) Discriminating direction is aligned
with high-variance direction with low-variance direction

Figure 10.2: Impact of class distribution on Fisher’s discriminating direction

Note that the quantity WΣiW
T

in one of the aforementioned expressions represents the
variance of the projection of a data set along W , whose covariance matrix is Σi. This result
is derived in Sect. 2.4.3.1 of Chap. 2. The rank-1 matrix Sb = [(μ1 − μ0)T (μ1 − μ0)] is
also referred1 to as the (scaled) between-class scatter-matrix and the matrix Sw = (p0Σ0 +
p1Σ1) is the (scaled) within-class scatter matrix. The quantification FS(W) is a direct
generalization of the axis-parallel score in Eq. 10.5 to an arbitrary direction W . The goal
is to determine a direction W that maximizes the Fisher score. It can be shown2 that the
optimal direction W ∗, expressed as a row vector, is given by the following:

W ∗ ∝ (μ1 − μ0)(p0Σ0 + p1Σ1)−1. (10.6)

If desired, successive orthogonal directions may be determined by iteratively projecting the
data into the orthogonal subspace to the optimal directions found so far, and determining
the Fisher’s discriminant in this reduced subspace. The final result is a new representation
of lower dimensionality that is more discriminative than the original feature space. Inter-
estingly, the matrix Sw + p0p1Sb can be shown to be invariant to the values of the class
labels of the data points (see Exercise 21), and it is equal to the covariance matrix of the
data. Therefore, the top-k eigenvectors of Sw + p0p1Sb yield the basis vectors of PCA.

This approach is often used as a stand-alone classifier, which is referred to as linear
discriminant analysis. A perpendicular hyperplaneW ∗ ·X+b = 0 to the most discriminating
direction is used as a binary class separator. The optimal value of b is selected based on the
accuracy with respect to the training data. This approach can also be viewed as projecting
the training points along the most discriminating vector W ∗, and then selecting the value of
b to decide the point on the line that best separates the two classes. The Fisher’s discriminant
for binary classes can be shown to be a special case of least-squares regression for numeric
classes, in which the response variables are set to −1/p0 and +1/p1, respectively, for the
two classes (cf. Sect. 11.5.1.1 of Chap. 11).

1The unscaled versions of the two scatter matrices are np0p1Sb and nSw, respectively. The sum of these
two matrices is the total scatter matrix, which is n times the covariance matrix (see Exercise 21).

2Maximizing FS(W) = WSbW
T

WSwW
T is the same as maximizing WSbW

T
subject to WSwW

T
= 1. Setting

the gradient of the Lagrangian relaxation WSbW
T −λ(WSwW

T −1) to 0 yields the generalized eigenvector

condition SbW
T

= λSwW
T
. Because SbW

T
= (μ1

T − μ0
T)

[
(μ1 − μ0)W

T
]
always points in the direction

of (μ1
T − μ0

T), it follows that SwW
T ∝ μ1

T − μ0
T . Therefore, we have W ∝ (μ1 − μ0)S

−1
w .

292 CHAPTER 10. DATA CLASSIFICATION

10.2.2 Wrapper Models

Different classification models are more accurate with different sets of features. Filter models
are agnostic to the particular classification algorithm being used. In some cases, it may be
useful to leverage the characteristics of the specific classification algorithm to select features.
As you will learn later in this chapter, a linear classifier may work more effectively with a set
of features where the classes are best modeled with linear separators, whereas a distance-
based classifier works well with features in which distances reflect class distributions.

Therefore, one of the inputs to wrapper-based feature selection is a specific classifica-
tion induction algorithm, denoted by A. Wrapper models can optimize the feature selection
process to the classification algorithm at hand. The basic strategy in wrapper models is to
iteratively refine a current set of features F by successively adding features to it. The algo-
rithm starts by initializing the current feature set F to {}. The strategy may be summarized
by the following two steps that are executed iteratively:

1. Create an augmented set of features F by adding one or more features to the current
feature set.

2. Use a classification algorithm A to evaluate the accuracy of the set of features F . Use
the accuracy to either accept or reject the augmentation of F .

The augmentation of F can be performed in many different ways. For example, a greedy
strategy may be used where the set of features in the previous iteration is augmented with
an additional feature with the greatest discriminative power with respect to a filter criterion.
Alternatively, features may be selected for addition via random sampling. The accuracy of
the classification algorithm A in the second step may be used to determine whether the
newly augmented set of features should be accepted, or one should revert to the set of
features in the previous iteration. This approach is continued until there is no improvement
in the current feature set for a minimum number of iterations. Because the classification
algorithm A is used in the second step for evaluation, the final set of identified features will
be sensitive to the choice of the algorithm A.

10.2.3 Embedded Models

The core idea in embedded models is that the solutions to many classification formulations
provide important hints about the most relevant features to be used. In other words, knowl-
edge about the features is embedded within the solution to the classification problem. For
example, consider a linear classifier that maps a training instance X to a class label yi in
{−1, 1} using the following linear relationship:

yi = sign{W ·X + b}. (10.7)

Here, W = (w1, . . . wd) is a d-dimensional vector of coefficients, and b is a scalar that is
learned from the training data. The function “sign” maps to either −1 or +1, depending
on the sign of its argument. As we will see later, many linear models such as Fisher’s
discriminant, support vector machine (SVM) classifiers, logistic regression methods, and
neural networks use this model.

Assume that all features have been normalized to unit variance. If the value of |wi| is
relatively3 small, the ith feature is used very weakly by the model and is more likely to be
noninformative. Therefore, such dimensions may be removed. It is then possible to train the

3Certain variations of linear models, such as L1-regularized SVMs or Lasso (cf. Sect. 11.5.1 of Chap.
11), are particularly effective in this context. Such methods are also referred to as sparse learning methods.

10.3. DECISION TREES 293

Table 10.1: Training data snapshot relating the salary and age features to charitable dona-
tion propensity

Name Age Salary Donor?

Nancy 21 37,000 N
Jim 27 41,000 N
Allen 43 61,000 Y
Jane 38 55,000 N
Steve 44 30,000 N
Peter 51 56,000 Y
Sayani 53 70,000 Y
Lata 56 74,000 Y
Mary 59 25,000 N
Victor 61 68,000 Y
Dale 63 51,000 Y

same (or a different) classifier on the data with the pruned feature set. If desired, statistical
tests may be used to decide when the value of |wi| should be considered sufficiently small.
Many decision tree classifiers, such as ID3, also have feature selection methods embedded
in them.

In recursive feature elimination, an iterative approach is used. A small number of features
are removed in each iteration. Then, the classifier is retrained on the pruned set of features
to re-estimate the weights. The re-estimated weights are used to again prune the features
with the least absolute weight. This procedure is repeated until all remaining features are
deemed to be sufficiently relevant. Embedded models are generally designed in an ad hoc
way, depending on the classifier at hand.

10.3 Decision Trees

Decision trees are a classification methodology, wherein the classification process is modeled
with the use of a set of hierarchical decisions on the feature variables, arranged in a tree-like
structure. The decision at a particular node of the tree, which is referred to as the split
criterion, is typically a condition on one or more feature variables in the training data. The
split criterion divides the training data into two or more parts. For example, consider the
case where Age is an attribute, and the split criterion is Age ≤ 30. In this case, the left
branch of the decision tree contains all training examples with age at most 30, whereas the
right branch contains all examples with age greater than 30. The goal is to identify a split
criterion so that the level of “mixing” of the class variables in each branch of the tree is
reduced as much as possible. Each node in the decision tree logically represents a subset of
the data space defined by the combination of split criteria in the nodes above it. The decision
tree is typically constructed as a hierarchical partitioning of the training examples, just as a
top-down clustering algorithm partitions the data hierarchically. The main difference from
clustering is that the partitioning criterion in the decision tree is supervised with the class
label in the training instances. Some classical decision tree algorithms include C4.5, ID3,
and CART. To illustrate the basic idea of decision tree construction, an illustrative example
will be used.

In Table 10.1, a snapshot of a hypothetical charitable donation data set has been illus-
trated. The two feature variables represent the age and salary attributes. Both attributes

294 CHAPTER 10. DATA CLASSIFICATION

are related to the donation propensity, which is also the class label. Specifically, the like-
lihood of an individual to donate is positively correlated with his or her age and salary.
However, the best separation of the classes may be achieved only by combining the two
attributes. The goal in the decision tree construction process is to perform a sequence of
splits in top-down fashion to create nodes at the leaf level in which the donors and non-
donors are separated well. One way of achieving this goal is depicted in Fig. 10.3a. The
figure illustrates a hierarchical arrangement of the training examples in a treelike structure.
The first-level split uses the age attribute, whereas the second-level split for both branches
uses the salary attribute. Note that different splits at the same decision tree level need not
be on the same attribute. Furthermore, the decision tree of Fig. 10.3a has two branches at
each node, but this need not always be the case. In this case, the training examples in all
leaf nodes belong to the same class, and, therefore, there is no point in growing the decision
tree beyond the leaf nodes. The splits shown in Fig. 10.3a are referred to as univariate splits
because they use a single attribute. To classify a test instance, a single relevant path in the
tree is traversed in top-down fashion by using the split criteria to decide which branch to
follow at each node of the tree. The dominant class label in the leaf node is reported as
the relevant class. For example, a test instance with age less than 50 and salary less than
60,000 will traverse the leftmost path of the tree in Fig. 10.3a. Because the leaf node of this
path contains only nondonor training examples, the test instance will also be classified as
a nondonor.

Multivariate splits use more than one attribute in the split criteria. An example is
illustrated in Fig. 10.3b. In this particular case, a single split leads to full separation of
the classes. This suggests that multivariate criteria are more powerful because they lead to
shallower trees. For the same level of class separation in the training data, shallower trees
are generally more desirable because the leaf nodes contain more examples and, therefore,
are statistically less likely to overfit the noise in the training data.

A decision tree induction algorithm has two types of nodes, referred to as the internal
nodes and leaf nodes. Each leaf node is labeled with the dominant class at that node. A
special internal node is the root node that corresponds to the entire feature space. The
generic decision tree induction algorithm starts with the full training data set at the root
node and recursively partitions the data into lower level nodes based on the split criterion.
Only nodes that contain a mixture of different classes need to be split further. Eventually,
the decision tree algorithm stops the growth of the tree based on a stopping criterion. The
simplest stopping criterion is one where all training examples in the leaf belong to the same
class. One problem is that the construction of the decision tree to this level may lead to
overfitting, in which the model fits the noisy nuances of the training data. Such a tree will not
generalize to unseen test instances very well. To avoid the degradation in accuracy associated
with overfitting, the classifier uses a postpruning mechanism for removing overfitting nodes.
The generic decision tree training algorithm is illustrated in Fig. 10.4.

After a decision tree has been constructed, it is used for classification of unseen test
instances with the use of top-down traversal from the root to a unique leaf. The split
condition at each internal node is used to select the correct branch of the decision tree for
further traversal. The label of the leaf node that is reached is reported for the test instance.

10.3.1 Split Criteria

The goal of the split criterion is to maximize the separation of the different classes among
the children nodes. In the following, only univariate criteria will be discussed. Assume that

10.3. DECISION TREES 295

Age > 50Age < 50 Age > 50

Salary >60 000

Age < 50

Salary >60,000
Salary < 60,000

Salary < 50,000
Salary > 50,000

Non ronoDronoDronoD Non Donor

Donor?NameDonor?Name Donor?Name Donor?Name
YAllenN

N

N

Nancy

Jim

Jane

NMary Peter

Y

Y

Y

Lata

Sayani

NSteve

Dale Y

Victor Y

(a) Univariate split

Age / 50 + Salary / 50,000 < 2 Age / 50 + Salary / 50,000 > 2

DonorNon Donor

Donor?Name
N

N

Nancy

Jim

Donor?Name

Peter Y

Allen Y

N

NJane

Steve

Victor

Sayani

Y

Y

Lata

YMary N

Dale Y

(b) Multivariate split

Figure 10.3: Illustration of univariate and multivariate splits for decision tree construction

a quality criterion for evaluating a split is available. The design of the split criterion depends
on the nature of the underlying attribute:

1. Binary attribute: Only one type of split is possible, and the tree is always binary. Each
branch corresponds to one of the binary values.

2. Categorical attribute: If a categorical attribute has r different values, there are multiple
ways to split it. One possibility is to use an r-way split, in which each branch of the
split corresponds to a particular attribute value. The other possibility is to use a
binary split by testing each of the 2r − 1 combinations (or groupings) of categorical
attributes, and selecting the best one. This is obviously not a feasible option when the
value of r is large. A simple approach that is sometimes used is to convert categorical

296 CHAPTER 10. DATA CLASSIFICATION

Algorithm GenericDecisionTree(Data Set: D)
begin
Create root node containing D;
repeat
Select an eligible node in the tree;
Split the selected node into two or more nodes

based on a pre-defined split criterion;
until no more eligible nodes for split;
Prune overfitting nodes from tree;
Label each leaf node with its dominant class;

end

Figure 10.4: Generic decision tree training algorithm

data to binary data with the use of the binarization approach discussed in Chap. 2.
In this case, the approach for binary attributes may be used.

3. Numeric attribute: If the numeric attribute contains a small number r of ordered
values (e.g., integers in a small range [1, r]), it is possible to create an r-way split for
each distinct value. However, for continuous numeric attributes, the split is typically
performed by using a binary condition, such as x ≤ a, for attribute value x and
constant a.

Consider the case where a node containsm data points. Therefore, there arem possible
split points for the attribute, and the corresponding values of a may be determined
by sorting the data in the node along this attribute. One possibility is to test all the
possible values of a for a split and select the best one. A faster alternative is to test
only a smaller set of possibilities for a, based on equi-depth division of the range.

Many of the aforementioned methods requires the determination of the “best” split from
a set of choices. Specifically, it is needed to choose from multiple attributes and from the
various alternatives available for splitting each attribute. Therefore, quantifications of split
quality are required. These quantifications are based on the same principles as the feature
selection criteria discussed in Sect. 10.2.

1. Error rate: Let p be the fraction of the instances in a set of data points S belonging
to the dominant class. Then, the error rate is simply 1− p. For an r-way split of set S
into sets S1 . . . Sr, the overall error rate of the split may be quantified as the weighted
average of the error rates of the individual sets Si, where the weight of Si is |Si|. The
split with the lowest error rate is selected from the alternatives.

2. Gini index: The Gini index G(S) for a set S of data points may be computed according
to Eq. 10.1 on the class distribution p1 . . . pk of the training data points in S.

G(S) = 1−
k∑

j=1

p2j (10.8)

The overall Gini index for an r-way split of set S into sets S1 . . . Sr may be quantified
as the weighted average of the Gini index values G(Si) of each Si, where the weight

10.3. DECISION TREES 297

of Si is |Si|.

Gini-Split(S ⇒ S1 . . . Sr) =
r∑

i=1

|Si|
|S| G(Si) (10.9)

The split with the lowest Gini index is selected from the alternatives. The CART
algorithm uses the Gini index as the split criterion.

3. Entropy: The entropy measure is used in one of the earliest classification algorithms,
referred to as ID3. The entropy E(S) for a set S may be computed according to
Eq. 10.3 on the class distribution p1 . . . pk of the training data points in the node.

E(S) = −
k∑

j=1

pj log2(pj) (10.10)

As in the case of the Gini index, the overall entropy for an r-way split of set S into
sets S1 . . . Sr may be computed as the weighted average of the Gini index values G(Si)
of each Si, where the weight of Si is |Si|.

Entropy-Split(S ⇒ S1 . . . Sr) =
r∑

i=1

|Si|
|S| E(Si) (10.11)

Lower values of the entropy are more desirable. The entropy measure is used by the
ID3 and C4.5 algorithms.

The information gain is closely related to entropy, and is equal to the reduction in the
entropy E(S) − Entropy-Split(S ⇒ S1 . . . Sr) as a result of the split. Large values of
the reduction are desirable. At a conceptual level, there is no difference between using
either of the two for a split although a normalization for the degree of the split is
possible in the case of information gain. Note that the entropy and information gain
measures should be used only to compare two splits of the same degree because both
measures are naturally biased in favor of splits with larger degree. For example, if a
categorical attribute has many values, attributes with many values will be preferred. It
has been shown by the C4.5 algorithm that dividing the overall information gain with
the normalization factor of −

∑r
i=1

|Si|
|S| log2(

|Si|
|S|) helps in adjusting for the varying

number of categorical values.

The aforementioned criteria are used to select the choice of the split attribute and the
precise criterion on the attribute. For example, in the case of a numeric database, different
split points are tested for each numeric attribute, and the best split is selected.

10.3.2 Stopping Criterion and Pruning

The stopping criterion for the growth of the decision tree is intimately related to the under-
lying pruning strategy. When the decision tree is grown to the very end until every leaf node
contains only instances belonging to a particular class, the resulting decision tree exhibits
100% accuracy on instances belonging to the training data. However, it often generalizes
poorly to unseen test instances because the decision tree has now overfit even to the random
characteristics in the training instances. Most of this noise is contributed by the lower level
nodes, which contain a smaller number of data points. In general, simpler models (shallow
decision trees) are preferable to more complex models (deep decision trees) if they produce
the same error on the training data.

298 CHAPTER 10. DATA CLASSIFICATION

To reduce the level of overfitting, one possibility is to stop the growth of the tree early.
Unfortunately, there is no way of knowing the correct point at which to stop the growth
of the tree. Therefore, a natural strategy is to prune overfitting portions of the decision
tree and convert internal nodes to leaf nodes. Many different criteria are available to decide
whether a node should be pruned. One strategy is to explicitly penalize model complexity
with the use of the minimum description length principle (MDL). In this approach, the cost
of a tree is defined by a weighted sum of its (training data) error and its complexity (e.g.,
the number of nodes). Information-theoretic principles are used to measure tree complexity.
Therefore, the tree is constructed to optimize the cost rather than only the error. The main
problem with this approach is that the cost function is itself a heuristic that does not work
consistently well across different data sets. A simpler and more intuitive strategy is to a
hold out a small fraction (say 20%) of the training data and build the decision tree on the
remaining data. The impact of pruning a node on the classification accuracy is tested on the
holdout set. If the pruning improves the classification accuracy, then the node is pruned.
Leaf nodes are iteratively pruned until it is no longer possible to improve the accuracy
with pruning. Although such an approach reduces the amount of training data for building
the tree, the impact of pruning generally outweighs the impact of training-data loss in the
tree-building phase.

10.3.3 Practical Issues

Decision trees are simple to implement and highly interpretable. They can model arbitrarily
complex decision boundaries, given sufficient training data. Even a univariate decision tree
can model a complex decision boundary with piecewise approximations by building a suffi-
ciently deep tree. The main problem is that the amount of training data required to properly
approximate a complex boundary with a treelike model is very large, and it increases with
data dimensionality. With limited training data, the resulting decision boundary is usually
a rather coarse approximation of the true boundary. Overfitting is common in such cases.
This problem is exacerbated by the sensitivity of the decision tree to the split criteria at
the higher levels of the tree. A closely related family of classifiers, referred to as rule-based
classifiers, is able to alleviate these effects by moving away from the strictly hierarchical
structure of a decision tree.

10.4 Rule-Based Classifiers

Rule-based classifiers use a set of “if–then” rules R = {R1 . . . Rm} to match antecedents to
consequents. A rule is typically expressed in the following form:

IF Condition THEN Conclusion.

The condition on the left-hand side of the rule, also referred to as the antecedent, may
contain a variety of logical operators, such as <, ≤, >, =, ⊆, or ∈, which are applied to
the feature variables. The right-hand side of the rule is referred to as the consequent, and
it contains the class variable. Therefore, a rule Ri is of the form Qi ⇒ c where Qi is the
antecedent, and c is the class variable. The “⇒” symbol denotes the “THEN” condition.
The rules are generated from the training data during the training phase. The notation Qi

represents a precondition on the feature set. In some classifiers, such as association pattern
classifiers, the precondition may correspond to a pattern in the feature space, though this
may not always be the case. In general, the precondition may be any arbitrary condition

10.4. RULE-BASED CLASSIFIERS 299

on the feature variables. These rules are then used to classify a test instance. A rule is
said to cover a training instance when the condition in its antecedent matches the training
instance.

A decision tree may be viewed as a special case of a rule-based classifier, in which each
path of the decision tree corresponds to a rule. For example, the decision tree in Fig. 10.3a
corresponds to the following set of rules:

Age ≤ 50 AND Salary ≤ 60, 000 ⇒ ¬Donor
Age ≤ 50 AND Salary > 60, 000 ⇒ Donor
Age > 50 AND Salary ≤ 50, 000 ⇒ ¬Donor
Age > 50 AND Salary > 50, 000 ⇒ Donor

Note that each of the four aforementioned rules corresponds to a path in the decision
tree of Fig. 10.3a. The logical expression on the left is expressed in conjunctive form, with
a set of “AND” logical operators. Each of the primitive conditions in the antecedent, (such
as Age ≤ 50) is referred to as a conjunct. The rule set from a training data set is not unique
and depends on the specific algorithm at hand. For example, only two rules are generated
from the decision tree in Fig. 10.3b.

Age/50 + Salary/50, 000 ≤ 2 ⇒ ¬Donor
Age/50 + Salary/50, 000 > 2 ⇒ Donor

As in decision trees, succinct rules, both in terms of the cardinality of the rule set and
the number of conjuncts in each rule, are generally more desirable. This is because such
rules are less likely to overfit the data, and will generalize well to unseen test instances.
Note that the antecedents on the left-hand side always correspond to a rule condition. In
many rule-based classifiers, such as association-pattern classifiers, the logical operators such
as “⊆” are implicit and are omitted from the rule antecedent description. For example, con-
sider the case where the age and salary are discretized into categorical attribute values.

Age [50 : 60], Salary [50, 000 : 60, 000] ⇒ Donor

In such a case, the discretized attributes for age and salary will be represented as “items,”
and an association pattern-mining algorithm can discover the itemset on the left-hand side.
The operator “⊆” is implicit in the rule antecedent. Associative classifiers are discussed in
detail later in this section.

The training phase of a rule-based algorithm creates a set of rules. The classification
phase for a test instance discovers all rules that are triggered by the test instance. A rule
is said to be triggered by the test instance when the logical condition in the antecedent is
satisfied by the test instance. In some cases, rules with conflicting consequent values are
triggered by the test instance. In such cases, methods are required to resolve the conflicts
in class label prediction. Rule sets may satisfy one or more of the following properties:

1. Mutually exclusive rules: Each rule covers a disjoint partition of the data. Therefore,
at most one rule can be triggered by a test instance. The rules generated from a
decision tree satisfy this property. However, if the extracted rules are subsequently
modified to reduce overfitting (as in some classifiers such as C4.5rules), the resulting
rules may no longer remain mutually exclusive.

2. Exhaustive rules: The entire data space is covered by at least one rule. Therefore,
every test instance triggers at least one rule. The rules generated from a decision tree

300 CHAPTER 10. DATA CLASSIFICATION

also satisfy this property. It is usually easy to construct an exhaustive rule set by
creating a single catch-all rule whose consequent contains the dominant class in the
portion of the training data not covered by other rules.

It is relatively easy to perform the classification when a rule set satisfies both the aforemen-
tioned properties. The reason for this is that each test instance maps to exactly one rule,
and there are no conflicts in class predictions by multiple rules. In cases where rule sets are
not mutually exclusive, conflicts in the rules triggered by a test instance can be resolved in
one of two ways:

1. Rule ordering: The rules are ordered by priority, which may be defined in a variety of
ways. One possibility is to use a quality measure of the rule for ordering. Some popular
classification algorithms, such as C4.5rules and RIPPER, use class-based ordering,
where rules with a particular class are prioritized over the other. The resulting set of
ordered rules is also referred to as a decision list. For an arbitrary test instance, the
class label in the consequent of the top triggered rule is reported as the relevant one
for the test instance. Any other triggered rule is ignored. If no rule is triggered then
a default catch-all class is reported as the relevant one.

2. Unordered rules: No priority is imposed on the rule ordering. The dominant class
label among all the triggered rules may be reported. Such an approach can be more
robust because it is not sensitive to the choice of the single rule selected by a rule-
ordering scheme. The training phase is generally more efficient because all rules can
be extracted simultaneously with pattern-mining techniques without worrying about
relative ordering. Ordered rule-mining algorithms generally have to integrate the rule
ordering into the rule generation process with methods such as sequential covering,
which are computationally expensive. On the other hand, the testing phase of an
unordered approach can be more expensive because of the need to compare a test
instance against all the rules.

How should the different rules be ordered for test instance classification? The first possibility
is to order the rules on the basis of a quality criterion, such as the confidence of the rule, or
a weighted measure of the support and confidence. However, this approach is rarely used.
In most cases, the rules are ordered by class. In some rare class applications, it makes sense
to order all rules belonging to the rare class first. Such an approach is used by RIPPER.
In other classifiers, such as C4.5rules, various accuracy and information-theoretic measures
are used to prioritize classes.

10.4.1 Rule Generation from Decision Trees

As discussed earlier in this section, rules can be extracted from the different paths in a
decision tree. For example, C4.5rules extracts the rules from the C4.5 decision tree. The
sequence of split criteria on each path of the decision tree corresponds to the antecedent
of a corresponding rule. Therefore, it would seem at first sight that rule ordering is not
needed because the generated rules are exhaustive and mutually exclusive. However, the
rule-extraction process is followed by a rule-pruning phase in which many conjuncts are
pruned from the rules to reduce overfitting. Rules are processed one by one, and conjuncts
are pruned from them in greedy fashion to improve the accuracy as much as possible on the
covered examples in a separate holdout validation set. This approach is similar to decision
tree pruning except that one is no longer restricted to pruning the conjuncts at the lower
levels of the decision tree. Therefore, the pruning process is more flexible than that of a

10.4. RULE-BASED CLASSIFIERS 301

decision tree, because it is not restricted by an underlying tree structure. Duplicate rules
may result from pruning of conjuncts. These rules are removed. The rule-pruning phase
increases the coverage of the individual rules and, therefore, the mutually exclusive nature
of the rules is lost. As a result, it again becomes necessary to order the rules.

In C4.5rules, all rules that belong to the class whose rule set has the smallest description
length are prioritized over other rules. The total description length of a rule set is a weighted
sum of the number of bits required to encode the size of the model (rule set) and the number
of examples covered by the class-specific rule set in the training data, which belong to a
different class. Typically, classes with a smaller number of training examples are favored
by this approach. A second approach is to order the class first whose rule set has the least
number of false-positive errors on a separate holdout set. A rule-based version of a decision
tree generally allows the construction of a more flexible decision boundary with limited
training data than the base tree from which the rules are generated. This is primarily because
of the greater flexibility in the model which is no longer restrained by the straitjacket of an
exhaustive and mutually exclusive rule set. As a result, the approach generalizes better to
unseen test instances.

10.4.2 Sequential Covering Algorithms

Sequential covering methods are used frequently for creating ordered rule lists. Thus, in this
case, the classification process uses the top triggered rule to classify unseen test instances.
Examples of sequential covering algorithms include AQ, CN2, and RIPPER. The sequential
covering approach iteratively applies the following two steps to grow the rules from the
training data set D until a stopping criterion is met:

1. (Learn-One-Rule) Select a particular class label and determine the “best” rule from
the current training instances D with this class label as the consequent. Add this rule
to the bottom of the ordered rule list.

2. (Prune training data) Remove the training instances in D that are covered by the rule
learned in the previous step. All training instances matching the antecedent of the rule
must be removed, whether or not the class label of the training instance matches the
consequent.

The aforementioned generic description applies to all sequential covering algorithms. The
various sequential covering algorithms mainly differ in the details of how the rules are
ordered with respect to each other.

1. Class-based ordering: In most sequential covering algorithms such as RIPPER, all
rules corresponding to a particular class are generated and placed contiguously on
the ordered list. Typically, rare classes are ordered first. Therefore, classes that are
placed earlier on the list may be favored more than others. This can sometimes cause
artificially lower accuracy for test instances belonging to the less favored class.

When class-based ordering is used, the rules for a particular class are generated con-
tiguously. The addition of rules for each class has a stopping criterion that is algorithm
dependent. For example, RIPPER uses an MDL criterion that stops adding rules when
further addition increases the description length of the model by at least a predefined
number of units. Another simpler stopping criterion is when the error rate of the next
generated rule on a separate validation set exceeds a predefined threshold. Finally, one
might simply use a threshold on the number of uncovered training instances remain-
ing for a class as the class-specific stopping criterion. When the number of uncovered

302 CHAPTER 10. DATA CLASSIFICATION

training instances remaining for a class falls below a threshold, rules for that class
consequent are no longer grown. At this point, rules corresponding to the next class
are grown. For a k-class problem, this approach is repeated (k − 1) times. Rules for
the kth class are not grown. The least prioritized rule is a single catch-all rule with
its consequent as the kth class. When the test instance does not fire rules belonging
to the other classes, this class is assumed as the relevant label.

2. Quality-based ordering: In some covering algorithms, class-based ordering is not used.
A quality measure is used to select the next rule. For example, one might generate
the rule with the highest confidence in the remaining training data. The catch-all rule
corresponds to the dominant class among remaining test instances. Quality-based
ordering is rarely used in practice because of the difficulty in interpreting a quality
criterion which is defined only over the remaining test instances.

Because class-based ordering is more common, the Learn-One-Rule procedure will be
described under this assumption.

10.4.2.1 Learn-One-Rule

The Learn-One-Rule procedure grows rules from the general to the specific, in much the
same way a decision tree grows a tree hierarchically from general nodes to specific nodes.
Note that a path in a decision tree is a rule in which the antecedent corresponds to the
conjunction of the split criteria at the different nodes, and the consequent corresponds to
the label of the leaf nodes. While a decision tree grows many different disjoint paths at
one time, the Learn-One-Rule procedure grows a single “best” path. This is yet another
example of the close relationship between decision trees and rule-based methods.

The idea of Learn-One-Rule is to successively add conjuncts to the left-hand side of the
rule to grow a single decision path (rather than a decision tree) based on a quality criterion.
The root of the tree corresponds to the rule {} ⇒ c. The class c represents the consequent
of the rule being grown. In the simplest version of the procedure, a single path is grown
at one time by successively adding conjuncts to the antecedent. In other words, conjuncts
are added to increase the quality as much as possible. The simplest quality criterion is the
accuracy of the rule. The problem with this criterion is that rules with high accuracy but
very low coverage are generally not desirable because of overfitting. The precise choice of
the quality criterion that regulates the trade-off between accuracy and coverage will be
discussed in detail later. As in the case of a decision tree, various logical conditions (or
split choices) must be tested to determine the best conjunct to be added. The process of
enumeration of the various split choices is similar to a decision tree. The rule is grown until
a particular stopping criterion is met. A natural stopping criterion is one where the quality
of the rule does not improve by further growth.

One challenge with the use of this procedure is that if a mistake is made early on
during tree growth, it will lead to suboptimal rules. One way of reducing the likelihood of
suboptimal rules is to always maintain the m best paths during rule-growth rather than
a single one. An example of rule growth with the use of a single decision path, for the
donor example of Table 10.1, is illustrated in Fig. 10.5. In this case, the rule is grown for
the donor class. The first conjunct added is Age > 50, and the second conjunct added is
Salary > 50, 000. Note the intuitive similarity between the decision tree of Figs. 10.3a and
10.5.

It remains to describe the quality criterion for the growth of the paths during the Learn-
One-Rule procedure. On what basis is a particular path selected over the others? The

10.4. RULE-BASED CLASSIFIERS 303

Salary > 50 000

{ } Donor

Salary > 50,000
Age < 50

Age > 50 Salary < 50,000

(Age > 50) Donor

Salary < 50,000
Salary > 50,000

(Age > 50) AND (Salary > 50,000) Donor

Figure 10.5: Rule growth is analogous to decision tree construction

similarity between rule growth and decision trees suggests the use of analogous measures
such as the accuracy, entropy, or the Gini index, as used for split criteria in decision trees.

The criteria do need to be modified because a rule is relevant only to the training exam-
ples covered by the antecedent and the single class in the consequent, whereas decision tree
splits are evaluated with respect to all training examples at a given node and all classes.
Furthermore, decision tree split measures do not need to account for issues such as the
coverage of the rule. One would like to determine rules with high coverage in order to avoid
overfitting. For example, a rule that covers only a single training instance will always have
100% accuracy, but it does not usually generalize well to unseen test instances. There-
fore, one strategy is to combine the accuracy and coverage criteria into a single integrated
measure.

The simplest combination approach is to use Laplacian smoothing with a parameter β
that regulates the level of smoothing in a training data set with k classes:

Laplace(β) =
n+ + β

n+ + n− + kβ
. (10.12)

The parameter β > 0 controls the level of smoothing, n+ represents the number of cor-
rectly classified (positive) examples covered by the rule and n− represents the number of
incorrectly classified (negative) examples covered by the rule. Therefore, the total number
of covered examples is n+ + n−. For cases where the absolute number of covered exam-
ples n+ + n− is very small, Laplacian smoothing penalizes the accuracy to account for the
unreliability of low coverage. Therefore, the measure favors greater coverage.

A second possibility is the likelihood ratio statistic. Let nj be the observed number of
training data points covered by the rule that belong to class j, and let ne

j be the expected
number of covered examples that would belong to class j, if the class distribution of the
covered examples is the same as the full training data. In other words, if p1 . . . pk be the
fraction of examples belonging to each class in the full training data, then we have:

ne
i = pi

k∑
i=1

ni. (10.13)

304 CHAPTER 10. DATA CLASSIFICATION

Then, for a k-class problem, the likelihood ratio statistic R may be computed as follows:

R = 2
k∑

j=1

nj log(nj/n
e
j). (10.14)

When the distribution of classes in the covered examples is significantly different than that
in the original training data, the value of R increases. Therefore, the statistic tends to
favor covered examples whose distributions are very different from the original training
data. Furthermore, the presence of raw frequencies n1 . . . nk as multiplicative factors of the
individual terms in the right-hand side of Eq. 10.14 ensures that larger rule coverage is
rewarded. This measure is used by the CN2 algorithm.

Another criterion is FOIL’s information gain. The term “FOIL” stands for first order
inductive learner. Consider the case where a rule covers n+

1 positive examples and n−
1

negative examples, where positive examples are defined as training examples matching the
class in the consequent. Consider the case where the addition of a conjunct to the antecedent
changes the number of positive examples and negative examples to n+

2 and n−
2 , respectively.

Then, FOIL’s information gain FG is defined as follows:

FG = n+
2

(
log2

n+
2

n+
2 + n−

2

− log2
n+
1

n+
1 + n−

1

)
. (10.15)

This measure tends to select rules with high coverage because n+
2 is a multiplicative factor

in FG. At the same time, the information gain increases with higher accuracy because of
the term inside the parentheses. This particular measure is used by the RIPPER algorithm.

As in the case of decision trees, it is possible to grow the rules until 100% accuracy is
achieved on the training data, or when the added conjunct does not improve the accuracy
of the rule. Another criterion used by RIPPER is that the minimum description length of
the rule must not increase by more than a certain threshold because of the addition of a
conjunct. The description length of a rule is defined by a weighted function of the size of
the conjuncts and the misclassified examples.

10.4.3 Rule Pruning

Rule-pruning is relevant not only for rules generated by the Learn-One-Rule method, but
also for methods such as C4.5rules that extract the rules from a decision tree. Irrespective
of the approach used to extract the rules, overfitting may result from the presence of too
many conjuncts. As in decision tree pruning, the MDL principle can be used for pruning. For
example, for each conjunct in the rule, one can add a penalty term δ to the quality criterion
in the rule-growth phase. This will result in a pessimistic error rate. Rules with many
conjuncts will therefore have larger aggregate penalties to account for their greater model
complexity. A simpler approach for computing pessimistic error rates is to use a separate
holdout validation set that is used for computing the error rate (without a penalty) but is
not used by Learn-One-Rule during rule generation.

The conjuncts successively added during rule growth (in sequential covering) are then
tested for pruning in reverse order. If pruning reduces the pessimistic error rate on the train-
ing examples covered by the rule, then the generalized rule is used. While some algorithms
such as RIPPER test the most recently added conjunct first for rule pruning, it is not a
strict requirement to do so. It is possible to test the conjuncts for removal in any order, or
in greedy fashion, to reduce the pessimistic error rate as much as possible. Rule pruning
may result in some of the rules becoming identical. Duplicate rules are removed from the
rule set before classification.

10.4. RULE-BASED CLASSIFIERS 305

10.4.4 Associative Classifiers

Associative classifiers are a popular strategy because they rely on association pattern
mining, for which many efficient algorithmic alternatives exist. The reader is referred to
Chap. 4 for algorithms on association pattern mining. The discussion below assumes binary
attributes, though any data type can be converted to binary attributes with the process
of discretization and binarization, as discussed in Chap. 2. Furthermore, unlike sequential
covering algorithms in which rules are always ordered, the rules created by associative clas-
sifiers may be either ordered or unordered, depending upon application-specific criteria. The
main characteristic of class-based association rules is that they are mined in the same way
as regular association rules, except that they have a single class variable in the consequent.
The basic strategy for an associative classifier is as follows:

1. Mine all class-based association rules at a given level of minimum support and confi-
dence.

2. For a given test instance, use the mined rules for classification.

A variety of choices exist for the implementation of both steps. A naive way of implementing
the first step would be to mine all association rules and then filter out only the rules in which
the consequent corresponds to an individual class. However, such an approach is rather
wasteful because it generates many rules with nonclass consequents. Furthermore, there is
significant redundancy in the rule set because many rules that have 100% confidence are
special cases of other rules with 100% confidence. Therefore, pruning methods are required
during the rule-generation process.

The classification based on associations (CBA) approach uses a modification of the
Apriori method to generate associations that satisfy the corresponding constraints. The
first step is to generate 1-rule-items. These are newly created items corresponding to com-
binations of items and class attributes. These rule items are then extended using traditional
Apriori-style processing. Another modification is that, when patterns are generated corre-
sponding to rules with 100% confidence, those rules are not extended in order to retain
greater generality in the rule set. This broader approach can be used in conjunction with
almost any tree enumeration algorithm. The bibliographic notes contain pointers to several
recent algorithms that use other frequent pattern mining methods for rule generation.

The second step of associative classification uses the generated rule set to make pre-
dictions for unseen test instances. Both ordered or unordered strategies may be used. The
ordered strategy prioritizes the rules on the basis of the support (analogous to coverage),
and the confidence (analogous to accuracy). A variety of heuristics may be used to create
an integrated measure for ordering, such as using a weighted combination of support and
confidence. The reader is referred to Chap. 17 for discussion of a representative rule-based
classifier, XRules, which uses different types of measures. After the rules have been ordered,
the top m matching rules to the test instance are determined. The dominant class label from
the matching rules is reported as the relevant one for the test instance. A second strategy
does not order the rules but determines the dominant class label from all the triggered rules.
Other heuristic strategies may weight the rules differently, depending on their support and
confidence, for the prediction process. Furthermore, many variations of associative classifiers
do not use the support or confidence for mining the rules, but directly use class-based dis-
criminative methods for pattern mining. The bibliographic notes contain pointers to these
methods.

306 CHAPTER 10. DATA CLASSIFICATION

10.5 Probabilistic Classifiers

Probabilistic classifiers construct a model that quantifies the relationship between the fea-
ture variables and the target (class) variable as a probability. There are many ways in which
such a modeling can be performed. Two of the most popular models are as follows:

1. Bayes classifier: The Bayes rule is used to model the probability of each value of
the target variable for a given set of feature variables. Similar to mixture modeling in
clustering (cf. Sect. 6.5 in Chap. 6), it is assumed that the data points within a class are
generated from a specific probability distribution such as the Bernoulli distribution or
the multinomial distribution. A naive Bayes assumption of class-conditioned feature
independence is often (but not always) used to simplify the modeling.

2. Logistic regression: The target variable is assumed to be drawn from a Bernoulli
distribution whose mean is defined by a parameterized logit function on the feature
variables. Thus, the probability distribution of the class variable is a parameterized
function of the feature variables. This is in contrast to the Bayes model that assumes
a specific generative model of the feature distribution of each class.

The first type of classifier is referred to as a generative classifier, whereas the second is
referred to as a discriminative classifier. In the following, both classifiers will be studied in
detail.

10.5.1 Naive Bayes Classifier

The Bayes classifier is based on the Bayes theorem for conditional probabilities. This the-
orem quantifies the conditional probability of a random variable (class variable), given
known observations about the value of another set of random variables (feature variables).
The Bayes theorem is used widely in probability and statistics. To understand the Bayes
theorem, consider the following example, based on Table 10.1:

Example 10.5.1 A charitable organization solicits donations from individuals in the pop-
ulation of which 6/11 have age greater than 50. The company has a success rate of 6/11 in
soliciting donations, and among the individuals who donate, the probability that the age is
greater than 50 is 5/6. Given an individual with age greater than 50, what is the probability
that he or she will donate?

Consider the case where the event E corresponds to (Age > 50), and eventD corresponds
to an individual being a donor. The goal is to determine the posterior probability P (D|E).
This quantity is referred to as the “posterior” probability because it is conditioned on
the observation of the event E that the individual has age greater than 50. The “prior”
probability P (D), before observing the age, is 6/11. Clearly, knowledge of an individual’s
age influences posterior probabilities because of the obvious correlations between age and
donor behavior.

Bayes theorem is useful for estimating P (D|E) when it is hard to estimate P (D|E)
directly from the training data, but other conditional and prior probabilities such as
P (E|D), P (D), and P (E) can be estimated more easily. Specifically, Bayes theorem states
the following:

P (D|E) =
P (E|D)P (D)

P (E)
. (10.16)

10.5. PROBABILISTIC CLASSIFIERS 307

Each of the expressions on the right-hand side is already known. The value of P (E) is 6/11,
and the value of P (E|D) is 5/6. Furthermore, the prior probability P (D) before knowing
the age is 6/11. Consequently, the posterior probability may be estimated as follows:

P (D|E) =
(5/6)(6/11)

6/11
= 5/6. (10.17)

Therefore, if we had 1-dimensional training data containing only the Age, along with the
class variable, the probabilities could be estimated using this approach. Table 10.1 contains
an example with training instances satisfying the aforementioned conditions. It is also easy
to verify from Table 10.1 that the fraction of individuals above age 50 who are donors is
5/6, which is in agreement with Bayes theorem. In this particular case, the Bayes theorem
is not really essential because the classes can be predicted directly from a single attribute of
the training data. A question arises, as to why the indirect route of using the Bayes theorem
is useful, if the posterior probability P (D|E) could be estimated directly from the training
data (Table 10.1) in the first place. The reason is that the conditional event E usually
corresponds to a combination of constraints on d different feature variables, rather than a
single one. This makes the direct estimation of P (D|E) much more difficult. For example, the
probability P (Donor|Age > 50, Salary > 50, 000) is harder to robustly estimate from the
training data because there are fewer instances in Table 10.1 that satisfy both the conditions
on age and salary. This problem increases with increasing dimensionality. In general, for a d-
dimensional test instance, with d conditions, it may be the case that not even a single tuple
in the training data satisfies all these conditions. Bayes rule provides a way of expressing
P (Donor|Age > 50, Salary > 50, 000) in terms of P (Age > 50, Salary > 50, 000|Donor).
The latter is much easier to estimate with the use of a product-wise approximation known
as the naive Bayes approximation, whereas the former is not.

For ease in discussion, it will be assumed that all feature variables are categorical. The
numeric case is discussed later. Let C be the random variable representing the class variable
of an unseen test instance with d-dimensional feature values X = (a1 . . . ad). The goal is to
estimate P (C = c|X = (a1 . . . ad)). Let the random variables for the individual dimensions of
X be denoted by X = (x1 . . . xd). Then, it is desired to estimate the conditional probability
P (C = c|x1 = a1, . . . xd = ad). This is difficult to estimate directly from the training
data because the training data may not contain even a single record with attribute values
(a1 . . . ad). Then, by using Bayes theorem, the following equivalence can be inferred:

P (C = c|x1 = a1, . . . xd = ad) =
P (C = c)P (x1 = a1, . . . xd = ad|C = c)

P (x1 = a1, . . . xd = ad)
(10.18)

∝ P (C = c)P (x1 = a1, . . . xd = ad|C = c). (10.19)

The second relationship above is based on the fact that the term P (x1 = a1, . . . xd =
ad) in the denominator of the first relationship is independent of the class. Therefore, it
suffices to only compute the numerator to determine the class with the maximum conditional
probability. The value of P (C = c) is the prior probability of the class identifier c and
can be estimated as the fraction of the training data points belonging to class c. The key
usefulness of the Bayes rule is that the terms on the right-hand side can now be effectively
approximated from the training data with the use of a naive Bayes approximation. The
naive Bayes approximation assumes that the values on the different attributes x1 . . . xd are
independent of one another conditional on the class. When two random events A and B are
independent of one another conditional on a third event F , it follows that P (A ∩ B|F) =
P (A|F)P (B|F). In the case of the naive Bayes approximation, it is assumed that the feature

308 CHAPTER 10. DATA CLASSIFICATION

values are independent of one another conditional on a fixed value of the class variable. This
implies the following for the conditional term on the right-hand side of Eq. 10.19.

P (x1 = a1, . . . xd = ad|C = c) =
d∏

j=1

P (xj = aj |C = c) (10.20)

Therefore, by substituting Eq. 10.20 in Eq. 10.19, the Bayes probability can be estimated
within a constant of proportionality as follows:

P (C = c|x1 = a1, . . . xd = ad) ∝ P (C = c)
d∏

j=1

P (xj = aj |C = c). (10.21)

Note that each term P (xj = aj |C = c) is much easier to estimate from the training data
than P (x1 = a1, . . . xd = ad|C = c) because enough training examples will exist in the
former case to provide a robust estimate. Specifically, the maximum likelihood estimate for
the value of P (xj = aj |C = c) is the fraction of training examples taking on value aj ,
conditional on the fact, that they belong to class c. In other words, if q(aj , c) is the number
of training examples corresponding to feature variable xj = aj and class c, and r(c) is
the number of training examples belonging to class c, then the estimation is performed as
follows:

P (xj = aj |C = c) =
q(aj , c)
r(c)

. (10.22)

In some cases, enough training examples may still not be available to estimate these values
robustly. For example, consider a rare class c with a single training example satisfying
r(c) = 1, and q(aj , c) = 0. In such a case, the conditional probability is estimated to 0.
Because of the productwise form of the Bayes expression, the entire probability will be
estimated to 0. Clearly, the use of a small number of training examples belonging to the
rare class cannot provide robust estimates. To avoid this kind of overfitting, Laplacian
smoothing is used. A small value of α is added to the numerator, and a value of α ·mj is
added to the denominator, where mj is the number of distinct values of the jth attribute:

P (xj = aj |C = c) =
q(aj , c) + α

r(c) + α ·mj
. (10.23)

Here, α is the Laplacian smoothing parameter. For the case where r(c) = 0, this has the
effect of estimating the probability to an unbiased value of 1/mj for all mj distinct attribute
values. This is a reasonable estimate in the absence of any training data about class c.
Thus, the training phase only requires the estimation of these conditional probabilities
P (xj = aj |C = c) of each class–attribute–value combination, and the estimation of the
prior probabilities P (C = c) of each class.

This model is referred to as the binary or Bernoulli model for Bayes classification when
it is applied to categorical data with only two outcomes of each feature attribute. For
example, in text data, the two outcomes could correspond to the presence or absence of
a word. In cases where more than two outcomes are possible for a feature variable, the
model is referred to as the generalized Bernoulli model. The implicit generative assumption
of this model is similar to that of mixture modeling algorithms in clustering (cf. Sect. 6.5 of
Chap. 6). The features within each class (mixture component) are independently generated
from a distribution whose probabilities are the productwise approximations of Bernoulli
distributions. The estimation of model parameters in the training phase is analogous to

10.5. PROBABILISTIC CLASSIFIERS 309

the M-step in expectation–maximization (EM) clustering algorithms. Note that, unlike EM
clustering algorithms, the labels on only the training data are used to compute the maximum
likelihood estimates of parameters in the training phase. Furthermore, the E-step (or the
iterative approach) is not required because the (deterministic) assignment “probabilities” of
labeled data are already known. In Sect. 13.5.2.1 of Chap. 13, a more sophisticated model,
referred to as the multinomial model, will be discussed. This model can address sparse
frequencies associated with attributes, as in text data. In general, the Bayes model can
assume any parametric form of the conditional feature distribution P (x1 = a1, . . . xd =
ad|C = c) of each class (mixture component), such as a Bernoulli model, a multinomial
model, or even a Gaussian model for numeric data. The parameters of the distribution of
each class are estimated in a data-driven manner. The approach discussed in this section,
therefore, represents only a single instantiation from a wider array of possibilities.

The aforementioned description is based on categorical data. It can also be generalized
to numeric data sets by using the process of discretization. Each discretized range becomes
one of the possible categorical values of an attribute. Such an approach can, however, be
sensitive to the granularity of the discretization. A second approach is to assume a specific
form of the probability distribution of each mixture component (class), such as a Gaussian
distribution. The mean and variance parameters of the Gaussian distribution of each class
are estimated in a data-driven manner, just as the class conditioned feature probabilities are
estimated in the Bernoulli model. Specifically, the mean and variance of each Gaussian can
be estimated directly as the mean and variance of the training data for the corresponding
class. This is similar to the M-step in EM clustering algorithms with Gaussian mixtures.
The conditional class probabilities in Eq. 10.21 for a test instance are replaced with the
class-specific Gaussian densities of the test instance.

10.5.1.1 The Ranking Model for Classification

The aforementioned algorithms predict the labels of individual test instances. In some sce-
narios, a set of test instances is provided to the learner, and it is desired to rank these
test instances by their propensity to belong to a particularly important class c. This is a
common scenario in rare-class learning, which will be discussed in Sect. 11.3 of Chap. 11.

As discussed in Eq. 10.21, the probability of a test instance (a1 . . . ad) belonging to a
particular class can be estimated within a constant of proportionality as follows:

P (C = c|x1 = a1, . . . xd = ad) ∝ P (C = c)
d∏

j=1

P (xj = aj |C = c). (10.24)

The constant of proportionality is irrelevant while comparing the scores across different
classes but is not irrelevant while comparing the scores across different test instances. This
is because the constant of proportionality is the inverse of the generative probability of
the specific test instance. An easy way to estimate the proportionality constant is to use
normalization so that the sum of probabilities across different classes is 1. Therefore, if
the class label c is assumed to be an integer drawn from the range {1 . . . k} for a k-class
problem, then the Bayes probability can be estimated as follows:

P (C = c|x1 = a1, . . . xd = ad) =
P (C = c)

∏d
j=1 P (xj = aj |C = c)∑k

c=1 P (C = c)
∏d

j=1 P (xj = aj |C = c)
. (10.25)

These normalized values can then be used to rank different test instances. It should be
pointed out that most classification algorithms return a numerical score for each class,

310 CHAPTER 10. DATA CLASSIFICATION

and therefore an analogous normalization can be performed for virtually any classification
algorithm. However, in the Bayes method, it is more natural to intuitively interpret the
normalized values as probabilities.

10.5.1.2 Discussion of the Naive Assumption

The Bayes model is referred to as “naive” because of the assumption of conditional inde-
pendence. This assumption is obviously not true in practice because the features in real
data sets are almost always correlated even when they are conditioned on a specific class.
Nevertheless, in spite of this approximation, the naive Bayes classifier seems to perform
quite well in practice in many domains. Although it is possible to implement the Bayes
model using more general multivariate estimation methods, such methods can be computa-
tionally more expensive. Furthermore, the estimation of multivariate probabilities becomes
inaccurate with increasing dimensionality, especially with limited training data. Therefore,
significant practical accuracy is often not gained with the use of theoretically more accu-
rate assumptions. The bibliographic notes contain pointers to theoretical results on the
effectiveness of the naive assumption.

10.5.2 Logistic Regression

While the Bayes classifier assumes a specific form of the feature probability distribution for
each class, logistic regression directly models the class-membership probabilities in terms
of the feature variables with a discriminative function. Thus, the nature of the modeling
assumption is different in the two cases. Both are, however, probabilistic classifiers because
they use a specific modeling assumption to map the feature variables to a class-membership
probability. In both cases, the parameters of the underlying probabilistic model need to be
estimated in a data-driven manner.

In the simplest form of logistic regression, it is assumed that the class variable is binary,
and is drawn from {−1,+1}, although it is also possible to model nonbinary class variables.
Let Θ = (θ0, θ1 . . . θd) be a vector of d + 1 different parameters. The ith parameter θi is a
coefficient related to the ith dimension in the underlying data, and θ0 is an offset parameter.
Then, for a record X = (x1 . . . xd), the probability that the class variable C takes on the
values of +1 or −1, is modeled with the use of a logistic function.

P (C = +1|X) =
1

1 + e−(θ0+
∑d

i=1 θixi)
(10.26)

P (C = −1|X) =
1

1 + e(θ0+
∑d

i=1 θixi)
(10.27)

It is easy to verify that the sum of the two aforementioned probability values is 1. Logistic
regression can be viewed as either a probabilistic classifier or a linear classifier. In linear
classifiers, such as Fisher’s discriminant, a linear hyperplane is used to separate the two
classes. Other linear classifiers such as SVMs and neural networks will be discussed in
Sects. 10.6 and 10.7 of this chapter. In logistic regression, the parameters Θ = (θ0 . . . θd)
can be viewed as the coefficients of a separating hyperplane θ0 +

∑d
i=1 θixi = 0 between

the two classes. The term θi is the linear coefficient of dimension i, and the term θ0 is the
constant term. The value of θ0+

∑d
i=1 θixi will be either positive or negative, depending on

the side of the separating hyperplane on which X is located. A positive value is predictive
of the class +1, whereas a negative value is predictive of the class −1. In many other linear
classifiers, the sign of this expression yields the class label of X from {−1,+1}. Logistic

10.5. PROBABILISTIC CLASSIFIERS 311

.
.

.(o + i x i) IS
PROPORTIONAL TO

POSITIVE
CLASS

..
.

..DISTANCE AND
POSITIVE

NEGATIVE
CLASS

. .
.. .

.
(o + i x i) IS

PROPORTIONAL TO
DISTANCE ANDDISTANCE AND

NEGATIVE

HYPERPLANE DEFINED BY: + x = 0HYPERPLANE DEFINED BY: o + i x I = 0

Figure 10.6: Illustration of logistic regression in terms of linear separators

regression achieves the same result in the form of probabilities defined by the aforementioned
discriminative function.

The term θ0 +
∑d

i=1 θixi, within the exponent of the logistic function is proportional to
the distance of the data point from the separating hyperplane. When the data point lies
exactly on this hyperplane, both classes are assigned the probability of 0.5 according to
the logistic function. Positive values of the distance will assign probability values greater
than 0.5 to the positive class. Negative values of the distance will assign (symmetrically
equal) probability values greater than 0.5 to the negative class. This scenario is illustrated
in Fig. 10.6. Therefore, the logistic function neatly exponentiates the distances, shown in
Fig. 10.6, to convert them to intuitively interpretable probabilities in (0, 1). The setup of
logistic regression is similar to classical least-squares linear regression, with the difference
that the logit function is used to estimate probabilities of class membership instead of con-
structing a squared error objective. Consequently, instead of the least-squares optimization
in linear regression, a maximum likelihood optimization model is used for logistic regression.

10.5.2.1 Training a Logistic Regression Classifier

The maximum likelihood approach is used to estimate the best fitting parameters of the
logistic regression model. Let D+ and D− be the segments of the training data belonging
to the positive and negative classes, respectively. Let the kth data point be denoted by
Xk = (x1

k . . . x
d
k). Then, the likelihood function L(Θ) for the entire data set is defined as

follows:
L(Θ) =

∏
Xk∈D+

1

1 + e−(θ0+
∑d

i=1 θixi
k)

∏
Xk∈D−

1

1 + e(θ0+
∑d

i=1 θixi
k)
. (10.28)

This likelihood function is the product of the probabilities of all the training examples
taking on their assigned labels according to the logistic model. The goal is to maximize
this function to determine the optimal value of the parameter vector Θ. For numerical
convenience, the log likelihood is used to yield the following:

LL(Θ) = log(L(Θ)) = −
∑

Xk∈D+

log(1 + e−(θ0+
∑d

i=1 θix
i
k))−

∑
Xk∈D−

log(1 + e(θ0+
∑d

i=1 θix
i
k)).

(10.29)

312 CHAPTER 10. DATA CLASSIFICATION

There is no closed-form solution for optimizing the aforementioned expression with respect
to the vector Θ. Therefore, a natural approach is to use a gradient ascent method to deter-
mine the optimal value of the parameter vector Θ iteratively. The gradient vector is obtained
by differentiating the log-likelihood function with respect to each of the parameters:

∇LL(Θ) =
(
∂LL(Θ
∂θ0

. . .
∂LL(Θ
∂θd

)
. (10.30)

It is instructive to examine the ith component4 of the aforementioned gradient, for i > 0. By
computing the partial derivative of both sides of Eq. 10.29 with respect to θi, the following
can be obtained:

∂LL(Θ)
∂θi

=
∑

Xk∈D+

xi
k

1 + e(θ0+
∑d

i=1 θixi)
−

∑
Xk∈D−

xi
k

1 + e−(θ0+
∑d

i=1 θixi)
(10.31)

=
∑

Xk∈D+

P (Xk ∈ D−)xi
k −

∑
Xk∈D−

P (Xk ∈ D+)xi
k (10.32)

=
∑

Xk∈D+

P (Mistake on Xk)xi
k −

∑
Xk∈D−

P (Mistake on Xk)xi
k. (10.33)

It is interesting to note that the terms P (Xk ∈ D−) and P (Xk ∈ D+) represent the
probability of an incorrect prediction of Xk in the positive and negative classes, respectively.
Thus, the mistakes of the current model are used to identify the steepest ascent directions.
This approach is generally true of many linear models, such as neural networks, which are
also referred to as mistake-driven methods. In addition, the multiplicative factor xi

k impacts
the magnitude of the ith component of the gradient direction contributed by Xk. Therefore,
the update condition for θi is as follows:

θi ← θi + α

⎛
⎝ ∑

Xk∈D+

P (Xk ∈ D−)xi
k −

∑
Xk∈D−

P (Xk ∈ D+)xi
k

⎞
⎠ . (10.34)

The value of α is the step size, which can be determined by using binary search to maximize
the improvement in the objective function value. The aforementioned equation uses a batch
ascent method, wherein all the training data points contribute to the gradient in a single
update step. In practice, it is possible to cycle through the data points one by one for the
update process. It can be shown that the likelihood function is concave. Therefore, a global
optimum will be found by the gradient ascent method. A number of regularization methods
are also used to reduce overfitting. A typical example of a regularization term, which is added
to the log-likelihood function LL(Θ) is −λ

∑d
i=1 θ

2
i /2, where λ is the balancing parameter.

The only difference to the gradient update is that the term −λθi needs to be added to the
ith gradient component for i ≥ 1.

10.5.2.2 Relationship with Other Linear Models

Although the logistic regression method is a probabilistic method, it is also a special case of
a broader class of generalized linear models (cf. Sect. 11.5.3 of Chap. 11). There are many
ways of formulating a linear model. For example, instead of using a logistic function to set

4For the case where i = 0, the value of xi
k is replaced by 1.

10.6. SUPPORT VECTOR MACHINES 313

up a likelihood criterion, one might directly optimize the squared error of the prediction.
In other words, if the class label for Xk is yk ∈ {−1,+1}, one might simply attempt to
optimize the squared error

∑
Xk∈D(yk−sign(θ0+

∑d
i=1 θix

k
i))

2 over all test instances. Here,
the function “sign” evaluates to +1 or −1, depending on whether its argument is positive
or negative. As will be evident in Sect. 10.7, such a model is (approximately) used by neural
networks. Similarly, Fisher’s linear discriminant, which was discussed at the beginning of
this chapter, is also a linear least-squares model (cf. Sect. 11.5.1.1 of Chap. 11) but with
a different coding of the class variable. In the next section, a linear model that uses the
maximum margin principle to separate the two classes, will be discussed.

10.6 Support Vector Machines

Support vector machines (SVMs) are naturally defined for binary classification of numeric
data. The binary-class problem can be generalized to the multiclass case by using a vari-
ety of tricks discussed in Sect. 11.2 of Chap. 11. Categorical feature variables can also
be addressed by transforming categorical attributes to binary data with the binarization
approach discussed in Chap. 2.

It is assumed that the class labels are drawn from {−1, 1}. As with all linear models,
SVMs use separating hyperplanes as the decision boundary between the two classes. In
the case of SVMs, the optimization problem of determining these hyperplanes is set up
with the notion of margin. Intuitively, a maximum margin hyperplane is one that cleanly
separates the two classes, and for which a large region (or margin) exists on each side of the
boundary with no training data points in it. To understand this concept, the very special
case where the data is linearly separable will be discussed first. In linearly separable data, it
is possible to construct a linear hyperplane which cleanly separates data points belonging to
the two classes. Of course, this special case is relatively unusual because real data is rarely
fully separable, and at least a few data points, such as mislabeled data points or outliers,
will violate linear separability. Nevertheless, the linearly separable formulation is crucial
in understanding the important principle of maximum margin. After discussing the linear
separable case, the modifications to the formulation required to enable more general (and
realistic) scenarios will be addressed.

10.6.1 Support Vector Machines for Linearly Separable Data

This section will introduce the use of the maximum margin principle in linearly separable
data. When the data is linearly separable, there are an infinite number of possible ways
of constructing a linear separating hyperplane between the classes. Two examples of such
hyperplanes are illustrated in Fig. 10.7a as hyperplane 1 and hyperplane 2. Which of these
hyperplanes is better? To understand this, consider the test instance (marked by a square),
which is very obviously much closer to class A than class B. The hyperplane 1 will correctly
classify it to class A, whereas the hyperplane 2 will incorrectly classify it to class B.

The reason for the varying performance of the two classifiers is that the test instance is
placed in a noisy and uncertain boundary region between the two classes, which is not easily
generalizable from the available training data. In other words, there are few training data
points in this uncertain region that are quite like the test instance. In such cases, a separating
hyperplane like hyperplane 1, whose minimum perpendicular distance to training points
from both classes is as large as possible, is the most robust one for correct classification.
This distance can be quantified using the margin of the hyperplane.

314 CHAPTER 10. DATA CLASSIFICATION

. .
TEST INSTANCE HYPERPLANE 2 SUPPORT VECTOR

.
.

.
.

.
.

.

.
. .

.

.
CLASS SSALCA B

.
.

.

.
. ..

HYPERPLANE 1

.. . .
.

.
.

.
.

.

.
. .

.

. .

.

.
.

.

.
. ..

MARGIN VIOLATION WITH PENALTY BASED SLACK VARIABLES

noitarapestfoS)b(noitarapesdraH)a(

Figure 10.7: Hard and soft SVMs

Consider a hyperplane that cleanly separates two linearly separable classes. The margin
of the hyperplane is defined as the sum of its distances to the closest training points belong-
ing to each of the two classes on the opposite side of the hyperplane. A further assumption
is that the distance of the separating hyperplane to its closest training point of either class
is the same. With respect to the separating hyperplane, it is possible to construct parallel
hyperplanes that touch the training data of opposite classes on either side, and have no
data point between them. The training data points on these hyperplanes are referred to
as the support vectors, and the distance between the two hyperplanes is the margin. The
separating hyperplane, or decision boundary, is precisely in the middle of these two hyper-
planes in order to achieve the most accurate classification. The margins for hyperplane 1
and hyperplane 2 are illustrated in Fig. 10.7a by dashed lines. It is evident that the margin
for hyperplane 1 is larger than that for hyperplane 2. Therefore, the former hyperplane
provides better generalization power for unseen test instances in the “difficult” uncertain
region separating the two classes where classification errors are most likely. This is also con-
sistent with our earlier example-based observation about the more accurate classification
with hyperplane 1.

How do we determine the maximum margin hyperplane? The way to do this is to set up a
nonlinear programming optimization formulation that maximizes the margin by expressing
it as a function of the coefficients of the separating hyperplane. The optimal coefficients can
be determined by solving this optimization problem. Let the n data points in the training set
D be denoted by (X1, y1) . . . (Xn, yn), where Xi is a d-dimensional row vector corresponding
to the ith data point, and yi ∈ {−1,+1} is the binary class variable of the ith data point.
Then, the separating hyperplane is of the following form:

W ·X + b = 0. (10.35)

Here, W = (w1 . . . wd) is the d-dimensional row vector representing the normal direction
to the hyperplane, and b is a scalar, also known as the bias. The vector W regulates the
orientation of the hyperplane and the bias b regulates the distance of the hyperplane from
the origin. The (d + 1) coefficients corresponding to W and b need to be learned from the
training data to maximize the margin of separation between the two classes. Because it

10.6. SUPPORT VECTOR MACHINES 315

is assumed that the classes are linearly separable, such a hyperplane can also be assumed
to exist. All data points Xi with yi = +1 will lie on one side of the hyperplane satisfying
W ·Xi+ b ≥ 0. Similarly, all points with yi = −1 will lie on the other side of the hyperplane
satisfying W ·Xi + b ≤ 0.

W ·Xi + b ≥ 0 ∀i : yi = +1 (10.36)
W ·Xi + b ≤ 0 ∀i : yi = −1 (10.37)

These constraints do not yet incorporate the margin requirements on the data points. A
stronger set of constraints are defined using these margin requirements. It may be assumed
that the separating hyperplane W · X + b = 0 is located in the center of the two margin-
defining hyperplanes. Therefore, the two symmetric hyperplanes touching the support vec-
tors can be expressed by introducing another parameter c that regulates the distance
between them.

W ·X + b = +c (10.38)
W ·X + b = −c (10.39)

It is possible to assume, without loss of generality, that the variables W and b are appropri-
ately scaled, so that the value of c can be set to 1. Therefore, the two separating hyperplanes
can be expressed in the following form:

W ·X + b = +1 (10.40)
W ·X + b = −1. (10.41)

These constraints are referred to as margin constraints. The two hyperplanes segment the
data space into three regions. It is assumed that no training data points lie in the uncertain
decision boundary region between these two hyperplanes, and all training data points for
each class are mapped to one of the two remaining (extreme) regions. This can be expressed
as pointwise constraints on the training data points as follows:

W ·Xi + b ≥ +1 ∀i : yi = +1 (10.42)

W ·Xi + b ≤ −1 ∀i : yi = −1. (10.43)

Note that the constraints for both the positive and negative classes can be written in the
following succinct and algebraically convenient, but rather cryptic, form:

yi(W ·Xi + b) ≥ +1 ∀i. (10.44)

The distance between the two hyperplanes for the positive and negative instances is also
referred to as the margin. As discussed earlier, the goal is to maximize this margin. What
is the distance (or margin) between these two parallel hyperplanes? One can use linear
algebra to show that the distance between two parallel hyperplanes is the normalized
difference between their constant terms, where the normalization factor is the L2-norm

||W || =
√∑d

i=1 w
2
i of the coefficients. Because the difference between the constant terms

of the two aforementioned hyperplanes is 2, it follows that the distance between them is
2/||W ||. This is the margin that needs to be maximized with respect to the aforementioned
constraints. This form of the objective function is inconvenient because it incorporates a

316 CHAPTER 10. DATA CLASSIFICATION

square root in the denominator of the objective function. However, maximizing 2/||W || is
the same as minimizing ||W ||2/2. This is a convex quadratic programming problem, because
the quadratic objective function ||W ||2/2 needs to be minimized subject to a set of linear
constraints (Eqs. 10.42–10.43) on the training points. Note that each training data point
leads to a constraint, which tends to make the optimization problem rather large, and
explains the high computational complexity of SVMs.

Such constrained nonlinear programming problems are solved using a method known as
Lagrangian relaxation. The broad idea is to associate a nonnegative n-dimensional set of
Lagrangian multipliers λ = (λ1 . . . λn) ≥ 0 for the different constraints. The multiplier λi

corresponds to the margin constraint of the ith training data point. The constraints are then
relaxed, and the objective function is augmented by incorporating a Lagrangian penalty for
constraint violation:

LP =
||W ||2

2
−

n∑
i=1

λi

[
yi(W ·Xi + b)− 1

]
. (10.45)

For fixed nonnegative values of λi, margin constraint violations increase Lp. Therefore, the
penalty term pushes the optimized values of W and b towards constraint nonviolation for
minimization of LP with respect to W and b. Values of W and b that satisfy the margin
constraints will always result in a nonpositive penalty. Therefore, for any fixed nonnegative
value of λ, the minimum value of LP will always be at most equal to that of the original
optimal objective function value ||W ∗||2/2 because of the impact of the non-positive penalty
term for any feasible (W ∗, b∗).

Therefore, if LP is minimized with respect to W and b for any particular λ, and then
maximized with respect to nonnegative Lagrangian multipliers λ, the resulting dual solution
L∗
D will be a lower bound on the optimal objective function O∗ = ||W ∗||2/2 of the SVM

formulation. Mathematically, this weak duality condition can be expressed as follows:

O∗ ≥ L∗
D = max λ≥0 min W,bLP . (10.46)

Optimization formulations such as SVM are special because the objective function is convex,
and the constraints are linear. Such formulations satisfy a property known as strong duality.
According to this property, the minimax relationship of Eq. 10.46 yields an optimal and
feasible solution to the original problem (i.e., O∗ = L∗

D) in which the Lagrangian penalty
term has zero contribution. Such a solution (W ∗, b∗, λ∗) is referred to as the saddle point
of the Lagrangian formulation. Note that zero Lagrangian penalty is achieved by a feasible
solution only when each training data point Xi satisfies λi

[
yi(W ·Xi + b)− 1

]
= 0. These

conditions are equivalent to the Kuhn–Tucker optimality conditions, and they imply that
data points Xi with λi > 0 are support vectors. The Lagrangian formulation is solved using
the following steps:

1. The Lagrangian objective LP can be expressed more conveniently as a pure maxi-
mization problem by eliminating the minimization part from the awkward minimax
formulation. This is achieved by eliminating the minimization variables W and b with
gradient-based optimization conditions on these variables. By setting the gradient of
LP with respect to W to 0, we obtain the following:

∇LP = ∇||W ||2
2

−∇
n∑

i=1

λi

[
yi(W ·Xi + b)− 1

]
= 0 (10.47)

W −
n∑

i=1

λiyiXi = 0. (10.48)

10.6. SUPPORT VECTOR MACHINES 317

Therefore, one can now derive an expression for W in terms of the Lagrangian multi-
pliers and the training data points:

W =
n∑

i=1

λiyiXi. (10.49)

Furthermore, by setting the partial derivative of LP with respect to b to 0, we obtain∑n
i=1 λiyi = 0.

2. The optimization condition
∑n

i=1 λiyi = 0 can be used to eliminate the term
−b

∑n
i=1 λiyi from LP . The expression W =

∑n
i=1 λiyiXi from Eq. 10.49 can then

be substituted in LP to create a dual problem LD in terms of only the maximization
variables λ. Specifically, the maximization objective function LD for the Lagrangian
dual is as follows:

LD =
n∑

i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjXi ·Xj . (10.50)

The dual problem maximizes LD subject to the constraints λi ≥ 0 and
∑n

i=1 λiyi = 0.
Note that LD is expressed only in terms of λi, the class labels, and the pairwise dot
products Xi ·Xj between training data points. Therefore, solving for the Lagrangian
multipliers requires knowledge of only the class variables and dot products between
training instances but it does not require direct knowledge of the feature values Xi.
The dot products between training data points can be viewed as a kind of similar-
ity between the points, which can easily be defined for data types beyond numeric
domains. This observation is important for generalizing linear SVMs to nonlinear
decision boundaries and arbitrary data types with the kernel trick.

3. The value of b can be derived from the constraints in the original SVM formulation,
for which the Lagrangian multipliers λr are strictly positive. For these training points,
the margin constraint yr(W ·Xr+ b) = +1 is satisfied exactly according to the Kuhn–
Tucker conditions. The value of b can be derived from any such training point (Xr, yr)
as follows:

yr
[
W ·Xr + b

]
= +1 ∀r : λr > 0 (10.51)

yr

[
(

n∑
i=1

λiyiXi ·Xr) + b

]
= +1 ∀r : λr > 0. (10.52)

The second relationship is derived by substituting the expression for W in terms of the
Lagrangian multipliers according to Eq. 10.49. Note that this relationship is expressed
only in terms of Lagrangian multipliers, class labels, and dot products between training
instances. The value of b can be solved from this equation. To reduce numerical error,
the value of b may be averaged over all the support vectors with λr > 0.

4. For a test instance Z, its class label F (Z) is defined by the decision boundary obtained
by substituting for W in terms of the Lagrangian multipliers (Eq. 10.49):

F (Z) = sign{W · Z + b} = sign{(
n∑

i=1

λiyiXi · Z) + b}. (10.53)

318 CHAPTER 10. DATA CLASSIFICATION

It is interesting to note that F (Z) can be fully expressed in terms of the dot product
between training instances and test instances, class labels, Lagrangian multipliers, and
bias b. Because the Lagrangian multipliers λi and b can also be expressed in terms of
the dot products between training instances, it follows that the classification can be
fully performed using knowledge of only the dot product between different instances
(training and test), without knowing the exact feature values of either the training or
the test instances.

The observations about dot products are crucial in generalizing SVM methods to nonlinear
decision boundaries and arbitrary data types with the use of a technique known as the
kernel trick. This technique simply substitutes dot products with kernel similarities (cf.
Sect. 10.6.4).

It is noteworthy from the derivation of W (see Eq. 10.49) and the aforementioned deriva-
tion of b, that only training data points that are support vectors (with λr > 0) are used to
define the solution W and b in SVM optimization. As discussed in Chap. 11, this observation
is leveraged by scalable SVM classifiers, such as SVMLight. Such classifiers shrink the size
of the problem by discarding irrelevant training data points that are easily identified to be
far away from the separating hyperplanes.

10.6.1.1 Solving the Lagrangian Dual

The Lagrangian dual LD may be optimized by using the gradient ascent technique in terms
of the n-dimensional parameter vector λ.

∂LD

∂λi
= 1− yi

n∑
j=1

yjλjXi ·Xj (10.54)

Therefore, as in logistic regression, the corresponding gradient-based update equation is as
follows:

(λ1 . . . λn) ← (λ1 . . . λn) + α

(
∂LD

∂λ1
. . .

∂LD

∂λn

)
. (10.55)

The step size α may be chosen to maximize the improvement in objective function. The
initial solution can be chosen to be the vector of zeros, which is also a feasible solution for λ.

One problem with this update is that the constraints λi ≥ 0 and
∑n

i=1 λiyi = 0 may be
violated after an update. Therefore, the gradient vector is projected along the hyperplane∑n

i=1 λiyi = 0 before the update to create a modified gradient vector. Note that the projec-
tion of the gradient ∇LD along the normal to this hyperplane is simply H = (y · ∇LD) y,
where y is the unit vector 1√

n
(y1 . . . yn). This component is subtracted from ∇LD to create

a modified gradient vector G = ∇LD − H. Because of the projection, updating along the
modified gradient vector G will not violate the constraint

∑n
i=1 λiyi = 0. In addition, any

negative values of λi after an update are reset to 0.
Note that the constraint

∑n
i=1 λiyi = 0 is derived by setting the gradient of LP with

respect to b to 0. In some alternative formulations of SVMs, the bias vector b can be included
within W by adding a synthetic dimension to the data with a constant value of 1. In such
cases, the gradient vector update is simplified to Eq. 10.55 because one no longer needs to
worry about the constraint

∑n
i=1 λiyi = 0. This alternative formulation of SVMs is discussed

in Chap. 13.

10.6. SUPPORT VECTOR MACHINES 319

10.6.2 Support Vector Machines with Soft Margin
for Nonseparable Data

The previous section discussed the scenario where the data points of the two classes are
linearly separable. However, perfect linear separability is a rather contrived scenario, and
real data sets usually will not satisfy this property. An example of such a data set is illus-
trated in Fig. 10.7b, where no linear separator may be found. Many real data sets may,
however, be approximately separable, where most of the data points lie on correct sides of
well-chosen separating hyperplanes. In this case, the notion of margin becomes a softer one
because training data points are allowed to violate the margin constraints at the expense of
a penalty. The two margin hyperplanes separate out “most” of the training data points but
not all of them. An example is illustrated in Fig. 10.7b.

The level of violation of each margin constraint by training data point Xi is denoted
by a slack variable ξi ≥ 0. Therefore, the new set of soft constraints on the separating
hyperplanes may be expressed as follows:

W ·Xi + b ≥ +1− ξi ∀i : yi = +1

W ·Xi + b ≤ −1 + ξi ∀i : yi = −1
ξi ≥ 0 ∀i.

These slack variables ξi may be interpreted as the distances of the training data points from
the separating hyperplanes, as illustrated in Fig. 10.7b, when they lie on the “wrong” side
of the separating hyperplanes. The values of the slack variables are 0 when they lie on the
correct side of the separating hyperplanes. It is not desirable for too many training data
points to have positive values of ξi, and therefore such violations are penalized by C · ξri ,
where C and r are user-defined parameters regulating the level of softness in the model.
Small values of C would result in relaxed margins, whereas large values of C would minimize
training data errors and result in narrow margins. Setting C to be sufficiently large would
disallow any training data error in separable classes, which is the same as setting all slack
variables to 0 and defaulting to the hard version of the problem. A popular choice of r is
1, which is also referred to as hinge loss. Therefore, the objective function for soft-margin
SVMs, with hinge loss, is defined as follows:

O =
||W ||2

2
+ C

n∑
i=1

ξi. (10.56)

As before, this is a convex quadratic optimization problem that can be solved using
Lagrangian methods. A similar approach is used to set up the Lagrangian relaxation of
the problem with penalty terms and additional multipliers βi ≥ 0 for the slack constraints
ξi ≥ 0:

LP =
||W ||2

2
+ C

n∑
i=1

ξi −
n∑

i=1

λi

[
yi(W ·Xi + b)− 1 + ξi

]
−

n∑
i=1

βiξi. (10.57)

A similar approach to the hard SVM case can be used to eliminate the minimization variables
W , ξi, and b from the optimization formulation and create a purely maximization dual
formulation. This is achieved by setting the gradient of LP with respect to these variables
to 0. By setting the gradients of LP with respect to W and b to 0, it can be respectively
shown that the value of W is identical to the hard-margin case (Eq. 10.49), and the same

320 CHAPTER 10. DATA CLASSIFICATION

multiplier constraint
∑n

i=1 λiyi = 0 is satisfied. This is because the additional slack terms in
LP involving ξi do not affect the respective gradients with respect to W and b. Furthermore,
it can be shown that the objective function LD of the Lagrangian dual in the soft-margin
case is identical to that of the hard-margin case, according to Eq. 10.50, because the linear
terms involving each ξi evaluate5 to 0. The only change to the dual optimization problem
is that the nonnegative Lagrangian multipliers satisfy additional constraints of the form
C − λi = βi ≥ 0. This constraint is derived by setting the partial derivative of LP with
respect to ξi to 0. One way of viewing this additional constraint λi ≤ C is that the influence
of any training data pointXi on the weight vectorW =

∑n
i=1 λiyiXi is capped by C because

of the softness of the margin. The dual problem in soft SVMs maximizes LD (Eq. 10.50)
subject to the constraints 0 ≤ λi ≤ C and

∑n
i=1 λiyi = 0.

The Kuhn–Tucker optimality conditions for the slack nonnegativity constraints are
βiξi = 0. Because we have already derived βi = C − λi, we obtain (C − λi)ξi = 0. In
other words, training points Xi with λi < C correspond to zero slack ξi and they might
either lie on the margin or on the correct side of the margin. However, in this case, the
support vectors are defined as data points that satisfy the soft SVM constraints exactly
and some of them might have nonzero slack. Such points might lie on the margin, between
the margin, or on the wrong side of the decision boundary. Points that satisfy λi > 0 are
always support vectors. The support vectors that lie on the margin will therefore satisfy
0 < λi < C. These points are very useful in solving for b. Consider any such support vector
Xr with zero slack, which satisfies 0 < λr < C. The value of b may be obtained as before:

yr

[
(

n∑
i=1

λiyiXi ·Xr) + b

]
= +1. (10.58)

Note that this expression is the same as for the case of hard SVMs, except that the relevant
training points are identified by using the condition 0 < λr < C. The gradient-ascent
update is also identical to the separable case (cf. Sect. 10.6.1.1), except that any multiplier
λi exceeding C because of an update needs to be reset to C. The classification of a test
instance also uses Eq. 10.53 in terms of Lagrangian multipliers because the relationship
between the weight vector and the Lagrangian multipliers is the same in this case. Thus,
the soft SVM formulation with hinge loss is strikingly similar to the hard SVM formulation.
This similarity is less pronounced for other slack penalty functions such as quadratic loss.

The soft version of SVMs also allows an unconstrained primal formulation by eliminating
the margin constraints and slack variables simultaneously. This is achieved by substituting
ξi = max{0, 1 − yi[W ·Xi + b]} in the primal objective function of Eq. 10.56. This results
in an unconstrained optimization (minimization) problem purely in terms of W and b:

O =
||W ||2

2
+ C

n∑
i=1

max{0, 1− yi[W ·Xi + b]}. (10.59)

One can use a gradient descent approach, which is analogous to the gradient ascent method
used in logistic regression. The partial derivatives of nondifferentiable function O with
respect to w1, . . . wd and b are approximated on a casewise basis, depending on whether
or not the term inside the maximum function evaluates to a positive quantity. The precise
derivation of the gradient descent steps is left as an exercise for the reader. While the dual

5The additional term in LP involving ξi is (C − βi − λi)ξi. This term evaluates to 0 because the partial
derivative of LP with respect to ξi is (C−βi−λi). This partial derivative must evaluate to 0 for optimality
of LP .

10.6. SUPPORT VECTOR MACHINES 321

approach is more popular, the primal approach is intuitively simpler, and it is often more
efficient when an approximate solution is desired.

10.6.2.1 Comparison with Other Linear Models

The normal vector to a linear separating hyperplane can be viewed as a direction along
which the data points of the two classes are best separated. Fisher’s linear discriminant
also achieves this goal by maximizing the ratio of the between-class scatter to the within-
class scatter along an optimally chosen vector. However, an important distinguishing feature
of SVMs is that they focus extensively on the decision boundary region between the two
classes because this is the most uncertain region, which is prone to classification error.
Fisher’s discriminant focuses on the global separation between the two classes and may not
necessarily provide the best separation in the uncertain boundary region. This is the reason
that SVMs often have better generalization behavior for noisy data sets that are prone to
overfitting.

It is instructive to express logistic regression as a minimization problem by using the
negative of the log-likelihood function and then comparing it with SVMs. The coefficients
(θ0, . . . θd) in logistic regression are analogous to the coefficients (b,W) in SVMs. SVMs have
a margin component to increase the generalization power of the classifier, just as logistic
regression uses regularization. Interestingly, the margin component ||W ||2/2 in SVMs has
an identical form to the regularization term

∑d
i=1 θ

2
i /2 in logistic regression. SVMs have

slack penalties just as logistic regression implicitly penalizes the probability of mistakes
in the log-likelihood function. However, the slack is computed using margin violations in
SVMs, whereas the penalties in logistic regression are computed as a smooth function of
the distances from the decision boundary. Specifically, the log-likelihood function in logistic
regression creates a smooth loss function of the form log(1 + e−yi[θ0+θ·Xi]), whereas the
hinge loss max{0, 1− yi[W ·Xi + b]} in SVMs is not a smooth function. The nature of the
misclassification penalty is the only difference between the two models. Therefore, there are
several conceptual similarities among these models, but they emphasize different aspects of
optimization. SVMs and regularized logistic regression show similar performance in many
practical settings with poorly separable classes. However, SVMs and Fisher’s discriminant
generally perform better than logistic regression for the special case of well-separated classes.
All these methods can also be extended to nonlinear decision boundaries in similar ways.

10.6.3 Nonlinear Support Vector Machines

In many cases, linear solvers are not appropriate for problems in which the decision boundary
is not linear. To understand this point, consider the data distribution illustrated in Fig. 10.8.
It is evident that no linear separating hyperplanes can delineate the two classes. This is
because the two classes are separated by the following decision boundary:

8(x1 − 1)2 + 50(x2 − 2)2 = 1. (10.60)

Now, if one already had some insight about the nature of the decision boundary, one might
transform the training data into the new 4-dimensional space as follows:

z1 = x2
1

z2 = x1

z3 = x2
2

z4 = x2.

322 CHAPTER 10. DATA CLASSIFICATION

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

FEATURE X

FE
A

TU
R

E
 Y

APPROX. DECISION
BOUNDARY

Figure 10.8: Nonlinear decision surface

The decision boundary of Eq. 10.60 can be expressed linearly in terms of the variables
z1 . . . z4, by expanding Eq. 10.60 in terms of x1, x2

1, x2, and x2
2:

8x2
1 − 16x1 + 50x2

2 − 200x2 + 207 = 0
8z1 − 16z2 + 50z3 − 200z4 + 207 = 0.

Thus, each training data point is now expressed in terms of these four newly transformed
dimensions, and the classes will be linearly separable in this space. The SVM optimization
formulation can then be solved in the transformed space as a linear model, and used to
classify test instances that are also transformed to 4-dimensional space. It is important to
note that the complexity of the problem effectively increased because of the increase in the
size of the hyperplane coefficient vector W .

In general, it is possible to approximate any polynomial decision boundary by adding an
additional set of dimensions for each exponent of the polynomial. High-degree polynomials
have significant expressive power in approximating many nonlinear functions well. This
kind of transformation can be very effective in cases where one does not know whether
the decision boundary is linear or nonlinear. This is because the additional degrees of
freedom in the model, in terms of the greater number of coefficients to be learned, can
determine the linearity or nonlinearity of the decision boundary in a data-driven way. In
our previous example, if the decision boundary had been linear, the coefficients for z1 and
z3 would automatically have been learned to be almost 0, given enough training data. The
price for this additional flexibility is the increased computational complexity of the training
problem, and the larger number of coefficients that need to be learned. Furthermore, if
enough training data is not available, then this may result in overfitting where even a
simple linear decision boundary is incorrectly approximated as a nonlinear one. A different
approach, which is sometimes used to learn nonlinear decision boundaries, is known as
the “kernel trick.” This approach is able to learn arbitrary decision boundaries without
performing the transformation explicitly.

10.6. SUPPORT VECTOR MACHINES 323

10.6.4 The Kernel Trick

The kernel trick leverages the important observation that the SVM formulation can be fully
solved in terms of dot products (or similarities) between pairs of data points. One does not
need to know the feature values. Therefore, the key is to define the pairwise dot product (or
similarity function) directly in the d′-dimensional transformed representation Φ(X), with
the use of a kernel function K(Xi, Xj).

K(Xi, Xj) = Φ(Xi) · Φ(Xj) (10.61)

To effectively solve the SVM, recall that the transformed feature values Φ(X) need not be
explicitly computed, as long as the dot product (or kernel similarity) K(Xi, Xj) is known.
This implies that the term Xi ·Xj may be replaced by the transformed-space dot product
K(Xi, Xj) in Eq. 10.50, and the term Xi · Z in Eq. 10.53 can be replaced by K(Xi, Z) to
perform SVM classification.

LD =
n∑

i=1

λi −
1
2
·

n∑
i=1

n∑
j=1

λiλjyiyjK(Xi, Xj) (10.62)

F (Z) = sign{(
n∑

i=1

λiyiK(Xi, Z)) + b} (10.63)

Note that the bias b is also expressed in terms of dot products according to Eq. 10.58.
These modifications are carried over to the update equations discussed in Sect. 10.6.1.1, all
of which are expressed in terms of dot products.

Thus, all computations are performed in the original space, and the actual transfor-
mation Φ(·) does not need to be known as long as the kernel similarity function K(·, ·) is
known. By using kernel-based similarity with carefully chosen kernels, arbitrary nonlinear
decision boundaries can be approximated. There are different ways of modeling similarity
between Xi and Xj . Some common choices of the kernel function are as follows:

Function Form

Gaussian radial basis kernel K(Xi, Xj) = e−||Xi−Xj ||2/2σ2

Polynomial kernel K(Xi, Xj) = (Xi ·Xj + c)h

Sigmoid kernel K(Xi, Xj) = tanh(κXi ·Xj − δ)

Many of these kernel functions have parameters associated with them. In general, these
parameters may need to be tuned by holding out a portion of the training data, and using
it to test the accuracy of different choices of parameters. Many other kernels are possible
beyond the ones listed in the table above. Kernels need to satisfy a property known as
Mercer’s theorem to be considered valid. This condition ensures that the n × n kernel
similarity matrix S = [K(Xi, Xj)] is positive semidefinite, and similarities can be expressed
as dot products in some transformed space. Why must the kernel similarity matrix always be
positive semidefinite for similarities to be expressed as dot products? Note that if the n×n
kernel similarity matrix S can be expressed as the n× n dot-product matrix AAT of some
n×r transformed representation A of the points, then for any n-dimensional column vector
V , we have V

T
SV = (AV)T (AV) ≥ 0. In other words, S is positive semidefinite. Conversely,

if the kernel matrix S is positive semi-definite then it can be expressed as a dot product

324 CHAPTER 10. DATA CLASSIFICATION

with the eigen decomposition S = QΣ2QT = (QΣ)(QΣ)T , where Σ2 is an n × n diagonal
matrix of nonnegative eigenvalues and Q is an n × n matrix containing the eigenvectors
of S in columns. The matrix QΣ is the n-dimensional transformed representation of the
points, and it also sometimes referred to as the data-specific Mercer kernel map. This map
is data set-specific, and it is used in many nonlinear dimensionality reduction methods such
as kernel PCA.

What kind of kernel function works best for the example of Fig. 10.8? In general, there
are no predefined rules for selecting kernels. Ideally, if the similarity values K(Xi, Xj) were
defined so that a space exists, in which points with this similarity structure are linearly
separable, then a linear SVM in the transformed space Φ(·) will work well.

To explain this point, we will revisit the example of Fig. 10.8. Let X2i and X2j be the
d-dimensional vectors derived by squaring each coordinate of Xi and Xj , respectively. In
the case of Fig. 10.8, consider the transformation (z1, z2, z3, z4) in the previous section. It
can be shown that the dot product between two transformed data points can be captured
by the following kernel function:

Transformed-Dot-Product(Xi, Xj) = Xi ·Xj +X2i ·X2j . (10.64)

This is easy to verify by expanding the aforementioned expression in terms of
the transformed variables z1 . . . z4 of the two data points. The kernel function
Transformed-Dot-Product(Xi, Xj) would obtain the same Lagrangian multipliers and deci-
sion boundary as obtained with the explicit transformation z1 . . . z4. Interestingly, this kernel
is closely related to the second-order polynomial kernel.

K(Xi, Xj) = (0.5 +Xi ·Xj)2 (10.65)

Expanding the second-order polynomial kernel results in a superset of the additive terms in
Transformed-Dot-Product(Xi, Xj). The additional terms include a constant term of 0.25 and
some inter-dimensional products. These terms provide further modeling flexibility. In the
case of the 2-dimensional example of Fig. 10.8, the use of the second-order polynomial kernel
is equivalent to using an extra transformed variable z5 =

√
2x1x2 representing the product

of the values on the two dimensions and a constant dimension z6 = 0.5. These variables
are in addition to the original four variables (z1, z2, z3, z4). Since these additional variables
are redundant in this case, they will not affect the ability to discover the correct decision
boundary, although they might cause some overfitting. On the other hand, a variable such
as z5 =

√
2x1x2 would have come in handy, if the ellipse of Fig. 10.8 had been arbitrarily

oriented with respect to the axis system. A full separation of the classes would not have
been possible with a linear classifier on the original four variables (z1, z2, z3, z4). Therefore,
the second-order polynomial kernel can discover more general decision boundaries than
the transformation of the previous section. Using even higher-order polynomial kernels can
model increasingly complex boundaries but at a greater risk of overfitting.

In general, different kernels have different levels of flexibility. For example, a transformed
feature space that is implied by the Gaussian kernel of width σ can be shown to have an
infinite number of dimensions by using the polynomial expansion of the exponential term.
The parameter σ controls the relative scaling of various dimensions. A smaller value of σ
results in a greater ability to model complex boundaries, but it may also cause overfitting.
Smaller data sets are more prone to overfitting. Therefore, the optimal values of kernel
parameters depend not only on the shape of the decision boundary but also on the size of
the training data set. Parameter tuning is important in kernel methods. With proper tuning,
many kernel functions can model complex decision boundaries. Furthermore, kernels provide

10.6. SUPPORT VECTOR MACHINES 325

a natural route for using SVMs in complex data types. This is because kernel methods only
need the pairwise similarity between objects, and are agnostic to the feature values of the
data points. Kernel functions have been defined for text, images, sequences, and graphs.

10.6.4.1 Other Applications of Kernel Methods

The use of kernel methods is not restricted to SVM methods. These methods can be
extended to any technique in which the solutions are directly or indirectly expressed in
terms of dot products. Examples include the Fisher’s discriminant, logistic regression, linear
regression (cf. Sect. 11.5.4 of Chap. 11), dimensionality reduction, and k-means clustering.

1. Kernel k-means: The key idea is that the Euclidean distance between a data point
X and the cluster centroid μ of cluster C can be computed as a function of the dot
product between X and the data points in C:

||X−μ||2 = ||X−
∑

Xi∈C Xi

|C| ||2 = X·X−2

∑
Xi∈C X ·Xi

|C| +

∑
Xi,Xj∈C Xi ·Xj

|C|2 . (10.66)

In kernel k-means, the dot products Xi · Xj are replaced with kernel similarity val-
ues K(Xi, Xj). For the data point X, the index of its assigned cluster is obtained
by selecting the minimum value of the (kernel-based) distance in Eq. 10.66 over all
clusters. Note that the cluster centroids in the transformed space do not need to be
explicitly maintained over the different k-means iterations, although the cluster assign-
ment indices for each data point need to be maintained for computation of Eq. 10.66.
Because of its implicit nonlinear transformation approach, kernel k-means is able to
discover arbitrarily shaped clusters like spectral clustering in spite of its use of the
spherically biased Euclidean distance.

2. Kernel PCA: In conventional SVD and PCA of an n× d mean-centered data matrix
D, the basis vectors are given by the eigenvectors of DTD (columnwise dot product
matrix), and the coordinates of the transformed points are extracted from the scaled
eigenvectors of DDT (rowwise dot product matrix). While the basis vectors can no
longer be derived in kernel PCA, the coordinates of the transformed data can be
extracted. The rowwise dot product matrix DDT can be replaced with the kernel
similarity matrix S = [K(Xi, Xj)]n×n. The similarity matrix is then adjusted for
mean-centering of the data in the transformed space as S ⇐ (I− U

n)S(I−
U
n), where U

is an n×nmatrix containing all 1s (see Exercise 17). The assumption is that the matrix
S can be approximately expressed as a dot product of the reduced data points in some
k-dimensional transformed space. Therefore, one needs to approximately factorize S
into the form AAT to extract its reduced n×k embedding A in the transformed space.
This is achieved by eigen-decomposition. Let Qk be the n × k matrix containing the
largest k eigenvectors of S, and Σk be the k × k diagonal matrix containing the
square root of the corresponding eigenvalues. Then, it is evident that S ≈ QkΣ2

kQ
T
k =

(QkΣk)(QkΣk)T , and the k-dimensional embeddings of the data points are given6 by
the rows of the n× k matrix A = QkΣk. Note that this is a truncated version of the
data-specific Mercer kernel map. This nonlinear embedding is similar to that obtained

6 The original result [450] uses a more general argument to derive S′QkΣ
−1
k as the m × k matrix of

k-dimensional embedded coordinates of any out-of-sample m× d matrix D′. Here, S′ = D′DT is the m×n
matrix of kernel similarities between out-of-sample points in D′ and in-sample points in D. However, when
D′ = D, this expression is (more simply) equivalent to QkΣk by expanding S′ = S ≈ QkΣ

2
kQ

T
k .

326 CHAPTER 10. DATA CLASSIFICATION

by ISOMAP; however, unlike ISOMAP, out-of-sample points can also be transformed
to the new space. It is noteworthy that the embedding of spectral clustering is also
expressed in terms of the large eigenvectors7 of a sparsified similarity matrix, which
is better suited to preserving local similarities for clustering. In fact, most forms of
nonlinear embeddings can be shown to be large eigenvectors of similarity matrices (cf.
Table 2.3 of Chap. 2), and are therefore special cases of kernel PCA.

10.7 Neural Networks

Neural networks are a model of simulation of the human nervous system. The human nervous
system is composed of cells, referred to as neurons. Biological neurons are connected to one
another at contact points, which are referred to as synapses. Learning is performed in living
organisms by changing the strength of synaptic connections between neurons. Typically, the
strength of these connections change in response to external stimuli. Neural networks can
be considered a simulation of this biological process.

As in the case of biological networks, the individual nodes in artificial neural networks
are referred to as neurons. These neurons are units of computation that receive input from
some other neurons, make computations on these inputs, and feed them into yet other
neurons. The computation function at a neuron is defined by the weights on the input
connections to that neuron. This weight can be viewed as analogous to the strength of a
synaptic connection. By changing these weights appropriately, the computation function
can be learned, which is analogous to the learning of the synaptic strength in biological
neural networks. The “external stimulus” in artificial neural networks for learning these
weights is provided by the training data. The idea is to incrementally modify the weights
whenever incorrect predictions are made by the current set of weights.

The key to the effectiveness of the neural network is the architecture used to arrange
the connections among nodes. A wide variety of architectures exist, starting from a simple
single-layer perceptron to complex multilayer networks.

10.7.1 Single-Layer Neural Network: The Perceptron

The most basic architecture of a neural network is referred to as the perceptron. An example
of the perceptron architecture is illustrated in Fig. 10.10a. The perceptron contains two
layers of nodes, which correspond to the input nodes, and a single output node. The number
of input nodes is exactly equal to the dimensionality d of the underlying data. Each input
node receives and transmits a single numerical attribute to the output node. Therefore,
the input nodes only transmit input values and do not perform any computation on these
values. In the basic perceptron model, the output node is the only node that performs
a mathematical function on its inputs. The individual features in the training data are
assumed to be numerical. Categorical attributes are handled by creating a separate binary
input for each value of the categorical attribute. This is logically equivalent to binarizing
the categorical attribute into multiple attributes. For simplicity of further discussion, it will
be assumed that all input variables are numerical. Furthermore, it will be assumed that the
classification problem contains two possible values for the class label, drawn from {−1,+1}.

7Refer to Sect. 19.3.4 of Chap. 19. The small eigenvectors of the symmetric Laplacian are the same as the
large eigenvectors of S = Λ−1/2WΛ−1/2. Here, W is often defined by the sparsified heat-kernel similarity
between data points, and the factors involving Λ−1/2 provide local normalization of the similarity values
to handle clusters of varying density.

10.7. NEURAL NETWORKS 327

As discussed earlier, each input node is connected by a weighted connection to the output
node. These weights define a function from the values transmitted by the input nodes to
a binary value drawn from {−1,+1}. This value can be interpreted as the perceptron’s
prediction of the class variable of the test instance fed to the input nodes, for a binary-class
value drawn from {−1,+1}. Just as learning is performed in biological systems by modifying
synaptic strengths, the learning in a perceptron is performed by modifying the weights of
the links connecting the input nodes to the output node whenever the predicted label does
not match the true label.

The function learned by the perceptron is referred to as the activation function, which
is a signed linear function. This function is very similar to that learned in SVMs for map-
ping training instances to binary class labels. Let W = (w1 . . . wd) be the weights for the
connections of d different inputs to the output neuron for a data record of dimensionality d.
In addition, a bias b is associated with the activation function. The output zi ∈ {−1,+1}
for the feature set (x1

i . . . x
d
i) of the ith data record Xi, is as follows:

zi =sign{
d∑

j=1

wjx
j
i + b} (10.67)

= sign{W ·Xi + b} (10.68)

The value zi represents the prediction of the perceptron for the class variable of Xi. It is,
therefore, desired to learn the weights, so that the value of zi is equal to yi for as many
training instances as possible. The error in prediction (zi − yi) may take on any of the
values of −2, 0, or +2. A value of 0 is attained when the predicted class is correct. The
goal in neural network algorithms is to learn the vector of weights W and bias b, so that zi
approximates the true class variable yi as closely as possible.

The basic perceptron algorithm starts with a random vector of weights. The algorithm
then feeds the input data items Xi into the neural network one by one to create the pre-
diction zi. The weights are then updated, based on the error value (zi − yi). Specifically,
when the data point Xi is fed into it in the tth iteration, the weight vector W

t
is updated

as follows:
W

t+1
= W

t
+ η(yi − zi)Xi. (10.69)

The parameter η regulates the learning rate of the neural network. The perceptron algorithm
repeatedly cycles through all the training examples in the data and iteratively adjusts
the weights until convergence is reached. The basic perceptron algorithm is illustrated in
Fig. 10.9. Note that a single training data point may be cycled through many times. Each
such cycle is referred to as an epoch.

Let us examine the incremental term (yi − zi)Xi in the update of Eq. 10.69, without
the multiplicative factor η. It can be shown that this term is a heuristic approximation8 of
the negative of the gradient of the least-squares prediction error (yi − zi)2 = (yi − sign(W ·
Xi − b))2 of the class variable, with respect to the vector of weights W . The update in this
case is performed on a tuple-by-tuple basis, rather than globally, over the entire data set, as
one would expect in a global least-squares optimization. Nevertheless, the basic perceptron
algorithm can be considered a modified version of the gradient descent method, which
implicitly minimizes the squared error of prediction. It is easy to see that nonzero updates
are made to the weights only when errors are made in categorization. This is because the
incremental term in Eq. 10.69 will be 0 whenever the predicted value zi is the same as the
class label yi.

8The derivative of the sign function is replaced by only the derivative of its argument. The derivative of
the sign function is zero everywhere, except at zero, where it is indeterminate.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

10.7. NEURAL NETWORKS 329

nodes in the next layer. Therefore, the topology of the multilayer feed-forward network is
automatically determined, after the number of layers, and the number of nodes in each layer,
have been specified by the analyst. The basic perceptron may be viewed as a single-layer
feed-forward network. A popularly used model is one in which a multilayer feed-forward
network contains only a single hidden layer. Such a network may be considered a two-
layer feed-forward network. An example of a two-layer feed-forward network is illustrated
in Fig. 10.10b. Another aspect of the multilayer feed-forward network is that it is not
restricted to the use of linear signed functions of the inputs. Arbitrary functions such as
the logistic, sigmoid, or hyperbolic tangents may be used in different nodes of the hidden
layer and output layer. An example of such a function, when applied to the training tuple
Xi = (x1

i . . . x
d
i), to yield an output value of zi, is as follows:

zi =
d∑

j=1

wj
1

1 + e−xj
i

+ b. (10.70)

The value of zi is no longer a predicted output of the final class label in {−1,+1}, if it refers
to a function computed at the hidden layer nodes. This output is then propagated forward
to the next layer.

In the single-layer neural network, the training process was relatively straightforward
because the expected output of the output node was known to be equal to the training label
value. The known ground truth was used to create an optimization problem in least squares
form, and update the weights with a gradient-descent method. Because the output node
is the only neuron with weights in a single-layer network, the update process is easy to
implement. In the case of multilayer networks, the problem is that the ground-truth output
of the hidden layer nodes are not known because there are no training labels associated with
the outputs of these nodes. Therefore, a question arises as to how the weights of these nodes
should be updated when a training example is classified incorrectly. Clearly, when a classi-
fication error is made, some kind of “feedback” is required from the nodes in the forward
layers to the nodes in earlier layers about the expected outputs (and corresponding errors).
This is achieved with the use of the backpropagation algorithm. Although this algorithm is
not discussed in detail in this chapter, a brief summary is provided here. The backpropa-
gation algorithm contains two main phases, which are applied in the weight update process
for each training instance:

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to the class
label of the training instance, to check whether or not the predicted label is an error.

2. Backward phase: The main goal of the backward phase is to learn weights in the
backward direction by providing an error estimate of the output of a node in the
earlier layers from the errors in later layers. The error estimate of a node in the
hidden layer is computed as a function of the error estimates and weights of the
nodes in the layer ahead of it. This is then used to compute an error gradient with
respect to the weights in the node and to update the weights of this node. The actual
update equation is not very different from the basic perceptron at a conceptual level.
The only differences that arise are due to the nonlinear functions commonly used in
hidden layer nodes, and the fact that errors at hidden layer nodes are estimated via
backpropagation, rather than directly computed by comparison of the output to a
training label. This entire process is propagated backwards to update the weights of
all the nodes in the network.

330 CHAPTER 10. DATA CLASSIFICATION

The basic framework of the multilayer update algorithm is the same as that for the single-
layer algorithm illustrated in Fig. 10.9. The major difference is that it is no longer possible to
use Eq. 10.69 for the hidden layer nodes. Instead, the update procedure is substituted with
the forward–backward approach discussed above. As in the case of the single-layer network,
the process of updating the nodes is repeated to convergence by repeatedly cycling through
the training data in epochs. A neural network may sometimes require thousands of epochs
through the training data to learn the weights at the different nodes.

A multilayer neural network is more powerful than a kernel SVM in its ability to capture
arbitrary functions. A multilayer neural network has the ability to not only capture decision
boundaries of arbitrary shapes, but also capture noncontiguous class distributions with
different decision boundaries in different regions of the data. Logically, the different nodes
in the hidden layer can capture the different decision boundaries in different regions of
the data, and the node in the output layer can combine the results from these different
decision boundaries. For example, the three different nodes in the hidden layer of Fig. 10.10b
could conceivably capture three different nonlinear decision boundaries of different shapes
in different localities of the data. With more nodes and layers, virtually any function can
be approximated. This is more general than what can be captured by a kernel-based SVM
that learns a single nonlinear decision boundary. In this sense, neural networks are viewed
as universal function approximators. The price of this generality is that there are several
implementation challenges in neural network design:

1. The initial design of the topology of the network presents many trade-off challenges for
the analyst. A larger number of nodes and hidden layers provides greater generality,
but a corresponding risk of overfitting. Little guidance is available about the design of
the topology of the neural network because of poor interpretability associated with the
multilayer neural network classification process. While some hill climbing methods can
be used to provide a limited level of learning of the correct neural network topology,
the issue of good neural network design still remains somewhat of an open question.

2. Neural networks are slow to train and sometimes sensitive to noise. As discussed
earlier, thousands of epochs may be required to train a multilayer neural network.
A larger network is likely to have a very slow learning process. While the training
process of a neural network is slow, it is relatively efficient to classify test instances.

The previous discussion addresses only binary class labels. To generalize the approach to
multiclass problems, a multiclass meta-algorithm discussed in the next chapter may be used.
Alternatively, it is possible to modify both the basic perceptron model and the general
neural network model to allow multiple output nodes. Each output node corresponds to the
predicted value of a specific class label. The overall training process is exactly identical to
the previous case, except that the weights of each output node now need to be trained.

10.7.3 Comparing Various Linear Models

Like neural networks, logistic regression also updates model parameters based on mistakes
in categorization. This is not particularly surprising because both classifiers are linear clas-
sifiers but with different forms of the objective function for optimization. In fact, the use
of some forms of logistic activation functions in the perceptron algorithm can be shown
to be approximately equivalent to logistic regression. It is also instructive to examine the
relationship of neural networks with SVM methods. In SVMs, the optimization function is
based on the principle of maximum margin separation. This is different from neural net-
works, where the errors of predictions are directly penalized and then optimized with the use

10.8. INSTANCE-BASED LEARNING 331

of a hill-climbing approach. In this sense, the SVM model has greater sophistication than
the basic perceptron model by using the maximum margin principle to better focus on the
more important decision boundary region. Furthermore, the generalization power of neu-
ral networks can be improved by using a (weighted) regularization penalty term λ||W ||2/2
in the objective function. Note that this regularization term is similar to the maximum
margin term in SVMs. The maximum margin term is, in fact, also referred to as the regu-
larization term for SVMs. Variations of SVMs exist, in which the maximum margin term
is replaced with an L1 penalty

∑d
i=1 |wi|. In such cases, the regularization interpretation is

more natural than a margin-based interpretation. Furthermore, certain forms of the slack
term in SVMs (e.g., quadratic slack) are similar to the main objective function in other
linear models (e.g., least-squares models). The main difference is that the slack term is
computed from the margin separators in SVMs rather than the decision boundary. This is
consistent with the philosophy of SVMs that discourages training data points from not only
being on the wrong side of the decision boundary, but also from being close to the decision
boundary. Therefore, various linear models share a number of conceptual similarities, but
they emphasize different aspects of optimization. This is the reason that maximum margin
models are generally more robust to noise than linear models that use only distance-based
penalties to reduce the number of data points on the wrong side of the separating hyper-
planes. It has experimentally been observed that neural networks are sensitive to noise. On
the other hand, multilayer neural networks can approximate virtually any complex function
in principle.

10.8 Instance-Based Learning

Most of the classifiers discussed in the previous sections are eager learners in which the
classification model is constructed up front and then used to classify a specific test instance.
In instance-based learning, the training is delayed until the last step of classification. Such
classifiers are also referred to as lazy learners. The simplest principle to describe instance-
based learning is as follows:

Similar instances have similar class labels.

A natural approach for leveraging this general principle is to use nearest-neighbor clas-
sifiers. For a given test instance, the closest m training examples are determined. The
dominant label among these m training examples is reported as the relevant class. In some
variations of the model, an inverse distance-weighted scheme is used, to account for the
varying importance of the m training instances that are closest to the test instance. An
example of such an inverse weight function of the distance δ is f(δ) = e−δ2/t2 , where t is a
user-defined parameter. Here, δ is the distance of the training point to the test instance. This
weight is used as a vote, and the class with the largest vote is reported as the relevant label.

If desired, a nearest-neighbor index may be constructed up front, to enable more efficient
retrieval of instances. The major challenge with the use of the nearest-neighbor classifier is
the choice of the parameter m. In general, a very small value of m will not lead to robust
classification results because of noisy variations within the data. On the other hand, large
values of m will lose sensitivity to the underlying data locality. In practice, the appropriate
value of m is chosen in a heuristic way. A common approach is to test different values
of m for accuracy over the training data. While computing the m-nearest neighbors of a

332 CHAPTER 10. DATA CLASSIFICATION

training instance X, the data point X is not included9 among the nearest neighbors. A
similar approach can be used to learn the value of t in the distance-weighted scheme.

10.8.1 Design Variations of Nearest Neighbor Classifiers

A number of design variations of nearest-neighbor classifiers are able to achieve more effec-
tive classification results. This is because the Euclidean function is usually not the most effec-
tive distance metric in terms of its sensitivity to feature and class distribution. The reader
is advised to review Chap. 3 on distance function design. Both unsupervised and supervised
distance design methods can typically provide more effective classification results. Instead
of using the Euclidean distance metric, the distance between two d-dimensional points X
and Y is defined with respect to a d× d matrix A.

Dist(X,Y) =
√
(X − Y)A(X − Y)T (10.71)

This distance function is the same as the Euclidean metric when A is the identity matrix.
Different choices of A can lead to better sensitivity of the distance function to the local
and global data distributions. These different choices will be discussed in the following
subsections.

10.8.1.1 Unsupervised Mahalanobis Metric

The Mahalanobis metric is introduced in Chap. 3. In this case, the value of A is chosen to
be the inverse of the d × d covariance matrix Σ of the data set. The (i, j)th entry of the
matrix Σ is the covariance between the dimensions i and j. Therefore, the Mahalanobis
distance is defined as follows:

Dist(X,Y) =
√
(X − Y)Σ−1(X − Y)T . (10.72)

The Mahalanobis metric adjusts well to the different scaling of the dimensions and the
redundancies across different features. Even when the data is uncorrelated, the Mahalanobis
metric is useful because it auto-scales for the naturally different ranges of attributes describ-
ing different physical quantities, such as age and salary. Such a scaling ensures that no single
attribute dominates the distance function. In cases where the attributes are correlated, the
Mahalanobis metric accounts well for the varying redundancies in different features. How-
ever, its major weakness is that it does not account for the varying shapes of the class
distributions in the underlying data.

10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis

To obtain the best results with a nearest-neighbor classifier, the distance function needs
to account for the varying distribution of the different classes. For example, in the case of
Fig. 10.11, there are two classes A and B, which are represented by “.” and “*,” respectively.
The test instance denoted by X lies on the side of the boundary related to class A. However,
the Euclidean metric does not adjust well to the arrangement of the class distribution, and a
circle drawn around the test instance seems to include more points from class B than class A.

One way of resolving the challenges associated with this scenario, is to weight the most
discriminating directions more in the distance function with an appropriate choice of the

9This approach is also referred to as leave-one-out cross-validation, and is described in detail in Sect. 10.9
on classifier evaluation.

10.8. INSTANCE-BASED LEARNING 333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FEATURE X

FE
A

TU
R

E
 Y

X<−TEST INSTANCE

CLASS A

CLASS B

LINEAR
DISCRIMINANT

Figure 10.11: Importance of class sensitivity in distance function design

matrix A in Eq. 10.71. In the case of Fig. 10.11, the best discriminating direction is illus-
trated pictorially. Fisher’s linear discriminant, discussed in Sect. 10.2.1.4, can be used to
determine this direction, and map the data into a 1-dimensional space. In this 1-dimensional
space, the different classes are separated out perfectly. The nearest-neighbor classifier will
work well in this newly projected space. This is a very special example where only a 1-
dimensional projection works well. However, it may not be generalizable to an arbitrary
data set.

A more general way of computing the distances in a class-sensitive way, is to use a soft
weighting of different directions, rather than selecting specific dimensions in a hard way.
This can be achieved with the use of an appropriate choice of matrix A in Eq. 10.71. The
choice of matrix A defines the shape of the neighborhood of a test instance. A distortion
of this neighborhood from the circular Euclidean contour corresponds to a soft weighting,
as opposed to a hard selection of specific directions. A soft weighting is also more robust
in the context of smaller training data sets where the optimal linear discriminant cannot
be found without overfitting. Thus, the core idea is to “elongate” the neighborhoods along
the less discriminative directions and “shrink” the neighborhoods along the more discrimi-
native directions with the use of matrix A. Note that the elongation of a neighborhood in
a direction by a particular factor α > 1, is equivalent to de-emphasizing that direction by
that factor because distance components in that direction need to be divided by α. This is
also done in the case of the Mahalanobis metric, except that the Mahalanobis metric is an
unsupervised approach that is agnostic to the class distribution. In the case of the unsu-
pervised Mahalanobis metric, the level of elongation achieved by the matrix A is inversely
dependent on the variance along the different directions. In the supervised scenario, the
goal is to elongate the directions, so that the level of elongation is inversely dependent on
the ratio of the interclass variance to intraclass variance along the different directions.

Let D be the full database, and Di be the portion of the data set belonging to class i.
Let μ represent the mean of the entire data set. Let pi = |Di|/|D| be the fraction of data
points belonging to class i, μi be the d-dimensional row vector of means of Di, and Σi be the

334 CHAPTER 10. DATA CLASSIFICATION

d× d covariance matrix of Di. Then, the scaled10 within-class scatter matrix Sw is defined
as follows:

Sw =
k∑

i=1

piΣi. (10.73)

The between-class scatter matrix Sb may be computed as follows:

Sb =
k∑

i=1

pi(μi − μ)T (μi − μ). (10.74)

Note that the matrix Sb is a d×d matrix because it results from the product of a d×1 matrix
with a 1×d matrix. Then, the matrix A (of Eq. 10.71), which provides the desired distortion
of the distances on the basis of class distribution, can be shown to be the following:

A = S−1
w SbS

−1
w . (10.75)

It can be shown that this choice of the matrix A provides an excellent discrimination between
the different classes, where the elongation in each direction depends inversely on ratio of
the between-class variance to within-class variance along the different directions. The reader
is referred to the bibliographic notes for pointers to the derivation of the aforementioned
steps.

10.9 Classifier Evaluation

Given a classification model, how do we quantify its accuracy on a given data set? Such
a quantification has several applications, such as evaluation of classifier effectiveness, com-
paring different models, selecting the best one for a particular data set, parameter tuning,
and several meta-algorithms such as ensemble analysis. The last of these applications will
be discussed in the next chapter. This leads to several challenges, both in terms of method-
ology used for the evaluation, and the specific approach used for quantification. These two
challenges are stated as follows:

1. Methodological issues: The methodological issues are associated with dividing the
labeled data appropriately into training and test segments for evaluation. As will
become apparent later, the choice of methodology has a direct impact on the eval-
uation process, such as the underestimation or overestimation of classifier accuracy.
Several approaches are possible, such as holdout, bootstrap, and cross-validation.

2. Quantification issues: The quantification issues are associated with providing a numer-
ical measure for the quality of the method after a specific methodology (e.g., cross-
validation) for evaluation has been selected. Examples of such measures could include
the accuracy, the cost-sensitive accuracy, or a receiver operating characteristic curve
quantifying the trade-off between true positives and false positives. Other types of
numerical measures are specifically designed to compare the relative performance of
classifiers.

In the following, these different aspects of classifier evaluation will be studied in detail.
10The unscaled version may be obtained by multiplying Sw with the number of data points. There

is no difference to the final result whether the scaled or unscaled version is used, within a constant of
proportionality.

10.9. CLASSIFIER EVALUATION 335

VALIDATION

50% 25% 25%

VALIDATION
(TUNING,
MODEL

SELECTION)

TESTING
DATAMODEL BUILDING

USED FOR BUILDING
TUNED MODEL

Figure 10.12: Segmenting the labeled data for parameter tuning and evaluation

10.9.1 Methodological Issues

While the problem of classification is defined for unlabeled test examples, the evaluation
process does need labels to be associated with the test examples as well. These labels
correspond to the ground truth that is required in the evaluation process, but not used
in the training. The classifier cannot use the same examples for both training and testing
because such an approach will overestimate the accuracy of the classifier due to overfitting.
It is desirable to construct models with high generalizability to unseen test instances.

A common mistake in the process of bench-marking classification models is that ana-
lysts often use the test set to tune the parameters of the classification algorithm or make
other choices about classifier design. Such an approach might overestimate the true accu-
racy because knowledge of the test set has been implicitly used in the training process. In
practice, the labeled data should be divided into three parts, which correspond to (a) the
model-building part of the labeled data, (b) the validation part of the labeled data, and (c)
the testing data. This division is illustrated in Fig. 10.12. The validation part of the data
should be used for parameter tuning or model selection. Model selection (cf. Sect. 11.8.3.4 of
Chap. 11) refers to the process of deciding which classification algorithm is best suited to a
particular data set. The testing data should not even be looked at during this phase. After
tuning the parameters, the classification model is sometimes reconstructed on the entire
training data (including the validation but not test portion). Only at this point, the testing
data can be used for evaluating the classification algorithm at the very end. Note that if an
analyst uses insights gained from the resulting performance on the test data to again adjust
the algorithm in some way, then the results will be contaminated with knowledge from the
test set.

This section discusses how the labeled data may be divided into the data used for
constructing the tuned model (i.e., first two portions) and testing data (i.e., third portion) to
accurately estimate the classification accuracy. The methodologies discussed in this section
are also used for dividing the first two portions into the first and second portions (e.g.,
for parameter tuning), although we consistently use the terminologies “training data” and
“testing data” to describe the two portions of the division. One problem with segmenting
the labeled data is that it affects the measured accuracy depending on how the segmentation
is done. This is especially the case when the amount of labeled data is small because one
might accidently sample a small test data set which is not an accurate representative of the
training data. For cases in which the labeled data is small, careful methodological variations
are required to prevent erroneous evaluations.

336 CHAPTER 10. DATA CLASSIFICATION

10.9.1.1 Holdout

In the holdout method, the labeled data is randomly divided into two disjoint sets, cor-
responding to the training and test data. Typically a majority (e.g., two-thirds or three-
fourths) is used as the training data, and the remaining is used as the test data. The
approach can be repeated several times with multiple samples to provide a final estimate.
The problem with this approach is that classes that are overrepresented in the training
data are also underrepresented in the test data. These random variations can have a signif-
icant impact when the original class distribution is imbalanced to begin with. Furthermore,
because only a subset of the available labeled data is used for training, the full power of the
training data is not reflected in the error estimate. Therefore, the error estimates obtained
are pessimistic. By repeating the process over b different holdout samples, the mean and
variance of the error estimates can be determined. The variance can be helpful in creating
statistical confidence intervals on the error.

One of the challenges with using the holdout method robustly is the case when the classes
are imbalanced. Consider a data set containing 1000 data points, with 990 data points
belonging to one class and 10 data points belonging to the other class. In such cases, it is
possible for a test sample of 200 data points to contain not even one data point belonging
to the rare class. Clearly, in such cases, it will be difficult to estimate the classification
accuracy, especially when cost-sensitive accuracy measures are used that weigh the various
classes differently. Therefore, a reasonable alternative is to implement the holdout method
by independently sampling the two classes at the same level. Therefore, exactly 198 data
points will be sampled from the first class, and 2 data points will be sampled from the rare
class to create the test data set. Such an approach ensures that the classes are represented
to a similar degree in both the training and test sets.

10.9.1.2 Cross-Validation

In cross-validation, the labeled data is divided into m disjoint subsets of equal size n/m. A
typical choice of m is around 10. One of the m segments is used for testing, and the other
(m− 1) segments are used for training. This approach is repeated by selecting each of the
m different segments in the data as a test set. The average accuracy over the different test
sets is then reported. The size of the training set is (m − 1)n/m. When m is chosen to be
large, this is almost equal to the labeled data size, and therefore the estimation error is
close to what would be obtained with the original training data, but only for a small set of
test examples of size n/m. However, because every labeled instance is represented exactly
once in the testing over the m different test segments, the overall accuracy of the cross-
validation procedure tends to be a highly representative, but pessimistic estimate, of model
accuracy. A special case is one where m is chosen to be n. Therefore, (n − 1) examples
are used for training, and one example is used for testing. This is averaged over the n
different ways of picking the test example. This is also referred to as leave-one-out cross-
validation. This special case is rather expensive for large data sets because it requires the
application of the training procedure n times. Nevertheless, such an approach is particularly
natural for lazy learning methods, such as the nearest-neighbor classifier, where a training
model does not need to be constructed up front. By repeating the process over b different
random m-way partitions of the data, the mean and variance of the error estimates may
be determined. The variance can be helpful in determining statistical confidence intervals
on the error. Stratified cross-validation uses proportional representation of each class in the
different folds and usually provides less pessimistic results.

10.9. CLASSIFIER EVALUATION 337

10.9.1.3 Bootstrap

In the bootstrap method, the labeled data is sampled uniformly with replacement, to create
a training data set, which might possibly contain duplicates. The labeled data of size n is
sampled n times with replacement. This results in a training data with the same size as the
original labeled data. However, the training typically contains duplicates and also misses
some points in the original labeled data.

The probability that a particular data point is not included in a sample is given by
(1−1/n). Therefore, the probability that the data point is not included in n samples is given
by (1−1/n)n. For large values of n, this expression evaluates to approximately 1/e, where e
is the base of the natural logarithm. The fraction of the labeled data points included at least
once in the training data is therefore 1−1/e ≈ 0.632. The training model M is constructed
on the bootstrapped sample containing duplicates. The overall accuracy is computed using
the original set of full labeled data as the test examples. The estimate is highly optimistic of
the true classifier accuracy because of the large overlap between training and test examples.
In fact, a 1-nearest neighbor classifier will always yield 100% accuracy for the portion of
test points included in the bootstrap sample and the estimates are therefore not realistic in
many scenarios. By repeating the process over b different bootstrap samples, the mean and
the variance of the error estimates may be determined.

A better alternative is to use leave-one-out bootstrap. In this approach, the accuracy
A(X) of each labeled instance X is computed using the classifier performance on only the
subset of the b bootstrapped samples in which X is not a part of the bootstrapped sample
of training data. The overall accuracy Al of the leave-one-out bootstrap is the mean value of
A(X) over all labeled instances X. This approach provides a pessimistic accuracy estimate.
The 0.632-bootstrap further improves this accuracy with a “compromise” approach. The
average training-data accuracy At over the b bootstrapped samples is computed. This is a
highly optimistic estimate. For example, At will always be 100% for a 1-nearest neighbor
classifier. The overall accuracy A is a weighted average of the leave-one-out accuracy and
the training-data accuracy.

A = (0.632) ·Al + (0.368) ·At (10.76)

In spite of the compromise approach, the estimates of 0.632 bootstrap are usually optimistic.
The bootstrap method is more appropriate when the size of the labeled data is small.

10.9.2 Quantification Issues

This section will discuss how the quantification of the accuracy of a classifier is performed
after the training and test set for a classifier are fixed. Several measures of accuracy are
used depending on the nature of the classifier output:

1. In most classifiers, the output is predicted in the form of a label associated with the
test instance. In such cases, the ground-truth label of the test instance is compared
with the predicted label to generate an overall value of the classifier accuracy.

2. In many cases, the output is presented as a numerical score for each labeling possibility
for the test instance. An example is the Bayes classifier where a probability is reported
for a test instance. As a convention, it will be assumed that higher values of the score
imply a greater likelihood to belong to a particular class.

The following sections will discuss methods for quantifying accuracy in both scenarios.

338 CHAPTER 10. DATA CLASSIFICATION

10.9.2.1 Output as Class Labels

When the output is presented in the form of class labels, the ground-truth labels are com-
pared to the predicted labels to yield the following measures:

1. Accuracy: The accuracy is the fraction of test instances in which the predicted value
matches the ground-truth value.

2. Cost-sensitive accuracy: Not all classes are equally important in all scenarios while
comparing the accuracy. This is particularly important in imbalanced class problems,
which will be discussed in more detail in the next chapter. For example, consider an
application in which it is desirable to classify tumors as malignant or nonmalignant
where the former is much rarer than the latter. In such cases, the misclassification
of the former is often much less desirable than misclassification of the latter. This is
frequently quantified by imposing differential costs c1 . . . ck on the misclassification of
the different classes. Let n1 . . . nk be the number of test instances belonging to each
class. Furthermore, let a1 . . . ak be the accuracies (expressed as a fraction) on the
subset of test instances belonging to each class. Then, the overall accuracy A can be
computed as a weighted combination of the accuracies over the individual labels.

A =
∑k

i=1 ciniai∑k
i=1 cini

(10.77)

The cost sensitive accuracy is the same as the unweighted accuracy when all costs
c1 . . . ck are the same.

Aside from the accuracy, the statistical robustness of a model is also an important issue. For
example, if two classifiers are trained over a small number of test instances and compared,
the difference in accuracy may be a result of random variations, rather than a truly statis-
tically significant difference between the two classifiers. Therefore, it is important to design
statistical measures to quantify the specific advantage of one classifier over the other.

Most statistical methodologies such as holdout, bootstrap, and cross-validation use b > 1
different randomly sampled rounds to obtain multiple estimates of the accuracy. For the
purpose of discussion, let us assume that b different rounds (i.e., b differentm-way partitions)
of cross-validation are used. Let M1 and M2 be two models. Let Ai,1 and Ai,2 be the
respective accuracies of the models M1 and M2 on the partitioning created by the ith
round of cross-validation. The corresponding difference in accuracy is δai = Ai,1 − Ai,2.
This results in b estimates δa1 . . . δab. Note that δai might be either positive or negative,
depending on which classifier provides superior performance on a particular round of cross-
validation. Let the average difference in accuracy between the two classifiers be ΔA.

ΔA =
∑b

i=1 δai
b

(10.78)

The standard deviation σ of the difference in accuracy may be estimated as follows:

σ =

√∑b
i=1(δai −ΔA)2

b− 1
. (10.79)

Note that the sign of ΔA tells us which classifier is better than the other. For example, if
ΔA > 0 then model M1 has higher average accuracy than M2. In such a case, it is desired

10.9. CLASSIFIER EVALUATION 339

to determine a statistical measure of the confidence (or, a probability value) that M1 is
truly better than M2.

The idea here is to assume that the different samples δa1 . . . δab are sampled from a
normal distribution. Therefore, the estimated mean and standard deviations of this distri-
bution are given by ΔA and σ, respectively. The standard deviation of the estimated mean
ΔA of b samples is therefore σ/

√
b according to the central-limit theorem. Then, the number

of standard deviations s by which ΔA is different from the break-even accuracy difference
of 0 is as follows:

s =

√
b|ΔA− 0|

σ
. (10.80)

When b is large, the standard normal distribution with zero mean and unit variance can
be used to quantify the probability that one classifier is truly better than the other. The
probability in any one of the symmetric tails of the standard normal distribution, more than
s standard deviations away from the mean, provides the probability that this variation is
not significant, and it might be a result of chance. This probability is subtracted from 1 to
determine the confidence that one classifier is truly better than the other.

It is often computationally expensive to use large values of b. In such cases, it is no
longer possible to estimate the standard deviation σ robustly with the use of a small num-
ber b of samples. To adjust for this, the Student’s t-distribution with (b − 1) degrees of
freedom is used instead of the normal distribution. This distribution is very similar to the
normal distribution, except that it has a heavier tail to account for the greater estimation
uncertainty. In fact, for large values of b, the t-distribution with (b− 1) degrees of freedom
converges to the normal distribution.

10.9.2.2 Output as Numerical Score

In many scenarios, the output of the classification algorithm is reported as a numerical
score associated with each test instance and label value. In cases where the numerical score
can be reasonably compared across test instances (e.g., the probability values returned by
a Bayes classifier), it is possible to compare the different test instances in terms of their
relative propensity to belong to a specific class. Such scenarios are more common when one
of the classes of interest is rare. Therefore, for this scenario, it is more meaningful to use
the binary class scenario where one of the classes is the positive class, and the other class is
the negative class. The discussion below is similar to the discussion in Sect. 8.8.2 of Chap.
8 on external validity measures for outlier analysis. This similarity arises from the fact that
outlier validation with class labels is identical to classifier evaluation.

The advantage of a numerical score is that it provides more flexibility in evaluating
the overall trade-off between labeling a varying number of data points as positives. This
is achieved by using a threshold on the numerical score for the positive class to define
the binary label. If the threshold is selected too aggressively to minimize the number of
declared positive class instances, then the algorithm will miss true-positive class instances
(false negatives). On the other hand, if the threshold is chosen in a more relaxed way, this will
lead to too many false positives. This leads to a trade-off between the false positives and false
negatives. The problem is that the “correct” threshold to use is never known exactly in a real
scenario. However, the entire trade-off curve can be quantified using a variety of measures,
and two algorithms can be compared over the entire trade-off curve. Two examples of such
curves are the precision–recall curve, and the receiver operating characteristic (ROC) curve.

For any given threshold t on the predicted positive-class score, the declared positive
class set is denoted by S(t). As t changes, the size of S(t) changes as well. Let G represent

340 CHAPTER 10. DATA CLASSIFICATION

the true set (ground-truth set) of positive instances in the data set. Then, for any given
threshold t, the precision is defined as the percentage of reported positives that truly turn
out to be positive.

Precision(t) = 100 ∗ |S(t) ∩ G|
|S(t)|

The value of Precision(t) is not necessarily monotonic in t because both the numerator
and denominator may change with t differently. The recall is correspondingly defined as the
percentage of ground-truth positives that have been reported as positives at threshold t.

Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

While a natural trade-off exists between precision and recall, this trade-off is not necessarily
monotonic. One way of creating a single measure that summarizes both precision and recall
is the F1-measure, which is the harmonic mean between the precision and the recall.

F1(t) =
2 · Precision(t) ·Recall(t)
Precision(t) +Recall(t)

(10.81)

While the F1(t) measure provides a better quantification than either precision or recall, it is
still dependent on the threshold t, and is therefore still not a complete representation of the
trade-off between precision and recall. It is possible to visually examine the entire trade-off
between precision and recall by varying the value of t, and examining the trade-off between
the two quantities, by plotting the precision versus the recall. As shown later with an exam-
ple, the lack of monotonicity of the precision makes the results harder to intuitively interpret.

A second way of generating the trade-off in a more intuitive way is through the use
of the ROC curve. The true-positive rate, which is the same as the recall, is defined as
the percentage of ground-truth positives that have been predicted as positive instances at
threshold t.

TPR(t) = Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

The false-positive rate FPR(t) is the percentage of the falsely reported positives out of
the ground-truth negatives. Therefore, for a data set D with ground-truth positives G, this
measure is defined as follows:

FPR(t) = 100 ∗ |S(t)− G|
|D − G| . (10.82)

The ROC curve is defined by plotting the FPR(t) on the X-axis, and TPR(t) on the Y -axis
for varying values of t. Note that the end points of the ROC curve are always at (0, 0) and
(100, 100), and a random method is expected to exhibit performance along the diagonal line
connecting these points. The lift obtained above this diagonal line provides an idea of the
accuracy of the approach. The area under the ROC curve provides a concrete quantitative
evaluation of the effectiveness of a particular method.

To illustrate the insights gained from these different graphical representations, consider
an example of a data set with 100 points from which 5 points belong to the positive class.
Two algorithms A and B are applied to this data set that rank all data points from 1 to 100,
with lower rank representing greater propensity to belong to the positive class. Thus, the
true-positive rate and false-positive rate values can be generated by determining the ranks
of the five ground-truth positive label points. In Table 10.2, some hypothetical ranks for the

10.9. CLASSIFIER EVALUATION 341

Table 10.2: Rank of ground-truth positive instances
Algorithm Rank of positive class instances

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FALSE POSITIVE RATE

TR
U

E
 P

O
S

IT
IV

E
 R

A
TE

 (R
E

C
A

LL
)

ALGORITHM A

ALGORITHM B

RANDOM ALGORITHM

PERFECT ORACLE

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

RECALL

P
R

E
C

IS
IO

N

ALGORITHM A

ALGORITHM B

RANDOM ALGORITHM

PERFECT ORACLE

llaceR-noisicerP)b(COR)a(

Figure 10.13: ROC curve and precision–recall curves

five ground-truth positive label instances have been illustrated for the different algorithms.
In addition, ranks of the ground-truth positives for a random algorithm have been indicated.
The random algorithm outputs a random score for each data point. Similarly, the ranks for
a “perfect oracle” algorithm that ranks the correct top five points to belong to the positive
class have also been illustrated in the table. The resulting ROC curves are illustrated in
Fig. 10.13a. The corresponding precision–recall curves are illustrated in Fig. 10.13b. While
the precision–recall curves are not quite as nicely interpretable as the ROC curves, it is
easy to see that the relative trends between different algorithms, are the same in both cases.
In general, ROC curves are used more frequently because of the ease in interpreting the
quality of the algorithm with respect to a random classifier.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms, and the random
algorithm is inferior to all the other algorithms. On the other hand, algorithms A and B
show domination at different parts of the ROC curve. In such cases, it is hard to say that
one algorithm is strictly superior. From Table 10.2, it is clear that Algorithm A ranks three
of the correct positive instances very highly, but the remaining two positive instances are
ranked poorly. In the case of Algorithm B, the highest ranked positive instances are not as
well ranked as Algorithm A, though all five positive instances are determined much earlier
in terms of rank threshold. Correspondingly, Algorithm A dominates on the earlier part of
the ROC curve, whereas Algorithm B dominates on the later part. It is possible to use the
area under the ROC curve as a proxy for the overall effectiveness of the algorithm.

342 CHAPTER 10. DATA CLASSIFICATION

10.10 Summary

The problem of data classification can be considered a supervised version of data clustering,
in which a predefined set of groups is provided to a learner. This predefined set of groups
is used for training the classifier to categorize unseen test examples into groups. A wide
variety of models have been proposed for data classification.

Decision trees create a hierarchical model of the training data. For each test instance, the
optimal path in the tree is used to classify unseen test instances. Each path in the tree can
be viewed as a rule that is used to classify unseen test instances. Rule-based classifiers can be
viewed as a generalization of decision trees, in which the classifier is not necessarily restricted
to characterizing the data in a hierarchical way. Therefore, multiple conflicting rules can be
used to cover the same training or test instance. Probabilistic classifiers map feature values
to unseen test instances with probabilities. The naive Bayes rule or a logistic function may
be used for effective estimation of probabilities. SVMs and neural networks are two forms
of linear classifiers. The objective functions that are optimized are different. In the case
of SVMs, the maximum margin principle is used, whereas for neural networks, the least
squares error of prediction is approximately optimized. Instance-based learning methods
are classifiers that delay learning to classification time as opposed to eager learners that
construct the classification models up front. The simplest form of instance-based learning
is the nearest-neighbor classifier. Many complex variations are possible by using different
types of distance functions and locality-centric models.

Classifier evaluation is important for testing the relative effectiveness of different train-
ing models. Numerous models such as holdout, stratified sampling, bootstrap, and cross-
validation have been proposed in the literature. Classifier evaluation can be performed
either in the context of label assignment or numerical scoring. For label assignment, either
the accuracy or the cost-sensitive accuracy may be used. For numerical scoring, the ROC
curve is used to quantify the trade-off between the true-positive and false-positive rates.

10.11 Bibliographic Notes

The problem of data classification has been studied extensively by the data mining, machine
learning, and pattern recognition communities. A number of books on these topics are
available from these different communities [33, 95, 189, 256, 389]. Two surveys on the topic
of data classification may be found in [286, 330]. A recent book [33] contains surveys on
various aspects of data classification.

Feature selection is an important problem in data classification, to ensure the modeling
algorithm is not confused by noise in the training data. Two books on feature selection may
be found in [360, 366]. Fisher’s discriminant analysis was first proposed in [207], although
a slightly different variant with the assumption of normally distributed data used in linear
discriminant analysis [379]. The most well-known decision tree algorithms include ID3 [431],
C4.5 [430], and CART [110]. Decision tree methods are also used in the context of multi-
variate splits [116], though these methods are computationally more challenging. Surveys
on decision tree algorithms may be found in [121, 393, 398]. Decision trees can be converted
into rule-based classifiers where the rules are mutually exclusive. For example, the C4.5
method has also been extended to the C4.5rules algorithm [430]. Other popular rule-based
systems include AQ [386], CN2 [177], and RIPPER [178]. Much of the discussion in this
chapter was based on these algorithms. Popular associative classification algorithms include
CBA [358], CPAR [529], and CMAR [349]. Methods for classification with discriminative

10.12. EXERCISES 343

patterns are discussed in [149]. A recent overview discussion of pattern-based classifica-
tion algorithms may be found in [115]. The naive Bayes classifier has been discussed in
detail in [187, 333, 344]. The work in [344] is particularly notable, in that it provides an
understanding and justification of the naive Bayes assumption. A brief discussion of logistic
regression models may be found in Chap. 3 of [33]. A more detailed discussion may be found
in [275].

Numerous books are available on the topic of SVMs [155, 449, 478, 494]. An excellent
tutorial on SVMs may be found in [124]. A detailed discussion of the Lagrangian relaxation
technique for solving the resulting quadratic optimization problem may be found in [485].
It has been pointed out [133] that the advantages of the primal approach in SVMs seem
to have been largely overlooked in the literature. It is sometimes mistakenly understood
that the kernel trick can only be applied to the dual; the trick can be applied to the pri-
mal formulation as well [133]. A discussion of kernel methods for SVMs may be found
in [451]. Other applications of kernels, such as nonlinear k-means and nonlinear PCA, are
discussed in [173, 450]. The perceptron algorithm was due to Rosenblatt [439]. Neural net-
works are discussed in detail in several books [96, 260]. The back-propagation algorithm is
described in detail in these books. The earliest work on instance-based classification was
discussed in [167]. The method was subsequently extended to symbolic attributes [166].
Two surveys on instance-based classification may be found in [14, 183]. Local methods
for nearest-neighbor classification are discussed in [216, 255]. Generalized instance-based
learning methods have been studied in the context of decision trees [217], rule-based meth-
ods [347], Bayes methods [214], SVMs [105, 544], and neural networks [97, 209, 281]. Methods
for classifier evaluation are discussed in [256].

10.12 Exercises

1. Compute the Gini index for the entire data set of Table 10.1, with respect to the two
classes. Compute the Gini index for the portion of the data set with age at least 50.

2. Repeat the computation of the previous exercise with the use of the entropy criterion.

3. Show how to construct a (possibly overfitting) rule-based classifier that always exhibits
100% accuracy on the training data. Assume that the feature variables of no two
training instances are identical.

4. Design a univariate decision tree with a soft maximum-margin split criterion borrowed
from SVMs. Suppose that this decision tree is generalized to the multivariate case.
How does the resulting decision boundary compare with SVMs? Which classifier can
handle a larger variety of data sets more accurately?

5. Discuss the advantages of a rule-based classifier over a decision tree.

6. Show that an SVM is a special case of a rule-based classifier. Design a rule-based
classifier that uses SVMs to create an ordered list of rules.

7. Implement an associative classifier in which only maximal patterns are used for clas-
sification, and the majority consequent label of rules fired, is reported as the label of
the test instance.

8. Suppose that you had d-dimensional numeric training data, in which it was known that
the probability density of d-dimensional data instance X in each class i is proportional

344 CHAPTER 10. DATA CLASSIFICATION

to e−||X−μi||1 , where || · ||1 is the Manhattan distance, and μi is known for each class.
How would you implement the Bayes classifier in this case? How would your answer
change if μi is unknown?

9. Explain the relationship of mutual exclusiveness and exhaustiveness of a rule set, to
the need to order the rule set, or the need to set a class as the default class.

10. Consider the rules Age > 40 ⇒ Donor and Age ≤ 50 ⇒ ¬Donor. Are these two rules
mutually exclusive? Are these two rules exhaustive?

11. For the example of Table 10.1, determine the prior probability of each class. Determine
the conditional probability of each class for cases where the Age is at least 50.

12. Implement the naive Bayes classifier.

13. For the example of Table 10.1, provide a single linear separating hyperplane. Is this
separating hyperplane unique?

14. Consider a data set containing four points located at the corners of the square. The
two points on one diagonal belong to one class, and the two points on the other
diagonal belong to the other class. Is this data set linearly separable? Provide a proof.

15. Provide a systematic way to determine whether two classes in a labeled data set are
linearly separable.

16. For the soft SVM formulation with hinge loss, show that:

(a) The weight vector is given by the same relationship W =
∑n

i=1 λiyiXi, as for
hard SVMs.

(b) The condition
∑n

i=1 λiyi = 0 holds as in hard SVMs.
(c) The Lagrangian multipliers satisfy λi ≤ C.
(d) The Lagrangian dual is identical to that of hard SVMs.

17. Show that it is possible to omit the bias parameter b from the decision boundary of
SVMs by suitably preprocessing the data set. In other words, the decision boundary is
now W ·X = 0. What is the impact of eliminating the bias parameter on the gradient
ascent approach for Lagrangian dual optimization in SVMs?

18. Show that an n×d data set can be mean-centered by premultiplying it with the n×n
matrix (I − U/n), where U is a unit matrix of all ones. Show that an n × n kernel
matrix K can be adjusted for mean centering of the data in the transformed space by
adjusting it to K ′ = (I − U/n)K(I − U/n).

19. Consider two classifiers A and B. On one data set, a 10-fold cross validation shows
that classifier A is better than B by 3%, with a standard deviation of 7% over 100
different folds. On the other data set, classifier B is better than classifier A by 1%,
with a standard deviation of 0.1% over 100 different folds. Which classifier would you
prefer on the basis of this evidence, and why?

20. Provide a nonlinear transformation which would make the data set of Exercise 14
linearly separable.

21. Let Sw and Sb be defined according to Sect. 10.2.1.3 for the binary class problem.
Let the fractional presence of the two classes be p0 and p1, respectively. Show that
Sw + p0p1Sb is equal to the covariance matrix of the data set.

Chapter 11

Data Classification: Advanced Concepts

“Labels are for filing. Labels are for clothing.
Labels are not for people.”—Martina Navratilova

11.1 Introduction

In this chapter, a number of advanced scenarios related to the classification problem will
be addressed. These include more difficult special cases of the classification problem and
various ways of enhancing classification algorithms with the use of additional inputs or a
combination of classifiers. The enhancements discussed in this chapter belong to one of the
following two categories:

1. Difficult classification scenarios:Many scenarios of the classification problem are much
more challenging. These include multiclass scenarios, rare-class scenarios, and cases
where the size of the training data is large.

2. Enhancing classification: Classification methods can be enhanced with additional
data-centric input, user-centric input, or multiple models.

The difficult classification scenarios that are addressed in this chapter are as follows:

1. Multiclass learning: Although many classifiers such as decision trees, Bayesian meth-
ods, and rule-based classifiers, can be directly used for multiclass learning, some of the
models, such as support-vector machines, are naturally designed for binary classifi-
cation. Therefore, numerous meta-algorithms have been designed for adapting binary
classifiers to multiclass learning.

2. Rare class learning: The positive and negative examples may be imbalanced. In other
words, the data set contains only a small number of positive examples. A direct use
of traditional learning models may often result in the classifier assigning all examples
to the negative class. Such a classification is not very informative for imbalanced
scenarios in which misclassification of the rare class incurs much higher cost than
misclassification of the normal class.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 11 345
c© Springer International Publishing Switzerland 2015

346 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

3. Scalable learning: The sizes of typical training data sets have increased significantly in
recent years. Therefore, it is important to design models that can perform the learning
in a scalable way. In cases where the data is not memory resident, it is important to
design algorithms that can minimize disk accesses.

4. Numeric class variables: Most of the discussion in this book assumes that the class
variables are categorical. Suitable modifications are required to classification algo-
rithms, when the class variables are numeric. This problem is also referred to as
regression modeling.

The addition of more training data or the simultaneous use of a larger number of classifica-
tion models can improve the learning accuracy. A number of methods have been proposed
to enhance classification methods. Examples include the following:

1. Semisupervised learning: In these cases, unlabeled examples are used to improve the
effectiveness of classifiers. Although unlabeled data does not contain any information
about the label distribution, it does contain a significant amount of information about
the manifold and clustering structure of the underlying data. Because the classification
problem is a supervised version of the clustering problem, this connection can be
leveraged to improve the classification accuracy. The core idea is that in most real data
sets, labels vary in a smooth way over dense regions of the data. The determination
of dense regions in the data only requires unlabeled information.

2. Active learning: In real life, it is often expensive to acquire labels. In active learn-
ing, the user (or an oracle) is actively involved in determining the most informative
examples for which the labels need to be acquired. Typically, these are examples that
provide the user the more accurate knowledge about the uncertain regions in the data,
where the distribution of the class label is unknown.

3. Ensemble learning: Similar to the clustering and the outlier detection problems, ensem-
ble learning uses the power of multiple models to provide more robust results for the
classification process. The motivation is similar to that for the clustering and outlier
detection problems.

This chapter is organized as follows. Multiclass learning is addressed in Sect. 11.2. Rare
class learning methods are introduced in Sect. 11.3. Scalable classification methods are
introduced in Sect. 11.4. Classification with numeric class variables is discussed in Sect. 11.5.
Semisupervised learning methods are introduced in Sect. 11.6. Active learning methods are
discussed in Sect. 11.7. Ensemble methods are proposed in Sect. 11.8. Finally, a summary
of the chapter is given in Sect. 11.9.

11.2 Multiclass Learning

Some models such as support vector machines (SVMs), neural networks, and logistic regres-
sion are naturally designed for the binary class scenario. While multiclass generalizations
of these methods are available, it is helpful to design generic meta-frameworks that can
directly use the binary methods for multiclass classification. These frameworks are designed
as meta-algorithms that can take a binary classification algorithm A as input and use it
to make multilabel predictions. Several strategies are possible to convert binary classifiers
into multilabel classifiers. In the following discussion, it will be assumed that the number
of classes is denoted by k.

11.3. RARE CLASS LEARNING 347

The first strategy is the one-against-rest approach. In this approach, k different binary
classification problems are created, such that one problem corresponds to each class. In
the ith problem, the ith class is considered the set of positive examples, whereas all the
remaining examples are considered negative examples. The binary classifier A is applied to
each of these training data sets. This creates a total of k models. If the positive class is
predicted in the ith problem, then the ith class is rewarded with a vote. Otherwise, each of
the remaining classes is rewarded with a vote. The class with the largest number of votes
is predicted as the relevant one. In practice, more than one model may predict an example
to belong to a positive class. This may result in ties. To avoid ties, one may also use the
numeric output of a classifier (e.g., Bayes posterior probability) to weight the corresponding
vote. The highest numeric score for a particular class is selected to predict the label. Note
that the choice of the numeric score for weighting the votes depends on the classifier at hand.
Intuitively, the score represents the “confidence” of that classifier in a particular label.

The second strategy is the one-against-one approach. In this strategy, a training data
set is constructed for each of the

(
k
2

)
pairs of classes. The algorithm A is applied to each

training data set. This results in a total of k(k−1)/2 models. For each model, the prediction
provides a vote to the winner. The class label with the most votes is declared as the winner
in the end. At first sight, it seems that this approach is computationally more expensive,
because it requires us to train k(k − 1)/2 classifiers, rather than training k classifiers, as
in the one-against-rest approach. However, the computational cost is ameliorated by the
smaller size of the training data in the one-against-one approach. Specifically, the training
data size in the latter case is approximately 2/k of the training data size used in the one-
against-rest approach on the average. If the running time of each individual classifier scales
super-linearly with the number of training points, then the overall running time of this
approach may actually be lower than the first approach that requires us to train only k
classifiers. This is usually the case for kernel SVM classifiers, in which the running times
scale-up more than linearly with the number of data points. Note that the size of the
kernel matrix scales up quadratically with the number of data points. The one-against-one
approach may also result in ties between different classes that receive the same number
of votes. In such cases, the numeric scores output by the classifier may be used to weight
the votes for the different classes. As in the previous case, the choice of the numeric score
depends on the choice of the base classifier model.

11.3 Rare Class Learning

The class distribution in many applications is not balanced. Consider a scenario in which
data points representing credit card activity are labeled as either “normal” or “fraudulent.”
In such cases, the class distribution is typically very imbalanced. For example, 99% of
the data points may be normal, whereas only 1% of the data points may be fraudulent.
The straightforward application of classification algorithms may lead to misleading results
because of the preponderance of the normal class.

Consider a test instance X whose nearest 100 neighbors contain 49 rare class instances
and 51 normal class instances. In such a case, it is evident that the test instance is surrounded
by large fraction of rare instances relative to expectation. Yet, a k-nearest neighbor classifier
with k = 100 will categorize instance X into the normal class. Such a classifier does not
provide informative results, because its behavior approximately mimics a trivial classifier
that classifies every instance as normal.

348 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

This behavior is not restricted to nearest-neighbor classifiers. A Bayesian classifier will
have biased priors that favor the normal class. A decision-tree will find it difficult to separate
out instances belonging to the rare class. As a result, most of these classifiers, if not modified
appropriately, will classify many rare instances to the majority class. Interestingly, even a
trivial classifier that labels all instances as normal might provide a high absolute accuracy.
However, achieving a high classification accuracy on the rare class is more important in such
application domains. This is because the applications associated with rare class detection
are typically such that the consequences of misclassifying a rare class are much higher than
those of misclassifying the normal class. For example, in the credit card scenario, it is much
costlier to the credit card company to accept fraudulent activity as normal, rather than
warning a customer incorrectly about suspicious activity on their card.

These observations suggest that rare-class learning algorithms need to have an explicit
mechanism for emphasizing the greater importance of the rare class. This mechanism is
provided by a cost-matrix C(i, j) that quantifies the cost of misclassifying the class i to
class j where i �= j. In practice, for multiclass problems, it is often difficult to populate the
full k × k matrix of misclassification possibilities. Therefore, a simplification is to associate
the misclassification costs with the source class, rather than a source-destination pair. In
other words, the cost of misclassifying class i is denoted by C(i), irrespective of the incorrect
destination class j to which it is predicted. Typically, the cost of misclassifying a rare class
is much larger than that of misclassifying a normal class. Therefore, the goal is to maximize
the cost-weighted accuracy, rather than the absolute accuracy.

Fortunately, these goals can be achieved by making modest changes to existing classifi-
cation algorithms. Some examples of these modifications are as follows:

1. Example reweighting: The training examples from various classes are reweighted
according to their misclassification costs. This approach naturally leads to a bias in
classifying rare class examples more accurately than normal class examples. Therefore,
classification algorithms need to be modified to work with weighted examples.

2. Example resampling: The examples from different classes are resampled to undersam-
ple normal classes and/or oversample rare classes. In such cases, unweighted classifiers
can be directly used.

Each of these different methods will be discussed in the following sections.

11.3.1 Example Reweighting

In this case, the examples are weighted in proportion to their costs. Because the origi-
nal classification problem is designed to maximize accuracy, the analogous solution to the
weighted problem maximizes cost-weighted accuracy. Therefore, all instances belonging to
the ith class are weighted by C(i). Therefore, the existing classification algorithms need
to be modified to work with these additional weights. In most cases, the required changes
are relatively minor. The following contains a brief description of the required changes to
various classification algorithms:

1. Decision trees: Weights can be incorporated in decision-tree algorithms easily. The
split criterion requires the computation of the Gini index and entropy, all of which
can be computed using weights on the examples. Both the Gini index and the entropy
are computed as a function of the proportionate class distribution of the training
examples. This proportionate class distribution can be computed with the use of

11.3. RARE CLASS LEARNING 349

weights on the examples. Tree-pruning can also be modified to measure the impact of
removing nodes on the weighted accuracy.

2. Rule-based classifiers: Sequential covering algorithms are similar to decision-tree con-
struction. The main difference is in terms of the criteria used to grow rules. Measures
such as the Laplace measure and FOIL’s information gain use the raw number of
positive and negative examples covered by the rule. In this case, the weighted number
of examples are used as substitute for the raw number of examples. Rule-pruning uses
weighted accuracy to measure the impact of conjunct pruning. For associative clas-
sifiers, the weights on the instances need to be used in computation of support and
confidence.

3. Bayes classifiers: The implementation of Bayes classifiers remains virtually the same
as the unweighted case except for one crucial difference in the probability estimation
process. The class priors and conditional feature probabilities are now estimated using
weights on the instances.

4. Support vector machines: Interestingly, the hard-margin support vector machines are
not affected by reweighting of examples because the support vectors do not depend
on example weights. However, in practice, soft margin is used. In such cases, the slack
penalty terms in the objective function are appropriately weighted, and it results in
modifications to both the primal and dual methods for soft SVMs (see Exercises 3 and
4). This typically leads to a movement of the boundary of the support-vector machine
toward the normal class side of the separation. This ensures that fewer rare class
examples are penalized for (the more costly) margin violation, and more normal class
examples are penalized. The result is a lower likelihood of incorrectly misclassifying
rare class examples but a greater likelihood of misclassifying normal class examples.

5. Instance-based methods: Weighted votes are used for the different classes, after deter-
mining the m nearest neighbors to a given test instance.

Thus, most classifiers can be made to work with the weighted case with relatively small
changes. The advantage of weighting techniques is that they work with the original training
data, and are therefore less prone to overfitting than sampling methods that manipulate
the training data.

11.3.2 Sampling Methods

In adaptive resampling, the different classes are differentially sampled to enhance the impact
of the rare class on the classification model. Sampling can be performed either with or
without replacement. The rare class can be oversampled, or the normal class can be under-
sampled, or both can occur. The classification model is learned on the resampled data. The
sampling probabilities are typically chosen in proportion to their misclassification costs. This
enhances the proportion of the rare costs in the sample used for learning, and the approach
is generally applicable to multiclass scenarios as well. It has generally been observed that
undersampling the normal class has a number of advantages over oversampling the rare
class. When undersampling is used, the sampled training data is much smaller than the
original data set, which leads to better training efficiency.

In some variations, all instances of the rare class are used in combination with a small
sample of the normal class. This is also referred to as one-sided selection. The logic of this
approach is that rare class instances are too valuable as training data to modify any type

350 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

of sampling. Undersampling has several advantages with respect to oversampling because
of the following reasons:

1. The model construction phase for a smaller training data set requires much less time.

2. The normal class is less important for modeling purposes, and all instances from the
more valuable rare class are included for modeling. Therefore, the discarded instances
do not impact the modeling effectiveness in a significant way.

11.3.2.1 Relationship Between Weighting and Sampling

Resampling methods can be understood as methods that sample the data in proportion to
their weights, and then treat all examples equally. Therefore, the two methods are almost
equivalent although sampling methods have greater randomness associated with them. A
direct weight-based technique is generally more reliable because of the absence of this ran-
domness. On the other hand, sampling can be more naturally combined with ensemble
methods (cf. Sect. 11.8) such as bagging to improve accuracy. Furthermore, sampling has
distinct efficiency advantages because it works with a much smaller data set. For example,
for a data set containing a rare to normal ratio of 1:99, it is possible for a resampling tech-
nique to work effectively with 2% of the original data when the data is resampled into an
equal mixture of the normal and anomalous classes. This kind of resampling translates to
a performance improvement of a factor of 50.

11.3.2.2 Synthetic Oversampling: SMOTE

One of the problems with oversampling the minority class is that a larger number of sam-
ples with replacement leads to repeated samples of the same data point. Repeated samples
cause overfitting and reduce classification accuracy. In order to address this issue, a recent
approach is to use synthetic oversampling that creates synthetic examples without repeti-
tion.

The SMOTE approach works as follows. For each minority instance, its k nearest neigh-
bors belonging to the same class are determined. Then, depending on the level of oversam-
pling required, a fraction of them are chosen randomly. For each sampled example-neighbor
pair, a synthetic data example is generated on the line segment connecting that minority
example to its nearest neighbor. The exact position of the example is chosen uniformly
at random along the line segment. These new minority examples are added to the training
data, and the classifier is trained with the augmented data. The SMOTE algorithm is gener-
ally more accurate than a vanilla oversampling approach. This approach forces the decision
region of the resampled data to become more general than one in which only members from
the rare classes in the original training data are oversampled.

11.4 Scalable Classification

In many applications, the training data sizes are rather large. This leads to numerous scal-
ability challenges in building classification models. In such cases, the data will typically
not fit in main memory, and therefore the algorithms need to be designed to optimize
the accesses to disk. Although the traditional decision-tree algorithms, such as C4.5, work
well for smaller data sets, they are not optimized to disk-resident data. One solution is
to sample the training data, but this has the disadvantage of losing the learning knowl-
edge in the discarded training instances. Some classifiers, such as associative classifiers and

11.4. SCALABLE CLASSIFICATION 351

nearest-neighbor methods, can be made faster by using more efficient subroutines for fre-
quent pattern mining and nearest-neighbor indexing, respectively. Other classifiers, such as
decision trees and support vector machines, require more careful redesign because they do
not rely on any specific computationally intensive subroutines. These two classifiers are also
particularly popular, and each of them is used widely in various data domains. Therefore,
this chapter will specifically focus on these two classifiers in the context of scalability. An
additional scalability challenge is created by streaming data, although such algorithms are
not discussed in this chapter. The discussion of streaming data is deferred to Chap. 12.

11.4.1 Scalable Decision Trees

The construction of a decision tree can be computationally expensive because the evaluation
of a split criterion at a node can sometimes be very slow. In the following, we will discuss
two well-known methods for scalable decision tree construction.

11.4.1.1 RainForest

The RainForest approach is based on the insight that the evaluation of the split criteria
in univariate decision trees do not need access to the data in its multidimensional form.
Because each attribute value is analyzed independently in a univariate split, only the count
statistics of distinct attributes values need to be maintained over different classes. For
numeric data, it is assumed that they are discretized into categorical attribute values. The
count statistics are collectively referred to as the AVC-set. The AVC-set is specific to a
decision-tree node, and provides the counts of the distinct values of the attribute in the
data records relevant to that node for different classes. Therefore, the size of the AVC-set
depends only on the number of distinct attribute values and the number of classes. This
size is often extremely small in comparison to the number of data records. Therefore, the
memory requirement is dependent on the dimensionality of the data, the number of distinct
values per dimension, and the number of classes. The larger the base training data set, the
greater the proportional savings.

These AVC-sets are stored in main memory and used for efficiently evaluating the split
criteria at the nodes. The splits are performed at nodes, until the AVC-sets no longer fit
in main memory. The data does need to be scanned when the AVC-sets are constructed
for newly created nodes. By carefully interleaving the splits and the AVC-set construction,
significant computational and disk-access savings can be achieved.

11.4.1.2 BOAT

The Bootstrapped Optimistic Algorithm for Tree construction (BOAT) algorithm uses boot-
strapped samples for decision-tree construction. In bootstrapping, the data is sampled with
replacement to create b different bootstrapped samples. These are used to create b different
trees denoted by T1 . . . Tb. Then, it is checked whether the choice of the split attributes and
the splitting subsets are identical, at a particular node in the different bootstrapped trees.
For nodes where this is not the case, they are deleted along with the corresponding sub-
trees. The bootstrapping is used to create an information-coarse splitting criterion where
a confidence interval is imposed on the numeric attribute at each node. The width of this
confidence interval can be controlled with the number of bootstrapped samples. At a later
stage of the algorithm, the coarse splitting criterion is converted to an exact one by inte-
grating the various confidence intervals of the splits into a crisp criterion. In effect, BOAT

352 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

uses the trees T1 . . . Tb to create a new tree that is very close to one that would have been
constructed, even if all the data had been available. The BOAT algorithm is faster than
RainForest, and it requires only two scans over the database. Furthermore, BOAT also has
the capability of performing incremental decision tree induction and can also handle tuple
deletions.

11.4.2 Scalable Support Vector Machines

A major problem with support vector machines is that the size of the optimization problem
scales with the number of training data points, and that the memory requirements may
scale with the square of the number of data points in the case of kernel-based support
vector machines. For example, consider the optimization problem for SVM discussed in
Sect. 10.6 of Chap. 10. The kernel-based Lagrangian dual of the problem, as adapted from
Eq. 10.62 in Chap. 10, may be written as follows:

LD =
n∑

i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjK(Xi, Xj). (11.1)

The number of Lagrangian parameters λi (or optimization variables) is equal to the number
of training data points n, and the size of the kernel matrix K(Xi, Xj) is O(n2). As a result,
the coefficients of the entire optimization problem cannot even be loaded in main memory for
large values of n. The SVMLight approach is designed to address this issue. This approach
is mainly based on the following two observations:

1. It is not necessary to solve the entire problem at one time. A subset (or working set)
of the variables λ1 . . . λn may be selected for optimization at a given time. Different
working sets are selected and optimized iteratively to arrive at the global optimal
solution.

2. The support vectors for the SVMs correspond to only a small number of training data
points. Even if most of the other training data points were removed, it would have
no impact on the decision boundary of the SVM. Therefore, the early identification of
such data points during the computationally intensive training process is crucial for
efficiency maximization.

The following observations discuss how each of the aforementioned observations may be
leveraged. In the case of the first observation, an iterative approach is used, in which the set
of variables of the optimization problem are improved iteratively by fixing the majority of
the variables to their current value, and improving only a small working set of the variables.
Note that the size of the relevant kernel matrix within each local optimization scales with
the square of the size q of the working set Sq, rather than the number n of training points.
The SVMLight algorithm repeatedly executes the following two iterative steps until global
optimality conditions are satisfied:

1. Select q variables as the active working set Sq, and fix the remaining n− q variables
to their current value.

2. Solve LD(Sq), a smaller optimization subproblem, with only q variables.

A key issue is how the working set of size q may be identified in each iteration. Ideally,
it is desired to select a working set for which the maximum improvement in the objective

11.5. REGRESSION MODELING WITH NUMERIC CLASSES 353

function is achieved. Let V be a vector with length equal to the number of Lagrangian
variables and at most q nonzero elements. The goal is to determine the optimal choice for
the q nonzero elements to determine the working set. An optimization problem is set up for
determining V in which the dot product of V with the gradient of LD (with respect to the
Lagrangian variables) is optimized. This is a separate optimization problem that needs to
be solved in each iteration to determine the optimal working set.

The second idea for speeding up support vector machines is that of shrinking the training
data. In the support vector machine formulation, the focus is primarily on the decision
boundary. Training examples that are on the correct size of the margin, and far away from
it, have no impact on the solution to the optimization problem, even if they are removed. The
early identification of these training examples is required during the optimization process
to benefit as much as possible from their removal. A heuristic approach, based on the
Lagrangian multiplier estimates, is used in the SVMLight approach. The specific details
of determining these training examples are beyond the scope of this book but pointers are
provided in the bibliographic notes. Another later approach, known as SVMPerf, shows how
to achieve linear scale-up, but for the case of the linear model only. For some domains, such
as text, the linear model works quite well in practice. Furthermore, the SVMPerf method
has O(s · n) complexity where s is the number of nonzero features, and n is the number of
training examples. In cases where s � d, such a classifier is very effective. This is the case
for sparse high-dimensional domains such as text and market basket data. Therefore, this
approach will be described in Sect. 13.5.3 of Chap. 13 on text data.

11.5 Regression Modeling with Numeric Classes

In many applications, the class variables are numerical. In this case, the goal is to minimize
the squared error of prediction of the numeric class variable. This variable is also referred to
as the response variable, dependent variable, or regressand. The feature variables are referred
to as explanatory variables, input variables, predictor variables, independent variables, or
regressors. The prediction process is referred to as regression modeling. This section will
discuss a number of such regression modeling algorithms.

11.5.1 Linear Regression

Let D be an n × d data matrix whose ith data point (row) is the d-dimensional input
feature vector Xi, and the corresponding response variable is yi. Let the n-dimensional
column-vector of response variables be denoted by y = (y1, . . . yn)T . In linear regression,
the dependence of each response variable yi on the corresponding independent variables Xi

is modeled in the form of a linear relationship:

yi ≈ W ·Xi ∀i ∈ {1 . . . n}. (11.2)

Here, W = (w1 . . . wd) is a d-dimensional row vector of coefficients that needs to be learned
from the training data so as to minimize the unexplained error

∑n
i=1(W · Xi − yi)2 of

modeling. The response values of test instances can be predicted with this linear relationship.
Note that a constant (bias) term is not needed on the right-hand side, because we can append
an artificial dimension1 with a value of 1 to each data point to include the constant term
within W . Alternatively, instead of using an artificial dimension, one can mean-center the

1Here, we assume that the total number of dimensions is d, including the artificial column.

354 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

FEATURE VARIABLE

R
E

S
P

O
N

S
E

 V
A

R
IA

B
LE

MINIMIZE SUM OF
SQUARED ERRORS

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

60

80

100

120

FEATURE VARIABLE

R
E

S
P

O
N

S
E

 V
A

R
IA

B
LE

(a) Linear regression y = x (b) Nonlinear regression y = x2

Figure 11.1: Examples of linear and nonlinear regression

data matrix and the response variable. In such a case, it can be shown that the bias term
is not necessary (see Exercise 8). Furthermore, the standard deviations of all columns of
the data matrix, except for the artificial column, are assumed to have been scaled to 1.
In general, it is common to standardize the data in this way to ensure similar scaling and
weighting for all attributes. An example of a linear relationship for a 1-dimensional feature
variable is illustrated in Fig. 11.1a.

To minimize the squared-error of prediction on the training data, one must determine
W that minimizes the following objective function O:

O =
n∑

i=1

(W ·Xi − yi)2 = ||DW
T − y||2. (11.3)

Using2 matrix calculus, the gradient of O with respect to W can be shown to be the
d-dimensional vector 2DT (DW

T − y). Setting the gradient to 0 yields the following d-
dimensional vector of optimization conditions:

DTDW
T
= DT y. (11.4)

If the symmetric matrix DTD is invertible, then the solution for W can be derived from the
aforementioned condition asW

T
= (DTD)−1DT y. The numerical class value of a previously

unseen test instance T can then be predicted as the dot product between W and T .
It is noteworthy that the matrix (DTD)−1DT is also referred to as the Moore–Penrose

pseudoinverse D+ of the matrix D. Therefore, the solution to linear regression can also be
expressed as D+ y. The pseudoinverse is more generally defined even for the case where
DTD is not invertible:

D+ = limδ→0(DTD + δ2I)−1DT . (11.5)

2Excluding constant terms, the objective function O = (DW
T − y)T (DW

T − y) can be expanded to the

two additive terms WDTDW
T

and −(WDT y + yTDW
T
) = −2WDT y. The gradients of these terms are

2DTDW
T

and −2DT y, respectively. In the event that the Tikhonov regularization term λ||W ||2 is added

to the objective function, an additional term of 2λW
T

will appear in the gradient.

11.5. REGRESSION MODELING WITH NUMERIC CLASSES 355

Here, I is a d×d identity matrix. When the number of training data points is small, all the
training examples might lie on a hyperplane with dimensionality less than d. As a result,
the d × d matrix DTD is not of full rank and therefore not invertible. In other words, the
system of equations DTDW

T
= DT y is underdetermined and has infinitely many solutions.

In this case, the general definition of the Moore–Penrose pseudoinverse in Eq. 11.5 is useful.
Even though the inverse of DTD does not exist, the limit of Eq. 11.5 can still be computed.
It is possible to compute D+ using the SVD of D (cf. Sect. 2.4.3.4 of Chap. 2). More
efficient computation methods are possible with the use of the following matrix identity
(see Exercise 15):

D+ = (DTD)+DT = DT (DDT)+. (11.6)

This identity is useful when d � n or n � d. Here, we will show only the case where d � n
because the other case is very similar. The first step to diagonalize the d × d symmetric
matrix DTD:

DTD = PΛPT . (11.7)

The columns of P are the orthonormal eigenvectors of DTD and Λ is a diagonal matrix
containing the eigenvalues. When the matrix DTD is of rank k < d, the pseudoinverse
(DTD)+ of DTD is computed as follows:

(DTD)+ = PΛ+PT . (11.8)

Λ+
ii is derived from Λ by setting it to 1/Λii for the k nonzero entries, and 0, otherwise.

Then, the solution for W is defined as follows:

W
T
= (DTD)+DT y. (11.9)

Even though the underdetermined system of equations DTDW
T
= DT y has infinitely many

solutions, the pseudoinverse always provides a solution W with the smallest L2-norm ||W ||
among the alternatives. Smaller coefficients are desirable because they reduce overfitting.
Overfitting is a significant problem in general, and especially so when the matrix DTD is
not of full rank. A more effective approach is to use Tikhonov regularization or Lasso. In
Tikhonov regularization, also known as ridge regression, a penalty term λ||W ||2 is added
to the objective function O of Eq. 11.3, where λ > 0 is a regularization parameter. In
that case, the solution for W

T
becomes (DTD + λI)−1DT y, where I is a d × d identity

matrix. The matrix (DTD + λI) can be shown to be always positive-definite and therefore
invertible. The compact solution provided by the Moore–Penrose pseudoinverse is a special
case of Tikhonov regularization in which λ is infinitesimally small (i.e., λ → 0). In general,
the value of λ should be selected adaptively by cross-validation. In Lasso, an L1-penalty,
λ
∑d

i=1 |wi|, is used instead of the L2-penalty term. The resulting problem does not have a
closed form solution, and it is solved using iterative techniques such as proximal gradient
methods and coordinate descent [256]. Lasso has the tendency to select sparse solutions
(i.e., few nonzero components) for W , and it is particularly effective for high-dimensional
data with many irrelevant features. Lasso can also be viewed as an embedded model (cf.
Sect. 10.2 of Chap. 10) for feature selection because features with zero coefficients are
effectively discarded. The main advantage of Lasso over ridge regression is not necessarily
one of performance, but that of its highly interpretable feature selection.

Although the use of a penalty term for regularization might seem arbitrary, it creates sta-
bility by discouraging very large coefficients. By penalizing all regression coefficients, noisy
features are often deemphasized to a greater degree. A common manifestation of overfitting

356 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

in linear regression is that the additive contribution of a large coefficient to W ·X may be
frequently canceled by another large coefficient in a small training data set. Such features
might be noisy. This situation can lead to inaccurate predictions over unseen test instances
because the response predictions are very sensitive to small perturbations in feature values.
Regularization prevents this situation by penalizing large coefficients. Bayesian interpre-
tations also exist for these regularization methods. For example, Tikhonov regularization
assumes Gaussian priors on the parameters W and class variable. Such assumptions are
helpful in obtaining a unique and probabilistically interpretable solution when the available
training data is limited.

11.5.1.1 Relationship with Fisher’s Linear Discriminant

Fisher’s linear discriminant for binary classes (cf. Sect. 10.2.1.4 of Chap. 10) can be shown
to be a special case of least-squares regression. Consider a problem with two classes, in
which the two classes 0 and 1 contain a fraction p0 and p1, respectively, of the n data
points. Assume that the d-dimensional mean vectors of the two classes are μ0 and μ1, and
the covariance matrices are Σ0 and Σ1, respectively. Furthermore, it is assumed that the
data matrix D is mean-centered. The response variables y are set to −1/p0 for class 0 and
+1/p1 for class 1. Note that the response variables are also mean-centered as a result. Let
us now examine the solution for W obtained by least-squares regression. The term DT y is
proportional to μ1

T − μ0
T , because the value of y is −1/p0 for a fraction p0 of the data

records belonging to class 0, and it is equal to 1/p1 for a fraction p1 of the data records
belonging to class 1. In other words, we have:

(DTD)W
T
= DT y

∝ μ1
T − μ0

T .

For mean-centered data, DTD
n is equal to the covariance matrix. It can be shown using

some simple algebra (see Exercise 21 of Chap. 10) that the covariance matrix is equal to
Sw + p0p1Sb, where Sw = (p0Σ0 + p1Σ1) and Sb = (μ1 − μ0)T (μ1 − μ0) are the (scaled)
d× d within-class and between-class scatter matrices, respectively. Therefore, we have:

(Sw + p0p1Sb)W
T ∝ μ1

T − μ0
T . (11.10)

Furthermore, the vector SbW
T
always points in the direction μ1

T − μ0
T because SbW

T
=

(μ1
T − μ0

T)
[
(μ1 − μ0)W

T
]
. This implies that we can drop the term involving Sb from

Eq. 11.10 without affecting the constant of proportionality:

SwW
T ∝ (μ1

T − μ0
T)

(p0Σ0 + p1Σ1)W
T ∝ (μ1

T − μ0
T)

W
T ∝ (p0Σ0 + p1Σ1)−1(μ1

T − μ0
T).

It is easy to see that the vector W is the same as the Fisher’s linear discriminant of
Sect. 10.2.1.4 in Chap. 10.

11.5.2 Principal Component Regression

Because overfitting is caused by the large number of parameters in W , a natural approach
is to work with a reduced dimensionality data matrix. In principal component regression,

11.5. REGRESSION MODELING WITH NUMERIC CLASSES 357

the largest k � d principal components of the input data matrix D (cf. Sect. 2.4.3.1 of
Chap. 2) with nonzero eigenvalues are determined. These principal components are the top-
k eigenvectors of the d× d covariance matrix of D. Let the top-k eigenvectors be arranged
in matrix form as the orthonormal columns of the d× k matrix Pk. The original n× d data
matrix D is transformed to a new n × k data matrix R = DPk. The new derived set of
k-dimensional input variables Z1 . . . Zn, which are rows of R, are used as training data to
learn a reduced k-dimensional set of coefficients W :

yi ≈ W · Zi. (11.11)

In this case, the k-dimensional vector of regression coefficients W can be expressed in terms
of R as (RTR)−1RT y. This solution is identical to the previous case, except that a smaller
and full-rank k × k matrix RTR is inverted. Prediction on a test instance T is performed
after transforming it to this new k-dimensional space as TPk. The dot product between TPk

and W provides the numerical prediction of the test instance. The effectiveness of principal
component regression is because of the discarding of the low-variance dimensions, which are
either redundant directions (zero eigenvalues) or noisy directions (very small eigenvalues). If
all directions are included after PCA-based axis rotation (i.e., k = d), then the approach will
yield the same results as linear regression on the original data. It is common to standardize
the data matrix D to zero mean and unit variance before performing PCA. In such cases,
the test instances also need to be scaled and translated in an identical way.

11.5.3 Generalized Linear Models

The implicit assumption in linear models is that a constant change in the ith feature variable
leads to a constant change in the response variable, which is proportional to wi. However,
such assumptions are inappropriate in many settings. For example, if the response variable is
the height of a person, and the feature variable is the age, the height is not expected to vary
linearly with age. Furthermore, the model needs to account for the fact that such variables
can never be negative. In other cases, such as customer ratings, the response variables
might take on integer values from a bounded range. Nevertheless, the elegant simplicity of
linear models can still be leveraged in these settings. In generalized linear models (GLM),
each response variable yi is modeled as an outcome of a (typically exponential) probability
distribution with mean f(W ·Xi) as follows:

yi ∼ Probability distribution with mean f(W ·Xi) ∀i ∈ {1 . . . n}. (11.12)

This function f(·) is referred to as the mean function, and its inverse f−1(·) is referred
to as the link function. Although the same mean/link function can be used with different
probability distributions, the selected mean/link functions and probability distributions are
usually paired carefully to maximize effectiveness and interpretability of the model. If the
observed responses are discrete (e.g., binary), it is possible to use a discrete probability
distribution for yi (e.g., Bernoulli), as long as its mean is f(W · Xi). An example of this
scenario is logistic regression. Some common examples of mean functions with their associ-
ated probability distribution assumptions are illustrated in the table below:

358 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

Link function Mean function Distribution assumption

Identity W ·X Normal
Inverse −1/(W ·X) Exponential, Gamma
Log exp(W ·X) Poisson
Logit 1/[1 + exp(−W ·X)] Bernoulli, Categorical
Probit Φ(W ·X) Bernoulli, Categorical

The link function regulates the nature of the response variable and its usability in a specific
application. For example, the log, logit, and probit link functions are typically used to model
the relative frequency of a discrete or categorical outcome. Because of the probabilistic
modeling of the response variable, a maximum likelihood approach is used to determine the
optimal parameter set W , where the product of the probabilities (or probability densities)
of the response variable outcomes is maximized. After estimating the parameters in W , the
expected response value of a test instance T is estimated as f(W · T). Furthermore, the
probability distribution of the response variable (with mean f(W · T)) may be used for
detailed analysis.

An important special case of GLM is least-squares regression. In this case, the probabil-
ity distribution of the response yi is the normal distribution with mean f(W ·Xi) = W ·Xi

and constant variance σ2. The relationship f(W ·Xi) = W ·Xi follows from the fact that
the link function is the identity function. The likelihood of the training data is as follows:

Likelihood({y1 . . . yn}) =
n∏

i=1

Probability(yi) =
n∏

i=1

1√
2πσ

exp
(
− (yi − f(W ·Xi))2

2σ2

)

=
n∏

i=1

1√
2πσ

exp
(
− (yi −W ·Xi)2

2σ2

)

∝ exp
(
−
∑n

i=1(yi −W ·Xi)2

2σ2

)
.

In this special case, the maximum likelihood approach can be shown to be equivalent to the
least-squares approach because the logarithm of the likelihood yields the scaled objective
function of linear regression. Another specific example of the process of maximum likeli-
hood estimation with the logit function and Bernoulli distribution is discussed in detail
in Sect. 10.6 of Chap. 10. In this case, the discrete binary variable yi is modeled from a
Bernoulli distribution with mean function f(W ·Xi) = 1/[1 + exp(−W ·Xi)]:

yi =

{
1 with probability 1/[1 + exp(−W ·Xi)]
0 with probability 1/[1 + exp(W ·Xi)].

(11.13)

Note that3 the mean of yi still satisfies the mean function according to the table above.
This special case of GLMs is referred to as logistic regression. Logistic regression can also
be used for k-way categorical response values. In that case, a k-way categorical distribution
is used, and its mean function maps to a k-dimensional vector to represent each outcome of
the categorical variable. An added restriction is that the components of the k-dimensional
vector must add to 1. Probit regression is a sister family of models to logit regression,
in which the cumulative density function (CDF) Φ(·) of a standard normal distribution

3A slightly different convention of yi ∈ {−1,+1} is used in Chap. 10 for notational convenience. In that

case, the mean function would need to be adjusted to
1−exp(−W ·X)

1+exp(−W ·X)
.

11.5. REGRESSION MODELING WITH NUMERIC CLASSES 359

is used instead of the logit function. Ordered probit regression can model ordered integer
values within a range (e.g., ratings) for the response variable by using the quantiles of a
standard normal distribution. The key insight of GLM is to choose the link function and
distribution assumption judiciously depending on the nature of the observed response in
a specific application. Generalized linear models can be viewed as a unification of large
classes of regression models, such as linear regression, logistic regression, probit regression,
and Poisson regression.

11.5.4 Nonlinear and Polynomial Regression

Linear regression cannot capture nonlinear relationships such as those in Fig. 11.1b. The
basic linear regression approach can be used for nonlinear regression by using derived input
features. For example, consider a new set of m features denoted by h1(Xj) . . . hm(Xj) for
the jth data point. Here, hi(·) represents a nonlinear transformation function from the d-
dimensional input feature space to 1-dimensional space. This results in a new n×m input
data matrix. By applying linear regression on this derived data matrix, one is able to model
relationships of the following form:

y =
m∑
i=1

wihi(X). (11.14)

For example, in polynomial regression, the higher powers of each dimension up to order r are
used as a new set of derived features. This approach expands the number of dimensions by a
factor of r, but it allows greater expressiveness in terms of nonlinear relationships. The main
disadvantage of the approach is that it expands the dimensionality of the parameter set W ,
and can therefore result in overfitting. Therefore, it is important to use regularization.

Arbitrary nonlinear relationships can also be captured by methods such as kernel ridge
regression. In order to use kernels, the main goal is to show that the closed-form solution
to linear ridge regression can be expressed in terms of dot products between training and
test instances. One way of achieving this goal is by formulating the dual of the linear ridge
regression problem [448], and then using the kernel trick as in SVMs. A simpler approach is
to make use of a specialized variant of the Sherman–Morrison–Woodbury identity in matrix
algebra (see Exercise 14), which is true for any n× d data matrix D and scalar λ:

(DTD + λId)−1DT = DT (DDT + λIn)−1. (11.15)

Note that Id is a d×d identity matrix, whereas In is an n×n identity matrix. For an unseen
test instance Z, which is expressed as a row vector, the prediction F (Z) of linear regression
is given by ZW

T
. By substituting the closed-form solution of ridge regression for W

T
and

then making use of the aforementioned identity, we obtain:

F (Z) = Z(DTD + λId)−1DT y = ZDT (DDT + λIn)−1y. (11.16)

Note that ZDT is an n-dimensional row vector of dot products between the test instance
Z and the n training instances. According to the kernel trick, we can replace this row
vector with a vector κ containing the n kernel similarities between the test and training
instances. Furthermore, the matrix DDT contains the n × n dot products between the
training instances. We can replace this matrix with the n× n kernel matrix K constructed
on the training instances. Then, the prediction for test instance Z is as follows:

F (Z) = κ(K + λIn)−1y. (11.17)

360 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

The kernel trick can also be applied to other variants of linear regression, such as Fisher’s
discriminant and logistic regression. The extension to Fisher’s discriminant is straightfor-
ward because it is a special case of linear regression, whereas the derivation for kernel logistic
regression uses the dual optimization formulation like SVMs.

11.5.5 From Decision Trees to Regression Trees

Regression trees are designed to model nonlinear relationships between the features and the
response variable. If the regression model is constructed at each leaf node in a hierarchical
partitioning of the data, locally optimized linear regression models can be obtained within
each partition. Even when the relationship between the class variable and feature variables
is nonlinear, a local linear approximation is quite effective. Each test instance can then be
classified with its locally optimized linear regression model by determining its appropriate
partition. This hierarchical partitioning is essentially a decision tree because the assigned
partition of a test instance is determined by the split criteria at the internal nodes. The
overall strategy of constructing a decision tree remains the same as in the case of categorical
class variables. Similarly, the splits can use univariate (axis-parallel) splits on the feature
variables, as in a traditional decision tree. However, changes need to be made to the splitting
and pruning criteria because of the numeric class variable:

1. Splitting criterion: In the case of categorical classes, the splitting criterion uses the Gini
index or entropy of the class variable as a qualitative measure to decide the splitting
attribute. However, in the case of numeric classes, an error-based measure is used. The
regression modeling approach of the previous section is applied to each child resulting
from a potential split. The aggregate squared error of prediction of all the training
data points in the different child nodes is computed. The split with the minimum
aggregate squared error is selected among all possible splits at a particular node.

The main computational problem with this approach is that a linear regression model
needs to be constructed for each possible split. An alternative is to not use linear
regression in the tree construction phase. The average variance of the numeric class
variable in the children nodes resulting from a possible split is used as the quality
criterion for split evaluation. In other words, the Gini index splitting criterion for the
categorical class variable in traditional decision-tree construction is replaced with the
variance of the numeric class variable. The linear regression models are constructed at
the leaf nodes for prediction only after the entire tree has already been constructed.
While this approach will result in larger trees, it is more practical from a computa-
tional point of view.

2. Pruning criterion: To minimize overfitting, a portion of the training data is not used
for constructing the decision tree. This training data is then used for evaluating the
squared error of prediction of the decision tree. A similar post-pruning strategy is used
as the case of categorical class variables. Leaf nodes are iteratively removed if their
removal improves accuracy on the validation set, until no more nodes can be removed.

The main drawback of this approach is that overfitting of the linear regression model is a
real possibility when leaf nodes do not contain enough data. Therefore, a sufficient amount
of training data is required to begin with. In such cases, regression trees can be very powerful
because they can model complex nonlinear relationships.

11.6. SEMISUPERVISED LEARNING 361

11.5.6 Assessing Model Effectiveness

The effectiveness of linear regression models can be evaluated with a measure known as the
R2-statistic, or the coefficient of determination. The term SSE =

∑n
i=1(yi − g(Xi))2 yields

the sum-of-squared error of prediction of regression. Here, g(X) represents the linear model
used for regression. The squared error of the response variable about its mean (or total sum

of squares) is SST =
∑n

i=1

(
yi −

∑n
j=1

yj

n

)2

. Then the fraction of unexplained variance is

given by SSE/SST , and the R2-statistic is as follows:

R2 = 1− SSE

SST
. (11.18)

This statistic always ranges between 0 and 1 for the case of linear models. Higher values
are desirable. When the dimensionality is large, the adjusted R2-statistic provides a more
accurate measure:

R2 = 1− (n− d)
(n− 1)

SSE

SST
. (11.19)

The R2-statistic is appropriate only for the case of linear models. For nonlinear models, it
is possible for the R2-statistic to be highly misleading or even negative. In such cases, one
might directly use the SSE as a measure of the error.

11.6 Semisupervised Learning

In many applications, labeled data is expensive and hard to acquire. On the other hand,
unlabeled data is often copiously available. It turns out that unlabeled data can be used
to significantly improve the accuracy of many mining algorithms. Unlabeled data is useful
because of the following two reasons:

1. Unlabeled data can be used to estimate the low-dimensional manifold structure of the
data. The available variation in label distribution can then be extrapolated on this
manifold structure.

2. Unlabeled data can be used to estimate the joint probability distribution of features.
The joint probability distributions of features are useful for indirectly relating feature
values to labels.

The two aforementioned points are closely related. To explain these points, we will use two
examples. In Fig. 11.2, an example has been illustrated where only two labeled examples
are available. Based only on this training data, a reasonable decision boundary is illustrated
in Fig. 11.2a. Note that this is the best decision boundary that one can hope to find with
the use of this limited training data. Portions of this decision boundary are in regions of
the space where almost no feature values are available. Therefore, the decision boundaries
in these regions may not reflect the class behavior of unseen test instances.

Now, suppose that a large number of unlabeled examples are added to the training data,
as illustrated in Fig. 11.2b. Because of the addition of these unlabeled examples, it becomes
immediately evident that the data is distributed along two manifolds, each of which contains
one of the training examples. A key assumption here is that the class variables are likely
to vary smoothly over dense regions of the space, but it may vary significantly over sparse
regions of the space. This leads to a new decision boundary that takes the underlying feature
correlations into account in addition to the labeled instances. In the particular example of

362 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SINGLE TRAINING EXAMPLE
FOR CLASS A

SINGLE TRAINING EXAMPLE
FOR CLASS B

DECISION BOUNDARY BASED ON TRAINING PAIR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINGLE LABELED
EXAMPLE FOR CLASS B

SINGLE LABELED
EXAMPLE FOR CLASS A

MANY UNLABELED
EXAMPLES

NEW DECISION
BOUNDARY

(a) Labeled data (b) Labeled and unlabeled data

Figure 11.2: Impact of unlabeled data on classification

Fig. 11.2a, if a test instance were provided near the coordinates (1, 0.7) with only the original
training data, then almost any classifier, such as the nearest-neighbor classifier, will assign
the data points to class A. However, this prediction is not reliable because of few previously
seen labeled examples in the locality of the test instance. However, the unlabeled examples
could be used to expand the labeled examples appropriately, by incrementally labeling the
unlabeled examples in each hyperplane of Fig. 11.2b with the appropriate class. At this
point, it becomes evident that test instances near the coordinates (1, 0.7) really belong to
class B.

A different way of understanding the impact of feature correlation estimation is by
examining the intuitively interpretable text domain. Consider a scenario where one were
trying to determine whether documents belong to the “Science” category. It is possible, that
not enough labeled documents may contain the word “Einstein” in the documents. However,
the word “Einstein” may often co-occur with other (more common) words such as “Physics”
in unlabeled documents. At the same time, these more common words may already have
been associated with the “Science” category because of their presence in labeled documents.
Thus, the unlabeled documents provide the insight that the word “Einstein” is also relevant
to the “Science” category. This example shows that unlabeled data can be used to learn
joint feature distributions that are very relevant to the classification process.

Many of the semisupervised methods are often termed as transductive because they
cannot handle out-of-sample test instances. In other words, all test instances need to be
specified at the time of constructing the training model. New out-of-sample instances cannot
be classified after the model has been constructed. This is different from most of the inductive
classifiers discussed in the previous chapter in which training and testing phases are cleanly
separated.

There are two primary types of techniques that are used for semisupervised learning.
Some of these methods aremeta-algorithms that can use any existing classification algorithm
as a subroutine, and leverage it to incorporate the impact of unlabeled data. The second
type of methods are those in which a number of modifications are incorporated in specific
classifiers to account for the impact of unlabeled data. Two examples of the second type
of methods are semisupervised Bayes classifiers, and transductive support vector machines.
This section will discuss both these classes of techniques.

11.6. SEMISUPERVISED LEARNING 363

11.6.1 Generic Meta-algorithms

The goal of generic meta-algorithms is to use existing classification algorithms to enhance
the classification process with unlabeled data. The simplest method is self-training, in which
the smoothness assumption is used to incrementally expand the labeled portions of the
training data. The major drawback of this approach is that it might lead to overfitting. One
way of avoiding overfitting is by using co-training. Co-training partitions the feature space
and independently labels instances using classifiers trained on each of these feature spaces.
The labeled instances from one classifier are used as feedback to the other, and vice versa.

11.6.1.1 Self-Training

The self-training procedure can use any existing classification algorithm A as input. The
classifier A is used to incrementally assign labels to unlabeled examples for which it has
the most confident prediction. As input, the self-training procedure uses the initial labeled
set L, the unlabeled set U , and a user-defined parameter k that may sometimes be set to
1. The self-training procedure iteratively uses the following steps:

1. Use algorithm A on the current labeled set L to identify the k instances in the unla-
beled data U for which the classifier A is the most confident.

2. Assign labels to the k most confidently predicted instances and add them to L. Remove
these instances from U .

It is easy to see that the self-training procedure will work very well for the simple example of
Fig. 11.2. However, in practice, the different classes may not be quite as cleanly separated.
The major drawback of self-training is that the addition of predicted labels to the training
data can lead to propagation of errors in the presence of noise. Another procedure, known
as co-training, is able to avoid such overfitting more effectively.

11.6.1.2 Co-training

In co-training, it is assumed that the feature set can be partitioned into two disjoint groups
F1 and F2, such that each of them is sufficient to learn the target classification function.
It is important to select the two feature subsets so that they are as independent from one
another as possible. Two classifiers are constructed, such that one classifier is constructed on
each of these groups. These classifiers are not allowed to interact with one another directly
for prediction of unlabeled examples though they are used to build up training sets for each
other. This is the reason that the approach is referred to as co-training.

Let L be the labeled training data and U be the unlabeled data. Let L1 and L2 be the
labeled sets for each of these classifiers. The sets L1 and L2 are initialized to the available
labeled data L, except that they are represented in terms of disjoint feature sets F1 and
F2, respectively. Over the course of the co-training process, as different examples from the
initially unlabeled set U are added to L1 and L2, respectively, the training instances in L1

and L2 may vary from one another. Two classifier models A1 and A2 are constructed using
the training sets L1 and L2, respectively. The following steps are then iteratively applied:

1. Train classifier A1 using labeled set L1, and add k most confidently predicted instances
from unlabeled set U − L2 to training data set L2 for classifier A2.

2. Train classifier A2 using labeled set L2, and add k most confidently predicted instances
from unlabeled set U − L1 to training data set L1 for classifier A1.

364 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

In many implementations of the method, the most confidently labeled examples for each
class are added to the training sets of the other classifier. This procedure is repeated until all
instances are labeled. The two classifiers are then retrained with the expanded training data
sets. This approach can be used to label not only the unlabeled data set U , but also unseen
test instances. At the end of the procedure, two classifiers are returned. For an unseen test
instance, each classifier may be used to determine the class label scores. The score for a test
instance is determined by combining the scores of the two classifiers. For example, if the
Bayes method is used as the base classifier, then the product of the posterior probabilities
returned by the two classifiers may be used.

The co-training approach is more robust to noise because of the disjoint feature sets
used by the two algorithms. An important assumption is that of conditional independence
of the features in the two sets with respect to a particular class. In other words, after the
class label is fixed, the features in one subset are conditionally independent of the other.
The intuition for this is that instances generated by one classifier appear to be randomly
distributed to the other, and vice versa. As a result, the approach will generally be more
robust to noise than the self-training method.

11.6.2 Specific Variations of Classification Algorithms

The algorithms in the previous section were designed as generic meta-algorithms that can
use virtually any known classification algorithm A for semisupervised learning. A few meth-
ods have also been designed that rely on variations of other classification algorithms, such
as variations of the Bayes classifier and support vector machines.

11.6.2.1 Semisupervised Bayes Classification with EM

An important observation is that both the EM-clustering algorithm (cf. Sect. 6.5 of Chap. 6)
and the naive Bayes classifier (cf. Sect. 10.5.1 of Chap. 10) use the same generative mix-
ture model, wherein examples from each cluster (class) are generated from a predefined
distribution, such as the Bernoulli or the Gaussian. In the case of the naive Bayes classifier,
the iterative approach of the EM-algorithm is not required because the class memberships
of the training data are already fixed, which makes the E-step unnecessary. In the case
of semisupervised classification, however, the unlabeled examples need to be assigned to
classes in order to expand the training data. Therefore, the iterative approach of the EM-
algorithm again becomes essential. Semisupervised Bayes classification can be viewed as a
combination of EM clustering and the naive Bayes classifier.

This method was originally proposed in the context of text data, although this discussion
will assume categorical data for simplicity. Note that the binary representation of text data
may also be considered categorical data. The naive Bayes algorithm requires the estimation
of the conditional probabilities of the feature values for each class. Specifically, Eq. 10.22
in Sect. 10.5.1 of Chap. 10 requires the estimation of P (xj = aj |C = c). This expression
represents the conditional probability of the feature value, given the class and is estimated
from the training data. The estimation cannot be performed accurately, if the number of
training examples is small. Consider the case of the text domain. If only five to ten labeled
documents are available for a particular class, and xj is a binary variable corresponding to
the presence or absence of a particular word j, then this estimation cannot be performed
robustly. As discussed earlier, the joint distribution of features with labeled and unlabeled
data can be very helpful in this respect.

11.6. SEMISUPERVISED LEARNING 365

Intuitively, the idea is to use the EM clustering algorithm to determine the clusters of
documents most similar to the labeled classes. A partially supervised EM clustering method
associates each cluster with a particular class. The conditional feature distributions in these
clusters are used as a more robust proxy for the feature distributions of the corresponding
classes.

The basic idea is to use a generative model to create semisupervised clusters from the
data. A one-to-one correspondence between the mixture components and the classes is
retained in this case. The use of EM algorithms for clustering categorical data and its
semisupervised variant are discussed in Sects. 7.2.3 and 7.5.1, respectively, of Chap. 7. The
reader is advised to revisit these sections for the relevant background before reading further.

For initialization, the labeled examples are used as the seeds for the EM algorithm, and
the number of mixture components is set to the number of classes. A Bayes classifier is
used to assign documents to clusters (classes) in the E-step. In the first iteration, the Bayes
classifier uses only the labeled data to determine the initial set of posterior cluster (class)
membership probabilities, as in a standard Bayes classifier. This results in a set of “soft”
clusters, in which the (unlabeled) data point X has a weight w(X, c) in the range (0, 1)
associated with each class c, corresponding to its posterior Bayes membership probability.
Only labeled documents have binary weights that are either 0 or 1 for each class, depending
on their fixed assignments. The value of P (xj = aj |C = c) is now estimated using a weighted
variant of Eq. 10.22 in Chap. 10 that leverages both the labeled and the unlabeled documents.

P (xj = aj |C = c) =
∑

X∈L∪U w(X, c)I(xj , aj)∑
X∈L∪U w(X, c)

(11.20)

Here, I(xj , aj) is an indicator variable that takes on the value of 1, if the jth feature xj of
X is aj , and 0 otherwise. The major difference from Eq. 10.22 is that the posterior Bayes
estimates of unlabeled documents are also used to estimate class-conditional feature distri-
butions. As in the standard Bayes method, the same Laplacian smoothing approach may
be incorporated to reduce overfitting. The prior probabilities P (C = c) for each cluster may
also be estimated by computing the average assignment probability of the data points to
the corresponding class. This is the M-step of the EM algorithm. The next E-step uses these
modified values of P (xj = aj |C = c) and the prior probability to derive the posterior Bayes
probability with a standard Bayes classifier. Therefore, the Bayes classifier implicitly incor-
porates the impact of unlabeled data. The algorithm may be summarized by the following
two iterative steps that are continually repeated to convergence:

1. (E-step) Estimate posterior probability of membership of data points to clusters
(classes) using Bayes rule.

P (C = c|X) ∝ P (C = c)
d∏

j=1

P (xj = aj |C = c) (11.21)

2. (M-step) Estimate conditional distribution of features for different clusters (classes),
using the current estimated posterior probabilities (unlabeled data) and known mem-
berships (labeled data) of data points to clusters (classes).

One challenge with the use of the approach is that the clustering structure may some-
times not correspond to the class distribution very well. In such cases, the use of unla-
beled data can harm the classification accuracy, as the clusters found by the EM algorithm

366 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

drift away from the true class structure. After all, unlabeled data are plentiful compared
to labeled data, and therefore the estimation of P (xj = aj |C = c) in Eq. 11.20 will be
dominated by the unlabeled data. To ameliorate this effect, the labeled and unlabeled
data are weighted differently during the estimation of P (xj = aj |C = c). The unlabeled
data are weighted down by a predefined discount factor μ < 1 to ensure better corre-
spondence between the clustering structure and the class distribution. In other words, the
value of w(X, c) is multiplied with μ for only the unlabeled examples before estimating
P (xj = aj |C = c) in Eq. 11.20. The EM-approach for semisupervised classification is par-
ticularly remarkable because it demonstrates the link between semisupervised clustering and
semisupervised classification, even though these two kinds of semisupervision are motivated
by different application scenarios.

11.6.2.2 Transductive Support Vector Machines

The general assumption for most of the semisupervised methods is that the label values of
unsupervised examples do not vary abruptly at densely populated regions of the data. In
transductive support vector machines, this assumption is implicitly encoded by assigning
labels to unsupervised examples that maximize the margin of the support vector machine.
To understand this point, consider the example of Fig 11.2b. In this case, the margin of
the SVM will be optimized only when the labels of the examples in the cluster containing
the single example for class A, are also set to the same value A. The same is true for the
unlabeled examples in the cluster containing the single label for class B. Therefore, the
SVM formulation now needs to be modified to incorporate additional margin constraints,
and binary decision variables for each unlabeled example. Recall from the discussion in
Sect. 10.6 of Chap. 10 that the original SVM formulation was to minimize the objective
function ||W ||2

2 + C
∑n

i=1 ξi, subject to the following constraints:

yi(W ·Xi + b) ≥ 1− ξi ∀i. (11.22)

In addition, the nonnegativity constraint ξi ≥ 0 on the slack variables is observed. Note
that the value of yi is known, because the training examples are labeled. For the case
of unlabeled examples, binary decision variables zi ∈ {−1,+1} (with corresponding slack
penalties) are incorporated for each unlabeled training example Xi ∈ U . These decision
variables correspond to the assignment of the unlabeled examples to a particular class. The
following constraint is added to the optimization problem:

zi(W ·Xi + b) ≥ 1− ξi ∀i : Xi ∈ U . (11.23)

The slack penalties for the unlabeled examples can also be included in the optimization
objective function. Note that, unlike yi, the value of zi is not known, and it is a binary
integer variable that becomes a part of the optimization problem. Furthermore, the modified
optimization formulation is an integer program, which is far more difficult than the original
convex optimization problem for support vector machines.

A number of techniques have, therefore, been designed to approximately solve this prob-
lem with iterative mechanisms. One of these methods starts by labeling the most confidently
predicted examples and iteratively expanding them. The number of positive examples ini-
tially labeled from the unlabeled instances, is based on the required trade-off between pre-
cision and recall. This ratio of positive to negative examples is maintained throughout the
iterative algorithm. In each iteration, one positive example is changed to negative, and one
negative example to positive to improve the soft margin of the classifier as much as possible.
The bibliographic notes contain a discussion of the methods commonly used in this context.

11.6. SEMISUPERVISED LEARNING 367

11.6.3 Graph-Based Semisupervised Learning

The conversion of arbitrary data types to graphs is discussed in Sect. 2.2.2.9 of Chap. 2.
Therefore, one advantage of this approach is that it can be used for semisupervised classi-
fication of arbitrary data types, as long as a distance function is available for quantifying
proximity between data objects. This is a property that graph-based methods inherit from
their origins in nearest-neighbor classification. The steps in graph-based semisupervised
learning are as follows:

1. Construct a similarity graph on both the labeled and the unlabeled data records.
Each data object Oi is associated with a node in the similarity graph. Each object is
connected to its k-nearest neighbors.

2. The weight wij of the edge (i, j) is equal to a kernelized function of the distance
d(Oi, Oj) between the objects Oi and Oj , so that larger weights indicate greater
similarity. A typical example of the weight is based on the heat kernel [90]:

wij = e−d(Oi,Oj)
2/t2 . (11.24)

Here, t is a user-defined parameter.

This problem is one where we have a graph containing both labeled and unlabeled nodes.
It is now desired to infer the labels of the unlabeled nodes with the use of these proximity
relationships. This problem is exactly identical to the collective classification problem intro-
duced in Sect. 19.4 of Chap. 19. Readers are advised to refer to the methods discussed in
that section.

Graph-based semisupervised learning may be viewed as a semisupervised extension of
nearest-neighbor classifiers. The only difference of graph-based semisupervised methods
from nearest-neighbor classifiers is the way in which similarity graphs are constructed.
Nearest-neighbor methods can be conceptually viewed as collective classification methods
on similarity graphs in which edges are added only between pairs of labeled and unla-
beled instances. Nearest-neighbor classification simply selects the dominant label from the
labeled nodes incident on an unlabeled node. In the semisupervised case, edges can be added
between any pair of nodes, whether they are labeled or unlabeled. The addition of these
extra edges is necessary in semisupervised learning because of the scarcity of the labeled
nodes in the similarity graph. Such edges are able to associate unlabeled clusters of arbitrary
shape to their closest labeled instances more effectively. The reader is referred to Sect. 19.4
of Chap. 19 for discussions on collective classification.

11.6.4 Discussion of Semisupervised Learning

An important question in semisupervised learning is whether unlabeled data always helps
in improving classification accuracy. Semisupervised learning depends on the inherent class
structure of the underlying data. For semisupervised learning to be effective, the class
structure of the data should approximately match its clustering structure. This assumption
is obvious in the case of the semisupervised EM algorithm. The assumption is, however,
implicitly used by other methods as well.

In practice, semisupervised learning is most effective when the number of labeled exam-
ples is extremely small, and there is no realistic way of making confident predictions about
scarcely populated regions of the space. In some domains, such as node classification of
graphs, this is almost always true. Therefore, in such domains, the transductive setting is

368 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

the only way in which classification can be performed. These methods will be discussed in
detail in Sect. 19.4 of Chap. 19. On the other hand, when a lot of labeled data is already
available, then the unlabeled examples do not provide much advantage to the learner, and
can, in fact, be harmful in some cases.

11.7 Active Learning

From the discussion in the previous section on semisupervised classification, it is evident that
labeled data are often scarce in real applications. While labeled data are often expensive to
obtain, the cost of procuring labeled data can often be quantified. Some examples of costly
labeling mechanisms are as follows:

• Document collections: Large amounts of document data, which are usually unlabeled,
are available on the Web. A common approach is to manually label the documents,
which is a slow, painstaking, and laborious process. Alternatively, crowdsourcing
mechanisms, such as Amazon Mechanical Turk, may be used. However, such mecha-
nisms typically incur a dollar-cost on a per-instance basis.

• Privacy-constrained data sets: In many scenarios, the labels on records may be sensi-
tive information that can be acquired at a significant query cost (e.g., obtaining per-
mission from the relevant entity). In such cases, costs are harder to quantify explicitly,
but can nevertheless be estimated through modeling.

• Social networks: In social networks, it may be desirable to identify nodes with spe-
cific properties. For example, an advertising company may desire to identify social
network nodes that are interested in “cosmetics.” However, it is rare that labels will
be explicitly associated with the nodes. Identification of relevant nodes may require
either manual examination of social network posts or user surveys. Both processes are
time-consuming and costly.

It is clear from the aforementioned examples that the acquisition of labels should be viewed
as a cost-centric process that helps improve modeling accuracy. The goal in active learning
is to maximize the accuracy of classification at a specific cost of label acquisition. Therefore,
active learning integrates label acquisition and model construction. This is different from all
the other algorithms discussed in this book, where it is assumed that training data labels
are already available.

Not all training examples are equally informative. To illustrate this point, consider the
two-class problem illustrated in Fig. 11.3. The two classes, labeled by A and B, respec-
tively, have a vertical decision boundary separating them. Suppose that the acquisition of
labels is so costly that one is only allowed to acquire the labels of four examples from the
entire data set and use this set of four examples to train a model. Clearly, this is a very
small number of training examples, and the wrong choice of training examples may lead to
significant overfitting. For example, in the case of Fig. 11.3a, the four examples have been
randomly sampled from the data set. A typical linear classifier, such as logistic regression,
may determine a decision boundary, corresponding to the dashed line in Fig. 11.3a. It is
evident that this decision boundary is a poor representation of the true (vertical) decision
boundary. On the other hand, in the case of Fig. 11.3b, the sampled examples are chosen
more carefully to align along the true decision boundary. This set of labeled examples will
result in a much better classification model for the entire data set. The goal in active learn-
ing is to integrate the labeling and classification process in a single framework to create

11.7. ACTIVE LEARNING 369

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLASS A CLASS B

RANDOMLY SAMPLED POINTS

DECISION BOUNDARY FOUND BY MODEL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLASS A CLASS B

ACTIVELY SAMPLED POINTS

DECISION BOUNDARY FOUND BY MODEL

gnilpmasevitcA)b(gnilpmasmodnaR)a(

Figure 11.3: Impact of active sampling on decision boundary

robust models. In practice, the determination of the correct choice of query instances is a
very challenging problem. The key is to use the knowledge gained from the labels already
acquired to “guess” the most informative regions in which to query the labels. Such an
approach can help discover the true shape of the decision boundary as quickly as possible.
Therefore, the key question in active learning is as follows:

How do we select instances to label to create the most accurate model at a given cost?

In some scenarios, the labeling cost may be instance-specific cost, although most mod-
els use the simplifying assumption of equal costs over all instances. Every active learning
system has two primary components, one of which is already given:

1. Oracle: The oracle provides the responses to the underlying query in the form of
labels of specified test instances. The oracle may be a human labeler, or a cost-driven
data-acquisition system, such as Amazon Mechanical Turk. In general, for modeling
purposes, the oracle is viewed as a black-box that is part of the input to the process.

2. Query system: The job of the query system is to pose queries to the oracle for labels
of specific records. The querying strategy typically uses the distribution of currently
known set of training instance labels to determine the most informative regions for
querying.

The design of the query system may depend on the application at hand. For example,
some query systems use selective sampling, in which a sequence of examples are presented
to the user who makes a decision about whether or not to query them. The pool-based
sampling approach assumes the availability of a base “pool” of instances from which to query
the labels of data points. The task of the learner is to, therefore, determine (informative)
instances one by one from this pool for querying.

The pool-based approach is the most common scenario for active learning, and will
therefore be discussed in this chapter. The overall approach in the procedure is an iterative
one. In each iteration, a number of interesting instances are identified, for which the addition
of labels would be most informative for further classification. These are considered the
“important” instances. The identification of the important instances is the job of the query-
system, whereas the determination of the labels of queried instances is the job of the oracle,

370 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

which, in some cases, might be a human expert. The iterative process is repeated until
either the cost budget is exhausted or the classification accuracy no longer improves with
further addition of labels.

It is evident that the crucial part of active learning is the choice of the querying strat-
egy. How should this querying be performed? From the example of Fig. 11.3, it is evident
that the most effective querying strategies can map out the boundaries of separation most
clearly. Because the boundary regions often contain instances of multiple classes, they are
characterized by class label uncertainty or disagreements between different learners about
the class label. This is, of course, not always true because uncertain regions may some-
times contain unrepresentative outliers. Therefore, the various models work with different
assumptions about the most appropriate methodology for identifying the most informative
query points.

1. Heterogeneity-based models: These models attempt to sample regions of the space
that are uncertain, heterogeneous, or dissimilar to what has already been seen so
far. Examples of such models include uncertainty sampling, query-by-committee, and
expected model change. These models are based on the assumption that regions near
the decision boundary are more likely to be heterogeneous and instances in these
regions are more valuable for learning the decision boundary.

2. Performance-based models: These models directly use performance measures of clas-
sifiers such as expected error or variance reduction. Therefore, these models quantify
the impact of adding the queried instance to the classifier performance on remaining
unlabeled instances.

3. Representativeness-based models: These models attempt to create data, that is as
representative as possible, of the underlying population of training instances. For
example, it may be desired that the density distribution of the queried instances
matches that of the training data. However, a heterogeneity criterion is often retained
within the query model.

In the following, a brief discussion of each of these different types of models is provided.

11.7.1 Heterogeneity-Based Models

The goal in these models is to determine regions of greatest heterogeneity. The typical
approach is to use the current set of training labels to examine the classification uncertainty
of unseen instances with respect to available labels. This heterogeneity may be quantified
in various ways, such as by measuring the uncertainty of classification, dissimilarity with
the current model, or disagreement between a committee of classifiers.

11.7.1.1 Uncertainty Sampling

In uncertainty sampling, the learner attempts to label those instances for which the value of
the label is the least certain. For example, the posterior probability of a Bayes classifier may
be used to quantify its uncertainty. The Bayes classifier is trained on instances whose labels
are already available. A binary-label instance is deemed as uncertain when its posterior class
probabilities are as close to 0.5 as possible. The corresponding criterion may be formalized
as follows:

Certain(X) =
k∑

i=1

||pi − 0.5||. (11.25)

11.7. ACTIVE LEARNING 371

The value lies in the range (0, 1), and lower values are indicative of greater uncertainty.
In the multiclass scenario, a formal entropy measure may be used to quantify uncertainty.
If the Bayes posterior probabilities of the k classes are p1 . . . pk, respectively, based on the
current set of labeled instances, then the entropy measure Entropy(X) is defined as follows:

Entropy(X) = −
k∑

i=1

pilog(pi). (11.26)

In this case, larger values of the entropy indicate greater uncertainty and are more desirable
for label acquisition.

11.7.1.2 Query-by-Committee

In this case, the heterogeneity is measured in terms of the disagreement of different classi-
fiers rather than the posterior probabilities of a single classifier over different labels. This
criterion, however, tries to achieve the same intuitive goal, but in a different way. Intuitively,
when the posterior probability of a Bayes classifier is the same across different classes, a sig-
nificant disagreement may exist between different classification models about the predicted
label. Therefore, this approach uses a committee of different classifiers that are trained
on the current set of labeled instances. These classifiers are then used to predict the class
label of each unlabeled instance. The instance for which the classifiers disagree the most is
selected as the relevant one in this scenario.

At an intuitive level, the query-by-committee method achieves similar heterogeneity
goals as the uncertainty sampling method. Different classifiers are more likely to disagree
on the class label for instances near the true decision boundary. The mathematical formula
for quantifying the disagreement is also the same as uncertainty sampling. In particular,
the posterior probability pi of each class i in Eq. 11.26 is replaced with the fraction of
votes received by each class i. It is particularly beneficial to use diverse classifiers that use
fundamentally different modeling methodologies.

11.7.1.3 Expected Model Change

In this approach, the instance with the greatest expected change from the current classi-
fication model by adding a particular instance to the training data is selected. In many
optimization-based classification models, such as discriminative probabilistic models, the
gradient of the model objective function with respect to the model parameters can be
quantified. By adding a queried instance to the training data, the gradient will change as
well. The instance with the greatest change in the gradient when the queried instance is
added to set of labeled instances. The intuition is that such an instance is likely to be very
different from the model constructed using already labeled instances. Let δgi(X) be the
change in the gradient with respect to the model parameters, conditional on the fact that
the correct training label of the candidate instance X is the ith class. In other words, if the
current labeled training set is L and ∇G(L) is the gradient of the objective function with
respect to model parameters, we have:

δgi(X) = ||∇G(L ∪ (X, i))−∇G(L)||. (11.27)

Of course, we do not yet know the training label ofX, but we can only estimate the posterior
probability of each label with a Bayes classifier. Let pi be the posterior probability of the

372 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

class i with respect to the current label set of known labels in the training data. Then, the
expected model change C(X) with respect to the instance X is defined as follows:

C(X) =
k∑

i=1

pi · δgi(X).

The instance X with the largest value of C(X) is queried for the label.

11.7.2 Performance-Based Models

Although the motivation of heterogeneity-based models is that uncertain regions are the
most informative by virtue of their proximity to decision boundaries, they have a drawback
as well. Querying uncertain regions can inadvertently lead to the addition of unrepresenta-
tive outliers to the training data. Performance-based classifiers are therefore focused directly
on the classification objective function. Therefore, these methods evaluate the accuracy of
classification on the remaining unlabeled instances.

11.7.2.1 Expected Error Reduction

For the purpose of discussion, the remaining set of instances that has not yet been labeled is
denoted by V . This set is used as the validation set on which the expected error reduction
is computed. This approach is related to uncertainty sampling in a complementary way.
Whereas uncertainty sampling maximizes the label uncertainty of the queried instance,
the expected error reduction minimizes the expected label uncertainty of the remaining
instances V when the queried instance is added to the training data. Thus, in the case of
a binary-classification problem, the predicted posterior probabilities of the instances in V
should be as far away from 0.5 as possible after adding the queried instance. The idea here is
that greater certainty in prediction of class labels of the remaining unlabeled instances, will
eventually result in a lower error rate on an unseen test set as well. Thus, error-reduction
models can also be considered as greatest certaintymodels, except that the certainty criterion
is applied to the instances in V rather than the query instance itself. Let pi(X) denote the
posterior probability of the label i for the query candidate instance X with a Bayes model
trained on the current set of labeled instances. Let P

(X,i)
j (Z) be the posterior probability

of class label j, when the instance-label combination (X, i) is added to the current set of
labeled instances. Then, the error objective function E(X,V) for the binary class problem
(i.e., k = 2) is defined as follows:

E(X,V) =
k∑

i=1

pi(X)

⎛
⎝ k∑

j=1

∑
Z∈V

||P (X,i)
j (Z)− 0.5||

⎞
⎠ . (11.28)

The objective function can be interpreted as the expected label certainty of remaining test
instances. Therefore, the objective function is maximized rather than minimized, as in the
case of uncertainty-based models.

This result can easily be extended to the case of k-way models by using the same entropy
criterion that was discussed for uncertainty-based models. In that case, the aforementioned
expression is modified to replace ||P (X,i)

j (Z) − 0.5|| with the class-specific entropy term

−P
(X,i)
j (Z)log(P (X,i)

j (Z)). Furthermore, this criterion needs to be minimized.

11.8. ENSEMBLE METHODS 373

11.7.2.2 Expected Variance Reduction

One observation about the aforementioned error-reduction method of Eq. 11.28 is that it
needs to be computed in terms of the entire set of unlabeled instances in V , and a new model
needs to be trained incrementally to test the effect of adding a new instance. This can be
computationally expensive. It should be pointed out that when the error of an instance set
reduces, the corresponding variance also typically reduces. The overall generalization error
can be expressed4 as a sum of the true label noise, model bias, and variance. Of these,
only the last term is highly dependent on the choice of instances selected. Therefore, it is
possible to reduce the variance instead of the error, and the main advantage of doing so is
the reduction in computational requirements. The main advantage of these techniques is the
ability to express the variance in closed form, and therefore achieve greater computational
efficiency. A detailed description of this class of methods is beyond the scope of this book.
Refer to the bibliographic notes.

11.7.3 Representativeness-Based Models

The main advantage of performance-based models over heterogeneity-based models is that
they intend to improve the error behavior on the aggregate set of unlabeled instances, rather
than evaluating the uncertainty behavior of the queried instance. Therefore, unrepresenta-
tive or outlier-like queries are avoided. In some models, the representativeness itself becomes
a part of the criterion for querying. One way of measuring representativeness is with the use
of a density-based criterion, in which the density of a region in the space is used to weight
the querying criterion. This weight is combined with a heterogeneity-based query criterion.
Therefore, such methods can be considered a variation of the heterogeneity-based model,
but with a representativeness weighting to ensure that outliers are not selected.

Therefore, these methods combine the heterogeneity behavior of the queried instance
with a representativeness function from the unlabeled set V to decide on the queried
instance. The representativeness function weights dense regions of the input space. The
objective function O(X,V) of such a model is expressed as the product of a heterogeneity
component H(X) and a representativeness component R(X,V).

O(X,V) = H(X)R(X,V)

The value of H(X) (assumed to be a maximization function) can be any of the hetero-
geneity criteria (transformed appropriately for maximization), such as the entropy criterion
from uncertainty sampling, or the expected model change criterion. The representativeness
criterion R(X,V) is simply a measure of the density of X with respect to the instances in
V . A simple version of this density is the average similarity of X to the instances in V .
Many other sophisticated variations of this simple measure are used. The reader is referred
to the bibliographic notes for a discussion of the available measures.

11.8 Ensemble Methods

Ensemble methods are motivated by the fact that different classifiers may make different
predictions on test instances due to the specific characteristics of the classifier, or their
sensitivity to the random artifacts in the training data. An ensemble method is an approach
to increase the prediction accuracy by combining the results from multiple classifiers. The

4This theoretical concept is discussed in detail in the next section.

374 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

Algorithm EnsembleClassify(Training Data Set: D
Base Algorithms: A1 . . .Ar, Test Instances: T)

begin
j = 1;
repeat
Select an algorithm Qj from A1 . . .Ar;
Create a new training data set fj(D) from D;
Apply Qj to fj(D) to learn model Mj ;
j = j + 1;

until(termination);
report labels of each T ∈ T based on combination of

predictions from all learned models Mj ;
end

Figure 11.4: The generic ensemble framework

basic approach of ensemble analysis is to apply the base ensemble learners multiple times by
using either different models, or by using the same model on different subsets of the training
data. The results from different classifiers are then combined into a single robust prediction.

Although there are significant differences in how the individual learners are constructed
and combined by various ensemble models, we start with a very generic description of
ensemble algorithms. Later in this section, we will discuss specific instantiations of this broad
framework, such as bagging, boosting, and random decision trees. The ensemble approach
uses a set of base classification algorithms A1 . . .Ar. Note that these learners might be
completely different algorithms, such as decision trees, SVMs, or the Bayes classifier. In
some types of ensembles, such as boosting and bagging, a single learning algorithm is used
but with different choices of training data. Different learners are used to leverage the greater
robustness of different algorithms in different regions of the data. Let the learning algorithm
selected in the jth iteration be denoted by Qj . It is assumed that Qj is selected from the
base learners. At this point, a derivative training data set fj(D) from the base training data
is selected. This may be a random sample of the training data, as in bagging, or it may be
based on the results of the past execution of ensemble components, as in boosting. A model
Mj is learned in the jth iteration by applying the selected learning algorithm Qj to fj(D).
For each test instance T , a prediction is made by combining the results of different models
Mj on T . This combination may be performed in various ways. Examples include the use
of simple averaging, the use of a weighted vote, or the treatment of the model combination
process as a learning problem. The overall ensemble framework is illustrated in Fig. 11.4.

The description of Fig. 11.4 is very generic, and allows significant flexibility in terms of
how the ensemble components may be learned and the combination may be performed. The
two primary types of ensembles are special cases of the description of Fig. 11.4:

1. Data-centered ensembles: A single base learning algorithm (e.g., an SVM or a decision
tree) is used, and the primary variation is in terms of how the derivative data set
fj(D) for the jth ensemble component is constructed. In this case, the input to the
algorithm contains only a single learning algorithm A1. The data set fj(D) for the
jth component of the ensemble may be constructed by sampling the data, focusing
on incorrectly classified portions of the training data in previously executed ensemble
components, manipulating the features of the data, or manipulating the class labels
in the data.

11.8. ENSEMBLE METHODS 375

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLASS A

CLASS B

TRUE BOUNDARY

BEST LINEAR
SVM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CLASS A

CLASS B

DECISION
TREE A

DECISION
TREE B

TRUE
BOUNDARY

INSTANCE X

ecnairav)b(saib)a(

Figure 11.5: Impact of bias and variance on classification accuracy

2. Model-centered ensembles: Different algorithmsQj are used in each ensemble iteration.
In these cases, the data set fj(D) for each ensemble component is the same as the
original data set D. The rationale for these methods is that different models may work
better in different regions of the data, and therefore the combination of the models
may be more effective for any given test instance, as long as the specific errors of a
classification algorithm are not reflected by the majority of the ensemble components
on any particular test instance.

The following discussion introduces the rationale for ensemble analysis before presenting
specific instantiations.

11.8.1 Why Does Ensemble Analysis Work?

The rationale for ensemble analysis can be best understood by examining the different
components of the error of a classifier, as discussed in statistical learning theory. There are
three primary components to the error of a classifier:

1. Bias: Every classifier makes its own modeling assumptions about the nature of the
decision boundary between classes. For example, a linear SVM classifier assumes that
the two classes may be separated by a linear decision boundary. This is, of course, not
true in practice. For example, in Fig. 11.5a, the decision boundary between the differ-
ent classes is clearly not linear. The correct decision boundary is shown by the solid
line. Therefore, no (linear) SVM classifier can classify all the possible test instances
correctly even if the best possible SVM model is constructed with a very large train-
ing data set. Although the SVM classifier in Fig. 11.5a seems to be the best possible
approximation, it obviously cannot match the correct decision boundary and there-
fore has an inherent error. In other words, any given linear SVM model will have
an inherent bias. When a classifier has high bias, it will make consistently incor-
rect predictions over particular choices of test instances near the incorrectly modeled
decision-boundary, even when different samples of the training data are used for the
learning process.

2. Variance: Random variations in the choices of the training data will lead to different
models. Consider the example illustrated in Fig. 11.5b. In this case, the true decision

376 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

boundary is linear. A sufficiently deep univariate decision tree can approximate a
linear boundary quite well with axis-parallel piecewise approximations. However, with
limited training data, even when the trees are grown to full depth without pruning, the
piecewise approximations will be coarse like the boundaries illustrated for hypothetical
decision trees A and B in Fig. 11.5b. Different choices of training data might lead to
different split choices, as a result of which the decision boundaries of trees A and B
are very different. Therefore, (test) instances such as X are inconsistently classified
by decision trees which were created by different choices of training data sets. This
is a manifestation of model variance. Model variance is closely related to overfitting.
When a classifier has an overfitting tendency, it will make inconsistent predictions for
the same test instance over different training data sets.

3. Noise: The noise refers to the intrinsic errors in the target class labeling. Because
this is an intrinsic aspect of data quality, there is little that one can do to correct it.
Therefore, the focus of ensemble analysis is generally on reducing bias and variance.

Note that the design choices of a classifier often reflect a trade-off between the bias and
the variance. For example, pruning a decision tree results in a more stable classifier and
therefore reduces the variance. On the other hand, because the pruned decision tree makes
stronger assumptions about the simplicity of the decision boundary than the unpruned
tree, the former leads to greater bias. Similarly, using a larger number of neighbors for a
nearest-neighbor classifier will lead to larger bias but lower variance. In general, simplified
assumptions about the decision boundary lead to greater bias but lower variance. On the
other hand, complex assumptions reduce bias but are harder to robustly estimate with
limited data. The bias and variance are affected by virtually every design choice of the
model, such as the choice of the base algorithm or the choice of model parameters.

Ensemble analysis can often be used to reduce both the bias and variance of the classi-
fication process. For example, consider the case of the example illustrated in Fig. 11.5a, in
which the decision boundary is not linear, and therefore any linear SVM classifier will not
find the correct decision boundary. However, by using different choices of model parameters,
or data subset selection, it is possible to create three different linear SVM hyperplanes A,
B, and C, as illustrated in Fig. 11.6a. Note that these different classifiers tend to work well
in different parts of the data and have different directions of bias in any particular part of
the data. This kind of differential performance on different parts of the data is sometimes
artificially induced in ensemble components in some methods, such as boosting. In other
cases, it may be a natural result of using ensemble model components that are very different
from one another (e.g., decision trees and Bayes classifiers). Now consider a new ensemble
classifier that is created using the majority vote of the three aforementioned classifiers cor-
responding to hyperplanes A, B, and C. The decision boundary of this ensemble classifier
is illustrated in Fig. 11.6a as well. This decision boundary is not linear and has lower bias
with respect to the true decision boundary. The reason for this is that different classifiers
have different levels and directions of bias in different parts of the training data, and the
majority vote across the different classifiers is able to obtain results that are generally less
biased in any specific region than each of the component classifiers.

A similar argument applies to the variance example illustrated in Fig. 11.5b. Although
instances such as X are inconsistently classified because of model variance, they will often
be classified correctly when the model bias is low. As a result, by using the aggregation
over sufficiently independent classifiers, it becomes increasingly likely that instances close
to the decision boundary, such as X, will be correctly classified. For example, a majority vote
of just three independent trees, each of which classifies X correctly with 80% probability,

11.8. ENSEMBLE METHODS 377

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLASS A

CLASS B

TRUE BOUNDARY

SVM A

SVM B

SVM C

ENSEMBLE
BOUNDARY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLASS A

CLASS B

TRUE BOUNDARYENSEMBLE
BOUNDARY

INSTANCE X

ecnairav)b(saib)a(

Figure 11.6: Ensemble decision boundaries are more refined than those of component clas-
sifiers

will be correct (0.83 +
(
3
2

)
× 0.82 × 0.2) × 100 ≈ 90% of the time. In other words, the

ensemble decision boundary of the majority classifier will be much closer to the true decision
boundary than that of any of its component classifiers. In fact, a realistic example of how
an ensemble boundary might look like after combining a set of relatively coarse decision
trees, is illustrated in Fig. 11.6b. Note that the ensemble boundary is much closer to the
true boundary because it is not regulated by the unpredictable variations in decision-tree
behavior for a training data set of limited size. Such an ensemble is, therefore, better able
to make use of the knowledge in the training data.

In general, different classification models have different sources of bias and variance.
Models that are too simple (such as a linear SVM or shallow decision tree) make too many
assumptions about the shape of the decision boundary, and will therefore have high bias.
Models that are too complex (such as a deep decision tree) will overfit the data, and will
therefore have high variance. Sometimes a different parameter setting in the same classifier
will favor different parts of the bias-variance trade-off curve. For example, a small value of k
in a nearest-neighbor classifier will result in lower bias but higher variance. Because different
kinds of ensembles learners have different impacts on bias and variance, it is important to
choose the component classifiers, so as to optimize the impact on the bias-variance trade-off.
An overview of the impact of different models on bias and variance is provided in Table 11.1.

11.8.2 Formal Statement of Bias-Variance Trade-off

In the following, a formal statement of the bias-variance trade-off will be provided. Consider
a classification problem with a training data set D. The classification problem can be viewed
as that of learning the function f(X) between the feature variables X and the binary class
variable y:

y = f(X) + ε. (11.29)

Here, f(X) is the function representing the true (but unknown) relationship between the
feature variables and the class variable, and ε is the intrinsic error in the data that cannot
be modeled. Therefore, over the n test instances (X1, y1) . . . (Xn, yn), the intrinsic noise ε2a

378 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

Table 11.1: Impact of different techniques on bias-variance trade-off

Technique Source/level of bias Source/level of variance

Simple Oversimplification increases Low variance. Simple models
models bias in decision boundary do not overfit

Complex Generally lower than simple High variance. Complex
models models. Complex boundary assumptions will be overly

can be modeled sensitive to data variation
Shallow High bias. Shallow tree Low variance. The top split
decision will ignore many relevant levels do not depend on
trees split predicates minor data variations
Deep Lower bias than shallow High variance because of
decision decision tree. Deep levels overfitting at lower levels
trees model complex boundary
Rules Bias increases with fewer Variance increases with

antecedents per rule more antecedents per rule
Naive High bias from simplified Variance in estimation of
Bayes model (e.g., Bernoulli) model parameters. More

and naive assumption parameters increase variance
Linear High bias. Correct boundary Low variance. Linear separator
models may not be linear can be modeled robustly
Kernel Bias lower than linear SVM. Variance higher than
SVM Choice of kernel function linear SVM
k-NN Simplified distance function Complex distance function such
model such as Euclidean causes as local discriminant causes

bias. Increases with k variance. Decreases with k
Regularization Increases bias Reduces variance

may be estimated as follows:

ε2a =
1
n

n∑
i=1

(yi − f(Xi))2. (11.30)

Because the precise form of the function f(X) is unknown, most classification algorithms
construct a model g(X,D) based on certain modeling assumptions. An example of such a
modeling assumption is the linear decision boundary in SVM. This function g(X,D) may be
defined either algorithmically (e.g., decision tree), or it may be defined in closed form, such
as the SVM classifier, discussed in Sect. 10.6 of Chap. 10. In the latter case, the function
g(X,D) is defined as follows:

g(X,D) = sign{W ·X + b}. (11.31)

Note that the coefficients W and b can only be estimated from the training data set D. The
notation D occurs as an argument of g(X,D) because the training data set D is required
to estimate model coefficients such as W and b. For a training data set D of limited size,
it is often not possible to estimate g(X,D) very accurately, as in the case of the coarse
decision boundaries of Fig. 11.5b. Therefore, the specific impact of the training data set
on the estimated result g(X,D) can be quantified by comparing it with its expected value
ED[g(X,D)] over all possible outcomes of training data sets D.

Aside from the intrinsic error ε2a, which is data-set specific, there are two primary sources
of error in the modeling and estimation process:

1. The modeling assumptions about g(X,D) may not reflect the true model. Consider
the case where the linear SVM modeling assumption is used for g(X,D), and the true
boundary between the classes is not linear. This would result in a bias in the model. In

11.8. ENSEMBLE METHODS 379

practice, the bias usually arises from oversimplification in the modeling assumptions.
Even if we had a very large training data set and could somehow estimate the expected
value of g(X,D), the value of (f(X)−ED[g(X,D)])2 would be nonzero because of the
bias arising from the difference between the true model and assumed model. This is
referred to as the (squared) bias. Note that it is often possible to reduce the bias by
assuming a more complex form for g(X,D), such as using a kernel SVM instead of a
linear SVM in Fig. 11.5a.

2. Even if our assumptions about g(X,D) were correct, it is not possible to exactly
estimate ED[g(X,D)] with any given training data set D. Over different instan-
tiations of a training data set D and fixed test instance X, the predicted class
label g(X,D) would be different. This is the model variance, which corresponds to
ED[(g(X,D)−ED[g(X,D)])2]. Note that the expectation function ED[g(X,D)] defines
a decision boundary which is usually much closer to the true decision boundary (e.g.,
ensemble boundary estimate in Fig. 11.6b) as compared to that defined by a specific
instantiation D of the training data (e.g., boundaries A and B in Fig. 11.5b).

It can be shown that the expected mean squared error of the prediction ED[MSE] =
1
n

∑n
i=1 ED[(yi − g(Xi,D))2] of test data points (X1, y1) . . . (Xn, yn) over different choices

of training data set D can be decomposed into the bias, variance, and the intrinsic error as
follows:

ED[MSE] =
1
n

n∑
i=1

⎛
⎜⎝(f(Xi)− ED[g(Xi,D)])2︸ ︷︷ ︸

Bias2
+ED[(g(Xi,D)− ED[g(Xi,D)])2]︸ ︷︷ ︸

Variance

⎞
⎟⎠+ ε2a︸︷︷︸

Error

.

The ensemble method reduces the classification error by reducing the bias and variance
of the combined model. By carefully choosing the component models with specific bias-
variance properties and combining them appropriately, it is often possible to reduce both
the bias and the variance over an individual model.

11.8.3 Specific Instantiations of Ensemble Learning

A number of ensemble approaches have been designed to increase accuracy by reducing
bias, variance, or a combination of both. In the following, a discussion of selected models is
provided.

11.8.3.1 Bagging

Bagging, which is also referred to as bootstrapped aggregating, is an approach that attempts
to reduce the variance of the prediction. It is based on the idea that if the variance of a
prediction is σ2, then the variance of the average of k independent and identically dis-
tributed (i.i.d.) predictions is reduced to σ2

k . Given sufficiently independent predictors, such
an approach of averaging will reduce the variance significantly.

So how does one approximate i.i.d. predictors? In bagging, data points are sampled
uniformly from the original data with replacement. This sampling approach is referred to as
bootstrapping and is also used for model evaluation. A sample of approximately the same size
as the original data is drawn. This sample may contain duplicates, and typically contains
approximately 1− (1− 1/n)n ≈ 1− 1/e fraction of the distinct data points in the original
data. Here, e represents the base of the natural logarithm. This result is easy to show because

380 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

the probability of a data point not being included in the sample is given by (1− 1/n)n. A
total of k different bootstrapped samples, each of size n, are drawn independently, and the
classifier is trained on each of them. For a given test instance, the predicted class label is
reported by the ensemble as the dominant vote of the different classifiers.

The primary advantage of bagging is that it reduces the model variance. However, bag-
ging does not reduce the model bias. Therefore, this approach will not be effective for the
example of Fig. 11.5a, but it will be effective for the example of Fig. 11.5b. In Fig. 11.5b, the
different decision tree boundaries are created by the random variations in the bootstrapped
samples. The majority vote of these bootstrapped samples will, however, perform better
than a model constructed on the full data set because of a reduction in the variance com-
ponent. For cases in which the bias is the primary component of error, the bootstrapping
approach may show a slight degradation in accuracy. Therefore, while designing a boot-
strapping approach, it is advisable to design the individual components to reduce the bias
at the possible expense of variance, because bagging will take care of the latter. Such a
choice optimizes the bias-variance trade-off. For example, one might want to grow a deep
decision tree with 100% class purity at the leaves. In fact, decision trees are an ideal choice
for bagging, because they have low bias and high variance when they are grown sufficiently
deep. The main problem with bagging is that the i.i.d. assumption is usually not satisfied
because of correlations between ensemble components.

11.8.3.2 Random Forests

Bagging works best when the individual predictions from various ensemble components
satisfy the i.i.d. property. If the k different predictors, each with variance σ2, have a positive
pairwise correlation of ρ between them, then the variance of the averaged prediction can be
shown to be ρ · σ2 + (1−ρ)·σ2

k . The term ρ · σ2 is invariant to the number of components k
in the ensemble. This term limits the performance gains from bagging. As we will discuss
below, the predictions from bootstrapped decision trees are usually positively correlated.

Random forests can be viewed as a generalization of the basic bagging method, as
applied to decision trees. Random forests are defined as an ensemble of decision trees,
in which randomness has explicitly been inserted into the model building process of each
decision tree. While the bootstrapped sampling approach of bagging is also an indirect
way of adding randomness to model-building, there are some disadvantages of doing so.
The main drawback of using decision-trees directly with bagging is that the split choices
at the top levels of the tree are statistically likely to remain approximately invariant to
bootstrapped sampling. Therefore, the trees are more correlated, which limits the amount
of error reduction obtained from bagging. In such cases, it makes sense to directly increase
the diversity of the component decision-tree models. The idea is to use a randomized decision
tree model with less correlation between the different ensemble components. The underlying
variability can then be more effectively reduced by an averaging approach. The final results
are often more accurate than a direct application of bagging on decision trees. Figure 11.6b
provides a typical example of the effect of the approach on the decision boundary, which is
similar to that of bagging, but it is usually more pronounced.

The random-split selection approach directly introduces randomness into the split crite-
rion. An integer parameter q ≤ d is used to regulate the amount of randomness introduced
in split selection. The split selection at each node is preceded by the randomized selection of
a subset S of attributes of size q. The splits at that node are then executed using only this
subset. Larger values of q will result in correlated trees that are similar to a tree without
any injected randomness. By selecting small values of q relative to the full dimensionality

11.8. ENSEMBLE METHODS 381

d, the correlations across different components of the random forest can be reduced. The
resulting trees can also be grown more efficiently, because a smaller number of attributes
need to be considered at each node. On the other hand, when a larger size q of the selected
feature set S is used, then each individual ensemble component will have better accuracy,
which is also desirable. Therefore, the goal is to select a good trade-off point. It has been
shown that, when the number of input attributes is d, a total of q = log2(d) + 1 attributes
should be selected to achieve the best trade-off. Interestingly, even a choice of q = 1 seems
to work well in terms of accuracy, though it requires the use of a larger number of ensemble
components. After the ensemble has been constructed, the dominant label from the various
predictions of a test instance is reported. This approach is referred to as Forest-RI because
it is based on random input selection.

This approach does not work well when the overall dimensionality d is small, and there-
fore it is no longer possible to use values of q much smaller than d. In such cases, a value
L ≤ d is specified, which corresponds to the number of input features that are combined
together. At each node, L features are randomly selected, and combined linearly with coeffi-
cients generated uniformly at random from the range [−1, 1]. A total of q such combinations
are generated in order to create a new subset S of multivariate attributes. As in the previ-
ous case, the splits are executed using only the attribute set S. This results in multivariate
random splits. This approach is referred to as Forest-RC because it uses random linear
combinations.

In the random forest approach, deep trees are grown without pruning. Each tree is
grown on a bootstrapped sample of the training data to increase the variance reduction. As
in bagging, the variance is reduced significantly by the random forest approach. However, the
component classifiers may have higher bias because of the restricted split selection of each
component classifier. This can sometimes cause a problem when the fraction of informative
features in the training data is small. Therefore, the gains in random forests are a result of
variance reduction. In practice, the random forests approach usually performs better than
bagging and comparable to boosting. It is also resistant to noise and outliers.

11.8.3.3 Boosting

In boosting, a weight is associated with each training instance, and the different classifiers
are trained with the use of these weights. The weights are modified iteratively based on
classifier performance. In other words, the future models constructed are dependent on the
results from previous models. Thus, each classifier in this model is constructed using a
the same algorithm A on a weighted training data set. The basic idea is to focus on the
incorrectly classified instances in future iterations by increasing the relative weight of these
instances. The hypothesis is that the errors in these misclassified instances are caused by
classifier bias. Therefore, increasing the instance weight of misclassified instances will result
in a new classifier that corrects for the bias on these particular instances. By iteratively using
this approach and creating a weighted combination of the various classifiers, it is possible to
create a classifier with lower overall bias. For example, in Fig. 11.6a, each individual SVM is
not globally optimized and is accurate only near specific portions of the decision boundary,
but the combination ensemble provides a very accurate decision boundary.

The most well-known approach to boosting is the AdaBoost algorithm. For simplicity,
the following discussion will assume the binary class scenario. It is assumed that the class
labels are drawn from {−1,+1}. This algorithm works by associating each training example
with a weight that is updated in each iteration, depending on the results of the classification
in the last iteration. The base classifiers therefore need to be able to work with weighted

382 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

Algorithm AdaBoost(Data Set: D, Base Classifier: A, Maximum Rounds: T)
begin
t = 0;
for each i initialize W1(i) = 1/n;
repeat
t = t+ 1;
Determine weighted error rate εt on D when base algorithm A

is applied to weighted data set with weights Wt(·);
αt = 1

2 loge((1− εt)/εt);
for each misclassified Xi ∈ D do Wt+1(i) = Wt(i)eαt ;

else (correctly classified instance) do Wt+1(i) = Wt(i)e−αt ;
for each instance Xi do normalize Wt+1(i) = Wt+1(i)/[

∑n
j=1 Wt+1(j)];

until ((t ≥ T) OR (εt = 0) OR (εt ≥ 0.5));
Use ensemble components with weights αt for test instance classification;

end

Figure 11.7: The AdaBoost algorithm

instances. Weights can be incorporated either by direct modification of training models, or
by (biased) bootstrap sampling of the training data. The reader should revisit the section
on rare class learning for a discussion on this topic. Instances that are misclassified are given
higher weights in successive iterations. Note that this corresponds to intentionally biasing
the classifier in later iterations with respect to the global training data, but reducing the
bias in certain local regions that are deemed “difficult” to classify by the specific model A.

In the tth round, the weight of the ith instance is Wt(i). The algorithm starts with
equal weight of 1/n for each of the n instances, and updates them in each iteration. In
the event that the ith instance is misclassified, then its (relative) weight is increased to
Wt+1(i) = Wt(i)eαt , whereas in the case of a correct classification, the weight is decreased
to Wt+1(i) = Wt(i)e−αt . Here αt is chosen as the function 1

2 loge((1− εt)/εt), where εt is the
fraction of incorrectly predicted training instances (computed after weighting with Wt(i))
by the model in the tth iteration. The approach terminates when the classifier achieves
100% accuracy on the training data (εt = 0), or it performs worse than a random (binary)
classifier (εt ≥ 0.5). An additional termination criterion is that the number of boosting
rounds is bounded above by a user-defined parameter T . The overall training portion of the
algorithm is illustrated in Fig. 11.7.

It remains to be explained how a particular test instance is classified with the ensemble
learner. Each of the models induced in the different rounds of boosting is applied to the test
instance. The prediction pt ∈ {−1,+1} of the test instance for the tth round is weighted
with αt and these weighted predictions are aggregated. The sign of this aggregation

∑
t ptαt

provides the class label prediction of the test instance. Note that less accurate components
are weighted less by this approach.

An error rate of εt ≥ 0.5 is as bad or worse than the expected error rate of a random
(binary) classifier. This is the reason that this case is also used as a termination criterion.
In some implementations of boosting, the weights Wt(i) are reset to 1/n whenever εt ≥ 0.5,
and the boosting process is continued with the reset weights. In other implementations, εt
is allowed to increase beyond 0.5, and therefore some of the prediction results pt for a test
instance are effectively inverted with negative values of the weight αt = loge((1− εt)/εt).

11.8. ENSEMBLE METHODS 383

Boosting primarily focuses on reducing the bias. The bias component of the error is
reduced because of the greater focus on misclassified instances. The combination decision
boundary is a complex combination of the simpler decision boundaries, which are each
optimized to specific parts of the training data. An example of how simpler decision bound-
aries combine to provide a complex decision boundary was already illustrated in Fig. 11.6a.
Because of its focus on the bias of classifier models, such an approach is capable of com-
bining many weak (high bias) learners to create a strong learner. Therefore, the approach
should generally be used with simpler (high bias) learners with low variance in the indi-
vidual ensemble components. In spite of its focus on bias, boosting can also reduce the
variance slightly when reweighting is implemented with sampling. This reduction is because
of the repeated construction of models on randomly sampled, albeit reweighted, instances.
The amount of variance reduction depends on the reweighting scheme used. Modifying the
weights less aggressively between rounds will lead to better variance reduction. For example,
if the weights are not modified at all between boosting rounds, then the boosting approach
defaults to bagging, which only reduces variance. Therefore, it is possible to leverage variants
of boosting to explore the bias-variance trade-off in various ways.

Boosting is vulnerable to data sets with significant noise in them. This is because boost-
ing assumes that misclassification is caused by the bias component of instances near the
incorrectly modeled decision boundary, whereas it might simply be a result of the misla-
beling of the data. This is the noise component that is intrinsic to the data, rather than
the model. In such cases, boosting inappropriately overtrains the classifier to low-quality
portions of the data. Indeed, there are many noisy real-world data sets where boosting does
not perform well. Its accuracy is typically superior to bagging in scenarios where the data
sets are not excessively noisy.

11.8.3.4 Bucket of Models

The bucket of models is based on the intuition that it is often difficult to know a priori, which
classifier will work well for a particular data set. For example, a particular data set may
be suited to decision trees, whereas another data set may be well suited to support vector
machines. Therefore, model selection methods are required. Given a data set, how does one
determine, which algorithm to use? The idea is to first divide the data set into two subsets
A and B. Each algorithm is trained on subset A. The set B is then used to evaluate the
performance of each of these models. The winner in this “bake-off” contest is selected. Then,
the winner is retrained using the full data set. If desired, cross-validation can be used for the
contest, instead of the “hold-out” approach of dividing the training data into two subsets.

Note that the accuracy of the bucket of models is no better than the accuracy of the
best classifier for a particular data set. However, over many data sets, the approach has
the advantage of being able to use the best model that is suited to each data set, because
different classifiers may work differently on different data sets. The bucket of models is
used commonly for model selection and parameter tuning in classification algorithms. Each
individual model is the same classifier over a different choice of the parameters. The winner
therefore provides the optimal parameter choice across all models.

The bucket of models approach is based on the idea that different classifiers will have
different kinds of bias on different data sets. This is because the “correct” decision boundary
varies with the data set. By using a “winner-takes-all” contest, the classifier with the most
accurate decision boundary will be selected for each data set. Because the bucket of models
evaluates the classifier accuracy based on overall accuracy, it will also tend to select a model
with lower variance. Therefore, the approach can reduce both the bias and the variance.

384 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

11.8.3.5 Stacking

The stacking approach is a very general one, in which two levels of classification are used. As
in the case of the bucket of models approach, the training data is divided into two subsets A
and B. The subset A is used for the first-level classifiers that are the ensemble components.
The subset B is used for the second-level classifier that combines the results from different
ensemble components in the previous phase. These two steps are described as follows:

1. Train a set of k classifiers (ensemble components) on the training data subset A.
These k ensemble components can be generated in various ways, such as drawing
k bootstrapped samples (bagging) on data subset A, k rounds of boosting on data
subset A, k different random decision trees on data subset A, or simply training k
heterogeneous classifiers on data subset A.

2. Determine the k outputs of each of the classifiers on the training data subset B.
Create a new set of k features, in which each feature value is the output of one of
these k classifiers. Thus, each point in training data subset B is transformed to this
k-dimensional space based on the prediction of the k first-level classifiers. Its class
label is its (known) ground-truth value. The second-level classifier is trained on this
new representation of subset B.

The result is a set of k first-level models used to transform the feature space, and a combiner
classifier at the second-level. For a test instance, the first-level models are used to create
a new k-dimensional representation. The second-level classifier is then used to predict the
test instance. In many implementations of stacking, the original features of data subset B
are retained along with the k new features for learning the second-level classifier. It is also
possible to use class probabilities as features rather than the class label predictions. To
prevent loss of training data in the first-level and second-level models, this method can be
combined with m-way cross-validation. In this approach, a new feature set is derived for
each training data point by iteratively using (m − 1) segments for training the first-level
classifier, and using it to derive the features of the remainder. The second-level classifier
is trained on the newly created data set, which represents all the training data points.
Furthermore, the first-level classifiers are re-trained on the full training data in order to
enable more robust feature transformations of test instances during classification.

The stacking approach is able to reduce both bias and variance, because its combiner
learns from the errors of different ensemble components. Many other ensemble methods
can be viewed as special cases of stacking in which a data-independent model combination
algorithm, such as a majority vote, is used. The main advantage of stacking is the flexible
learning approach of its combiner, which makes it potentially more powerful than other
ensemble methods.

11.9 Summary

In this chapter, we studied several advanced topics in data classification, such as multiclass
learning, scalable learning, and rare class learning. These are more challenging scenarios
for data classification that require dedicated methods. Classification can often be enhanced
with additional unlabeled data in semisupervised learning, or by selective acquisition of
the user, as in active learning. Ensemble methods can also be used to significantly improve
classification accuracy.

11.10. BIBLIOGRAPHIC NOTES 385

In multiclass learning methods, binary classifiers are combined in a meta-algorithm
framework. Typically, either a one-against-rest, or a one-against-one approach is used. The
voting from different classifiers is used to provide a final result. In many scenarios, the one-
against-one approach is more efficient than the one-against-rest approach. Many scalable
methods have been designed for data classification. For decision trees, two scalable methods
include RainForest and BOAT. Numerous fast variations of SVM classifiers have also been
designed.

The rare class learning problem is very common, especially because class distributions
are very imbalanced in many real scenarios. Typically, the objective function for the classi-
fication problem is changed with the use of cost-weighting. Cost-weighting can be achieved
either with example weighting, or with example resampling. Typically, the normal class is
undersampled in example resampling, which results in better training efficiency.

The paucity of training data is common in real domains. Semisupervised learning is one
way of addressing the paucity of training data. In these methods, the copiously available
unlabeled data is used to make estimations about class distributions in regions where little
labeled data is available. A second way of leveraging the copious unlabeled data, is by
actively assigning labels so that the most informative labels are determined for classification.

Ensemble methods improve classifier accuracy by reducing their bias and variance. Some
ensemble methods, such as bagging and random forests, are designed only to reduce the
variance, whereas other ensemble methods, such as boosting and stacking, can help reduce
both the bias and variance. In some cases, such as boosting, it is possible for the ensemble
to overfit the noise in the data and thereby lead to lower accuracy.

11.10 Bibliographic Notes

Multiclass strategies are used for those classifiers that are designed to be binary. A typical
example of such a classifier is the support vector machine. The one-against-rest strategy is
introduced in [106]. The one-against-one strategy is discussed in [318].

Some examples of scalable decision tree methods include SLIQ [381], BOAT [227], and
RainForest [228]. Some early parallel implementations of decision trees include the SPRINT
method [458]. An example of a scalable SVM method is SVMLight [291]. Other methods,
such as SVMPerf [292], reformulate the SVM optimization to reduce the number of slack
variables, and increase the number of constraints. A cutting plane approach that works with
a small subset of constraints at a time is used to make the SVM classifier scalable. This
approach is discussed in detail in Chap. 13 on text mining.

Detailed discussions on imbalance and cost-sensitive learning may be found in [136,
139, 193]. A variety of general methods have been proposed for cost-sensitive learning,
such as MetaCost [174], weighting [531], and sampling [136, 531]. The SMOTE method
is discussed in [137]. Boosting algorithms have also been studied for the problem of cost-
sensitive learning. The AdaCost algorithm was proposed in [203]. Boosting techniques can
also be combined with sampling methods, as in the case of the SMOTEBoost algorithm [138].
An evaluation of boosting algorithms for rare class detection is provided in [296]. Discussions
of linear regression models and regression trees may be found in [110, 256, 391].

Recently, the semisupervised and active learning problems have been studied to use
external information for better supervision. The co-training method was discussed in [100].
The EM algorithm for combining labeled and unlabeled data was proposed in [410]. Trans-
ductive SVM methods are proposed in [293, 496]. The method in [293] is a scalable SVM
method that uses an iterative approach. Graph-based methods for semisupervised learn-

386 CHAPTER 11. DATA CLASSIFICATION: ADVANCED CONCEPTS

ing are discussed in [101, 294]. Surveys on semisupervised classification may be found
in [33, 555].

A detailed survey on active learning may be found in [13, 454]. Methods for uncertainty
sampling [345], query-by-committee [457], greatest model change [157], greatest error reduc-
tion [158], and greatest variance reduction [158] have been proposed. Representativeness-
based models have been discussed in [455]. Another form of active learning queries the data
vertically. In other words, instead of examples, it is learned which attributes to collect to
minimize the error at a given cost level [382].

The problem of meta-algorithm analysis has recently become very important because of
its significant impact on improving the accuracy of classification algorithms. The bagging
and random forests methods were proposed in [111, 112]. The boosting method was proposed
in [215]. Bayesian model averaging and combination methods are proposed in [175]. The
stacking method is discussed in [491, 513], and the bucket-of-models approach is explained
in [541].

11.11 Exercises

1. Suppose that a classification training algorithm requires O(nr) time for training on a
data set of size n. Here r is assumed to be larger than 1. Consider a data set D with
an exactly even distribution across k different classes. Compare the running time of
the one-against-rest approach with that of the one-against-one approach.

2. Discuss some general meta-strategies for speeding up classifiers. Discuss some strate-
gies that you might use to scale up (a) nearest-neighbor classifiers, and (b) associative
classifiers.

3. Describe the changes required to the dual formulation of the soft SVM classifier with
hinge loss to make it a weighted classifier for rare-class learning.

4. Describe the changes required to the primal formulation of the soft SVM classifier
with hinge loss to make it a weighted classifier for rare-class learning.

5. Implement the one-against-rest and one-against-one multiclass approach. Use the
nearest-neighbor algorithm as the base classifier.

6. Design a semisupervised classification algorithm with the use of a supervised mod-
ification of the k-means algorithm. How is this algorithm related to the EM-based
semisupervised approach?

7. Suppose that your data was distributed into two thin and separated concentric rings,
each of which belonged to one of the two classes. Suppose that you had only a small
number of labeled examples from each of the rings but you had a lot of unlabeled
examples. Would your rather use the (a) EM-algorithm, (b) transductive SVM algo-
rithm, or the (c) graph-based approach for semisupervised classification? Why?

8. Write the optimization formulation for least-squares regression of the form y = W ·
X + b with a bias term b. Provide a closed-form solution for the optimal values of W
and b in terms of the data matrix D and response variable vector y. Show that the
optimal value of the bias term b always evaluates to 0 when the data matrix D and
response variable vector y are both mean-centered.

11.11. EXERCISES 387

9. Design a modification of the uncertainty sampling approach in which the dollar-costs
of querying various instances are known to be different. Assume that the cost of
querying instance i is known to be ci.

10. Consider a situation where a classifier gives very consistent class-label predictions
when trained on samples of the (training) data. Which ensemble method should you
not use? Why?

11. Design a heuristic variant of the AdaBoost algorithm, which will perform better than
AdaBoost in terms of reducing the variance component of the error. Does this mean
that the overall error of this ensemble variant will be lower than that of AdaBoost?

12. Would you rather use a linear SVM to create the ensemble component in bagging or
a kernel SVM? What would you do in the case of boosting?

13. Consider a d-dimensional data set. Suppose that you used the 1-nearest neighbor class
label in a randomly chosen subspace with dimensionality d/2 as a classification model.
This classifier is repeatedly used on a test instance to create a majority-vote prediction.
Discuss the bias-variance mechanism with which such a classifier will reduce error.

14. For any d × n matrix A and scalar λ, use its singular value decomposition to show
that the following is always true:

(AAT + λId)−1A = A(ATA+ λIn)−1.

Here, Id and In are d× d and n× n identity matrices, respectively.

15. Let the singular value decomposition of an n × d matrix D be QΣPT . According to
Chap. 2, its pseudoinverse is PΣ+QT . Here, Σ+ is obtained by inverting the nonzero
diagonal entries of the n× d matrix Σ and then transposing the resulting matrix.

(a) Use this result to show that:

D+ = (DTD)+DT .

(b) Show that an alternative way of computing the pseudoinverse is as follows:

D+ = DT (DDT)+.

(c) Discuss the efficiency of various methods of computing the pseudoinverse of D
with varying values of n and d.

(d) Discuss the usefulness of any of the aforementioned methods for computing the
pseudoinverse in the context of incorporating the kernel trick in linear regression.

Chapter 12

Mining Data Streams

“You never step into the same stream twice.”—Heraclitus

12.1 Introduction

Advances in hardware technology have led to new ways of collecting data at a more rapid
rate than before. For example, many transactions of everyday life, such as using a credit
card or a phone, lead to automated data collection. Similarly, new ways of collecting data,
such as wearable sensors and mobile devices, have added to the deluge of dynamically
available data. An important assumption in these forms of data collection is that the data
continuously accumulate over time at a rapid rate. These dynamic data sets are referred to
as data streams.

A key assumption in the streaming paradigm is that it is no longer possible to store
all the data because of resource constraints. While it is possible to archive such data using
distributed “big data” frameworks, this approach comes at the expense of enormous stor-
age costs and the loss of real-time processing capabilities. In many cases, such frameworks
are not practical because of high costs and other analytical considerations. The streaming
framework provides an alternative approach, where real-time analysis can often be per-
formed with carefully designed algorithms, without a significant investment in specialized
infrastructure. Some examples of application domains relevant to streaming data are as
follows:

1. Transaction streams: Transaction streams are typically created by customer buying
activity. An example is the data created by using a credit card, point-of-sale transac-
tion at a supermarket, or the online purchase of an item.

2. Web click-streams: The activity of users at a popular Web site creates a Web click
stream. If the site is sufficiently popular, the rate of generation of the data may be
large enough to necessitate the need for a streaming approach.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 12 389
c© Springer International Publishing Switzerland 2015

390 CHAPTER 12. MINING DATA STREAMS

3. Social streams: Online social networks such as Twitter continuously generate massive
text streams because of user activity. The speed and volume of the stream typically
scale superlinearly with the number of actors in the social network.

4. Network streams: Communication networks contain large volumes of traffic streams.
Such streams are often mined for intrusions, outliers, or other unusual activity.

Data streams present a number of unique challenges because of the processing constraints
associated with the large volumes of continuously arriving data. In particular, data stream-
ing algorithms typically need to operate under the following constraints, at least a few of
which are always present, whereas others are occasionally present:

1. One-pass constraint: Because volumes of data are generated continuously and rapidly,
it is assumed that the data can be processed only once. This is a hard constraint in
all streaming models. The data are almost never assumed to be archived for future
processing. This has significant consequences for algorithmic development in stream-
ing applications. In particular, many data mining algorithms are inherently iterative
and require multiple passes over the data. Such algorithms need to be appropriately
modified to be usable in the context of the streaming model.

2. Concept drift: In most applications, the data may evolve over time. This means that
various statistical properties, such as correlations between attributes, correlations
between attributes and class labels, and cluster distributions may change over time.
This aspect of data streams is almost always present in practical applications, but is
not necessarily a universal assumption for all algorithms.

3. Resource constraints: The data stream is typically generated by an external process,
over which a user may have very little control. Therefore, the user also has little control
over the arrival rate of the stream. In cases, where the arrival rates vary with time, it
may be difficult to execute online processing continuously during peak periods. In these
cases, it may be necessary to drop tuples that cannot be processed in a timely fash-
ion. This is referred to as loadshedding. Even though resource constraints are almost
universal to the streaming paradigm, surprisingly few algorithms incorporate them.

4. Massive-domain constraints: In some cases, when the attribute values are discrete,
they may have a large number of distinct values. For example, consider a scenario,
where analysis of pairwise communications in an e-mail network is desired. The num-
ber of distinct pairs of e-mail addresses in an e-mail network with 108 participants is
of the order of 1016. When expressed in terms of required storage, the number of pos-
sibilities easily exceeds the petabyte order. In such cases, storing even simple statistics
such as the counts or the number of distinct stream elements becomes very challeng-
ing. Therefore, a number of specialized data structures for synopsis construction of
massive-domain data streams have been designed.

Because of the large volume of data streams, virtually all streaming methods use an online
synopsis construction approach in the mining process. The basic idea is to create an online
synopsis that is then leveraged for mining. Many different kinds of synopsis can be con-
structed depending upon the application at hand. The nature of a synopsis highly influences
the type of insights that can be mined from it. Some examples of synopsis structures include
random samples, bloom filters, sketches, and distinct element-counting data structures. In
addition, some traditional data mining applications, such as clustering, can be leveraged to
create effective synopses from the data.

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 391

This chapter is organized as follows. Section 12.2 introduces various types of synop-
sis construction methods for data streams. Section 12.3 discusses frequent pattern mining
methods for data streams. Clustering methods are discussed in Sect. 12.4, and outlier anal-
ysis methods are discussed in Sect. 12.5. Classification methods are introduced in Sect. 12.6.
Section 12.7 gives a summary.

12.2 Synopsis Data Structures for Streams

A wide variety of synopsis data structures have been designed for different applications.
Synopsis data structures are of two types:

1. Generic: In this case, the synopsis can be used for most applications directly. The
only such synopsis is a random sample of the data points, although it cannot be
used for some applications such as distinct element counting. In the context of data
streams, the process of maintaining a random sample from the data is also referred
to as reservoir sampling.

2. Specific: In this case, the synopsis is designed for a specific task, such as frequent ele-
ment counting or distinct element counting. Examples of such data structures include
the Flajolet–Martin data structure for distinct element counting, and sketches for
frequent element counting or moment computation.

In the following, different types of synopsis structures will be discussed.

12.2.1 Reservoir Sampling

Sampling is one of the most flexible methods for stream summarization. The main advantage
of sampling over other synopsis data structures is that it can be used for an arbitrary
application. After a sample of points has been drawn from the data, virtually any offline
algorithm can be applied to the sample. By default, sampling should be considered the
method of choice in streaming scenarios, although it does have limitations for a small
number of applications such as distinct-element counting. In the context of data streams,
the methodology used to maintain a dynamic sample from the data is referred to as reservoir
sampling. The resulting sample is referred to as a reservoir sample. The method of reservoir
sampling is introduced briefly in Sect. 2.4.1.2 of Chap. 2.

The streaming scenario creates some interesting challenges for a simple problem such
as sampling. The challenge arises from the fact that one cannot store the entire stream on
disk for sampling. In reservoir sampling, the goal is to continuously maintain a dynamically
updated sample of k points from a data stream without explicitly storing the stream on disk
at any given point in time. Therefore, for each incoming data point in the stream, one must
use a set of efficiently implementable operations to maintain the sample. In the static case,
the probability of including a data point in the sample is k/n, where k is the sample size,
and n is the number of points in the data set. In the streaming scenario, the “data set”
is not static, and the value of n continually increases with time. Furthermore, previously
arrived data points, which are not included in the sample, have been irrevocably lost. Thus,
the sampling approach works with incomplete knowledge about the previous history of the
stream at any given moment in time. In other words, for each incoming data point in the
stream, one needs to make two simple admission control decisions dynamically:

1. What sampling rule should be used to decide whether to include the incoming data
point in the sample?

392 CHAPTER 12. MINING DATA STREAMS

2. What rule should be used to decide how to eject a data point from the sample to
“make room” for the newly inserted data point?

The reservoir sampling algorithm proceeds as follows. For a reservoir of size k, the first k
data points in the stream are always included in the reservoir. Subsequently, for the nth
incoming stream data point, the following two admission control decisions are applied.

1. Insert the nth incoming stream data point in the reservoir with probability k/n.

2. If the newly incoming data point was inserted, then eject one of the old k data points
in the reservoir at random to make room for the newly arriving point.

It can be shown that the aforementioned rule maintains an unbiased reservoir sample from
the data stream.

Lemma 12.2.1 After n stream points have arrived, the probability of any stream point
being included in the reservoir is the same, and is equal to k/n.

Proof: This result is easy to show by induction. At initialization of the first k data points,
the theorem is trivially true. Let us (inductively) assume that it is also true after (n − 1)
data points have been received. Therefore, the probability of each point being included in
the reservoir is k/(n − 1). The lemma is trivially true for the arriving data point because
the probability of its being included in the stream is k/n. It remains to prove the result
for the remaining points in the data stream. There are two disjoint case events that can
arise for an incoming data point, and the final probability of a point being included in the
reservoir is the sum of these two cases:

I: The incoming data point is not inserted into the reservoir. The probability of this is
(n−k)/n. Because the original probability of any point being included in the reservoir
by the inductive assumption, is k/(n − 1), the overall probability of a point being
included in the reservoir and the occurrence of the Case I event, is the multiplicative
value of p1 = k(n−k)

n(n−1) .

II: The incoming data point is inserted into the reservoir. The probability of Case II
is equal to insertion probability k/n of incoming data points. Subsequently, existing
reservoir points are retained with probability (k − 1)/k because exactly one of them
is ejected. Because the inductive assumption implies that any of the earlier points in
the stream was originally present in the reservoir with probability k/(n−1), it implies
that the probability of a point being included in the reservoir and Case II event is
given by the product p2 of the three aforementioned probabilities:

p2 =
(
k

n

)(
k − 1
k

)(
k

n− 1

)
=

k(k − 1)
n(n− 1)

(12.1)

Therefore, the total probability of a stream point being retained in the reservoir after the
nth data point arrival is given by the sum of p1 and p2. It can be shown that this is equal
to k/n.
The major problem with this approach is that it cannot handle concept drift because the
data is uniformly sampled without decay.

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 393

12.2.1.1 Handling Concept Drift

In streaming scenarios, recent data are generally considered more important than older
data. This is because the data generating process may change over time, and the older data
are often considered “stale” from the perspective of analytical insights. A uniform random
sample from the reservoir will contain data points that are distributed uniformly over time.
Typically, most streaming applications use a decay-based framework to regulate the relative
importance of data points, so that more recent data points have a higher probability to be
included in the sample. This is achieved with the use of a bias function.

The bias function associated with the rth data point, at the time of arrival of the nth
data point, is given by f(r, n). This function is related to the probability p(r, n) of the rth
data point belonging to the reservoir at the time of arrival of the nth data point. In other
words, the value of p(r, n) is proportional to f(r, n). It is reasonable to assume that the
function f(r, n) decreases monotonically with n (for fixed r), and increases monotonically
with r (for fixed n). In other words, recent data points have a higher probability of belonging
to the reservoir. This kind of sampling will result in a bias-sensitive sample S(n) of data
points.

Definition 12.2.1 Let f(r, n) be the bias function for the rth point at the time of arrival
of the nth point. A biased sample S(n) at the time of arrival of the nth point in the stream
is defined as a sample such that the relative probability p(r, n) of the rth point belonging to
the sample S(n) (of size n) is proportional to f(r, n).

In general, it is an open problem to perform reservoir sampling with arbitrary bias functions.
However, methods exist for the case of the commonly used exponential bias function:

f(r, n) = e−λ(n−r) (12.2)

The parameter λ defines the bias rate and typically lies in the range [0, 1]. In general, this
parameter λ is chosen in an application-specific way. A choice of λ = 0 represents the
unbiased case. The exponential bias function defines the class of memoryless functions in
which the future probability of retaining a current point in the reservoir is independent
of its past history or arrival time. It can be shown that this problem is interesting only
in space-constrained scenarios, where the size of the reservoir k is strictly less than 1/λ.
This is because it can be shown [35] that an exponentially biased sample from a stream of
infinite length, will not exceed 1/λ in expected size. This is also referred to as the maximum
reservoir requirement. The following discussion is based on the assumption that k < 1/λ.

The algorithm starts with an empty reservoir. The following replacement policy is used
to fill up the reservoir. Assume that at the time of (just before) the arrival of the nth point,
the fraction of the reservoir filled is F (n) ∈ [0, 1]. When the (n + 1)th point arrives, it is
inserted into the reservoir with insertion probability1 λ · k. However, one of the old points
in the reservoir is not necessarily deleted because the reservoir is only partially full. A coin
is flipped with the success probability F (n). In the event of a success, one of the points in
the reservoir is randomly selected and replaced with the incoming (n + 1)th point. In the
event of a failure, there is no deletion, and the (n + 1)th point is added to the reservoir.
In the latter case, the number of points in the reservoir (the current sample size) increases
by 1. In this approach, the reservoir fills up fast early in the process, but then levels off, as
it reaches near its capacity. The reader is referred to the bibliographic notes for the proof
of correctness of this approach. A variant of this approach that fills up the reservoir even
faster is also discussed in the same work.

1This value is always at most 1, because k < 1/λ.

394 CHAPTER 12. MINING DATA STREAMS

12.2.1.2 Useful Theoretical Bounds for Sampling

While the reservoir method provides data samples, it is often desirable to obtain quality
bounds on the results obtained with the use of the sampling process. A common applica-
tion of sampling is the estimation of statistical aggregates with the reservoir sample. The
accuracy of these aggregates is often quantified with the use of tail inequalities.

The simplest tail inequality is the Markov inequality. This inequality is defined for prob-
ability distributions that take on only nonnegative values. Let X be a random variable with
the probability distribution fX(x), a mean of E[X], and a variance of V ar[X].

Theorem 12.2.1 (Markov Inequality) Let X be a random variable that takes on only
nonnegative random values. Then, for any constant α satisfying E[X] < α, the following is
true:

P (X > α) ≤ E[X|/α (12.3)

Proof: Let fX(x) represent the density function for the random variable X. Then, we have:

E[X] =
∫
x
xfX(x)dx

=
∫
0≤x≤α

xfX(x)dx+
∫
x>α

xfX(x)dx

≥
∫
x>α

xfX(x)dx

≥
∫
x>α

αfX(x)dx.

The first inequality follows from the nonnegativity of x, and the second follows from the
fact that the integral is computed only over cases where x > α. The term on the right-hand
side of the last line is exactly equal to αP (X > α). Therefore, the following is true:

E[X] ≥ αP (X > α) (12.4)

The above inequality can be rearranged to obtain the final result.
The Markov inequality is defined only for probability distributions of nonnegative values

and provides a bound only on the upper tail. In practice, it is often desired to bound both
tails of probability distributions over both positive and negative values.

Consider the case where X is a random variable that is not necessarily nonnegative.
The Chebychev inequality is a useful approach to derive symmetric tail bounds on X. The
Chebychev inequality is a direct application of the Markov inequality to a nonnegative
(square deviation-based) derivative of X.

Theorem 12.2.2 (Chebychev Inequality) Let X be an arbitrary random variable.
Then, for any constant α, the following is true:

P (|X − E[X]| > α) ≤ V ar[X|/α2 (12.5)

Proof: The inequality |X −E[X]| > α is true if and only if (X −E[X])2 > α2. By defining
Y = (X − E[X])2 as a (nonnegative) derivative random variable from X, it is easy to see
that E[Y] = V ar[X]. Then, the expression on the left-hand side of the theorem statement
is the same as determining the probability P (Y > α2). By applying the Markov inequality
to the random variable Y , one can obtain the desired result.

The main trick used in the aforementioned proof was to apply the Markov inequality to
a nonnegative function of the random variable. This technique can generally be very useful
for proving other kinds of bounds, when the distribution of X has a specific form (such as

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 395

the sum of Bernoulli random variables). In such cases, a parameterized function of the ran-
dom variable can be used to obtain a parameterized bound. The underlying parameter can
then be optimized for the tightest possible bound. Several well-known bounds such as the
Chernoff bound and the Hoeffding inequality are derived with the use of this approach. Such
bounds are significantly tighter than the (much weaker) Markov and Chebychev inequali-
ties. This is because the parameter optimization process implicitly creates a bound that is
optimized for the special form of the corresponding probability distribution of the random
variable X.

Many practical scenarios can be captured with the use of special families of random
variables. A particular case is one in which a random variable X may be expressed as a sum
of other independent bounded random variables. For example, consider the case where the
data points have binary class labels associated with them and one wishes to use a stream
sample to estimate the fraction of examples belonging to each class. While the fraction of
points in the sample belonging to a class provides an estimate, how can one bound the
probabilistic accuracy of this bound? Note that the estimated fraction can be expressed as
a (scaled) sum of independent and identically distributed (i.i.d.) binary random variables,
depending on the binary class associated with each sample instance. The Chernoff bound
provides an excellent bound on the accuracy of the estimate.

A second example is one where the underlying random variables are not necessarily
binary, but are bounded. For example, consider the case where the stream data points
correspond to individuals of a particular age. The average age of the individuals is estimated
with the use of an average of the points in the reservoir sample. Note that the age can be
(realistically) assumed to be a bounded random variable from the range (0, 125). In such
cases, the Hoeffding bound can be used to determine a tight bound on the estimate.

First, the Chernoff bound will be introduced. Because the expressions for the lower
tail and upper tail are slightly different, they will be addressed separately. The lower-tail
Chernoff bound is introduced below.

Theorem 12.2.3 (Lower-Tail Chernoff Bound) Let X be a random variable that can
be expressed as the sum of n independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability pi.

X =
n∑

i=1

Xi

Then, for any δ ∈ (0, 1), we can show the following:

P (X < (1− δ)E[X]) < e−E[X]δ2/2, (12.6)

where e is the base of the natural logarithm.

Proof: The first step is to show the following inequality:

P (X < (1− δ)E[X]) <
(

e−δ

(1− δ)(1−δ)

)E[X]

(12.7)

The unknown parameter t > 0 is introduced to create a parameterized bound. The lower-tail
inequality of X is converted into an upper-tail inequality on e−tX . This can be bounded
by the Markov inequality, and it provides a bound that is a function of t. This function of

396 CHAPTER 12. MINING DATA STREAMS

t can be optimized, to obtain the tightest possible bound. By using the Markov inequality
on the exponentiated form, the following can be derived:

P (X < (1− δ)E[X]) ≤ E[e−tX]

e−t(1−δ)E[X]
.

By expanding X =
∑n

i=1 Xi in the exponent, the following can be obtained:

P (X < (1− δ)E[X]) ≤
∏

i E[e−tXi]

e−t(1−δ)E[X]
. (12.8)

The aforementioned simplification uses the fact that the expectation of the product of inde-
pendent variables is equal to the product of the expectations. Because each Xi is Bernoulli,
the following can be shown by summing up the probabilities over the cases where Xi = 0
and 1, respectively:

E[e−tXi] = 1 + E[Xi](e−t − 1) < eE[Xi](e
−t−1).

The second inequality follows from the polynomial expansion of eE[Xi](e
−t−1). By substitut-

ing this inequality back into Eq. 12.8, and using E[X] =
∑

i E[Xi], the following may be
obtained:

P (X < (1− δ)E[X]) ≤ eE[X](e−t−1)

e−t(1−δ)E[X]
.

The expression on the right is true for any value of t > 0. It is desired to pick a value t
that provides the tightest possible bound. Such a value of t may be obtained by using the
standard optimization process of using the derivative of the expression with respect to t.
It can be shown by working out the details of this optimization process that the optimum
value of t = t∗ is as follows:

t∗ = ln(1/(1− δ)). (12.9)

By using this value of t∗ in the inequality above, it can be shown to be equivalent to Eq. 12.7.
This completes the first part of the proof.

The first two terms of the Taylor expansion of the logarithmic term in (1− δ)ln(1− δ)
can be expanded to show that (1 − δ)(1−δ) > e−δ+δ2/2. By substituting this inequality in
the denominator of Eq. 12.7, the desired result is obtained.
A similar result for the upper-tail Chernoff bound may be obtained that has a slightly
different form.

Theorem 12.2.4 (Upper-Tail Chernoff Bound) Let X be a random variable that can
be expressed as the sum of n independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability pi.

X =
n∑

i=1

Xi.

Then, for any δ ∈ (0, 2e− 1), the following is true:

P (X > (1 + δ)E[X]) < e−E[X]δ2/4, (12.10)

where e is the base of the natural logarithm.

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 397

Proof: The first step is to show the following inequality:

P (X > (1 + δ)E[X]) <
(

eδ

(1 + δ)(1+δ)

)E[X]

. (12.11)

As before, this can be done by introducing the unknown parameter t > 0, and converting the
upper-tail inequality on X into that on etX . This can be bounded by the Markov inequality,
and it provides a bound that is a function of t. This function of t can be optimized to obtain
the tightest possible bound.

It can be further shown by algebraic simplification that the inequality in Eq. 12.11
provides the desired result, when δ ∈ (0, 2e− 1).
Next, the Hoeffding inequality will be introduced. The Hoeffding inequality is a more gen-
eral tail inequality than the Chernoff bound because it does not require the underlying
data values to be Bernoulli. In this case, the ith data value needs to be drawn from the
bounded interval [li, ui]. The corresponding probability bound is expressed in terms of the
parameters li and ui. Thus, the scenario for the Chernoff bound is a special case of that
for the Hoeffding’s inequality. We state the Hoeffding inequality below, for which both the
upper- and lower-tail inequalities are identical.

Theorem 12.2.5 (Hoeffding Inequality) Let X be a random variable that can be
expressed as the sum of n independent random variables, each of which is bounded in the
range [li, ui].

X =
n∑

i=1

Xi.

Then, for any θ > 0, the following can be shown:

P (X − E[X] > θ) ≤ e
− 2θ2∑n

i=1
(ui−li)

2 (12.12)

P (E[X]−X > θ) ≤ e
− 2θ2∑n

i=1
(ui−li)

2 (12.13)

Proof: The proof for the upper tail will be briefly described here. The proof of the lower-tail
inequality is identical. For an unknown parameter t, the following is true:

P (X − E[X] > θ) = P (et(X−E[X]) > etθ) (12.14)

The Markov inequality can be used to show that the right-hand probability is at most
E[e(X−E[X])]e−tθ. The expression within E[e(X−E[X])] can be expanded in terms of the
individual components Xi. Because the expectation of the product is equal to the product
of the expectations of independent random variables, the following can be shown:

P (X − E[X] > θ) ≤ e−tθ
∏
i

E[et(Xi−E[Xi])]. (12.15)

The key is to show that the value of E[et(Xi−E[Xi])] is at most equal to et
2(ui−li)

2/8. This can
be shown with the use of an argument that uses the convexity of the exponential function
et(Xi−E[Xi]) in conjunction with Taylor’s theorem (see Exercise 12).

Therefore, the following is true:

P (X − E[X] > θ) ≤ e−tθ
∏
i

et
2(ui−li)

2/8. (12.16)

398 CHAPTER 12. MINING DATA STREAMS

Table 12.1: Comparison of different methods used to bound tail probabilities
Result Scenario Strength

Chebychev Any random variable Weak
Markov Nonnegative random variable Weak
Hoeffding Sum of independent bounded random variables Strong
Chernoff Sum of independent Bernoulli variables Strong

This inequality holds for any nonnegative value of t. Therefore, to find the tightest bound,
the value of t that minimizes the right-hand side of the above equation needs to be deter-
mined. The optimal value of t = t∗ can be shown to be:

t∗ =
4θ∑n

i=1(ui − li)2
. (12.17)

By substituting the value of t = t∗ in Eq. 12.16, the desired result may be obtained. The
lower-tail bound may be derived by applying the aforementioned steps to P (E[X]−X > θ)
rather than P (X − E[X] > θ).
Thus, the different inequalities may apply to scenarios of different generality, and they may
also have different levels of strength. These different scenarios are illustrated in Table 12.1.

12.2.2 Synopsis Structures for the Massive-Domain Scenario

As discussed in the introduction, many streaming applications contain discrete attributes,
whose domain is drawn on a large number of distinct values. A classical example would be the
value of the IP address in a network stream, or the e-mail address in an e-mail stream. Such
scenarios are more common in data streams, simply because the massive number of data
items in the stream are often associated with discrete identifiers of different types. E-mail
addresses and IP addresses are examples of such identifiers. The streaming objects are often
associated with pairs of identifiers. For example, each element of an e-mail stream may have
both a sender and recipient. In some applications, it may be desirable to store statistics
using pairwise identifiers, and therefore the pairwise combination is treated as a single
integrated attribute. The domain of possible values can be rather large. For example, for an
e-mail application with over a hundred million different senders and receivers, the number of
possible pairwise combinations is 1016. In such cases, even storing simple summary statistics
such as set membership, frequent item counts, and distinct element counts becomes more
challenging from the perspective of space constraints.

If the number of distinct elements were small, one might simply use an array, and update
the counts in these arrays in order to create an effective summary. Such a summary could
address all the aforementioned queries. However, such an approach would not be practical
in the massive-domain scenario because an array with 1016 elements would require more
than 10 petabytes. Furthermore, for many queries, such as set membership and distinct
element counting, a reservoir sample would not work well. This is because the vast majority
of the stream may contain infrequent elements, and the reservoir will disproportionately
overrepresent the frequent elements for queries that are agnostic to the absolute frequency.
Set membership and distinct-element counting are examples of such queries.

It is often difficult to create a single synopsis structure that can address all queries.
Therefore, different synopsis structures are designed for different classes of queries. In the

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 399

following, a number of different synopsis structures will be described. Each of these synop-
sis structures is optimized to different kinds of queries. For each of the synopsis structures
discussed in this chapter, the relevant queries and query-processing approach will also be
described.

12.2.2.1 Bloom Filter

Bloom filters are designed for set-membership queries of discrete elements. The set-
membership query is as follows:

Given a particular element, has it ever occurred in the data stream?

Bloom filters provide a way to maintain a synopsis of the stream, so that this query can be
resolved with a probabilistic bound on the accuracy. One property of this data structure is
that false positives are possible, but false negatives are not. In other words, if the bloom
filter reports that an element does not belong to the stream, then this will always be the
case. Bloom filters are referred to as “filters” because they can be used for making important
selection decisions in a stream in real time. This is because the knowledge of membership
of an item in a set of stream elements plays an important role in filtering decisions, such as
the removal of duplicates. This will be discussed in more detail later. First, the simple case
of stream membership queries will be discussed.

A bloom filter is a binary bit array of lengthm. Thus, the space requirement of the bloom
filter is m/8 bytes. The elements of the bit array are indexed starting with 0 and ending at
(m−1). Therefore, the index range is {0, 1, 2, . . . m−1}. The bloom filter is associated with
a set of w independent hash functions denoted by h1(·) . . . hw(·). The argument of each of
these hash functions is an element of the data stream. The hash function maps uniformly
at random to an integer in the range {0 . . .m− 1}.

Consider a stream of discrete elements. These discrete elements could be e-mail addresses
(either individually or sender–receiver pairs), IP addresses, or another set of discrete values
drawn on a massive domain of possible values. The bits on the bloom filter are used to keep
track of the distinct values encountered. The hash functions are used to map the stream
elements to the bits in the bloom filter. For the following discussion, it will be assumed that
the bloom filter data structure is denoted by B.

The bloom filter is constructed from a stream S of values as follows. All bits in the bloom
filter are initialized to 0. For each incoming stream element x, the functions h1(x) . . . hw(x)
are applied to it. For each i ∈ {1 . . . w}, the element hi(x) in the bloom filter is set to
1. In many cases, the value of some of these bits might already be 1. In such cases, the
value does not need to be changed. A pictorial representation of the bloom filter and the
update process is illustrated in Fig. 12.1. The pseudocode for the overall update process is
illustrated in Fig. 12.2. In the pseudocode, the stream is denoted by S, and the bloom filter
data structure is denoted by B. The input parameters include the size of the bloom filter
m, and the number of hash functions w. It is important to note that multiple elements can
map onto the same bit in the bloom filter. This is referred to as a collision. As discussed
later, collisions may lead to false positives in set-membership checking.

The bloom filter can be used to check for membership of an item y in the data stream.
The first step is to compute the hash functions h1(y) . . . hw(y). Then, it is checked whether
the hi(y)th element is 1. If at least one of the these values is 0, we are guaranteed that
the element has not occurred in the data stream. This is because, if that element had
occurred in the stream, the entry would have already been set to 1. Thus, false negatives

400 CHAPTER 12. MINING DATA STREAMS

ELEMENT x HASHES INTO THESE CELLS
(Bits Set to 1)

w= 4
h3(x) h4(x)h2(x)h1(x)

0 0 0 001 1 111 111

m
MEMBERSHIP OF y (BOOLEAN RESULT) = AND { h1(y), h2(y), …, hw(y) }

Figure 12.1: The bloom filter

Algorithm BloomConstruct(Stream: S, Size: m, Num. Hash Functions: w)
begin
Initialize all elements in a bit array B of size m to 0;
repeat
Receive next stream element x ∈ S;
for i = 1 to w do

Update hi(x)th element in bit array B to 1;
until end of stream S;
return B;

end

Figure 12.2: Update of bloom filter

are not possible with the bloom filter. On the other hand, if all the entries h1(y) . . . hw(y)
in the bit array have a value of 1, then it is reported that y has occurred in the data
stream. This can be checked efficiently by applying an “AND” logical operator to all the bit
entries corresponding to the indices h1(y) . . . hw(y) in the bit array. The overall procedure of
membership checks is illustrated in Fig. 12.3. The binary result for the decision problem for
checking membership is tracked by the variable BooleanF lag. This binary flag is reported
at the end of the procedure.

The bloom filter approach can lead to false positives, but not false negatives. A false
positive occurs, if all the w different bloom filter array elements hi(y) for i ∈ {1 . . . w} have
been set to 1 by some spurious element other than y. This is a direct result of collisions.
As the number of elements in the data stream increases, all elements in the bloom filter are
eventually set to 1. In such a case, all set-membership queries will yield a positive response.
This is, of course, not a useful application of the bloom filter. Therefore, it is instructive
to bound the false positive probability in terms of the size of the filter and the number of
distinct elements in the data stream.

Lemma 12.2.2 Consider a bloom filter B with m elements, and w different hash functions.
Let n be the number of distinct elements in the stream S so far. Consider an element y,
which has not appeared in the stream so far. Then, the probability F that an element y is
reported as a false positive is given by the following:

F =
[
1−

(
1− 1

m

)w·n]w
(12.18)

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 401

Algorithm BloomQuery(Element: y, Bloom Filter: B)
begin
Initialize BooleanF lag = 1;
for i = 1 to w do

BooleanF lag = BooleanF lag AND hi(y);
return BooleanF lag;

end

Figure 12.3: Membership check using bloom filter

Proof: Consider a particular bit corresponding to the bit array element hr(y) for some fixed
value of the index r ∈ {1 . . . w}. Each element x ∈ S sets w different bits h1(x) . . . hw(x) to
1. The probability that none of these bits is the same as hr(y) is given by (1−1/m)w. Over
n distinct stream elements, this probability is (1− 1/m)w·n. Therefore, the probability that
the bit array index hr(y) is set to 1, by at least one of the n spurious elements in S is given
by Q = 1 − (1 − 1/m)w·n. A false positive occurs, when all bit array indices hr(y) (over
varying values of r ∈ {1 . . . w}) have been set to 1. The probability of this is F = Qw. The
result follows.
While the false-positive probability is expressed above in terms of the number of distinct
stream elements, it is trivially true for the total number of stream elements (including
repetitions), as an upper bound.

The expression in the aforementioned lemma can be simplified by observing that (1 −
1/m)m ≈ e−1, where e is the base of the natural logarithm. Correspondingly, the expression
can be rewritten as follows:

F = (1− e−n·w/m)w. (12.19)

Values of w that are too small or too large lead to poor performance. The value of w needs
be selected optimally in terms of m and n to minimize the number of false positives. The
number of false positives is minimized, when w = m · ln(2)/n. Substituting this value in
Eq. 12.19, it can be shown that the probability of false positives for optimal number of hash
functions is:

F = 2−m·ln(2)/n. (12.20)

The expression above can be written purely as an expression of m/n. Therefore, for a
fixed value of the false-positive probability F , the length of the bloom filter m needs to be
proportional to the number of distinct elements n in the data stream. Furthermore, the
constant of proportionality for a particular false-positive probability F can be shown to be
m
n = ln(1/F)

(ln(2))2 . While this may not seem like a significant compression, it needs to be pointed
out that bloom filters use elementary bits to track the membership of arbitrary elements,
such as strings. Furthermore, because of bitwise operations, which can be implemented very
efficiently with low-level implementations, the overall approach is generally very efficient.

It does need to be kept in mind that the value of n is not known in advance for many
applications. Therefore, one strategy is to use a cascade of bloom filters for geometrically
increasing values of w, and to use a logical AND of the membership query result over
different bloom filters. This is a practical approach that provides more stable performance
over the life of the data stream.

The bloom filter is referred to as a “filter” because it is often used to make decisions on
which elements to exclude from a data stream, when they meet the membership condition.

402 CHAPTER 12. MINING DATA STREAMS

For example, if one wanted to filter all duplicates from the data stream, the bloom filter
is an effective strategy. Another strategy is to filter forbidden elements from a universe of
values, such as a set of spammer e-mail addresses in an e-mail stream. In such a case, the
bloom filter needs to be constructed up front with the spam e-mail addresses.

Many variations of the basic bloom filter strategy provide different capabilities and
trade-offs:

1. The bloom filter can be used to approximate the number of distinct elements in a
data stream. If m0 < m is the number of bits with a value of 0 in the bloom filter,
then the number of distinct elements n can be estimated as follows (see Exercise 13):

n ≈ m · ln(m/m0)
w

(12.21)

The accuracy of this estimate reduces drastically, as the bloom filter fills up. When
m0 = 0, the value of n is estimated to be ∞, and therefore the estimate is practically
useless.

2. The bloom filter can be used to estimate the size of the intersection and union of
sets corresponding to different streams, by creating one bloom filter for each stream.
To determine the size of the union, the bitwise OR of the two filters is determined.
The bitwise OR of the filter can be shown to be exactly the same as the bloom
filter representation of the union of the two sets. Then, the formula of Eq. 12.21
is used. However, such an approach cannot be used for determining the size of the
intersection. While the intersection of two sets can be approximated by using a bitwise
AND operation on the two filters, the resulting bit positions in the filter will not be
the same as that obtained by constructing the filter directly on the intersection. The
resulting filter might contain false negatives, and, therefore, such an approach is lossy.
To estimate the size of the intersection, one can first estimate the size of the union
and then use the following simple setwise relationship:

|S1 ∩ S2| = |S1|+ |S2| − |S1 ∪ S2| (12.22)

3. The bloom filter is primarily designed for membership queries, and is not the most
space-efficient data structure, when used purely for distinct element counting. In a
later section, a space-efficient technique, referred to as the Flajolet–Martin algorithm,
will be discussed.

4. The bloom filter can allow a limited (one-time) tracking of deletions by setting the
corresponding bit elements to zero, when an element is deleted. In such a case, false
negatives are also possible.

5. Variants of the bloom filter can be designed in which the w hash functions can map
onto separate bit arrays. A further generalization of this principle is to track counts
of elements rather than simply binary bit values to enable richer queries. This gener-
alization, discussed in the next section, is also referred to as the count-min sketch.

Bloom filters are commonly used in many streaming settings in the text domain.

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 403

m

h1(x)h1(.)
ELEMENT x HASHES

h2(x)

h3(x)
w

h2(.) INTO THESE CELLS
(Counts incremented)

h4(x)hw(.)

ESTIMATED COUNT OFx = min { h1(x), h2(x), …, hw(x) }{ 1(), 2(), , w() }

Figure 12.4: The count-min sketch

12.2.2.2 Count-Min Sketch

While the bloom filter is effective for set-membership queries, it is not designed for methods
that require count-based summaries. This is because the bloom filter tracks only binary
values. The count-min sketch is designed for resolving such queries and is intuitively related
to the bloom filter. A count-min sketch consists of a set of w different numeric arrays, each
of which has a length m. Thus, the space requirement of the count-min sketch is equal to
m · w cells containing numeric values. The elements of each of the w numeric arrays are
indexed starting with 0, corresponding to an index range of {0 . . .m − 1}. The count-min
sketch can also be viewed as a w ×m 2-dimensional array of cells.

Each of the w numeric arrays corresponds to a hash function. The ith numeric array
corresponds to the ith hash function hi(·). The hash functions have the following properties:

1. The ith hash function hi(·) maps a stream element to an integer in the range [0 . . .m−
1]. This mapping can also be viewed as one of the index values in the ith numeric
array.

2. The w hash functions h1(·) . . . hw(·) are fully independent of one another, but pairwise
independent over different arguments. In other words, for any two values x1 and x2,
hi(x1) and hi(x2) are independent.

The pairwise independence requirement is a weaker one than the full independence require-
ment. This is a convenient property of the count-min sketch because it is usually easier to
construct pairwise independent hash functions rather than fully independent ones.

The procedure for updating the sketch is as follows. All m · w entries in the count-min
sketch are initialized to 0. For each incoming stream element x, the functions h1(x) . . . hw(x)
are applied to it. For the ith array, the element hi(x) is incremented by 1. Thus, if the count-
min sketch CM is visualized as a 2-dimensional w × m numeric array, then the element
(i, hi(x)) is incremented2 by 1. Note that the value of hi(x) maps to an integer in the range
[0,m−1]. This is also the range of the indices of each numeric array. A pictorial illustration
of the count-min sketch and the corresponding update process is provided in Fig. 12.4. The
pseudocode for the overall update process is illustrated in Fig. 12.5. In the pseudocode, the
stream is denoted by S, and the count-min sketch data structure is denoted by CM. The
inputs to the algorithm are the stream S and two parameters (w,m) specifying the size
of the 2-dimensional array for the count-min sketch. A 2-dimensional w ×m array CM is
initialized with all values set to 0. For each incoming stream element, the counts of all the

2In the event that each distinct element is associated with a nonnegative frequency, the count-min sketch
can be updated with the frequency value. Only the simple case of unit updates is discussed here.

404 CHAPTER 12. MINING DATA STREAMS

Algorithm CountMinConstruct(Stream: S, Width: w, Height: m)
begin
Initialize all entries of w ×m array CM to 0;
repeat
Receive next stream element x ∈ S;
for i = 1 to w do

Increment (i, hi(x))th element in CM by 1;
until end of stream S;
return CM;

end

Figure 12.5: Update of count-min sketch

Algorithm CountMinQuery(Element: y, Count-min Sketch: CM)
begin
Initialize Estimate = ∞;
for i = 1 to w do

Estimate = min{Estimate, Vi(y)};
{ Vi(y) is the count of the (i, hi(y))th element in CM }
return Estimate;

end

Figure 12.6: Frequency queries for count-min sketch

cells (i, hi(x)) are updated for i ∈ {1 . . . w}. In the pseudocode description, the resulting
sketch CM is returned after processing all the stream elements. In practice, the count-min
sketch can be used at any time during the progression of the stream S. As in the case of
the bloom filter, it is possible for multiple stream elements to map to the same cell in the
count-min sketch. Therefore, different stream elements will increment the same cell, and
the resulting cell counts are always overestimates of one or more stream element counts.

The count-min sketch can be used for many different queries. The simplest query is to
determine the frequency of an element y. The first step is to compute the hash functions
h1(y) . . . hw(y). For the ith numeric array in CM, the value Vi(y) of the (i, hi(y))th array
element is retrieved. Each value Vi(y) is an overestimate of the true frequency of y because
of potential collisions. Therefore, the tightest possible estimate may be obtained by using
the minimum value mini{Vi(y)} over the different hash functions. The overall procedure for
frequency estimation is illustrated in Fig. 12.6.

The count-min sketch causes an overestimation of frequency values because of collisions
of nonnegative frequency counts of distinct stream items. It is therefore helpful to determine
an upper bound on the estimation quality.

Lemma 12.2.3 Let E(y) be the estimate of the frequency of the item y, using a count-min
sketch of size w ×m. Let nf be the total frequencies of all items received so far, and G(y)
be true frequency of item y. Then, with probability at least 1− e−w, the upper bound on the
estimate E(y) is as follows:

E(y) ≤ G(y) +
nf · e
m

. (12.23)

Here, e represents the base of the natural logarithm.

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 405

Proof: The expected number of spurious items hashed to the cells belonging to item y is
about3 nf/m, if all spurious items are hashed uniformly at random to the different cells.
This result uses pairwise independence of hash functions because it relies on the fact that
the mapping of y to a cell does not affect the distribution of another spurious item in its
cells. The probability of the number of spurious items exceeding nf · e/m in any of the w
cells belonging to y is given by at most e−1 by the Markov inequality. For E(y) to exceed
the upper bound of Eq. 12.23, this violation needs to be repeated for all the w cells to
which y is mapped. The probability of a violation of Eq. 12.23 is therefore e−w. The result
follows.

In many cases, it is desirable to directly control the error level ε and the error probability
δ. By setting m = e/ε and w = ln(1/δ), it is possible to bound the error with a user-defined
tolerance nf ·ε and probability at least 1−δ. Two natural generalizations of the point query
can be implemented as follows:

1. If the stream elements have arbitrary positive frequencies associated with them, the
only change required is to the update operation, where the counts are incremented
by the relevant frequency. The frequency bound is identical to Eq. 12.23, with nf

representing the sum of the frequencies of the stream items.

2. If the stream elements have either positive or negative frequencies associated with
them, then a further change is required to the query procedure. In this case, the
median of the counts is reported. The corresponding error bound of Eq. 12.23 now
needs to be modified. With a probability of at least 1−e−w/4, the estimated frequency
E(y) of item y lies in the following ranges:

G(y)− 3nf · e
m

≤ E(y) ≤ G(y) +
3nf · e
m

. (12.24)

In this case, nf represents the sum of the absolute frequencies of the incoming items in
the data stream. The bounds in this case are much weaker than those for nonnegative
elements.

A useful application is to determine the dot product of the frequency counts of the
discrete attribute values in two data streams. This has a useful application in estimating
the join size on the massive-domain attribute in two data streams. The dot product between
the frequency counts of the items in a pair of nonnegative data streams can be estimated
by first constructing a count-min sketch representation for each of the two data streams
in a separate w ×m count-min data structure. The same hash functions are used for both
sketches. The dot product of their corresponding count-min arrays for each hash function is
computed. The minimum value of the dot product over the w different arrays is reported as
the estimation. As in the previous case, this is an overestimate, and an upper bound on the
estimate may be obtained with a probability of at least 1 − e−w. The corresponding error
tolerance for the upper bound is n1

f ·n2
f ·e/m, where n1

f and n2
f are the aggregate frequencies

of the items in each of the two streams. Other useful queries with the use of the count-min
sketch include the determination of quantiles and frequent elements. Frequent elements are
also referred to as heavy hitters. The bibliographic notes contain pointers to various queries
and applications that can be addressed with the use of the count-min sketch.

3It is exactly equal to ns/m, where ns is the frequency of all items other than y. However, ns is less
than nf by the frequency of y.

406 CHAPTER 12. MINING DATA STREAMS

12.2.2.3 AMS Sketch

As discussed at the beginning of this section, different synopsis structures are designed for
different kinds of queries. While the bloom filter and count-min sketch provide good esti-
mations of various queries, some queries, such as second moments, can be better addressed
with the Alon–Matias–Szegedy (AMS) sketch. In the AMS sketch, a random binary value is
generated from {−1, 1} for each stream element by applying a hash function to the stream
element. These binary values are assumed to be 4-wise independent. This means that, if at
most four values generated from the same hash function are sampled, they will be statisti-
cally independent of one another. It is easier to design a 4-wise independent hash function
than a fully independent hash function. The details of 4-wise independent hash functions
may be found in the bibliographic notes.

Consider a stream in which the ith stream element is associated with the aggregate
frequency fi. The second-order moment F2 of the data stream, for a stream with n distinct
elements, is defined as follows:

F2 =
n∑

i=1

f2
i (12.25)

In the massive-domain scenario, where the number of distinct elements is large, this quantity
is hard to estimate because running counts of the frequencies fi cannot be maintained with
an array. However, it can be estimated effectively using the AMS sketch. As a practical
application, the second-order moment yields an estimate of the self-join size of a data
stream with respect to the massive-domain attribute. The second-order moment can also
be viewed as a variant of the Gini index, which measures the level of frequency skew over
different items in the data stream. When the skew is large, the value of F2 is large, and
very close to its upper bound (

∑n
i=1 fi)

2.
The AMS sketch contains m different sketch components, each of which is associated

with an independent hash function. Each hash function generates its corresponding sketch
component as follows. A random binary value, with equal probability for both realizations, is
generated for the incoming stream element. This binary value is denoted by r ∈ {−1, 1}, and
is generated using the hash function for that component. The frequency of each incoming
stream element is multiplied by r, and added to the corresponding component of the sketch.
Let ri ∈ {−1, 1} be the random value generated by a particular hash function for the ith dis-
tinct element. Then, the corresponding component Q of the sketch, for a stream of n distinct
elements with aggregate frequencies f1 . . . fn, can be shown to be equal to the following:

Q =
n∑

i=1

fi · ri. (12.26)

This relationship is because of the incremental way in which Q is updated, each time a
stream item is received. Note that the value of Q is a random variable, dependent on how
the binary random values r1 . . . rn are generated by the hash function. The value of Q is
useful in estimating the second moment.

Lemma 12.2.4 The second moment of the data stream can be estimated by the square of
the AMS sketch component Q:

F2 = E[Q2]. (12.27)

Proof: It is easy to see that Q2 =
∑n

i=1 f
2
i r

2
i + 2

∑n
i=1

∑n
j=1 fi · fj · ri · rj . For any pair

of hash values ri, rj , we have r2i = r2j = 1 and E[ri · rj] = E[ri] · E[rj] = 0. The last of

12.2. SYNOPSIS DATA STRUCTURES FOR STREAMS 407

these results uses 2-wise independence, which is implied by 4-wise independence. Therefore,
E[Q2] =

∑n
i=1 f

2
i = F2.

The 4-wise independence can also be used to bound the variance of the estimate (see Exer-
cise 16).

Lemma 12.2.5 The variance of the square of a component Q of the AMS sketch is bounded
above by twice the frequency moment.

V ar[Q2] ≤ 2 · F 2
2 (12.28)

The bound on the variance can be reduced further by averaging over the m different sketch
components Q1 . . . Qm. The reduced variance can be used to create a (weak) probabilistic
estimate on the quality of the second moment estimate with the Chebychev inequality. This
can be tightened further by using a “mean–median combination trick” that is commonly
used in such a probabilistic analysis. This trick can be used to robustly estimate a random
variable, whenever its variance is no larger than a modest factor of the square of its expected
value. This is the case for the random variable Q2.

The mean–median combination trick works as follows. It is desired to establish a bound
with probability at least (1 − δ) that the second moment can be estimated to within a
multiplicative factor of 1±ε. Let Q1 . . . Qm be m different sketch components, each of which
is generated using a different hash function. The value of m is chosen to be O(ln(1/δ)/ε2).
These m sketch components are further partitioned into O(ln(1/δ)) different groups of size
O(1/ε2) each. The sketch values in each group are averaged. The median of these O(ln(1/δ))
averages is reported. A combination of the Chebychev inequality and the Chernoff bounds
can be used to show the following result:

Lemma 12.2.6 By selecting the median of O(ln(1/δ)) averages of O(1/ε2) copies of Q2
i , it

is possible to guarantee the accuracy of the sketch-based second-moment approximation to
within 1± ε with a probability of at least 1− δ.

Proof: According to Lemma 12.2.5, the variance of each sketch component is at most 2 ·F 2
2 .

By using the average of 16/ε2 independent sketch components, the variance of the averaged
estimate can be reduced to F 2

2 · ε2/8. In this case, the Chebychev inequality shows that the
ε-bound is violated by the averaged estimate with probability at most 1/8. Assume that
a total of 4 · ln(1/δ) such averaged and independent estimates are available. The random
variable Y is defined as the sum of the Bernoulli indicator variables of ε-bound violations
over these q = 4·ln(1/δ) averages. The expected value of Y is q/8 = ln(1/δ)/2. The Chernoff
bound is used to show the following:

P (Y > q/2) = P (Y > (1 + 3) · q/8) = P (Y > (1 + 3)E[Y]) ≤ e−32·ln(1/δ)/8 = δ9/8 ≤ δ.

The median can violate the ε-bound only when more than half the averages violate the
bound. The probability of this event is exactly P (Y > q/2). Therefore, the median violates
the ε-bound with probability at most δ.
The AMS sketch can be used to estimate many other values in a similar way, with corre-
sponding quality bounds. For example, consider two streams with the sketch components
Qi and Ri.

1. The dot product between the frequency counts of the items in a pair of streams is
estimated as the product of the corresponding sketch components Qi and Ri. By using

408 CHAPTER 12. MINING DATA STREAMS

the median of O(ln(1/δ)) averages of different sets of O(1/ε2) values of Qi · Ri, it is
possible to bound the approximation within 1 ± ε with probability at least 1 − δ.
This estimation can be performed using the count-min sketch as well, though with a
different bound.

2. The Euclidean distance between the frequency counts of a pair of streams can be
estimated as Q2

i + R2
i − 2Qi · Ri. The Euclidean distance can be viewed as a linear

combination of three different dot products (including self-products) between the fre-
quency counts of the two streams. Because each dot product is itself bounded using
the “mean–median trick” discussed above, the approach can be used to determine
similar quality bounds in this case as well.

3. Like the count-min sketch, the AMS sketch can be used to estimate frequency values.
For the jth distinct stream element with frequency fj , the product of the random
variable rj and Qi provides an estimate of the frequency.

E[fj] = rj ·Qi. (12.29)

The mean, median, or mean–median combination of these values over different sketch
components Qi can be reported as a robust estimate. The AMS sketch can also be
used to identify heavy hitters from the data stream.

Some of the queries resolved by the AMS and count-min sketch are similar, although others
are different. The bounds provided by the two techniques are also different, although none
of them is strictly better than the other in all scenarios. The count-min sketch does have
the advantage of being intuitively easy to interpret because of its natural hash-table data
structure. As a result, it can be more naturally integrated in data mining applications such
as clustering and classification in a seamless way.

12.2.2.4 Flajolet–Martin Algorithm for Distinct Element Counting

Sketches are designed for determining stream statistics that are dominated by large aggregate
signals of frequent items. However, they are not optimized for estimating stream statistics
that are dominated by infrequently occurring items. Problems such as distinct element
counting are more directly influenced by the much larger number of infrequent items in
a data stream. Distinct element counting can be performed efficiently with the Flajolet–
Martin algorithm.

The Flajolet–Martin algorithm uses a hash function h(·) to render a mapping from a
given element x in the data stream to an integer in the range [0, 2L − 1]. The value of L
is selected to be large enough, so that 2L is an upper bound on the number of distinct
elements. Usually, the value L is selected to be 64 for implementation convenience, and
because the value of 264 is large enough for most practical applications. Therefore, the binary
representation of the integer h(x) will have length L. The position4 R of the rightmost 1 bit
of the binary representation of the integer h(x) is determined. Thus, the value ofR represents
the number of trailing zeros in this binary representation. Let Rmax be the maximum
value of R over all stream elements. The value of Rmax can be maintained incrementally
in the streaming scenario by applying the hash function to each incoming stream element,
determining its rightmost bit, and then updating Rmax. The key idea in the Flajolet–Martin
algorithm is that the dynamically maintained value of Rmax is logarithmically related to
the number of distinct elements encountered so far in the stream.

4The position of the least significant bit is 0, the next most significant bit is 1, and so on.

12.3. FREQUENT PATTERN MINING IN DATA STREAMS 409

The intuition behind this result is quite simple. For a uniformly distributed hash func-
tion, the probability of R trailing zeros in the binary representation of a stream element is
equal to 2−R−1. Therefore, for n distinct elements and a fixed value of R, the expected num-
ber of times that exactly R trailing zeros are achieved is equal to 2−R−1 · n. Therefore, for
values of R larger than log(n), the expected number of such bitstrings falls off exponentially
less than 1. Of course, in our application, the value of R is not fixed, but it is a random
variable that is generated by the outcome of the hash function. It has been rigorously shown
that the expected value E[Rmax] of the maximum value of R over all stream elements is
logarithmically related to the number of distinct elements as follows:

E[Rmax] = log2(φn), φ = 0.77351. (12.30)

The standard deviation is σ(Rmax) = 1.12. Therefore, the value of 2Rmax/φ provides an
estimate for the number of distinct elements n. To further improve the estimate of Rmax,
the following techniques can be used:

1. Multiple hash functions can be used, and the average value of Rmax over the different
hash functions is used.

2. The averages are still somewhat susceptible to large variations. Therefore, the “mean–
median trick” may be used. The medians of a set of averages are reported. Note that
this is similar to the trick used in the AMS sketch. As in that case, a combination of
the Chebychev inequality and Chernoff bounds can be used to establish qualitative
guarantees.

It should be pointed out that the bloom filter can also be used to estimate the number of
distinct elements. However, the bloom filter is not a space-efficient way to count the number
of distinct elements when set-membership queries are not required.

12.3 Frequent Pattern Mining in Data Streams

The frequent pattern mining problem in data streams is studied in the context of two
different scenarios. The first scenario is the massive-domain scenario, in which the number
of possible items is very large. In such cases, even the problem of finding frequent items
becomes difficult. Frequent items are also referred to as heavy hitters. The second case is the
conventional scenario of a large (but manageable) number of items that fit in main memory.
In such cases, the frequent item problem is no longer quite as interesting, because the
frequent counts can be directly maintained in an array. In such cases, one is more interested
in determining frequent patterns. This is a difficult problem, because most frequent pattern
mining algorithms require multiple passes over the entire data set. The one-pass constraint
of the streaming scenario makes this difficult. In the following, two different approaches
will be described. The first of these approaches leverages generic synopsis structures in
conjunction with traditional frequent pattern mining algorithms and the second designs
streaming versions of frequent pattern mining algorithms.

12.3.1 Leveraging Synopsis Structures

Synopsis structures can be used effectively in most streaming data mining problems, includ-
ing frequent pattern mining. In the context of frequent pattern mining methods, synopsis
structures are particularly attractive because of the ability to use a wider array of algo-
rithms, or for incorporating temporal decay into the frequent pattern mining process.

410 CHAPTER 12. MINING DATA STREAMS

12.3.1.1 Reservoir Sampling

Reservoir sampling is the most flexible approach for frequent pattern mining in data streams.
It can be used either for frequent item mining (in the massive-domain scenario) or for
frequent pattern mining. The basic idea in using reservoir sampling is simple:

1. Maintain a reservoir sample S from the data stream.

2. Apply a frequent pattern mining algorithm to the reservoir sample S and report the
patterns.

It is possible to derive qualitative guarantees on the frequent patterns mined as a function
of the sample size S. The probability of a pattern being a false positive can be determined
by using the Chernoff bound. By using modestly lower support thresholds, it is also possible
to obtain a guaranteed reduction in the number of false negatives. The bibliographic notes
contain pointers to such guarantees. Reservoir sampling has several flexibility advantages
because of its clean separation of the sampling and the mining process. Virtually, any
efficient frequent pattern mining algorithm can be used on the memory-resident reservoir
sample. Furthermore, different variations of pattern mining algorithms, such as constrained
pattern mining or interesting pattern mining, can be applied as well. Concept drift is also
relatively easy to address. The use of a decay-biased reservoir sample with off-the-shelf
frequent pattern mining methods translates to a decay-weighted definition of the support.

12.3.1.2 Sketches

Sketches can be used for determining frequent items, though they cannot be used for deter-
mining frequent itemsets quite as easily. The core idea is that sketches are generally much
better at estimating the counts of more frequent items accurately on a relative basis. This
is because the bound on the frequency estimation of any item is an absolute one, in which
the error depends on the aggregate frequency of the stream items rather than that of the
item itself. This is evident from Lemma 12.2.3. As a result, the frequencies of heavy hitters
can generally be estimated more accurately on a relative basis. Both the AMS sketch and
the count-min sketch can be used to determine the heavy hitters. The bibliographic notes
contain pointers to some of these algorithms.

12.3.2 Lossy Counting Algorithm

The lossy counting algorithm can be used either for frequent item, or frequent itemset
counting. The approach divides the stream into segments S1 . . . Si . . . such that each segment
Si has a size w = �1/ε�. The parameter ε is a user-defined tolerance on the required accuracy.

First, the easier problem of frequent item mining will be described. The algorithm main-
tains the frequencies of all the items in an array and increments them as new items arrive.
If the number of distinct items is not very large, then one can maintain all the counts and
report the frequent ones. The problem arises when the total available space is less than that
required to maintain the counts of the distinct items. In such cases, whenever the boundary
of a segment Si is reached, infrequent items are dropped. This results in the removal of
many items because the vast majority of the items in the stream are infrequent in practice.
How does one decide which items should be dropped, to retain a quality bound on the
approximation? For this purpose, a decremental trick is used.

Whenever the boundary of a segment Si is reached, the frequency count of every item in
the array is decreased by 1. After the decrease, items with zero frequencies are pruned from

12.4. CLUSTERING DATA STREAMS 411

the array. Consider the situation where n items have already been processed. Because each
segment contains w items, a total of r = O(n/w) = O(n · ε) segments have been processed.
This implies that any particular item has been decremented at most r = O(n · ε) times.
Therefore, if �n·ε� were to be added to the counts of the items after processing n items, then
no count will be underestimated. Furthermore, this is a good overestimate on the frequency
that is proportional to the user-defined tolerance ε. If the frequent items are reported with
the use of this overestimate, it may result in some false positives, but no false negatives.
Under some uniformity assumptions, it has been shown that the lossy counting algorithm
requires O(1/ε) space.

The approach can be generalized to the case of frequent patterns by batching multiple
segments, each of size w = �1/ε�. In this case, arrays containing counts of patterns (rather
than items) are maintained. However, patterns can obviously not be generated efficiently
from individual transactions. The idea here is to batch η segments that are read into main
memory. The value of η is decided on the basis of memory availability. When the η segments
have been read in, the frequent patterns with (absolute) support of at least η are determined
using any memory-based frequent pattern mining algorithm. First, all the old counts in the
array are decremented by η, and then the counts of the corresponding patterns from the
current segment are added to the array. Those itemsets with zero or negative supports are
removed from the array. Over the entire processing of the stream of length n, the count of
any itemset is decreased by at most �ε · n�. Therefore, by adding �ε · n� to all array counts
at the end of the process, no counts would be underestimated. The overestimate is the same
as in the previous case. Thus, it is possible to report the frequent patterns with no false
negatives, and false positives that are regulated by user-defined tolerance ε. Conceptually,
the main difference of this algorithm for frequent itemset counting from the aforementioned
algorithm for frequent item counting is that batching is used. The main goal of batching
is to reduce the number of frequent patterns generated at support level of η during the
application of the frequent pattern mining algorithm. If batching is not used, then a large
number of irrelevant frequent patterns will be generated at an absolute support level of 1.
The main shortcoming of lossy counting is that it cannot adjust to concept drift. In this
sense, reservoir sampling has a number of advantages over the lossy counting algorithm.

12.4 Clustering Data Streams

The problem of clustering is especially significant in the data stream scenario because of its
ability to provide a compact synopsis of the data stream. A clustering of the data stream
can often be used as a heuristic substitute for reservoir sampling, especially if a fine-grained
clustering is used. For these reasons, stream clustering is often used as a precursor to other
applications such as streaming classification. In the following, a few representative stream
clustering algorithms will be discussed.

12.4.1 STREAM Algorithm

The STREAM algorithm is based on the k-medians clustering methodology. The core idea is
to break the stream into smaller memory-resident segments. Thus, the original data stream
S is divided into segments S1 . . . Sr. Each segment contains at most m data points. The
value of m is fixed on the basis of a predefined memory budget.

Because each segment Si fits in main memory, a more complex clustering algorithm can
be applied to it, without worrying about the one-pass constraint. One can use a variety

412 CHAPTER 12. MINING DATA STREAMS

of different k-medians5 style algorithms for this purpose. In k-medians algorithms, a set
Y of k representatives from each chunk Si is selected, and each point in Si is assigned to
its closest representative. The goal is to select the representatives to minimize the sum of
squared distances (SSQ) of the assigned data points to these representatives. For a set of
m data points X1 . . . Xm in segment S, and a set of k representatives Y = Y1 . . . Yk, the
objective function is defined as follows:

Objective(S,Y) =
∑

Xi∈S,Xi⇐Yji

dist(Xi, Yji). (12.31)

The assignment operator is denoted by “⇐” above. The squared distance between a data
point and its assigned cluster center is denoted by dist(Xi, Yji), where the data record Xi is
assigned to the representative Yji . In principle, any partitioning algorithm, such as k-means
or k-medoids, can be applied to the segment Si in order to determine the representatives
Y1 . . . Yk. For the purpose of discussion, this algorithm will be treated as a black box.

After the first segment S1 has been processed, we now have a set of k medians that are
stored away. The number of points assigned to each representative is stored as a “weight”
for that representative. Such representatives are considered level-1 representatives. The next
segment S2 is independently processed to find its k optimal median representatives. Thus,
at the end of processing the second segment, one will have 2 · k such representatives. Thus,
the memory requirement for storing the representatives also increases with time, and after
processing r segments, one will have a total of r · k representatives. When the number
of representatives exceeds m, a second level of clustering is applied to these set of r · k
points, except that the stored weights on the representatives are also used in the clustering
process. The resulting representatives are stored as level-2 representatives. In general, when
the number of representatives of level-p reaches m, they are converted to k level-(p + 1)
representatives. Thus, the process will result in increasing the number of representatives of
all levels, though the number of representatives at higher levels will increase exponentially
slower than those at the lower levels. At the end of processing the entire data stream (or
when a specific need for the clustering result arises), all remaining representatives of different
levels are clustered together in one final application of the k-medians subroutine.

The specific choice of the algorithm used for the k-medians problem is critical in ensuring
a high-quality clustering. The other factor that affects the quality of the final output is the
effect of the problem decomposition into chunks followed by hierarchical clustering. How
does such a problem decomposition affect the final quality of the output? It has been shown
in the STREAM paper [240], that the final quality of the output cannot be arbitrarily
worse than the particular subroutine that is used at the intermediate stage for k-medians
clustering.

Lemma 12.4.1 Let the subroutine used for k-medians clustering in the STREAM algorithm
have an approximation factor of c. Then, the STREAM algorithm will have an approxima-
tion factor of no worse than 5 · c.

A variety of solutions are possible for the k-medians problem. In principle, virtually any
approximation algorithm can be used as a black box. A particularly effective solution is
based on the problem of facility location. The reader is referred to the bibliographic notes
for pointers to the relevant approach.

5This terminology is different from the k-medians approach introduced in Chap. 6. The relevant subrou-
tines in the STREAM algorithm are more similar to a k-medoids algorithm. Nevertheless, the “k-medians”
terminology is used here to ensure consistency with the original research paper describing STREAM [240].

12.4. CLUSTERING DATA STREAMS 413

A major limitation of the STREAM algorithm is that it is not particularly sensitive
to evolution in the underlying data stream. In many cases, the patterns in the underlying
stream may evolve and change significantly. Therefore, it is critical for the clustering process
to be able to adapt to such changes and provide insights over different time horizons. In this
sense, the CluStream algorithm is able to provide significantly better insights at different
levels of temporal granularity.

12.4.2 CluStream Algorithm

The concept drift in an evolving data stream changes the clusters significantly over time.
The clusters over the past day are very different from the clusters over the past month. In
many data mining applications, analysts may wish to have the flexibility to determine the
clusters based on one or more time horizons, which are unknown at the beginning of the
stream clustering process. Because stream data naturally imposes a one-pass constraint on
the design of the algorithms, it is difficult to compute clusters over different time horizons
using conventional algorithms. A direct extension of the STREAM algorithm to such a
case would require the simultaneous maintenance of the intermediate results of clustering
algorithms over all possible time horizons. The computational burden of such an approach
increases with progression of the data stream and can rapidly become a bottleneck for online
implementation.

A natural approach to address this issue is to apply the clustering process with a two-
stage methodology, including an online microclustering stage, and an offline macroclustering
stage. The online microclustering stage processes the stream in real time to continuously
maintain summarized but detailed cluster statistics of the stream. These are referred to
as microclusters. The offline macroclustering stage further summarizes these detailed clus-
ters to provide the user with a more concise understanding of the clusters over different
time horizons and levels of temporal granularity. This is achieved by retaining sufficiently
detailed statistics in the microclusters, so that it is possible to re-cluster these detailed
representations over user-specified time horizons.

12.4.2.1 Microcluster Definition

It is assumed that the multidimensional records in the data stream are denoted by
X1 . . . Xk . . ., arriving at time stamps T1 . . . Tk Each Xi is a multidimensional record
containing d dimensions that are denoted by Xi = (x1

i . . . x
d
i). The microclusters capture

summary statistics of the data stream to facilitate clustering and analysis over different
time horizons. These summary statistics are defined by the following structures:

1. Microclusters: The microclusters are defined as a temporal extension of the cluster
feature vector used in the BIRCH algorithm of Chap. 7. This concept can be viewed
as a temporally optimized representation of the CF-vector specifically designed for the
streaming scenario. To achieve this goal, the microclusters contain temporal statistics
in addition to the feature statistics.

2. Pyramidal Time Frame: The microclusters are stored at snapshots in time that follow
a pyramidal pattern. This pattern provides an effective trade-off between the storage
requirements and the ability to recall summary statistics from different time horizons.
This is important for enabling the ability to re-cluster the data over different time
horizons.

Microclusters are defined as follows.

414 CHAPTER 12. MINING DATA STREAMS

Definition 12.4.1 A microcluster for a set of d-dimensional points Xi1 . . . Xin with time
stamps Ti1 . . . Tin is the (2 · d+ 3) tuple (CF2x, CF1x, CF2t, CF1t, n), wherein CF2x and
CF1x each correspond to a vector of d entries. The definition of each of these entries is as
follows:

1. For each dimension, the sum of the squares of the data values is maintained in CF2x.
Thus, CF2x contains d values. The p-th entry of CF2x is equal to

∑n
j=1(x

p
ij
)2.

2. For each dimension, the sum of the data values is maintained in CF1x. Thus, CF1x
contains d values. The p-th entry of CF1x is equal to

∑n
j=1 x

p
ij
.

3. The sum of the squares of the time stamps Ti1 . . . Tin is maintained in CF2t.

4. The sum of the time stamps Ti1 . . . Tin is maintained in CF1t.

5. The number of data points is maintained in n.

An important property of microclusters is that they are additive. In other words, the micro-
clusters can be updated by purely additive operations. Note that each of the 2 ·d+3 compo-
nents of the microcluster can be expressed as a linearly separable sum over the constituent
data points in the microcluster. This is an important property for enabling the efficient
maintenance of the microclusters in the online streaming scenario. When a data point Xi is
added to a microcluster, the corresponding statistics of the data point Xi need to be added
to each of the (2 · d + 3) components. Similarly, the microclusters for the stream period
(t1, t2) can be obtained by subtracting the microclusters at time t1 from those at time t2.
This property is important for enabling the computation of the higher-level macroclusters
over an arbitrary time horizon (t1, t2) from the microclusters stored at different times.

12.4.2.2 Microclustering Algorithm

The data stream clustering algorithm can generate approximate clusters in any user-
specified length of history from the current instant. This is achieved by storing the micro-
clusters at particular moments in the stream that are referred to as snapshots. At the
same time, the current snapshot of microclusters is always maintained by the algorithm.
The additive property can be used to extract microclusters from any time horizon. The
macroclustering phase is applied to this representation.

The input to the algorithm is the number of microclusters, denoted by k. The online
phase of the algorithm works in an iterative fashion, by always maintaining a current set
of microclusters. Whenever a new data point Xi arrives, the microclusters are updated
to reflect the changes. Each data point either needs to be absorbed by a microcluster,
or it needs to be put in a cluster of its own. The first preference is to absorb the data
point into a currently existing microcluster. The distance of the data point to the current
microcluster centroids M1 . . .Mk is determined. The distance value of the data point Xi

to the centroid of the microcluster Mj is denoted by dist(Mj , Xi). Because the centroid of
the microcluster can be derived from the cluster feature vector, this distance value can be
computed easily. The closest centroid Mp is determined. The data point Xi is assigned to
its closest cluster Mp, unless it is deemed that the data point does not “naturally” belong
to that (or any other) microcluster. In such cases, the data point Xi needs to be assigned a
(new) microcluster of its own. Therefore, before assigning a data point to a microcluster, it
first needs to be decided whether it naturally belongs to its closest microcluster centroidMp.

12.4. CLUSTERING DATA STREAMS 415

To make this decision, the cluster feature vector of Mp is used to decide if this data
point falls within the maximum boundary of the microcluster Mp. If so, then the data point
Xi is added to the microcluster Mp by using the additivity property of microclusters. The
maximum boundary of the microcluster Mp is defined as a factor t of the root-mean-square
deviation of the data points in Mp from the centroid. The value of t is a user-defined
parameter, and it is typically set to 3.

If the data point does not lie within the maximum boundary of the nearest microcluster,
then a new microcluster must be created containing the data point Xi. However, to create
this new microcluster, the number of other microclusters must be reduced by 1 to free
memory availability. This can be achieved by either deleting an old microcluster or merging
two of the older clusters. This decision is made by examining the staleness of the different
clusters, and the number of points in them. The time-stamp statistics of the microclusters
are examined to determine whether one of them is “sufficiently” stale to merit removal. If
this is not the case, then a merging of the two microclusters is initiated.

How is staleness of a microcluster determined? The microclusters are used to approx-
imate the average time-stamp of the last m data points of the cluster M. This value is
not known explicitly because the last m data points are not explicitly retained in order
to minimize memory requirements. The mean μ and variance σ2 of the time-stamps in the
microcluster can be used together with a normal distribution assumption of the distribution
of time stamps to estimate this value. Thus, if the cluster contains m0 > m data points, then
the m/(2 · m0)th percentile of the normal distribution with mean μ and variance σ2 may
be used as the estimate. This value is referred to as the relevance stamp of cluster M. Note
that μ and σ2 can be computed from the temporal components of the cluster feature vec-
tors. When the smallest such relevance stamp of any microcluster is below a user-defined
threshold δ, it can be eliminated. In cases where no microclusters can be safely deleted,
the closest microclusters are merged. The merging operation can be effectively performed
because of the existence of the cluster feature vector. Distances between microclusters can
be easily computed using the cluster-feature vector. When two microclusters are merged,
their statistics are added together, because of the additivity property of microclusters.

12.4.2.3 Pyramidal Time Frame

The microclusters statistics are stored periodically to enable horizon-specific analysis of the
clusters. This maintenance is performed during the microclustering phase. In this approach,
the microcluster snapshots are stored at varying levels of granularity depending on the
recency of the snapshot. Snapshots are classified into different orders that can vary from 1
to log(T), where T is the clock time elapsed since the beginning of the stream. The order
of a snapshot regulates the level of temporal granularity at which it is stored, according to
the following rules:

• Snapshots of the ith order are stored at time intervals of αi, where α is an integer
and α ≥ 1. Specifically, each snapshot of the ith order is stored when the clock value
is exactly divisible by αi.

• At any given time, only the last αl + 1 snapshots of order i are stored.

The aforementioned definition allows for considerable redundancy in storage of snapshots.
For example, the clock time of 8 is divisible by 20, 21, 22, and 23 (where α = 2). Therefore,
the state of the microclusters at a clock time of 8 simultaneously corresponds to order 0,
order 1, order 2, and order 3 snapshots. From an implementation point of view, a snapshot
needs to be maintained only once.

416 CHAPTER 12. MINING DATA STREAMS

Table 12.2: An example [39] of snapshots stored for α = 2 and l = 2

Order of Snapshots Clock times (last five snapshots)
0 55 54 53 52 51
1 54 52 50 48 46
2 52 48 44 40 36
3 48 40 32 24 16
4 48 32 16
5 32

STARTING
TIME = 0

CURRENT
TIME = 55STREAM PROGRESSION

16 24 32 40 44 4636 48
50 55

Figure 12.7: Recent snapshots are stored more frequently by pyramidal time frame

To illustrate the snapshots, an example will be used. Consider the case when the stream
has been running starting at a clock time of 1, and a use of α = 2 and l = 2. Therefore,
22 + 1 = 5 snapshots of each order are stored. Then, at a clock time of 55, snapshots at
the clock times illustrated in Table 12.2 are stored. While some snapshots are redundant
in this case, they are not stored in a redundant way. The corresponding pattern of storage
is illustrated in Fig. 12.7. It is evident that recent snapshots are stored more frequently in
the pyramidal pattern of storage.

The following observations are true at any moment in time over the course of the data
stream:

• The maximum order of any snapshot stored at T time units since the beginning of
the stream mining process is logα(T).

• The maximum number of snapshots maintained at T time units since the beginning
of the stream mining process is (αl + 1) · logα(T).

• For any user-specified time horizon h, at least one stored snapshot can be found, which
corresponds to a horizon of length within a factor (1 + 1/αl−1) units of the desired
value h. This property is important because the microcluster statistics of time horizon
(tc−h, tc) can be constructed by subtracting the statistics at time (tc−h) from those
at time tc. Therefore, the microcluster within the approximate temporal locality of
(tc − h) can be used instead. This enables the approximate clustering of data stream
points within an arbitrary time horizon (tc −h, tc) from the stored pyramidal pattern
of microcluster statistics.

For larger values of l, the time horizon can be approximated as closely as desired. It is
instructive to use an example to illustrate the combination of the effectiveness and com-
pactness achieved by the pyramidal pattern of snapshot storage. For example, by choosing

12.5. STREAMING OUTLIER DETECTION 417

l = 10, it is possible to approximate any time horizon within 0.2%. At the same time, a total
of only (210 +1) · log2(100 ∗ 365 ∗ 24 ∗ 60 ∗ 60) ≈ 32, 343 snapshots are required for a stream
with a clock granularity of 1 s and running over 100 years. If each snapshot of size k ·(2·d+3)
requires storage of less than a megabyte, the overall storage required is of order of a few
gigabytes. Because historical snapshots can be stored on disk and only the current snapshot
needs to be maintained in main memory, this requirement is modest from a practical point
of view. As the clustering algorithm progresses, only the relevant snapshots according to the
pyramidal time frame are maintained. The remaining snapshots are discarded. This enables
the computation of horizon-specific clusters at a modest storage cost.

12.4.3 Massive-Domain Stream Clustering

As discussed earlier, the massive-domain scenario is ubiquitous in the stream context. In
many cases, one may need to work with a multidimensional data stream, in which the
individual attributes are drawn on a massive domain of possible values. In such cases, stream
analysis becomes much more difficult because “concise” summaries of the clusters become
much more space-intensive. This is also the motivation for many synopsis structures, such as
the bloom filter, the count-min sketch, the AMS sketch, and the Flajolet–Martin algorithm.

The data clustering problem also becomes more challenging in the massive-domain sce-
nario, because of the difficulty in maintaining concise statistics of the clusters. A recent
method CSketch has been designed for clustering massive-domain data streams. The idea in
this method is to use a count-min sketch to store the frequencies of attribute–value combi-
nations in each cluster. Thus, the number of count-min sketches used is equal to the number
of clusters. An online k-means style clustering is applied, in which the sketch is used as the
representative for the (discrete) attributes in the cluster. For any incoming data point, a
dot product is computed with respect to each cluster.

The computation is performed as follows. For each attribute–value combination in the d-
dimensions, the hash function hr(·) is applied to it for a particular value of r. The frequency
of the corresponding sketch cell is determined. The frequencies of all the relevant sketch
cells for the d different dimensions are added together. This provides an estimate of the
dot product. To obtain a tighter estimate, the minimum value over different hash functions
(different values of r) is used. The dot product is divided by the total frequency of items in
the cluster, to avoid bias towards clusters with many data items.

This computation can be performed accurately because the count-min sketch can com-
pute the dot product accurately in a small space. The data point is assigned to the cluster
with which it has the largest dot product. The statistics in the sketch representing that par-
ticular cluster are then updated. Thus, this approach shares a common characteristic with
microclustering in terms of how data points are incrementally assigned to clusters. However,
it does not implement the merging and removal steps. Furthermore, the sketch represen-
tation is used instead of the microcluster representation for cluster statistics maintenance.
Theoretical guarantees can be shown on clustering quality, with respect to a clustering that
has infinite space availability. The bibliographic notes contain pointers to these results.

12.5 Streaming Outlier Detection

The problem of streaming outlier detection typically arises either in the context of multi-
dimensional data or time-series data streams. Outlier detection in multidimensional data
streams is generally quite different from time series outlier detection. In the latter case,

418 CHAPTER 12. MINING DATA STREAMS

each time series is treated as a unit, whereas temporal correlations are much weaker for
multidimensional data. This chapter will address only multidimensional streaming outlier
detection, whereas time-series methods will be addressed in Chap. 14.

The multidimensional stream scenario is similar to static multidimensional outlier anal-
ysis. The only difference is the addition of a temporal component to the analysis, though
this temporal component is much weaker than in the case of time series data. In the context
of multidimensional data streams, efficiency is an important concern because the outliers
need to be discovered quickly. There are two kinds of outliers that may arise in the context
of multidimensional data streams.

1. One is based on the outlier detection of individual records. For example, a first news
story on a specific topic represents an outlier of this type. Such an outlier is also
referred to as a novelty.

2. The second is based on changes in the aggregate trends of the multidimensional data.
For example, an unusual event such as a terrorist attack may lead to a burst of
news stories on a specific topic. This represents an aggregated outlier based on a
specific time window. The second kind of change point almost always begins with an
individual outlier of the first type. However, an individual outlier of the first type
may not always develop into an aggregate change point. This is closely related to the
concept of concept drift. While concept drift is generally gentle, an abrupt change
may be viewed as an outlier instant in time rather than an outlier data point.

Both kinds of outliers (or change points) will be discussed in this section.

12.5.1 Individual Data Points as Outliers

The problem of detecting individual data points as outliers is closely related to the problem
of unsupervised novelty detection, especially when the entire history of the data stream is
used. This problem is studied extensively in the text domain in the context of the problem
of first story detection. Such novelties are often trend setters and may eventually become a
part of the normal data. However, when an individual record is declared an outlier in the
context of a window of data points, it may not necessarily be a novelty. In this context,
proximity-based algorithms are particularly easy to generalize to the incremental scenario
by almost direct applications of the corresponding algorithms to the window of data points.

Distance-based algorithms can be easily generalized to the streaming scenario. The orig-
inal distance-based definition of outliers is modified in the following way:

The outlier score of a data point is defined in terms of its k-nearest neighbor distance
to data points in a time window of length W .

Note that this is a relatively straightforward modification of the original distance-based
definition. When the entire window of data points can be maintained in main memory, it
is fairly easy to determine the outliers by computing the score of every data point in the
window. However, incremental maintenance of the scores of data points is more challenging
because of the addition and removal of data points from the window. Furthermore, some
algorithms such as LOF require the re-computation of statistics such as reachability dis-
tances. The LOF algorithm has been extended to the incremental scenario. Two steps are
performed in the process:

12.5. STREAMING OUTLIER DETECTION 419

1. The statistics of the newly inserted data points are computed such as its reachability
distance and LOF score.

2. The LOF scores of the existing points in the window are updated along with their
densities and reachability distances. In other words, the scores of many of the existing
data points need to be updated because they are affected by the addition of a new
data point. However, not all scores need to be updated because only the locality of
the new data point is affected. Similarly, when data points are deleted, only the LOF
scores in the locality of the deleted point are affected.

Because distance-based methods are well-known to be computationally expensive, many of
the aforementioned methods are still quite expensive in the context of the data stream.
Therefore, the complexity of the outlier detection process can be greatly improved by using
an online clustering-based approach. The microclustering approach discussed earlier in this
chapter automatically discovers outliers, together with clusters.

While clustering-based methods are generally not advisable when the number of data
points are limited, this is not the case in streaming analysis. In the context of a data
stream, a sufficient number of data points are typically available to maintain the clusters
at a very high level of granularity. In the context of a streaming clustering algorithm, the
formation of new clusters is often associated with unsupervised novelties. For example, the
CluStream algorithm explicitly regulates the creation of new clusters in the data stream
when an incoming data point does not lie within a specified statistical radius of the existing
clusters in the data. Such data points may be considered outliers. In many cases, this is the
beginning of a new trend, as more data points are added to the cluster at later stages of the
algorithm. In some cases, such data points may correspond to novelties, and in other cases,
they may correspond to trends that were seen a long time ago, but are no longer reflected
in the current clusters. In either case, such data points are interesting outliers. However, it
is not possible to distinguish between these different kinds of outliers unless one is willing
to allow the number of clusters in the stream to increase over time.

12.5.2 Aggregate Change Points as Outliers

The sudden changes in aggregate local and global trends in the underlying data are often
indicative of anomalous events in the data. Many methods also provide statistical ways of
quantifying the level of the changes in the underlying data stream. One way of measuring
concept drift is to use the concept of velocity density. The idea in velocity density estimation
is to construct a density-based velocity profile of the data. This is analogous to the concept
of kernel density estimation in static data sets. The kernel density estimation f(X) for n
data points and kernel function K ′

h(·) is defined as follows:

f(X) =
1
n

n∑
i=1

K ′
h(X −Xi)

The kernel function used is a Gaussian kernel with width h.

K ′
h(X −Xi) ∝ e−||X−Xi||2/(2h2)

The estimation error is defined by the kernel width h that is chosen in a data-driven manner
based on Silverman’s approximation rule [471].

The velocity density computations are performed over a temporal window of size ht.
Intuitively, the value of ht defines the time horizon over which the evolution is measured.

420 CHAPTER 12. MINING DATA STREAMS

Thus, if ht is chosen to be large, then the velocity density estimation technique provides
long term trends, whereas if ht is chosen to be small then the trends are relatively short
term. This provides the user flexibility in analyzing the changes in the data over different
time horizons. In addition, a spatial smoothing parameter hs is used that is analogous to
the kernel width h in conventional kernel density estimation.

Let t be the current instant and S be the set of data points that have arrived in the
time window (t − ht, t). The rate of increase in density at spatial location X and time
t is estimated with two measures the forward time-slice density estimate and the reverse
time-slice density estimate. Intuitively, the forward time-slice estimate measures the density
function for all spatial locations at a given time t based on the set of data points that have
arrived in the past time window (t−ht, t). Similarly, the reverse time-slice estimate measures
the density function at a given time t based on the set of data points that will arrive in the
future time window (t, t+ ht). Obviously, this value cannot be computed until these points
have actually arrived.

It is assumed that the ith data point in S is denoted by (Xi, ti), where i varies from 1 to
|S|. Then, the forward time-slice estimate F(hs,ht)(X, t) of the set S at the spatial location
X and time t is given by:

F(hs,ht)(X, t) = Cf ·
|S|∑
i=1

K(hs,ht)(X −Xi, t− ti).

Here K(hs,ht)(·, ·) is a spatiotemporal kernel smoothing function, hs is the spatial kernel
vector, and ht is temporal kernel width. The kernel function K(hs,ht)(X − Xi, t − ti) is a
smooth distribution that decreases with increasing value of t − ti. The value of Cf is a
suitably chosen normalization constant, so that the entire density over the spatial plane is
one unit. Thus, Cf is defined as follows:

∫
All X

F(hs,ht)(X, t)δX = 1.

The reverse time-slice density estimate is calculated differently from the forward time-slice
density estimate. Assume that the set of points in the time interval (t, t+ ht) is denoted by
U . As before, the value of Cr is chosen as a normalization constant. Correspondingly, the
reverse time-slice density estimate R(hs,ht)(X, t) is defined as follows:

R(hs,ht)(X, t) = Cr ·
|U |∑
i=1

K(hs,ht)(X −Xi, ti − t).

In this case, ti − t is used in the argument instead of t − ti. Thus, the reverse time-slice
density in the interval (t, t+ht) would be exactly the same as the forward time-slice density,
if time were reversed, and the data stream arrived in reverse order, starting at t + ht and
ending at t.

The velocity density V(hs,ht)(X,T) at spatial location X and time T is defined as follows:

V(hs,ht)(X,T) =
F(hs,ht)(X,T)−R(hs,ht)(X,T − ht)

ht
.

Note that the reverse time-slice density estimate is defined with a temporal argument of
(T − ht), and therefore the future points with respect to (T − ht) are known at time T . A

12.6. STREAMING CLASSIFICATION 421

positive value of the velocity density corresponds to an increase in the data density at a
given point. A negative value of the velocity density corresponds to a reduction in the data
density at a given point. In general, it has been shown that when the spatiotemporal kernel
function is defined as below, then the velocity density is directly proportional to a rate of
change of the data density at a given point.

K(hs,ht)(X, t) = (1− t/ht) ·K ′
hs
(X).

This kernel function is defined only for values of t in the range (0, ht). The Gaussian spatial
kernel function K ′

hs
(·) was used because of its well-known effectiveness. Specifically, K ′

hs
(·)

is the product of d identical gaussian kernel functions, and hs = (h1
s, . . . h

d
s), where h

i
s is the

smoothing parameter for dimension i.
The velocity density is associated with a data point as well as a time instant, and

therefore this definition allows the labeling of both data points and time instants as outliers.
However, the interpretation of a data point as an outlier in the context of aggregate change
analysis is slightly different from the previous definitions in this section. An outlier is defined
on an aggregate basis, rather than in a specific way for that point. Because outliers are data
points in regions where abrupt change has occurred, outliers are defined as data points
X at time instants t with unusually large absolute values of the local velocity density. If
desired, a normal distribution could be used to determine the extreme values among the
absolute velocity density values. Thus, the velocity density approach is able to convert the
multidimensional data distributions into a quantification that can be used in conjunction
with extreme-value analysis.

It is important to note that the data point X is an outlier only in the context of aggregate
changes occurring in its locality, rather than its own properties as an outlier. In the context
of the news-story example, this corresponds to a news story belonging to a particular burst of
related articles. Thus, such an approach could detect the sudden emergence of local clusters
in the data, and report the corresponding data points in a timely fashion. Furthermore, it is
also possible to compute the aggregate absolute level of change (over all regions) occurring
in the underlying data stream. This is achieved by computing the average absolute velocity
density over the entire data space by summing the changes at sample points in the space.
Time instants with large values of the aggregate velocity density may be declared as outliers.

12.6 Streaming Classification

The problem of streaming classification is especially challenging because of the impact
of concept drift. One simple approach is to use a reservoir sample to create a concise
representation of the training data. This concise representation can be used to create an
offline model. If desired, a decay-based reservoir sample can be used to handle concept
drift. Such an approach has the advantage that any conventional classification algorithm
can be used since the challenges associated with the streaming paradigm have already been
addressed at the sampling stage. A number of dedicated methods have also been proposed
for streaming classification.

12.6.1 VFDT Family

Very fast decision trees (VFDT) are based on the principle of Hoeffding trees. The basic
idea is that a decision tree can be constructed on a sample of a very large data set, using a
carefully designed approach, so that the resulting tree is the same as what would have been

422 CHAPTER 12. MINING DATA STREAMS

achieved with the original data set with high probability. The Hoeffding bound is used to
estimate this probability, and therefore the intermediate steps of the approach are designed
with this bound in mind. This is the reason that such trees are referred to as Hoeffding trees.

The Hoeffding tree can be constructed incrementally by growing the tree simultaneously
with stream arrival. An important assumption is that the stream does not evolve, and
therefore the currently arrived set of points can be viewed as a sample of the full stream.
The higher levels of the tree are constructed at earlier stages of the stream, when enough
tuples have been collected to quantify the accuracy of the corresponding split criteria. The
lower level nodes are constructed later because statistics about lower level nodes can be
collected only after the higher level nodes have been constructed. Thus, successive levels of
the tree are constructed, as more examples stream in and the tree continues to grow. The
key in the Hoeffding tree algorithm is to quantify the point at which statistically sufficient
tuples have been collected in order to perform a split, so that the split is approximately the
same as what would have been performed with knowledge of the full stream.

The same decision tree will be constructed on the current stream sample and the full
stream, as long as the same splits are used at each stage. Therefore, the goal of the approach
is to ensure that the splits on the sample are identical to the splits on the full stream. For ease
in discussion, consider the case where each attribute6 is binary. In this case, two algorithms
will produce exactly the same tree, as long as the same split attribute is selected at each
point. The split attribute is selected using a measure such as the Gini index. Consider a
particular node in the tree constructed on the original data, and the same node constructed
on the sampled data. What is the probability that the same attribute will be selected for
the stream sample as for the full stream?

Consider the best and second-best attributes for a split, indexed by i and j, respectively,
in the sampled data. Let Gi an G′

i be the Gini index values of the split attribute i, as
computed on the full stream, and the sampled data, respectively. Because the attribute i
was selected for a split in the sampled data, it is evident that G′

i < G′
j . The problem is that

the sampling might cause an error. In other words, for the original data, it might be the
case that Gj < Gi. Let the difference G′

j −G′
i between G′

j and G′
i be ε > 0. If the number

of samples n for evaluating the split is large enough, then it can be shown with the use of
the Hoeffding bound that the undesirable case where Gj < Gi will not occur with at least a
user-defined probability 1−δ. The required value of n would be a function of ε and δ. In the
context of data streams with continuously accumulating samples, the key is to wait for a
large enough sample size n before performing the split. In the Hoeffding tree, the Hoeffding
bound is used to determine the value of n in terms of ε and δ as follows:

n =
R2 · ln(1/δ)

2ε2
. (12.32)

The value of R denotes the range of the split criterion. For the Gini index, the value of R is
1, and for the entropy criterion, the value is log(k), where k is the number of classes. Near
ties in the split criterion correspond to small values of ε. According to Eq. 12.32, such ties
will lead to large sample size requirements, and therefore a larger waiting time until one
can be sufficiently confident of performing a split with the available stream sample.

The Hoeffding tree approach determines whether the current difference in the Gini index

between the best and second-best split attributes is at least
√

R2·ln(1/δ)
2n in order to initiate

a split. This provides a guarantee on the quality of a split at a particular node. In cases,
6The argument also applies to general attributes by first transforming them to binary data with dis-

cretization and binarization.

12.6. STREAMING CLASSIFICATION 423

SPLIT AT C
A

B

A

CB

A

C

SATISFIES

HOEFFDING
BOUND

SATISFIES

HOEFFDING
BOUND

SATISFIES

HOEFFDING
BOUND

A

B C B

H I D E

B CB

D E

CB C

ED

B

F GF G

DECISION TREE GROWS AS DATA STREAMS IN

SPLIT AT D SPLIT AT B

Figure 12.8: Incremental process of Hoeffding tree construction

where there are near ties in split quality (very small values of ε), the algorithm will need
to wait for a larger value of n until the aforementioned split condition is satisfied. It can
be shown that the probability that the Hoeffding tree makes the same classification on the
instance as a tree constructed with infinite data is given by at least 1− δ/p, where p is the
probability that the instance will be assigned to a particular leaf. The memory requirements
are modest because only the counts of the different discrete values of the attributes (over
different classes) need to be maintained at various nodes to make split decisions.

The major theoretical implication of the Hoeffding tree algorithm is that one does not
need all the data to grow exactly the same tree as what would be constructed by a poten-
tially infinite data stream. Rather, the total number of required tuples is limited once the
probabilistic certainty level δ is fixed. The major bottleneck of the approach is that the
construction of some of nodes is delayed because of near ties during tree construction. Most
of the time is spent in breaking near ties. In the Hoeffding tree algorithm, once a decision
is made about a split (and it is a poor one), it cannot be reversed. The incremental process
of Hoeffding tree construction is illustrated in Fig. 12.8. It is noteworthy that test instance
classification can be performed at any point during stream progression, but the size of the
tree increases over time together with classification accuracy.

The VFDT approach improves over the Hoeffding tree algorithm by breaking ties more
aggressively and through the deactivation of less promising leaf nodes. It also has a number
of optimizations to improve accuracy, such as the dropping of poor splitting attributes, and
batching intermediate computations over multiple data points. However, it is not designed to
handle concept drift. The CVFDT approach was subsequently designed to address concept
drift. CVFDT incorporates two main ideas to address the additional challenges of drift:

1. A sliding window of training items is used to limit the impact of historical behavior.

2. Alternate subtrees at each internal node i are constructed to account for the fact
that the best split attribute may no longer remain the top choice because of stream
evolution.

Because of the sliding window approach, a difference from the previous method is in the
update of the attribute frequency statistics at the nodes, as the sliding window moves
forward. For the incoming items, their statistics are added to the attribute value frequencies
in the current window, and the expiring items at the other end of the window are removed
from the statistics as well. Therefore, when these statistics are updated, some nodes may no
longer meet the Hoeffding bound. Such nodes are replaced. CVFDT associates each internal
node i with a list of alternate subtrees corresponding to splits on different attributes. These

424 CHAPTER 12. MINING DATA STREAMS

alternate subtrees are grown along with the main tree used for classification. These alternate
trees are used periodically to perform the replacement once the best split attribute has
changed. Experimental results show that the CVFDT approach generally achieves higher
accuracy in concept-drifting data streams.

12.6.2 Supervised Microcluster Approach

The supervised microcluster is essentially an instance-based classification approach. In this
model, it is assumed that a training and a test stream are simultaneously received over
time. Because of concept drift, it is important to adjust the model dynamically over time.

In the nearest-neighbor classification approach, the dominant class label among the top-
k nearest neighbors is reported as the relevant result. In the streaming scenario, it is difficult
to efficiently compute the k nearest neighbors for a particular test instance because of the
increasing size of the stream. However, fine-grained microclustering can be used to create
a fixed-size summary of the data stream that does not increase with stream progression. A
supervised variant of microclustering is used in which data points of different classes are not
allowed to mix within clusters. It is relatively easy to maintain such microclusters with minor
changes to the CluStream algorithm. The main difference is that data points are assigned
to microclusters belonging to the same class during the cluster update process. Thus, labels
are associated with microclusters rather than individual data points. The dominant label
of the top-k nearest microclusters is reported as the relevant label.

This does not, however, account for the changes that need to be made to the algorithm
as a result of concept drift. Because of concept drift, the trends in the stream will change.
Therefore, it is more relevant to use microclusters from specific time horizons to increase
accuracy. While the most recent horizon may often be relevant, this may sometimes not
be the case when the trends in the stream revert back suddenly to older trends. Therefore,
a part of the training stream is separated out as the validation stream. Recent parts of
the validation stream are utilized as test cases to evaluate the accuracy over different time
horizons. The optimal horizon is selected. The k-nearest neighbor approach is applied to
test instances over this optimally selected horizon.

12.6.3 Ensemble Method

A robust ensemble method was also proposed for the classification of data streams. The
method is also designed to handle concept drift because it can effectively account for evo-
lution in the underlying data. The data stream is partitioned into chunks, and multiple
classifiers are trained on each of these chunks. The final classification score is computed as
a function of the score on each of these chunks. In particular, ensembles of classification
models are scored, such as C4.5, RIPPER, naive Bayesian, from sequential chunks of the
data stream. The classifiers in the ensemble are weighted based on their expected classi-
fication accuracy under the time-evolving environment. This ensures that the approach is
able to achieve a higher degree of accuracy because the classifiers are dynamically tuned
to optimize the accuracy for that part of the data stream. It was shown that an ensemble
classifier produces a smaller error than a single classifier if the weights of all classifiers are
assigned based on their expected classification accuracy.

12.8. BIBLIOGRAPHIC NOTES 425

12.6.4 Massive-Domain Streaming Classification

Many streaming applications contain multidimensional discrete attributes with very high
cardinality. In such cases, it becomes difficult to use conventional classifiers because of
memory limitations. The count-min sketch can be used to address these challenges. Each
class is associated with a sketch that is used to track frequent r-combinations of items
in the training data, where r is bounded above by a small number k. For each incoming
training data point, all possible r-combinations (for r ≤ k) are treated as pseudo-items that
are added to the sketch of the relevant class. Different classes will have different relevant
pseudo-items that will show up in the varying frequencies of the cells belonging to sketches
of different classes. These differences can be used to determine the most discriminative cells
in the different sketches. The frequent discriminative pseudo-items are determined to create
implicit rules relating the pseudo-items to the different classes. These rules are implicit
because they are not actually materialized, but implicitly stored in the sketches. They are
retrieved only at the time of the classification of a test instance. For a given test instance,
it is determined, which pseudo-items correspond to the combination of items inside them.
The discriminative ones among them are determined by retrieving their statistics from the
class-specific sketches. These are then used to perform the classification of the test instance,
using the same general approach as a rule-based classifier. The bibliographic notes contain
pointers to details of the massive-domain classification work.

12.7 Summary

In this chapter, algorithms for stream mining were presented. Streams present several chal-
lenges related to high volume, concept drift, the massive-domain nature of data items, and
resource constraints. In this context, synopsis construction is one of the most fundamen-
tal problems in the streaming scenario. As long as a high-quality stream synopsis can be
constructed, it can be leveraged for stream mining algorithms. The major issue with the
use of synopsis methods is that different synopsis structures are suited to different applica-
tions. The most common synopsis structures used with data streams are reservoir samples
and sketches. Reservoir samples provide the greatest flexibility and should be used where
possible.

The core problems of frequent pattern mining, clustering, outlier detection, and classi-
fication have also been addressed in the streaming scenario. Most of these problems can be
addressed with reservoir sampling effectively, where approximate solutions are desired. In
the particular case of outlier detection, numerous variations of the problem definition are
possible in the streaming scenario.

12.8 Bibliographic Notes

A detailed discussion of streaming algorithms may be found in [40]. The reservoir-sampling
method was originally proposed in [498]. The biased reservoir sampling approach with decay
was proposed in [35]. The count-min sketch was described in [165]. Numerous other appli-
cations of the count-min sketch are discussed in the same work. The AMS sketch was
proposed in [72]. The Flajolet–Martin data structure for distinct element counting was pro-
posed in [208]. A survey of synopsis construction algorithms in data streams is provided
in [40]. A detailed discussion of the capabilities of some of these data structures may also
be found in the same work.

426 CHAPTER 12. MINING DATA STREAMS

The lossy frequent itemset counting algorithm was proposed in [376]. Surveys on stream-
ing frequent pattern mining may be found in [34, 40]. The STREAM algorithm was proposed
in [240]. The massive-domain scenario for stream clustering was addressed in [36]. A survey
on stream clustering algorithms may be found in [32]. The STORM algorithm for point out-
lier detection was discussed in [67], and the extension of the LOF algorithm to data streams
was proposed in [426]. The aggregate change detection algorithm was proposed in [21].
Methods for outlier detection in data streams are discussed in [5]. The VFDT and CVFDT
algorithms were proposed in [176, 279]. The microcluster-based classification method was
discussed in [20], and the ensemble method was discussed in [503]. The massive-domain
scenario for streaming classification was discussed in [47]. A survey on stream classification
methods may be found in [33].

12.9 Exercises

1. Let X be a random variable in [0, 1] with mean of 0.5. Show that P (X > 0.9) ≤ 5/9.

2. Suppose the standard deviation of a random variable X is r times its mean. Here, r
can be any constant. Show how to combine the Chebychev inequality and Chernoff
bound to show that repeated i.i.d. samples can be used to create a well-bounded
estimate of X. In other words, we would like to create another random variable Z
(using the multiple i.i.d. samples) with the same expected value of X, such that for
small δ, we would like to show that:

P (|Z − E[Z]) > α · E[Z]) ≤ δ

(Hint: This is the “mean–median trick” discussed in the chapter.)

3. Discuss scenarios in which both the Hoeffding inequality and the Chernoff bound can
be used. Which one applies more generally?

4. Suppose that you have a reservoir of size k = 1000, and you have a sample of a stream
containing an exactly equal distribution of two classes. Use the upper-tail Chernoff
bound to determine the probability that the reservoir contains more than 600 samples
of one of the two classes. Can the lower tail be used?

5. (Difficult) Work out the full proof of the biased reservoir sampling algorithm.

6. (Difficult) Work out the proof of correctness of the dot-product estimate obtained
with the use of the count-min sketch.

7. Discuss the generality of different synopsis construction methods to various stream
mining problems. Why is it difficult to apply these methods to outlier analysis?

8. Implement the CluStream algorithm.

9. Extend the implementation of the previous exercise to the problem of classification
with the microclustering method.

10. Implement the Flajolet–Martin algorithm for distinct element counting.

12.9. EXERCISES 427

11. Suppose that X is a random variable, which always lies in the range [1, 64]. Suppose
that Y is the geometric mean of a large number n of independent and identical real-
izations of X. Establish a bound on log2(Y). Assume that you know the expected
value of log2(X).

12. Let Z be a random variable satisfying E[Z] = 0, and Z ∈ [a, b].

(a) Show that E[et·Z] ≤ et
2·(b−a)2/8.

(b) Use the aforementioned result to complete the proof of the Hoeffding inequality.

13. Suppose that n distinct items are loaded into a bloom filter of length m with w hash
functions.

(a) Show that the probability of a bit taking on the value of 0 is equal to (1−1/m)nw.

(b) Show that the probability in (a) is approximately equal to e−nw/m.

(c) Show that the expected number of 0-bits m0 in the bloom filter is related to n,
m, and w as follows:

n ≈ m · ln(m/m0)
w

14. Show the proof of the bound discussed in the chapter for the count-min sketch when
items with negative counts are included in the sketch.

15. Let a single component of an AMS sketch be constructed for each of two streams
with the same hash-function. Show that the expected value of the product of these
components is equal to the dot product of the frequency vector of distinct items in
the two streams.

16. Show that the variance of the square of an AMS sketch component is bounded above
by twice the square of the second-order moment of the items in the data stream.

17. Show the correctness of AMS point query frequency estimation methodology discussed
in the chapter. In other words, the expected value of the ri ·Q should be equal to the
point query result.

Chapter 13

Mining Text Data

“The first forty years of life give us the text; the next thirty
supply the commentary on it.”—Arthur Schopenhauer

13.1 Introduction

Text data are copiously found in many domains, such as the Web, social networks, newswire
services, and libraries. With the increasing ease in archival of human speech and expression,
the volume of text data will only increase over time. This trend is reinforced by the increasing
digitization of libraries and the ubiquity of the Web and social networks. Some examples of
relevant domains are as follows:

1. Digital libraries: A recent trend in article and book production is to rely on digitized
versions, rather than hard copies. This has led to the proliferation of digital libraries
in which effective document management becomes crucial. Furthermore mining tools
are also used in some domains, such as biomedical literature, to glean useful insights.

2. Web and Web-enabled applications: The Web is a vast repository of documents that
is further enriched with links and other types of side information. Web documents are
also referred to as hypertext. The additional side information available with hypertext
can be useful in the knowledge discovery process. In addition, many web-enabled
applications, such as social networks, chat boards, and bulletin boards, are a significant
source of text for analysis.

3. Newswire services: An increasing trend in recent years has been the de-emphasis of
printed newspapers and a move toward electronic news dissemination. This trend
creates a massive stream of news documents that can be analyzed for important
events and insights.

The set of features (or dimensions) of text is also referred to as its lexicon. A collection of
documents is referred to as a corpus. A document can be viewed as either a sequence, or
a multidimensional record. A text document is, after all, a discrete sequence of words, also

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 13 429
c© Springer International Publishing Switzerland 2015

430 CHAPTER 13. MINING TEXT DATA

referred to as a string. Therefore, many sequence-mining methods discussed in Chap. 15 are
theoretically applicable to text. However, such sequence mining methods are rarely used in
the text domain. This is partially because sequence mining methods are most effective when
the length of the sequences and the number of possible tokens are both relatively modest.
On the other hand, documents can often be long sequences drawn on a lexicon of several
hundred thousand words.

In practice, text is usually represented as multidimensional data in the form of frequency-
annotated bag-of-words. Words are also referred to as terms. Although such a representation
loses the ordering information among the words, it also enables the use of much larger classes
of multidimensional techniques. Typically, a preprocessing approach is applied in which the
very common words are removed, and the variations of the same word are consolidated. The
processed documents are then represented as an unordered set of words, where normalized
frequencies are associated with the individual words. The resulting representation is also
referred to as the vector space representation of text. The vector space representation of a
document is a multidimensional vector that contains a frequency associated with each word
(dimension) in the document. The overall dimensionality of this data set is equal to the
number of distinct words in the lexicon. The words from the lexicon that are not present in
the document are assigned a frequency of 0. Therefore, text is not very different from the
multidimensional data type that has been studied in the preceding chapters.

Due to the multidimensional nature of the text, the techniques studied in the afore-
mentioned chapters can also be applied to the text domain with a modest number of mod-
ifications. What are these modifications, and why are they needed? To understand these
modifications, one needs to understand a number of specific characteristics that are unique
to text data:

1. Number of “zero” attributes: Although the base dimensionality of text data may be
of the order of several hundred thousand words, a single document may contain only
a few hundred words. If each word in the lexicon is viewed as an attribute, and the
document word frequency is viewed as the attribute value, most attribute values are
0. This phenomenon is referred to as high-dimensional sparsity. There may also be a
wide variation in the number of nonzero values across different documents. This has
numerous implications for many fundamental aspects of text mining, such as distance
computation. For example, while it is possible, in theory, to use the Euclidean function
for measuring distances, the results are usually not very effective from a practical
perspective. This is because Euclidean distances are extremely sensitive to the varying
document lengths (the number of nonzero attributes). The Euclidean distance function
cannot compute the distance between two short documents in a comparable way to
that between two long documents because the latter will usually be larger.

2. Nonnegativity: The frequencies of words take on nonnegative values. When combined
with high-dimensional sparsity, the nonnegativity property enables the use of special-
ized methods for document analysis. In general, all data mining algorithms must be
cognizant of the fact that the presence of a word in a document is statistically more
significant than its absence. Unlike traditional multidimensional techniques, incorpo-
rating the global statistical characteristics of the data set in pairwise distance compu-
tation is crucial for good distance function design.

3. Side information: In some domains, such as the Web, additional side information is
available. Examples include hyperlinks or other metadata associated with the doc-
ument. These additional attributes can be leveraged to enhance the mining process
further.

13.2. DOCUMENT PREPARATION AND SIMILARITY COMPUTATION 431

This chapter will discuss the adaptation of many conventional data mining techniques to
the text domain. Issues related to document preprocessing will also be discussed.

This chapter is organized as follows. Section 13.2 discusses the problem of document
preparation and similarity computation. Clustering methods are discussed in Sect. 13.3.
Topic modeling algorithms are addressed in Sect. 13.4. Classification methods are discussed
in Sect. 13.5. The first story detection problem is discussed in Sect. 13.6. The summary is
presented in Sect. 13.7.

13.2 Document Preparation and Similarity
Computation

As the text is not directly available in a multidimensional representation, the first step is to
convert raw text documents to the multidimensional format. In cases where the documents
are retrieved from the Web, additional steps are needed. This section will discuss these
different steps.

1. Stop word removal: Stop words are frequently occurring words in a language that are
not very discriminative for mining applications. For example, the words “a,” “an,” and
“the” are commonly occurring words that provide very little information about the
actual content of the document. Typically, articles, prepositions, and conjunctions are
stop words. Pronouns are also sometimes considered stop words. Standardized stop
word lists are available in different languages for text mining. The key is to understand
that almost all documents will contain these words, and they are usually not indicative
of topical or semantic content. Therefore, such words add to the noise in the analysis,
and it is prudent to remove them.

2. Stemming: Variations of the same word need to be consolidated. For example, singular
and plural representations of the same word, and different tenses of the same word are
consolidated. In many cases, stemming refers to common root extraction from words,
and the extracted root may not even be a word in of itself. For example, the common
root of hoping and hope is hop. Of course, the drawback is that the word hop has a
different meaning and usage of its own. Therefore, while stemming usually improves
recall in document retrieval, it can sometimes worsen precision slightly. Nevertheless,
stemming usually enables higher quality results in mining applications.

3. Punctuation marks: After stemming has been performed, punctuation marks, such
as commas and semicolons, are removed. Furthermore, numeric digits are removed.
Hyphens are removed, if the removal results in distinct and meaningful words. Typi-
cally, a base dictionary may be available for these operations. Furthermore, the distinct
parts of the hyphenated word can either be treated as separate words, or they may
be merged into a single word.

After the aforementioned steps, the resulting document may contain only semantically rel-
evant words. This document is treated as a bag-of-words, in which relative ordering is
irrelevant. In spite of the obvious loss of ordering information in this representation, the
bag-of-words representation is surprisingly effective.

432 CHAPTER 13. MINING TEXT DATA

13.2.1 Document Normalization and Similarity Computation

The problem of document normalization is closely related to that of similarity computation.
While the issue of text similarity is discussed in Chap. 3, it is also discussed here for
completeness. Two primary types of normalization are applied to documents:

1. Inverse document frequency: Higher frequency words tend to contribute noise to data
mining operations such as similarity computation. The removal of stop words is moti-
vated by this aspect. The concept of inverse document frequency generalizes this
principle in a softer way, where words with higher frequency are weighted less.

2. Frequency damping: The repeated presence of a word in a document will typically bias
the similarity computation significantly. To provide greater stability to the similarity
computation, a damping function is applied to word frequencies so that the frequencies
of different words become more similar to one another. It should be pointed out that
frequency damping is optional, and the effects vary with the application at hand.
Some applications, such as clustering, have shown comparable or better performance
without damping. This is particularly true if the underlying data sets are relatively
clean and have few spam documents.

In the following, these different types of normalization will be discussed. The inverse docu-
ment frequency idi of the ith term is a decreasing function of the number of documents ni

in which it occurs:
idi = log(n/ni). (13.1)

Here, the number of documents in the collection is denoted by n. Other ways of computing
the inverse document frequency are possible, though the impact on the similarity function
is usually limited.

Next, the concept of frequency damping is discussed. This normalization ensures that the
excessive presence of a single word does not throw off the similarity computation. Consider
a document with word-frequency vector X = (x1 . . . xd), where d is the size of the lexicon.
A damping function f(·), such as the square root or the logarithm, is optionally applied to
the frequencies before similarity computation:

f(xi) =
√
xi

f(xi) = log(xi).

Frequency damping is optional and is often omitted. This is equivalent to setting f(xi) to
xi. The normalized frequency h(xi) for the ith word may be defined as follows:

h(xi) = f(xi)idi. (13.2)

This model is popularly referred to as the tf-idf model, where tf represents the term fre-
quency and idf represents the inverse document frequency.

The normalized representation of the document is used for data mining algorithms. A
popularly used measure is the cosine measure. The cosine measure between two documents
with raw frequencies X = (x1 . . . xd) and Y = (y1 . . . yd) is defined using their normalized
representations:

cos(X,Y) =
∑d

i=1 h(xi)h(yi)√∑d
i=1 h(xi)2

√∑d
i=1 h(yi)2

(13.3)

Another measure that is less commonly used for text is the Jaccard coefficient J(X,Y):

J(X,Y) =
∑d

i=1 h(xi)h(yi)∑d
i=1 h(xi)2 +

∑d
i=1 h(yi)2 −

∑d
i=1 h(xi)h(yi)

. (13.4)

13.2. DOCUMENT PREPARATION AND SIMILARITY COMPUTATION 433

The Jaccard coefficient is rarely used for the text domain, but it is used very commonly for
sparse binary data as well as sets. Many forms of transaction and market basket data use the
Jaccard coefficient. It needs to be pointed out that the transaction and market basket data
share many similarities with text because of their sparse and nonnegative characteristics.
Most text mining techniques discussed in this chapter can also be applied to these domains
with minor modifications.

13.2.2 Specialized Preprocessing for Web Documents

Web documents require specialized preprocessing techniques because of some common prop-
erties of their structure, and the richness of the links inside them. Two major aspects of
Web document preprocessing include the removal of specific parts of the documents (e.g.,
tags) that are not useful, and the leveraging of the actual structure of the document. HTML
tags are generally removed by most preprocessing techniques.

HTML documents have numerous fields in them, such as the title, the metadata, and the
body of the document. Typically, analytical algorithms treat these fields with different levels
of importance, and therefore weigh them differently. For example, the title of a document is
considered more important than the body and is weighted more heavily. Another example
is the anchor text in Web documents. Anchor text contains a description of the Web page
pointed to by a link. Due to its descriptive nature, it is considered important, but it is
sometimes not relevant to the topic of the page itself. Therefore, it is often removed from
the text of the document. In some cases, where possible, anchor text could even be added to
the text of the document to which it points. This is because anchor text is often a summary
description of the document to which it points.

A Web page may often be organized into content blocks that are not related to the
primary subject matter of the page. A typical Web page will have many irrelevant blocks,
such as advertisements, disclaimers, or notices, that are not very helpful for mining. It has
been shown that the quality of mining results improve when only the text in the main block
is used. However, the (automated) determination of main blocks from web-scale collections
is itself a data mining problem of interest. While it is relatively easy to decompose the
Web page into blocks, it is sometimes difficult to identify the main block. Most automated
methods for determining main blocks rely on the fact that a particular site will typically
utilize a similar layout for the documents on the site. Therefore, if a collection of documents
is available from the site, two types of automated methods can be used:

1. Block labeling as a classification problem: The idea in this case is to create a new
training data set that extracts visual rendering features for each block in the training
data, using Web browsers such as Internet Explorer. Many browsers provide an API
that can be used to extract the coordinates for each block. The main block is then
manually labeled for some examples. This results in a training data set. The resulting
training data set is used to build a classification model. This model is used to identify
the main block in the remaining (unlabeled) documents of the site.

2. Tree matching approach: Most Web sites generate the documents using a fixed tem-
plate. Therefore, if the template can be extracted, then the main block can be identified
relatively easily. The first step is to extract tag trees from the HTML pages. These
represent the frequent tree patterns in the Web site. The tree matching algorithm,
discussed in the bibliographic section, can be used to determine such templates from
these tag trees. After the templates have been found, it is determined, which block
is the main one in the extracted template. Many of the peripheral blocks often have
similar content in different pages and can therefore be eliminated.

434 CHAPTER 13. MINING TEXT DATA

13.3 Specialized Clustering Methods for Text

Most of the algorithms discussed in Chap. 6 can be extended to text data. This is because
the vector space representation of text is also a multidimensional data point. The discus-
sion in this chapter will first focus on generic modifications to multidimensional clustering
algorithms, and then present specific algorithms in these contexts. Some of the clustering
methods discussed in Chap. 6 are used more commonly than others in the text domain.
Algorithms that leverage the nonnegative, sparse, and high-dimensional features of the text
domain are usually preferable to those that do not. Many clustering algorithms require
significant adjustments to address the special structure of text data. In the following, the
required modifications to some of the important algorithms will be discussed in detail.

13.3.1 Representative-Based Algorithms

These correspond to the family of algorithms such as k-means, k-modes, and k-median
algorithms. Among these, the k-means algorithms are the most popularly used for text data.
Two major modifications are required for effectively applying these algorithms to text data.

1. The first modification is the choice of the similarity function. Instead of the Euclidean
distance, the cosine similarity function is used.

2. Modifications are made to the computation of the cluster centroid. All words in the
centroid are not retained. The low-frequency words in the cluster are projected out.
Typically, a maximum of 200 to 400 words in each centroid are retained. This is also
referred to as a cluster digest, and it provides a representative set of topical words for
the cluster. Projection-based document clustering has been shown to have significant
effectiveness advantages. A smaller number of words in the centroid speeds up the
similarity computations as well.

A specialized variation of the k-means for text, which uses concepts from hierarchical clus-
tering, will be discussed in this section. Hierarchical methods can be generalized easily to
text because they are based on generic notions of similarity and distances. Furthermore,
combining them with the k-means algorithm results in both stability and efficiency.

13.3.1.1 Scatter/Gather Approach

Strictly speaking, the scatter/gather terminology does not refer to the clustering algorithm
itself but the browsing ability enabled by the clustering. This section will, however, focus
on the clustering algorithm. This algorithm uses a combination of k-means clustering and
hierarchical partitioning. While hierarchical partitioning algorithms are very robust, they
typically scale worse than Ω(n2), where n is the number of documents in the collection. On
the other hand, the k-means algorithm scales as O(k ·n), where k is the number of clusters.
While the k-means algorithm is more efficient, it can sometimes be sensitive to the choice
of seeds. This is particularly true for text data in which each document contains only a
small part of the lexicon. For example, consider the case where the document set is to be
partitioned into five clusters. A vanilla k-means algorithm will select five documents from
the original data as the initial seeds. The number of distinct words in these five documents
will typically be a very small subset of the entire lexicon. Therefore, the first few iterations
of k-means may not be able to assign many documents meaningfully to clusters when they
do not contain a significant number of words from this small lexicon subset. This initial

13.3. SPECIALIZED CLUSTERING METHODS FOR TEXT 435

incoherence can sometimes be inherited by later iterations, as a result of which the quality
of the final results will be poor.

To address this issue, the scatter/gather approach uses a combination of hierarchical
partitioning and k-means clustering in a two-phase approach. An efficient and simplified
form of hierarchical clustering is applied to a sample of the corpus, to yield a robust set of
seeds in the first phase. This is achieved by using either of two possible procedures that are
referred to as buckshot and fractionation, respectively. Both these procedures are different
types of hierarchical procedures. In the second phase, the robust seeds generated in the first
phase are used as the starting point of a k-means algorithm, as adapted to text data. The
size of the sample in the first phase is carefully selected to balance the time required by the
first phase and the second phase. Thus, the overall approach may be described as follows:

1. Apply either the buckshot or fractionation procedures to create a robust set of initial
seeds.

2. Apply a k-means approach on the resulting set of seeds to generate the final clusters.
Additional refinements may be used to improve the clustering quality.

Next, the buckshot and fractionation procedures will be described. These are two alternatives
for the first phase with a similar running time. The fractionation method is the more robust
one, but the buckshot method is faster in many practical settings.

• Buckshot: Let k be the number of clusters to be found and n be the number of
documents in the corpus. The buckshot method selects a seed superset of size

√
k · n

and then agglomerates them to k seeds. Straightforward agglomerative hierarchical
clustering algorithms (requiring1 quadratic time) are applied to this initial sample of√
k · n seeds. As we use quadratically scalable algorithms in this phase, this approach

requires O(k · n) time. This seed set is more robust than a naive data sample of k
seeds because it represents the summarization of a larger sample of the corpus.

• Fractionation: Unlike the buckshot method, which uses a sample of
√
k · n documents,

the fractionation method works with all the documents in the corpus. The fraction-
ation algorithm initially breaks up the corpus into n/m buckets, each of size m > k
documents. An agglomerative algorithm is applied to each of these buckets to reduce
them by a factor ν ∈ (0, 1). This step creates ν ·m agglomerated documents in each
bucket, and therefore ν ·n agglomerated documents over all buckets. An “agglomerated
document” is defined as the concatenation of the documents in a cluster. The process
is repeated by treating each of these agglomerated documents as a single document.
The approach terminates when a total of k seeds remains.

It remains to be explained how the documents are partitioned into buckets. One
possibility is to use a random partitioning of the documents. However, a more carefully
designed procedure can achieve more effective results. One such procedure is to sort
the documents by the index of the jth most common word in the document. Here, j is
chosen to be a small number, such as 3, that corresponds to medium frequency words
in the documents. Contiguous groups of m documents in this sort order are mapped to
clusters. This approach ensures that the resulting groups have at least a few common
words in them and are therefore not completely random. This can sometimes help in
improving the quality of the centers.

1As discussed in Chap. 6, standard agglomerative algorithms require more than quadratic time, though
some simpler variants of single-linkage clustering [469] can be implemented in approximately quadratic time.

436 CHAPTER 13. MINING TEXT DATA

The agglomerative clustering of m documents in the first iteration of the fractionation
algorithm requires O(m2) time for each group, and sums to O(n · m) over the n/m
different groups. As the number of individuals reduces geometrically by a factor of ν
in each iteration, the total running time over all iterations is O(n·m·(1+ν+ν2+. . .)).
For ν < 1, the running time over all iterations is still O(n ·m). By selecting m = O(k),
one still ensure a running time of O(n · k) for the initialization procedure.

The buckshot and fractionation procedures require O(k · n) time. This is equivalent to
the running time of a single iteration of the k-means algorithm. As discussed below, this is
important in (asymptotically) balancing the running time of the two phases of the algorithm.

When the initial cluster centers have been determined with the use of the buckshot or
fractionation algorithms, one can apply the k-means algorithm with the seeds obtained in
the first step. Each document is assigned to the nearest of the k cluster centers. The centroid
of each such cluster is determined as the concatenation of the documents in that cluster.
Furthermore, the less frequent words of each centroid are removed. These centroids replace
the seeds from the previous iteration. This process can be iteratively repeated to refine the
cluster centers. Typically, only a small constant number of iterations is required because the
greatest improvements occur only in the first few iterations. This ensures that the overall
running time of each of the first and second phases is O(k · n).

It is also possible to use a number of enhancements after the second clustering phase.
These enhancements are as follows:

• Split operation: The process of splitting can be used to further refine the clusters into
groups of better granularity. This can be achieved by applying the buckshot procedure
on the individual documents in a cluster by using k = 2 and then reclustering around
these centers. This entire procedure requires O(k · ni) time for a cluster containing
ni documents, and therefore splitting all the groups requires O(k · n) time. However,
it is not necessary to split all the groups. Instead, only a subset of the groups can
be split. These are the groups that are not very coherent and contain documents of
a disparate nature. To measure the coherence of a group, the self-similarity of the
documents in the cluster is computed. This self-similarity provides an understanding
of the underlying coherence. This quantity can be computed either in terms of the
average similarity of the documents in a cluster to its centroid or in terms of the
average similarity of the cluster documents to each other. The split criterion can then
be applied selectively only to those clusters that have low self-similarity. This helps
in creating more coherent clusters.

• Join operation: The join operation merges similar clusters into a single cluster. To
perform the merging, the topical words of each cluster are computed, as the most
frequent words in the centroid of the cluster. Two clusters are considered similar if
there is significant overlap between the topical words of the two clusters.

The scatter/gather approach is effective because of its ability to combine hierarchical and
k-means algorithms.

13.3.2 Probabilistic Algorithms

Probabilistic text clustering can be considered an unsupervised version of the naive Bayes
classification method discussed in Sect. 10.5.1 of Chap. 10. It is assumed that the documents
need to be assigned to one of k clusters G1 . . .Gk. The basic idea is to use the following
generative process:

13.3. SPECIALIZED CLUSTERING METHODS FOR TEXT 437

1. Select a cluster Gm, where m ∈ {1 . . . k}.

2. Generate the term distribution of Gm based on a generative model. Examples of such
models for text include the Bernoulli model or the multinomial model.

The observed data are then used to estimate the parameters of the Bernoulli or multinomial
distributions in the generative process. This section will discuss the Bernoulli model.

The clustering is done in an iterative way with the EM algorithm, where cluster assign-
ments of documents are determined from conditional word distributions in the E-step with
the Bayes rule, and the conditional word distributions are inferred from cluster assignments
in the M-step. For initialization, the documents are randomly assigned to clusters. The ini-
tial prior probabilities P (Gm) and conditional feature distributions P (wj |Gm) are estimated
from the statistical distribution of this random assignment. A Bayes classifier is used to
estimate the posterior probability P (Gm|X) in the E-step. The Bayes classifier commonly
uses either a Bernoulli model or the multinomial model discussed later in this chapter. The
posterior probability P (Gm|X) of the Bayes classifier can be viewed as a soft assignment
probability of document X to the mth mixture component Gm. The conditional feature
distribution P (wj |Gm) for word wj is estimated from these posterior probabilities in the
M-step as follows:

P (wj |Gm) =
∑

X P (Gm|X) · I(X,wj)∑
X P (Gm|X)

(13.5)

Here, I(X,wj) is an indicator variable that takes on the value of 1, if the word wj is present in
X, and 0, otherwise. As in the Bayes classification method, the same Laplacian smoothing
approach may be incorporated to reduce overfitting. The prior probabilities P (Gm) for
each cluster may also be estimated by computing the average assignment probability of all
documents to Gm. This completes the description of the M-step of the EM algorithm. The
next E-step uses these modified values of P (wj |Gm) and the prior probability to derive the
posterior Bayes probability with a standard Bayes classifier. Therefore, the following two
iterative steps are repeated to convergence:

1. (E-step) Estimate posterior probability of membership of documents to clusters using
Bayes rule:

P (Gm|X) ∝ P (Gm)
∏

wj∈X

P (wj |Gm)
∏

wj
∈X

(1− P (wj |Gm)) . (13.6)

The aforementioned Bayes rule assumes a Bernoulli generative model. Note that
Eq. 13.6 is identical to naive Bayes posterior probability estimation for classifica-
tion. The multinomial model, which is discussed later in this chapter, may also be
used. In such a case, the aforementioned posterior probability definition of Eq. 13.6
is replaced by the multinomial Bayes classifier.

2. (M-step) Estimate conditional distribution P (wj |Gm) of words (Eq. 13.5) and prior
probabilities P (Gm) of different clusters using the estimated probabilities in the E-
step.

At the end of the process, the estimated value of P (Gm|X) provides a cluster assignment
probability and the estimated value of P (wj |Gm) provides the term distribution of each
cluster. This can be viewed as a probabilistic variant of the notion of cluster digest discussed
earlier. Therefore, the probabilistic method provides dual insights about cluster membership
and the words relevant to each cluster.

438 CHAPTER 13. MINING TEXT DATA

13.3.3 Simultaneous Document and Word Cluster Discovery

The probabilistic algorithm discussed in the previous section can simultaneously discover
document and word clusters. As discussed in Sect. 7.4 of Chap. 7 on high-dimensional clus-
tering methods, this is important in the high-dimensional case because clusters are best
characterized in terms of both rows and columns simultaneously. In the text domain, the
additional advantage of such methods is that the topical words of a cluster provide seman-
tic insights about that cluster. Another example is the nonnegative matrix factorization
method, discussed in Sect. 6.8 of Chap. 6. This approach is very popular in the text domain
because the factorized matrices have a natural interpretation for text data. This approach
can simultaneously discover word clusters and document clusters that are represented by
the columns of the two factorized matrices. This is also closely related to the concept of
co-clustering.

13.3.3.1 Co-clustering

Co-clustering is most effective for nonnegative matrices in which many entries have zero
values. In other words, the matrix is sparsely populated. This is the case for text data. Co-
clustering methods can also be generalized to dense matrices, although these techniques are
not relevant to the text domain. Co-clustering is also sometimes referred to as bi-clustering
or two-mode clustering because of its exploitation of both “modes” (words and documents).
While the co-clustering method is presented here in the context of text data, the broader
approach is also used in the biological domain with some modifications.

The idea in co-clustering is to rearrange the rows and columns in the data matrix so
that most of the nonzero entries become arranged into blocks. In the context of text data,
this matrix is the n × d document term matrix D, where rows correspond to documents
and columns correspond to words. Thus, the ith cluster is associated with a set of rows Ri

(documents), and a set of columns Vi (words). The rows Ri are disjoint from one another
over different values of i, and the columns Vi are also disjoint from one another over different
values of i. Thus, the co-clustering method simultaneously leads to document clusters and
word clusters. From an intuitive perspective, the words representing the columns of Vi are
the most relevant (or topical) words for cluster Ri. The set Vi therefore defines a cluster
digest of Ri.

In the context of text data, word clusters are just as important as document clusters
because they provide insights about the topics of the underlying collection. Most of the
methods discussed in this book for document clustering, such as the scatter/gather method,
probabilistic methods, and nonnegative matrix factorization (see Sect. 6.8 of Chap. 6, pro-
duce word clusters (or cluster digests) in addition to document clusters. However, the words
in the different clusters are overlapping in these algorithms, whereas document clusters are
non overlapping in all algorithms except for the probabilistic (soft) EM method. In co-
clustering, the word clusters and document clusters are both non overlapping. Each docu-
ment and word is strictly associated with a particular cluster. One nice characteristic of
co-clustering is that it explicitly explores the duality between word clusters and document
clusters. Coherent word clusters can be shown to induce coherent document clusters and
vice versa. For example, if meaningful word clusters were already available, then one might
be able to cluster documents by assigning each document to the word cluster with which
it has the most words in common. In co-clustering, the goal is to do this simultaneously so
that word clusters and document clusters depend on each other in an optimal way.

13.3. SPECIALIZED CLUSTERING METHODS FOR TEXT 439

PI
O

N

H
YRO

N

IV
IT

Y

TU
M

N
AM

EN
T

CH
AM

TR
O

PH

EL
EC

TR

RE
LA

TI

Q
UA

N
T

TO
U

RN

D1 2 0 1 01 31

D2

3

0

1

2

0

0

1

1

2

3 0

0D3

D4
0

3

2

1

0

0

2

1

0

2

3

0

D6

D5
1

01

0 2 31

2 300

0

N EN
T

Y M

CH
AM

PI
O

N

TR
O

PH
Y

TO
U

RN
AM

EL
EC

TR
O

N

RE
LA

TI
VI

TY

Q
UA

N
TU

M

D1

D4SPORTS

2 31

322

0 1 0

0 0 0

D2

D6

CO CLUSTER
31 2

00 0 2 1 3

0 0 0

2

D3

D

PHYSICS
CO CLUSTER1

1

00

0 0 2

1

1

3

3

2

D5 10 0 2 1 3

(a) Document-term matrix (b) Re-arranged document-term matrix

Figure 13.1: Illustrating row and column reordering in co-clustering

To illustrate this point, a toy example2 of a 6 × 6 document-word matrix has been
illustrated in Fig. 13.1a. The entries in the matrix correspond to the word frequencies in
six documents denoted by D1 . . . D6. The six words in this case are champion, electron,
trophy, relativity, quantum, and tournament. It is easy to see that some of the words are
from sports-related topics, whereas other words are from science-related topics. Note that
the nonzero entries in the matrix of Fig. 13.1a seem to be arranged randomly. It should
be noted that the documents {D1, D4, D6} seem to contain words relating to sports topics,
whereas the documents {D2, D3, D5} seem to contain words relating to scientific topics.
However, this is not evident from the random distribution of the entries in Fig. 13.1a.
On the other hand, if the rows and columns were permuted, so that all the sports-related
rows/columns occur earlier than all the science-related rows/columns, then the resulting
matrix is shown in Fig. 13.1b. In this case, there is a clear block structure to the entries,
in which disjoint rectangular blocks contain most of the nonzero entries. These rectangular
blocks are shaded in Fig. 13.1b. The goal is to minimize the weights of the nonzero entries
outside these shaded blocks.

How, then, can the co-clustering problem be solved? The simplest solution is to convert
the problem to a bipartite graph partitioning problem, so that the aggregate weight of the
nonzero entries in the nonshaded regions is equal to the aggregate weight of the edges across
the partitions. A node set Nd is created, in which each node represents a document in the
collection. A node set Nw is created, in which each node represents a word in the collection.
An undirected bipartite graph G = (Nd ∪ Nw, A) is created, such that an edge (i, j) in A
corresponds to a nonzero entry in the matrix, where i ∈ Nd and j ∈ Nw. The weight of
an edge is equal to the frequency of the term in the document. The bipartite graph for
the co-cluster of Fig. 13.1 is illustrated in Fig. 13.2. A partitioning of this graph represents
a simultaneous partitioning of the rows and columns. In this case, a 2-way partitioning
has been illustrated for simplicity, although a k-way partitioning could be constructed in
general. Note that each partition contains a set of documents and a corresponding set of
words. It is easy to see that the corresponding documents and words in each graph partition
of Fig. 13.2 represent the shaded areas in Fig. 13.1b. It is also easy to see that the weight

2While the document-term matrix is square in this specific toy example, this might not be the case in
general because the corpus size n, and the lexicon size d are generally different.

440 CHAPTER 13. MINING TEXT DATA

SDROWSTNEMUCOD

D1 CHAMPION

SPORTS

1
2

3
2
1

D4

D6

TROPHY

TOURNAMENT

SPORTS
CO CLUSTER

2
2

3

3
21

2 WAY

D2 ELECTRON

S CS
3
2
1

2
CUT

VALUE

D3 RELATIVITY
PHYSICS

CO CLUSTER

121
2

1
31

D5 QUANTUM3

Figure 13.2: Graph partitioning for co-clustering

of edges across the partition represents the weight of the nonzero entries in Fig. 13.1b.
Therefore, a k-way co-clustering problem can be converted to a k-way graph partitioning
problem. The overall co-clustering approach may be described as follows:

1. Create a graph G = (Nd ∪Nw, A) with nodes in Nd representing documents, nodes in
Nw representing words, and edges in A with weights representing nonzero entries in
matrix D.

2. Use a k-way graph partitioning algorithm to partition the nodes in Nd ∪ Nw into k
groups.

3. Report row–column pairs (RiVi) for i ∈ {1 . . . k}. Here, Ri represents the rows cor-
responding to nodes in Nd for the ith cluster, and Vi represents the columns corre-
sponding to the nodes in Nw for the ith cluster.

It remains to be explained, how the k-way graph partitioning may be performed. The
problem of graph partitioning is addressed in Sect. 19.3 of Chap. 19. Any of these algo-
rithms may be leveraged to determine the required graph partitions. Specialized methods
for bipartite graph partitioning are also discussed in the bibliographic notes.

13.4 Topic Modeling

Topic modeling can be viewed as a probabilistic version of the latent semantic analysis (LSA)
method, and the most basic version of the approach is referred to as Probabilistic Latent
Semantic Analysis (PLSA). It provides an alternative method for performing dimensionality
reduction and has several advantages over traditional LSA.

Probabilistic latent semantic analysis is an expectation maximization-based mixture
modeling algorithm. However, the way in which the EM algorithm is used is different than
the other examples of the EM algorithm in this book. This is because the underlying gen-
erative process is different, and is optimized to discovering the correlation structure of the
words rather than the clustering structure of the documents. This is because the approach

13.4. TOPIC MODELING 441

SELECT HIDDEN
COMPONENT ESTIMATECOMPONENT

(CLUSTER)
ESTIMATE
MODELING
PARAMETERS
FROM
DOCUMENT

GENERATE ROW
(DOCUMENT) OF

DOCUMENT
TERM MATRIX
BY USING ITS
ROWS AS
OBSERVEDDOCUMENT TERM

MATRIX BASED ON
HIDDEN

COMPONENT

OBSERVED
DOCUMENTS

SELECT HIDDEN
COMPONENT ESTIMATE

(ASPECT) MODELING
PARAMETERS
FROM
DOCUMENT

SELECT POSITION IN
DOCUMENT TERM

TERM MATRIX
BY USING ITS
ENTRIES AS
OBSERVEDMATRIX BASED

ON HIDDEN
COMPONENT AND

INCREASE BY 1

OBSERVED
FREQUENCIES

(a) EM-clustering (section 13.3.2) (b) PLSA

Figure 13.3: Varying generative process of EM-clustering and PLSA

can be viewed as a probabilistic variant of SVD and LSA, rather than a probabilistic variant
of clustering. Nevertheless, soft clusters can also be generated with the use of this method.
There are many other dimensionality reduction methods, such as nonnegative matrix fac-
torization, which are intimately related to clustering. PLSA is, in fact, a nonnegative matrix
factorization method with a maximum-likelihood objective function.

In most of the EM clustering algorithms of this book, a mixture component (cluster) is
selected, and then the data record is generated based on a particular form of the distribution
of that component. An example is the Bernoulli clustering model, which is discussed in
Sect. 13.3.2. In PLSA, the generative process3 is inherently designed for dimensionality
reduction rather than clustering, and different parts of the same document can be generated
by different mixture components. It is assumed that there are k aspects (or latent topics)
denoted by G1 . . .Gk. The generative process builds the document-term matrix as follows:

1. Select a latent component (aspect) Gm with probability P (Gm).

2. Generate the indices (i, j) of a document–word pair (Xi, wj) with probabilities
P (Xi|Gm) and P (wj |Gm), respectively. Increment the frequency of entry (i, j) in the
document-term matrix by 1. The document and word indices are generated in a prob-
abilistically independent way.

All the parameters of this generative process, such as P (Gm), P (Xi|Gm), and P (wj |Gm),
need to be estimated from the observed frequencies in the n× d document-term matrix.

Although the aspects G1 . . .Gk are analogous to the clusters of Sect. 13.3.2, they are not
the same. Note that each iteration of the generative process of Sect. 13.3.2 creates the final
frequency vector of an entire row of the document-term matrix. In PLSA, even a single
matrix entry may have frequency contributions from various mixture components. Indeed,
even in deterministic latent semantic analysis, a document is expressed as a linear combina-
tion of different latent directions. Therefore, the interpretation of each mixture component
as a cluster is more direct in the method of Sect. 13.3.2. The generative differences between
these models are illustrated in Fig. 13.3. Nevertheless, PLSA can also be used for clus-
tering because of the highly interpretable and nonnegative nature of the underlying latent
factorization. The relationship with and applicability to clustering will be discussed later.

3The original work [271] uses an asymmetric generative process, which is equivalent to the (simpler)
symmetric generative process discussed here.

442 CHAPTER 13. MINING TEXT DATA

An important assumption in PLSA is that the selected documents and words are condi-
tionally independent after the latent topical component Gm has been fixed. In other words,
the following is assumed:

P (Xi, wj |Gm) = P (Xi|Gm) · P (wj |Gm) (13.7)

This implies that the joint probability P (Xi, wj) for selecting a document–word pair can
be expressed in the following way:

P (Xi, wj) =
k∑

m=1

P (Gm) · P (Xi, wj |Gm) =
k∑

m=1

P (Gm) · P (Xi|Gm) · P (wj |Gm). (13.8)

It is important to note that local independence between documents and words within a
latent component does not imply global independence between the same pair over the entire
corpus. The local independence assumption is useful in the derivation of EM algorithm.

In PLSA, the posterior probability P (Gm|Xi, wj) of the latent component associated
with a particular document–word pair is estimated. The EM algorithm starts by initializing
P (Gm), P (Xi|Gm), and P (wj |Gm) to 1/k, 1/n, and 1/d, respectively. Here, k, n, and d
denote the number of clusters, number of documents, and number of words, respectively.
The algorithm iteratively executes the following E- and M-steps to convergence:

1. (E-step) Estimate posterior probability P (Gm|Xi, wj) in terms of P (Gm), P (Xi|Gm),
and P (wj |Gm).

2. (M-step) Estimate P (Gm), P (Xi|Gm) and P (wj |Gm) in terms of the posterior prob-
ability P (Gm|Xi, wj), and observed data about word-document co-occurrence using
log-likelihood maximization.

These steps are iteratively repeated to convergence. It now remains to discuss the details
of the E-step and the M-step. First, the E-step is discussed. The posterior probability
estimated in the E-step can be expanded using the Bayes rule:

P (Gm|Xi, wj) =
P (Gm) · P (Xi, wj |Gm)

P (Xi, wj)
. (13.9)

The numerator of the right-hand side of the aforementioned equation can be expanded using
Eq. 13.7, and the denominator can be expanded using Eq. 13.8:

P (Gm|Xi, wj) =
P (Gm) · P (Xi|Gm) · P (wj |Gm)∑k
r=1 P (Gr) · P (Xi|Gr) · P (wj |Gr)

. (13.10)

This shows that the E-step can be implemented in terms of the estimated values P (Gm),
P (Xi|Gm), and P (wj |Gm).

It remains to show how these values can be estimated using the observed word-document
co-occurrences in the M-step. The posterior probabilities P (Gm|Xi, wj) may be viewed as
weights attached with word-document co-occurrence pairs for each aspect Gm. These weights
can be leveraged to estimate the values P (Gm), P (Xi|Gm), and P (wj |Gm) for each aspect
using maximization of the log-likelihood function. The details of the log-likelihood function,
and the differential calculus associated with the maximization process will not be discussed
here. Rather, the final estimated values will be presented directly. Let f(Xi, wj) represent

13.4. TOPIC MODELING 443

the observed frequency of the occurrence of word wj in document Xi in the corpus. Then,
the estimations in the M-step are as follows:

P (Xi|Gm) ∝
∑
wj

f(Xi, wj) · P (Gm|Xi, wj) ∀i ∈ {1 . . . n},m ∈ {1 . . . k} (13.11)

P (wj |Gm) ∝
∑
Xi

f(Xi, wj) · P (Gm|Xi, wj) ∀j ∈ {1 . . . d},m ∈ {1 . . . k} (13.12)

P (Gm) ∝
∑
Xi

∑
wj

f(Xi, wj) · P (Gm|Xi, wj) ∀m ∈ {1 . . . k}. (13.13)

Each of these estimations may be scaled to a probability by ensuring that they sum to 1
over all the outcomes for that random variable. This scaling corresponds to the constant
of proportionality associated with the “∝” notation in the aforementioned equations. Fur-
thermore, these estimations can be used to decompose the original document-term matrix
into a product of three matrices, which is very similar to SVD/LSA. This relationship will
be explored in the next section.

13.4.1 Use in Dimensionality Reduction and Comparison with
Latent Semantic Analysis

The three key sets of parameters estimated in the M-step are P (Xi|Gm), P (wj |Gm), and
P (Gm), respectively. These sets of parameters provide an SVD-like matrix factorization of
the n×d document-term matrix D. Assume that the document-term matrix D is scaled by
a constant to sum to an aggregate probability value of 1. Therefore, the (i, j)th entry of D
can be viewed as an observed instantiation of the probabilistic quantity P (Xi, wj). Let Qk

be the n× k matrix, for which the (i,m)th entry is P (Xi|Gm), let Σk be the k× k diagonal
matrix for which the mth diagonal entry is P (Gm), and let Pk be the d×k matrix for which
the (j,m)th entry is P (wj |Gm). Then, the (i, j)th entry P (Xi, wj) of the matrix D can
be expressed in terms of the entries of the aforementioned matrices according to Eq. 13.8,
which is replicated here:

P (Xi, wj) =
k∑

m=1

P (Gm) · P (Xi|Gm) · P (wj |Gm). (13.14)

This LHS of the equation is equal to the (i, j)th entry of D, whereas the RHS of the
equation is the (i, j)th entry of the matrix product QkΣkP

T
k . Depending on the number of

components k, the LHS can only approximate the matrix D, which is denoted by Dk. By
stacking up the n× d conditions of Eq. 13.14, the following matrix condition is obtained:

Dk = QkΣkP
T
k . (13.15)

It is instructive to note that the matrix decomposition in Eq. 13.15 is similar to that in
SVD/LSA (cf. Eq. 2.12 of Chap. 2). Therefore, as in LSA, Dk is an approximation of the
document-term matrix D, and the transformed representation in k-dimensional space is
given by QkΣk. However, the transformed representations will be different in PLSA and
LSA. This is because different objective functions are optimized in the two cases. LSA
minimizes the mean-squared error of the approximation, whereas PLSA maximizes the
log-likelihood fit to a probabilistic generative model. One advantage of PLSA is that the
entries of Qk and Pk and the transformed coordinate values are nonnegative and have clear

444 CHAPTER 13. MINING TEXT DATA

d
WORDS

SCALED S

k
TOPICS

TOPICS
kT O

F
TS

WORDS
d

n

O
CU

M
EN

TS
SCALED

DOCUMENT
TERM

MATRIX

O
CU

M
EN

TS

n x

k

k

TO
PI

CS x

TO
PI

CS k

D
O

M
IN

AN
T

S
VE

CT
O

RS
VE

RT
ED

LI
ST

d

k
k DOMINANT

BASIS VECTORS
OF DOCUMENTS

DO D
O k

BA
SI

S
IN

V

P(Gm): PRIOR PROBABILITY
OF TOPIC GmQk = [P(Xi|Gm)]

Pk
T = [P(wj|Gm)]

D = [P(Xi, wj)]

Figure 13.4: Matrix factorization of PLSA
CH

E

AH AR RI

G
ERO
N EE

TA
H

G
UA

R

RS
CH

E

RR
AR

I

0
CA

TS

CA
RS

X1

PO
RS

C

CH
EE

TA

LI
O

N

JA
G

UA

FE
RR

A

0 0

TI
G

ER

X1

X

TI
G

CATS

LI
O

CH JA
G

PO FE
R

0 0 0

0 0

0

0

X2

X3

X4

0

00 X
CATS

BOTH

0 0

0 0

X2

X3

X CARS

Pk
T0 0

00

4

X5

X6

BOTH

CARS
0

0

00

0X6

X5

X4

0

k

QkD

Figure 13.5: An example of PLSA (Revisiting Fig. 6.22 of Chap. 6)

probabilistic interpretability. By examining the probability values in each column of Pk, one
can immediately infer the topical words of the corresponding aspect. This is not possible
in LSA, where the entries in the corresponding matrix Pk do not have clear probabilistic
significance and may even be negative. One advantage of LSA is that the transformation can
be interpreted in terms of the rotation of an orthonormal axis system. In LSA, the columns
of Pk are a set of orthonormal vectors representing this rotated basis. This is not the case
in PLSA. Orthogonality of the basis system in LSA enables straightforward projection of
out-of-sample documents (i.e., documents not included in D) onto the new rotated axis
system.

Interestingly, as in SVD/LSA, the latent properties of the transpose of the document
matrix are revealed by PLSA. Each row of PkΣk can be viewed as the transformed coordi-
nates of the vertical or inverted list representation (rows of the transpose) of the document
matrix D in the basis space defined by columns of Qk. These complementary properties
are illustrated in Fig. 13.4. PLSA can also be viewed as a kind of nonnegative matrix
factorization method (cf. Sect. 6.8 of Chap. 6) in which matrix elements are interpreted
as probabilities and the maximum-likelihood estimate of a generative model is maximized
rather than minimizing the Frobenius norm of the error matrix.

An example of an approximately optimal PLSA matrix factorization of a toy 6×6 exam-
ple, with 6 documents and 6 words, is illustrated in Fig. 13.5. This example is the same
(see Fig. 6.22) as the one used for nonnegative matrix factorization (NMF) in Chap. 6.
Note that the factorizations in the two cases are very similar except that all basis vectors

13.4. TOPIC MODELING 445

are normalized to sum to 1 in PLSA, and the dominance of the basis vectors is reflected
in a separate diagonal matrix containing the prior probabilities. Although the factorization
presented here for PLSA is identical to that of NMF for intuitive understanding, the fac-
torizations will usually be slightly different4 because of the difference in objective functions
in the two cases. Also, most of the entries in the factorized matrices will not be exactly 0
in a real example, but many of them might be quite small.

As in LSA, the problems of synonymy and polysemy are addressed by PLSA. For exam-
ple, if an aspect G1 explains the topic of cats, then two documents X and Y containing
the words “cat” and “kitten,” respectively, will have positive values of the transformed
coordinate for aspect G1. Therefore, similarity computations between these documents will
be improved in the transformed space. A word with multiple meanings (polysemous word)
may have positive components in different aspects. For example, a word such as “jaguar”
can either be a cat or a car. If G1 be an aspect that explains the topic of cats, and G2 is
an aspect that explains the topic of cars, then both P (“jaguar”|G1) and P (“jaguar”|G2)
may be highly positive. However, the other words in the document will provide the context
necessary to reinforce one of these two aspects. A document X that is mostly about cats
will have a high value of P (X|G1), whereas a document Y that is mostly about cars will
have a high value of P (Y |G2). This will be reflected in the matrix Qk = [P (Xi|Gm)]n×k and
the new transformed coordinate representation QkΣk. Therefore, the computations will also
be robust in terms of adjusting for polysemy effects. In general, semantic concepts will be
amplified in the transformed representation QkΣk. Therefore, many data mining applica-
tions will perform more robustly in terms of the n × k transformed representation QkΣk

rather than the original n× d document-term matrix.

13.4.2 Use in Clustering and Comparison with Probabilistic
Clustering

The estimated parameters have intuitive interpretations in terms of clustering. In the Bayes
model for clustering (Fig. 13.3a), the generative process is optimized to clustering docu-
ments, whereas the generative process in topic modeling (Fig. 13.3b) is optimized to discov-
ering the latent semantic components. The latter can be shown to cluster document–word
pairs, which is different from clustering documents. Therefore, although the same parame-
ter set P (wj |Gm) and P (X|Gm) is estimated in the two cases, qualitatively different results
will be obtained. The model of Fig. 13.3a generates a document from a unique hidden
component (cluster), and the final soft clustering is a result of uncertainty in estimation
from observed data. On the other hand, in the probabilistic latent semantic model, different
parts of the same document may be generated by different aspects, even at the generative
modeling level. Thus, documents are not generated by individual mixture components, but
by a combination of mixture components. In this sense, PLSA provides a more realistic
model because the diverse words of an unusual document discussing both cats and cars
(see Fig. 13.5) can be generated by distinct aspects. In Bayes clustering, even though such
a document is generated in entirety by one of the mixture components, it may have sim-
ilar assignment (posterior) probabilities with respect to two or more clusters because of
estimation uncertainty. This difference is because PLSA was originally intended as a data
transformation and dimensionality reduction method, rather than as a clustering method.
Nevertheless, good document clusters can usually be derived from PLSA as well. The value
P (Gm|Xi) provides an assignment probability of the document Xi to aspect (or “cluster”)

4The presented factorization for PLSA is approximately optimal, but not exactly optimal.

446 CHAPTER 13. MINING TEXT DATA

Gm and can be derived from the parameters estimated in the M-step using the Bayes rule
as follows:

P (Gm|Xi) =
P (Gm) · P (Xi|Gm)∑k
r=1 P (Gr) · P (Xi|Gr)

. (13.16)

Thus, the PLSA approach can also be viewed a soft clustering method that provides assign-
ment probabilities of documents to clusters. In addition, the quantity P (wj |Gm), which is
estimated in the M-step, provides probabilistic information about the probabilistic affinity
of different words to aspects (or topics). The terms with the highest probability values for
a specific aspect Gm can be viewed as a cluster digest for that topic.

As the PLSA approach also provides a multidimensional n×k coordinate representation
QkΣk of the documents, a different way of performing the clustering would be to represent
the documents in this new space and use a k-means algorithm on the transformed corpus.
Because the noise impact of synonymy and polysemy has been removed by PLSA, the k-
means approach will generally be more effective on the reduced representation than on the
original corpus.

13.4.3 Limitations of PLSA

Although the PLSA method is an intuitively sound model for probabilistic modeling, it
does have a number of practical drawbacks. The number of parameters grows linearly with
the number of documents. Therefore, such an approach can be slow and may overfit the
training data because of the large number of estimated parameters. Furthermore, while
PLSA provides a generative model of document–word pairs in the training data, it cannot
easily assign probabilities to previously unseen documents. Most of the other EM mixture
models discussed in this book, such as the probabilistic Bayes model, are much better at
assigning probabilities to previously unseen documents. To address these issues, Latent
Dirichlet Allocation (LDA) was defined. This model uses Dirichlet priors on the topics,
and generalizes relatively easily to new documents. In this sense, LDA is a fully generative
model. The bibliographic notes contain pointers to this model.

13.5 Specialized Classification Methods for Text

As in clustering, classification algorithms are affected by the nonnegative, sparse and high-
dimensional nature of text data. An important effect of sparsity is that the presence of a
word in a document is more informative than the absence of the word. This observation
has implications for classification methods such as the Bernoulli model used for Bayes
classification that treat the presence and absence of a word in a symmetric way.

Popular techniques in the text domain include instance-based methods, the Bayes clas-
sifier, and the SVM classifier. The Bayes classifier is very popular because Web text is often
combined with other types of features such as URLs or side information. It is relatively
easy to incorporate these features into the Bayes classifier. The sparse high-dimensional
nature of text also necessitates the design of more refined multinomial Bayes models for the
text domain. SVM classifiers are also extremely popular for text data because of their high
accuracy. The major issue with the use of the SVM classifier is that the high-dimensional
nature of text necessitates performance enhancements to such classifiers. In the following,
some of these algorithms will be discussed.

13.5. SPECIALIZED CLASSIFICATION METHODS FOR TEXT 447

13.5.1 Instance-Based Classifiers

Instance-based classifiers work surprisingly well for text, especially when a preprocessing
phase of clustering or dimensionality reduction is performed. The simplest form of the
nearest neighbor classifier returns the dominant class label of the top-k nearest neighbors
with the cosine similarity. Weighting the vote with the cosine similarity value often provides
more robust results. However because of the sparse and high-dimensional nature of text
collections, this basic procedure can be modified in two ways to improve both the efficiency
and the effectiveness. The first method uses dimensionality reduction in the form of latent
semantic indexing. The second method uses fine-grained clustering to perform centroid-
based classification.

13.5.1.1 Leveraging Latent Semantic Analysis

A major source of error in instance-based classification is the noise inherent in text col-
lections. This noise is often a result of synonymy and polysemy. For example, the words
comical and hilarious mean approximately the same thing. Polysemy refers to the fact that
the same word may mean two different things. For example, the word jaguar could refer to
a car or a cat. Typically, the significance of a word can be understood only in the context of
other words in the document. These characteristics of text create challenges for classifica-
tion algorithms because the computation of similarity with the use of word frequencies may
not be completely accurate. For example, two documents containing the words comical and
hilarious, respectively, may not be deemed sufficiently similar because of synonymy effects.
In latent semantic indexing, dimensionality reduction is applied to the collection to reduce
these effects.

Latent semantic analysis (LSA) is an approach that relies on singular value decomposi-
tion (SVD) to create a reduced representation for the text collection. The reader is advised
to refer to Sect. 2.4.3.3 of Chap. 2 for details of SVD and LSA. The latent semantic analysis
(LSA) method is an application of the SVD method to the n× d document-term matrix D,
where d is the size of the lexicon, and n is the number of documents. The eigenvectors with
the largest eigenvalues of the square d × d matrix DTD are used for data representation.
The sparsity of the data set results in a low intrinsic dimensionality. Therefore, in the text
domain, the reduction in dimensionality resulting from LSA is rather drastic. For example,
it is not uncommon to be able to represent a corpus drawn on a lexicon of size 100,000 in
less than 300 dimensions. The removal of the dimensions with small eigenvalues typically
leads to a reduction in the noise effects of synonymy and polysemy. This data representation
is no longer sparse and resembles multidimensional numeric data. A conventional k-nearest
neighbor classifier with cosine similarity can be used on this transformed corpus. The LSA
method does require an additional effort up front to create the eigenvectors.

13.5.1.2 Centroid-Based Classification

Centroid-based classification is a fast alternative to k-nearest neighbor classifiers. The basic
idea is to use an off-the-shelf clustering algorithm to partition the documents of each class
into clusters. The number of clusters derived from the documents of each class is proportional
to the number of documents in that class. This ensures that the clusters in each class are
of approximately the same granularity. Class labels are associated with individual clusters
rather than the actual documents.

The cluster digests from the centroids are extracted by retaining only the most frequent
words in that centroid. Typically, about 200 to 400 words are retained in each centroid. The

448 CHAPTER 13. MINING TEXT DATA

lexicon in each of these centroids provides a stable and topical representation of the subjects
in each class. An example of the (weighted) word vectors for two classes corresponding to
the labels “Business schools” and “Law schools” could be as follows:

1. Business schools: business (35), management (31), school (22), university (11), cam-
pus (15), presentation (12), student (17), market (11), . . .

2. Law schools: law (22), university (11), school (13), examination (15), justice (17),
campus (10), courts (15), prosecutor (22), student (15), . . .

Typically, most of the noisy words have been truncated from the cluster digest. Similar words
are represented in the same centroid, and words with multiple meanings can be represented
in contextually different centroids. Therefore, this approach also indirectly addresses the
issues of synonymy and polysemy, with the additional advantage that the k-nearest neighbor
classification can be performed more efficiently with a smaller number of centroids. The
dominant label from the top-k matching centroids, based on cosine similarity, is reported.
Such an approach can provide comparable or better accuracy than the vanilla k-nearest
neighbor classifier in many cases.

13.5.1.3 Rocchio Classification

The Rocchio method can be viewed as a special case of the aforementioned description of the
centroid-based classifier. In this case, all documents belonging to the same class are aggre-
gated into a single centroid. For a given document, the class label of the closest centroid
is reported. This approach is obviously extremely fast because it requires a small constant
number of similarity computations that is dependent on the number of classes in the data.
On the other hand, the drawback is that the accuracy depends on the assumption of class
contiguity. The class-contiguity assumption, as stated in [377], is as follows:

“Documents in the same class form a contiguous region, and regions of different classes
do not overlap.”

Thus, Rocchio’s method would not work very well if documents of the same class were
separated into distinct clusters. In such cases, the centroid of a class of documents may not
even lie in one of the clusters of that class. A bad case for Rocchio’s method is illustrated in
Fig. 13.6, in which two classes and four clusters are depicted. Each class is associated with
two distinct clusters. In this case, the centroids for each of the classes are approximately
the same. Therefore, the Rocchio method would have difficulty in distinguishing between
the classes. On the other hand, a k-nearest neighbor classifier for small values of k, or a
centroid-based classifier would perform quite well in this case. As discussed in Chap. 11, an
increase in the value of k for a k-nearest neighbor classifier increases its bias. The Rocchio
classifier can be viewed as a k-nearest neighbor classifier with a high value of k.

13.5.2 Bayes Classifiers

The Bayes classifier is described in Sect. 10.5.1 of Chap. 10. The particular classifier
described was a binary (or Bernoulli) model in which the posterior probability of a docu-
ment belonging to a particular class was computed using only the presence or the absence
of a word. This special case corresponds to the fact that each feature (word) takes on the
value of either 0 or 1 depending on whether or not it is present in the document. However,
such an approach does not account for the frequencies of the words in the documents.

13.5. SPECIALIZED CLASSIFICATION METHODS FOR TEXT 449

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

FEATURE X

FE
A

TU
R

E
 Y

Figure 13.6: A bad case for the Rocchio method

13.5.2.1 Multinomial Bayes Model

A more general approach is to use a multinomial Bayes model, in which the frequencies
of the words are used explicitly. The Bernoulli model is helpful mostly for cases where
the documents are short, and drawn over a lexicon of small size. In the general case of
documents of longer sizes over a large lexicon, the multinomial model is more effective.
Before discussing the multinomial model, the Bernoulli model (cf. Sect. 10.5.1 of Chap. 10)
will be revisited in the context of text classification.

Let C be the random variable representing the class variable of an unseen test instance,
with d-dimensional feature values X = (a1 . . . ad). For the Bernoulli model on text data,
each value of ai is 1 or 0, depending on whether or not the ith word of the lexicon is present in
the document X. The goal is to estimate the posterior probability P (C = c|X = (a1 . . . ad)).
Let the random variables for the individual dimensions of X be denoted by X = (x1 . . . xd).
Then, it is desired to estimate the conditional probability P (C = c|x1 = a1, . . . xd = ad).
Then, by using Bayes’ theorem, the following equivalence can be inferred.

P (C = c|x1 = a1, . . . xd = ad) =
P (C = c)P (x1 = a1, . . . xd = ad|C = c)

P (x1 = a1, . . . xd = ad)
(13.17)

∝ P (C = c)P (x1 = a1, . . . xd = ad|C = c) (13.18)

≈ P (C = c)
d∏

i=1

P (xi = ai|C = c). (13.19)

The last of the aforementioned relationships is based on the naive assumption of conditional
independence. In the binary model discussed in Chap. 10, each attribute value ai takes on
the value of 1 or 0 depending on the presence or the absence of a word. Thus, if the
fraction of the documents in class c containing word i is denoted by p(i, c), then the value
of P (xi = ai|C = c) is estimated5 as either p(i, c) or 1 − p(i, c) depending upon whether
ai is 1 or 0, respectively. Note that this approach explicitly penalizes nonoccurrence of
words in documents. Larger lexicon sizes will result in many words that are absent in a
document. Therefore, the Bernoulli model may be dominated by word absence rather than

5The exact value will be slightly different because of Laplacian smoothing. Readers are advised to refer
to Sect. 10.5.1 of Chap. 10.

450 CHAPTER 13. MINING TEXT DATA

word presence. Word absence is usually weakly related to class labels. This leads to greater
noise in the evaluation. Furthermore, differential frequencies of words are ignored by this
approach. Longer documents are more likely to have repeated words. The multinomial model
is designed to address these issues.

In the multinomial model, the L terms in a document are treated as samples from a
multinomial distribution. The total number of terms in the document (or document length)
is denoted by L =

∑d
j=1 ai. In this case, the value of ai is assumed to be the raw frequency

of the term in the document. The posterior class probabilities of a test document with
the frequency vector (a1 . . . ad) are defined and estimated using the following generative
approach:

1. Sample a class c with a class-specific prior probability.

2. Sample L terms with replacement from the term distribution of the chosen class c.
The term distribution is defined using a multinomial model. The sampling process
generates the frequency vector (a1 . . . ad). All training and test documents are assumed
to be observed samples of this generative process. Therefore, all model parameters of
the generative process are estimated from the training data.

3. Test instance classification: What is the posterior probability that the class c is
selected in the first generative step, conditional on the observed word frequency
(a1 . . . ad) in the test document?

When the sequential ordering of the L different samples are considered, the number of
possible ways to sample the different terms to result in the representation (a1 . . . ad) is given
by L!∏

i:ai>0 ai!
. The probability of each of these sequences is given by

∏
i:ai>0 p(i, c)

ai , by using

the naive independence assumption. In this case, p(i, c) is estimated as the fractional number
of occurrences of word i in class c including repetitions. Therefore, unlike the Bernoulli
model, repeated presence of word i in a document belonging to class c will increase p(i, c).
If n(i, c) is the number of occurrences of word i in all documents belonging to class c, then
p(i, c) = n(i,c)∑

i n(i,c)
. Then, the class conditional feature distribution is estimated as follows:

P (x1 = a1, . . . xd = ad|C = c) ≈ L!∏
i:ai>0 ai!

∏
i:ai>0

p(i, c)ai . (13.20)

Using the Bayes rule, the multinomial Bayes model computes the posterior probability for
a test document as follows:

P (C = c|x1 = a1, . . . xd = ad) ∝ P (C = c) · P (x1 = a1, . . . xd = ad|C = c) (13.21)

≈ P (C = c) · L!∏
i:ai>0 ai!

∏
i:ai>0

p(i, c)ai (13.22)

∝ P (C = c) ·
∏

i:ai>0

p(i, c)ai . (13.23)

The constant factor L!∏
i:ai>0 ai!

has been removed from the last condition because it is the

same across all classes. Note that in this case, the product on the right-hand side only uses
those words i, for which ai is strictly larger than 0. Therefore, nonoccurrence of words is
ignored. In this case, we have assumed that each ai is the raw frequency of a word, which is
an integer. It is also possible to use the multinomial Bayes model with the tf-idf frequency of
a word, in which the frequency ai might be fractional. However, the generative explanation
becomes less intuitive in such a case.

13.5. SPECIALIZED CLASSIFICATION METHODS FOR TEXT 451

13.5.3 SVM Classifiers for High-Dimensional and Sparse Data

The number of terms in the Lagrangian dual of the SVM formulation scales with the
square of the number of dimensions. The reader is advised to refer to Sect. 10.6 of Chap.
10, and 11.4.2 of Chap. 11 for the relevant discussions. While the SVMLight method
in Sect. 11.4.2 of Chap. 11 addresses this issue by making changes to the algorithmic
approach, it does not make modifications to the SVM formulation itself. Most importantly,
the approach does not make any modifications to address the high dimensional and sparse
nature of text data.

The text domain is high dimensional and sparse. Only a small subset of the dimensions
take on nonzero values for a given text document. Furthermore, linear classifiers tend to
work rather well for the text domain, and it is often not necessary to use the kernelized
version of the classifier. Therefore, it is natural to focus on linear classifiers, and ask whether
it is possible to improve the complexity of SVM classification further by using the special
domain-specific characteristics of text. SVMPerf is a linear-time algorithm designed for text
classification. Its training complexity is O(n · s), where s is the average number of nonzero
attributes per training document in the collection.

To explain the approach, we first briefly recap the soft penalty-based SVM formulation
introduced in Sect. 10.6 of Chap. 10. The problem definition, referred to as the optimization
formulation (OP1), is as follows:

(OP1): Minimize
||W ||2

2
+ C

∑n
i=1 ξi
n

subject to:

yiW ·Xi ≥ 1− ξi ∀i
ξi ≥ 0 ∀i.

One difference from the conventional SVM formulation of Chap. 10 is that the constant
term b is missing. The conventional SVM formulation uses the constraint yi(W ·Xi + b) ≥
1− ξi. The two formulations are, however, equivalent because it can be shown that adding
a dummy feature with a constant value of 1 to each training instance has the same effect.
The coefficient in W of this feature will be equal to b. Another minor difference from the
conventional formulation is that the slack component in the objective function is scaled
by a factor of n. This is not a significant difference either because the constant C can be
adjusted accordingly. These minor variations in the notation are performed without loss of
generality for algebraic simplicity.

The SVMPerf method reformulates this problem with a single slack variable ξ, and 2n

constraints that are generated by summing a random subset of the n constraints in (OP1).
Let U = (u1 . . . un) ∈ {0, 1}n represent the indicator vector for the constraints that are
summed up to create this new synthetic constraint. An alternative formulation of the SVM
model is as follows:

(OP2): Minimize
||W ||2

2
+ Cξ

subject to:

1
n

n∑
i=1

uiyiW ·Xi ≥
∑n

i=1 ui

n
− ξ ∀ U ∈ {0, 1}n

ξ ≥ 0.

452 CHAPTER 13. MINING TEXT DATA

The optimization formulation (OP2) is different from (OP1) in that it has only one slack
variable ξ but 2n constraints that represent the sum of every subset of constraints in (OP1).
It can be shown that a one-to-one correspondence exists between the solutions of (OP1)
and (OP2).

Lemma 13.5.1 A one-to-one correspondence exists between solutions of (OP1) and (OP2),

with equal values of W = W ∗ in both models, and ξ∗ =
∑n

i=1 ξ∗i
n .

Proof: We will show that if the same value of W is fixed for (OP1), and (OP2), then it will
lead to the same objective function value. The first step is to derive the slack variables in
terms of this value of W for (OP1) and (OP2). For problem (OP1), it can be derived from
the slack constraints that the optimal value of ξi is achieved for ξi = max{0, 1− yiW ·Xi}
in order to minimize the slack penalty. For the problem OP2, a similar result for ξ can be
obtained:

ξ = maxu1...un

{∑n
i=1 ui

n
− 1

n

n∑
i=1

uiyiW ·Xi

}
. (13.24)

Because this function is linearly separable in ui, one can push the maximum inside the
summation, and independently optimize for each ui:

ξ =
n∑

i=1

maxui
ui

{
1
n
− 1

n
yiW ·Xi

}
. (13.25)

For optimality, the value of ui should be picked as 1 for only the positive values of{
1
n − 1

nyiW ·Xi

}
and 0, otherwise. Therefore, one can show the following:

ξ =
n∑

i=1

max
{
0,

1
n
− 1

n
yiW ·Xi

}
(13.26)

=
1
n

n∑
i=1

max
{
0, 1− yiW ·Xi

}
=

∑n
i=1 ξi
n

. (13.27)

This one-to-one correspondence between optimal values of W in (OP1) and (OP2) implies
that the two optimization problems are equivalent.

Thus, by determining the optimal solution to problem (OP2), it is possible to determine
the optimal solution to (OP1) as well. Of course, it is not yet clear, why (OP2) is a better
formulation than (OP1). After all, problem (OP2) contains an exponential number of con-
straints, and it seems to be intractable to even enumerate the constraints, let alone solve
them.

Even so, the optimization formulation (OP2) does have some advantages over (OP1).
First, a single slack variable measures the feasibility of all the constraints. This implies
that all constraints can be expressed in terms of (W, ξ). Therefore, if one were to solve
the optimization problem with only a subset of the 2n constraints and the remaining were
satisfied to a precision of ε by (W, ξ), then it is guaranteed that (W, ξ + ε) is feasible for
the full set of constraints.

The key is to never use all the constraints explicitly. Rather, a small subset WS of the
2n constraints is used as the working set. We start with an empty working set WS. The
corresponding optimization problem is solved, and the most violated constraint among the
constraints not in WS is added to the working set. The vector U for the most violated
constraint is relatively easy to find. This is done by setting ui to 1, if yiW ·Xi < 1, and 0
otherwise. Therefore, the iterative steps for adding to the working set WS are as follows:

13.6. NOVELTY AND FIRST STORY DETECTION 453

1. Determine optimal solution (W, ξ) for objective function of (OP2) using only con-
straints in the working set WS.

2. Determine most violated constraint among the 2n constraints of (OP2) by setting u1

to 1 if yiW ·Xi < 1, and 0 otherwise.

3. Add the most violated constraint to WS.

The termination criterion is the case when the most violated constraint is violated by no
more than ε. This provides an approximate solution to the problem, depending on the
desired precision level ε.

This algorithm has several desirable properties. It can be shown that the time required
to solve the problem for a constant size working set WS is O(n ·s), where n is the number of
training examples, and s is the number of nonzero attributes per example. This is important
for the text domain, where the number of non-zero attributes is small. Furthermore, the algo-
rithm usually terminates in a small constant number of iterations. Therefore, the working
set WS never exceeds a constant size, and the entire algorithm terminates in O(n · s) time.

13.6 Novelty and First Story Detection

The problem of first story detection is a popular one in the context of temporal text stream
mining applications. The goal is to determine novelties from the underlying text stream
based on the history of previous text documents in the stream. This problem is particularly
important in the context of streams of news documents, where a first story on a new topic
needs to be reported as soon as possible.

A simple approach is to compute the maximum similarity of the current document
with all previous documents, and report the documents with very low maximum similarity
values as novelties. Alternatively, the inverse of the maximum similarity value could be
continuously reported as a streaming novelty score or alarm level. The major problem with
this approach is that the stream size continuously increases with time, and one has to
compute similarity with all previous documents. One possibility is to use reservoir sampling
to maintain a constant sample of documents. The inverse of the maximum similarity of the
document to any incoming document is reported as the novelty score. The major drawback
of this approach is that similarity between individual pairs of documents is often not a stable
representation of the aggregate trends. Text documents are sparse, and pairwise similarity
often does not capture the impact of synonymy and polysemy.

13.6.1 Micro-clustering Method

The micro-clustering method can be used to maintain online clusters of the text documents.
The idea is that micro-clustering simultaneously determines the clusters and novelties from
the underlying text stream. The basic micro-clustering method is described in Sect. 12.4
of Chap. 12. The approach maintains k different cluster centroids, or cluster digests. For an
incoming document, its similarity to all the centroids is computed. If this similarity is larger
than a user-defined threshold, then the document is added to the cluster. The frequencies of
the words in the corresponding centroid are updated, by adding the frequency of the word
in the document to it. For each document, only the r most frequent words in the centroid
are retained. The typical value of r varies between 200 and 400. On the other hand, when
the incoming document is not sufficiently similar to one of the centroids, then it is reported

454 CHAPTER 13. MINING TEXT DATA

as a novelty, or as a first story. A new cluster is created containing the singleton document.
To make room for the new centroid, one of the old centroids needs to be removed. This
is achieved by maintaining the last update time of each cluster. The most stale cluster
is removed. This algorithm provides the online ability to report the novelties in the text
stream. The bibliographic notes contain pointers to more detailed versions of this method.

13.7 Summary

The text domain is sometimes challenging for mining purposes because of its sparse and
high-dimensional nature. Therefore, specialized algorithms need to be designed.

The first step is the construction of a bag-of-words representation for text data. Several
preprocessing steps need to be applied, such as stop-word removal, stemming, and the
removal of digits from the representation. For Web documents, preprocessing techniques are
also required to remove the anchor text and to extract text from the main block of the page.

Algorithms for problems such as clustering and classification need to be modified as well.
For example, density-based methods are rarely used for clustering text. The k-means meth-
ods, hierarchical methods, and probabilistic methods can be suitably modified to work for
text data. Two popular methods include the scatter/gather approach, and the probabilistic
EM-algorithm. The co-clustering method is also commonly used for text data. Topic mod-
eling can be viewed as a probabilistic modeling approach that shares characteristics of both
dimensionality reduction and clustering. The problem of novelty detection is closely related
to text clustering. Streaming text clustering algorithms can be used for novelty detection.
Data points that do not fit in any cluster are reported as novelties.

Among the classification methods, decision trees are not particularly popular for text
data. On the other hand, instance-based methods, Bayes methods, and SVM methods are
used more commonly. Instance-based methods need to be modified to account for the noise
effects of synonymy and polysemy. The multinomial Bayes model is particularly popular for
text classification of long documents. Finally, the SVMPerf method is commonly used for
efficient text classification with support vector machines.

13.8 Bibliographic Notes

An excellent book on text mining may be found in [377]. This book covers both informa-
tion retrieval and mining problems. Therefore, issues such as preprocessing and similarity
computation are covered well by this book. Detailed surveys on text mining may be found
in [31]. Discussions of the tree matching algorithm may be found in [357, 542].

The scatter/gather approach discussed in this chapter was proposed in [168]. The impor-
tance of projecting out infrequent words for efficient document clustering was discussed
in [452]. The PLSA discussion is adopted from the paper by Hofmann [271]. The LDA
method is a further generalization, proposed in [98]. A survey on topic modeling may be
found in [99]. Co-clustering methods for text were discussed in [171, 172, 437]. The co-
clustering problem is also studied more generally as biclustering in the context of biological
data. A general survey on biclustering methods may be found in [374]. General surveys on
text clustering may be found in [31, 32].

The text classification problem has been explored extensively in the literature. The LSA
approach was discussed in [184]. Centroid-based text classification was discussed in [249]. A
detailed description of different variations of the Bayes model in may be found in [31, 33].

13.9. EXERCISES 455

The SVMPerf and SVMLight classifiers were described in [291] and [292], respectively. A
survey on SVM classification may be found in [124]. General surveys on text classification
may be found in [31, 33, 453].

The first-story detection problem was first proposed in the context of the topic detection
and tracking effort [557]. The micro-cluster-based novelty detection method described in
this chapter was adapted from [48]. Probabilistic models for novelty detection may be found
in [545]. A general discussion on the topic of first-story detection may be found in [5].

13.9 Exercises

1. Implement a computer program that parses a set of text, and converts it to the
vector space representation. Use tf-idf normalization. Download a list of stop words
from http://www.ranks.nl/resources/stopwords.html and remove them from the
document, before creating the vector space representation.

2. Discuss the weaknesses of the k-medoids algorithm when applied to text data.

3. Suppose you paired the shared nearest neighbor similarity function (see Chap. 2) with
cosine similarity to implement the k-means clustering algorithm for text. What is its
advantage over the direct use of cosine similarity?

4. Design a combination of hierarchical and k-means algorithms in which merging oper-
ations are interleaved with the assignment operations. Discuss its advantages and dis-
advantages with respect to the scatter/gather clustering algorithm in which merging
strictly precedes assignment.

5. Suppose that you have a large collection of short tweets from Twitter. Design a Bayes
classifier which uses the identity as well as the exact position of each of the first ten
words in the tweet to perform classification. How would you handle tweets containing
less than ten words?

6. Design a modification of single-linkage text clustering algorithms, which is able to
avoid excessive chaining.

7. Discuss why the multinomial Bayes classification model works better on longer docu-
ments with large lexicons than the Bernoulli Bayes model.

8. Suppose that you have class labels associated with documents. Describe a simple
supervised dimensionality reduction approach that uses PLSA on a derivative of the
document-term matrix to yield basis vectors which are each biased towards one or
more of the classes. You should be able to control the level of supervision with a
parameter λ.

9. Design an EM algorithm for clustering text data, in which the documents are generated
from the multinomial distribution instead of the Bernoulli distribution. Under what
scenarios would you prefer this clustering algorithm over the Bernoulli model?

10. For the case of binary classes, show that the Rocchio method defines a linear decision
boundary. How would you characterize the decision boundary in the multiclass case?

11. Design a method which uses the EM algorithm to discover outlier documents.

http://www.ranks.nl/resources/stopwords.html

Chapter 14

Mining Time Series Data

“The only reason for time is so that everything
doesn’t happen at once.—Albert Einstein

14.1 Introduction

Temporal data is common in data mining applications. Typically, this is a result of continu-
ously occurring processes in which the data is collected by hardware or software monitoring
devices. The diversity of domains is quite significant and extends from the medical to the
financial domain. Some examples of such data are as follows:

• Sensor data: Sensor data is often collected by a wide variety of hardware and other
monitoring devices. Typically, this data contains continuous readings about the under-
lying data objects. For example, environmental data is commonly collected with differ-
ent kinds of sensors that measure temperature, pressure, humidity, and so on. Sensor
data is the most common form of time series data.

• Medical devices: Many medical devices such as electrocardiogram (ECG) and elec-
troencephalogram (EEG) produce continuous streams of time series data. These rep-
resent measurements of the functioning of the human body, such as the heart beat,
pulse rate, blood pressure, etc. Real-time data is also collected from patients in inten-
sive care units (ICU) to monitor their condition.

• Financial market data: Financial data, such as stock prices, is often temporal. Other
forms of temporal data include commodity prices, industrial trends, and economic
indicators.

In general, temporal data may be either discrete or continuous. For example, Web log data
contains a series of discrete events corresponding to user clicks, whereas environmental
data may contain a series of continuous values such as temperature. Continuous temporal
data sets are referred to as time series, whereas discrete temporal data sets are referred
to as sequences. This chapter focuses on continuous time series data. The next chapter

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 14 457
c© Springer International Publishing Switzerland 2015

458 CHAPTER 14. MINING TIME SERIES DATA

studies data mining methods for discrete sequence data. While time series and discrete
sequence data are conceptually similar, there are significant differences in the algorithmic
methodologies used in each domain. However, in many cases, time series data is converted
to discrete sequence data through discretization to facilitate the application of rich classes
of sequence mining techniques. This chapter also discusses such cases.

Unlike multidimensional data, in which all attributes are treated equally, time series
data are viewed as contextual data representations. In contextual data representations, the
attributes are of two types:

• Contextual attribute(s): These represent the attributes that provide the context in
which the measurements are made. In other words, the contextual attributes provide
the reference points at which the behavioral values are measured. For the case of
time series data, the single contextual attribute corresponds to the time dimension.
Some data types, such as spatial data, may contain multiple contextual attributes
corresponding to spatial coordinates. The time stamps could correspond to actual time
values at which the data points are measured, or they could correspond to consecutive
indices (or ticks) at which these values are measured.

• Behavioral attribute(s): These represent the behavioral values at the reference points.
For example, in an environmental sensor, this could correspond to the temperature
attribute. In general, each contextual attribute value (e.g., time stamp) has a corre-
sponding behavioral attribute value (e.g., temperature). The behavioral attributes are
usually the interesting ones from an application-specific perspective, but they cannot
be properly interpreted without the knowledge of the contextual attributes. When
more than one behavioral attribute is associated with each series, the corresponding
series is referred to as a multivariate time series.

The analysis of contextual data types is more difficult because behavioral attribute val-
ues cannot be interpreted effectively without using the contextual attribute. For example,
a sudden change of the behavioral attribute between successive time stamps (contextual
attribute) is often indicative of outlier behavior. Thus, unlike multidimensional data, prob-
lem definitions are dependent on a combination of the interrelationships between contex-
tual and behavioral attributes. Thus, problems such as clustering, classification, and outlier
detection need to be significantly modified to account for the impact of the contextual
attribute. Several data types discussed in subsequent chapters fall within this class. Other
examples include sequence data and spatial data.

The greater complexity of time series data enables a larger number of problem definitions.
Most of the models can be categorized into one of two types:

1. Real-time analysis: In real-time analysis, the data points in one or more series are
analyzed in real time, to make predictions. Typically, a small window of recent history
is used over the different data streams for the analysis. Examples of such analysis
include forecasting, deviation detection, or event detection. When multiple series are
available, they are typically analyzed in a temporally synchronized way. Even in cases
where data mining applications such as clustering are applied to these problems, the
analysis is typically performed in real time.

2. Retrospective analysis: In retrospective analysis, the time series data is already avail-
able, and subsequently analyzed. The analysis of different time series within a database
is sometimes not synchronized over time. For example, in a time series database of
ECG readings, the data may have been recorded over different periods.

14.2. TIME SERIES PREPARATION AND SIMILARITY 459

Both these forms of analysis are useful in different kinds of applications. Furthermore, these
two scenarios have different interpretations for the same applications such as clustering or
outlier detection. These issues are discussed in more detail in later sections.

This chapter is organized as follows. The next section presents methods for time series
preparation and similarity. Because the methods for time series similarity have already
been discussed in detail in Chap. 3, they are summarized only briefly in this chapter. The
reader is referred to the relevant sections of Chap. 3 for the different time series similarity
measures. The problem of time series forecasting is discussed in Sect. 14.3. Time series motif
discovery is discussed in Sect. 14.4. Section 14.5 addresses the problem of clustering time
series. Outlier detection is discussed in Sect. 14.6. Time series classification is discussed in
Sect. 14.7. The summary of the chapter is presented in Sect. 14.8.

14.2 Time Series Preparation and Similarity

Time series data may be either univariate or multivariate. In univariate time series data, a
single behavioral attribute is associated with each time instant. In multivariate time series
data, multiple behavioral attributes are associated with each time instant. The dimensional-
ity of the time series, therefore, refers to the number of behavioral attributes being tracked.

Definition 14.2.1 (Multivariate Time Series Data) A time series of length n and
dimensionality d contains d numeric features at each of n timestamps t1 . . . tn. Each times-
tamp contains a component for each of the d series. Therefore, the set of values received at
timestamp ti is Yi = (y1i . . . y

d
i). The value of the jth series at timestamp ti is yji

In a univariate time series, the value of d is 1. In such cases, a series of length n is represented
as a set of scalar behavioral values y1 . . . yn, associated with the timestamps t1 . . . tn.

14.2.1 Handling Missing Values

It is common for time series data to contain missing values. Furthermore, the values of the
series may not be synchronized in time when they are collected by independent sensors. It is
often convenient to have time series values that are equally spaced and synchronized across
different behavioral attributes for data processing. The most common methodology used for
handling missing, unequally spaced, or unsynchronized values is linear interpolation. The
idea is to create estimated values at the desired time stamps. These can be used to generate
multivariate time series that are synchronized, equally spaced, and have no missing values.

Consider the scenario where yi and yj are values of the time series at times ti and
tj , respectively, where i < j. Let t be a time drawn from the interval (ti, tj). Then, the
interpolated value of the series is given by:

y = yi +
(

t− ti
tj − ti

)
· (yj − yi) (14.1)

This is simple linear interpolation, although other more complex methods, such as poly-
nomial interpolation or spline interpolation, are possible. However, such methods require a
larger number of data points in a time window for the estimation. In many cases, such meth-
ods do not provide significantly superior results over the straightforward linear interpolation
method.

460 CHAPTER 14. MINING TIME SERIES DATA

14.2.2 Noise Removal

Noise-prone hardware, such as sensors, are often used for time series data collection. The
approach used by most of the noise removal methods is to remove short-term fluctuations.
It should be pointed out that the distinction between noise and interesting outliers is often
a difficult one to make. Interesting outliers are fluctuations, caused by specific aspects of
the data generation process, rather than artifacts of the data collection process. Therefore,
such cleaning and smoothing methods are sometimes not appropriate for problems such as
outlier detection. Two methods, referred to as binning and smoothing, are often used for
noise removal.

Binning

The method of binning divides the data into time intervals of size k denoted by
[t1, tk], [tk+1, t2k], etc. It is assumed that the timestamps are equally spaced apart. Therefore,
each bin is of the same size, and it contains an equal number of points. The average value
of the data points in each interval are reported as the smoothed values. Let yi·k+1 . . . yi·k+k

be the values at timestamps ti·k+1 . . . ti·k+k. Then, the new binned value will be y′i+1, where

y′i+1 =
∑k

r=1 yi·k+r

k

Therefore, this approach uses the mean of the values in the bins. It is also possible to
use the median of the behavioral attribute values. Typically, the median provides more
robust estimates than the mean because the outlier points do not affect the median in a
disproportionate way. The main problem with binning is that it reduces the number of
available data points by a factor of k. Binning is also referred to as piecewise aggregate
approximation (PAA). Such an approach can be rather lossy for large values of k, although
it can also be advantageous for fast distance computations [309] because it provides a
compressed representation.

Moving-Average Smoothing

Moving-average methods reduce the loss in binning by using overlapping bins, over which
the averages are computed. As in the case of binning, averages are computed over windows of
the time series. The main difference is that a bin is constructed starting at each timestamp
in the series rather than only the timestamps at the boundaries of the bins. Therefore,
the bin intervals are chosen to be [t1, tk], [t2, tk+1], etc. This results in a set of overlapping
intervals. The time series values are averaged over each of these intervals. Moving averages
are also referred to as rolling averages and they reduce the noise in the time series because
of the smoothing effect of averages.

In a real-time application, the moving average becomes available only after the last
timestamp of the window. Therefore, moving averages introduce lags into the analysis and
also lose some points at the beginning of the series because of boundary effects. Furthermore,
short-term trends are sometimes lost because of smoothing. Larger bin sizes result in greater
smoothing and lag. Because of the impact of lag, it is possible for the moving average to
contain troughs (or downtrends) where there are peaks (or uptrends) in the original series,
and vice versa. This can sometimes lead to a misleading understanding of recent trends.

14.2. TIME SERIES PREPARATION AND SIMILARITY 461

50 100 150 200 250
165

170

175

180

185

190

195

200

NUMBER OF TRADING DAYS

IB
M

 S
TO

C
K

 P
R

IC
E

ACTUAL VALUES
20−DAY MOVING AVERAGE
50−DAY MOVING AVERAGE

50 100 150 200 250
165

170

175

180

185

190

195

200

NUMBER OF TRADING DAYS

IB
M

 S
TO

C
K

 P
R

IC
E

ACTUAL VALUES
EXP. SMOOTHING (α=0.1)
EXP. SMOOTHING (α=0.05)

(a) Moving average smoothing (b) Exponential smoothing

Figure 14.1: Various smoothing methods applied to IBM stock price from September 5, 2013
to September 4, 2014

Exponential Smoothing

In exponential smoothing, the smoothed value y′i is defined as a linear combination of
the current value yi, and the previously smoothed value y′i−1. The smoothing parameter
α ∈ (0, 1) is used for this purpose.

y′i = α · yi + (1− α) · y′i−1 (14.2)

The value of y′0 is typically set to the first point in the series. When the value of α is 1,
there are no smoothing effects, and the smoothed series is the same as the original series.
When the value of α is 0, the entire series becomes smoothed to the constant value of
y′0. The approach is referred to as exponential smoothing because the value of y′i can be
expressed as an exponentially decayed sum of the series values. By recursively substituting
the aforementioned equation into itself, the following can be shown:

y′i = (1− α)i · y′0 + α ·
i∑

j=1

yj · (1− α)i−j . (14.3)

The choice of α regulates the decay factor. Unlike moving averages, exponential smoothing
provides more importance to recent data points. Data points are not lost at the beginning
of the series, and the impact of the lag is reduced for the same level of smoothing. Examples
of moving average and exponential smoothing are illustrated in Fig. 14.1a, b, respectively.
It is evident that exponential smoothing does not lose any points at the beginning of the
series and generally provides slightly better smoothing for lower lag.

14.2.3 Normalization

Time series typically need to be normalized, especially when multiple series are analyzed
simultaneously. For example, one series might measure temperature, whereas another might
measure pressure. Because these values are measured on different scales, they cannot be
compared meaningfully. Therefore, two normalization methods are commonly used to adjust
for such variations.

462 CHAPTER 14. MINING TIME SERIES DATA

1. Range-based normalization: In range-based normalization, the minimum and maxi-
mum value of the time series are determined. Let these values be denoted by min and
max, respectively. Then, the time series value yi is mapped to the new value y′i in the
range (0, 1) as follows:

y′i =
yi −min

max−min
. (14.4)

2. Standardization: In standardization, the mean and standard deviation of the series are
used for normalization. This is essentially the Z-value of the time series. Let μ and σ
represent the mean and standard deviation of the values in the time series. Then, the
time series value yi is mapped to a new value zi as follows:

zi =
yi − μ

σ
. (14.5)

Standardization is generally the preferred method. However, it does not guarantee a specific
range of the time series values.

14.2.4 Data Transformation and Reduction

A variety of preprocessing methods exist for transforming and reducing the time series data
into a reduced representation. Some of these methods transform the data into a smaller
number of numeric coefficients, whereas other methods transform the data into discrete
values.

14.2.4.1 Discrete Wavelet Transform

The discrete wavelet transform (DWT) converts a time series to multidimensional data.
While time series can also be considered as multidimensional data by viewing1 the values
at the different timestamps as dimensions, the values in successive timestamps are highly
related to one another. A direct application of multidimensional methods ignores the tem-
poral continuity in data values. In wavelets, the coefficients describe properties of different
contiguous temporal regions of the series. Each coefficient is equal to half the difference in
the average value of the behavioral attribute between a pair of carefully chosen contiguous
segments of the series. The resulting representation can be more easily analyzed like multi-
dimensional data because temporal locality is already incorporated within the coefficients.
By using only the largest coefficients for representation, it is possible to reconstruct the
entire time series accurately. Typically, the number of retained coefficients is much smaller
than the length of the original time series. Thus, the approach is a dimensionality reduction
method as well. DWT is described in detail in Sect. 2.4.4.1 of Chap. 2.

14.2.4.2 Discrete Fourier Transform

Wavelets are most effective when most of the variations in the series can be captured in
specific local regions of the series. In cases where the series contain global periodicity, the
discrete Fourier transform (DFT) is more effective. Examples of scenarios in which either of
these methods would perform well are provided in Fig. 14.2. The basic idea is that any series

1The concept of “dimension” can be defined in two ways for time series data. Each behavioral attribute
in a multivariate series can be viewed as a dimension. Alternatively, the different values in a univariate time
series can be viewed as dimensions. The usage is often dependent on the semantics of the application at
hand.

14.2. TIME SERIES PREPARATION AND SIMILARITY 463

10 20 30 40 50 60 70 80 90 100

−1

0

1

2

3

4

5

6

TIME INDEX

V
A

LU
E

DECOMPOSABLE INTO PERIODIC VARIATIONS
DECOMPOSABLE INTO LOCAL VARIATIONS

GOOD FOR DISCRETE WAVELET TRANSFORM

GOOD FOR DISCRETE FOURIER TRANSFORM

Figure 14.2: Preferred scenarios for DFT and DWT

of length n can be expressed as a linear combination of smooth periodic sinusoidal series.
Along with a single constant term, the n− 1 sinusoidal series have periodicity drawn from
n, n/2, n/3, . . . n/(n − 1). The data can be reduced using this decomposition because only
a small number of these constituent series have large enough contributions to be included.
Consider a time series x0 . . . xn−1. Each coefficient Xk of the Fourier transform is a complex
value which is defined as follows:

Xk =
n−1∑
r=0

xr · e−irωk =
n−1∑
r=0

xr · cos(rωk)− i
n−1∑
r=0

xr · sin(rωk) ∀k ∈ {0 . . . n− 1}. (14.6)

Here, ω is set to 2π
n radians, and the notation i denotes the imaginary number

√
−1. There-

fore, Xk is a complex value. One property of the Fourier coefficients is that Xn−k can be
derived from Xk by flipping the sign of the imaginary part for k ≥ 1 (see Exercise 7).
Therefore, only the first n/2 complex coefficients need to be retained. Furthermore, only
the coefficients Xk = ak + ibk with large energy a2k + b2k need to be retained. The top-m
retained coefficients (together with their index k) can be used to approximate the time
series in a compact way. Both the real and imaginary parts of the coefficients can be stored
in a real-valued vector data structure. This vector provides the reduced representation of
the series. The original series can be reconstructed from the coefficients as follows:

xr =
1
n

n−1∑
k=0

Xk · eirωk =
1
n

(
n−1∑
k=0

Xk · cos(rωk) + i

n−1∑
k=0

Xk · sin(rωk)
)

∀r ∈ {0 . . . n− 1}.

Note that each Xk is a complex value. However, the imaginary part of the right-hand side
of this equation will always evaluate to zero to yield the real series value xr.

DFT has several properties, which make it useful for data mining applications. It satisfies
the additivity property; the Fourier coefficients of the sum (or difference) of two series can
be obtained as the sum (or difference) of their Fourier coefficients. It also satisfies Parseval’s
theorem, which states that if Xk = ak + ibk is the kth Fourier coefficient, then we have∑n−1

r=0 x2
r = 1

n

∑n−1
k=0(a

2
k + b2k). Because of these properties, one can compute the (scaled)

Euclidean distance between two time series by computing the Euclidean distance between
their Fourier coefficients. Like DWT, DFT can also be viewed as the transformation of the
time series to a new (rotated) orthogonal basis system, except that each basis vector Bk =

464 CHAPTER 14. MINING TIME SERIES DATA

[1, eiωk, e2iωk, . . . , e(n−1)iωk] of the Fourier coefficient Xk is a complex vector. Therefore, the
time series may be decomposed in terms of the mutually orthogonal basis vectorsB0 . . . Bn−1

as follows:

(x0 . . . xn−1) =
1
n

n−1∑
k=0

XkBk (14.7)

Typically, off-the-shelf mathematical packages are available to compute the coefficients with
the use of the fast Fourier transform (FFT). A closely related transform, known as the
discrete cosine transform (DCT), provides even better compression.

14.2.4.3 Symbolic Aggregate Approximation (SAX)

This approach converts a time series to discrete sequence data. The basic idea is to determine
piecewise aggregate approximates by averaging behavioral attribute values over successive
and equally-spaced windows of the time series. The resulting continuous values are then
discretized into a small number of discrete values. Depending on the application, the number
of breakpoints may vary between 3 and 10. The approach selects the break points of the
discretization, so that each of the symbolic values has an approximately equal frequency of
representation. One possibility is to use equi-depth discretization of the continuous values,
though this can be impractical or infeasible for long series or streaming series. For long series
or streaming series, a Gaussian distribution assumption of the resulting averages is used to
determine the discretization breakpoints. The idea is to select points on the Gaussian curve,
so that the area between successive breakpoints is equal, and therefore the different symbols
have approximately the same frequency.

14.2.5 Time Series Similarity Measures

Time series similarity measures are typically designed with application-specific goals in
mind. The most common methods for time series similarity computation are Euclidean
distance and dynamic time warping (DTW). The Euclidean distance is defined in an iden-
tical way to multidimensional data where the behavioral attribute values at the different
timestamps are interpreted as dimensions. The Euclidean distance can be used only when
the two series have the same length, and a one-to-one correspondence exists between the
data points. This is not appropriate in unsynchronized time series where the data may be
generated at different rates over different portions of the time series. The DTW method
stretches and shrinks the time dimension differently in different portions of one of the series
to create an optimal matching. As discussed in Sect. 16.3.4.1 of Chap. 16, DTW can also be
extended to multivariate time series such as trajectory data. Two other similarity/distance
functions include the Edit Distance and the Longest Common Subsequence. These mea-
sures are used more commonly for discrete sequences, rather than continuous time series.
All these measures are described in detail in Sect. 3.4.1 of Chap. 3.

14.3 Time Series Forecasting

Forecasting is one of the most common applications of time series analysis. The prediction
of future trends has applications in retail sales, economic indicators, weather forecasting,
stock markets, and many other application scenarios. In this case, we have one or more
series of data values, and it is desirable to predict the future values of the series using the
history of previous values.

14.3. TIME SERIES FORECASTING 465

0 5 10 15 20 25 30
0

10

20

30

40

50

60

TIME INDEX

P
R

IC
E

 V
A

LU
E

ORIGINAL SERIES

DIFFERENCED SERIES

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TIME INDEX

LO
G

A
R

IT
H

M
(P

R
IC

E
 V

A
LU

E
) ORIGINAL SERIES (LOG)

DIFFERENCED SERIES (LOG)

(a) Unscaled series (b) Logarithmic scaling

Figure 14.3: Impact of different operations on stationary and non-stationary series

Time series can be either stationary or nonstationary. A stationary stochastic process
is one whose parameters, such as the mean and variance, do not change with time. A
nonstationary process is one whose parameters change with time. Some kinds of time series
such as white noise are stationary. White noise is the strongest form of stationarity with
zero mean, constant variance, and zero covariance between series values separated by a fixed
lag. On the other hand, consider the case, where the behavioral attribute corresponds to
the price level of an industrial commodity such as crude oil. This is typically nonstationary
because the average price level may increase over time as a result of inflation. In fact,
most time series in real applications are nonstationary. A stationary series will usually be
characterized as a noisy series with a level trend, constant variance, and zero covariance
between different series values. For example, in Fig. 14.3a, both the series are nonstationary
because the average values increase with time. On the other hand, in Fig. 14.3b, the dashed
curve is stationary because the trends do not change significantly with time. A strictly
stationary time series is defined as follows:

Definition 14.3.1 (Strictly Stationary Time Series) A strictly stationary time series
is one in which the probabilistic distribution of the values in any time interval [a, b] is
identical to that in the shifted interval [a+ h, b+ h] for any value of the time shift h.

In other words, all multivariate distributions of subsets of variables must match with
their shifted counterparts. The window-based statistical parameters of a stationary time
series can be estimated in a meaningful way because the parameters do not vary over dif-
ferent time windows. In such cases, the estimated statistical parameters are good predictors
of future behavior. On the other hand, the current mean, variances, and statistical correla-
tions of the series are not necessarily good predictors of future behavior in regression-based
forecasting models for nonstationary series. Therefore, it is often advantageous to convert
nonstationary series to stationary ones before forecasting analysis. After the forecasting has
been performed on the stationary series, the predicted values are transformed back to the
original representation, using the inverse transformation. The strict stationarity concept of
Definition 14.3.1 is, however, too restrictive to be meaningfully used in real applications.
For example, it is difficult even to determine whether or not a time series is strictly station-
ary from a single instance because one must comprehensively characterize all multivariate
distributions of subsets of variables.

466 CHAPTER 14. MINING TIME SERIES DATA

A key observation is that it is much easier to either obtain or convert to series that
exhibit weak stationarity properties. In such cases, unlike white noise, the mean of the
series, and the covariance between approximately adjacent time series values may be non-
zero but constant over time. This is referred to as covariance stationarity. This kind of weak
stationarity can be assessed relatively easily and is also useful for forecasting models that are
dependent on specific parameters such as the mean and covariance. In other nonstationary
series, the average value of the series can be described by a trend-line that is not necessarily
horizontal, as required by a stationary series. Periodically, the series will deviate from the
trend line, possibly because of some changes in the generative process, and then return to
the trend line. This is referred to as a trend stationary series. Such weak forms of stationarity
are also very useful for creating effective forecasting models. In the following, some practical
methods that are commonly used to convert nonstationary series to stationary series will
be discussed.

Differencing

A common approach used for converting time series to stationary forms is differencing. In
differencing, the time series value yi is replaced by the difference between it and the previous
value. Therefore, the new value y′i is as follows:

y′i = yi − yi−1. (14.8)

If the series is stationary after differencing, then an appropriate model for the data is:

yi+1 = yi + ei+1. (14.9)

Here, ei+1 corresponds to white noise with zero mean. A differenced time series would have
t−1 values for a series of length t because it is not possible for the first value to be reflected
in the transformed series.

Higher order differencing can be used to achieve stationarity in second order changes.
Therefore, the higher order differenced value y′′i is defined as follows:

y′′i = y′i − y′i−1 (14.10)
= yi − 2 · yi−1 + yi−2 (14.11)

This model allows the series to drift over time, since the noise has non-zero mean. The
corresponding model is as follows:

yi+1 = yi + c+ ei+1. (14.12)

Here, c is a non-zero constant that accounts for the drift. Generally, it is rare to use differ-
ences beyond the second order.

A different approach is to use seasonal differences when it is known that the series is
stationary after seasonal differencing. The seasonal differences are defined as follows:

y′i = yi − yi−m (14.13)

Here m is an integer greater than 1.
In some cases, such as geometrically increasing series, the logarithm function is applied

to the values in the series, before the differencing operation. For example, consider a time
series of prices that increase at an approximately constant inflation factor. In such cases,

14.3. TIME SERIES FORECASTING 467

it may be useful to apply the logarithm function to the time series values, before the
differencing operation. An example is provided in Fig. 14.3a, where the variation in inflation
is illustrated with time. It is evident that the differencing operation does not help in making
the series stationary. In Fig. 14.3b, the logarithm function is applied to the series before
the differencing operation. In this case, the series becomes stationary after the differencing
operation.

In the following, a number of univariate time series forecasting models will be discussed.
These models work effectively under different assumptions on the time series patterns. Some
of these models assume a stationary time series, whereas others do not.

14.3.1 Autoregressive Models

Univariate time series contain a single variable that is predicted using autocorrelations.
Autocorrelations represent the correlations between adjacently located timestamps in a
series. Typically, the behavioral attribute values at adjacently located timestamps are pos-
itively correlated. The autocorrelations in a time series are defined with respect to a par-
ticular value of the lag L. Thus, for a time series y1, . . . yn, the autocorrelation at lag L is
defined as the Pearson coefficient of correlation between yt and yt+L.

Autocorrelation(L) =
Covariancet(yt, yt+L)

Variancet(yt)
. (14.14)

The autocorrelation always lies in the range [−1, 1], although the value is almost always
positive for very small values of L, and gradually drops off with increasing lag L. The
positive correlation is a result of the fact that adjacent values of most time series are very
similar, though the similarity drops off with increasing distance. High (absolute) values of
the autocorrelation imply that the value at a given position in the series can be predicted
as a function of the values in the immediately preceding window. This is, in fact, the key
property that enables the use of the autoregressive model. For example, the variation in
autocorrelation with lag for the IBM stock example (Fig. 14.1) is illustrated in Fig. 14.4a.
Such a figure is referred to as the autocorrelation plot and is used commonly in AR models.
While the autocorrelation is usually positive and falls off with lag, the precise behavior
is highly application-specific. For periodic series, the autocorrelation may be periodic and
negative at certain lag intervals. An example of the autocorrelations for a periodic sine wave
is illustrated in Fig. 14.4b.

In the autoregressive model, the value of yt at time t is defined as a linear combination
of the values in the immediately preceding window of length p.

yt =
p∑

i=1

ai · yt−i + c+ εt (14.15)

A model that uses the preceding window of length p is referred to as an AR(p) model.
The values of the regression coefficients a1 . . . ap, c need to be learned from the training
data. The larger the value of p, the greater the lag that one is willing to incorporate in
the autocorrelations. The choice of p should be guided by the level of autocorrelation of
Eq. 14.14. Because the autocorrelation often reduces with increasing values of the lag L,
a value of p should be selected, so that the autocorrelation at lag L = p is small. In
such cases, increasing the window of regression further may not help the accuracy of the
modeling process, and may sometimes result in overfitting. Typically, the autocorrelation
plot (Fig. 14.4) is used to identify the window. Instead of using a window of coefficients in

468 CHAPTER 14. MINING TIME SERIES DATA

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

LAG

A
U

TO
C

O
R

R
E

LA
TI

O
N

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

LAG (DEGREES)

A
U

TO
C

O
R

R
E

LA
TI

O
N

(a) IBM stock (b) Sine wave

Figure 14.4: Autocorrelation plots for various series

Eq. 14.15, it is also possible to select coefficients with specific lag values. In particular, lag
values with high absolute autocorrelation in the autocorrelation plot may be selected. Such
an approach is also helpful for forecasting periodic series.

Each timestamp in the past history of the time series data creates a linear equation
between the time series variables. A set of linear equations between the coefficients can be
created by using the value at each timestamp in the training data, along with its imme-
diately preceding window of length p. When the number of timestamps available is much
larger than p, this is an over-determined system of equations, which is infeasible. Therefore,
any (infeasible) solution will have an error associated with it. The coefficients a1, . . . ap, c
can be approximated with least-squares regression, to minimize the square-error of the over-
determined system (cf. Sect. 11.5 of Chap. 11). Note that the model can be used effectively
for forecasting future values, only if the key properties of the time series, such as the mean,
variance, and autocorrelation do not change significantly with time. Many off-the-shelf com-
mercial solvers are available for these models. The effectiveness of the forecasting model may
be quantified by using the noise level in the estimated coefficients. Specifically, the R2-value,
which is also referred to as the coefficient of determination, measures the ratio of the white
noise to the series variance:

R2 = 1− Meant(ε2t)
Variancet(yt)

(14.16)

The coefficient of determination quantifies the fraction of variability in the series that is
explained by the regression, as opposed to random noise. It is therefore desirable for this
coefficient to be as close to 1 as possible.

14.3.2 Autoregressive Moving Average Models

While autocorrelation is a useful predictive property of time series, it does not always
explain all the variations. In fact, the unexpected component of the variations (shocks),
does impact future values of the time series. This component can be captured with the use
of a moving average model (MA). The autoregressive model can therefore be made more
robust by combining it with an MA. Before discussing the autoregressive moving average
model (ARMA), the MA will be introduced.

14.3. TIME SERIES FORECASTING 469

The moving average model predicts subsequent series values on the basis of the past
history of deviations from predicted values. A deviation from a predicted value can be
viewed as white noise, or a shock. This model is best used in scenarios where the behavioral
attribute value at a timestamp is dependent on the history of shocks in the time series,
rather than the actual series values. The moving average model is defined as follows:

yt =
q∑

i=1

bi · εt−i + c+ εt

The aforementioned model is also referred to as MA(q). The parameter c is the mean of
the time series. The values of b1 . . . bq are the coefficients that need to be learned from the
data. The moving average model is quite different from the autoregressive model, in that it
relates the current value to the mean of the series and the previous history of deviations from
forecasts, rather than the actual values. Here the values of εt are assumed to be white noise
error terms that are uncorrelated with one another. A problem here is that the error terms
εt are not part of observed data, but also need to be derived from the forecasting model.
This circularity implies that the system of equations is inherently nonlinear when expressed
purely in terms of the coefficients and the observed values yi. Typically, iterative nonlinear
fitting procedures are used instead of the linear least-squares approach to determine a
solution to the moving average model. It is rare that the series values can be predicted
in terms of only the shocks, and not the autocorrelations. Autocorrelations are extremely
important in time series analysis because of the inherent temporal continuity of time series
data. At the same time, the history of shocks do impact the future values of the series.
Therefore, neither the autoregressive nor the moving average model can fully capture all
the correlations needed for forecasting in isolation.

A more general model may be obtained by combining the power of both the autoregres-
sive model and the moving average model. The idea is to learn the appropriate impact of
both the autocorrelations and the shocks in predicting time series values. The two models
can be combined with p autoregressive terms and q moving average terms. This model is
referred to as the ARMA model. In this case, the relationships between the different terms
may be expressed as follows:

yt =
p∑

i=1

ai · yt−i +
q∑

i=1

bi · εt−i + c+ εt

The aforementioned model is the ARMA(p, q) model. A key question here is about the
choice of the parameters p and q in these models. If the values of p and q are set to be too
small, then the model will not fit the data well. On the other hand if the values of p and q
are set to be too large, then the model is likely to overfit the data. In general, it is advisable
to select the values of p and q as small as possible, so that the model fits the data well. As in
the previous case, autoregressive moving average models are best used with stationary data.

In many cases, nonstationary data can be addressed by combining differencing with the
autoregressive moving average model. This results in the autoregressive integrated moving
average model (ARIMA). In principle, differences of any order may be used, although first-
and second-order differences are most commonly used. Consider the case where the first
order differenced value y′t is used. Then, the ARIMA model can be expressed as follows:

y′t =
p∑

i=1

ai · y′t−i +
q∑

i=1

bi · εt−i + c+ εt

470 CHAPTER 14. MINING TIME SERIES DATA

Thus, this model is virtually identical to the ARMA(p, q) model, except that differencing
is used within the model. If the order of the differencing is d, then this model is referred to
as the ARIMA(p, d, q) model.

14.3.3 Multivariate Forecasting with Hidden Variables

All the aforementioned models are designed for a single time series. In practice, a given
application may have thousands of time series, and there may be significant correlations
both across different series and across time. Therefore, models are required that can combine
the autoregressive correlations with the cross-series correlations for making forecasts.

While there are many different ways of multivariate forecasting, hidden variables are
often used to achieve this goal. This is because the hidden variable approach is able to
cleanly separate out the cross-series correlations from the autoregressive correlations in the
modeling process. The idea in hidden variable modeling is to transform the large number
of cross-correlated time series into a small number of uncorrelated time series. Typically,
principal component analysis (PCA) is used for this transformation. Because these different
series are uncorrelated with one another, it is possible to use any of the AR, ARMA or
ARIMA models individually on the series to predict the hidden values. Then, the predicted
values are mapped back to their original representation. This provides the forecasted values
for all the different series with the use of a small number of hidden variable predictions.
Readers are advised to revisit Sect. 2.4.3.1 of Chap. 2 for the discussion on PCA before
reading further.

It is assumed that there are d synchronized time series of length n. The d different time
series values received at the ith timestamp are denoted by Yi = (y1i . . . y

d
i). The goal is

to predict Yn+1 from Y1 . . . Yn. The steps of the multivariate forecasting approach are as
follows:

1. Construct the d × d covariance matrix of the multidimensional time series. Let the
d × d covariance matrix be denoted by C. The (i, j)th entry of C is the covariance
between the ith and jth series. This step is identical to the case of multidimensional
data, and the temporal ordering among the different values of Yi is not used at this
stage. Thus, the covariance matrix only captures information about correlations across
series, rather than correlations across time. Note that covariance matrices can also be
maintained incrementally in the streaming setting, using an approach discussed in
Sect. 20.3.1.4 of Chap. 20.

2. Determine the eigenvectors of the covariance matrix C as follows:

C = PΛPT (14.17)

Here, P is a d×d matrix, whose d columns contain the orthonormal eigenvectors. The
matrix Λ is a diagonal matrix containing the eigenvalues. Let Ptruncated be a d × p
matrix obtained by selecting the p � d columns of P with the largest eigenvalues.
Typically, the value of p is much smaller than d. This represents a basis for the hidden
series with the greatest variability.

3. A new multivariate time series with p hidden time series variables is created. Each
d-dimensional time series data point Yi at the ith timestamp is expressed in terms of
a p-dimensional hidden series data point. This is achieved by using the p basis vectors

14.3. TIME SERIES FORECASTING 471

0 50 100 150 200 250
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
R

E
LA

TI
V

E
 S

TO
C

K
 P

R
IC

E
S

NUMBER OF TRADING DAYS

GOLD ETF (GLD)

SILVER ETF (SLV)

PLATINUM ETF (PPLT)

GOLD MINER ETF (GDX)

0 50 100 150 200 250
1.45
1.5

1.55
1.6

1.65
1.7

1.75
1.8

NUMBER OF TRADING DAYS

H
ID

D
E

N
 S

E
R

IE
S

 1

0 50 100 150 200 250
0.2

0.3

0.4

0.5

NUMBER OF TRADING DAYS

H
ID

D
E

N
 S

E
R

IE
S

 2

(a) Correlated stock prices (b) Uncorrelated hidden variables

Figure 14.5: Normalized prices of four precious metal exchange traded funds (ETFs) from
September 5, 2013 to September 4, 2014 and corresponding uncorrelated hidden variables

derived in the previous step. Therefore, the p-dimensional hidden value Zi = (z1i . . . z
p
i)

is derived as follows:
Zi = YiPtruncated (14.18)

The value of Zi represents the p different values for the hidden series variables at the
ith timestamp. Thus, this step creates p different hidden variable time series that are
approximately independent of one another. Note that the other (d − p) hidden vari-
ables in YiP are approximately constant over time because of their small eigenvalues
(variance). The means of these (d−p) approximately constant values are noted as well.
No predictive modeling is required for the vast majority of these hidden variables with
constant values. In Fig. 14.5a, the stock prices of four precious metal-related exchange
traded funds (ETFs) are illustrated for a period of 1 year. Each series was multiplica-
tively scaled to a relative value starting at 1. The top two hidden variable series are
illustrated in Fig. 14.5b. Note that these derived series are uncorrelated and the first
hidden variable has much higher variance than the second. The remaining two hidden
variables are not shown because their variance is even smaller. In fact, each of the
four correlated series in Fig. 14.5a can be approximately expressed as a different linear
combination of the two hidden-variable series in Fig. 14.5b. Therefore, forecasting the
hidden variables yields approximate forecasts of the original series.

4. For each of the p uncorrelated and high-variance series, use any univariate forecasting
model to predict the values of the p hidden variables at the (n+ 1)th timestamp. A
univariate approach can be used effectively because the different hidden variables are
uncorrelated by design. This provides a set of values Zn+1 = (z1n+1 . . . z

p
n+1). Append

the means of the approximately constant values of the remaining (d−p) hidden series
to Zn+1 to create a new d-dimensional hidden variable vector Wn+1.

5. Transform back the predicted hidden variables Wn+1 to the original d-dimensional
representation by using the reverse transformation. This provides the forecasted values
of the original series:

Yn+1 = Wn+1P
T (14.19)

472 CHAPTER 14. MINING TIME SERIES DATA

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4

TIME INDEX

V
A

LU
E

REPEATED MOTIFS

Figure 14.6: Repeated motif in a single time series

The aforementioned description is a simplified version of the SPIRIT framework. It reduces
the computational effort of prediction because simplified univariate modeling is performed
only on a small number p � d of independent time series. On the other hand, it does incur
the overhead of computing eigenvectors. The hidden-variable series is a linear combination
of many different series. Therefore, the noise effects of individual series are often smoothed
out within the hidden variables, which increases the robustness of the forecasting process.

14.4 Time Series Motifs

A motif is a frequently occurring pattern or shape in the time series. Motif discovery can
be formulated in a wide variety of ways, depending on application-specific requirements.
These different formulations vary in terms of the input data and the nature of the motifs
discovered. These variations are as follows:

1. Single series versus database of many series: In the first case, a single series is available,
and the frequently occurring shapes in specific windows of the series are determined.
For example, in Fig. 14.6, the highlighted shape appears three times in the same
series and therefore has a count of 3. A different formulation is one in which we have
N different series, and the occurrence of a shape at least once in a particular series
is given a credit of exactly 1. The frequency is therefore computed in terms of the
number of series in which the pattern occurs. The second formulation is much closer to
sequential pattern mining in discrete data. Different applications may require different
definitions of motif discovery.

2. Contiguous versus noncontiguous motifs: Contiguous motifs require that the shapes
are discovered over a contiguous window of the time series. Noncontiguous motifs may
allow gaps between different elements of the motif. Much of the work in time series
analysis assumes that the motifs are defined over contiguous windows. Non-contiguous
motifs are more common in discrete sequence analysis. Nevertheless, noncontiguous
motifs may have utility in some applications.

3. Multigranularity motifs: Many formulations fix the window size in which the motifs
are discovered. However, in practice, the frequent motifs may occur over windows of

14.4. TIME SERIES MOTIFS 473

different sizes. Such motifs are very useful in many application-specific scenarios. For
example, in the financial-market series of Fig. 14.11a, an important motif is caused by
a “flash crash” event over the course of a day. On the other hand, in Fig. 14.11b, the
(recessionary) trend occurs over several months. In the second case, it may be needed
to smooth out the local variations to discover motifs. Thus, different techniques are
required to discover different types of motifs.

When does a motif belong to a time series? Two methods are typically used by different
applications.

1. Distance-based support: A particular segment of a sequence is said to support a motif
when the distance between the segment and the motif is less than a particular thresh-
old.

2. Transformation to sequential pattern mining: A variety of discretizations can be used
to convert time series into discrete sequences. After the conversion, motifs can be
defined as discrete subsequences of the sequences.

The latter method lends itself to richer classes of algorithms from sequential pattern min-
ing. Furthermore, the approach used for discretization can be varied to discover motifs of
different kinds. It also allows the discovery of noncontiguous patterns because sequential
pattern mining algorithms do not assume contiguity by default. This section will discuss
both kinds of methods. In addition, the notion of periodic patterns will be introduced.

14.4.1 Distance-Based Motifs

Distance-based motifs are always defined on contiguous segments of the time series. First,
the concept of approximate distance match between a motif and a contiguous segment in a
time series needs to be defined.

Definition 14.4.1 (Approximate Distance Match) A sequence (or motif) S =
s1 . . . sw of real values is said to approximately match a contiguous subsequence of length
w in the time series (y1, . . . yn) (w ≤ n) starting at position i, if the distance between
(s1, . . . sw) and (yi, . . . yi+w−1) is at most ε.

A wide variety of distance functions may be used, and the Euclidean distance function is
a common choice. The aforementioned definition assumes that the two subsequences being
matched have the same length. This is a conservative assumption that allows the use of
distance functions such as the Euclidean function. However, if other distance functions,
such as dynamic time warping, are used, it may not be necessary for both the matched
motifs to have the same length.

The number of occurrences of the motif in a single long series is used to quantify the
frequency of the motif. In addition to the series itself, the window length w and the approx-
imation threshold ε are the two main inputs to the algorithm.

Definition 14.4.2 (Motif Count) The number of matches of a time series window S =
s1 . . . sw to the time series (y1 . . . yn) at threshold level ε, is equal to the number of windows
of length w in (y1 . . . yn), for which the distance between the corresponding subsequences is
at most ε.

The goal is to discover the top k motifs for a user-defined parameter k. Furthermore,
to ensure that the k motifs discovered are very different from one another, a constraint is

474 CHAPTER 14. MINING TIME SERIES DATA

Algorithm FindBestMotif(Time Series: y1 . . . yn, Window: w
Distance Threshold: ε)

begin
for i = 1 to n− w + 1 do begin
Candidate-Motif= (yi, . . . yi+w−1);
for j = 1 to n− w + 1 do begin
Comparison-Motif= (yj . . . yj+w−1);
D = ComputeDistance(Candidate-Motif, Comparison-Motif);
if (D ≤ ε) and (non-trivial match)

then increment count of Candidate-Motif by 1;
endfor
if Candidate-Motif has highest count found so far

then update Best-Candidate to Candidate-Motif;
endfor
return Best-Candidate;

end

Figure 14.7: Determining the most frequent motif

imposed; the distances between any pairs of motifs discovered among the top-k motifs must
be at least 2 · ε. In the following, the discovery of the most frequent occurring single motif
will be described. The generalization to the case of top k motifs is relatively straightforward.
The overall approach [356] uses a nested-loop algorithm to discover the most frequent motif.
The approach is described in Fig. 14.7.

The approach extracts all of the candidate motifs of length w from a time series and
computes the distances to all of the windows of length w. The number of windows over
which the match occurs is counted. Care is taken to exclude trivial matches in the count.
Trivial matches are defined as those matches where approximately the same (overlapping)
window is being matched. For example, the case when i = j is a trivial match. Furthermore,
in the case where i < j, if the window starting at i matches with all windows starting at
i+1, i+2 . . . j, then the match at j is trivial as well. In the case where i > j, if the window
starting at i matches with all windows starting at i − 1, i − 2 . . . j, then the match at j is
trivial. Therefore, this condition is explicitly checked in the counting. The best candidate
is tracked over the course of the algorithm, and reported at termination. As evident from
Fig. 14.7, the approach requires a nested loop, and the number of iterations in each loop
is almost equal to the size of the series n. Thus, the approach requires O(n2) distance
computations. In principle, any time series distance function, such as DTW, can be used
for the computation, although it is generally more expensive.

The majority of the time is spent in distance computations. In many cases, a fast com-
putation of the lower bound on the distance can be used to speed up the approach. If the
computed lower bound between a pair of windows is greater than ε, then the pair is guar-
anteed to be irrelevant for adding to the candidate motif count. Therefore, the distance
computation does not need to be explicitly performed. The piecewise aggregate approxima-
tion (PAA) can be used to speed up the distance computations. Consider a scenario where
the PAA has been performed over windows of length m. The resulting series has been com-
pressed by a factor of m, and therefore the distance computations are much faster. If the

14.4. TIME SERIES MOTIFS 475

series X ′ be the PAA of X = (x1 . . . xn), and Y ′ be the PAA of Y = (y1 . . . yn), then it can
be shown that:

Dist(X,Y) ≥
√
m ·Dist(X ′, Y ′) (14.20)

The proof of this result is as follows. Consider the time series Z = X−Y . Over any window
of m data points, the second moment of elements of Z in that window, is at least2 equal to m
times the square of the mean of the same elements. Other faster methods for approximation
exist, such as the use of the SAX representation. When the SAX representation is used,
a table of precomputed distances can be maintained for all pairs of discrete values, and a
simple table lookup is required for lower bounding. Furthermore, some other time series
distance functions such as dynamic time warping can also be bounded from below. The
bibliographic notes contain pointers to some of these bounds. Many variations of the basic
approach are possible by adding another layer of nesting, which accounts for variations in
the window size.

14.4.2 Transformation to Sequential Pattern Mining

A particularly convenient method for discovering motifs in time series is to transform the
problem to the sequential pattern mining problem. The setting for this case is somewhat
different, where a database of N series is available, and it is desired to determine all frequent
motifs at a specified minimum support level. Since motif (pattern) mining is more naturally
defined in the discrete case, this transformation facilitates the use of a wide variety of
tools available for the discrete scenario. Furthermore, such an approach can also enable the
discovery of noncontiguous patterns in the time series. This is because the subsequences in
sequential pattern mining are allowed to be noncontiguous.

The first step is to convert the time series into discrete sequences, by discretizing the
behavioral attribute value at each timestamp into categorical values. It is possible to combine
discretization with binning to create a robust sequence representation. It should be pointed
out that there are many different ways of converting a time series to discrete sequences,
depending on application-specific goals. For example, the discretization of the difference
of the behavioral attribute values between successive timestamps is equivalent to using
discretized wavelet coefficients of the most detailed level of granularity. Lower order wavelet
coefficients will provide insights into trends over larger segments of the time series. Thus,
it is even possible to perform multiresolution motif analysis by using discretized wavelet
coefficients of different orders, and creating separate base sequences for wavelets of each
order. In general, the approach for converting time series to discrete sequences will heavily
influence the nature of the motifs found.

For all these methods, the final result of the discretization is a sequence of discrete values
for each of the N time series in the database. After this new database of sequences has been
constructed, any sequential pattern mining algorithm can be applied. The GSP algorithm is
described in Sect. 15.2 of Chap. 15. It is important to note that the algorithms in Chap. 15
allow gaps between successive elements of the sequence. However, these algorithms can be
trivially generalized to the contiguous case, by adding a maximum gap constraint in the
sequential pattern mining algorithm. Constrained sequential pattern mining algorithms are
briefly discussed in Sect. 15.2.2 of Chap. 15. It should be pointed out that the different
constraints discussed in Sect. 15.2.2 correspond to different kinds of motifs. Because of the
wide variation in the kinds of motifs that can be found by varying either the discretization
approach or the sequential pattern mining approach, this methodology is very flexible, and
it can be tailored to many different application scenarios.

2 The mean of the squares is always no less than the square of the mean for any set of numeric elements.
The difference between the two is equal to the variance, which is always nonnegative.

476 CHAPTER 14. MINING TIME SERIES DATA

14.4.3 Periodic Patterns

Just as DWT is used for discovering local patterns in a time series, DFT is often used for
discovering periodic patterns. Recall from Sect. 14.2.4.2 that the rth component of a time
series x0 . . . xn−1 can be expressed in terms of n complex Fourier coefficients X0 . . . Xn−1

as follows:

xr =
1
n

(
n−1∑
k=0

Xk · cos(rωk) + i

n−1∑
k=0

Xk · sin(rωk)
)

∀r ∈ {0 . . . n− 1}

Here ω is set to 2π
n radians. Since the imaginary part of this summation is always 0 for real

values of xr, let us expand the real part by assuming Xk = ak + ibk:

xr =
1
n

(
n−1∑
k=0

(ak + ibk) · cos(rωk) + i

n−1∑
k=0

(ak + ibk) · sin(rωk)
)

∀r ∈ {0 . . . n− 1}

By ignoring the imaginary part, we obtain:

xr =
1
n

(
n−1∑
k=0

ak · cos(rωk)−
n−1∑
k=0

bk · sin(rωk)
)

∀r ∈ {0 . . . n− 1}

=
1
n

√
a2k + b2k ·

n−1∑
k=0

cos(rωk + θk) ∀r ∈ {0 . . . n− 1}

Here, we have θk = cos−1

(
ak√
a2
k+b2k

)
. All terms with k ≥ 1 are periodic. In other words,

the time series can be decomposed into n − 1 periodic sinusoidal components, so that the
kth component has a periodicity of n

k and amplitude of
√
a2k + b2k. Therefore, if a periodic

component has very high amplitude relative to other components, the entire series will be
dominated by its periodic behavior. In order to detect such components, the mean and
standard deviation of all the n amplitudes are determined. Any amplitude

√
a2k + b2k, which

is at least δ standard deviations greater than the mean is flagged. Such a component has
periodicity n

k , and its periodicity will be apparent in the series because of its high amplitude.
Note that the smaller Fourier coefficients are also discarded in the case of dimensionality
reduction. However, when the threshold δ is chosen more aggressively (i.e., very large pos-
itive values such as 3), only 2 or 3 coefficients remain, and the periodicity of the residual
series becomes apparent. Furthermore, only values of k ∈ (β, n

α) are relevant for discovering
patterns that have period at least α ≥ 2 and have appeared at least β ≥ 2 times in the
series. The bibliographic notes contain pointers to methods for discovering partial periodic
patterns.

14.5 Time Series Clustering

Time series data clustering can be defined in two different ways, depending on the
application-specific scenario.

1. In the first approach, real-time clustering is performed on time series that are received
simultaneously in time. For example, in a financial market application, it may be
desirable to segment the series into groups that coevolve over time. In this case, the

14.5. TIME SERIES CLUSTERING 477

values in the different time series are compared to one another in an approximately
synchronized way. Typically, the analysis is performed on a small window of the recent
history. The time series are clustered into groups based on correlations between series
in the window. Furthermore, the clustering is performed in online fashion, and the
different series may move across different clusters. For example, a stock ticker for IBM
may move along with Microsoft on one day, but not the next.

2. In the second approach, a database of time series is available. These different time
series may or may not have been collected at the same instant. It is desirable to cluster
these series, on the basis of their shapes. For example, in an application containing
electrocardiogram (ECG) time series, the different patients may have contributed a
time series to the database at different instants. Shape matching typically requires the
use of time series similarity functions discussed in Sect. 3.4.1 of Chap. 3. Thus, both
the contextual attribute and the behavioral attribute(s) may be warped or scaled,
depending on the nature of the similarity function. In such cases, the different time
series may not even be of equal length.

In this section, the different kinds of clustering methods will be discussed in detail. The
problem becomes much more difficult when shape-based clustering is applied to multivariate
time series. One solution is to generalize the similarity functions to the multivariate case.
Time series similarity functions can be generalized to the multivariate case, though a full
discussion of this topic is beyond the scope of this book. Relevant pointers may be found
in the bibliographic notes.

For shape-based clustering, the special case of bivariate and trivariate series can also be
addressed with the use of trajectory clustering. An example of how multivariate series may
be converted to trajectory data is found in Sect. 1.3.2.3 of Chap. 1. Methods for trajectory
clustering are discussed in Sect. 16.3.4 of Chap. 16.

14.5.1 Online Clustering of Coevolving Series

The problem of online clustering of coevolving series is based on determining correlations
across the series, in online fashion. This is useful in many real-time applications such as
financial markets because it provides an understanding of the aggregate trends in the series.
In these cases, the time series are clustered based on their correlations in a window of
length p. Because of the use of correlations to define similarity, the approach is referred
to as time series correlation clustering. The ORCLUS correlation clustering algorithm for
multidimensional data was discussed in Chap. 7. A similar principle applies to time series
data, except that the correlation is measured between different components (behavioral
dimensions) of the multivariate time series. The same temporal window is used for the
different time series in order to compute the correlations. Therefore, the analysis of the
different streams is temporally synchronized.

A natural approach is to use regression-based similarity functions to compute the sim-
ilarities between different streams. It is not necessary for the two streams to be positively
correlated. Rather, the streams may be highly negatively correlated. The key issue here is
the predictability of the different time series with respect to each other. For example, in
Fig. 14.8, the series A and B are very similar because they are perfectly negatively corre-
lated with one another. This is because these two series can be predicted from one another.
On the other hand, series C is very different, and has low predictability with respect to
either stream, and it is useful in applications where it is desired to maximize the predictive
power of cluster representatives. An example is sensor selection, where a subset of sensors

478 CHAPTER 14. MINING TIME SERIES DATA

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

TIME INDEX

V
A

LU
E

SERIES A

SERIES B

SERIES C

Figure 14.8: Time series correlation clustering

need to be selected which maximize the ability to predict the values of all other sensors.
Because prediction is one of the most fundamental problems in real-time time series analy-
sis, the use of regression-based similarity is natural in such scenarios. This is different from
offline shape-based analysis where more conventional time series similarity functions, such
as DTW, are used. A method that directly uses regression analysis for real-time time series
clustering is referred to as online time series correlation clustering.

For ease in discussion, we will treat the d time series as a single multivariate series with
d behavioral attributes. The multivariate time series of length t is denoted by Y1 . . . Yt. The
value Yt of each of the d streams at the tth tick is (y1t . . . y

d
t). The goal is to therefore always

to maintain a partition of the d series, so that highly correlated components are assigned
to the same partition. A representative-based approach is used for clustering. The basic
idea is to incrementally maintain a set of k representative time series from the d series in
real-time. This representative set, denoted by J , is similar to the representative set of a
k-medoids algorithm. After the representatives have been determined, all of the time series
streams can be assigned to one of the representatives with the use of a time series similarity
function. Each series can be assigned to its closest representative. This similarity function
will be discussed later in more detail.

A natural approach is to incrementally maintain the representatives, and add or drop
streams to the set J where necessary. The clustering is implicitly defined by assignment of
the d time series to their closest representatives. Therefore, when a new time series data
point arrives, the current set of representatives J need to be updated. Streams are itera-
tively exchanged between the current cluster representatives and the non-representatives
to optimize a quality criterion based on minimizing the error. The similarity between a
representative stream i and nonrepresentative stream j, is the regression error of predicting
stream j from stream i. The idea is that true cluster representatives can be used to accu-
rately predict the other streams. To predict the stream j from stream i, a similar model as
the autoregressive model is used, except that the elements of stream i are used to predict
stream j, instead of its own elements. Thus, the regression model is as follows:

yjt =
p∑

r=1

ar · yit−r + c+ εt

This is similar to the AR(p) model, except that the elements of stream i are being used
to predict those of stream j. As in the case of the AR(p) model, least-squares regression

14.5. TIME SERIES CLUSTERING 479

Algorithm UpdateClusters(Multivariate Stream: Y1 . . . Yt . . .
Current Set of Representatives: J)

begin
Receive next time-stamp Yt of multivariate stream;
repeat
Add a stream to J that leads to the maximum
decrease in regression error of the clustering;

Drop the stream from J that leads to the least
increase in regression error of the clustering;

Assign each series to closest representative in J to
create the clustering C;

until(J did not change in previous iteration);
return(J , C);

end

Figure 14.9: Dynamically maintaining cluster representatives

can be used to learn p coefficients. Furthermore, the training data is restricted to a win-
dow of size w > p to allow for stream evolution. The squared average of the white noise
error terms, or the R2-statistic over the window of size w > p, can be used as the distance
(similarity) between the two streams. Note that the regression coefficients can also be main-
tained incrementally because they are already known at the previous timestamp, and the
model simply needs to be updated with the addition of a single data point. Most iterative
optimization methods for least-squares regression, such as gradient descent, converge very
fast when starting with a near-optimal solution.

This regression-based similarity function is not symmetric because the error of predicting
stream j from stream i is different from the error of predicting stream i from stream j. The
representative set J can also be used to create a clustering C of the streams, by assigning
each stream to the representative, that best predicts it. Thus, at each step, the set of
representatives J and clusters C can be incrementally reported, after updating the model.
The pseudocode for the online stream clustering approach is illustrated in Fig. 14.9. This
approach can be useful for trend analysis in financial markets, where a representative set
of stocks needs be tracked from the vast universe of stocks. Another relevant application is
that of sensor selection, where a subset of representative sensors need to be determined to
lower the operational costs of sensor networks. The description in this section is based on a
simplification of a cost-based dynamic sensor selection algorithm [50].

14.5.2 Shape-Based Clustering

The second type of clustering is derived from shape-based clustering. In this case, the
different time series may not be synchronized in time. The time series are clustered on
the basis of the similarity of the shape of the overall series. A first step is the design of a
shape-based similarity function. A major challenge in this case is that the different series
may be scaled, translated, or stretched differently. This issue was discussed in Sect. 3.4.1
of Chap. 3. The illustration of Fig. 3.7 is replicated in Fig. 14.10. This figure illustrates
different hypothetical stock tickers. In these cases, the three stocks show similar patterns,
but with different scaling and random variations. Furthermore, in some cases, the time
dimension may also be warped. For example, in Fig. 14.10, the entire set of values for

480 CHAPTER 14. MINING TIME SERIES DATA

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

35

40

TIME

V
A

LU
E

STOCK A

STOCK B (DROPPED READINGS)

STOCK C

STOCK A (WARPED)

Figure 14.10: Impact of scaling, translation and noise on clustering (revisiting Fig. 3.7)

stock A was stretched because the time-granularity information was not available to the
analyst. This is referred to as time warping. Fortunately, the dynamic time warping (DTW)
similarity function, discussed in Sect. 3.4.1 of Chap. 3, can address these issues. The design
of an effective similarity function is, therefore, one of the most crucial steps in time series
clustering.

Many existing methods can be adapted to shape-based time series clustering with the
use of different time series similarity functions. The k-medoids and graph-based methods
can be used with almost any similarity function. Methods such as k-means can also be used,
though in a more limited way. This is because the different time series need to be of the
same length in order for the mean of a cluster to be defined meaningfully.

14.5.2.1 k-Means

The k-means method for multidimensional data is discussed in Sect. 6.3.1 of Chap. 6. This
method can be adapted to time series data, by changing the similarity function and the
computation of the means of the time series. The computation of the similarity function
can be adapted from Sect. 3.4.1 of Chap. 3. The precise choice of the similarity function
may depend on the application at hand, though the k-means approach is optimized for
the Euclidean distance function. This is because the k-means approach can be viewed as an
iterative solution to an optimization problem, in which the objective function is constructed
with the Euclidean distance. This aspect is discussed in more detail in Chap. 6.

The Euclidean distance function on a time series is defined in the same way as multidi-
mensional data. The means of the different time series are also defined in a similar way to
multidimensional data. The k-means method is best used for databases of series of the same
length with a one-to-one correspondence between the time points. Thus, the centroid for
each time point can be defined using the correspondence. Time warping is typically difficult
to use in k-means algorithms in a meaningful way, because of the assumption of one-to-one
correspondence between the time series data points. For more generic distance functions
such as DTW, other methods for time series clustering are more appropriate.

14.5.2.2 k-Medoids

The main problem with the k-means approach is the fact that it cannot incorporate arbitrary
similarity (or distance) functions. The k-medoids approach can be used more effectively in

14.6. TIME SERIES OUTLIER DETECTION 481

this case because it does not make any assumptions on the relative lengths of the different
time series. The approach is described in detail in Sect. 6.3.4 of Chap. 6. The main dif-
ference from the description provided in this section is that of the choice of the similarity
function. Any of the similarity functions described in Sect. 3.4.1 of Chap. 3 may be used.
The CLARANS method discussed in Sect. 7.3.1 of Chap. 7 can also be generalized to this
case.

14.5.2.3 Hierarchical Methods

The hierarchical methods, discussed in Sect. 6.4 of Chap. 6, can also be generalized to any
data type because they work with pairwise distances between the different data objects. In
these methods, the main challenge is that distance computations between all pairs of time
series are required. Many time series distance and similarity functions require expensive
dynamic programming methods. This is a major disadvantage in the use of hierarchical
methods. Nevertheless, the approach can still be used quite effectively in cases where the
total number of time series is small.

14.5.2.4 Graph-Based Methods

Graph-based methods provide a transformational approach to time series data clustering.
The idea is to transform the time series data set into a single large graph, on which commu-
nity detection algorithms can be applied. As discussed in Sect. 2.2.2.9 of Chap. 2, any data
type can be converted to a similarity graph, once a similarity function has been defined.
Each node in this graph corresponds to a data object. Each node is connected to its k-nearest
neighbors, and the weight of the edge is equal to the similarity between the correspond-
ing pair of objects. Once a similarity graph has been defined, any of the graph clustering
algorithms discussed in Sect. 19.3 of Chap. 19 can be used to determine node clusters. The
spectral method of Sect. 19.3.4 is most commonly used. The clusters (communities) of nodes
can then be mapped back to clusters of time series by using the correspondence between
nodes and time series data objects.

14.6 Time Series Outlier Detection

As in the case of time series clustering, the problem of outlier detection in time series can
be defined in two different ways.

1. Point outliers: A point outlier is a sudden change in a time series value at a given times-
tamp. This problem is closely related to forecasting, because an outlier is defined as
a significant deviation from expected (or forecasted) values. Such outliers are referred
to as contextual outliers because they are outliers in the context of their immediate
history.

2. Shape outliers: In this case, a consecutive pattern of data points in a contiguous window
may be defined as an anomaly. For example, in an ECG series, an irregular heart beat
may be considered an anomaly when considered together, although no individual point
in the series may be considered an anomaly. Such outliers are referred to as collective
outliers because they are defined by combining the patterns from multiple data items.

482 CHAPTER 14. MINING TIME SERIES DATA

0 50 100 150 200 250 300 350 400107

108

109

110

111

112

113

114

115

116

117

R
E

LA
TI

V
E

 V
A

LU
E

 O
F

S
&

P
 5

00

PROGRESS OF TIME (MAY 6, 2010)
0 50 100 150 200 250

95

100

105

110

115

120

125

130

135

140

PROGRESS OF TIME (YEAR 2011)

R
E

LA
TI

V
E

 V
A

LU
E

 O
F

S
&

P
 5

00

(a) (b)

Figure 14.11: Behavior of the S&P 500 on the day of the flash crash (May 6, 2010) (a),
and year 2001 (b)

To illustrate the distinction between these two kinds of anomalies, an example from
financial markets will be used. The two cases illustrated in Fig. 14.11a, b show the behavior3

of the S&P 500 over different periods in time. Figure 14.11a illustrates the movement of
the S&P 500 on May 16, 2010. This was the date of the stock market flash crash. This
is a very unusual event both from the perspective of the point deviation at the time of the
drop, and from the perspective of the shape of the drop. A different scenario is illustrated in
Fig. 14.11b. Here, the variation of the S&P 500 during the year 2001 is illustrated. There
are two significant drops over the course of the year, both because of stock market weakness,
and also because of the 9/11 terrorist attacks. While the specific timestamps of drop may be
considered somewhat abnormal based on deviation analysis over specific windows, the actual
shape of these time series is not unusual because it is frequently encountered during bear
markets (periods of market weakness). Thus, these two kinds of outliers require dedicated
methods for analysis. It should be pointed out that a similar distinction between the two
kinds of outliers can be defined in many contextual data types such as discrete sequence
data. These are referred to as point outliers and combination outliers, respectively, for
the case of discrete sequence data. The combination outliers in discrete sequence data are
analogous to shape outliers in continuous time series data. This is discussed in greater detail
in Chap. 15.

14.6.1 Point Outliers

Point outliers are closely related to the problem of forecasting in time series data. A data
point is considered an outlier if it deviates significantly from its expected (or forecasted)
value. Such point outliers correspond to unsupervised events in the underlying data. Event
detection is often considered a synonym for temporal outlier detection when it performed
in real time.

Point outliers can be defined for either univariate or multivariate data. The case of
univariate data and multivariate data is almost identical. Therefore, the more general case
of multivariate data will be discussed. As in previous sections, assume that the multivariate
series on which the outliers are to be detected is denoted by Y1 . . . Yn. The overall approach
comprises four steps:

3The tracking Exchange Traded Fund (ETF) SPY was used.

14.6. TIME SERIES OUTLIER DETECTION 483

1. Determine the forecasted values of the time series at each timestamp. Depending on
the nature of the underlying series, any of the univariate or multivariate methodologies
discussed in Sect. 14.3 may be used. Let the forecasted value at the rth timestamp tr
be denoted by Wr

2. Compute the (possibly multivariate) time series of deviations Δ1 . . .Δr In other
words, for the rth timestamp tr, the deviation is computed as follows:

Δr = Wr − Yr. (14.21)

3. Let the d different components of Δr be denoted by (δ1r . . . δ
d
r). These can be separated

out into d different univariate series of deviations along each dimension. The values
of the ith series are denoted by δi1 . . . δ

i
n. Let the mean and standard deviation of the

ith series of deviations be denoted by μi and σi.

4. Compute the normalized deviations δzir as follows:

δzir =
δir − μi

σi
. (14.22)

The resulting deviation is essentially equal to the Z-value of a normal distribution.
This approach provides a continuous alarm level of outlier scores for each of the d
dimensions of the multivariate time series. Unusual time instants can be detected by
using thresholding on these scores. Because of the Z-value interpretation, an absolute
threshold of 3 is usually considered sufficient.

In some cases, it is desirable to create a unified alarm level of deviation scores rather than
creating a separate alarm level for each of the series. This problem is closely related to that
of outlier ensemble analysis that is discussed in Sect. 9.4 of Chap. 9. The unified alarm
level Ur at timestamp r can be reported as the maximum of the scores across the different
components of the multivariate series:

Ur = maxi∈{1...d}δz
i
r. (14.23)

The score across different detectors can be combined in other ways, such as by using the
average or squared aggregate over different series.

14.6.2 Shape Outliers

One of the earliest methods for finding shape-based outliers is the Hotsax approach. In this
approach, outliers are defined on windows of the time series. A k-nearest neighbor method
is used to determine the outlier scores. Specifically, the Euclidean distance of a data point
to its kth-nearest neighbors is used to define the outlier score.

The outlier analysis is performed over windows of length W . Therefore, the approach
reports windows of unusual shapes from a time series of data points. The first step is to
extract all windows of length W from the time series by using a sliding-window approach.
The analysis is then performed over these newly created data objects. For each extracted
window, its Euclidean distance to the other nonoverlapping windows is computed. The
windows with the highest k-nearest neighbor distance values are reported as outliers. The
reason for using nonoverlapping windows is to minimize the impact of trivial matches to
overlapping windows. While a brute-force k-nearest neighbor approach can determine the

484 CHAPTER 14. MINING TIME SERIES DATA

outliers, the complexity will scale with the square of the number of data points. Therefore,
a pruning method is used for improving the efficiency. While this method optimizes the
efficiency, and it does not affect the final result reported by the method.

The general principle of pruning for more efficient outlier detection in nearest neighbor
methods was introduced in Sect. 8.5.1.2 of Chap. 8. The algorithm examines the candidate
subsequences iteratively in an outer loop. For each such candidate subsequence, the k-
nearest neighbors are computed progressively in an inner loop with distance computations to
other subsequences. Each candidate subsequence is either included in the current set of best
n outlier estimates at the end of an outer loop iteration, or discarded via early abandonment
of the inner loop without computing the exact value of the k-nearest neighbor. This inner
loop can be terminated early when the currently approximated k-nearest neighbor distance
for that candidate subsequence is less than the score for the nth best outlier found so far.
Clearly, such a subsequence cannot be an outlier. To obtain the best pruning results, the
subsequences need to be heuristically ordered so that the earliest candidate subsequences
examined in the outer loop have the greatest tendency to be outliers. Furthermore, the
pruning performance is also most effective when the true outliers are found early. It remains
to explain, how the heuristic orderings required for good pruning are achieved.

Pruning is facilitated by an approach that can measure the clustering behavior of the
underlying subsequences. Clustering has a well known relationship of complementarity with
outlier analysis. Therefore it is useful to examine those subsequences first in the outer loop
that are members of clusters containing very few (or one) members. The SAX representation
is used to create a simple mapping of the subsequences into clusters. Subsequences that map
to the same SAX word, are assumed to belong to a single cluster. The piecewise aggregate
approximations of SAX are performed over windows of length w < W . Therefore, the
length of a SAX word is W/w, and the number of distinct possibilities for a SAX word is
small if W/w is small. These distinct words correspond to the different clusters. Multiple
subsequences map to the same cluster. Therefore, the ordering of the candidates is based on
the number of data objects in the same cluster. Candidates in clusters with fewer objects
are examined first because they are more likely to be outliers.

This cluster-based ordering is used to design an efficient pruning mechanism for outlier
analysis. The candidates in the clusters are examined one by one in an outer loop. The
k-nearest neighbor distances to these candidates are computed in an inner loop. For each
candidate subsequence, those subsequences that map to the same word as the candidate
may be considered first for computing the nearest neighbor distances in the inner loop. This
provides quick and tight upper bounds on the nearest neighbor distances. As these distances
are computed one by one, a tighter and tighter upper bound on the nearest neighbor distance
is computed over the progression of the inner loop. A candidate can be pruned when an upper
bound on its nearest neighbor distance is guaranteed to be smaller (i.e., more similar) than
the nth best outlier distance found so far. Therefore, for any given candidate series, it is
not necessary to determine its exact nearest neighbor by comparing to all subsequences.
Rather, early termination of the inner loop is often possible during the computation of the
nearest neighbor distance. This forms the core of the pruning methodology of Hotsax, and
is similar in principle to the nested-loop pruning methodology discussed in Sect. 8.5.1.2 of
Chap. 8 on multidimensional outlier analysis. The main difference is in terms of how the
SAX representation is used both for ordering the candidates in the outer loop, and ordering
the distance computations in the inner loop.

14.7. TIME SERIES CLASSIFICATION 485

14.7 Time Series Classification

Time series classification can be defined in several ways, depending on the association of
the underlying class labels to either individual timestamps, or the whole series.

1. Point labels: In this case, the class labels are associated with individual timestamps. In
most cases, the class of interest is rare in nature and corresponds to unusual activity
at that timestamp. This problem is also referred to as event detection. This version
of the event detection problem can be distinguished from the unsupervised outlier
detection problem discussed in Sect. 14.6, in that it is supervised with labels.

2. Whole-series labels: In this case, the class labels are associated with the full series.
Therefore, the series needs to be classified on the basis of the shapes inside it.

Both these problems will be discussed in this chapter.

14.7.1 Supervised Event Detection

The problem of supervised event detection is one in which the class labels are associated
with the timestamps rather than the full series. In most cases, one or more of the class
labels are rare, and the remaining labels correspond to the “normal” periods. While it is
possible in principle to define the problem with a balanced distribution of labels, this is
rarely the case in application-specific settings. Therefore, the discussion in this subsection
will focus only on the imbalanced label distribution scenario.

These rare class labels correspond to the events in the underlying data. For example,
consider a scenario, in which the performance of a machine is tracked using sensors. In
some cases, a rare event, such as the malfunctioning of the machine, may cause unusual
sensor readings. Such unusual events need to be tracked in a timely fashion. Therefore, this
problem is similar to point anomaly detection, except that it is done in a supervised way.

In many application-specific scenarios, the time series data collection is inherently
designed in such a way that the unusual events are reflected in unexpected deviations
of the time series. This is particularly true of many sensor-based collection mechanisms.
While this can be captured by unsupervised methods, the addition of supervision helps
in the removal of spurious events that may have different underlying causes. For exam-
ple, consider the case of an environmental monitoring application. Many deviations may
be the result of the failure of the sensor equipment, or another spurious event that causes
deviations in sensor values. This may not necessarily reflect an anomaly of interest. While
anomalous events often correspond to extreme deviations in sensor stream values, the pre-
cise causality of different kinds of deviations may be quite different. These other noisy or
spurious abnormalities may not be of any interest to an analyst. For example, consider the
case illustrated in Fig. 14.12, in which temperature and pressure values inside pressurized
pipes containing heating fluids are illustrated. Figures 14.12 a and b illustrate values on
two sensors in a pipe rupture scenario. Figures 14.12 c and d illustrate the values of the two
sensors in a situation where the pressure sensor malfunctions, and this results in a value of
0 at each timestamp in the pressure sensor. In the first case, the readings of both pressure
and temperature sensors are affected by the malfunction, though the final pressure values
are not zero, but they reflect the pressure in the external surroundings. The readings on
the temperature sensor are not affected at all in the second scenario, since the malfunction
is specific to the pressure sensor.

Thus, the key is to differentiate among the deviations of different behavioral attributes
in a multivariate scenario. The use of supervision is very helpful because it can be used

486 CHAPTER 14. MINING TIME SERIES DATA

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

80

PROGRESSION OF TIME

TE
M

P
E

R
A

TU
R

E
 (C

E
N

TI
G

R
A

D
E

)

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
R

E
S

S
U

R
E

PROGRESSION OF TIME
(a) Temperature (pipe rupture scenario) (b) Pressure (pipe rupture scenario)

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

80

PROGRESSION OF TIME

TE
M

P
E

R
A

TU
R

E
 (C

E
N

TI
G

R
A

D
E

)

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

PROGRESSION OF TIME

P
R

E
S

S
U

R
E

(c) Temperature (sensor failure scenario) (d) Pressure (sensor failure scenario)

Figure 14.12: Behavior of temperature and pressure sensors due to pipe rupture (a, b), and
failure of pressure sensor (c, d)

to determine the differential behavior of the deviations across different streams. In the
aforementioned pipe rupture scenario, the relative deviations in the two events are quite
different. In the labeling input, it is assumed that most of the timestamps are labeled
“normal.” A few ground truth timestamps, T1 . . . Tr, are labeled “rare.” These are used for
supervision. These are referred to as primary abnormal events. In addition, spurious events
may also cause large deviations. These timestamps are referred to as secondary abnormal
events. In some application-specific scenarios, the timestamps for the secondary abnormal
events may be provided, though this is not assumed here. The bibliographic notes contain
pointers to these enhanced methods.

It is assumed that a total of d different time series data streams are available, and the
differential patterns in the d streams are used to detect the abnormal events. The overall
process of event prediction is to create a composite alarm level from the error terms in the
time series prediction. The first step is to use a univariate time series prediction model to
determine the error terms at a given timestamp. Any of the models discussed in Sect. 14.3
may be used. These are then combined together to create a composite alarm level with
the use of coefficients α1 . . . αd for the d different time series data streams. The values of
α1 . . . αd are learned from the training data in an offline (or periodic batch) phase, so as
to best discriminate the true event from the normal periods. The actual prediction can be
performed using an online approach in real time. Therefore, the steps may be summarized
as follows:

14.7. TIME SERIES CLASSIFICATION 487

1. (Offline Batch) Learn the coefficients α1 . . . αd that best distinguish between the true
and normal periods. The details of this step are discussed later in this section.

2. (Real Time) Determine the (absolute) deviation level for each timeseries data stream,
with the use of any forecasting method discussed in Sect. 14.3. These correspond the
absolute values of the white noise error terms. Let the absolute deviation level of
stream j at timestamp n be denoted by zjn.

3. (Real Time) Combine the deviation levels for the different streams as follows, to create
the composite alarm level:

Zn =
d∑

i=1

αiz
i
n (14.24)

The value of Zn is reported as the alarm level at timestamp n. Thresholding can be
used on the alarm level to generate discrete labels.

The main step in the last section, which has not yet been discussed, is the determination
of the discrimination coefficients α1 . . . αd. These should be selected in the training phase,
so as to maximize the differences in the alarm level between the primary events and the
normal periods.

To learn the coefficients α1 . . . αd in the training phase, the composite alarm level is aver-
aged at the timestamps T1 . . . Tr for all primary events of interest. Note that the composite
alarm level at each timestamp Ti is an algebraic expression, which is a linear function of the
coefficients α1 . . . αd according to Eq. 14.24. These expressions are added up over the time
stamps T1 . . . Tr to create an alarm level Qp(α1 . . . αd) which is a function of (α1, . . . αd).

Qp(α1 . . . αd) =
∑r

i=1 ZTi

r
. (14.25)

A similar algebraic expression for the normal alarm level Qn(α1 . . . αd) is also computed by
using all of the available timestamps, the majority of which are assumed to be normal.

Qn(α1 . . . αd) =
∑n

i=1 Zi

n
(14.26)

As in the case of the event signature, the normal alarm level is also a linear function of
α1 . . . αd. Then, the optimization problem is that of determining the optimal values of αi

that increase the differential signature between the primary events and the normal alarm
level. This optimization problem is as follows:

Maximize Qp(α1 . . . αd)−Qn(α1 . . . αd)

subject to:
d∑

i=1

α2
i = 1

This optimization problem can be solved using any off-the-shelf iterative optimization solver.
In practice, the online event detection and offline learning processes are executed simulta-
neously, as new events are encountered. In such cases, the values of αi can be updated
incrementally within the iterative optimization solver. The composite alarm level can be
reported as an event score. Alternatively, thresholding on the alarm level can be used to
generate discrete timestamps at which the events are predicted. The choice of threshold will
regulate the trade-off between the precision and recall of the predicted events.

488 CHAPTER 14. MINING TIME SERIES DATA

14.7.2 Whole Series Classification

In whole-series classification, the labels are associated with the entire series, rather than
events associated with individual timestamps. It is assumed that a database of N different
series is available, and each series has a length of n. Each of the series is associated with a
class label drawn from {1 . . . k}.

Many proximity-based classifiers are designed with the help of time series similarity
functions. Thus, the effective design of similarity functions is crucial in classification, as is
the case in many other time series data mining applications.

In the following, three classification methods will be discussed. Two of these methods
are inductive methods, in which only the training instances are used to build a model.
These are then used for classification. The third method is a transductive semisupervised
method, in which the training and test instances are used together for classification. The
semisupervised approach is a graph-based method in which the unlabeled test instances are
leveraged for more effective classification.

14.7.2.1 Wavelet-Based Rules

A major challenge in time series classification is that much of the series may be noisy
and irrelevant. The classification properties may be exhibited only in temporal segments of
varying length in the series. For example, consider the scenario where the series in Fig. 14.11
are presented to a learner with labels. In the case where the label corresponds to a recession
(Fig. 14.11a), it is important for a learner to analyze the trends for a period of a few weeks
or months in order to determine the correct labels. On the other hand, where the label
corresponds to the occurrence of a flash crash (Fig. 14.11b), it is important for a learner to
be able to extract out the trends over the period of a day.

For a given learning problem, it may not be known a priori what level of granularity
should be used for the learning process. The Haar wavelet method provides a multigranu-
larity decomposition of the time series data to handle such scenarios. As discussed in Sect.
14.4 on time series motifs, wavelets are an effective way to determine frequent trends over
varying levels of granularity. It is therefore natural to combine multigranular motif discovery
with associative classifiers.

Readers are advised to refer to Sect. 2.4.4.1 of Chap. 2 for a discussion of wavelet
decomposition methods. The Haar wavelet coefficient of order i analyzes trends over a time
period, which is proportional to 2−i · n, where n is the full length of the series. Specifically,
the coefficient value is equal to half the difference between the average values of the first half
and second half of the time period of length 2−i ·n. Because the Haar wavelet represents the
coefficients of different orders in the transformation, it automatically accounts for trends of
different granularity. In fact, an arbitrary shape in any particular window of the series can
usually be well approximated by an appropriate subset of wavelet coefficients. These can be
considered signatures that are specific to a particular class label. The goal of the rule-based
method is to discover signatures that are specific to particular class labels. Therefore, the
overall training approach in the rule-based method is as follows:

1. Generate wavelet representation of each of the N time series to create N numeric
multidimensional representations.

2. Discretize wavelet representation to create categorical representations of the time
series wavelet transformation. Thus, each categorical attribute value represents a range
of numeric values of the wavelet coefficients.

14.8. SUMMARY 489

3. Generate rule set using any rule-based classifier described in Sect. 10.4 of Chap. 10.
The combination of wavelet coefficients in the rule antecedent correspond to the “sig-
nature” shapes in the time series, which are relevant to classification.

Once the rule set has been generated, it can be used to classify arbitrary time series. A given
test series is converted into its wavelet representation. The rules that are fired by this series
are determined. These are used to classify the test instance. The methods for using a rule
set to classify a test instance are discussed in Sect. 10.4 of Chap. 10. When it is known that
the class labels are sensitive to periodicity rather than local trends, this approach should
be used with Fourier coefficients instead of wavelet coefficients.

14.7.2.2 Nearest Neighbor Classifier

Nearest neighbor classifiers are introduced in Sect. 10.8 of Chap. 10. The nearest neighbor
classifier can be used with virtually any data type, as long as an appropriate distance func-
tion is available. Distance functions for time series data have already been introduced in
Sect. 3.4.1 of Chap. 3. Any of these distance (similarity) functions may be used, depending
on the domain-specific scenario. The basic approach is the same as in the case of multidi-
mensional data. For any test instance, its k-nearest neighbors in the training data are deter-
mined. The dominant label from these k-nearest neighbors is reported as the relevant class
label. The optimal value of k may be determined by using leave-one-out cross-validation.

14.7.2.3 Graph-Based Methods

Similarity graphs can be used for clustering and classification of virtually any data type.
The use of similarity graphs for semisupervised classification was introduced in Sect. 11.6.3
of Chap. 11. The basic approach constructs a similarity graph from both the training and
test instances. Thus, this approach is a transductive method because the test instances are
used along with the training instances for classification. A graph G = (N,A) is constructed,
in which a node in N corresponds to each of the training and test instances. A subset
of nodes in G is labeled. These correspond to instances in the training data, whereas the
unlabeled nodes correspond to instances in the test data. Each node in N is connected to
its k-nearest neighbors with an undirected edge in A. The similarity is computed using any
of the distance functions discussed in Sect. 3.4.1 or 3.4.2 of Chap. 3. The specified labels of
nodes in N are then used to derive labels for nodes where they are unknown. This problem
is referred to as collective classification. Numerous methods for collective classification are
discussed in Sect. 19.4 of Chap. 19.

14.8 Summary

Time series data is common in many domains, such as sensor networking, healthcare, and
financial markets. Typically, time series data needs to be normalized, and missing values
need to be imputed for effective processing. Numerous data reduction techniques such as
Fourier and wavelet transforms are used in time series analysis. The choice of similarity
function is the most crucial aspect of time series analysis, because many data mining appli-
cations such as clustering, classification, and outlier detection are dependent on this choice.

Forecasting is an important problem in time series analysis because it can be used to
make predictions about data points in the future. Most time series applications use either
point-wise or shape-wise analysis. For example, in the case of clustering, point-wise analysis

490 CHAPTER 14. MINING TIME SERIES DATA

results in temporal correlation clusters, where a cluster contains many different series that
move together. On the other hand, shape-wise analysis is focused on determining groups of
time series with approximately similar shapes.

The problem of point-wise outlier detection is closely related to forecasting. A time series
data point is an outlier if it differs significantly from its expected (or forecasted) value. A
shape outlier is defined in time series data with the use of similarity functions. When supervi-
sion is incorporated in point-wise outlier detection, the problem is referred to as event detec-
tion. Many existing classification techniques can be extended to shape-based classification.

14.9 Bibliographic Notes

The problem of time series analysis has been studied extensively by statisticians and com-
puter scientists. Detailed books on temporal data mining and time series analysis may be
found in [134, 467, 492]. Data preparation and normalization are important aspects of time
series analysis. The binning approach is also referred to as piecewise aggregate approxi-
mation (PAA) [309]. The SAX approach is described in [355]. The DWT, DFT, and DCT
transforms are discussed in [134, 467, 475, 492]. Time series similarity measures are discussed
in detail in Chap. 3 of this book, and in an earlier tutorial by Gunopulos and Das [241].

The problem of time series motif discovery has been discussed in [151, 394, 395, 418, 524].
The distance-based motif discussion in this chapter is based on the description in [356]. A
wavelet-based approach for multiresolution motif discovery is discussed in [51]. The discov-
ered motifs are used for classification. Further discussions on periodic pattern mining may
be found in [251, 411, 467]. The problem of time series forecasting is discussed in detail
in [134]. The lower bounding of distance functions is useful for fast pruning and indexing.
The lower bounding on PAA has been shown in [309]. It has been shown how to perform
lower bounding on DTW in [308].

A recent survey on time series data clustering may be found in [324]. The problem of
online clustering time series data streams is related to the problem of sensor selection. The
Selective MUSCLES method was introduced in [527] that can potentially be used to select
representatives from a set of time series. The online correlation method, discussed in this
chapter, is based on the discussion in [50]. A survey of representative selection algorithms
for sensor data may be found in [414]. Many of these algorithms may also be used for online
correlation clustering.

A survey on outlier detection for temporal data may be found in [237]. A chapter on
temporal outlier detection may also be found in a recent outlier detection book [5]. The
online detection of timestamps is referred to as event detection. The supervised version
of this problem is related to rare class detection. The supervised event detection method
discussed in Sect. 14.7.1 was proposed in [52]. The Hotsax approach discussed in this book
was proposed in [306]. A wavelet-based approach for classification of sequences is discussed
in [51]. This approach has been adapted for time series data in this chapter. Surveys on
temporal data classification may be found in [33, 516]. The latter survey is on sequence
classification, although it also discusses many aspects of time series classification.

14.10 Exercises

1. For the time series (2, 7, 5, 3, 3, 5, 5, 3), determine the binned time series where the
bins are chosen to be of length 2.

14.10. EXERCISES 491

2. For the time series of Exercise 1, construct the rolling average series for a window size
of 2 units. Compare the results to those obtained in the previous exercise.

3. For the time series of Exercise 1, construct the exponentially smoothed series, with a
smoothing parameter α = 0.5. Set the initial smoothed value y0 to the first point in
the series.

4. Implement the binning, moving average, and exponential smoothing methods.

5. Consider a series, in which consecutive values are related as follows:

yi+1 = yi · (1 +Ri) (14.27)

Here Ri is a random variable drawn from [0.01, 0.05]. What transformation would you
apply to make this series stationary?

6. Consider the series in which yi is defined as follows:

yi = 1 + i+ i2 +Ri (14.28)

Here Ri is a random variable drawn from [0.01, 0.05]. What transformation would you
apply to make this series stationary?

7. For a real-valued time series x0 . . . xn−1 with Fourier coefficients X0 . . . Xn−1, show
that Xk +Xn−k is real-valued for each k ∈ {1 . . . n− 1}.

8. Suppose that you wanted to implement the k-means algorithm for a set of time
series, and you were given the same subset of complex Fourier coefficients for each
dimensionality-reduced series. How would the implementation be different from that
of using k-means on the original time series?

9. Use Parseval’s theorem and additivity to show that the dot product of two series
is proportional to the sum of the dot products of the real parts and the dot prod-
ucts of the imaginary parts of the Fourier coefficients of the two series. What is the
proportionality factor?

10. Implement a shape-based k-nearest neighbor classifier for time series data.

11. Generalize the distance-based motif discovery algorithm, discussed in this chapter to
the case where the motifs are allowed to be of any length [a, b], and the Manhattan
segmental distance is used for distance comparison. The Manhattan segmental dis-
tance between a pair of series is the same as the Manhattan distance, except that it
divides the distance with the motif length for normalization.

12. Suppose you have a database of N series, and the frequency of motifs are counted, so
that their occurrence once in any series is given a credit of one. Discuss the details of
an algorithm that can use wavelets to determine motifs at different resolutions.

Chapter 15

Mining Discrete Sequences

“I am above the weakness of seeking to establish a
sequence of cause and effect.”—Edgar Allan Poe

15.1 Introduction

Discrete sequence data can be considered the categorical analog of timeseries data. As in
the case of timeseries data, it contains a single contextual attribute that typically corre-
sponds to time. However, the behavioral attribute is categorical. Some examples of relevant
applications are as follows:

1. System diagnosis: Many automated systems generate discrete sequences containing
information about the system state. Examples of system state are UNIX system calls,
aircraft system states, mechanical system states, or network intrusion states.

2. Biological data: Biological data typically contains sequences of amino acids. Specific
patterns in these sequences may define important properties of the data.

3. User-action sequences: Various sequences are generated by user actions in different
domains.

(a) Web logs contain long sequences of visits to Websites by different individuals.

(b) Customer transactions may contain sequences of buying behavior. The individual
elements of the sequence may correspond to the identifiers of the different items,
or sets of identifiers of different items that are bought.

(c) User actions on Websites, such as online banking sites, are frequently logged.
This case is similar to that of Web logs, except that the logs of banking sites
often contain more detailed information for security purposes.

Biological data is a special kind of sequence data, in which the contextual data is not
temporal but relates to the placement of the different attributes. Methods for temporal

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 15 493
c© Springer International Publishing Switzerland 2015

494 CHAPTER 15. MINING DISCRETE SEQUENCES

sequence data can be leveraged for biological sequence data and vice versa. A discrete
sequence is formally defined as follows:

Definition 15.1.1 (Discrete Sequence Data) A discrete sequence Y1 . . . Yn of length n
and dimensionality d, contains d discrete feature values at each of n different timestamps
t1 . . . tn. Each of the n components Yi contains d discrete behavioral attributes (y1i . . . y

d
i),

collected at the ith timestamp.

In many practical scenarios, the timestamps t1 . . . tn may simply be tick values indexed from
1 through n. This is especially true in cases such as biological data, in which the contextual
attribute represents placement. In general, the actual timestamps are rarely used in most
sequence mining applications, and the discrete sequence values are assumed to be equally
spaced in time. Furthermore, most of the analytical techniques are designed for the case
where d = 1. Such discrete sequences are also referred to as strings. This chapter will,
therefore, use these terms interchangeably. Most of the discussion in this chapter focuses on
these more common and simpler cases.

In some applications, such as sequential pattern mining, each Yi is not a vector but a set
of unordered values. This is a variation from Definition 15.1.1. Therefore, the notation Yi

(without an overline) will be used to denote a set rather than a vector. For example, in a
supermarket application, the set Yi may represent a set of items bought by the customer at
a given time. There is no temporal ordering among the items in Yi. In a Web log analysis
application, the set Yi represents the Web pages browsed by a given user in a single session.
Thus, discrete sequences can be defined in a wider variety of ways than timeseries data.
This is because of the ability to define sets on discrete items. Each position in the sequence
is also referred to as an element and is composed of individual items in the set. Throughout
this chapter, the word “element” will refer to one of the sets of items within the sequence,
including a 1-itemset.

These variations in definitions arise out of a natural variation in the different kinds of
application scenarios. This chapter will study the different problem definitions relevant to
discrete sequence mining. The four major problems of pattern mining, clustering, outlier
analysis, and classification, are each defined differently for discrete sequence mining than for
multidimensional data. These different definitions will be studied in detail. A few models,
such as Hidden Markov Models, are used widely across many different application domains.
These commonly used models will also be studied in this chapter.

This chapter is organized as follows. Section 15.2 introduces the problem of sequential
pattern mining. Sequence clustering algorithms are discussed in Sect. 15.3. The problem of
sequence outlier detection is discussed in Sect. 15.4. Section 15.5 introduces Hidden Markov
Models (HMM) that can be used for either clustering, classification, or outlier detection. The
problem of sequence classification is addressed in Sect. 15.6. Section 15.7 gives a summary.

15.2 Sequential Pattern Mining

The problem of sequential pattern mining can be considered the temporal analog of fre-
quent pattern mining. In fact, most algorithms for frequent pattern mining can be directly
adapted to sequential pattern mining with a systematic approach, although the latter prob-
lem is more complex. As in frequent pattern mining, the original motivating application for
sequential pattern mining was market basket analysis, although the problem is now used in
a wider variety of temporal application domains, such as computer systems, Web logs, and
telecommunication applications.

15.2. SEQUENTIAL PATTERN MINING 495

The sequential pattern mining problem is defined on a set of N sequences. The ith
sequence contains ni elements in a specific temporal order. Each element contains a set
of items. The complex element is, therefore, a set, such as a basket of items bought by a
customer. For example, consider the sequence:

〈{Bread,Butter}, {Butter,Milk}, {Bread,Butter, Cheese}, {Eggs}〉

Here, {Bread,Butter} is an element, and Bread is an item inside the element. A sub-
sequence of this sequence is also a temporal ordering of sets, such that each element in the
subsequence is a subset of an element in the base sequence in the same temporal order. For
example, consider the following sequence:

〈{Bread,Butter}, {Bread,Butter}, {Eggs}〉

The second sequence is a subsequence of the first because each element in the second
sequence can be matched to a corresponding element in the first sequence by a subset
relationship, so that the matching elements are in the same temporal order. Unlike trans-
actions that are sets, note that sequences (and the mined subsequences) contain ordered
(and possibly repeated) elements, each of which is itself like a transaction. For example,
{Bread,Butter} is a repeated element in one of the aforementioned sequences, and it may
correspond to two separate visits of a customer to the supermarket at different times. For-
mally, a subsequence relationship is defined as follows:

Definition 15.2.1 (Subsequence) Let Y = 〈Y1 . . . Yn〉 and Z = 〈Z1 . . . Zk〉 be two
sequences, such that all the elements Yi and Zi in the sequences are sets. Then, the
sequence Z is a subsequence of Y, if k elements Yi1 . . . Yik can be found in Y, such that
ii < i2 < . . . < ik, and Zr ⊆ Yir for each r ∈ {1 . . . k}.

Consider a sequence database T containing a set of N sequences Y1 . . .YN . The support
of a subsequence Z with respect to database T is defined in an analogous way to frequent
pattern mining.

Definition 15.2.2 (Support) The support of a subsequence Z is defined as the fraction
of sequences in the database T = {Y1 . . .YN}, that contain Z as a subsequence.

The sequential pattern mining problem is that of identifying all subsequences that satisfy
the required level of minimum support minsup.

Definition 15.2.3 (Sequential Pattern Mining) Given a sequence database T =
{Y1, . . .YN}, determine all subsequences whose support with respect to the database T is
at least minsup.

It is easy to see that this definition is very similar to that of the definition of association
pattern mining in Chap. 4. The minimum support value minsup can be specified either as
an absolute value, or as a relative support value. As in the case of frequent pattern mining,
a relative value will be assumed, unless otherwise specified.

An Apriori-like algorithm, known as Generalized Sequential Pattern Mining (GSP), was
proposed as the first algorithm for sequential pattern mining. This algorithm is very similar
to Apriori, in terms of how candidates are generated and counted. In fact, many frequent
pattern mining algorithms, such as TreeProjection and FP-growth, have direct analogs in
sequential pattern mining. This section describes only the GSP algorithm in detail. A later

496 CHAPTER 15. MINING DISCRETE SEQUENCES

Algorithm GSP(Sequence Database: T , Minimum Support: minsup)
begin
k = 1;
Fk = { All Frequent 1-item elements };
while Fk is not empty do begin
Generate Ck+1 by joining pairs of sequences in Fk, such that

removing an item from the first element of one sequence matches the sequence
obtained by removing an item from the last element of the other;

Prune sequences from Ck+1 that violate downward closure;
Determine Fk+1 by support counting on (Ck+1, T) and retaining

sequences from Ck+1 with support at least minsup;
k = k + 1;

end;
return(∪k

i=1Fi);
end

Figure 15.1: The GSP algorithm is related to the Apriori algorithm. The reader is encour-
aged to compare this pseudocode with the Apriori algorithm described in Fig. 4.2 of Chap. 4

section provides a broad overview of how enumeration tree algorithms can be generalized
to sequential pattern mining.

The GSP and Apriori algorithms are similar, except that the former needs to be designed
for finding frequent sequences rather than sets. First, the notion of the length of candidates
needs to be defined in sequential pattern mining. This notion needs to be defined more care-
fully, because the individual elements in the sequence are sets rather than items. The length
of a candidate or a frequent sequence is equal to the number of items (not elements) in the
candidate. In other words, a k-sequence) 〈Y1 . . . Yr〉 is a sequence with length

∑r
i=1 |Yi| = k.

Thus, 〈{Bread,Butter, Cheese}, {Cheese,Eggs}〉 is a 5-candidate, even though it contains
only 2 elements. This is because this sequence contains 5 items in total, including a repe-
tition of “Cheese” in two distinct elements. A (k − 1)-subsequence of a k-candidate can be
generated by removing an item from any element in the k-sequence. The Apriori property
continues to hold for sequences because any (k − 1)-subsequence of a k-sequence will have
support at least equal to that of the latter. This sets the stage for a candidate generate-
and-test approach, together with downward closure pruning, which is analogous to Apriori.

The GSP algorithm starts by generating all frequent 1-item sequences by straightfor-
ward counting of individual items. This set of frequent 1-sequences is represented by F1.
Subsequent iterations construct Ck+1 by joining pairs of sequence patterns in Fk. The join
process is different from association pattern mining because of the greater complexity in
the definition of sequences. Any pair of frequent k-sequences S1 and S2 can be joined, if
removing an item from the first element in one frequent k-sequence S1 is identical to the
sequence obtained by removing an item from the last element in the other frequent sequence
S2. For example, the two 5-sequences S1 = 〈{Bread,Butter, Cheese}, {Cheese,Eggs}〉 and
S2 = 〈{Bread,Butter}, {Milk, Cheese,Eggs}〉 can be joined because removing “Cheese”
from the first element of S1 will result in an identical sequence to that obtained by remov-
ing “Milk” from the last element of S2. Note that if S2 were a 5-candidate with 3 elements
corresponding to S2 = 〈{Bread,Butter}, {Cheese,Eggs}, {Milk}〉, then a join can also
be performed. This is because removing the last item from S2 creates a sequence with 2

15.2. SEQUENTIAL PATTERN MINING 497

elements and 4 items, which is identical to S1. However, the nature of the join will be some-
what different in these cases. In general, cases where the last element of S2 is a 1-itemset
need to be treated specially. The following rules can be used to execute the join:

1. If the last element of S2 is a 1-itemset, then the joined candidate may be obtained by
appending the last element of S2 to S1 as a separate element. For example, consider
the following two sequences:

S1 = 〈{Bread,Butter, Cheese}, {Cheese,Eggs}〉
S2 = 〈{Bread,Butter}, {Cheese,Eggs}, {Milk}〉

The join of the two sequences is 〈{Bread,Butter, Cheese}, {Cheese,Eggs}, {Milk}〉.

2. If the last element of S2 is not a 1-itemset, but a superset of the last element of S1,
then the joined candidate may be obtained by replacing the last element of S1 with
the last element of S2. For example, consider the following two sequences:

S1 = 〈{Bread,Butter, Cheese}, {Cheese,Eggs}〉
S2 = 〈{Bread,Butter}, {Milk, Cheese,Eggs}〉

The join of the two sequences is 〈{Bread,Butter, Cheese}, {Milk, Cheese,Eggs}〉.

These key differences from Apriori joins are a result of the temporal complexity and the
set-based elements in sequential patterns. Alternative methods exist for performing the
joins. For example, an alternative approach is to remove one item from the last elements
of both S1 and S2 to check whether the resulting sequences are identical. However, in this
case multiple candidates might be generated from the same pair. For example, 〈a, b, c〉 and
〈a, b, d〉 can join to any of 〈a, b, c, d〉, 〈a, b, d, c〉, and 〈a, b, cd〉. The first join rule of removing
the first item from S1 and the last item from S2 has the merit of having a unique join result.
For any specific join rule, it is important to ensure exhaustive and nonrepetitive generation
of candidates. As we will see later, a similar notion to the frequent-pattern enumeration
tree can be introduced in sequential pattern mining to ensure exhaustive and nonrepetitive
candidate generation.

The Apriori trick is then used to prune sequences that violate downward closure. The
idea is to check if each k-subsequence of a candidate in Ck+1 is present in Fk. The candidate
set is pruned of those candidates that do not satisfy this closure property. The frequent
(k + 1)-candidate sequences Ck+1 are then checked against the sequence database T , and
the support is counted. The counting of the support is executed according to the notion of a
subsequence, as presented in Definition 15.2.1. All frequent candidates in Ck+1 are retained
in Fk+1. The algorithm terminates, when no frequent sequences are generated in Fk+1 in a
particular iteration. All the frequent sequences generated during the different iterations of
the levelwise approach are returned by the algorithm. The pseudocode of the GSP algorithm
is illustrated in Fig. 15.1.

15.2.1 Frequent Patterns to Frequent Sequences

It is easy to see that the Apriori and GSP algorithms are structurally similar. This is not
a coincidence. The basic structure of the frequent pattern and sequential pattern mining
problems are similar. Aside from the differences in the support counting approach, the main
difference between GSP and Apriori is in terms of how candidates are generated. The join

498 CHAPTER 15. MINING DISCRETE SEQUENCES

LEVEL 0< >

LEVEL 1<{a}> <{b}> <{c}> <{d}>

T T T T

LEVEL 2<{a,b}> <{a,c}> <{a}{c}> <{b}{a}> <{b}{b}> <{b,c}> < {b}{c} > <{c}{a}> <{c}{b}>

S S T T T S T T T

LEVEL 3<{a,b,c}> <{a,b}{c}> <{b}{a,b}> <{b}{a}{b}> <{b,c}{a}> <{b,c}{b}> <{c}{a,b}>

SS STTT

LEVEL 3

T

Figure 15.2: The equivalent of an enumeration tree for sequential pattern mining

generation in GSP is defined in terms of two separate cases. The two cases correspond to
temporal extensions and set-wise extensions of candidates.

As discussed in Chap. 4, the Apriori algorithm can be viewed as an enumeration tree
algorithm. It is also possible to define an analogous candidate tree in sequential pattern
mining, albeit with a somewhat different structure than the enumeration tree in frequent
pattern mining. The key differences in join-based candidate generation between Apriori
and GSP algorithms translate to differences in the structure and growth of the candidate
tree in sequential pattern mining. In general, candidate trees for sequential pattern mining
are more complex because they need to accommodate both temporal and set-wise growth
of sequences. Therefore, the definition of candidate extensions of a tree-node needs to be
changed. A node for sequence S can be extended to a lower-level node in one of two ways:

1. Set-wise extension: In this case, an item is added to the last element in the sequence
S to create a candidate pattern. Therefore, the number of elements does not increase.
For an item to be added to the last element of S, it must satisfy two properties; (a)
the item successfully extends the parent sequence of S in the candidate tree with
either a set-wise or temporal extension to another frequent sequence, and (b) the item
must be lexicographically later than all items in the last element of S. As in frequent
pattern mining, a lexicographic ordering of items needs to be fixed up front.

2. Temporal extension: A new element with a single item is added to the end of the
current sequence S. As in the previous case of set-wise extensions, any frequent item
extension of the parent of S may be used to extend S (condition (a)). However, the
added item need not be lexicographically later than the items in the last element of
sequence S.

These two kinds of extensions can be shown to be equivalent to the two kinds of joins
in the GSP algorithm. As in frequent pattern mining, the candidate extensions of a node
are a subset of the corresponding frequent extensions of its parent node. An example of the
frequent portion of the candidate tree for sequential pattern mining is illustrated in Fig. 15.2.
Note the greater complexity of the tree, because of set-wise and temporal addition of items
at each level of the tree. The set-wise extensions are marked as “S”, and the temporal
extensions are marked as “T” on the corresponding tree edges. A particularly illuminating
discussion on this topic may be found in [243], on which this example is based.

15.2. SEQUENTIAL PATTERN MINING 499

It is possible to convert any enumeration tree algorithm for frequent pattern mining to
a sequential pattern mining algorithm by systematically making appropriate modifications.
These changes account for the different structure of the candidate tree in sequential pattern
mining compared to that in frequent pattern mining. This candidate tree is implicitly gen-
erated by all sequential pattern mining algorithms, such as GSP and PrefixSpan. Because
the enumeration tree1 is the generic framework describing all frequent pattern mining algo-
rithms, it implies that virtually all frequent pattern mining algorithms can be modified to
the sequential pattern mining scenario. For example, the work in [243] generalizes TreeP-
rojection, and the PrefixSpan algorithm generalizes FP-growth. Savasere et al.’s vertical
format [446] has also been generalized to sequential pattern mining algorithms. The main
difference between these algorithms is the different efficiency of counting with the use of a
variety of data structures, projection-based reuse tricks, and different candidate-tree explo-
ration strategies such as breadth-first or depth-first, rather than a fundamental difference
in search space size. The size of the candidate tree is fixed, although pruning strategies such
as the Apriori-style pruning can reduce its size.

The notion of projection-based reuse can also be extended to sequential pattern min-
ing. The projected representation T (P) of the sequence database T is associated with a
sequential pattern P in the candidate enumeration tree (as modified for sequential pattern
mining). Then, each sequence Y ∈ T in the database is projected at P according to the
following rules:

1. The sequential pattern P needs to be a subsequence of Y for the projection of Y to
be included in the projected database T (P).

2. All items that are either not in the last element of P, or are not successful frequent
extensions (either temporal or set-wise) of the parent of P are not included in the
projection of Y because they are irrelevant for counting frequent extensions of P.

3. The earliest temporal occurrence of P in Y, as a subsequence, is determined. Let the
last element Pr in P be matched to the element Yk in Y according to this subsequence
matching. Then, the first element of the projected representation of Y is equal to
the set of items in Yk − Pr that are lexicographically later than all items in Pr. If
the resulting element Q is null, then it is not included in the projection of Y. This
first element, if non-null, is special because it may only be used for counting set-wise
extensions of element Pr in the enumeration tree and is, therefore, denoted as Q
with an underscore in front of it.

4. The remaining elements in the projected sequence after Q correspond to the elements
in Y occurring temporally after the last matched element Yk in Y. All these elements
are included in the projection of Y after removing the irrelevant items discussed in
step 2. These remaining elements can be used for counting either set-wise extensions
of the last element Pr in P, or temporal extensions of P. For any of these remaining
elements (other than Q) to be used for counting the set-wise extensions of Pr, the
element would already need to contain Pr.

The projected database T (P) can be used to count the frequent extensions of P more effi-
ciently and determine the frequent ones. As in the frequent pattern mining, this projection
can be performed successively in top-down fashion during the construction an enumeration-
tree-like candidate structure. The projected database at a node can be generated by recur-
sively projecting the database at its parent. The basic approach is exactly analogous to

1See discussion in Sect. 4.4.4.5 of Chap. 4. A similar argument applies to sequential pattern mining.

500 CHAPTER 15. MINING DISCRETE SEQUENCES

projection-based frequent pattern mining algorithms discussed in Chap. 4. The algorithm
starts with a candidate tree ET which is the null node with the entire sequence database
T at that node. This tree is extended repeatedly using the following step until no nodes
remain in ET for further extension.

Select a node (P, T (P)) in ET for extension;
Generate the candidate temporal and set-wise extensions of P;
Determine the frequent extensions of P using support counting on T (P);
Extend ET with frequent extensions and their recursively projected databases;

The final candidate tree ET contains all the frequent sequential patterns. Different
strategies for selecting the node P can lead to the generation of the candidate tree in a
different order such as breadth-first or depth-first order. This simplified and generalized
description is roughly based on the frameworks independently proposed in [243] and Pre-
fixSpan, which are closely related. The reader is referred to the bibliographic notes for
discussion of the specific algorithms.

15.2.2 Constrained Sequential Pattern Mining

In many cases, additional constraints are imposed on the sequential patterns, such as con-
straints on gaps between successive elements of the sequence. One solution is to use the
unconstrained GSP algorithm, and then, as a postprocessing step, remove all subsequences
not satisfying the constraint. However, this brute-force approach is a very inefficient solu-
tion because the number of constrained patterns may be orders of magnitude smaller than
the unconstrained patterns. Therefore, the incorporation of the constraints directly into the
GSP algorithm, during the candidate-generation or support-counting step, is significantly
more efficient. Depending on the nature of the constraints, the changes required to the GSP
algorithm may be minor, or significant. In all cases, the support-counting procedure for
Fk needs to be modified. The constraints are explicitly checked during the support count-
ing. This reduces the number of frequent patterns generated, and makes the process more
efficient than the brute-force method. However, the incorporation of such constraints may
sometimes result in invalidation of the downward closure property of the mined patterns.
In such cases, appropriate changes may need to be made to the GSP algorithm. In cases
where the downward closure property is not violated, the GSP algorithm can be used with
very minor modifications for constraint checking during support counting.

An important constraint that does not violate the downward closure property is the
maxspan constraint. This constraint specifies that the time difference between the first
and last elements of a subsequence must be no larger than maxspan. Therefore, the GSP
algorithm can be used directly, with the modification that the constraint is checked during
support counting. Thus, the approach works with a much smaller set of subsequences in
each step and is generally more efficient than the brute-force method.

Another common constraint in sequential pattern mining is the maximum gap constraint.
This is also referred to as the maxgap constraint. Note that all (k−1)-subsequences of a par-
ticular frequent k-sequence may not be valid because of the maximum gap constraint. This
is somewhat problematic because the Apriori principle cannot be used effectively. For exam-
ple, the subsequence a1a5 is not supported by the transaction database sequence a1a2a3a4a5
under the maxgap value of 1, because the gap value between a1 and a5 is 3. However, the
subsequence a1a3a5 is supported by the same transaction database sequence under this
maxgap value. It is, therefore, possible for a1a5 to have lower support than a1a3a5. Thus,

15.3. SEQUENCE CLUSTERING 501

Apriori pruning cannot be applied. However, the sequence obtained by dropping items from
the first or last elements of a frequent sequence will always be frequent. Therefore, the spe-
cific join-based approach discussed in this chapter can still be used to exhaustively generate
all candidates without losing any frequent patterns. A modified pruning rule is used. While
checking (k − 1)-subsequences of a candidate for pruning, only subsequences containing
the same number of elements as the candidate are checked. In other words, elements con-
taining 1 item cannot be removed from the candidate for checking its subsequences. Such
subsequences are referred to as contiguous subsequences. A noteworthy special case is one
in which maxgap = 0. This case is often used for determining timeseries motifs after a time
series has been converted to a discrete sequence using methods discussed in Sect. 14.4 of
Chap. 14.

Another constraint of interest is the minimum gap constraint, or mingap constraint
between successive elements. A minimum gap constraint between successive elements will
always satisfy the downward closure property. Therefore, the GSP approach can be used
with very minor modifications. The only modification is that this constraint is checked
during support counting. This generates a smaller set of subsequences Fk. The join and
pruning steps remain unchanged. The bibliographic notes contain pointers to many other
interesting constraints such as the window-size constraint.

15.3 Sequence Clustering

As in the case of timeseries data, the clustering of sequences is heavily dependent on the
definition of similarity. When a similarity function has been defined, many of the tradi-
tional multidimensional methods such as k-medoids and graph-based methods can be easily
adapted to sequence data. It should be pointed out that these two methods can be used for
virtually any data type, and are dependent only on the choice of distance function.

Similarity measures for sequence data have been defined in Chap. 3. The most common
similarity functions used for sequence data are as follows:

1. Match-based measure: This measure is equal to the number of matching positions
between the two sequences. This can be meaningfully computed only when the two
sequences are of equal length, and a one-to-one correspondence exists between the
positions.

2. Dynamic time warping (DTW): In this case, the number of nonmatches between the
two sequences can be used with dynamic time warping. The dynamic time warping
(DTW) method is discussed in detail in Sect. 3.4.1.3 of Chap. 3. The idea is to stretch
and shrink the time dimension dynamically to account for the varying speeds of data
generation for different series.

3. Longest common subsequence (LCSS): As the name of this measure suggests, the
longest matching subsequence between the two sequences is computed. This is then
used to measure the similarity between the two sequences. The LCSS method is dis-
cussed in detail in Sect. 3.4.2.2 of Chap. 3.

4. Edit distance: This is defined as the cost of edit operations required to transform
one sequence into another. The edit distance measure is described in Sect. 3.4.2.1 of
Chap. 3. A number of alignment methods, such as BLAST, are specifically designed
for biological sequences. Pointers to these methods may be found in the bibliographic
notes.

502 CHAPTER 15. MINING DISCRETE SEQUENCES

5. Keyword-based similarity: In this case, a k-gram representation is used, in which
each sequence is represented by a bag of segments of length k. These k-grams are
extracted from the original data sequences by using a sliding window of length k on
the sequences. Each such k-gram represents a new “keyword,” and a tf-idf representa-
tion can be used in terms of these keywords. If desired, the infrequent k-grams can be
dropped. Any text-based, vector-space similarity measure, discussed in Chap. 13, may
be used. Since the ordering of the segments is no longer used after the transformation,
such an approach allows the use of a wider range of data mining algorithms. In fact,
any text mining algorithm can be used on this transformation.

6. Kernel-based similarity: Kernel-based similarity is particularly useful for SVM clas-
sification. Some examples of kernel-based similarity are discussed in detail in sec-
tion 15.6.4.

The different measures are used in different application-specific scenarios. Many of these
scenarios will be discussed in this chapter.

15.3.1 Distance-Based Methods

When a distance or similarity function has been defined, the k-medoids method can be
generalized very simply to sequence data. The k-medoids method is agnostic as to the
choice of data type and the similarity function because it is designed as a generic hill-
climbing approach. In fact, the CLARANS algorithm, discussed in Sect. 7.3.1 of Chap. 7,
can be easily generalized to work with any data type. The algorithm selects k representa-
tive sequences from the data, and assigns each data point to their closest sequence, using
the selected distance (similarity) function. The quality of the representative sequences is
improved iteratively with the use of a hill-climbing algorithm.

The hierarchical methods, discussed in Sect. 6.4 of Chap. 6, can also be generalized
to any data type because they work with pairwise distances between the different data
objects. The main challenge of using hierarchical methods is that they require O(n2) pairwise
distance computations between n objects. Distance function computations on sequence data
are generally expensive because they require expensive dynamic programming methods.
Therefore, the applicability of hierarchical methods is restricted to smaller data sets.

15.3.2 Graph-Based Methods

Graph-based methods are a general approach to clustering that is agnostic to the underlying
data type. The transformation of different data types to similarity graphs is described in
Sect. 2.2.2.9 of Chap. 2. The broader approach in graph-based methods is as follows:

1. Construct a graph in which each node corresponds to a data object. Each node is
connected to its k-nearest neighbors, with a weight equal to the similarity between
the corresponding pairs of data objects. In cases where a distance function is used, it
is converted to a similarity function as follows:

wij = e−d(Oi,Oj)
2/t2 (15.1)

Here, d(Oi, Oj) represents the distance between the objects Oi and Oj and t is a
parameter.

15.3. SEQUENCE CLUSTERING 503

2. The edges are assumed to be undirected, and any parallel edges are removed by drop-
ping one of the edges. Because the distance functions are assumed to be symmetric,
the parallel edges will have the same weight.

3. Any of the clustering or community detection algorithms discussed in Sect. 19.3 of
Chap. 19 may be used for clustering nodes of the newly created graph.

After the nodes have been clustered, these clusters can be mapped back to clusters of data
objects by using the correspondence between nodes and data objects.

15.3.3 Subsequence-Based Clustering

The major problem with the aforementioned methods is that they are based on similarity
functions that use global alignment between the sequences. For longer sequences, global
alignment becomes increasingly ineffective because of the noise effects of computing sim-
ilarity between pairs of long sequences. Many local portions of sequences are noisy and
irrelevant to similarity computations even when large portions of two sequences are similar.
One possibility is to design local alignment similarity functions or use the keyword-based
similarity method discussed earlier.

A more direct approach is to use frequent subsequence-based clustering methods. Some
related approaches also use k-grams extracted from the sequence instead of frequent subse-
quences. However, k-grams are generally more sensitive to noise than frequent subsequences.
The idea is that the frequent subsequences represent the key structural characteristics that
are common across different sequences. After the frequent subsequences have been deter-
mined, the original sequences can be transformed into this new feature space, and a “bag-
of-words” representation can be created in terms of these new features. Then, the sequence
objects can be clustered in the same way as any text-clustering algorithm. The overall
approach can be described as follows:

1. Determine the frequent subsequences F from the sequence database D using any
frequent sequential pattern mining algorithm. Different applications may vary in the
specific constraints imposed on the sequences, such as a minimum or maximum length
of the determined sequences.

2. Determine a subset FS from the frequent subsequences F based on an appropriate
selection criterion. Typically, a subset of frequent subsequences should be selected, so
as to maximize coverage and minimize redundancy. The idea is to use only a modest
number of relevant features for clustering. For example, the notion of Frequent Sum-
marized Subsequences (FSS) is used to determine condensed groups of sequences [505].
The bibliographic notes contain specific pointers to these methods.

3. Represent each sequence in the database as a “bag of frequent subsequences” from
FS . In other words, the transformed representation of a sequence contains all frequent
subsequences from FS that it contains.

4. Apply any text-clustering algorithm on this new representation of the database of
sequences. Text-clustering algorithms are discussed in Chap. 13. The tf-idf weighting
may be applied to the different features, as discussed in Chap. 13.

The aforementioned discussion is a broad overview of frequent subsequence-based clustering,
although the individual steps are implemented in different ways by different methods. The
key differences among the different algorithms are in terms of methodology for feature

504 CHAPTER 15. MINING DISCRETE SEQUENCES

Algorithm CLUSEQ(Sequence Database: D, Similarity Threshold: t)
begin
k = f = 1;
Let C1 be a singleton cluster with randomly chosen sequence;
repeat
Add ka = k · f new singleton clusters containing sequences

that are as different as possible from existing clusters/each other;
k = k + ka;
Assign (if possible) each sequence in D to each cluster in
C1 . . . Ck for which the similarity is at least t;

Eliminate the kr clusters containing less than minthresh
sequences uniquely assigned to them;

k = k − kr;
f = max{ka−kr,0}

ka
;

until no change in clustering result;
return clusters C1 . . . Ck;

end

Figure 15.3: The simplified CLUSEQ Algorithm

construction and the choice of the text-clustering algorithm. The CONTOUR method [505]
uses a two-level hierarchical clustering, where fine-grained microclusters are generated in
the first step. Then, these microclusters are agglomerated into higher-level clusters. The
bibliographic notes contain pointers to specific instantiations of this framework.

15.3.4 Probabilistic Clustering

Probabilistic clustering methods are based on the generative principle, that a symbol in a
given sequence is generated with a probability defined by statistical correlations with the
symbols before it. This is based on the general principle of Markovian Models. Therefore,
the similarity between a sequence and a cluster is computed using the generative probability
of the symbols within that cluster. After a similarity function has been defined between a
cluster and a sequence, it can be used to create a distance-based algorithm. The CLUSEQ
algorithm is based on this principle.

15.3.4.1 Markovian Similarity-Based Algorithm: CLUSEQ

The CLUstering SEQuences (CLUSEQ) algorithm is based on the broader principle of
Markovian Models. Markovian models are used to define a similarity function between a
sequence and cluster. The CLUSEQ algorithm can otherwise be considered a similarity-
based iterative partitioning algorithm. While traditional partitioning algorithms fix the
number of clusters over multiple iterations, this is not the case in CLUSEQ. The CLUSEQ
algorithm starts with only a single cluster. A carefully controlled number of new clusters
containing individual sequences are added in each iteration, and older ones are removed
when they are deemed to be too similar to existing clusters. The initial growth in the
number of clusters is rapid but it slows down over the course of the algorithm. It is even
possible for the number of clusters to shrink in later iterations. One advantage of this
approach is that the algorithm can automatically determine the natural number of clusters.

15.3. SEQUENCE CLUSTERING 505

Instead of using the number of clusters as an input parameter, the CLUSEQ algorithm
works with a similarity threshold t. A sequence is assigned to a cluster, if its similarity to the
cluster exceeds the threshold t. Sequences may be assigned to any number of clusters (or no
cluster) as long as the similarity is greater than t. The CLUSEQ algorithm has three main
steps corresponding to addition of new clusters, assignment of sequences to clusters, and
elimination of clusters. These steps are repeated iteratively until there is no change in the
clustering result. A simplified version2 of the CLUSEQ algorithm is described in Fig. 15.3.
A detailed description of the individual steps is provided below.

1. Cluster addition: The number of clusters added is k · f , where k is the number of
clusters at the end of the last iteration. The value of f is in the range (0, 1), and is
computed as follows. Let ka be the number of clusters added in the previous iteration,
and let kr be the number of clusters removed because of elimination of overlapping
clusters in the previous iteration. Then, the value of f is computed as follows:

f =
max{ka − kr, 0}

ka
(15.2)

The rationale for this is that when the algorithm reaches its “natural” number of
clusters, eliminations will dominate. In such cases, f will be small or 0, and few new
clusters need to be added. On the other hand, in cases where the current number of
clusters is significantly lower than the “natural” number of clusters in the data, the
value of f should be close to 1. In earlier iterations, the number of added clusters is
much larger than the number of removed clusters, which results in rapid growth.

The new clusters created are singleton clusters. The sequences that are as different as
possible from both the existing clusters and each other are selected. Therefore pair-
wise similarity needs to be computed between each unclustered sequence and other
clusters/unclustered sequences. Because it can be expensive to compute pairwise sim-
ilarity between the clusters and all unclustered sequences, a sample of unclustered
sequences is used to restrict the scope of new seed selection. The approach for com-
puting similarity will be described later.

2. Sequence assignment to clusters: Sequences are assigned to clusters for which the sim-
ilarity to the cluster is larger than a user-specified threshold t. The original CLUSEQ
algorithm provides a way to adjust the threshold t as well, though the description in
this chapter provides only a simplified version of the algorithm, where t is fixed and
specified by the user. A given sequence may be assigned to either multiple clusters or
may remain unassigned to any cluster. The actual similarity computation is performed
using a Markovian similarity measure. This measure will be described later.

3. Cluster elimination: Many clusters are highly overlapping because of assignment of
sequences to multiple clusters. It is desired to restrict this overlap to reduce redun-
dancy in the clustering. If the number of sequences that are unique to a particular
cluster is less than a predefined threshold, then such a cluster is eliminated.

The only step that remains to be described is the computation of the Markovian similarity
measure between sequences and clusters. The idea is that if a sequence of symbols S =
s1s2 . . . sn is similar to a cluster Ci, then it should be “easy” to generate S using the

2The original CLUSEQ algorithm also adjusts the similarity threshold t iteratively to optimize results.

506 CHAPTER 15. MINING DISCRETE SEQUENCES

conditional distribution of the symbols inside the cluster. Then, the probability P (S|Ci) is
defined as follows:

P (S|Ci) = P (s1|Ci) · P (s2|s1, Ci) . . . P (sn|s1 . . . sn−1, Ci) (15.3)

This is the generative probability of the sequence S for cluster Ci. Intuitively, the term
P (sj |s1 . . . sj−1, Ci) represents the fraction of times that sj follows s1 . . . sj−1 in cluster Ci.
This term can be estimated in a data-driven manner from the sequences in Ci. When a
cluster is highly similar to a sequence, this value will be high. A relative similarity can
be computed by comparing with a sequence generation model in which all symbols are
generated randomly in proportion to their presence in the full data set. The probability of
such a random generation is given by

∏n
j=1 P (sj), where P (sj) is estimated as the fraction

of sequences containing symbol sj . Then, the similarity of S to cluster Ci is defined as
follows:

sim(S, Ci) =
P (S|Ci)∏n
j=1 P (sj)

(15.4)

One issue is that many parts of the sequence S may be noisy and not match the cluster
well. Therefore, the similarity is computed as the maximum similarity of any contiguous
segment of S to Ci. In other words, if Skl be the contiguous segment of S from positions k
to l, then the final similarity SIM(S, Ci) is computed as follows:

SIM(S, Ci) = max1≤k≤l≤nsim(Skl, Ci) (15.5)

The maximum similarity value can be computed by computing sim(Skl, Ci) over all pairs
[k, l]. This is the similarity value used for assigning sequences to their relevant clusters.

One problematic issue is that the computation of each of the terms P (sj |s1 . . . sj−1, Ci)
on the right-hand side of Eq. 15.3 may require the examination of all the sequences in the
cluster Ci for probability estimation purposes. Fortunately, these terms can be estimated
efficiently using a data structure, referred to as Probabilistic Suffix Trees. The CLUSEQ
algorithm always dynamically maintains the Probabilistic Suffix Trees (PST) whenever new
clusters are created or sequences are added to clusters. This data structure will be described
in detail in Sect. 15.4.1.1.

15.3.4.2 Mixture of Hidden Markov Models

This approach can be considered the string analog of the probabilistic models discussed in
Sect. 6.5 of Chap. 6 for clustering multidimensional data. Recall that a generative mixture
model is used in that case, where each component of the mixture has a Gaussian distribution.
A Gaussian distribution is, however, appropriate only for generating numerical data, and is
not appropriate for generating sequences. A good generative model for sequences is referred
to as Hidden Markov Models (HMM). The discussion of this section will assume the use of
HMM as a black box. The actual details of HMM will be discussed in a later section. As we
will see later in Sect. 15.5, the HMM can itself be considered a kind of mixture model, in
which states represent dependent components of the mixture. Therefore, this approach can
be considered a two-level mixture model. The discussion in this section should be combined
with the description of HMMs in Sect. 15.5 to provide a complete picture of HMM-based
clustering.

The broad principle of a mixture-based generative model is to assume that the data
was generated from a mixture of k distributions with the probability distributions G1 . . .Gk,
where each Gi is a Hidden Markov Model. As in Sect. 6.5 of Chap. 6, the approach assumes

15.4. OUTLIER DETECTION IN SEQUENCES 507

the use of prior probabilities α1 . . . αk for the different components of the mixture. Therefore,
the generative process is described as follows:

1. Select one of the k probability distributions with probability αi where i ∈ {1 . . . k}.
Let us assume that the rth one is selected.

2. Generate a sequence from Gr, where Gr is a Hidden Markov Model.

One nice characteristic of mixture models is that the change in the data type and corre-
sponding mixture distribution does not affect the broader framework of the algorithm. The
analogous steps can be applied in the case of sequence data, as they are applied in multidi-
mensional data. Let Sj represent the jth sequence and Θ be the entire set of parameters to
be estimated for the different HMMs. Then, the E-step and M-step are exactly analogous
to the case of the multidimensional mixture model.

1. (E-step) Given the current state of the trained HMM and priors αi, determine the
posterior probability P (Gi|Sj ,Θ) of each sequence Sj using the HMM generative prob-
abilities P (Sj |Gi,Θ) of Sj from the ith HMM, and priors α1 . . . αk in conjunction with
the Bayes rule. This is the posterior probability that the sequence Sj was generated
by the ith HMM.

2. (M-step) Given the current probabilities of assignments of data points to clusters, use
the Baum–Welch algorithm on each HMM to learn its parameters. The assignment
probabilities are used as weights for averaging the estimated parameters. The Baum–
Welch algorithm is described in Sect. 15.5.4 of this chapter. The value of each αi is
estimated to be proportional to average assignment probability of all sequences to
cluster i. Thus, the M-step results in the estimation of the entire set of parameters Θ.

Note that there is an almost exact correspondence in the steps used here, and to those used
for mixture modeling in Sect. 6.5 of Chap. 6. The major drawback of this approach is that
it can be rather slow. This is because the process of training each HMM is computationally
expensive.

15.4 Outlier Detection in Sequences

Outlier detection in sequence data shares a number of similarities with timeseries data. The
main difference between sequence data and timeseries data is that sequence data is discrete,
whereas timeseries data is continuous. The discussion in the previous chapter showed that
time series outliers can be either point outliers, or shape outliers. Because sequence data
is the discrete analog of timeseries data, an identical principle can be applied to sequence
data. Sequence data outliers can be either position outliers or combination outliers.

1. Position outliers: In position-based outliers, the values at specific positions are pre-
dicted by a model. This is used to determine the deviation from the model and predict
specific positions as outliers. Typically, Markovian methods are used for predictive out-
lier detection. This is analogous to deviation-based outliers discovered in timeseries
data with the use of regression models. Unlike regression models, Markovian models
are better suited to discrete data. Such outliers are referred to as contextual outliers
because they are outliers in the context of their immediate temporal neighborhood.

508 CHAPTER 15. MINING DISCRETE SEQUENCES

2. Combination outliers: In combination outliers, an entire test sequence is deemed to be
unusual because of the combination of symbols in it. This could be the case because
this combination may rarely occur in a sequence database, or its distance (or simi-
larity) to most other subsequences of similar size may be very large (or small). More
complex models, such as Hidden Markov Models, can also be used to model the fre-
quency of presence in terms of generative probabilities. For a longer test sequence,
smaller subsequences are extracted from it for testing, and then the outlier score of
the entire sequence is predicted as a combination of these values. This is analogous to
the determination of unusual shapes in timeseries data. Such outliers are referred to
as collective outliers because they are defined by combining the patterns from multiple
data items.

The following section will discuss these different types of outliers.

15.4.1 Position Outliers

In the case of continuous timeseries data discussed in the previous chapter, an important
class of outliers was designed by determining significant deviations from expected values
at timestamps. Thus, these methods intimately combine the problems of forecasting and
deviation-detection. A similar principle applies to discrete sequence data, in which the dis-
crete positions at specific timestamps can be predicted with the use of different models.
When a position has very low probability of matching its forecasted value, it is considered
an outlier. For example, consider an RFID application, in which event sequences are asso-
ciated with product items in a superstore with the use of semantic extraction from RFID
tags. A typical example of a normal event sequence is as follows:

PlacedOnShelf, RemovedFromShelf, CheckOut, ExitStore.

On the other hand, in a shoplifting scenario, the event sequence may be unusually different.
An example of an event sequence in the shoplifting scenario is as follows:

PlacedOnShelf, RemovedFromShelf, ExitStore.

Clearly, the sequence symbol ExitStore is anomalous in the second case but not in the first
case. This is because it does not depict the expected or forecasted value for that position in
the second case. It is desirable to detect such anomalous positions on the basis of expected
values. Such anomalous positions may appear anywhere in the sequence and not necessarily
in the last element, as in the aforementioned example. The basic problem definition for
position outlier detection is as follows:

Definition 15.4.1 Given a set of N training sequences D = T1 . . . TN , and a test sequence
V = a1 . . . an, determine if the position ai in the test sequence should be considered an
anomaly based on its expected value.

Some formulations do not explicitly distinguish between training and test sequences. This
is because a sequence can be used for both model construction and outlier analysis when it
is very long.

Typically, the position ai can be predicted in temporal domains only from the positions
before ai, whereas in other domains, such as biological data, both directions may be rele-
vant. The discussion below will assume the temporal scenario, though generalization to the
placement scenario (as in biological data) is straightforward by examining windows on both
sides of the position.

15.4. OUTLIER DETECTION IN SEQUENCES 509

Just as regression modeling of continuous streams uses small windows of past history,
discrete sequence prediction also uses small windows of the symbols. It is assumed that the
prediction of the values at a position depends upon this short history. This is known as
the short memory property of discrete sequences, and it generally holds true across a wide
variety of temporal application domains.

Definition 15.4.2 (Short Memory Property) For a sequence of symbols V =
a1 . . . ai . . ., the value of the probability P (ai|a1 . . . ai−1) is well approximated by
P (ai|ai−k . . . ai−1) for some small value of k.

After the value of P (ai|ai−k . . . ai−1) is estimated, a position in a test sequence can be
flagged as an outlier, if it has very low probability on the basis of the models derived from
the training sequences. Alternatively, if a different symbol (than one present in the test
sequence) is predicted with very high probability, then that position can be flagged as an
outlier.

This section will discuss the use of Markovian models for the position outlier detection
problem. This model exploits the short memory property of sequences to explicitly model
the sequences as a set of states in a Markov Chain. These models represent the sequence-
generation process with the use of transitions in a Markov Chain defined on the alphabet
Σ. This is a special kind of Finite State Automaton, in which the states are defined by a
short (immediately preceding) history of the sequences generated. Such models correspond
to a set of states A that represent the different kinds of memory about the system events.
For example, in first-order Markov Models, each state represents the last symbol from the
alphabet Σ that was generated in the sequence. In kth order Markov Models, each state
corresponds to the subsequence of the last k symbols an−k . . . an−1 in the sequence. Each
transition in this model represents an event an, the transition probability of which from
the state an−k . . . an−1 to the state an−k+1 . . . an is given by the conditional probability
P (an|an−k . . . an−1). A Markov Model can be depicted as a set of nodes representing the
states and a set of edges representing the events that cause movement from one state to
another. The probability of an edge provides the conditional probability of the corresponding
event. Clearly, the order of the model encodes the memory length of the string segment
retained for the modeling process. First-order models correspond to the least amount of
retained memory.

To understand how Markov Models work, the previous example of tracking items with
RFID tags will be revisited. The actions performed an item can be viewed as a sequence
drawn on the alphabet Σ = {P,R,C,E}. The semantic meaning of each of these symbols
is illustrated in Fig. 15.4. A state of an order-k Markov model corresponds to the previous
k (action) symbols of the sequence drawn on the alphabet Σ = {P,R,C,E}. Examples of
different states along with transitions are illustrated in Fig. 15.4. Both a first-order and
a second-order model have been illustrated in the figure. The edge transition probabilities
are also illustrated in the figure. These are typically estimated from the training data. The
transitions that correspond to the shoplifting anomaly are marked in both models. In each
case, it is noteworthy that the corresponding transition probability for the actual shoplifting
event is very low. This is a particularly simple example, in which a memory of one event
is sufficient to completely represent the state of an item. This is not the case in general.
For example, consider the case of a Web log in which the Markov Models correspond to
sequences of Web pages visited by users. In such a case, the probability distribution of the
next Web page visited depends not just on the last page visited, but also on the other
preceding visits by the user.

510 CHAPTER 15. MINING DISCRETE SEQUENCES

P R C
C (0.38) E (1.0)P (0.61)

E

P = PLACED ON SHELF

R (1.0)
E (0.01)

ANOMALOUS EVENT
(SHOPLIFTING)R = REMOVED FROM SHELF

C = CHECKOUT
E = EXIT STORE

(SHOPLIFTING)

FIRST ORDER MARKOV MODEL

PR RC CEC (0.38) E (1.0)
0)

P
(0

R
(1

.0 0.61)

RP
RE

SECOND ORDER MARKOV MODEL

Figure 15.4: Markov model for the RFID-based shoplifting anomaly

An observation from Fig. 15.4 is that the number of states in the second-order model
is larger than that in the first-order model. This is not a coincidence. As many as |Σ|k
states may exist in an order-k model, though this provides only an upper bound. Many of
the subsequences corresponding to these states may either not occur in the training data,
or may be invalid in a particular application. For example, a PP state would be invalid
in the example of Fig. 15.4 because the same item cannot be sequentially placed twice on
the shelf without removing it at least once. Higher-order models represent complex systems
more accurately at least at a theoretical level. However, choosing models of a higher order
degrades the efficiency and may also result in overfitting.

15.4.1.1 Efficiency Issues: Probabilistic Suffix Trees

It is evident from the discussion in the previous sections that the Markovian and rule-based
models are equivalent, with the latter being a simpler and easy-to-understand heuristic
approximation of the former. Nevertheless, in both cases, the challenge is that the number
of possible antecedents of length k can be as large as |Σ|k. This can make the methods slow,
when a lookup for a test subsequence ai−k . . . ai−1 is required to determine the probability
of P (ai|ai−k . . . ai−1). It is expensive to either compute these values on the fly, or even
to retrieve their precomputed values, if they are not organized properly. The Probabilistic
Suffix Tree (PST) provides an efficient approach for retrieval of such precomputed values.
The utility of probabilistic suffix trees is not restricted to outlier detection, but is also
applicable to clustering and classification. For example, the CLUSEQ algorithm, discussed
in Sect. 15.3.4.1, uses PST to retrieve these prestored probability values.

Suffix trees are a classical data structure that store all subsequences in a given database.
Probabilistic suffix trees represent a generalization of this structure that also stores the
conditional probabilities of generation of the next symbol for a given sequence database. For
order-k Markov Models, a suffix tree of depth at most k will store all the required conditional

15.4. OUTLIER DETECTION IN SEQUENCES 511

ROOT

(P(X), P(Y))

YX

YX
(P(X|X), P(Y|X)) (P(X|Y), P(Y|Y))

X X YY

XY YY

(P(X|XX), P(Y|XX)) (P(X|YY), P(Y|YY))(P(X|YX), P(Y|YX)) (P(X|XY), P(Y|XY)

X X X XY Y YY

XX YX XY YY

XXX YXX XYX YYX XXY YXY XYY YYY

(P(X

(P(X

(P(X

(P(X

(P(X

(P(X

(P(X

(P(X|XXX),P(Y|X

|YXX),P(Y|Y

|XYX),P(Y|X

|YYX),P(Y|YY

|XXY),P(Y|X

|YXY),P(Y|YX

|XYY),P(Y|X

|YYY), P(Y|YYXXX))

XX))

XYX))

YX))

XXY))

XY))

YY))

YY))

Figure 15.5: Probabilistic suffix tree

probability values for the kth order Markovian models, including the conditionals for all
lower-order Markov Models. Therefore, such a structure encodes all the information required
for variable-order Markov Models as well. A key challenge is that the number of nodes in
such a suffix tree can be as large as

∑k
i=0 |Σ|i, an issue that needs to be addressed with

selective pruning.
A probabilistic suffix tree is a hierarchical data structure representing the different suf-

fixes of a sequence. A node in the tree with depth k represents a suffix of length k and
is, therefore, labeled with a sequence of length k. The parent of a node ai−k . . . ai corre-
sponds to the sequence ai−k+1 . . . ai. The latter is obtained by removing the first symbol
from the former. Each edge is labeled with the symbol that needs to be removed to derive
the sequence at the parent node. Thus, a path in the tree corresponds to suffixes of the
same sequence. Each node also maintains a vector Σ of probabilities that correspond to
the conditional probability of the generation of any symbol from Σ = {σ1 . . . σ|Σ|} after
that sequence. Therefore, for a node corresponding to the sequence ai−k . . . ai, and for each
j ∈ {1 . . . |Σ|}, the values of P (σj |ai−k . . . ai) are maintained. As discussed earlier, this cor-
responds to the conditional probability that σj appears immediately after ai−k . . . ai, once
the latter sequence has already been observed. This provides the generative probability cru-
cial to the determination of position outliers. Note that this generative probability is also
useful for other algorithms such as the CLUSEQ algorithm discussed earlier in this chapter.

An example of a suffix tree with the symbol set Σ = {X,Y } is illustrated in Fig. 15.5.
The two possible symbol-generation probabilities at each node corresponding to either of
the symbols X and Y are placed next to the corresponding nodes. It is also evident that
a probabilistic suffix tree of depth k encodes all the transition probabilities for Markovian
models up to order k. Therefore, such an approach can be used for higher-order Markovian
models.

512 CHAPTER 15. MINING DISCRETE SEQUENCES

The probabilistic suffix true is pruned significantly to improve its compactness. For
example, suffixes that correspond to very low counts in the original data can be pruned
from consideration. Furthermore, nodes with low generative probabilities of their underly-
ing sequences can be pruned from consideration. The generative probability of a sequence
a1 . . . an is approximated as follows:

P (a1 . . . an) = P (a1) · P (a2|a1) . . . P (an|a1 . . . an−1) (15.6)

For Markovian models of order k < n, the value of P (ar|a1 . . . ar−1) in the equation above
is approximated by P (ar|ar−k . . . ar−1) for any value of k less than r. To create Markovian
models of order k or less, it is not necessary to keep portions of the tree with depth greater
than k.

Consider the sequence a1 . . . ai . . . an, in which it is desired to test whether position ai is
a position outlier. Then, it is desired to determine P (ai|a1 . . . ai−1). It is possible that the
suffix a1 . . . ai−1 may not be present in the suffix tree because it may have been pruned from
consideration. In such cases, the short memory property is used to determine the longest
suffix aj . . . ai−1 present in the suffix tree, and the corresponding probability is estimated
by P (ai|aj . . . ai−1). Thus, the probabilistic suffix tree provides an efficient way to store and
retrieve the relevant probabilities. The length of the longest path that exists in the suffix
tree containing a nonzero probability estimate of P (ai|aj . . . ai−1) also provides an idea of
the level of rarity of this particular sequence of events. Positions that contain only short
paths preceding them in the suffix tree are more likely to be outliers. Thus, outlier scores
may be defined from the suffix tree in multiple ways:

1. If only short path lengths exist in the (pruned) suffix tree corresponding to a position
ai and its preceding history, then that position is more likely be an outlier.

2. For the paths of lengths 1 . . . r that do exist in the suffix tree for position ai, a combi-
nation score may be used based on the models of different orders. In some cases, only
lower-order scores are combined. In general, the use of lower-order scores is preferable,
since they are usually more robustly represented in the training data.

15.4.2 Combination Outliers

In combination outliers, the goal is to determine unusual combinations of symbols in the
sequences. Consider a setting, where a set of training sequences is provided, together with
a test sequence. It is desirable to determine whether a test sequence is an anomaly, based
on the “normal” patterns in the training sequences. In many cases, the test sequences may
be quite long. Therefore, the combination of symbols in the full sequence may be unique
with respect to the training sequences. This means that it is hard to characterize “normal”
sequences on the basis of the full sequence. Therefore, small windows are extracted from the
training and test sequences for the purpose of comparison. Typically, all windows (including
overlapping ones) are extracted from the sequences, though it is also possible to work with
nonoverlapping windows. These are referred to as comparison units. The anomaly scores
are defined with respect to these comparison units. Thus, unusual windows in the sequences
are reported. The following discussion will focus exclusively on determining such unusual
windows.

Some notations and definitions will be used to distinguish between the training database,
test sequence, and the comparison units.

1. The training database is denoted by D, and contains sequences denoted by T1 . . . TN .

15.4. OUTLIER DETECTION IN SEQUENCES 513

2. The test sequence is denoted by V .

3. The comparison units are denoted by U1 . . . Ur. Typically, each Ui is derived from
small, contiguous windows of V . In domain-dependent cases, U1 . . . Ur may be provided
by the user.

The model may be a distance-based, or frequency-based or may be a Hidden Markov Model.
Each of these will be discussed in subsequent sections. Because Hidden Markov Models are
general constructs that are used for different problems such as clustering, classification, and
outlier detection, they will be discussed in a section of their own, immediately following this
section.

15.4.2.1 Distance-Based Models

In distance-based models, the absolute distance (or similarity) of the comparison unit is
computed to equivalent windows of the training sequence. The distance of the k-th nearest
neighbor window in the training sequence is used to determine the anomaly score. In the
context of sequence data, many proximity-functions are similarity functions rather than dis-
tance functions. In the former case, higher values indicate greater proximity. Some common
methods for computing the similarity between a pair of sequences are as follows:

1. Simple matching coefficient: This is the simplest possible function and determines the
number of matching positions between two sequences of equal length. This is also
equivalent to the Hamming distance between a pair of sequences.

2. Normalized longest common subsequence: The longest common subsequence can be
considered the sequential analog of the cosine distance between two ordered sets.
Let T1 and T2 be two sequences, and the length of (unnormalized) longest common
subsequence between T1 and T2 be denoted by L(T1, T2). The unnormalized longest
common subsequence can be computed using methods discussed in Sect. 3.4.2 of
Chap. 3. Then, the value NL(T1, T2) of the normalized longest common subsequence
is computed by normalizing L(T1, T2) with the underlying sequence lengths in a way
similar to the cosine computation between unordered sets:

NL(T1, T2) =
L(T1, T2)√
|T1| ·

√
|T2|

(15.7)

The advantage of this approach is that it can match two sequences of unequal lengths.
The drawback is that the computation process is relatively slow.

3. Edit distance: The edit distance is one of the most common similarity functions used
for sequence matching. This similarity function is discussed in Chap. 3. This func-
tion measures the distance between two sequences by the minimum number of edits
required to transform one sequence to the other. The computation of the edit distance
can be computationally very expensive.

4. Compression-based dissimilarity: This measure is based on principles of information
theory. Let W be a window of the training data, and W⊕Ui be the string representing
the concatenation of W and Ui. Let DL(S) < |S| be the description length of any
string S after applying a standard compression algorithm to it. Then, the compression-
based dissimilarity CD(W,Ui) is defined as follows:

CD(W,Ui) =
DL(W ⊕ Ui)

DL(W) +DL(Ui)
(15.8)

514 CHAPTER 15. MINING DISCRETE SEQUENCES

This measure always lies in the range (0, 1), and lower values indicate greater sim-
ilarity. The intuition behind this approach is that when the two sequences are very
similar, the description length of the combined sequence will be much smaller than
that of the sum of the description lengths. On the other hand, when the sequences are
very different, the description length of the combined string will be almost the same
as the sum of the description lengths.

To compute the anomaly score for a comparison unit Ui with respect to the training
sequences in T1 . . . TN , the first step is to extract equivalent windows from T1 . . . TN as
the size of the comparison unit. The k-th nearest neighbor distance is used as the anomaly
score for that window. The unusual windows may be reported, or the scores from different
windows may be consolidated into a single anomaly score.

15.4.2.2 Frequency-Based Models

Frequency-based models are typically used with domain-specific comparison units specified
by the user. In this case, the relative frequency of the comparison unit needs to be measured
in the training sequences and the test sequences, and the level of surprise is correspondingly
determined.

When the comparison units are specified by the user, a natural way of determining the
anomaly score is to test the frequency of the comparison unit Uj in the training and test pat-
terns. For example, when a sequence contains a hacking attempt, such as a sequence of Login
and Password events, this sequence will have much higher frequency in the test sequence,
as compared to the training sequences. The specification of such relevant comparison units
by a user provides very useful domain knowledge to an outlier analysis application.

Let f(T,Uj) represent the number of times that the comparison unit Uj occurs in the
sequence T . Since the frequency f(T,Uj) depends on the length of T , the normalized fre-
quency f̂(T,Uj) may be obtained by dividing the frequency by the length of the sequence:

f̂(T,Uj) =
f(T,Uj)

|T |

Then, the anomaly score of the training sequence Ti with respect to the test sequence V is
defined by subtracting the relative frequency of the training sequence from the test sequence.
Therefore, the anomaly score A(Ti, V, Uj) is defined as follows:

A(Ti, V, Uj) = f̂(V,Uj)− f̂(Ti, Uj)

The absolute value of the average of these scores is computed over all the sequences in the
database D = T1 . . . TN . This represents the final anomaly score.

A useful output of this approach is the specific subset of comparison units specified by
the user that are the most anomalous. This provides intensional knowledge and feedback to
the analyst about why a particular test sequence should be considered anomalous. A method
called TARZAN uses suffix tree representations to efficiently determine all the anomalous
subsequences in a comparative sense between a test sequence and a training sequence.
Readers are referred to the bibliographic notes for pointers to this method.

15.5 Hidden Markov Models

Hidden Markov Models (HMM) are probabilistic models that generate sequences through a
sequence of transitions between states in a Markov chain. Hidden Markov Models are used

15.5. HIDDEN MARKOV MODELS 515

for clustering, classification, and outlier detection. Therefore, the applicability of these mod-
els is very broad in sequence analysis. For example, the clustering approach in Sect. 15.3.4.2
uses Hidden Markov Models as a subroutine. This section will use outlier detection as a
specific application of HMM to facilitate understanding. In Sect. 15.6.5, it will also be shown
how HMM may be used for classification.

So how are Hidden Markov Models different from the Markovian techniques introduced
earlier in this chapter? Each state in the Markovian techniques introduced earlier in this
chapter is well defined and is based on the last k positions of the sequence. This state is also
directly visible to the user because it is defined by the latest sequence combination of length
k. Thus, the generative behavior of the Markovian model is always known deterministically,
in terms of the correspondence between states and sequence positions for a particular input
string.

In a Hidden Markov Model, the states of the system are hidden and not directly visible
to the user. Only a sequence of (typically) discrete observations is visible to the user that is
generated by symbol emissions from the states after each transition. The generated sequence
of symbols corresponds to the application-specific sequence data. In many cases, the states
may be defined (during the modeling process) on the basis of an understanding of how the
underlying system behaves, though the precise sequence of transitions may not be known
to the analyst. This is why such models are referred to as “hidden.”

Each state in an HMM is associated with a set of emission probabilities over the symbol
Σ. In other words, a visit to the state j leads to an emission of one of the symbols σi ∈ Σ
with probability θj(σi). Correspondingly, a sequence of transitions in an HMM corresponds
to an observed data sequence. Hidden Markov Models may be considered a kind of mixture
model of the type discussed in Chap. 6, in which the different components of the mixture
are not independent of one another, but are related through sequential transitions. Thus,
each state is analogous to a component in the multidimensional mixture model discussed in
Chap. 6. Each symbol generated by this model is analogous to a data point generated by the
multidimensional mixture model. Furthermore, unlike multidimensional mixture models, the
successive generation of individual data items (sequence symbols) are also not independent
of one another. This is a natural consequence of the fact that the successive states emitting
the data items are dependent on one another with the use of probabilistic transitions. Unlike
multidimensional mixture models, Hidden Markov Models are designed for sequential data
that exhibits temporal correlations.

To better explain Hidden Markov Models, an illustrative example will be used for the
specific problem of using HMMs for anomaly detection. Consider the scenario where a set of
students register for a course and generate a sequence corresponding to the grades received
in each of their weekly assignments. This grade is drawn from the symbol set Σ = {A,B}.
The model created by the analyst is that the class contains students who, at any given
time, are either doers or slackers with different grade-generation probabilities. A student
in a doer state may sometimes transition to a slacker state and vice versa. These represent
the two states in the system. Weekly home assignments are handed out to each student
and are graded with one of the symbols from Σ. This results in a sequence of grades for
each student, and it represents the only observable output for the analyst. The state of a
student represents only a model created by the analyst to explain the grade sequences and
is, therefore, not observable in of itself. It is important to understand that if this model is a
poor reflection of the true generative process, then it will impact the quality of the learning
process.

Assume that a student in a doer state is likely to receive an A grade in a weekly assign-
ment with 80% probability and a B with 20% probability. For slackers, these probability

516 CHAPTER 15. MINING DISCRETE SEQUENCES

GRADE DISTRIBUTION
A = 80 %
B = 20 %

GRADE DISTRIBUTION
A = 20 %
B = 80 %

DOER SLACKER 0.900.99
0.01

0.10

SOME EXAMPLES OF STUDENT GRADE SEQUENCES

AAABAAAABAAAA DOER (VERY COMMON)AAABAAAABAAAA DOER (VERY COMMON)
BBBBABBBABBBB SLACKER (LESS COMMON)
AAABAAABBABBB DOER TURNS SLACKER (VERY RARE)
ABABABABABABA UNPREDICTABLE (EXTREMELY RARE)

Figure 15.6: Generating grade sequences from a Hidden Markov Model

values are reversed. Although these probabilities are explicitly specified here for illustrative
purposes, they need to be learned or estimated from the observed grade sequences for the
different students and are not known a priori. The precise status (state) of any student in
a given week is not known to the analyst at any given time. These grade sequences are,
in fact, the only observable outputs for the analyst. Therefore, from the perspective of the
analyst, this is a Hidden Markov Model, which generates the sequences of grades from an
unknown sequence of states, representing the state transitions of the students. The precise
sequence of transitions between the states can be only estimated for a particular observed
sequence.

The two-state Hidden Markov Model for the aforementioned example is illustrated in
Fig. 15.6. This model contains two states, denoted by doer and slacker, that represent the
state of a student in a particular week. It is possible for a student to transition from one state
to another each week, though the likelihood of this is rather low. It is assumed that set of
initial state probabilities governs the a priori distribution of doers and slackers. This distri-
bution represents the a priori understanding about the students when they join the course.
Some examples of typical sequences generated from this model, along with their rarity level,
are illustrated in Fig. 15.6. For example, the sequence AAABAAAABAAAA is most likely gener-
ated by a student who is consistently in a doer state, and the sequence BBBBABBBABBBB is
most likely generated by a student who is consistently in slacker state. The second sequence
is typically rarer than the first because the population mostly contains3 doers. The sequence
AAABAAABBABBB corresponds to a doer who eventually transitions into a slacker. This case
is even rarer because it requires a transition from the doer state to a slacker state, which
has a very low probability. The sequence ABABABABABABA is extremely anomalous because
it does not represent temporally consistent doer or slacker behavior that is implied by the
model. Correspondingly, such a sequence has very low probability of fitting the model.

A larger number of states in the Markov Model can be used to encode more complex
scenarios. It is possible to encode domain knowledge with the use of states that describe
different generating scenarios. In the example discussed earlier, consider the case that doers
sometimes slacks off for short periods and then return to their usual state. Alternatively,

3The assumption is that the initial set of state probabilities are approximately consistent with the steady
state behavior of the model for the particular set of transition probabilities shown in Fig. 15.6.

15.5. HIDDEN MARKOV MODELS 517

GRADE DISTRIBUTION
A = 80 %
B = 20 %

GRADE DISTRIBUTION
A = 20 %
B = 80 %

DOER SLACKER 0.700.79
0.01

0.10

0.20 0.40 0.20 0.40

DOER ON
BREAK

SLACKER AT
WORK

GRADE DISTRIBUTION
A = 40 %
B = 60 %

GRADE DISTRIBUTION
A = 60 %
B = 40 %

0.60 0.60

Figure 15.7: Extending the model in Fig. 15.6 with two more states provides greater expres-
sive power for modeling sequences

slackers may sometimes become temporarily inspired to be doers, but may eventually return
to what they are best at. Such episodes will result in local portions of the sequence that
are distinctive from the remaining sequence. These scenarios can be captured with the four-
state Markov Model illustrated in Fig. 15.7. The larger the number of states, the more
complex the scenarios that can be captured. Of course, more training data is required to
learn the (larger number of) parameters of such a model, or this may result in overfitting.
For smaller data sets, the transition probabilities and symbol-generation probabilities are
not estimated accurately.

15.5.1 Formal Definition and Techniques for HMMs

In this section, Hidden Markov Models will be formally introduced along with the associated
training methods. It is assumed that a Hidden Markov Model contains n states denoted
by {s1 . . . sn}. The symbol set from which the observations are generated is denoted by
Σ = {σ1 . . . σ|Σ|}. The symbols are generated from the model by a sequence of transitions
from one state to the other. Each visit to a state (including self-transitions) generates
a symbol drawn from a categorical4 probability distribution on Σ. The symbol emission
distribution is specific to each state. The probability P (σi|sj) that the symbol σi is generated
from state sj is denoted by θj(σi). The probability of a transition from state si to sj is
denoted by pij . The initial state probabilities are denoted by π1 . . . πn for the n different
states. The topology of the model can be expressed as a network G = (M,A), in which M
is the set of states {s1 . . . sn}. The set A represents the possible transitions between the
states. In the most common scenario, where the architecture of the model is constructed
with a domain-specific understanding, the set A is not the complete network. In cases
where domain-specific knowledge is not available, the set A may correspond to the complete

4HMMs can also generate continuous time series, though they are less commonly used in timeseries
analysis.

518 CHAPTER 15. MINING DISCRETE SEQUENCES

network, including self-transitions. The goal of training the HMM model is to learn the
initial state probabilities, transition probabilities, and the symbol emission probabilities from
the training database {T1 . . . TN}. Three methodologies are commonly leveraged in creating
and using a Hidden Markov Model:

• Training: Given a set of training sequences T1 . . . TN , estimate the model parameters,
such as the initial probabilities, transition probabilities, and symbol emission proba-
bilities with an Expectation-Maximization algorithm. The Baum–Welch algorithm is
used for this purpose.

• Evaluation: Given a test sequence V (or comparison unit Ui), determine the proba-
bility that it fits the HMM. This is used to determine the anomaly scores. A recursive
forward algorithm is used to compute this.

• Explanation: Given a test sequence V , determine the most likely sequence of states
that generated this test sequence. This is helpful for providing an understanding of
why a sequence should be considered an anomaly (in outlier detection) or belong
to a specific class (in data classification). The idea is that the states correspond to
an intuitive understanding of the underlying system. In the example of Fig. 15.6, it
would be useful to know that an observed sequence is an anomaly because of the
unusual oscillation of a student between doer and slacker states. This can provide
the intensional knowledge for understanding the state of a system. This most likely
sequence of states is computed with the Viterbi algorithm.

Since the description of the training procedure relies on technical ideas developed for the
evaluation method, we will deviate from the natural order of presentation and present
the training algorithms last. The evaluation and explanation techniques will assume that
the model parameters, such as the transition probabilities, are already available from the
training phase.

15.5.2 Evaluation: Computing the Fit Probability for Observed
Sequence

One approach for determining the fit probability of a sequence V = a1 . . . am would be to
compute all the nm possible sequences of states (paths) in the HMM, and compute the
probability of each, based on the observed sequence, symbol-generation probabilities, and
transition probabilities. The sum of these values can be reported as the fit probability.
Obviously, such an approach is not practical because it requires the enumeration of an
exponential number of possibilities.

This computation can be greatly reduced by recognizing that the fit probability of the
first r symbols (and a fixed value of the rth state) can be recursively computed in terms of
the corresponding fit probability of first (r − 1) observable symbols (and a fixed (r − 1)th
state). Specifically, let αr(V, sj) be the probability that the first r symbols in V are generated
by the model, and the last state in the sequence is sj . Then, the recursive computation is
as follows:

αr(V, sj) =
n∑

i=1

αr−1(V, si) · pij · θj(ar)

This approach recursively sums up the probabilities for all the n different paths for different
penultimate nodes. The aforementioned relationship is iteratively applied for r = 1 . . .m.
The probability of the first symbol is computed as α1(V, sj) = πj · θj(a1) for initializing the

15.5. HIDDEN MARKOV MODELS 519

recursion. This approach requires O(n2 ·m) time. Then, the overall probability is computed
by summing up the values of αm(V, sj) over all possible states sj . Therefore, the final fit
F (V) is computed as follows:

F (V) =
n∑

j=1

αm(V, sj)

This algorithm is also known as the Forward Algorithm. Note that the fit probability has a
direct application to many problems, such as classification and anomaly detection, depend-
ing upon whether the HMM is constructed in supervised or unsupervised fashion. By con-
structing separate HMMs for each class, it is possible to test the better-fitting class for a
test sequence. The fit probability is useful in problems such as data clustering, classification
and outlier detection. In data clustering and classification, the fit probability can be used
to model the probability of a sequence belonging to a cluster or class, by creating a group-
specific HMM. In outlier detection, it is possible to determine poorly fitting sequences with
respect to a global HMM and report them as anomalies.

15.5.3 Explanation: Determining the Most Likely State Sequence
for Observed Sequence

One of the goals in many data mining problems is to provide an explanation for why a
sequence fits part (e.g. class or cluster) of the data, or does not fit the whole data set
(e.g. outlier). Since the sequence of (hidden) generating states often provides an intuitive
explanation for the observed sequence, it is sometimes desirable to determine the most likely
sequence of states for the observed sequence. The Viterbi algorithm provides an efficient way
to determine the most likely state sequence.

One approach for determining the most likely state path of the test sequence V =
a1 . . . am would be to compute all the nm possible sequences of states (paths) in the HMM,
and compute the probability of each of them, based on the observed sequence, symbol-
generation probabilities, and transition probabilities. The maximum of these values can be
reported as the most likely path. Note that this is a similar problem to the fit probability
except that it is needed to determine the maximum fit probability, rather than the sum of
fit probabilities, over all possible paths. Correspondingly, it is also possible to use a similar
recursive approach as the previous case to determine the most likely state sequence.

Any subpath of an optimal state path must also be optimal for generating the corre-
sponding subsequence of symbols. This property, in the context of an optimization problem
of sequence selection, normally enables dynamic programming methods. The best possible
state path for generating the first r symbols (with the rth state fixed to j) can be recursively
computed in terms of the corresponding best paths for the first (r − 1) observable symbols
and different penultimate states. Specifically, let δr(V, sj) be the probability of the best
state sequence for generating the first r symbols in V and also ending at state sj . Then,
the recursive computation is as follows:

δr(V, sj) = MAXn
i=1δr−1(V, si) · pij · θj(ar)

This approach recursively computes the maximum of the probabilities of all the n different
paths for different penultimate nodes. The approach is iteratively applied for r = 1 . . .m.
The first probability is determined as δ1(V, sj) = πj · θj(a1) for initializing the recursion.
This approach requires O(n2 · m) time. Then, the final best path is computed by using

520 CHAPTER 15. MINING DISCRETE SEQUENCES

the maximum value of δm(V, sj) over all possible states sj . This approach is, essentially, a
dynamic programming algorithm. In the anomaly example of student grades, an oscillation
between doer and slacker states will be discovered by the Viterbi algorithm as the causality
for outlier behavior. In a clustering application, a consistent presence in the doer state will
explain the cluster of diligent students.

15.5.4 Training: Baum–Welch Algorithm

The problem of learning the parameters of an HMM is a very difficult one, and no known
algorithm is guaranteed to determine the global optimum. However, options are available
to determine a reasonably effective solution in most scenarios. The Baum–Welch algorithm
is one such method. It is also known as the Forward-backward algorithm, and it is an
application of the EM approach to the generative Hidden Markov Model. First, a description
of training with the use of a single sequence T = a1 . . . am will be provided. Then, a
straightforward generalization to N sequences T1 . . . TN will be discussed.

Let αr(T, sj) be the forward probability that the first r symbols in a sequence T of length
m are generated by the model, and the last symbol in the sequence is sj . Let βr(T, sj) be the
backward probability that the portion of the sequence after and not including the rth position
is generated by the model, conditional on the fact that the state for the rth position is sj .
Thus, the forward and backward probability definitions are not symmetric. The forward
and backward probabilities can be computed from model probabilities in a way similar
to the evaluation procedure discussed above in Sect. 15.5.2. The major difference for the
backward probabilities is that the computations start from the end of the sequence in the
backward direction. Furthermore, the probability value β|T |(T, sj) is initialized to 1 at the
bottom of the recursion to account for the difference in the two definitions. Two additional
probabilistic quantities need to be defined to describe the EM algorithm:

• ψr(T, si, sj): Probability that the rth position in sequence T corresponds to state si,
the (r + 1)th position corresponds to sj .

• γr(T, si): Probability that the rth position in sequence T corresponds to state si.

The EM procedure starts with a random initialization of the model parameters and then
iteratively estimates (α(·), β(·), ψ(·), γ(·)) from the model parameters, and vice versa. Specif-
ically, the iteratively executed steps of the EM procedure are as follows:

• (E-step) Estimate (α(·), β(·), ψ(·), γ(·)) from currently estimated values of the model
parameters (π(·), θ(·), p..).

• (M-step) Estimate model parameters (π(·), θ(·), p..) from currently estimated values
of (α(·), β(·), ψ(·), γ(·)).

It now remains to explain how each of the above estimations is performed. The values of
α(·) and β(·) can be estimated using the forward and backward procedures, respectively.
The forward procedure is already described in the evaluation section, and the backward
procedure is analogous to the forward procedure, except that it works backward from the
end of the sequence. The value of ψr(T, si, sj) is equal to αr(T, si) ·pij ·θj(ar+1) ·βr+1(T, sj)
because the sequence-generation procedure can be divided into three portions corresponding
to that up to position r, the generation of the (r + 1)th symbol, and the portion after the

15.6. SEQUENCE CLASSIFICATION 521

(r+1)th symbol. The estimated values of ψr(T, si, sj) are normalized to a probability vector
by ensuring that the sum over different pairs [i, j] is 1. The value of γr(T, si) is estimated
by summing up the values of ψr(T, si, sj) over fixed i and varying j. This completes the
description of the E-step.

The re-estimation formulas for the model parameters in the M-Step are relatively
straightforward. Let I(ar, σk) be a binary indicator function, which takes on the value
of 1 when the two symbols are the same, and 0 otherwise. Then the estimations can be
performed as follows:

π(j) = γ1(T, sj), pij =
∑m−1

r=1 ψr(T, si, sj)∑m−1
r=1 γr(T, si)

θi(σk) =
∑m

r=1 I(ar, σk) · γr(T, si)∑m
r=1 γr(T, si)

The precise derivations of these estimations, on the basis of expectation-maximization prin-
ciples, may be found in [327]. This completes the description of the M-step.

As in all EM methods, the procedure is applied iteratively to convergence. The approach
can be generalized easily to N sequences by applying the steps to each of the sequences,
and averaging the corresponding model parameters in each step.

15.5.5 Applications

Hidden Markov Models can be used for a wide variety of sequence mining problems, such
as clustering, classification, and anomaly detection. The application of HMM to clustering
has already been described in Sect. 15.3.4.2 of this chapter. The application to classification
will be discussed in Sect. 15.6.5 of this chapter. Therefore, this section will focus on the
problem of anomaly detection.

In theory, it is possible to compute anomaly scores directly for the test sequence V ,
once the training model has been constructed from the sequence database D = T1 . . . TN .
However, as the length of the test sequence increases, the robustness of such a model dimin-
ishes because of the increasing noise resulting from the curse of dimensionality. Therefore,
the comparison units (either extracted from the test sequence or specified by the domain
expert), are used for computing the anomaly scores of windows of the sequence. The anomaly
scores of the different windows can then be combined together by using a simple function
such as determining the number of anomalous window units in a sequence.

Some methods also use the Viterbi algorithm on the test sequence to mine the most likely
state sequence. In some domains, it is easier to determine anomalies in terms of the state
sequence rather than the observable sequence. Furthermore, low transition probabilities
on portions of the state sequence provide anomalous localities of the observable sequence.
The downside is that the most likely state sequence may have a very low probability of
matching the observed sequence. Therefore, the estimated anomalies may not reflect the
true anomalies in the data when an estimated state sequence is used for anomaly detection.
The real utility of the Viterbi algorithm is in providing an explanation of the anomalous
behavior of sequences in terms of the intuitively understandable states, rather than anomaly
score quantification.

15.6 Sequence Classification

It is assumed that a set of N sequences, denoted by S1 . . . SN , is available for building the
training model. Each of these sequences is annotated with a class label drawn from {1 . . . k}.
This training data is used to construct a model that can predict the label

522 CHAPTER 15. MINING DISCRETE SEQUENCES

of unknown test sequences. Many modeling techniques, such as nearest neighbor classi-
fiers, rule-based methods, and graph-based methods, are common to timeseries and discrete
sequence classification because of the temporal nature of the two data types.

15.6.1 Nearest Neighbor Classifier

The nearest neighbor classifier is used frequently for different data types, including discrete
sequence data. The basic description of the nearest neighbor classifier for multidimensional
data may be found in Sect. 10.8 of Chap. 10. For discrete sequence data, the main difference
is in the similarity function used for nearest neighbor classification. Similarity functions for
discrete sequences are discussed in Sects. 3.4.1 and 3.4.2 of Chap. 3. The basic approach is
the same as in multidimensional data. For any test instance, its k-nearest neighbors in the
training data are determined. The dominant label from these k-nearest neighbors is reported
as the relevant one for the test instance. The optimal value of k may be determined by using
leave-one-out cross-validation. The effectiveness of the approach is highly sensitive to the
choice of the distance function. The main problem is that the presence of noisy portions in
the sequences throw off global similarity functions. A common approach is to use keyword-
based similarity in which n-grams are extracted from the string to create a vector-space
representation. The nearest-neighbor (or any other) classifier can be constructed with this
representation.

15.6.2 Graph-Based Methods

This approach is a semisupervised algorithm because it combines the knowledge in the
training and test instances for classification. Furthermore, the approach is transductive
because out-of-sample classification of test instances is generally not possible. Training
and testing instances must be specified at the same time. The use of similarity graphs
for semisupervised classification was introduced in Sect. 11.6.3 of Chap. 11. Graph-based
methods can be viewed as general semisupervised meta-algorithms that can be used for
any data type. The basic approach constructs a similarity graph from both the training and
test instances. A graph G = (V,A) is constructed, in which a node in V corresponds to
each of the training and test instances. A subset of nodes in G is labeled. These correspond
to instances in the training data, whereas the unlabeled nodes correspond to instances in
the test data. Each node in V is connected to its k-nearest neighbors with an undirected
edge in A. The similarity is computed using any of the distance functions discussed in
Sects. 3.4.1 and 3.4.2 of Chap. 3. In the resulting network, a subset of the nodes are labeled,
and the remaining nodes are unlabeled. The specified labels of nodes in N are then used to
predict labels for nodes where they are unknown. This problem is referred to as collective
classification. Numerous methods for collective classification are discussed in Sect. 19.4 of
Chap. 19. The derived labels on the nodes are then mapped back to the data objects. As
in the case of nearest-neighbor classification, the effectiveness of the approach is sensitive
to the choice of distance function used for constructing the graph.

15.6. SEQUENCE CLASSIFICATION 523

15.6.3 Rule-Based Methods

A major challenge in sequence classification is that many parts of the sequence may be
noisy and not very relevant to the class label. In some cases, a short pattern of two symbols
may be relevant to classification, whereas in other cases, a longer pattern of many symbols
may be discriminative for classification. In some cases, the discriminative patterns may not
even occur contiguously. This issue was discussed in the context of timeseries classification
in Sect. 14.7.2.1 of Chap. 14. However, discrete sequences can be converted into binary
timeseries sequences, with the use of binarization. These binary timeseries can be converted
to multidimensional wavelet representations. This is described in detail in Sect. 2.2.2.6, and
the description is repeated here for completeness.

The first step is to convert the discrete sequence to a set of (binary) time series, where
the number of time series in this set is equal to the number of distinct symbols. The second
step is to map each of these time series into a multidimensional vector using the wavelet
transform. Finally, the features from the different series are combined to create a single
multidimensional record. A rule-based classifier is constructed on this multidimensional
representation.

To convert a sequence to a binary time series, one can create a binary string, in which
each position value denotes whether or not a particular symbol is present at a position. For
example, consider the following nucleotide sequence drawn on four symbols:

ACACACTGTGACTG

This series can be converted into the following set of four binary time series corresponding
to the symbols A, C, T, and G, respectively.

10101000001000

01010100000100

00000010100010

00000001010001

A wavelet transformation can be applied to each of these series to create a multidimensional
set of features. The features from the four different series can be appended to create a
single numeric multidimensional record. After a multidimensional representation has been
obtained, any rule-based classifier can be utilized. Therefore, the overall approach for data
classification is as follows:

1. Generate wavelet representation of each of the N sequences to create N numeric
multidimensional representations, as discussed above.

2. Discretize wavelet representation to create categorical representations of the timeseries
wavelet transformation. Thus, each categorical attribute value represents a range of
numeric values of the wavelet coefficients.

3. Generate a set of rules using any rule-based classifier described in Sect. 10.4 of
Chap. 10. The patterns on the left-hand represent the patterns of different granu-
larities defined by the combination of wavelet coefficients on the left-hand side.

When the rule set has been generated, it can be used to classify arbitrary test sequences by
first transforming the test sequence to the same wavelet-based numeric multidimensional
representation. This representation is used with the fired rules to perform the classification.

524 CHAPTER 15. MINING DISCRETE SEQUENCES

Such methods are discussed in Sect. 10.4 of Chap. 10. It is not difficult to see that this
approach is a discrete version of the rule-based classification of time series, as presented in
Sect. 14.7.2.1 of Chap. 14.

15.6.4 Kernel Support Vector Machines

Kernel support vector machines can construct classifiers with the use of kernel similarity
between training and test instances. As discussed in Sect. 10.6.4 of Chap. 10, kernel support
vector machines do not need the feature values of the records, as long as the kernel-based
similarity K(Yi, Yj) between any pair of data objects are available. In this case, these data
objects are strings. Different kinds of kernels are very popular for string classification.

15.6.4.1 Bag-of-Words Kernel

In the bag-of-words kernel, the string is treated as a bag of alphabets, with a frequency
equal to the number of alphabets of each type in the string. This can be viewed as the
vector-space representation of a string. Note that a text document is also a string, with
an alphabet size equal to the lexicon. Therefore, the transformation Φ(·) can be viewed as
almost equivalent to the vector-space transformation for a text document. If V (Yi) be the
vector-space representation of a string, then the kernel similarity is equal to the dot product
between the corresponding vector space representations.

Φ(Yi) = V (Yi)

K(Yi, Yj) = Φ(Yi) · Φ(Yj) = V (Yi) · V (Yj)

The main disadvantage of the kernel is that it loses all the positioning information between
the alphabets. This can be an effective approach for cases where the alphabet size is large.
An example is text, where the alphabet (lexicon) size is of a few hundred thousand words.
However, for smaller alphabet sizes, the information loss can be too significant for the
resulting classifier to be useful.

15.6.4.2 Spectrum Kernel

The bag-of-words kernel loses all the sequential information in the strings. The spectrum
kernel addresses this issue by extracting k-mers from the strings and using them to con-
struct the vector-space representation. The simplest spectrum kernel pulls out all k-mers
from the strings and builds a vector space representation from them. For example, consider
the string ATGCGATGG constructed on the alphabet Σ = {A,C, T,G}. Then, the correspond-
ing spectrum representation for k = 3 is as follows:

ATG(2), TGC(1), GCG(1), CGA(1), GAT(1), TGG(1)

The values in the brackets correspond to the frequencies in the vector-space representa-
tion. This corresponds to the feature map Φ(·) used to define the kernel similarity.

It is possible to enhance the spectrum kernel further by adding a mismatch neighborhood
to the kernel. Thus, instead of adding only the extracted k-mers to the feature map, we add

15.6. SEQUENCE CLASSIFICATION 525

all the k-mers that are m mismatches away from the k-mer. For example, at a mismatch
level of m = 1, the following k-mers are added to the feature map for each instance of ATG:

CTG, GTG, TTG, ACG, AAG, AGG, ATC, ATA, ATT

This procedure is repeated for each element in the k-mer, and each of the neighborhood ele-
ments are added to the feature map. is procedure is repeated for each element in the k-mer,
and each of the neighborhood elements are added to the feature map. The dot product is
performed on this expanded feature map Φ(·). The rationale for adding mismatches is to
allow for some noise in the similarity computation. The bag-of-words kernel can be viewed
as a special case of the spectrum kernel with k = 1 and no mismatches. The spectrum kernel
can be computed efficiently with the use of either the trie or the suffix tree data structure.
Pointers to such efficient computational methods are provided in the bibliographic notes.
One advantage of spectrum kernels is that they can compute the similarity between two
strings in an intuitively appealing way, even when the lengths of the two strings are widely
varying.

15.6.4.3 Weighted Degree Kernel

The previous two kernel methods directly define a feature map Φ(·) explicitly that largely
ignores the ordering between the different k-mers. The weighted degree kernel directly
defines K(Yi, Yj), without explicitly defining a feature map Φ(·). This approach is in the
spirit of exploiting the full power of kernel methods. Consider two strings Yi and Yj of the
same length n. Let KMER(Yi, r, k) represent the k-mer extracted from Yi starting from
position r. Then, the weighted degree kernel computes the kernel similarity as the number
of times the k-mers of a maximum specified length, in the two strings at exactly correspond-
ing positions, match perfectly. Thus, unlike spectrum kernels, k-mers of varying lengths are
used, and the contribution of a particular length s is weighted by coefficient βs. In other
words, weighted degree kernel of order k is defined as follows:

K(Yi, Yj) =
k∑

s=1

βs

n−s+1∑
r=1

I(KMER(Yi, r, s) = KMER(Yj , r, s)) (15.9)

Here, I(·) is an indicator function that takes on the value of 1 in case of a match,
and 0 otherwise. One drawback of the weighted degree kernel over the spectrum
kernel, is that it requires the two strings Yi and Yj to be of equal length. This can be
partially addressed by allowing shifts in the matching process. Pointers to these enhance-
ments may be found in the bibliographic notes.

15.6.5 Probabilistic Methods: Hidden Markov Models

Hidden Markov Models are an important tool that are utilized in a wide variety of tasks
in sequence analysis. It has already been shown earlier in this chapter, in Sects. 15.3.4.2
and 15.5, how Hidden Markov Models can be utilized for both clustering and outlier detec-
tion. In this section, the use of Hidden Markov Models for sequence classification will be
leveraged. In fact, the most common use of HMMs is for the problem of classification. HMMs
are very popular in computational biology, where they are used for protein classification.

526 CHAPTER 15. MINING DISCRETE SEQUENCES

The basic approach for using HMMs for classification is to create a separate HMM for
each of the classes in the data. Therefore, if there are a total of k classes, this will result in
k different Hidden Markov Models. The Baum–Welch algorithm, described in Sect. 15.5.4,
is used to train the HMMs for each class. For a given test sequence, the fit of each of the
k models to the test sequence is determined using the approach described in Sect. 15.5.2.
The best matching class is reported as the relevant one. The overall approach for training
and testing with HMMs may be described as follows:

1. (Training) Use Baum–Welch algorithm of Sect. 15.5.4 to construct a separate HMM
model for each of the k classes.

2. (Testing) For a given test sequence Y , determine the fit probability of the sequence
to the k different Hidden Markov Models, using the evaluation procedure discussed in
Sect. 15.5.2. Report the class, for which the corresponding HMM has the highest fit
probability to the test sequence.

Many variations of this basic approach have been used to achieve different trade-offs between
effectiveness and efficiency. The bibliographic notes contain pointers to some of these meth-
ods.

15.7 Summary

Discrete sequence mining is closely related to timeseries data mining, just as categorical
data mining is closely related to numeric data mining. Therefore, many algorithms are very
similar across the two domains. The work on discrete sequence mining originated in the
field of computational biology, where DNA strands are encoded as strings.

The problem of sequential pattern mining discovers frequent sequences from a database
of sequences. The GSP algorithm for frequent sequence mining is closely based on the Apri-
ori method. Because of the close relationship between the two problems, most algorithms
for frequent pattern mining can be generalized to discrete sequence mining in a relatively
straightforward way.

Many of the methods for multidimensional clustering can be generalized to sequence
clustering, as long as an effective similarity function can be defined between the sequences.
Examples include the k-medoids method, hierarchical methods, and graph-based methods.
An interesting line of work converts sequences to bags of k-grams. Text-clustering algorithms
are applied to this representation. In addition, a number of specialized methods, such as
CLUSEQ, have been developed. Probabilistic methods use a mixture of Hidden Markov
Models for sequence clustering.

Outlier analysis for sequence data is similar to that for timeseries data. Position outliers
are determined using Markovian models for probabilistic prediction. Combination outliers
can be determined using distance-based, frequency-based, or Hidden Markov Models. Hid-
den Markov Models are a very general tool for sequence analysis and are used frequently
for a wide variety of data mining tasks. HMMs can be viewed as mixture models, in which
each state of the mixture is sequentially dependent on the previous states.

Numerous techniques from multidimensional classification can be adapted to discrete
sequence classification. These include nearest neighbor methods, graph-based methods, rule-
based methods, Hidden Markov Models, and Kernel Support Vector Machines. Numerous
string kernels have been designed for more effective sequence classification.

15.8. BIBLIOGRAPHIC NOTES 527

15.8 Bibliographic Notes

The problem of sequence mining has been studied extensively in computational biology.
The classical book by Gusfield [244] provides an excellent introduction of sequence min-
ing algorithms from the perspective of computational biology. This book also contains an
excellent survey on most of the other important similarity measures for strings, trees, and
graphs. String indexing is discussed in detail in this work. The use of transformation rules
for timeseries similarity has been studied in [283, 432]. Such rules can be used to create
edit distance-like measures for continuous time series. Methods for the string edit distance
are proposed in [438]. It has been shown in [141], how the Lp-norm may be combined with
the edit distance. Algorithms for the longest common subsequence problem may be found
in [77, 92, 270, 280]. A survey of these algorithms is available in [92]. Numerous other mea-
sures for timeseries and sequence similarity may be found in [32]. Timeseries and discrete
sequence similarity measures are discussed in detail in Chap. 3 of this book, and in an
earlier tutorial by Gunopulos and Das [241]. In the context of biological data, the BLAST
system [73] is one of the most popular alignment tools.

The problem of mining sequential patterns was first proposed in [59]. The GSP algorithm
was also proposed in the same work. The GSP algorithm is a straightforward modification of
the Apriori algorithm. Most frequent pattern mining problems can be extended to sequen-
tial pattern mining because of the relationship between the two models. Subsequently, most
of the algorithms discussed in Chap. 4 on frequent pattern mining have been generalized to
sequential pattern mining. Savasere et al.’s vertical data structures [446] have been general-
ized to SPADE [535], and the FP-growth algorithm has been generalized to PrefixSpan [421].
The TreeProjection algorithm has also been generalized to sequential pattern mining [243].
Both PrefixSpan and the TreeProjection-based methods are based on combining database
projection with exploration of the candidate search space with the use of an enumeration
tree. The description of this chapter is a simplified and generalized description of these
two related works [243, 421]. Methods for finding constraint-based sequences are discussed
in [224, 346]. A recent survey on sequential pattern mining may be found in [392].

The problem of sequence data clustering has been studied extensively. A detailed survey
on clustering sequence data, in the context of the biological domain, may be found in [32].
The CLUSEQ algorithm is described in detail in [523]. The Probabilistic Suffix Trees, used
by CLUSEQ, are discussed in the same work. The earliest frequent sequence-based approach
for clustering was proposed in [242]. The CONTOUR method for frequent sequence mining
was proposed in [505]. This method uses a combination of frequent sequence mining and
microclustering to create clusters from the sequences. The use of Hidden Markov Models
for discrete sequence clustering is discussed in [474].

A significant amount of work has been done on the problem of temporal outlier detec-
tion in general, and discrete sequences in particular. A general survey on temporal outlier
detection may be found in [237]. The book [5] contains chapters on temporal and dis-
crete sequence outlier detection. A survey on anomaly detection in discrete sequences was
presented in [132]. Two well-known techniques that use Markovian techniques for finding
position outliers are discussed in [387, 525]. Combination outliers typically use windowing
techniques in which comparison units are extracted from the sequence for the purposes
of analysis [211, 274]. The information-theoretic measures for compression-based similarity
were proposed in [311]. The frequency-based approach for determining the surprise level of
comparison units is discussed in [310]. The TARZAN algorithm, proposed in this work, uses
suffix trees for efficient computation. A general survey on Hidden Markov Models may be
found in [327].

528 CHAPTER 15. MINING DISCRETE SEQUENCES

The problem of sequence classification is addressed in detail in the surveys [33, 516].
The use of wavelet methods for sequence classification was proposed in [51]. A description
of a variety of string kernels for SVM classification is provided in [85]. The use of Hidden
Markov Models for string classification is discussed in [327].

15.9 Exercises

1. Consider the sequence ABCDDCBA, defined on the alphabet Σ = {A,B,C,D}.
Compute the vector-space representation for all k-mers of length 1, and the vector-
space representation of all k-mers of length 2. Repeat the process for the sequence
CCCCDDDD.

2. Implement the GSP algorithm for sequential pattern mining.

3. Consider a special case of the sequential pattern mining problem where elements are
always singleton items. What difference would it make to (a) GSP algorithm, and (b)
algorithms based on the candidate tree.

4. Discuss the generalizability of k-medoids and graph-based methods for clustering of
arbitrary data types.

5. The chapter introduces a number of string kernels for classification with SVMs. Discuss
some other data mining applications you can implement with string kernels.

6. Discuss the similarity and differences between Markovian models for discovering posi-
tion outliers in sequential data, with autoregressive models for discovering point out-
liers in timeseries data.

7. Write a computer program to determine all maximal frequent subsequences from a
collection using GSP. Implement a program to express the sequences in a database
in terms of these subsequences, in vector space representation. Implement a k-means
algorithm on this representation.

8. Write a computer program to determine position outliers using order-1 Markovian
Models.

9. Consider the discrete sequence ACGTACGTACGTACGTATGT. Construct an order-
1 Markovian model to determine the position outliers. Which positions are found as
outliers?

10. For the discrete sequence of Exercise 9, determine all subsequences of length 2. Use a
frequency-based approach to assign combination outlier scores to subsequences. Which
subsequences should be considered combination outliers?

11. Write a computer program to learn the state transition and symbol emission prob-
abilities for a Hidden Markov Model. Execute your program using the sequence of
Exercise 9.

12. Compute the kernel similarity between the two sequences in Exercise 1 with a bag-of-
words kernel and a spectrum kernel in which sequences of length 2 are used.

15.9. EXERCISES 529

13. What is the maximum number of possible sequential patterns of length at most k,
where the alphabet size is |Σ|. Compare this with frequent pattern mining. Which is
larger?

14. Suppose that the speed of an athlete on a racetrack probabilistically depends upon
whether the day is cold, moderate, or hot. Accordingly, the athlete runs a race that
is graded either Fast (F), Slow (S), or Average (A). The weather on a particular day
probabilistically depends on the weather on the previous day. Suppose that you have
a sequence of performances of the athlete on successive days in the form of a string,
such as FSFAAF . Construct a Hidden Markov Model that explains the athlete’s
performance, without any knowledge of the weather on those days.

Chapter 16

Mining Spatial Data

“Time and space are modes by which we think and not
conditions in which we live.”—Albert Einstein

16.1 Introduction

Spatial data arises commonly in geographical data mining applications. Numerous appli-
cations related to meteorological data, earth science, image analysis, and vehicle data are
spatial in nature. In many cases, spatial data is integrated with temporal components. Such
data is referred to as spatiotemporal data. Some examples of applications in which spatial
data arise, are as follows:

1. Meteorological data: Quantifications of important weather characteristics, such as the
temperature and pressure, are typically measured at different geographical locations.
These can be analyzed to discover interesting events in the underlying data.

2. Mobile objects: Moving objects typically create trajectories. Such trajectories can be
analyzed for a wide variety of insights, such as characteristic trends, or anomalous
paths of objects.

3. Earth science data: The land cover types at different spatial locations may be rep-
resented as behavioral attributes. Anomalies in such patterns provide insights about
anomalous trends in human activity, such as deforestation or other anomalous vege-
tation trends.

4. Disease outbreak data: Data about disease outbreaks are often aggregated by spatial
locations such as ZIP code and county. The analysis of trends in such data can provide
information about the causality of the outbreaks.

5. Medical diagnostics: Magnetic resonance imaging (MRI) and positron emission tomog-
raphy (PET) scans are spatial data in 2 or 3 dimensions. The detection of unusual

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 16 531
c© Springer International Publishing Switzerland 2015

532 CHAPTER 16. MINING SPATIAL DATA

localized regions in such data can help in detecting diseases such as brain tumors,
the onset of Alzheimer disease, and multiple sclerosis lesions. In general, any form of
image data may be considered spatial data. The analysis of shapes in such data is of
considerable importance in a variety of applications.

6. Demographic data: Demographic (behavioral) attributes such as age, sex, race, and
salary can be combined with spatial (contextual) attributes to provide insights about
the demographic patterns in distributions. Such information can be useful for target-
marketing applications.

Most forms of spatial data may be classified as a contextual data type, in which the
attributes are partitioned into contextual attributes and behavioral attributes. This parti-
tioning is similar to that in time series and discrete sequence data:

• Contextual attribute(s): These represent the attributes that provide the context in
which the measurements are made. In other words, the contextual attributes provide
the reference points at which the behavioral values are measured. In most cases, the
contextual attributes contain the spatial coordinates of a data point. In some cases,
the contextual attribute might be a logical location, such as a building or a state.
In the case of spatiotemporal data, the contextual attributes may include time. For
example, in an application in which the sea surface temperatures are measured at
sensors at specific locations, the contextual attributes may include both the position
of the sensor, and the time at which the measurement is made.

• Behavioral attribute(s): These represent the behavioral values at the reference points.
For example, in the aforementioned sea surface temperature application, these corre-
spond to the temperature attribute values.

In most forms of spatial data, the spatial attributes are contextual, and may optionally
include temporal attributes. An exception is the case of trajectory data, in which the spatial
attributes are behavioral, and time is the only contextual attribute. In fact, trajectory data
can be considered equivalent to multivariate time series data. This equivalence is discussed
in greater detail in Sect. 16.3.

This chapter separately studies cases where the spatial attributes are contextual, and
those in which the spatial attributes are behavioral. The latter case typically corresponds
to trajectory data, in which the contextual attribute corresponds to time. Thus, trajectory
data is a form of spatiotemporal data. In other forms of spatiotemporal data, both spatial
and temporal attributes are contextual.

This chapter is organized as follows. Section 16.2 addresses data mining scenarios in
which the spatial attributes are contextual. In this context, the chapter studies several
important problems, such as pattern mining, clustering, outlier detection, and classification.
Section 16.3 discusses algorithms for mining trajectory data. Section 16.4 discusses the
summary.

16.2 Mining with Contextual Spatial Attributes

In many forms of meteorological data, a variety of (behavioral) attributes, such as temper-
ature, pressure, and humidity, are measured at different spatial locations. In these cases,
the spatial attributes are contextual. An example of sea surface temperature contour charts

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 533

is illustrated in Fig. 16.1. The different shades in the chart represent the different sea sur-
face temperatures. These correspond to the values of the behavioral attributes at different
spatial locations.

Another example is the case of image data, where the intensity of an image is measured
in pixels. Such data is often used to capture diagnostic images. Examples of PET scans for
a cognitively healthy person and an Alzheimer’s patient are illustrated in Fig. 16.2. In this
case, the values of the pixels represent the behavioral attributes, and the spatial locations
of these pixels represent the contextual attributes. The behavioral attributes in spatial data
may present themselves in a variety of ways, depending on the application domain:

1. For some types of spatial data, such as images, the analysis may be performed on the
contour of a specific shape extracted from the data. For example, in Fig. 16.3, the
contour of the insect may be extracted and analyzed with respect to other images in
the data.

2. For other types of spatial data, such as meteorological applications, the behavioral
attributes may be abstract quantities such as temperature. Therefore the analysis
can be performed in terms of the trends on these abstract quantities. In such cases,
the spatial data needs to be treated as a contextual data type with multiple refer-
ence points corresponding to spatial coordinates. Such an analysis is generally more
complex.

The specific choice of data mining methodology often depends on the application at hand.
Both these forms of data are often transformed into other data types such as time series or
multidimensional data before analysis.

16.2.1 Shape to Time Series Transformation

In many spatial data sets such as images, the data may be dominated by a particular shape.
The analysis of such shapes is challenging because of the variations in sizes and orientations.
One common technique for analyzing spatial data is to transform it into a different format
that is much easier to analyze. In particular, the contours of a shape are often transformed
to time series for further analysis. For example, the contours of the insect shapes in Fig. 16.3
are difficult to analyze directly because of their complexity. However, it is possible to create
a representation that is friendly to data processing by transforming them into time series.

A common approach is to use the distance from the centroid to the boundary of the
object, and compute a sequence of real numbers derived in a clockwise sweep of the bound-
ary. This yields a time series of real numbers, and is referred to as the centroid distance
signature. This transformation can be used to map the problem of mining shapes to that of
mining time series. The latter domain is much easier to analyze. For example, consider the
elliptical shape illustrated in Fig. 16.4a. Then, the time series representing the distance from
the centroid, using 360 different equally spaced angular samples, is illustrated in Fig. 16.4b.
Note that the contextual attribute here is the number of degrees, but one can “pretend”
that this represents a timestamp. This facilitates the use of all the powerful data mining
techniques available for time series analysis. In this case, the sample points are started at
one of the major axes of the ellipse. If the sample point starts at a different position, or if the
shape is rotated (with the same angular starting point), then this causes a cyclic translation
of the time series. This is quite important because the precise orientation of a shape may
not be known in advance. For example, the shapes in Figs. 16.3b and c are rotated from the

534 CHAPTER 16. MINING SPATIAL DATA

Figure 16.1: Contour charts for sea surface temperatures: Image courtesy of the NOAA
Satellite and Information Service

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 535

Figure 16.2: PET Scans of the brain of a cognitively healthy person versus an Alzheimer’s
patient. (Image courtesy of the National Institute on Aging/National Institutes of Health)

Figure 16.3: Rotation and mirror image effects on shape matching

536 CHAPTER 16. MINING SPATIAL DATA

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0 50 100 150 200 250 300 350 400
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

DEGREES FROM START OF SWEEP

D
IS

TA
N

C
E

 F
R

O
M

 C
E

N
TR

O
ID

(a) elliptical shape (b) distance from centroid for (a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0 50 100 150 200 250 300 350 400
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

DEGREES FROM START OF SWEEP

D
IS

TA
N

C
E

 F
R

O
M

 C
E

N
TR

O
ID

(c) elliptical shape (d) distance from centroid for (c)

Figure 16.4: Conversion from shapes to time series

shape of Fig. 16.3a. The shape in Fig. 16.3d is a mirror image of the shape of Fig. 16.3a.
While rotations result in cyclic translations, mirror images result in a reversal of the series.

Figure 16.4c represents a rotation of the shape of Fig. 16.4a by 45◦. Correspondingly, the
time series representation in Fig. 16.4d is a (cyclic) translation of time series representation
in Fig. 16.4b. Similarly, the mirror image of a shape corresponds to a reversal of the time
series. It will be evident later that the impact of rotation or mirror images needs to be
explicitly incorporated into the distance or similarity function for the application at hand.
After the time series has been extracted, it may be normalized in different ways, depending
on the needs of the application:

• If no normalization is performed, then the data mining approach is sensitive to the
absolute sizes of the underlying objects. This may be the case in many medical images
such as MRI scans, in which all spatial objects are drawn to the same scale.

• If all time series values are multiplicatively scaled down by the same factor to unit
mean, such an approach will allow the matching of shapes of different sizes, but
discriminate between different levels of relative variations in the shapes. For example,
two ellipses with very different ratios of the major and minor axes will be discriminated
well.

• If all time series are standardized to zero mean and unit variance, then such an
approach will match shapes where relative local variations in the shape are similar,
but the overall shape may be quite different. For example, such an approach will not

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 537

discriminate very well between two ellipses with very different ratios of the major and
minor axes, but will discriminate between two such shapes with different relative local
deviations in the boundaries. The only exception is a circular shape that appears as a
straight line. Furthermore, noise effects in the contour will be differentially enhanced
in shapes that are less elongated. For example, for two ellipses with similar noisy
deviations at the boundaries, but different levels of elongation (major to minor axis
ratio), the overall shape of the time series will be similar, but the local noisy devi-
ations in the extracted time series will be differentially suppressed in the elongated
shape. This can sometimes provide a distorted picture from the perspective of shape
analysis. A perfectly circular shape may show unstable and large noisy deviations
in the extracted time series because of trivial variations such as image rasterization
effects. Thus, the usual mean and variance normalization of time series analysis often
leads to unintended results.

In general, it is advisable to select the normalization method in an application-specific
way. After the shapes have been converted to time series, they can be used in the context of
a wide variety of applications. For example, motifs in the time series correspond to frequent
contours in the spatial shapes. Similarly, clusters of similar shapes may be discovered by
determining clusters in the time series. Similar observations apply to the problems of outlier
detection and classification.

16.2.2 Spatial to Multidimensional Transformation with Wavelets

For data types such as meteorological data in which behavioral attribute values vary across
the entire spatial domain, a contour-based shape may not be available for analysis. There-
fore, the shape to time series transformation is not appropriate in these cases.

Wavelets are a popular method for the transformation of time series data to multidi-
mensional data. Spatial data shares a number of similarities with time series data. Time
series data has a single contextual attribute (time) along which a behaviorial attribute
(e.g., temperature) may exhibit a smooth variation. Correspondingly, spatial data has two
contextual attributes (spatial coordinates), along which a behavioral attribute (e.g., sea
surface temperature) may exhibit a smooth variation. Because of this analogy, it is possible
to generalize the wavelet-based approach to the case of multiple contextual attributes with
appropriate modifications.

Assume that the spatial data is represented in the form of a 2-dimensional grid of size
q×q. Thus, each coordinate of the grid contains an instance of the behavioral attribute, such
as the temperature. As discussed for the time series case in Sect. 2.4.4.1 of Chap. 2, differenc-
ing operations are applied over contiguous segments of the time series by successive division
of the time series in hierarchical fashion. The corresponding basis vectors have +1 and −1
at the relevant positions. The 2-dimensional case is completely analogos, where contiguous
areas of the spatial grid are used for successive divisions. These divisions are alternately per-
formed along the different axes. The corresponding basis vectors are 2-dimensional matrices
of size q × q that regulate how the differencing operations are performed. An example of
how sea surface temperatures in a spatial data set may be converted to a multidimensional
representation is provided in Fig. 16.5. This will result in a total of q2 wavelet coefficients,
though only the large coefficients need to be retained for analysis. A more detailed descrip-
tion of the generation of the spatial wavelet coefficients may be found in Sect. 2.4.4.1 of
Chap. 2. The aforementioned description is for the case of a single behavioral attribute and
multiple contextual attributes (spatial coordinates). Multiple behavioral attributes can also

538 CHAPTER 16. MINING SPATIAL DATA

1
1
1
1

1
1

1
1

GLOBAL
TEMPERATURE
AVERAGE 75

SEA SURFACE
TEMPERATURES

72
74

75
73

76
73

75
77

1
1
1
1

1
1

1
1

CUT ALONG X AXIS

AVERAGE = 75

BASE DATA

ALONG SPATIAL
GRID

80
76

78
79

71
75

72
74COEFFICIENT = 75

1
1
1

1
1
1

1
1
1

1
1
1

AVERAGE
TEMPERATURE
DIFFERENCE
BETWEEN LEFT

BINARY
MATRICES
REPRESENT
2 DIMENSIONAL1

1
1
1

1
1

1
1AND RIGHT

BLOCKS = 7/4
COEFFICIENT= 7/8

CUT ALONG
Y AXIS

2 DIMENSIONAL
BASIS MATRICES

Y AXIS

AVERAGE TEMP.
DIFFERENCE
BETWEEN TOP AND

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

AVERAGE
TEMPERATURE
DIFFERENCE BETWEENBETWEEN TOP AND

BOTTOM BLOCKS = 9/4
COEFFICIENT= 9/8

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

TOP AND BOTTOM
BLOCKS = 19/4
COEFFICIENT = 19/8

CUT ALONG
X AXISX AXIS

Figure 16.5: Illustration of the top levels of the wavelet decomposition for spatial data in a
grid containing sea surface temperatures (Fig. 2.7 of Chap. 2 revisited)

be addressed by performing the decomposition separately for each behavioral attribute, and
creating a separate set of dimensions for each behavioral attribute.

Like the time series wavelet, the spatial wavelet is a multiresolution representation.
Trends at different levels of spatial granularity are represented in the coefficients. Higher-
level coefficients represent trends in larger spatial areas, whereas lower-level coefficients
represent trends in smaller spatial areas. Therefore, this approach is very powerful, and has
broad usability for many spatial applications. Spatial wavelets can be used effectively for
many image clustering and classification applications where (contextual) spatial data can
be converted to (noncontextual) multidimensional data. Once the transformation has been
performed, virtually all the multidimensional methods discussed in Chaps. 4 to 11 can be
used on this representation. Such an approach opens the door to the use of a wide array of
multidimensional data mining methods.

16.2.3 Spatial Colocation Patterns

In this problem, the contextual attributes are spatial and the behavioral attributes are
typically boolean and nonspatial. Non-boolean behavioral attributes can be addressed with
the use of type conversion via discretization or binarization. The goal of spatial colocation
pattern mining is to discover combinations of features occurring at the same spatial location.
Consider an ecology data set, where one has behavioral attributes such as fire ignition source,
needle vegetation type, and a drought indicator. The spatial colocation of these features
may often be a risk factor for forest fires. Therefore, the discovery of such patterns is useful
in the context of data mining analysis. In many cases, a spatial event indicator of interest
(e.g., disease outbreak, vegetation event, or climate event) is added to the other behavioral
attributes. The discovery of useful patterns that include this indicator of interest can be

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 539

used for discovering event causality. This problem is also closely related to rule-based spatial
classification, where the likelihood of the event occurring in previously unseen test regions
can be estimated from the resulting patterns.

One challenge in the mining process is that the different behavioral attributes may
be derived from different data sources, and therefore may not have precisely the same
value of the contextual (spatial) attribute in their measurements. Therefore, proper data
preprocessing is crucial. The data can be homogenized by partitioning the spatial region
into smaller regions. For each of these regions, each behavioral attribute’s value is derived
heuristically from the values in the original data source. For example, if the boolean attribute
has a value of 1 more than predefined fraction of the time in a spatial region, then its value
is set to 1. The contextual (spatial) attribute can be set to the centroid of that region. The
mining can be performed on this preprocessed data. The overall approach is as follows:

1. Preprocess the data to create the behavioral attribute values at the same set of spatial
locations.

2. For each spatial location, create a transaction containing the corresponding combina-
tion of boolean values.

3. Use any frequent pattern mining algorithm to discover the relevant patterns in these
transactions.

4. For each discovered pattern, map it back to the spatial regions containing the pattern.
Cluster the relevant spatial regions for each pattern, if necessary for summarization.

In cases where a particular behavioral attribute is an event of interest (e.g., disease out-
break), the transactions containing values of 0 and 1, respectively, for this attribute can
be separately processed to discover two sets of patterns on the other behavioral attributes.
The differences between these two sets of patterns can provide insights into discriminative
factors for the event of interest at each spatial location. Such patterns are also useful for
spatial classification of previously unseen test regions. This approach is identical to that of
associative classifiers in Chap. 10.

This model can also address time-changing data in a seamless way. In such cases, the
time becomes another contextual attribute in addition to the spatial attributes. Patterns
can be discovered at different temporal snapshots using the aforementioned methodology.
The key changes in these patterns over time can provide insights into the nature of the
spatial evolution.

16.2.4 Clustering Shapes

In many applications, it may be desirable to cluster similar shapes prior to analysis. It is
assumed that a database of N shapes is available and that a total of k groups of similar
shapes need to be created. This can be a useful preprocessing task in many shape cat-
egorization applications. The conversion of a shape to a time series (Sect. 16.2.1) is the
appropriate approach in this scenario. Many of the time series clustering algorithms dis-
cussed in Sect. 14.5 of Chap. 14 may be used effectively, once the shape has been converted
to a time series. The k-medoids, hierarchical, and graph-based methods are particularly
suitable because they require only the design of an appropriate similarity function for the
corresponding time series. This is an issue that will be discussed in more detail later. The
main steps of shape-based clustering are as follows:

540 CHAPTER 16. MINING SPATIAL DATA

1. Use the centroid-based sweep method discussed in Sect. 16.2.1 to convert each shape
into a time series. This results in a database of N different time series.

2. Use any time series clustering algorithm, such as hierarchical, k-medoids or graph-
based method on time series data as discussed in Sect. 14.5 of Chap. 14. This will
cluster the N time series into k groups.

3. Map the k groups of time series clusters to k groups of shape clusters, by mapping
each time series into its relevant shape.

The aforementioned clustering algorithm depends only on the choice of the distance func-
tion. Any of the time series measures discussed in Sect. 3.4.1 of Chap. 3 may be used,
depending on the desired degree of error tolerance or distortion (warping) allowed in the
matching. Another important issue is the adjustment of the distance function with the vary-
ing rotations of the different shapes. In the following, the Euclidean distance will be used
as an example, although the general principle can be applied to any distance function.

It is evident from the example of Fig. 16.4 that a rotation of the shape leads to a linear
cyclic shifting of the time series generated by using the distances of the centroid of the shape
to the contours of the shape. For a time series of length n denoted by a1a2 . . . an, a cyclic
translation by i units leads to the time series ai+1ai+2 . . . ana1a2 . . . ai. Then, the rotation
invariant Euclidean distance RIDist(T1, T2) between two time series T1 = a1 . . . an and
T2 = b1 . . . bn is given by the minimum distance between T1 and all possible rotational
translations of T2 (or vice versa). Therefore, the rotation-invariant distance is expressed as
follows:

RIDist(T1, T2) = minni=1

n∑
j=1

(aj − b1+(j+i) mod n)
2.

In general, if a cyclic shift of the time series T2 by i units is denoted by T i
2, then the rotation

invariant distance, using any distance function Dist(T1, T2) may be expressed as follows:

RIDist(T1, T2) = minni=1Dist(T1, T
i
2). (16.1)

Note that the reversal of a time series corresponds to the mirror image of the underlying
shape. Therefore, mirror images can also be addressed using this approach, by incorpo-
rating the reversals of the series (and its rotations) in the distance function. This will
increase the computation by a factor of 2. The precise choice of distance function used is
highly application-specific, depending on whether rotations or mirror image conversions are
required.

16.2.5 Outlier Detection

In the context of spatial data, outliers can be either point outliers and shape outliers. These
two kinds of outliers are also encountered in time series data, and in discrete sequences. In
the case of spatial data, these two kinds of outliers are defined as follows:

1. Point outliers: These outliers are defined on a single spatial object with a variety of
spatial and behavioral attributes. For example, a weather map is a spatial object that
contains both spatial locations, and environmental measurements (behavioral values)
at these locations. Abrupt changes in the behavioral attributes that violate spatial
continuity provide useful information about the underlying contextual anomalies. For
example, consider a meteorological application in which sea surface temperatures and

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 541

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

SPATIAL X

X OUTLIER

SPATIAL Y

B
E

H
A

V
IO

R
A

L

Figure 16.6: Example of point outlier for spatial data

pressure are measured. Unusually high sea surface temperature in a very small local-
ized region is a hot-spot that may be the result of volcanic activity under the surface.
Similarly, unusually low or high pressure in a small localized region may suggest the
formation of hurricanes or cyclones. In all these cases, spatial continuity is violated
by the attribute of interest. Such attributes are often tracked in meteorological appli-
cations on a daily basis. An example of a point outlier for spatial data is illustrated
in Fig. 16.6.

2. Shape outliers: The application settings for these kinds of outliers are quite different.
These outliers are defined in a database of multiple shapes. For example, the shapes
may be extracted from the different images. In such cases, the unusual shapes in the
different objects need to be reported as outliers.

This chapter studies both the aforementioned formulations.

16.2.5.1 Point Outliers

Neighborhood-based algorithms are generally used for discovering point outliers. In these
algorithms, abrupt changes in the spatial neighborhood of a data point are used to diagnose
outliers. Therefore, the first step is to define the concept of a spatial neighborhood. The
behavioral values within the spatial neighborhood of a given data point are combined to
create an expected value of the behavioral attribute. This expected value is then used to
compute the deviation of the data point from the expected value. This provides an outlier
score. This definition of point outliers in spatial data is similar to that in time series data.

Intuitively, it is unusual for the behavioral attribute value to vary abruptly within a
small spatial locality. For example, a sudden variation of the temperature within a small
spatial locality will be detected by this method. The neighborhood may be defined in many
different ways:

• Multidimensional neighborhoods: In this case, the neighborhoods are defined with the
use of multidimensional distances between data points. This approach is appropriate
when the contextual attributes are defined as coordinates.

• Graph-based neighborhoods: In this case, the neighborhoods are defined by linkage
relationships between spatial objects. Such neighborhoods may be more useful in cases
where the location of the spatial objects may not correspond to exact coordinates (e.g.,

542 CHAPTER 16. MINING SPATIAL DATA

county or ZIP code). In such cases, graph-based representations provide a more general
modeling tool.

Both multidimensional and graph-based methods will be discussed in the following sections.

Multidimensional Methods

While traditional multidimensional methods can also be used to detect outliers in spatial
data, such methods do not distinguish between the contextual and the behavioral attributes.
Therefore, such methods are not optimized for outlier detection in spatial data. This is
because the (contextual) spatial attributes should be treated differently from the behavioral
attributes. The basic idea is to adapt the k-nearest neighbor outlier detection methods to
the case of spatial data.

The spatial neighborhood of the data is defined with the use of multidimensional dis-
tances on the spatial (contextual) attributes. Thus, the contextual attributes are used for
determining the k nearest neighbors. The average of the behavioral attribute values pro-
vides an expected value for the behavioral attribute. The difference between the expected
and true value is used to predict outliers. A variety of distance functions can be used on
the multidimensional spatial data for the determination of proximity. The choice of the
distance function is important because it defines the choice of the neighborhood that is
used for computing the deviations in behavioral attributes. For a given spatial object o,
with behavioral attribute value f(o), let o1 . . . ok be its k-nearest neighbors. Then, a variety
of methods may be used to compute the predicted value g(o) of the object o. The most
straightforward method is the mean:

g(o) =
k∑

i=1

f(oi)/k

Alternatively, g(o) may be computed as the median of the surrounding values of f(oi), to
reduce the impact of extreme values. Then, for each data object o, the value of f(o)− g(o)
represents a deviation from predicted values. The extreme values among these deviations
may be computed using a variety of methods for univariate extreme value analysis. These
are discussed in Chap. 8. The resulting extreme values are reported as outliers.

Graph-Based Methods

In graph-based methods, spatial proximity is modeled with the use of links between nodes
in a graph representation of the spatial region. Thus, nodes are associated with behav-
ioral attributes, and strong variations in the behavioral attribute across neighboring nodes
are recognized as outliers. Graph-based methods are particularly useful when the individual
nodes are not associated with point-specific coordinates, but they may correspond to regions
of arbitrary shape. In such cases, the links between nodes correspond to neighborhood rela-
tionships between the different regions. Graph-based methods define spatial relationships in
a more general way because semantic relationships can also be used to define neighborhoods.
For example, two objects could be connected by an edge if they are in the same semantic
location, such as a building, restaurant, or an office. In many applications, the links may be
weighted on the basis of the strength of the proximity relationship. For example, consider
a disease outbreak application in which the spatial objects correspond to county regions.
In such a case, the strength of the links could correspond to the length of the boundary
between two regions. Multidimensional data is a special case, where links correspond to

16.2. MINING WITH CONTEXTUAL SPATIAL ATTRIBUTES 543

distance-based proximity. Thus, graph representations allow more generic interpretations of
the contextual attribute.

Let S be the set of neighbors of a given node i. Then, the concept of spatial continuity
can be used to create a predicted value of the behavioral attribute based on those of its
(spatial) neighbors. The strength of the links between i and its neighbors can also be used
to compute the predicted values as either the weighted mean or median on the behavioral
attribute of the k nearest spatial neighbors. For a given spatial object o with the behavioral
attribute value f(o), let o1 . . . ok be its k linked neighbors based on the relationship graph.
Let the weight of the link (o, oi) be w(o, oi). Then, the linkage-based weighted mean may
be used to compute the predicted value g(o) of the object o.

g(o) =
∑k

i=1 w(o, oi) · f(oi)∑k
i=1 w(o, oi)

Alternatively, the weighted median of the neighbor values may be used for predictive pur-
poses. Since the true value of the behavioral attribute is known, this can be used to model
the deviations of the behavioral attributes from their predicted values. As in the case of
multidimensional methods, the value of f(o) − g(o) represents a deviation from the pre-
dicted values. Extreme value analysis can be used on these deviations to determine the
spatial outliers. This process is identical to that in the multidimensional case. The nodes
with high values of the normalized deviation may be reported as outliers.

16.2.5.2 Shape Outliers

Shape-based outliers are relatively easy to determine in spatial data, with the use of the
transformation from spatial data to time series described in Sect. 16.2.1. After the trans-
formation has been performed, a k-nearest neighbor outlier detector can be applied to the
resulting time series. The distance to the kth-nearest neighbor can be reported as the outlier
score. A few key issues need to be kept in mind, while computing the outlier score.

1. The distance function needs to be modified to account for the rotation invariance of
shape matching. This is achieved by comparing all cyclic shifts of one time series to
the other. The rotation invariant distance can be captured by Eq. 16.1.

2. In some applications, mirror image invariance also needs to be accounted for. In such
cases, all cyclic shifts and their reversals need to be included in the aforementioned
comparison. The outliers are determined with respect to this enhanced database.

While a vanilla k-nearest neighbor detector can determine the outliers correctly, the
approach can be made faster by pruning. The basic idea is similar to the Hotsax method
discussed in Chap. 14, where a nested loop structure is used to maintain the top-n outliers.
The outer loop corresponds to the selection of different candidates, and the inner loop cor-
responds to the computation of the k-nearest neighbors of each of these candidates. The
inner loop can be terminated early, when the k-nearest neighbor value is less than the nth
best outlier found so far. For optimal performance, the candidates in the outer loop and the
computations in the inner loop need to be ordered appropriately.

This ordering is performed as follows. A combination of the SAX representation and
LSH-hashing is used to create clusters on the candidates. Candidates which map to clusters
with few members are examined first in the outer loop to discover high quality outliers
early in the algorithm execution. Objects which appear in the same cluster as the outer

544 CHAPTER 16. MINING SPATIAL DATA

loop candidate are examined first in the inner loop to ensure fast termination of the inner
loop. This facilitates better pruning performance. The bibliographic notes contain pointers
to specific details of the creation of SAX-based clusters in shape outlier detection.

16.2.6 Classification of Shapes

It is assumed that a set of N labeled shapes are used to conduct the training. This trained
model is used to perform classification of test instances, for which the label is unknown.
The transformation from spatial into time series data is a useful tool for distance-based
classification algorithms. As in the case of clustering and outlier detection, the first step of
the process is to transform the shapes into time series. This transforms the problem to the
time series classification problem. A number of methods for the classification of time series
are discussed in Sect. 14.7 of Chap. 14. The main difference is that the rotation invariance
of the shapes needs to be accounted for. Any of the distance-based methods proposed in
Sect. 14.7 of Chap. 14 for time series classification may be used after the shapes have
been transformed into time series. This is because distance-based methods can be easily
made rotation-invariant by using Eq. 16.1. The two main distance-based methods for time
series classification include the nearest neighbor method and the graph-based collective
classification approach. While the nearest-neighbor method is straightforward, the graph-
based method is discussed in some detail below.

The graph-based method is transductive because it requires the test instances to be
available at the time of training. When a larger number of test instances are available along
with the training data, the latter method may be used. Therefore, the different methods may
be more suitable in different scenarios. The overall approach for graph-based classification
may be described as follows:

1. Transform both the training and test shapes into time series, by using the centroid
sweep method described in Sect. 16.2.1.

2. Use any of the distance functions described in Sect. 3.4.1 of Chap. 3 to construct a
neighborhood graph on the shapes. If needed, use a rotation-invariant version of the
distance function, as discussed in Eq. 16.1. Each shape represents a node, which is
connected to its k-nearest neighbors with edges. The labeled shapes correspond to
labeled nodes. The collective classification method described in Sect. 19.4 of Chap. 19
is used to assign labels to the unlabeled nodes (i.e., the test shapes).

In some cases, rotation invariance may not be an application-specific need. In such cases,
the efficiency of distance computation is improved.

16.3 Trajectory Mining

Trajectory data arises in a wide variety of spatial applications. The proliferation of GPS-
enabled devices, such as mobile phones, has enabled the large-scale collection of trajectory
data. Trajectory data can be analyzed for a very wide variety of insights, such as determining
co-location patterns, clusters and outliers. Trajectory data is different from the other kinds
of spatial data discussed in this chapter in the following respects:

1. In the spatial data applications addressed so far in this chapter, spatial attributes
are contextual, whereas other types of attributes (e.g., temperature in a meteorolog-
ical application) are behavioral. In the case of trajectory data, spatial attributes are
behavioral.

16.3. TRAJECTORY MINING 545

2. The only contextual attribute in trajectory data is time. Therefore, trajectory data can
be considered spatiotemporal data. While the scenarios discussed in previous sections
may also be generalized further by including time among the contextual attributes,
the spatial attributes are not behavioral in those cases. For example, when sea sur-
face temperatures are tracked over time, both spatial and temporal attributes are
contextual.

Trajectory analysis is typically performed in one of two different ways:

1. Online analysis: In online analysis, the trajectories are analyzed in real time, and the
patterns in the trajectories at a given time are most relevant to the analysis.

2. Shape-based analysis: In shape-based analysis, the time variable has already been
removed from the analysis. For example, two similar trajectories, formed at different
periods, can be meaningfully compared to one another. For example, a cluster of
trajectories is based on their shape, rather than the simultaneity in their movement.

The two kinds of analysis in trajectory data are similar to time series data. This is not
particularly surprising because trajectory data is a form of time series data.

16.3.1 Equivalence of Trajectories and Multivariate Time Series

Trajectory data is a form of multivariate time series data. For a trajectory in two dimen-
sions, the X-coordinate and Y -coordinate of the trajectory form two components of the
multivariate series. A 3-dimensional trajectory will result in a trivariate series.

Because of the equivalence between multivariate time series and trajectory data, the
transformation can be performed in either direction to facilitate the use of the methods
designed for each domain. For example, trajectory mining methods can be utilized for appli-
cations that are nonspatial. In particular, any n-dimensional multivariate time series can
be converted into trajectory data. In multivariate temporal data, the different behavioral
attributes are typically measured with the use of multiple sensors simultaneously. Consider
the example of the Intel Research Berkeley Sensor data [556] that measures different behav-
ioral attributes, such as temperature, pressure, and voltage, in the Intel Berkeley laboratory
over time. For example, the behavior of the temperature and voltage sensors in the same
segment of time are illustrated in Figs. 16.7a, b, respectively.

It is possible to visualize the variation of the two behaviorial attributes by eliminating
the common time attribute, or by creating a 3-dimensional trajectory containing the time
and the other two behaviorial attributes. Examples of such trajectories are illustrated in
Fig. 16.7c, d, respectively. The most generic of these trajectories is illustrated in Fig. 16.7d.
This figure shows the simultaneous variation of all three attributes. In general, a multi-
variate time series with n behavioral attributes can be mapped to an (n + 1)-dimensional
trajectory. Most of the trajectory analysis methods are designed under the assumption of 2
or 3 dimensions, though they can be generalized to n dimensions where needed.

16.3.2 Converting Trajectories to Multidimensional Data

Because of the equivalence between trajectories and multivariate time series, trajectories
can also be converted to multidimensional data. This is achieved by using the wavelet trans-
formation on the time series representation of the trajectory. The wavelet transformation
for time series is described in detail in Sect. 2.4.4.1 of Chap. 2. In this case, the time series
is multivariate, and therefore has two behavioral attributes. The wavelet representation for

546 CHAPTER 16. MINING SPATIAL DATA

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200
19

20

21

22

23

24

25

TIME STAMP

TE
M

P
E

R
A

TU
R

E

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200
2.6

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

V
O

LT
A

G
E

TIME STAMP

(a) Temperature (b) Voltage

19 20 21 22 23 24 25
2.6

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

TEMPERATURE

V
O

LT
A

G
E

2000

2050

2100

2150

2200

19
20

21
22

23
24

25
2.6

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

TIME STAMPTEMPERATURE

V
O

LT
A

G
E

(c) Temperature-Voltage (d) Time-Temperature-Voltage
Trajectory Trajectory

Figure 16.7: Multivariate time series can be mapped to trajectory data

each of these behavioral attributes is extracted independently. In other words, the time
series on the X-coordinate is converted into a wavelet representation, and so is the time
series on the Y -coordinate. This yields two multidimensional representations, one of which
is for the X-coordinate, and the other is for the Y -coordinate. The dimensions in these
two representations are combined to create a single higher-dimensional representation for
the trajectory. If desired, only the larger wavelet coefficients may be retained to reduce the
dimensionality. The conversion of trajectory data to multidimensional data is an effective
way to use the vast array of multidimensional methods for trajectory analysis.

16.3.3 Trajectory Pattern Mining

There are many different ways in which the problem of trajectory pattern mining may
be formulated. This is because of the natural complexity of trajectory data that allows for
multiple ways of defining patterns. In the following sections, some of the common definitions
of trajectory pattern mining will be explored. These definitions are by no means exhaustive,
although they do illustrate some of the most important scenarios in trajectory analysis.

16.3.3.1 Frequent Trajectory Paths

A key problem is that of determining frequent sequential paths in trajectory data. To
determine the frequent sequential paths from a set of trajectories, the first step is to convert
the multidimensional trajectory (with numeric coordinates) to a 1-dimensional discrete

16.3. TRAJECTORY MINING 547

A

P Q R S T

B

C

D

E

A

P Q R S T

AP AQ AR AS AT

B

C

BP

CP

BQ

CQ

BR

CR

BS

CS

BT

CT

D

E

DP

EP

DQ

EQ

DR

ER

DS

ES

DT

ET

(a) Trajectory (b) Relevant grid regions

Figure 16.8: Grid-based discretization of trajectories

sequence. Once this conversion has been performed, any sequential pattern mining algorithm
can be applied to the transformed data.

The most effective way to convert a multidimensional trajectory to a discrete sequence
is to use grid-based discretization. In Fig. 16.8a, a trajectory has been illustrated, together
with a 4×4 grid representation of the underlying data space. The grid ranges along one of the
dimensions are denoted by A, B, C, D, and E. The grid ranges along the other dimension
are denoted by P , Q, R, S, and T . The 2-dimensional tiles are denoted by a combination
of the ranges along each of the dimensions. For example, the tile AP represents the inter-
section of the grid range A with the grid range P . Thus, each tile has a distinct (discrete)
identifier, and a trajectory can be expressed in terms of the sequence of discrete identifiers
through which it passes. The shaded tiles for the trajectory in Fig. 16.8a are illustrated in
Fig. 16.8b. The corresponding 1-dimensional sequential pattern is as follows:

EP,DQ,CQ,BQ,BR,CS,BT

This transformation is referred to as the spatial tile transformation. In principle, it is pos-
sible to enhance the discretization further, by imposing a minimum time spent in each grid
square, though this is not considered here. Consider a database containing N different tra-
jectories. The frequent sequential paths can be determined from these trajectories by using
a two-step approach:

1. Convert each of the N trajectories into a discrete sequence, using grid-based dis-
cretization.

2. Apply the sequential pattern mining algorithms discussed in Sect. 15.2 of Chap. 15
to discover frequent sequential patterns from the resulting data set.

By incorporating different types of constraints on the sequential pattern mining process,
such as time-gap constraints, it is also possible to apply these constraints on the trajectories.
One advantage of this transformation-based approach is that it can take advantage of the
power of all the different variations of sequential pattern mining. Sequential pattern mining
has a rich body of literature on constraint-based methods.

548 CHAPTER 16. MINING SPATIAL DATA

Another interesting aspect is that this formulation can be modified to address situations
in which the patterns of movements occur at the same period in time. The time period over
which the movement occurs is discretized into m periods denoted by 1 . . .m. For example,
the intervals could be [8AM, 9AM], [9AM, 10AM], [10AM, 11AM], and so on. Thus, for
each time-interval, the grid identifier is tagged with the relevant time-period identifier. A
time period identifier is tagged to a grid region if a minimum amount of time from that time
period range was spent in that region by the trajectory. This results in a set of patterns
defined on a new set of discrete symbols of the form < GridId >:< TimeId >. In the tra-
jectory of Fig. 16.8a, a possible sequence that appends the time period identifier is as follows:

EP : 1, EP : 2, DQ : 2, DQ : 3, DQ : 4, CQ : 5, BQ : 5, BR : 5, CS : 6, CS : 7, BT : 7

This transformation is referred to as the spatiotemporal tile transformation. Note that this
sequence is longer than that in Fig. 16.8b because the trajectory may spend more than one
interval in the same grid region. A set of N different sequences are extracted, corresponding
to the N different trajectories. The sequential pattern mining can be performed on this
new representation. Because of the addition of the time identifiers, the resulting patterns
will correspond to simultaneous movements in time. Thus, the sequential pattern mining
approach has significant flexibility in terms of either detecting patterns of similar shapes,
or patterns of simultaneous movements. Furthermore, because the sequential pattern min-
ing formulation does not require successive symbols in a frequent sequential pattern to be
contiguous in the original sequence, it can ignore noisy gaps in the underlying trajecto-
ries, while mining patterns. Furthermore, by using different constrained sequential pattern
mining formulations, different kinds of constrained trajectory patterns can be discovered.

One drawback of the approach is that the granularity level of the discretization may
affect the quality of the results. It is possible to address this issue by using a multigranu-
larity discretization of the spatial regions. A different approach for conversion to symbolic
representation is the use of spatial clustering on the different temporal snapshots of the
object positions. The cluster identifiers of each object over different snapshots may be used
to construct its sequence representation. The bibliographic notes contain pointers to several
algorithms for transformation and pattern discovery from trajectories. The broader idea of
many of these methods is to convert to a symbolic sequence representation for more effective
pattern mining.

16.3.3.2 Colocation Patterns

Colocation patterns are designed to discover social connections between the trajectories of
different individuals. The basic idea of colocation patterns is that individuals who frequently
appear at the same point at the same time are likely to be related to one another. Colo-
cation pattern mining attempts to discover patterns of individuals, rather than patterns of
spatial trajectory paths. Because of the complementary nature of this analysis, a vertical
representation of the sequence database is particularly convenient.

A similar grid discretization (as designed for the case of frequent trajectory patterns)
can be used for preprocessing. However, in this case, a somewhat different (vertical) repre-
sentation is used for the locations of the different individuals in the grid regions at different
times. For each grid region and time-interval pair, a list of person identifiers (or trajectory
identifiers) is determined. Thus, for the grid region EP and time interval 5, if the persons
3, 9, and 11 are present, then the corresponding set is constructed:

16.3. TRAJECTORY MINING 549

EP : 5 ⇒ {3, 9, 11}

Note that this is an unordered set, since it represents the individuals present in a particular
(space, time) pair. A similar set can be constructed over all the (space, time) pairs that are
populated with at least two individuals. This can be viewed as a vertical representation of
the sequence database.

Any frequent pattern mining algorithm, discussed in Chap. 4, can be applied to the
resulting database of sets. The frequent patterns correspond to the frequent sets of colocated
individuals. These individuals are often likely to be socially related individuals.

16.3.4 Trajectory Clustering

In the following, a detailed discussion of the different kinds of trajectory clustering algo-
rithms will be provided. Trajectory clustering algorithms are naturally related to trajectory
pattern mining because of the close relationship between the two problems. Trajectory
clustering methods are of two types.

1. The first type of methods use conventional clustering algorithms, with the use of a
distance function between trajectories. Once a distance function has been designed,
many different kinds of algorithms, such as k-medoids or graph-based methods, may
be used.

2. The second type of methods use data transformation and discretization to convert
trajectories into sequences of discrete symbols. Different types of transformations, such
as segment extraction or grid-based discretization, may be applied to the trajectories.
After the transformation, pattern mining algorithms are applied to the extracted
sequence of symbols.

In addition, a number of other ad hoc methods have also been designed for trajectory
clustering. This section will focus only on the systematic techniques. The bibliographic
notes contain pointers to the ad hoc methods.

16.3.4.1 Computing Similarity Between Trajectories

A key aspect of trajectory clustering is the ability to compute similarity between different
trajectories. At first sight, similarity function computation seems to be a daunting task
because of the spatial and temporal aspects of trajectory analysis. However, in practice,
similarity computation between trajectories is not very different from that of time series
data. As discussed at the beginning of Sect. 16.3, trajectory data is equivalent to multivariate
time series data. Several dynamic programming algorithms are discussed in Chap. 3 for
similarity computation in univariate time series data. These algorithms can be generalized to
the multivariate case. In the following, the extension of the dynamic time warping algorithm
to the multivariate case will be discussed. A similar approach can be used for other dynamic
programming methods. The reader is advised to revisit Sect. 3.4.1.3 of Chap. 3 on dynamic
time warping before reading further.

First, the discussion on univariate time series distances will be revisited briefly. Let
DTW (i, j) be the optimal distance between the first i and first j elements of two univariate
time series X = (x1 . . . xm) and Y = (y1 . . . yn) respectively. Then, the value of DTW (i, j)

550 CHAPTER 16. MINING SPATIAL DATA

is defined recursively as follows:

DTW (i, j) = distance(xi, yj) + min

⎧⎪⎨
⎪⎩
DTW (i, j − 1) repeat xi

DTW (i− 1, j) repeat yj
DTW (i− 1, j − 1) otherwise

(16.2)

In the case of a 2-dimensional trajectory, we have a multivariate time series for each trajec-
tory, corresponding to the two coordinates of each trajectory. Thus, the first trajectory has
two coordinates corresponding to X1 = (x11 . . . x1m) and X2 = (x21 . . . x2m). The second
trajectory has two coordinates, corresponding to Y 1 = (y11 . . . y1n) and Y 2 = (y21 . . . y2n).
Let Xi = (x1i, x2i) represent the 2-dimensional position of the first trajectory at the ith
timestamp, and let Yj = (y1j , y2j) represent the 2-dimensional position of the second trajec-
tory at the jth timestamp. Then, the only difference from the case of univariate time series
data is the substitution of the 1-dimensional distances in the recursion with 2-dimensional
distances. Therefore, the modified multidimensional DTW recursion MDTW (i, j) is as fol-
lows:

MDTW (i, j) = distance(Xi, Yj) + min

⎧⎪⎨
⎪⎩
MDTW (i, j − 1) repeat Xi

MDTW (i− 1, j) repeat Yj

MDTW (i− 1, j − 1) otherwise.
(16.3)

Note that the multidimensional DTW recursion is virtually identical to the univariate case,
except for the term distance(Xi, Yj) that is now a multidimensional distance between spa-
tial coordinates. For example, one might use the Euclidean distances. The simplicity of the
generalization is a result of the fact that time warping has little to do with the dimen-
sionality of the time series. All the dimensions in the time series are warped in exactly the
same way. Therefore, the 1-dimensional distance in the recursion can be substituted with
multidimensional distances. It should also be pointed out that this general principle applies
to most of the dynamic programming methods for computing distances between temporal
series and sequences.

16.3.4.2 Similarity-Based Clustering Methods

Many conventional clustering methods, such as k-medoids and graph-based methods, are
based on the similarity between data objects. Therefore, once a similarity function has been
defined, these methods can be used directly for virtually any data type. It should be pointed
out that these methods are very popular in different data domains, such as time series data
or discrete sequence data. It was shown in Chaps. 14 and 15, how these methods may be used
for time series and discrete sequence data, respectively. The approach used here is exactly
analogos to the description in these chapters, except that multivariate time series similarity
measures are used for computation in this case. The reader is referred to Chap. 6 for the
basic description of the k-medoids and graph-based methods, as applied to multidimensional
data. The main problem with similarity-based methods, is that they work best only when
the trajectory segments are relatively short. For longer trajectories, it becomes more difficult
to compute the similarity between pairs of objects because many portions of the trajectories
may be noisy. Therefore, the choice of similarity function becomes more important. Some of
the similarity functions discussed in Sect. 3.4.1 of Chap. 3, allow for gaps in the similarity
computation. However, the effectiveness of these methods for multivariate time series and
trajectories is highly data-specific. In general, these similarity functions are best used for
trajectories of shorter lengths.

16.3. TRAJECTORY MINING 551

16.3.4.3 Trajectory Clustering as a Sequence Clustering Problem

Trajectory clustering methods can be performed with the same grid-based discretization
methods that are used for frequent pattern mining in trajectories. A two-step approach
is used. The first step is to use grid-based discretization to convert the trajectory into a
1-dimensional discrete sequence. Once this transformation has been performed, any of the
sequence clustering methods discussed in Chap. 15 may be used. The overall clustering
approach may be described as follows:

1. Use grid-based discretization, as discussed in Sect. 16.3.3.1, to convert the N trajec-
tories to N discrete sequences.

2. Apply any of the sequence clustering methods of Sect. 15.3 in Chap. 15 to create
clusters from the sequences.

3. Map the sequence clusters back to trajectory clusters.

As discussed in Sect. 16.3.3.1, the grid-based sequences constructed in the first step can be
based on either the grid identifiers (spatial tile transformation) only, or on a combination
of grid-identifiers and time-interval identifiers (spatiotemporal tile transformation). In the
first case, the resulting clusters correspond to trajectories that are close together in space,
but not necessarily in time. In the second case, the trajectories in a cluster will to be close
together in space and occur at the same time. In other words, such clusters represent objects
that are moving together in time.

One advantage of the sequence clustering approach, over similarity-based methods,
is that many of the sequence clustering methods can ignore the irrelevant parts of the
sequences in the clustering process. This is because many sequence clustering methods,
such as subsequence-based clustering (Sect. 15.3.3 of Chap. 15), naturally allow for noisy
gaps in the trajectories during the clustering process. This is important because longer tra-
jectories often share significant segments in common, but may have gaps or regions where
they are not similar. The ability to account for such nonmatching regions is not quite as
effective with similarity function methods that compute distances between trajectories as a
whole.

16.3.5 Trajectory Outlier Detection

In this problem, it is assumed that N different trajectories are available, and it is desirable
to determine outlier trajectories, as those that differ significantly from the trends in the
underlying data. As with all data types, the problem of trajectory outlier detection is closely
related to that of trajectory clustering. In particular, both problems utilize the notion of
similarity between data objects. As in the case of data clustering, one can use either a
similarity-based approach, or a transformational approach to outlier detection.

16.3.5.1 Distance-Based Methods

The ability to design a distance function between trajectories provides a way to define out-
liers with the use of distance-based methods. In particular, the k-nearest neighbor method,
or any distance-based method can easily be generalized to trajectories, once the distance
function has been defined. For example, one may use the multidimensional time warping
distance function to compute the distance of a trajectory to the N − 1 other trajectories.
The kth nearest neighbor distance is reported as the outlier score. Other distance-based

552 CHAPTER 16. MINING SPATIAL DATA

methods such as LOF can also be extended to trajectory data because these methods are
based only on distance values, and are agnostic to the underlying data type. As in the case
of clustering, the major drawback of these methods is that it can be used effectively for
shorter trajectories, but not quite as effectively in the case of longer trajectories. This is
because longer trajectories will often have many noisy segments that are not truly indicative
of anomalous behavior, but are disruptive to the underlying distance function.

16.3.5.2 Sequence-Based Methods

The spatial and spatiotemporal tile transformation discussed at the beginning of
Sect. 16.3.3.1 can be used to transform trajectory outlier detection into sequence outlier
detection. The advantage of this approach is that many methods are available for sequence
outlier detection. As in the case of the other problems such as trajectory pattern mining
and clustering, the approach consists of two steps:

1. Convert each of the N trajectories to sequences using either spatial tile transformation
or spatiotemporal tile transformation, discussed at the beginning of Sect. 16.3.3.1.

2. Use any of the sequence outlier detection methods discussed in Sect. 15.4 of Chap. 15,
to determine the outlier sequences.

3. Map the sequence outliers onto trajectory outliers.

This approach is particularly rich in terms of the types of the outliers it can find, by varying
on the specific subroutines used in each of the aforementioned steps. Some examples of such
variations are as follows:

• In the first step of sequence transformation, either spatial or spatiotemporal tiles may
be used. When spatial tiles are used, the discovered outliers are based only on the
shape of the trajectory, and they are not based on the objects moving together. From
an application-centric perspective, consider the case where trajectories of taxis are
tracked by GPS, and it is desirable to determine taxis that take anomalous routes
relative to other taxis at any period of time. Such an application can be addressed
well with spatial tiles. Spatiotemporal tiles track online trends. For example, for a flock
of GPS-tagged animals, if a particular animal deviates from its flock, it is reported as
an outlier.

• The formulations for sequence outlier detection are particularly rich. For example,
sequence outlier detection allows the reporting of either position outliers or combina-
tion outliers. This is discussed in detail in Sect. 15.4 of Chap. 15. Position outliers
in the transformed sequences, map onto anomalous positions in the trajectories. For
example, a taxi cab making an unusual turn at a junction will be detected. On the
other hand, combination outliers will map onto unusual segments of trajectories.

Thus, the sequence-based transformation is particularly useful in being able to detect a
rich diversity of different types of outliers. It can determine outliers based on patterns of
movements either over all periods, or at a particular period. It can also discover small
segments of outliers in any portion of the trajectory.

16.3. TRAJECTORY MINING 553

16.3.6 Trajectory Classification

In this problem, it is assumed that a training data set of N labeled trajectories is provided.
These are then used to construct a training model for the trajectories. The unknown class
label of a test trajectory is determined with the use of this training model. Since classifica-
tion is a supervised version of the clustering problem, methods for trajectory classification
use similar methods to trajectory clustering. As in the case of clustering methods, either
distance-based methods, or sequence-based methods may be used.

16.3.6.1 Distance-Based Methods

Several classification methods, such as nearest neighbor methods and graph-based collective
classification methods, are dependent only on the notion of distances between data objects.
After the distances between data objects have been defined, these classification methods
are agnostic to the underlying data type.

The k-nearest neighbor method works as follows. The top-k nearest neighbors to a given
test instance are determined. The dominant class label is reported as the relevant one for
the test instance. Any of the multivariate extensions of time series distance functions, such
as multidimensional DTW, may used for the computation process.

In graph-based methods, a k-nearest neighbor graph is constructed on the data objects.
This is a semi-supervised method because the graph is constructed on a mixture of labeled
and unlabeled objects. The basic discussion of graph-based methods may be found in
Sect. 11.6.3 of Chap. 11. Each node corresponds to a trajectory. An undirected edge is
added from node i to node j if either j is among the k nearest neighbors of i or vice versa.
This results in a graph in which only a subset of the objects is labeled. The goal is to use the
labeled nodes to infer the labels of the unlabeled nodes in the network. This is the collective
classification problem that is discussed in detail in Sect. 19.4 of Chap. 19. When the labels
on the unlabeled nodes have been determined using collective classification methods, they
are mapped back to the original data objects. This approach is most effective when many
test instances are simultaneously available with the training instances.

16.3.6.2 Sequence-Based Methods

In sequence-based methods, the first step is to transform the trajectories into sequences
with the use of spatial or spatiotemporal tile-based methods. Once this transformation has
been performed, any of the sequence classification methods discussed in Chap. 15 may be
used. Therefore, the overall approach may be described as follows:

1. Convert each of theN trajectories to sequences using either the spatial tile transforma-
tion, or spatiotemporal tile transformation, discussed at the beginning of Sect. 16.3.3.1.

2. Use any of the sequence classification methods discussed in Sect. 15.6 of Chap. 15 to
determine the class labels of sequences.

3. Map the sequence class labels to trajectory class labels.

The spatial tile transformation and spatiotemporal tile transformation methods provide
different abilities in terms of incorporating different spatial and temporal features into the
classification process. When spatial tile transformations are used, the resulting classification
is not time sensitive, and trajectories from different periods can be modeled together on
the basis of their shape. On the other hand, when the spatiotemporal tile transformation is

554 CHAPTER 16. MINING SPATIAL DATA

used, the classification can only be performed on trajectories from the same approximate
time period. In other words, the training and test trajectories must be drawn from the same
period of time. In this case, the classification model is sensitive not only to the shape of the
trajectory but also to the precise times in which their motion may have occurred. In this
case, even if all the trajectories have exactly the same shape, the labels may be different
because of temporal differences in speed at various times. The precise choice of the model
depends on application-specific criteria.

16.4 Summary

Spatial data is common in a wide variety of applications, such as meteorological data,
trajectory analysis, and disease outbreak data. This data is almost always a contextual data
type, in which the data attributes are partitioned into behavioral attributes and contextual
attributes. The spatial attributes may either be contextual or behavioral. These different
types of data require different types of processing methods.

Contextual spatial attributes arise in the case of meteorological data where different
types of spatial attributes such as temperature or pressure are measured at different spatial
locations. Another example is the case of image data where the pixel values at different
spatial locations are used to infer the properties of an image. An important transformation
for shape-based spatial data is the centroid-sweep method that can transform a shape
into time series. Another important transformation is the spatial wavelet approach that
can transform spatial data into a multidimensional representation. These transformations
are useful for virtually all data mining problems, such as clustering, outlier detection, or
classification.

In trajectory data, the spatial attributes are behavioral, and the only contextual
attribute is time. Trajectory data can be viewed as multivariate time series data. Therefore,
time series distance functions can be generalized to trajectory data. This is useful in the
development of a variety of data mining methods that are dependent only on the design
of the distance function. Trajectory data can be transformed into sequence data with the
use of tile-based transformations. Tile-based transformations are very useful because they
allow the use of a wide variety of sequence mining methods for applications such as pattern
mining, clustering, outlier detection, and classification.

16.5 Bibliographic Notes

The problem of spatial data mining has been studied extensively in the context of geographic
data mining and knowledge discovery [388]. A detailed discussion of spatial databases may
be found in [461]. The problem of search and indexing, was one of the earliest applications
in the context of spatial data [443]. The centroid-sweep method for data mining of shapes
is discussed in [547]. A discussion of spatial colocation pattern discovery with nonspatial
behavioral attributes is found in [463]. This method has been used successfully for many
data mining problems, such as clustering, classification, and outlier detection.

The problem of outlier detection from spatial data is discussed in detail in [5]. This book
contains a dedicated chapter on outlier detection from spatial data. Numerous methods have
been designed in the literature for spatial and spatiotemporal outlier detection [145, 146,
147, 254, 287, 326, 369, 459, 460, 462]. The algorithm for unusual shape detection was
proposed in [510].

16.6. EXERCISES 555

The tile-based simplification for pattern mining from trajectories was proposed in [375].
Pattern mining in trajectory data is closely related to clustering. The problem of mining
periodic behaviors from trajectories is addressed in [352]. Moving object clusters have been
studied as Swarms [351], Flocks [86] and Convoys [290]. Among these, Swarms provide
the most relaxed definition, in which noisy gaps are allowed. In these noisy gap periods,
objects from the same cluster may not move together. An algorithm for maintaining real-
time communities from trajectories in social sensing applications was proposed in [429]. A
method for partitioning longer trajectories into smaller segments for shape-based clustering
was proposed in [338]. Anomaly monitoring from trajectories of moving object streams was
studied in [117]. The Top-Eye method, an algorithm for monitoring the top-k anomalies in
moving object trajectories, was proposed in [226]. The TRAOD algorithm, which discovers
shape-based trajectory outliers, was proposed in [337]. A method that uses region-based
and trajectory-based clustering for classification was proposed in [339].

16.6 Exercises

1. Discuss how to generalize the spatial wavelets to the case where there are n contextual
attributes.

2. Implement the algorithm to construct a multidimensional representation from spatial
data, with the use of wavelets.

3. Describe a method for converting shapes to a multidimensional representation.

4. Implement the algorithm for converting shapes to time series data.

5. Suppose that you had N different snapshots of sea surface temperature over successive
instants in time over a spatial grid. You want to identify contiguous regions over which
significant change has occurred between successive time instants. Describe an approach
to identify such regions and time instants with the use of spatial wavelets.

6. Suppose the snapshots of Exercise 5 were not from successive instants in time. How
would you identify spatial snapshots that were very different from the other snapshots
with the use of spatial wavelets? How would you identify specific regions that are very
different from the remaining data?

7. Suppose that you used the tile-based approach for finding frequent trajectory patterns.
Discuss how the different constraint-based variants of sequential pattern mining map
onto different constraint-based variants of sequential trajectory patterns.

8. Propose a snapshot-based clustering approach for converting trajectories to symbolic
sequences. Discuss the advantages and disadvantages with respect to the tile-based
approach.

9. Implement the different variations for converting trajectories to symbolic sequences
with the use of the tile-based technique for frequent trajectory pattern mining.

10. Discuss how to use wavelets to perform different data mining tasks on trajectories.

Chapter 17

Mining Graph Data

“Structure is more important than content in the
transmission of information.”—Abbie Hoffman

17.1 Introduction

Graphs are ubiquitous in a wide variety of application domains such as bioinformatics,
chemical, semi-structured, and biological data. Many important properties of graphs can
be related to their structure in these domains. Graph mining algorithms can, therefore, be
leveraged for analyzing various domain-specific properties of graphs. Most graphs, encoun-
tered in real applications, are one of the two types:

1. In applications such as chemical and biological data, a database of many small graphs
is available. Each node is associated with a label that may or may not be unique to
the node, depending on the application-specific scenario.

2. In applications such as the Web and social networks, a single large graph is available.
For example, the Web can be viewed as a very large graph, in which nodes correspond
to Web pages (labeled by their URLs) and edges correspond to hyperlinks between
nodes.

The nature of the applications for these two types of data are quite different. Web and social
network applications will be addressed in Chaps. 18 and 19, respectively. This chapter will
therefore focus on the first scenario, in which many small graphs are available. A graph
database may be formally defined as follows.

Definition 17.1.1 (Graph Database) A graph database D is a collection of n different
undirected graphs, G1 = (N1, A1) . . . Gn = (Nn, An), such that the set of nodes in the ith
graph is denoted by Ni, and the set of edges in the ith graph is denoted by Ai. Each node
p ∈ Ni is associated with a label denoted by l(p).

The labels associated with the nodes may be repeated within a single graph. For example,
when each graph Gi corresponds to a chemical compound, the label of the node is the

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 17 557
c© Springer International Publishing Switzerland 2015

558 CHAPTER 17. MINING GRAPH DATA

OHOH

N

H

C CH3

O

O

1

H
1

C

CC

2 1
1

HH
1

C

C

C H

2

21

1

1
H

1

C

N CC

H
2 1

1 1
1

H
1 1

H O H

21 1

(a) Acetaminophen (b) Graph representation

Figure 17.1: A chemical compound (Acetaminophen) and its associated graph representation

symbol denoting a chemical element. Because of the presence of multiple atoms of the same
element, such a graph will contain label repetitions. The repetition of labels within a single
graph leads to numerous challenges in graph matching and distance computation.

Graph data are encountered in many real applications. Some examples of key applica-
tions of graph data mining are as follows:

• Chemical and biological data can be expressed as graphs in which each node corre-
sponds to an atom and a bond between a pair of atoms is represented by an edge. The
edges may be weighted to reflect bond strength. An example of a chemical compound
and its corresponding graph are illustrated in Fig. 17.1. Figure 17.1a shows an illustra-
tion of the chemical acetaminophen, a well-known analgesic. The corresponding graph
representation is illustrated in Fig. 17.1b along with node labels and edge weights. In
many graph mining applications, unit edge weights are assumed as a simplification.

• XML data can be expressed as attributed graphs. The relationships between different
attributes of a structured record can be expressed as edges.

• Virtually any data type can be expressed as an entity-relationship graph. This provides
a different way of mining conventional database records when they are expressed in
the form of entity-relationship graphs.

Graph data are very powerful because of their ability to model arbitrary relationships
between objects. The flexibility in graph representation comes at the price of greater com-
putational complexity:

1. Graphs lack the “flat” structure of multidimensional or even contextual (e.g., time
series) data. The latter is much easier to analyze with conventional models.

2. The repetition of labels among nodes leads to problems of isomorphism in computing
similarity between graphs. This problem is NP-hard. This leads to computational
challenges in similarity computation and graph matching.

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 559

The second issue is of considerable importance, because both matching and distance com-
putation are fundamental subproblems in graph mining applications. For example, in a fre-
quent subgraph mining application, an important subproblem is that of subgraph matching.

This chapter is organized as follows. Section 17.2 addresses the problem of matching
and distance computation in graphs. Graph transformation methods for distance compu-
tation are discussed in Sect. 17.3. An important part of this section is the preprocessing
methodologies, such as topological descriptors and kernel methods, that are often used for
distance computation. Section 17.4 addresses the problem of pattern mining in graphs. The
problem of clustering graphs is addressed in Sect. 17.5. Graph classification is addressed in
Sect. 17.6. A summary is provided in Sect. 17.7.

17.2 Matching and Distance Computation in Graphs

The problems of matching and distance computation are closely related in the graph domain.
Two graphs are said to match when a one-to-one correspondence can be established between
the nodes of the two graphs, such that their labels match, and the edge presence between
corresponding nodes match. The distance between such a pair of graphs is zero. Therefore,
the problem of distance computation between a pair of graphs is at least as hard as that of
graph matching. Matching graphs are also said to be isomorphic.

It should be pointed out that the term “matching” is used in two distinct contexts for
graph mining, which can sometimes be confusing. For example, pairing up nodes in a single
graph with the use of edges is also referred to as matching. Throughout this chapter, unless
otherwise specified, our focus is not on the node matching problem, but the pairwise graph
matching problem. This problem is also referred to as that of graph isomorphism.

Definition 17.2.1 (Graph Matching and Isomorphism) Two graphs G1 = (N1, A1)
and G2 = (N2, A2) are isomorphic if and only if a one-to-one correspondence can be found
between the nodes of N1 and N2 satisfying the following properties:

1. For each pair of corresponding nodes i ∈ N1 and j ∈ N2, their labels are the same.

l(i) = l(j)

2. Let [i1, i2] be a node-pair in G1 and [j1, j2] be the corresponding node-pair in G2. Then
the edge (i1, i2) exists in G1 if and only if the edge (j2, j2) exists in G2.

The computational challenges in graph matching arise because of the repetition in node
labels. For example, consider two methane molecules, illustrated in Fig. 17.2. While the
unique carbon atom in the two molecules can be matched in exactly one way, the hydrogen
atoms can be matched up in 4! = 24 different ways. Two possible matchings are illustrated
in Figs. 17.2a and b, respectively. In general, greater the level of label repetition in each
graph is, larger the number of possible matchings will be. The number of possible matchings
between a pair of graphs increases exponentially with the size of the matched graphs. For a
pair of graphs containing n nodes each, the number of possible matchings can be as large as
n!. This makes the problem of matching a pair of graphs computationally very expensive.

Lemma 17.2.1 The problem of determining whether a matching exists between a pair of
graphs, is NP-hard.

560 CHAPTER 17. MINING GRAPH DATA

DASHED LINES INDICATE
CORRESPONDENCE BETWEEN NODES

H

H

H

H

C C

H

H

H

H

METHANE MOLECULE 1 METHANE MOLECULE 2

DASHED LINES INDICATE
CORRESPONDENCE BETWEEN NODES

H

H

H

H

C C

H

H

H

H

METHANE MOLECULE 1 METHANE MOLECULE 2

(a) (b)

Figure 17.2: Two possible matchings between a pair of graphs representing methane
molecules

The bibliographic notes contain pointers to the proof of NP-hardness. When the graphs
are very large, exact matches often do not exist. However, approximate matches may exist.
The level of approximation is quantified with the use of a distance function. Therefore,
distance function computation between graphs is a more general problem than that of
graph matching, and it is at least as difficult. This issue will be discussed in detail in the
next section.

Another related problem is that of subgraph matching. Unlike the problem of exact
graph matching, the query graph needs to be explicitly distinguished from the data graph
in this case.

Definition 17.2.2 (Node-Induced Subgraph) A node-induced subgraph of a graph G =
(N,A) is a graph Gs = (Ns, As) satisfying the following properties:

1. Ns ⊆ N

2. As = A ∩ (Ns ×Ns)

In other words, all the edges in the original graph G between nodes in the subset Ns ⊆ N
are included in the subgraph Gs.

A subgraph isomorphism can be defined in terms of the node-induced subgraphs. A query
graph Gq is a subgraph isomorphism of a data graph G, when it is an exact isomorphism
of a node-induced subgraph of G.

Definition 17.2.3 (Subgraph Matching and Isomorphism) A query graph Gq =
(Nq, Aq) is a subgraph isomorphism of the data graph G = (N,A) if and only if the fol-
lowing conditions are satisfied:

1. Each node in Nq should be matched to a unique node with the same label in N , but
each node in N may not necessarily be matched. For each node i ∈ Nq, there must
exist a unique matching node j ∈ N , such that their labels are the same.

l(i) = l(j)

2. Let [i1, i2] be a node-pair in Gq, and let [j1, j2] be the corresponding node-pair in G,
based on the matching discussed above. Then, the edge (i1, i2) exists in Gq if and only
if the edge (j1, j2) exists in G.

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 561

G1
DASHED LINES INDICATE

CORRESPONDENCE BETWEEN NODES

A

E

D A

G2

B B

C A A

G2 IS A SUBGRAPH
ISOMORPHISM OF GISOMORPHISM OF G1

G1
DASHED LINES INDICATE

CORRESPONDENCE BETWEEN NODES

A

E

D A

G2

B B

C A A

G2 IS A SUBGRAPH
ISOMORPHISM OF GISOMORPHISM OF G1

(a) (b)

Figure 17.3: Two possible subgraph isomorphisms between a pair of graphs

The definition of subgraph isomorphism in this section assumes that all edges of the node-
induced subgraph of the data graph are present in the query graph. In some applications,
such as frequent subgraph mining, a more general definition is used, in which any subset
of edges of the node-induced subgraph is also considered a subgraph isomorphism. The
more general case can be handled with minor changes to the algorithm in this section.
Note that the aforementioned definition allows the subgraph Gq (or G) to be disconnected.
However, for practical applications, one is usually interested only in connected subgraph
isomorphisms. Examples of two possible subgraph matchings between a pair of nodes are
illustrated in Fig. 17.3. The figure also illustrates that there are two different ways for one
graph to be a subgraph of the other. The problem of exact matching is a special case of
subgraph matching. Therefore, the problem of subgraph matching is NP-hard as well.

Lemma 17.2.2 The problem of subgraph matching is NP-hard.

Subgraph matching is often used as a subroutine in applications such as frequent pattern
mining. While the subgraph matching problem is a generalization of exact matching, the
problem can be generalized even further to that of finding the maximum common subgraph
(MCG) between a pair of graphs. This is because the MCG between two graphs is at most
equal to the smaller of the two graphs when it is a subgraph of the larger one. The MCG
or maximum common isomorphism between a pair of graphs is defined as follows.

Definition 17.2.4 (Maximum Common Subgraph) A MCG between a pair of graphs
G1 = (N1, A1) and G2 = (N2, A2) is a graph G0 = (N0, A0) that is a subgraph isomorphism
of both G1 and G2, and for which the size of the node set N0 is as large as possible.

Because the MCG problem is a generalization of the graph isomorphism problem, it is
NP-hard as well. In this section, algorithms for discovering subgraph isomorphisms and
maximum common subgraphs will be presented. Subsequently, the relationship of these
algorithms to that of distance computation between graphs will be discussed. Subgraph
isomorphism algorithms can be designed to determine either all the subgraph isomorphisms
between a query graph and a data graph, or a fast algorithm can be designed to determine
whether or not at least one isomorphism exists.

562 CHAPTER 17. MINING GRAPH DATA

17.2.1 Ullman’s Algorithm for Subgraph Isomorphism

Ullman’s algorithm is designed to determine all possible subgraph isomorphisms between a
query graph and a data graph. It can also be used for the decision problem of determining
whether or not a query graph is a subgraph isomorphism of a data graph by using an early
termination criterion. Interestingly, the majority of the later graph matching algorithms are
refinements of Ullman’s algorithm. Therefore, this section will first present a very simplified
version of Ullman’s algorithm without any refinements. Subsequently, the different variations
and refinements of this basic algorithm will be discussed in a separate subsection. Although
the definition of subgraph isomorphisms allows the query (or data) graph to be disconnected,
it is often practical and computationally expedient to focus on cases where the query and
data graph are connected. Typically, small changes to the algorithm can accommodate both
cases (see Exercise 14).

It will be assumed that the query graph is denoted by Gq = (Nq, Aq), and the data graph
is denoted by G = (N,A). The first step in Ullman’s algorithm is to match all possible pairs
of nodes across the two graphs so that each node in the pair has the same label as the
other. For each such matching pair, the algorithm expands it a node at a time with the use
of a recursive search procedure. Each recursive call expands the matching subgraphs in Gq

and G by one node. Therefore, one of the parameters of the recursive call is the current
matching set M of node-pairs. Each element of M is a pair of matching nodes between Gq

and G. Therefore, when a subgraph of m nodes has been matched between the two graphs,
the set M contains m matched node-pairs as follows:

M = {(iq1, i1), (i
q
2, i2), . . . (i

q
m, im)}

Here, it is assumed that the node iqr belongs to the query graph Gq and that the node ir
belongs to the data graph G. The value of the matching set parameter M is initialized
to the empty set at the top-level recursive call. The number of matched nodes in M is
exactly equal to the depth of the recursive call. The recursion backtracks when either the
subgraphs cannot be further matched or when Gq has been fully matched. In the latter
case, the matching set M is reported, and the recursion backtracks to the next higher
level to discover other matchings. In cases where it is not essential to determine all possible
matchings between the pair of graphs, it is also possible to terminate the algorithm at this
point. This particular exposition, however, assumes that all possible matchings need to be
determined.

A simplified version of Ullman’s algorithm is illustrated in Fig. 17.4. The algorithm is
structured as a recursive approach that explores the space of all possible matchings between
the two graphs. The input to the algorithm is the query graph Gq and the data graph G.
An additional parameter M of this recursive call is a set containing the current matching
node-pairs. While the set M is empty at the top-level call made by the analyst, this is not
the case at lower levels of the recursion. The cardinality of M is exactly equal to the depth
of the recursion. This is because one matching node-pair is added to M in each recursive
call. Strictly speaking, the recursive call returns all the subgraph isomorphisms under the
constraint that the matching corresponding to M must be respected.

The first step of the recursive procedure is to check whether the size of M is equal to
the number of nodes in the query graph Gq. If this is indeed the case, then the algorithm
reports M as a successful subgraph matching and backtracks out of the recursion to the
next higher level to explore other matchings. Otherwise, the algorithm tries to determine
further matching node-pairs to add to M. This is the candidate generation step. In this

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 563

Algorithm SubgraphMatch(Query Graph: Gq, Data Graph: G,
Current Partially Matched Node Pairs: M)

begin
if (|M| = |Nq|) then return successful match M;
(Case when |M| < |Nq|)
C = Set of all label matching node pairs from (Gq, G) not in M;
Prune C using heuristic methods; (Optional efficiency optimization)
for each pair (iq, i) ∈ C do

if M∪ {(iq, i)} is a valid partial matching
then SubgraphMatch(Gq, G,M∪ {(iq, i)});

endfor
end

Figure 17.4: The basic template of Ullman’s algorithm

step, all possible label matching node-pairs between Gq and G, which are not already in
M, are used to construct the candidate match set C.

Because the number of candidate match extensions can be large, it is often desirable to
prune them heuristically by using specific properties of the data graph and query graph.
Some examples of such heuristics will be presented later. After the pruned set C has been
generated, node-pairs (iq, i) ∈ C are selected one by one, and it is checked whether they
can be added to M to create a valid (partial) matching between the two graphs. For
M∪ {(iq, i)} to be a valid partial matching, if iq ∈ Nq is incident on any already matched
node jq in Gq, then i must also be incident on the matched counterpart j of jq in G, and
vice versa. If a valid partial matching exists, then the procedure is called recursively with
the partial matching M ∪ {(iq, i)}. After iterating through all such candidate extensions
with corresponding recursive calls, the algorithm backtracks to the next higher level of the
recursion.

It is not difficult to see that the procedure has exponential complexity in terms of its
input size, and it is especially sensitive to the query graph size. This high complexity is
because the depth of the recursion can be of the order of the query graph size, and the
number of recursive branches at each level is equal to the number of matching node-pairs.
Clearly, unless the number of candidate extensions is carefully controlled with more effective
candidate generation and pruning, the approach will be extremely slow.

17.2.1.1 Algorithm Variations and Refinements

Although the basic matching algorithm was originally proposed by Ullman, this template
has been used extensively by different matching algorithms. The different algorithms vary
from one another in terms of how the size of the candidate matched pairs is restricted
with careful pruning. The use of carefully selected candidate sets has a significant impact
on the efficiency of the algorithm. Most pruning methods rely on a number of natural
constraints that are always satisfied by two graphs in a subgraph isomorphism relationship.
Some common pruning rules are as follows:

1. Ullman’s algorithm: This algorithm uses a simple pruning rule. All node-pairs (iq, i)
are pruned from C in the pruning step if the degree of i is less than iq. This is because
the degree of every matching node in the query subgraph needs to be no larger than
the degree of its matching counterpart in the data graph.

564 CHAPTER 17. MINING GRAPH DATA

2. VF2 algorithm: In the VF2 algorithm, those candidates (iq, i) are pruned if iq is
not connected to already matched nodes in Gq (i.e., nodes of Gq included in M).
Subsequently, the pruning step also removes those node-pairs (iq, i) in which i is not
connected to the matched nodes in the data graph G. These pruning rules assume that
the query and data graphs are connected. The algorithm also compares the number
of neighbor nodes of each of i and iq that are connected to nodes in M but are not
included in M. The number of such nodes in the data graph must be no smaller than
the number of such nodes in the query graph. Finally, the number of neighbor nodes
of each of i and iq that are not directly connected to nodes in M are compared. The
number of such nodes in the data graph must be no smaller than the number of such
nodes in the query graph.

3. Sequencing optimizations: The effectiveness of the pruning steps is sensitive to the
order in which nodes are added to the matching set M. In general, nodes with rarer
labels in the query graph should be selected first in the exploration of different can-
didate pairs in C. Rarer labels can be matched in fewer ways across graphs. Early
exploration of rare labels leads to exploration of more relevant partial matches M at
the earlier levels of the recursion. This also helps the pruning effectiveness. Enhanced
versions of VF2 and QuickSI combine node sequencing and the aforementioned node
pruning steps.

The reader is referred to the bibliographic notes for details of these algorithms. The defi-
nition of subgraph isomorphism in this section assumes that all edges of the node-induced
subgraph of the data graph are present in the query graph. In some applications, such as
frequent subgraph mining, a more general definition is used, in which any subset of edges
of the node-induced subgraph is also considered a subgraph isomorphism. The more gen-
eral case can be solved with minor changes to the basic algorithm in which the criteria to
generate candidates and validate them are both relaxed appropriately.

17.2.2 Maximum Common Subgraph (MCG) Problem

The MCG problem is a generalization of the subgraph isomorphism problem. The MCG
between two graphs is at most equal to the smaller of the two, when one is a subgraph of
the other. The basic principles of subgraph isomorphism algorithms can be extended easily
to the MCG isomorphism problem. The following will discuss the extension of the Ullman
algorithm to the MCG problem. The main differences between these methods are in terms
of the pruning criteria and the fact that the maximum common subgraph is continuously
tracked over the course of the algorithm as the search space of subgraphs is explored.

The recursive exploration process of the MCG algorithm is identical to that of the
subgraph isomorphism algorithm. The algorithm is illustrated in Fig. 17.5. The two input
graphs are denoted by G1 and G2, respectively. As in the case of subgraph matching, the
current matching in the recursive exploration is denoted by the set M. For each matching
node-pair (i1, i2) ∈ M, it is assumed that i1 is drawn from G1, and i2 is drawn from G2.
Another input parameter to the algorithm is the current best (largest) matching set of
node-pairs Mbest. Both M and Mbest are initialized to null in the initial call made to the
recursive algorithm by the analyst. Strictly speaking, each recursive call determines the best
matching under the constraint that the pairs in M must be matched. This is the reason
that this parameter is set to null at the top-level recursive call. However, in lower level
calls, the value of M is not null.

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 565

Algorithm MCG(Graphs: G1, G2, Current Partially Matched Pairs: M,
Current Best Match: Mbest)

begin
C = Set of all label matching node pairs from (G1, G2) not in M;
Prune C using heuristic methods; (Optional efficiency optimization)
for each pair (i1, i2) ∈ C do

if M∪ {(i1, i2)} is a valid matching
then Mbest =MCG(G1, G2,M∪ {(i1, i2)},Mbest);

endfor
if (|M| > |Mbest|) then return(M) else return(Mbest);

end

Figure 17.5: Maximum common subgraph (MCG) algorithm

As in the case of the subgraph isomorphism algorithm, the candidate matching node-
pairs are explored recursively. The same steps of candidate extension and pruning are used
in the MCG algorithm, as in the case of the subgraph isomorphism problem. However,
some of the pruning steps used in the subgraph isomorphism algorithm, which are based
on subgraph assumptions, can no longer be used. For example, in the MCG algorithm, a
matching node-pair (i1, i2) in M no longer needs to satisfy the constraint that the degree of
a node in one graph is greater or less than that of its matching node in the other. Because
of the more limited pruning in the maximum common subgraph problem, it will explore a
larger search space. This is intuitively reasonable, because the maximum common subgraph
problem is a more general one than subgraph isomorphism. However, some optimizations
such as expanding only to connected nodes, and sequencing optimizations such as processing
rare labels earlier, can still be used.

The largest common subgraph found so far is tracked in Mbest. At the end of the
procedure, the largest matching subgraph found so far is returned by the algorithm. It is
also relatively easy to modify this algorithm to determine all possible MCGs. The main
difference is that all the current MCGs can be dynamically tracked instead of tracking a
single MCG.

17.2.3 Graph Matching Methods for Distance Computation

Graph matching methods are closely related to distance computation between graphs. This
is because pairs of graphs that share large subgraphs in common are likely to be more
similar. A second way to compute distances between graphs is by using the edit distance.
The edit distance in graphs is analogous to the notion of the edit distance in strings. Both
these methods will be discussed in this section.

17.2.3.1 MCG-based Distances

When two graphs share a large subgraph in common, it is indicative of similarity. There are
several ways of transforming the MCG size into a distance value. Some of these distance
definitions have also been demonstrated to be metrics because they are nonnegative, sym-
metric, and satisfy the triangle inequality. Let the MCG of graphs G1 and G2 be denoted
by MCS(G1, G2) with a size of |MCS(G1, G2)|. Let the sizes of the graphs G1 and G2

566 CHAPTER 17. MINING GRAPH DATA

be denoted by |G1| and |G2|, respectively. The various distance measures are defined as a
function of these quantities.

1. Unnormalized non-matching measure: The unnormalized non-matching distance mea-
sure U(G1, G2) between two graphs is defined as follows:

U(G1, G2) = |G1|+ |G2| − 2 · |MCS(G1, G2)| (17.1)

This is equal to the number of non-matching nodes between the two graphs because
it subtracts out the number of matching nodes |MCS(G1, G2)| from each of |G1|
and |G2| and then adds them up. This measure is unnormalized because the value of
the distance depends on the raw size of the underlying graphs. This is not desirable
because it is more difficult to compare distances between pairs of graphs of varying
size. This measure is more effective when the different graphs in the collection are of
approximately similar size.

2. Union-normalized distance: The distance measure lies in the range of (0, 1), and is
also shown to be a metric. The union-normalized measure UDist(G1, G2) is defined
as follows:

UDist(G1, G2) = 1− |MCS(G1, G2)|
|G1|+ |G2| − |MCS(G1, G2)|

(17.2)

This measure is referred to as the union-normalized distance because the denominator
contains the number of nodes in the union of the two graphs. A different way of
understanding this measure is that it normalizes the number of non-matching nodes
U(G1, G2) between the two graphs (unnormalized measure) with the number of nodes
in the union of the two graphs.

UDist(G1, G2) =
Non-matching nodes between G1 and G2

Union size of G1 and G2

One advantage of this measure is that it is intuitively easier to interpret. Two perfectly
matching graphs will have a distance of 0 from one another, and two perfectly non-
matching graphs will have a distance of 1.

3. Max-normalized distance: This distance measure also lies in the range (0, 1). The
max-normalized distance MDist(G1, G2) between two graphs G1 and G2 is defined as
follows:

MDist(G1, G2) = 1− |MCS(G1, G2)|
max{|G1|, |G2|}

(17.3)

The main difference from the union-normalized distance is that the denominator is
normalized by the maximum size of the two graphs. This distance measure is a met-
ric because it satisfies the triangle inequality. The measure is also relatively easy to
interpret. Two perfectly matching graphs will have a distance of 0 from one another,
and two perfectly non-matching graphs will have a distance of 1.

These distance measures can be computed effectively only for small graphs. For larger
graphs, it becomes computationally too expensive to evaluate these measures because of
the need to determine the maximum common subgraph between the two graphs.

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 567

SOURCE GRAPH

DESTINATION GRAPH

NODE

DELETION

LABEL

SUBSTITUTION

B

B B

C
B

B B

B

B B
DELETION SUBSTITUTION

G G

B B

A

B B

A C

NODE
DELETION

EDGE
DELETION

G1
G2

EDGE

INSERTION

B

B B

C
B

B B

C

Figure 17.6: Example of two possible edits paths between graphs G1 and G2

17.2.3.2 Graph Edit Distance

The graph edit distance is analogous to the string edit distance, discussed in Chap. 3.
The main difference is that the edit operations are specific to the graph domain. The edit
distances can be applied to the nodes, the edges, or the labels. In the context of graphs,
the admissible operations include (a) the insertion of nodes, (b) the deletion of nodes, (c)
the label-substitution of nodes, (d) the insertion of edges, and (e) the deletion of edges.
Note that the deletion of a node includes automatic deletion of all its incident edges. Each
edit operation has an edit cost associated with it that is defined in an application-specific
manner. In fact, the problem of learning edit costs is a challenging issue in its own right.
For example, one way of learning edit costs is to use supervised distance function learning
methods discussed in Chap. 3. The bibliographic notes contain pointers to some of these
algorithms.

An example of two possible edit paths between graphs G1 and G2 is illustrated in
Fig. 17.6. Note that the two paths will have different costs, depending on the costs of the
constituent operations. For example, if the cost of label-substitution is very high compared
to that of edge insertions and deletions, it may be more effective to use the second (lower)
path in Fig. 17.6. For large and complex pairs of graphs, an exponential number of possible
edit paths may exist. The edit distance Edit(G1, G2) between two graphs is equal to the
minimum cost of transforming graph G1 to G2 with a series of edit operations.

Definition 17.2.5 (Graph Edit Distance) The graph edit distance Edit(G1, G2) is the
minimum cost of the edit operations to be applied to graph G1 in order to transform it to
graph G2.

Depending on the costs of the different operations, the edit distance is not necessarily
symmetric. In other words, Edit(G1, G2) can be different from Edit(G2, G1). Interestingly,
the edit distance is closely related to the problem of determining MCGs. In fact, for some
special choices of costs, the edit distance can be shown to be equivalent to distance measures
based on the maximum common subgraph. This implies that the edit-distance computation
for graphs is NP-hard as well. The edit distance can be viewed as the cost of an error-
tolerant graph isomorphism, where the “errors” are quantified in terms of the cost of edit
operations. As discussed in Chap. 3, the edit-distance computation for strings and sequences
can be solved polynomially using dynamic programming. The case of graphs is more difficult
because it belongs to the class of NP-hard problems.

568 CHAPTER 17. MINING GRAPH DATA

The close relationship between edit-distance computation and the MCG problem is
reflected in the similar structure of their corresponding algorithms. As in the case of the
maximum common subgraph problem, a recursive tree-search procedure can be used to
compute the edit distance. In the following, the basic procedure for computing the edit
distance will be described. The bibliographic notes contain pointers to various enhancements
of this procedure.

An interesting property of the edit-distance is that it can be computed by exploring
only those edit sequences in which any and all node insertion operations (together with
their incident edge insertions) are performed at the end of the edit sequence. Therefore, the
edit-distance algorithm maintains a series of edits E that are the operations to be applied
to graph G1 to transform it into a subgraph isomorphism G′

1 of the graph G2. By trivially
adding the unmatched nodes of G2 to G′

1 and corresponding incident edges as the final step,
it is possible to create G2. Therefore, the initial part of sequence E , without the last step,
does not contain any node insertions at all. In other words, the initial part of sequence E
may contain node deletions, node label-substitutions, edge additions, and edge deletions.
An example of such an edit sequence is as follows:

E = Delete(i1), Insert(i2, i5), Label-Substitute(i4, A ⇒ C), Delete(i2, i6)

This edit sequence illustrates the deletion of a node, followed by addition of the new edge
(i2, i5). The label of node i4 is substituted from A to C. Then, the edge (i2, i6) is deleted.
The total cost of an edit sequence E from G1 to a subgraph isomorphism G′

1 of G2 is equal
to the sum of the edit costs of all the operations in E , together with the cost of the node
insertions and incident edge insertions that need to be performed on G′

1 to create the final
graph G2.

The correctness of such an approach relies on the fact that it is always possible to arrange
the optimal edit path sequence, so that the insertion of the nodes and their incident edges
is performed after all other edge operations, node deletions and label-substitutions that
transform G1 to a subgraph isomorphism of G2. The proof of this property follows from
the fact that any optimal edit sequence can be reordered to push the insertion of nodes
(and their incident edges) to the end, as long as an inserted node is not associated with
any other edit operations (node or incident edge deletions, or label-substitutions). It is also
easy to show that any edit path in which newly added nodes or edges are deleted will be
suboptimal. Furthermore, an inserted node never needs to be label-substituted in an optimal
path because the correct label can be set at the time of node insertion.

The overall recursive procedure is illustrated in Fig. 17.7. The inputs to the algorithm are
the source and target graphs G1 and G2, respectively. In addition, the current edit sequence
E being examined for further extension, and the best (lowest cost) edit sequence Ebest found
so far, are among the input parameters to the algorithm. These input parameters are useful
for passing data between recursive calls. The value of E is initialized to null in the top-level
call. While the value of E is null at the beginning of the algorithm, new edits are appended
to it in each recursive call. Further recursive calls are executed with this extended sequence
as the input parameter. The value of the parameter Ebest at the top-level call is set to a
trivial sequence of edit operations in which all nodes of G1 are deleted and then all nodes
and edges of G2 are added.

The recursive algorithm first discovers the sequence of edits E that transforms the graph
G1 to a subgraph isomorphism G′

1 of G2. After this phase, the trivial sequence of node/edge
insertion edits that convertG′

1 toG2 is padded at the end of E . This step is shown in Fig. 17.7
just before the return condition in the recursive call. Because of this final padding step, the

17.2. MATCHING AND DISTANCE COMPUTATION IN GRAPHS 569

Algorithm EditDistance(Graphs: G1, G2, Current Partial Edit Sequence: E ,
Best Known Edit Sequence: Ebest)

begin
if (G1 is subgraph isomorphism of G2) then begin
Add insertion edits to E that convert G1 to G2;
return(E);

end;
C = Set of all possible edits to G1 excluding node-insertions;
Prune C using heuristic methods; (Optional efficiency optimization)
for each edit operation e ∈ C do
begin
Apply e to G1 to create G′

1;
Append e to E to create E ′;
Ecurrent = EditDistance(G′

1, G2, E ′, Ebest);
if (Cost(Ecurrent) < Cost(Ebest)) then Ebest = Ecurrent;

endfor
return(Ebest);

end

Figure 17.7: Graph edit distance algorithm

cost of these trivial edits is always included in the cost of the edit sequence E , which is
denoted by Cost(E).

The overall structure of the algorithm is similar to that of the MCG algorithm of
Fig. 17.5. In each recursive call, it is first determined if G1 is a subgraph isomorphism
of G2. If so, the algorithm immediately returns the current set of edits E after the incor-
poration of trivial node or edge insertions that can transform G1 to G2. If G1 is not a
subgraph isomorphism of G2, then the algorithm proceeds to extend the partial edit path
E . A set of candidate edits C is determined, which when applied to G1 might reduce the
distance to G2. In practice, these candidate edits C are determined heuristically because
the problem of knowing the precise impact of an edit on the distance is almost as difficult
as that of computing the edit distance. The simplest way of choosing the candidate edits
is to consider all possible unit edits excluding node insertions. These candidate edits might
be node deletions, label-substitutions and edge operations (both insertions and deletions).
For a graph with n nodes, the total number of node-based candidate operations is O(n),
and the number of edge-based candidate operations is O(n2). It is possible to heuristically
prune many of these candidate edits if it can be immediately determined that such edits
can never be part of an optimal edit path. In fact, some of the pruning steps are essential
to ensure finite termination of the algorithm. Some key pruning steps are as follows:

1. An edge insertion cannot be appended to the current partial edit sequence E , if an
edge deletion operation between the same pair of nodes already exists in the current
partial edit path E . Similarly, an edge which was inserted earlier cannot be deleted.
An optimal edit path can never include such pairs of edits with zero net effect. This
pruning step is necessary to ensure finite termination.

2. The label of a node cannot be substituted, if the label-substitution of that node exists
in the current partial edit path E . Repetitive label-substitutions of the same node are
obviously suboptimal.

570 CHAPTER 17. MINING GRAPH DATA

3. An edge can be inserted between a pair of nodes in G1, only if at least one edge exists
in G2 between two nodes with the same labels.

4. A candidate edit should not be considered, if adding it to E would immediately increase
the cost of E beyond that of Ebest.

5. Many other sequencing optimizations are possible for prioritizing between candidate
edits. For example, all node deletions can be performed before all label-substitutions.
It can be shown that the optimal edit sequence can always be arranged in this way.
Similarly, label-substitutions which change the overall distribution of labels closer
to the target graph may be considered first. In general, it is possible to associate a
“goodness-function” with an edit, which heuristically quantifies its likelihood of finding
a good edit path, when included in E . Finding good edit paths early will ensure better
pruning performance according to the aforementioned criterion (4).

The main difference among various recursive search algorithms is to use different heuristics
for candidate ordering and pruning. Readers are referred to the bibliographic notes at the
end of this chapter for pointers to some of these methods. After the pruned candidate
edits have been determined, each of these is applied to G1 to create G′

1. The procedure is
recursively called with the pair (G′

1, G2), and an augmented edit sequence E ′. This procedure
returns the best edit sequence Ecurrent which has a prefix of E ′. If the cost of Ecurrent is
better than Ebest (including trivial post-processing insertion edits for full matching), then
Ebest is updated to Ecurrent. At the end of the procedure, Ebest is returned.

The procedure is guaranteed to terminate because repetitions in node label-substitutions
and edge deletions are avoided in E by the pruning steps. Furthermore, the number of nodes
in the edited graph is monotonically non-increasing as more edits are appended to E . This
is because E does not contain node insertions except at the end of the recursion. For a
graph with n nodes, there are at most

(
n
2

)
non-repeating edge additions and deletions and

O(n) node deletions and label-substitutions that can be performed. Therefore, the recursion
has a finite depth of O(n2) that is also equal to the maximum length of E . This approach
t has exponential complexity in the worst case. Edit distances are generally expensive to
compute, unless the underlying graphs are small.

17.3 Transformation-Based Distance Computation

The main problem with the distance measures of the previous section is that they are com-
putationally impractical for larger graphs. A number of heuristic and kernel-based methods
are used to transform the graphs into a space in which distance computations are more
efficient. Interestingly, some of these methods are also qualitatively more effective because
of their ability to focus on the relevant portions of the graphs.

17.3.1 Frequent Substructure-Based Transformation and Distance
Computation

The intuition underlying this approach is that frequent graph patterns encode key properties
of the graph. This is true of many applications. For example, the presence of a benzene ring
(see Fig. 17.1) in a chemical compound will typically result in specific properties. Therefore,
the properties of a graph can often be described by the presence of specific families of
structures in it. This intuition suggests that a meaningful way of semantically describing

17.3. TRANSFORMATION-BASED DISTANCE COMPUTATION 571

the graph is in terms of its family of frequent substructures. Therefore, a transformation
approach is used in which a text-like vector-space representation is created from each graph.
The steps are as follows:

1. Apply frequent subgraph mining methods discussed in Sect. 17.4 to discover frequent
subgraph patterns in the underlying graphs. This results in a “lexicon” in terms of
which the graphs are represented. Unfortunately, the size of this lexicon is rather large,
and many subgraphs may be redundant because of similarity to one another.

2. Select a subset of subgraphs from the subgraphs found in the first step to reduce the
overlap among the frequent subgraph patterns. Different algorithms may vary in this
step by using only frequent maximal subgraphs, or selecting a subset of graphs that are
sufficiently nonoverlapping with one another. Create a new feature fi for each frequent
subgraph Si that is finally selected. Let d be the total number of frequent subgraphs
(features). This is the lexicon size in terms of which a text-like representation will be
constructed.

3. For each graph Gi, create a vector-space representation in terms of the features
f1 . . . fd. Each graph contains the features, corresponding to the subgraphs that it
contains. The frequency of each feature is the number of occurrences of the corre-
sponding subgraph in the graph Gi. It is also possible to use a binary representation
by only considering presence or absence of subgraphs, rather than frequency of pres-
ence. The tf-idf normalization may be used on the vector-space representation, as
discussed in Chap. 13.

After the transformation has been performed, any of the text similarity functions can be
used to compute distances between graph objects. One advantage of using this approach
is that it can be paired up with a conventional text index, such as the inverted index, for
efficient retrieval. The bibliographic notes contain pointers to some of these methods.

This broader approach can also be used for feature transformation. Therefore, any data
mining algorithm from the text domain can be applied to graphs using this approach.
Later, it will be discussed how this transformation approach can be used in a more direct
way by graph mining algorithms such as clustering. The main disadvantage of this approach
is that subgraph isomorphism is an intermediate step in frequent substructure discovery.
Therefore, the approach has exponential complexity in the worst case. Nevertheless, many
fast approximations are often used to provide more efficient results without a significant
loss in accuracy.

17.3.2 Topological Descriptors

Topological descriptors convert structural graphs to multidimensional data by using quanti-
tative measures of important structural characteristics as dimensions. After the conversion
has been performed, multidimensional data mining algorithms can be used on the trans-
formed representation. This approach enables the use of a wide variety of multidimensional
data mining algorithms in graph-based applications. The drawback of the approach is that
the structural information is lost. Nevertheless, topological descriptors have been shown
to retain important properties of graphs in the chemical domain, and are therefore used
quite frequently. In general, the utility of topological descriptors in graph mining is highly
domain specific. It should be pointed out that topological descriptors share a number of
conceptual similarities with the frequent subgraph approach in the previous section. The

572 CHAPTER 17. MINING GRAPH DATA

Figure 17.8: The Hosoya index for a clique of four nodes

main difference is that carefully chosen topological parameters are used to define the new
feature space instead of frequent subgraphs.

Most topological descriptors are graph specific, whereas a few are node-specific. The
vector of node-specific descriptors can sometimes describe the graph quite well. Node specific
descriptors can also be used for enriching the labels of the nodes. Some common examples
of topological descriptors are as follows:

1. Morgan index: This is a node-specific index that is equal to the kth order degree of a
node. In other words, the descriptor is equal to the number of nodes reachable from
the node within a distance of k. This is one of the few descriptors that describes nodes,
rather than the complete graph. The node-specific descriptors can also be converted
to a graph-specific descriptor by using the frequency histogram of the Morgan index
over different nodes.

2. Wiener index: The Wiener index is equal to the sum of the pairwise shortest path
distances between all pairs of nodes. It is therefore required to compute the all-pairs
shortest path distance between different pairs of nodes.

W (G) =
∑
i,j∈G

d(i, j) (17.4)

The Wiener index has known relationships with the chemical properties of com-
pounds. The motivating reason for this index was the fact that it was known to be
closely correlated with the boiling points of alkane molecules [511]. Later, the rela-
tionship was also shown for other properties of some families of molecules, such as
their density, surface tension, viscosity, and van der Waal surface area. Subsequently,
the index has also been used for applications beyond the chemical domain.

3. Hosoya index: The Hosoya index is equal to the number of valid pairwise node match-
ings in the graph. Note that the word “matching” refers to node–node matching within
the same graph, rather than graph–graph matching. The matchings do not need to be
maximal matchings, and even the empty matching is counted as one of the possibili-
ties. The determination of the Hosoya index is #P-complete because an exponential
number of possible matchings may exist in a graph, especially when it is dense. For
example, as illustrated in Fig. 17.8, the Hosoya index for a complete graph (clique) of
only four nodes is 10. The Hosoya index is also referred to as the Z-index.

4. Estrada index: This index is particularly useful in chemical applications for measuring
the degree of protein folding. If λ1 . . . λn are the eigenvalues of the adjacency matrix
of graph G, then the Estrada index E(G) is defined as follows:

E(G) =
n∑

i=1

eλi (17.5)

17.3. TRANSFORMATION-BASED DISTANCE COMPUTATION 573

5. Circuit rank: The circuit rank C(G) is equal to the minimum number of edges that
need to be removed from a graph in order to remove all cycles. For a graph with m
edges, n nodes, and k connected components, this number is equal to (m − n + k).
The circuit rank is also referred to as the cyclomatic number. The cyclomatic number
provides insights into the connectivity level of the graph.

6. Randic index: The Randic index is equal to the pairwise sum of bond contributions.
If νi is the degree of vertex i, then the Randic index R(G) is defined as follows:

R(G) =
∑
i,j∈G

1/
√
νi · νj (17.6)

The Randic index is also known as the molecular connectivity index. This index is
often used in the context of larger organic chemical compounds in order to evaluate
their connectivity. The Randic index can be combined with the circuit rank C(G) to
yield the Balaban index B(G):

B(G) =
m ·R(G)
C(G) + 1

(17.7)

Here, m is the number of edges in the network.

Most of these indices have been used quite frequently in the chemical domain because of
their ability to capture different properties of chemical compounds.

17.3.3 Kernel-Based Transformations and Computation

Kernel-based methods can be used for faster similarity computation than is possible with
methods such as MCG-based or edit-based measures. Furthermore, these similarity compu-
tation methods can be used directly with support vector machine (SVM) classifiers. This is
one of the reasons that kernel methods are very popular in graph classification.

Several kernels are used frequently in the context of graph mining. The following contains
a discussion of the more common ones. The kernel similarity K(Gi, Gj) between a pair of
graphs Gi and Gj is the dot product of the two graphs after hypothetically transforming
them to a new space, defined by the function Φ(·).

K(Gi, Gj) = Φ(Gi) · Φ(Gj) (17.8)

In practice, the value of Φ(·) is not defined directly. Rather, it is defined indirectly in
terms of the kernel similarity function K(·, ·). There are various ways of defining the kernel
similarity.

17.3.3.1 Random Walk Kernels

In random walk kernels, the idea is to compare the label sequences induced by random walks
in the two graphs. Intuitively, two graphs are similar if many sequences of labels created by
random walks between pairs of nodes are similar as well. The main computational challenge
is that there are an exponential number of possible random walks between pairs of nodes.
Therefore, the first step is to defined a primitive kernel function k(s1, s2) between a pair of
node sequences s1 (from G1) and s2 (from G2). The simplest kernel is the identity kernel:

k(s1, s2) = I(s1 = s2) (17.9)

574 CHAPTER 17. MINING GRAPH DATA

A
1

+
B B

PRODUCT

2 3 A B

(1, 2I) (2, 1I)

+ PRODUCT
GRAPH

A B

(3I) (3 I)

B
1I

(1, 3I) (3, 1I)
3IAA2I

Figure 17.9: Example of the product graph

Here, I(·) is the indicator function that takes the value of 1 when the two sequences are the
same and 0 otherwise. Then, the overall kernel similarity K(G1, G2) is defined as the sum
of the probabilities of all the primitive sequence kernels over all possible walks:

K(G1, G2) =
∑
s1,s2

p(s1|G1) · p(s2|G2) · k(s1, s2) (17.10)

Here, p(si|Gi) is the probability of the random walk sequence si in the graph Gi. Note that
this kernel similarity value will be higher when the same label sequences are used by the two
graphs. A key challenge is to compute these probabilities because there are an exponential
number of walks of a specific length, and the length of a walk may be any value in the range
(1,∞).

The random walk kernel is computed using the notion of a product graph GX between
G1 and G2. The product graphs are constructed by defining a vertex [u1, u2] between each
pair of label matching vertices u1 and u2 in the graphs G1 and G2, respectively. An edge is
added between a pair of vertices [u1, u2] and [v1, v2] in the product graph GX if and only an
edge exists between the corresponding nodes in both the individual graphs G1 and G2. In
other words, the edge (u1, v1) must exist in G1 and the edge (u2, v2) must exist in G2. An
example of a product graph is illustrated in Fig. 17.9. Note that each walk in the product
graph corresponds to a pair of label-matching sequence of vertices in the two graphs G1 and
G2. Then, if A is the binary adjacency matrix of the product graph, then the entries of Ak

provide the number of walks of length k between the different pairs of vertices. Therefore,
the total weighted number of walks may be computed as follows:

K(G1, G2) =
∑
i,j

∞∑
k=1

λk[Ak]ij = eT (I − λA)−1e (17.11)

Here, e is an |GX |-dimensional column vector of 1s, and λ ∈ (0, 1) is a discount factor. The
discount factor λ should always be smaller than the inverse of the largest eigenvalue of A to
ensure convergence of the infinite summation. Another variant of the random walk kernel
is as follows:

K(G1, G2) =
∑
i,j

∞∑
k=1

λk

k!
[Ak]ij = eT exp(λA)e (17.12)

When the graphs in a collection are widely varying in size, the kernel functions of Eqs. 17.11
and 17.12 should be further normalized by dividing with |G1| · |G2|. Alternatively, in some

17.4. FREQUENT SUBSTRUCTURE MINING IN GRAPHS 575

probabilistic versions of the random walk kernel, the vectors eT and e are replaced with
starting and stopping probabilities of the random walk over various nodes in the product
graph. This computation is quite expensive, and may require as much as O(n6) time.

17.3.3.2 Shortest-Path Kernels

In the shortest-path kernel, a primitive kernel ks(i1, j1, i2, i2) is defined on node-pairs
[i1, j1] ∈ G1 and [i2, j2] ∈ G2. There are several ways of defining the kernel function
ks(i1, i2, j1, j2). A simple way of defining the kernel value is to set it to 1 when the dis-
tance d(i1, i2) = d(j1, j2), and 0, otherwise.

Then, the overall kernel similarity is equal to the sum of all primitive kernels over
different quadruplets of nodes:

K(G1, G2) =
∑

i1,i2,j1,j2

ks(i1, i2, j1, j2) (17.13)

The shortest-path kernel may be computed by applying the all-pairs shortest-path algorithm
on each of the graphs. It can be shown that the complexity of the kernel computation is
O(n4). Although this is still quite expensive, it may be practical for small graphs, such as
chemical compounds.

17.4 Frequent Substructure Mining in Graphs

Frequent subgraph mining is a fundamental building block for graph mining algorithms.
Many of the clustering, classification, and similarity search techniques use frequent sub-
structure mining as an intermediate step. This is because frequent substructures encode
important properties of graphs in many application domains. For example, consider the
series of phenolic acids illustrated in Fig. 17.10. These represent a family of organic com-
pounds with similar chemical properties. Many complex variations of this family act as
signaling molecules and agents of defense in plants. The properties of phenolic acids are a
direct result of the presence of two frequent substructures, corresponding to the carboxyl
group and phenol group, respectively. These groups are illustrated in Fig. 17.10 as well. The
relevance of such substructural properties is not restricted to the chemical domain. This is
the reason that frequent substructures are often used in the intermediate stages of many
graph mining applications such as clustering and classification.

The definition of a frequent subgraph is identical to the case of association pattern
mining, except that a subgraph relationship is used to count the support rather than a
subset relationship. Many well-known frequent substructure mining algorithms are based
on the enumeration tree principle discussed in Chap. 4. The simplest of these methods is
based on the Apriori algorithm. This algorithm is discussed in detail in Fig. 4.2 of Chap. 4.
The Apriori algorithm uses joins to create candidate patterns of size (k + 1) from frequent
patterns of size k. However, because of the greater complexity of graph-structured data, the
join between a pair of graphs may not result in a unique solution. For example, candidate
frequent patterns can be generated by either node extensions or edge extensions. Thus, the
main difference between these two variations is in terms of how frequent substructures of size
k are defined and joined together to create candidate structures of size (k + 1). The “size”
of a subgraph may refer to either the number of nodes in it, or the number of edges in it
depending on whether node extensions or edge extensions are used. Therefore, the following
will describe the Apriori-based algorithm in a general way without specifically discussing

576 CHAPTER 17. MINING GRAPH DATA

HO HO
HO

SALICYLIC ACID 3 HYDROXYBENZOIC ACID 4 HYDROXYBENZOIC ACID

DATABASE OF PHENOLIC ACIDS

HO

CARBOXYL GROUP PHENOL GROUP

FREQUENT SUBSTRUCTURES OF PHENOLIC ACIDS

Figure 17.10: Examples of frequent substructures in a database of phenolic acids

either node extensions or edge extensions. Subsequently, the precise changes required to
enable these two specific variations will be discussed.

The overall algorithm for frequent subgraph mining is illustrated in Fig. 17.11. The
input to the algorithm is the graph database G = {G1 . . . Gn} and a minimum support value
minsup. The basic algorithm structure is similar to that of the Apriori algorithm, discussed
in Fig. 4.2 of Chap. 4. A levelwise algorithm is used, in which candidate subgraphs Ck+1 of
size (k + 1) are generated by using joins on graph pairs from the set of frequent subgraphs
Fk of size k. As discussed earlier, the size of a subgraph may refer to either its nodes or
edges, depending on the specific algorithm used. The two graphs need to be matching in
a subgraph of size (k − 1) for a join to be successfully performed. The resulting candidate
subgraph will be of size (k+1). Therefore, one of the important steps of join processing, is
determining whether two graphs share a subgraph of size (k−1) in common. The matching
algorithms discussed in Sect. 17.2 can be used for this purpose. In some applications, where
node labels are distinct and isomorphism is not an issue, this step can be performed very
efficiently. On the other hand, for large graphs that have many repeating node labels, this
step is slow because of isomorphism.

After the pairs of matching graphs have been identified, joins are performed on them in
order to generate the candidates Ck+1 of size (k + 1). The different node-based and edge-
based variations in the methods for performing joins will be described later. Furthermore,
the Apriori pruning trick is used. Candidates in Ck+1 that are such that any of their k-
subgraphs do not exist in Fk are pruned. For each remaining candidate subgraph, the
support is computed with respect to the graph database G. The subgraph isomorphism
algorithm discussed in Sect. 17.2 needs to be used for computing the support. All candidates
in Ck+1 that meet the minimum support requirement are retained in Fk+1. The procedure
is repeated iteratively until an empty set Fk+1 is generated. At this point, the algorithm
terminates, and the set of frequent subgraphs in ∪k

i=1Fi is reported. Next, the two different
ways of defining the size k of a graph, corresponding to node- and edge-based joins, will be
described.

17.4. FREQUENT SUBSTRUCTURE MINING IN GRAPHS 577

Algorithm GraphApriori(Graph Database: G,
Minimum Support: minsup);

begin
F1 = { All Frequent singleton graphs };
k = 1;
while Fk is not empty do begin
Generate Ck+1 by joining pairs of graphs in Fk that

share a subgraph of size (k − 1) in common;
Prune subgraphs from Ck+1 that violate downward closure;
Determine Fk+1 by support counting on (Ck+1,G) and retaining

subgraphs from Ck+1 with support at least minsup;
k = k + 1;

end;
return(∪k

i=1Fi);
end

Figure 17.11: The basic frequent subgraph discovery algorithm is related to the Apriori
algorithm. The reader is encouraged to compare this pseudocode with the Apriori algorithm
described in Fig. 4.2 of Chap. 4.

A

A C

A

A C

B

+
JOIN

B C

POSSIBILITY 1

A

A

+

A

A C

B C B C

POSSIBILITY 2

Figure 17.12: Candidates generated using node-based join of two graphs

578 CHAPTER 17. MINING GRAPH DATA

17.4.1 Node-Based Join Growth

In the case of node-based joins, the size of a frequent subgraph in Fk refers to the number
of nodes k in it. The singleton graphs in F1 contain a single node. These are node labels
that are present in at least minsup graphs in the graph database G. For two graphs from
Fk to be joined, a matching subgraph with (k−1) nodes must exist between the two graphs.
This matching subgraph is also referred to as the core. When two k-subgraphs with (k− 1)
common nodes are joined to create a candidate with (k + 1) nodes, an ambiguity exists,
as to whether or not an edge exists between the two non-matching nodes. Therefore, two
possible graphs are generated, depending on whether or not an edge exists between the nodes
that are not common between the two. An example of the two possibilities for generating
candidate subgraphs is illustrated in Fig. 17.12. While this chapter does not assume that
edge labels are associated with graphs, the number of possible joins will be even larger
when labels are associated with edges. This is because each possible edge label must be
associated with the newly created edge. This will result in a larger number of candidates.
Furthermore, in cases where there are isomorphic matchings of size (k − 1) between the
two frequent subgraphs, candidates may need to be generated for each such mapping (see
Exercise 8). Thus, all possible (k − 1) common subgraphs need to be discovered between a
pair of graphs, in order to generate the candidates. Thus, the explosion in the number of
candidate patterns is usually more significant in the case of frequent subgraph discovery,
than in the case of frequent pattern discovery.

17.4.2 Edge-Based Join Growth

In the case of edge-based joins, the size of a frequent subgraph in Fk refers to the number
of edges k in it. The singleton graphs in F1 contain a single edge. These correspond to edges
between specific node labels that are present in at least minsup graphs in the database G.
In order for two graphs from Fk to be joined, a matching subgraph with (k− 1) edges needs
to be present in the two graphs. The resulting candidate will contain exactly (k+1) edges.
Interestingly, the number of nodes in the candidate may not necessarily be greater than
that in the individual subgraphs that are joined. In Fig. 17.13, the two possible candidates
that are constructed using edge-based joins are illustrated. Note that one of the generated
candidates has the same number of nodes as the original pair of graphs. As in the case of
node-based joins, one needs to account for isomorphism in the process of candidate gener-
ation. Edge-based join growth tends to generate fewer candidates in total and is therefore
generally more efficient. The bibliographic notes contain pointers to more details about
these methods.

17.4.3 Frequent Pattern Mining to Graph Pattern Mining

The similarity between the aforementioned approach and Apriori is quite striking. The join-
based growth strategy can also be generalized to an enumeration tree-like strategy. However,
the analogous candidate tree can be generated in two different ways, corresponding to node-
and edge-based extensions, respectively. Furthermore, tree growth is more complex because
of isomorphism. GraphApriori uses a breadth-first candidate-tree generation approach as
in all Apriori-like methods. It is also possible to use other strategies, such as depth-first
methods, to grow the tree of candidates. As discussed in Chap. 4, almost all frequent pattern
mining algorithms, including1 Apriori and FP-growth, should be considered enumeration-

1See the discussion in Sect. 4.4.4.5 of Chap. 4.

17.5. GRAPH CLUSTERING 579

A

A C

A

A C

B

+
JOIN

B C

POSSIBILITY 1

A

A

+

A

A

C

B C B

POSSIBILITY 2

Figure 17.13: Candidates generated using edge-based join of two graphs

tree methods. Therefore, the broader principles of these algorithms can also be generalized
to the growth of the candidate tree in graphs. The bibliographic notes contain pointers to
these methods.

17.5 Graph Clustering

The graph clustering problem partitions a database of n graphs, denoted by G1 . . . Gn, into
groups. Graph clustering methods are either distance-based or frequent substructure-based.
Distance-based methods are more effective for smaller graphs, in which distances can be
computed robustly and efficiently. Frequent substructure-based methods are appropriate
for larger graphs where distance computations become qualitatively and computationally
impractical.

17.5.1 Distance-Based Methods

The design of distance functions is particularly important for virtually every complex data
type because of their applicability to clustering methods, such as k-medoids and spectral
methods, that are dependent only on the design of the distance function. Virtually all the
complex data types discussed in Chaps. 13–16 use this general methodology for clustering.
This is the reason that distance function design is usually the most fundamental problem
that needs to be addressed in every data domain. Sections 17.2 and 17.3 of this chapter
have discussed methods for distance computation in graphs. After a distance function has
been designed, the following two methods can be used:

1. The k-medoids method introduced in Sect. 6.3.4 in Chap. 6 uses a representative-
based approach, in which the distances of data objects to their closest representatives
are used to perform the clustering. A set of k representatives is used, and data objects
are assigned to their closest representatives by using an appropriately designed dis-
tance function. The set of k representatives is progressively optimized by using a hill-
climbing approach, in which the representatives are iteratively swapped with other
data objects in order to improve the clustering objective function value. The reader
is referred to Chap. 6 for details of the k-medoids algorithm. A key property of this
algorithm is that the computations are not dependent on the nature of the data type
after the distance function has been defined.

580 CHAPTER 17. MINING GRAPH DATA

2. A second commonly-used methodology is that of spectral methods. In this case, the
individual graph objects are used to construct a single large neighborhood graph. The
latter graph is a higher level similarity graph, in which each node corresponds to one
of the (smaller) graph objects from the original database and the weight of the edge is
equal to the similarity between the two objects. As discussed in Sect. 6.7 of Chap. 6,
distances can be converted to similarity values with the use of a kernel transformation.
Each node is connected to its k-nearest neighbors with an undirected edge. Thus, the
problem of clustering graph objects is transformed to the problem of clustering nodes
in a single large graph. This problem is discussed briefly in Sect. 6.7 of Chap. 6, and in
greater detail in Sect. 19.3 of Chap. 19. Any of the network clustering or community
detection algorithms can be used to cluster the nodes, although spectral methods are
used quite commonly. After the node clusters have been determined, they are mapped
back to clusters of graph objects.

The aforementioned methods do not work very well when the individual graph objects are
large because of two reasons. It is generally computationally expensive to compute distances
between large graph objects. Graph distance functions, such as matching-based methods,
have a complexity that increases exponentially with graph object size. The effectiveness of
such methods also drops sharply with increasing graph size. This is because the graphs may
be similar only in some portions that repeat frequently. The rare portions of the graphs
may be unique to the specific graph at hand. In fact, many small substructures may be
repeated across the two graphs. Therefore, a matching-based distance function may not be
able to properly compare the key features of the different graphs. One possibility is to use a
substructure-based distance function, as discussed in Sect. 17.3.1. A more direct approach
is to use frequent substructure-based methods.

17.5.2 Frequent Substructure-Based Methods

These methods extract frequent subgraphs from the data and use their membership in input
graphs to determine clusters. The basic premise is that the frequent subgraphs are indicative
of cluster membership because of their propensity to define application-specific properties.
For example, in an organic chemistry application, a benzene ring (illustrated as a subgraph
of Fig. 17.1a) is a frequently occurring substructure that is indicative of specific chemical
properties of the compound. In an XML application, a frequent substructure corresponds
to important structural relationships between entities. Therefore, the membership of such
substructures in graphs is highly indicative of similarity and cluster membership. Interest-
ingly, frequent pattern mining algorithms are also used in multidimensional clustering. An
example is the CLIQUE algorithm (cf. Sect. 7.4.1 of Chap. 7).

In the following sections, two different methods for graph clustering will be described.
The first is a generic transformational approach that can be used to apply text clustering
methods to the graph domain. The second is a more direct iterative approach of relating
the graph clusters to their frequent substructures.

17.5.2.1 Generic Transformational Approach

This approach transforms the graph database to a text-like domain, so that the wide variety
of text clustering algorithms may be leveraged. The broad approach may be described as
follows:

1. Apply frequent subgraph mining methods discussed in Sect. 17.4 in order to discover
frequent subgraph patterns in the underlying graphs. Select a subset of subgraphs to

17.5. GRAPH CLUSTERING 581

reduce overlap among the different subgraphs. Different algorithms may vary on this
step by using only frequent maximal subgraphs, or selecting a subset of graphs that are
sufficiently nonoverlapping with one another. Create a new feature fi for each frequent
subgraph Si that is discovered. Let d be the total number of frequent subgraphs
(features). This is the “lexicon” size in terms of which a text-like representation will
be constructed.

2. For each graph Gi, create a vector-space representation in terms of the features
f1 . . . fd. Each graph contains the features corresponding to the subgraphs that it
contains. The frequency of each feature is the number of occurrences of the corre-
sponding subgraph in the graph Gi. It is also possible to use a binary representation
by only considering the presence or absence of subgraphs rather than frequency of
presence. Use tf-idf normalization on the vector-space representation, as discussed in
Chap. 13.

3. Use any of the text-clustering algorithms discussed in Sect. 13.3 in Chap. 13, in order
to discover clusters of newly created text objects. Map the text clusters to graph
object clusters.

This broader approach of using text-based methods is utilized frequently with many con-
textual data types. For example, an almost exactly analogous approach is discussed for
sequence clustering in Sect. 15.3.3 of Chap. 15. This is because a modified version of fre-
quent pattern mining methods can be defined for most data types. It should be pointed
out that, although the substructure-based transformation is discussed here, many of the
kernel-based transformations and topological descriptors, discussed earlier in this chapter,
may be used as well. For example, the kernel k-means algorithm can be used in conjunction
with the graph kernels discussed in this chapter.

17.5.2.2 XProj: Direct Clustering with Frequent Subgraph Discovery

The XProj algorithm derives its name from the fact that it was originally proposed for
XML graphs, and a substructure can be viewed as a PROJection of the graph. Neverthe-
less, the approach is not specific to XML structures, and it can be applied to any other
graph domain, such as chemical compounds. The XProj algorithm uses the substructure
discovery process as an important subroutine, and different applications may use different
substructure discovery methods, depending on the data domain. Therefore, the following
will provide a generic description of the XProj algorithm for graph clustering, although the
substructure discovery process may be implemented in an application-specific way. Because
the algorithm uses the frequent substructures for the clustering process, an additional input
to the algorithm is the minimum support minsup. Another input to the algorithm is the
size l of the frequent substructures mined. The size of the frequent substructures is fixed
in order to ensure robust computation of similarity. These are user-defined parameters that
can be tuned to obtain the most effective results.

The algorithm can be viewed as a representative approach similar to k-medoids, except
that each representative is a set of frequent substructures. These represent the localized
substructures of each group. The use of frequent-substructures as the representatives, instead
of the original graphs, is crucial. This is because distances cannot be computed effectively
between pairs of graphs, when the sizes of the graphs are larger. On the other hand, the
membership of frequent substructures provides a more intuitive way of computing similarity.
It should be pointed out that, unlike transformational methods, the frequent substructures

582 CHAPTER 17. MINING GRAPH DATA

Algorithm XProj(Graph Database: G, Minimum Support: minsup
Structural Size: l, Number of Clusters: k)

begin
Initialize clusters C1 . . . Ck randomly;
Compute frequent substructure sets F1 . . .Fk from C1 . . . Ck;
repeat
Assign each graph Gj ∈ G to the cluster Ci for which the former’s
similarity to Fi is the largest ∀i ∈ {1 . . . k};

Compute frequent substructure set Fi from Ci for each i ∈ {1 . . . k};
until convergence;

end

Figure 17.14: The frequent subgraph-based clustering algorithm (high level description)

are local to each cluster, and are therefore better optimized. This is the main advantage of
this approach over a generic transformational approach.

There are a total of k such frequent substructure sets F1 . . .Fk, and the graph database is
partitioned into k groups around these localized representatives. The algorithm is initialized
with a random partition of the database G into k clusters. These k clusters are denoted by
C1 . . . Ck. The frequent substructures Fi of each of these clusters Ci can be determined
using any frequent substructure discovery algorithm. Subsequently, each graph in Gj ∈
G is assigned to one of the representative sets Fi based on the similarity of Gj to each
representative set Fi. The details of the similarity computation will be discussed later. This
process is repeated iteratively, so that the representative set Fi is generated from cluster
Ci, and the cluster Ci is generated from the frequent set Fi. The process is repeated, until
the change in the average similarity of each graph Gj to its assigned representative set Fi

is no larger than a user-defined threshold. At this point, the algorithm is assumed to have
converged, and it terminates. The overall algorithm is illustrated in Fig. 17.14.

It remains to be described how the similarity between a graph Gj and a representative
set Fi is computed. The similarity between Gj and Fi is computed with the use of a coverage
criterion. The similarity between Gj and Fi is equal to the fraction of frequent substructures
in Fi that are a subgraph of Gj .

A major computational challenge is that the determination of frequent substructures
in Fi may be too expensive. Furthermore, there may be a large number of frequent sub-
structures in Fi that are highly overlapping with one another. To address these issues, the
XProj algorithm proposes a number of optimizations. The first optimization is that the
frequent substructures do not need to be determined exactly. An approximate algorithm for
frequent substructure mining is designed. The second optimization is that only a subset of
nonoverlapping substructures of length l are included in the sets Fi. The details of these
optimizations may be found in pointers discussed in the bibliographic notes.

17.6 Graph Classification

It is assumed that a set of n graphs G1 . . . Gn is available, but only a subset of these graphs
is labeled. Among these, the first nt ≤ n graphs are labeled, and the remaining (n − nt)
graphs are unlabeled. The labels are drawn from {1 . . . k}. It is desired to use the labels on
the training graphs to infer the labels of unlabeled graphs.

17.6. GRAPH CLASSIFICATION 583

17.6.1 Distance-Based Methods

Distance-based methods are most appropriate when the sizes of the underlying graphs
are small, and the distances can be computed efficiently. Nearest neighbor methods and
collective classification methods are two of the distance-based methods commonly used for
classification. The latter method is a transductive semi-supervised method, in which the
training and test instances need to be available at the same time for the classification
process. These methods are described in detail below:

1. Nearest neighbor methods: For each test instance, the k-nearest neighbors are deter-
mined. The dominant label from these nearest neighbors is reported as the relevant
label. The nearest neighbor method for multidimensional data is described in detail
in Sect. 10.8 of Chap. 10. The only modification to the method is the use of a different
distance function, suited for the graph data type.

2. Graph-based methods: This is a semi-supervised method, discussed in Sect. 11.6.3 of
Chap. 11. In graph-based methods, a higher level neighborhood graph is constructed
from the training and test graph objects. It is important not to confuse the notion of a
neighborhood graph with that of the original graph objects. The original graph objects
correspond to nodes in the neighborhood graph. Each node is connected to its k nearest
neighbor objects based on the distance values. This results in a graph containing both
labeled and unlabeled nodes. This is the collective classification problem, for which
various algorithms are described in Sect. 19.4 of Chap. 19. Collective classification
algorithms can be used to derive labels of the nodes in the neighborhood graphs.
These derived labels can then be mapped back to the unlabeled graph objects.

Distance-based methods are generally effective when the underlying graph objects are small.
For larger graph objects, the computation of distances becomes too expensive. Furthermore,
distance computations no longer remain effective from an accuracy perspective, when mul-
tiple common substructures are present in the two graphs.

17.6.2 Frequent Substructure-Based Methods

Pattern-based methods extract frequent subgraphs from the data, and use their membership
in different graphs, in order to build classification models. As in the case of clustering,
the main assumption is that the frequently occurring portions of graphs can related to
application-specific properties of the graphs. For example, the phenolic acids of Fig. 17.10
are characterized by the two frequent substructures corresponding to the carboxyl group
and the phenol group. These substructures therefore characterize important properties of
a family or a class of compounds. This is generally true across many different applications
beyond the chemical domain. As discussed in Sect. 10.4 of Chap. 10, frequent patterns are
often used for rule-based classification, even in the “flat” multidimensional domain. As in
the case of clustering, either a generic transformational approach or a more direct rule-based
method can be used.

17.6.2.1 Generic Transformational Approach

This approach is generally similar to the transformational approach discussed in the previous
section on clustering. However, there are a few differences that account for the impact of
supervision. The broad approach may be described as follows:

584 CHAPTER 17. MINING GRAPH DATA

1. Apply frequent subgraph mining methods discussed in Sect. 17.4 to discover frequent
subgraph patterns in the underlying graphs. Select a subset of subgraphs to reduce
overlap among the different subgraphs. For example, feature selection algorithms that
minimize redundancy and maximize the relevance of the features may be used. Such
feature selection algorithms are discussed in Sect. 10.2 of Chap. 10. Let d be the total
number of frequent subgraphs (features). This is the “lexicon” size in terms of which
a text-like representation will be constructed.

2. For each graph Gi, create a vector-space representation in terms of the d features
found. Each graph contains the features corresponding to the subgraphs that it con-
tains. The frequency of each feature is equal to the number of occurrences of the
corresponding subgraph in graph Gi. It is also possible to use a binary representa-
tion by only considering presence or absence of subgraphs, rather than frequency of
presence. Use tf-idf normalization on the vector-space representation, as discussed in
Chap. 13.

3. Select any text classification algorithm discussed in Sect. 13.5 of Chap. 13 to build a
classification model. Use the model to classify test instances.

This approach provides a flexible framework. After the transformation has been performed, a
wide variety of algorithms may be used. It also allows the use of different types of supervised
feature selection methods to ensure that the most discriminative structures are used for
classification.

17.6.2.2 XRules: A Rule-Based Approach

The XRules method was proposed in the context of XML data, but it can be used in
the context of any graph database. This is a rule-based approach that relates frequent
substructures to the different classes. The training phase contains three steps:

1. In the first phase, frequent substructures with sufficient support and confidence are
determined. Each rule is of the form:

Fg ⇒ c

The notation Fg denotes a frequent substructure, and c is a class label. Many other
measures can be used to quantify the strength of the rule instead of the confidence.
Examples include the likelihood ratio, or the cost-weighted confidence in the rare
class scenario. The likelihood ratio of Fg ⇒ c is the ratio of the fractional support
of Fg in the examples containing c, to the fractional support of Fg in examples not
containing c. A likelihood ratio greater than one indicates that the rule is highly likely
to belong to a particular class. The generic term for these different ways of measuring
the class-specific relevance is the rule strength.

2. In the second phase, the rules are ordered and pruned. The rules are ordered by
decreasing strength. Statistical thresholds on the rule strength may be used for pruning
rules with low strength. This yields a compact set R of ordered rules that are used
for classification.

3. In the final phase, a default class is set that can be used to classify test instances not
covered by any rule in R. The default class is set to the dominant class of the set
of training instances not covered by rule set R. A graph is covered by a rule if the

17.7. SUMMARY 585

left-hand side of the rule is a substructure of the graph. In the event that all training
instances are covered by rule set R, then the default class is set to the dominant
class in the entire training data. In cases where classes are associated with costs, the
cost-sensitive weight is used in determining the majority class.

After the training model has been constructed, it can be used for classification as follows.
For a given test graph G, the rules that are fired by G are determined. If no rules are
fired, then the default class is reported. Let Rc(G) be the set of rules fired by G. Note
that these different rules may not yield the same prediction for G. Therefore, the conflicting
predictions of different rules need to be combined meaningfully. The different criteria that
are used to combine the predictions are as follows:

1. Average strength: The average strength of the rules predicting each class are deter-
mined. The class with the average highest strength is reported.

2. Best rule: The top rule is determined on the basis of the priority order discussed
earlier. The class label of this rule is reported.

3. Top-k average strength: This can be considered a combination of the previous two
methods. The average strength of the top-k rules of each class is used to determine
the predicted label.

The XRules procedure uses an efficient procedure for frequent substructure discovery, and
many other variations for rule quantification. Refer to the bibliographic notes.

17.6.3 Kernel SVMs

Kernel SVMs can construct classifiers with the use of kernel similarity between training and
test instances. As discussed in Sect. 10.6.4 of Chap. 10, kernel SVMs do not actually need the
feature representation of the data, as long as the kernel-based similarity K(Gi, Gj) between
any pair of graph objects is available. Therefore, the approach is agnostic to the specific
data type that is used. The different kinds of graph kernels are discussed in Sect. 17.3.3
of this chapter. Any of these kernels can be used in conjunction with the SVM approach.
Refer to Sect. 10.6.4 of Chap. 10 for details on how kernels may be used in conjunction with
SVM classifiers.

17.7 Summary

This chapter studies the problem of mining graph data sets. Graph data are a challenging
domain for analysis, because of the difficulty in matching two graphs when there are rep-
etitions in the underlying labels. This is referred to as graph isomorphism. Most methods
for graph matching require exponential time in the worst case. The MCG between a pair of
graphs can be used to define distance measures between graphs. The edit-distance measure
also uses an algorithm that is closely related to the MCG algorithm. Because of the com-
plexity of matching algorithms in graphs, a different approach is to transform the graph
database into a simpler text-like representation, in terms of which distance functions are
defined. An important class of graph distance functions is graph kernels. They can be used
for clustering and classification.

The frequent substructure discovery algorithm is an important building block because
it can be leveraged for other graph mining problems such as clustering and classification.

586 CHAPTER 17. MINING GRAPH DATA

The Apriori-like algorithms use either a node-growth strategy, or an edge-growth strategy
in order to generate the candidates and corresponding frequent substructures. Most of the
clustering and classification algorithms for graph data are based either on distances, or on
frequent substructures. The distance-based methods include the k-medoids and spectral
methods for clustering. For classification, the distance-based methods include either the
k-nearest neighbor method or graph-based semi-supervised methods. Kernel-based SVM
can also be considered specialized distance-based methods, in which SVMs are leveraged in
conjunction with the similarity between data objects.

Frequent substructure-based methods are used frequently for graph clustering and clas-
sification. A generic approach is to transform the graphs into a new feature representation
that is similar to text data. Any of the text clustering or classification algorithms can be
applied to this representation. Another approach is to directly mine the frequent substruc-
tures and use them as representative sets of clusters, or antecedents of discriminative rules.
The XProj and XRules algorithms are based on this principle.

17.8 Bibliographic Notes

The problem of graph matching is addressed in surveys in [26]. The Ullman algorithm for
graph matching was proposed in [164]. Two other well known methods for graph-matching
are VF2 [162] and QuickSI [163]. Other approximate matching methods are discussed
in [313, 314, 521]. The proof of NP-hardness of the graph matching problem may be found
in [221, 164]. The use of the MCG for defining distance functions was studied in [120]. The
relationship between the graph-edit distance and the maximum common subgraph problem
is studied in detail in [119]. The graph edit-distance algorithm discussed in the chapter is
a simplification of the algorithm presented in [384]. A number of fast algorithms for com-
puting the graph edit distance are discussed in [409]. The problem of learning edit costs
is studied in [408]. The survey by Bunke in [26] also discusses methods for computing the
graph edit costs. A description of the use of topological descriptors in drug-design may be
found in [236]. The random walk kernel is discussed in [225, 298], and the shortest-path
kernel is discussed in [103]. The work in [225] also provides a generic discussion on graph
kernels. The work in [42] shows that frequent substructure-based similarity computation
can provide robust results in data mining applications.

The node-growth strategy for frequent subgraph mining was proposed by Inokuchi,
Washio, an Motoda [282]. The edge-growth strategy was proposed by Kuramochi and
Karypis [331]. The gSpan algorithm was proposed by Yan and Han [519] and uses a depth-
first approach to build the candidate tree of graph patterns. A method that uses the vertical
representation for graph pattern mining is discussed in [276]. The problem of mining fre-
quent trees in a forest was addressed in [536]. Surveys on graph clustering and classification
may be found in [26]. The XProj algorithm is discussed in [42], and the XRules algorithm is
discussed in [540]. Methods for kernel SVM-based classification are discussed in the graph
classification chapter by Tsuda in [26].

17.9 Exercises

1. Consider two graphs that are cliques containing an even number 2 · n nodes. Let
exactly half the nodes in each graph belong to labels A and B. What are the total
number of isomorphic matchings between the two graphs?

17.9. EXERCISES 587

2. Consider two graphs containing 2 · n nodes and n distinct labels, each of which
occurs twice. What is the maximum number of isomorphic matchings between the
two graphs?

3. Implement the basic algorithm for subgraph isomorphism with no pruning optimiza-
tions. Test it by trying to match pairs of randomly generated graphs, containing a
varying number of nodes. How does the running time vary with the size of the graph?

4. Compute the Morgan indices of order 1 and 2, for each node of the acetaminophen
graph of Fig. 17.1. How does the Morgan index vary with the labels (corresponding
to chemical elements)?

5. Write a computer program to compute each of the topological descriptors of a graph
discussed in this chapter.

6. Write a computer program to execute the node-based candidate growth for frequent
subgraph discovery. Refer to the bibliographic notes, if needed, for the paper describing
specific details of the algorithm.

7. Write a computer program to execute the edge-based candidate growth for frequent
subgraph discovery. Refer to the bibliographic notes for the paper describing specific
details of the algorithm.

8. Show the different node-based joins that can be performed between the two graphs
below, while accounting for isomorphism.

BA A A A

A A A A B

9. Show the different edge-based joins that can performed between the two graphs of
Exercise 8, while accounting for isomorphism.

10. Determine the maximum number of candidates that can be generated with node-based
join growth using a single pair of graphs, while accounting for isomorphism. Assume
that the matching core of these graphs is a cycle of size k. What conditions in the
core of the joined portion result in this scenario?

11. Discuss how the node-based growth and edge-based growth strategies translate into a
candidate tree structure that is analogous to the enumeration tree in frequent pattern
mining.

12. Implement a computer program to construct a text-like representation for a database
of graphs, as discussed in the chapter. Use any feature selection approach of your
choice of minimize redundancy. Implement a k-means clustering algorithm with this
representation.

13. Repeat Exercise 12 for the classification problem. Use a naive Bayes classifier, as
discussed in Chapter 10, for the final classification step and an appropriately chosen
supervised feature selection method from the same chapter.

14. What changes would be require in the subgraph isomorphism algorithm for cases in
which the query graph is disconnected?

Chapter 18

Mining Web Data

“Data is a precious thing, and will last longer
than the systems themselves.”—Tim Berners-Lee

18.1 Introduction

The Web is an unique phenomenon in many ways, in terms of its scale, the distributed
and uncoordinated nature of its creation, the openness of the underlying platform, and the
resulting diversity of applications it has enabled. Examples of such applications include e-
commerce, user collaboration, and social network analysis. Because of the distributed and
uncoordinated nature in which the Web is both created and used, it is a rich treasure trove of
diverse types of data. This data can be either a source of knowledge about various subjects,
or personal information about users.

Aside from the content available in the documents on the Web, the usage of the Web
results in a significant amount of data in the form of user logs or Web transactions. There
are two primary types of data available on the Web that are used by mining algorithms.

1. Web content information: This information corresponds to the Web documents and
links created by users. The documents are linked to one another with hypertext links.
Thus, the content information contains two components that can be mined either
together, or in isolation.

• Document data: The document data are extracted from the pages on the World
Wide Web. Some of these extraction methods are discussed in Chap. 13.

• Linkage data: The Web can be viewed as a massive graph, in which the pages
correspond to nodes, and the linkages correspond to edges between nodes. This
linkage information can be used in many ways, such as searching the Web or
determining the similarity between nodes.

2. Web usage data: This data corresponds to the patterns of user activity that are enabled
by Web applications. These patterns could be of various types.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 18 589
c© Springer International Publishing Switzerland 2015

590 CHAPTER 18. MINING WEB DATA

• Web transactions, ratings, and user feedback: Web users frequently buy various
types of items on the Web, or express their affinity for specific products in the
form of ratings. In such cases, the buying behavior and/or ratings can be lever-
aged to make inferences about the preferences of different users. In some cases,
the user feedback is provided in the form of textual user reviews that are referred
to as opinions.

• Web logs: User browsing behavior is captured in the form of Web logs that
are typically maintained at most Web sites. This browsing information can be
leveraged to make inferences about user activity.

These diverse data types automatically define the types of applications that are common
on the Web. In coordination with the different data types, the applications are also either
content- or usage-centric.

1. Content-centric applications: The documents and links on the Web are used in vari-
ous applications such as search, clustering, and classification. Some examples of such
applications are as follows:

• Data mining applications: Web documents are used in conjunction with different
types of data mining applications such as clustering and categorization. Such
applications are used frequently by Web portals for organizing pages.

• Web crawling and resource discovery: The Web is a tremendous resource of
knowledge about documents on various subjects. However, this resource is widely
distributed on the Internet, and it needs to be discovered and stored at a single
place to make inferences.

• Web search: The goal in Web search is to discover high-quality, relevant docu-
ments in response to a user-specified set of keywords. As will be evident later,
the notions of quality and relevance are defined both by the linkage and content
structure of the documents.

• Web linkage mining: In these applications, either actual or logical representations
of linkage structure on the Web are mined for useful insights. Examples of logical
representations of Web structure include social and information networks. Social
networks are linked networks of users, whereas information networks are linked
networks of users and objects.

2. Usage-centric applications: The user activity on the Web is mined to make inferences.
The different ways in which user activity can be mined are as follows:

• Recommender systems: In these cases, preference information in the form of either
ratings for product items or product buying behavior is used to make recommen-
dations to other like-minded users.

• Web log analysis: Web logs are a useful resource for Web site owners to determine
relevant patterns of user browsing. These patterns can be leveraged for making
inferences such as finding anomalous patterns, user interests, and optimal Web
site design.

Many of the aforementioned applications overlap with other chapters in the book. For
example, content-centric data mining applications have already been covered in previous
chapters of this book, especially in Chap. 13 on mining text data. Some of these methods

18.2. WEB CRAWLING AND RESOURCE DISCOVERY 591

do need to be modified to account for the additional linkage data. Many linkage mining
applications are discussed in Chap. 19 on social network analysis. Therefore, this chapter
will focus on the applications that are not primarily covered by other chapters. Among the
content-centric applications, Web crawling, search, and ranking will be discussed. Among
the usage-centric applications, recommender systems and Web log mining applications will
be discussed.

This chapter is organized as follows. Sect. 18.2 discusses Web crawlers and resource dis-
covery. Search engine indexing and query-processing methods are discussed in Sect. 18.3.
Ranking algorithms are presented in Sect. 18.4. Recommender systems are discussed in
Sect. 18.5. Methods for mining Web logs are discussed in Sect. 18.6. The summary is pre-
sented in Sect. 18.7.

18.2 Web Crawling and Resource Discovery

Web crawlers are also referred to as spiders or robots. The primary motivation for Web
crawling is that the resources on the Web are dispensed widely across globally distributed
sites. While the Web browser provides a graphical user interface to access these pages in
an interactive way, the full power of the available resources cannot be leveraged with the
use of only a browser. In many applications, such as search and knowledge discovery, it is
necessary to download all the relevant pages at a central location, to allow machine learning
algorithms to use these resources efficiently.

Web crawlers have numerous applications. The most important and well-known appli-
cation is search, in which the downloaded Web pages are indexed, to provide responses to
user keyword queries. All the well-known search engines, such as Google and Bing, employ
crawlers to periodically refresh the downloaded Web resources at their servers. Such crawlers
are also referred to as universal crawlers because they are intended to crawl all pages on the
Web irrespective of their subject matter or location. Web crawlers are also used for business
intelligence, in which the Web sites related to a particular subject are crawled or the sites
of a competitor are monitored and incrementally crawled as they change. Such crawlers are
also referred to as preferential crawlers because they discriminate between the relevance of
different pages for the application at hand.

18.2.1 A Basic Crawler Algorithm

While the design of a crawler is quite complex, with a distributed architecture and many
processes or threads, the following describes a simple sequential and universal crawler that
captures the essence of how crawlers are constructed.

The basic crawler algorithm, described in a very general way, uses a seed set of Universal
Resource Locators (URLs) S, and a selection algorithm A as the input. The algorithm A
decides which document to crawl next from a current frontier list of URLs. The frontier list
represents URLs extracted from the Web pages. These are the candidates for pages that
can eventually be fetched by the crawler. The selection algorithm A is important because it
regulates the basic strategy used by the crawler to discover the resources. For example, if new
URLs are appended to the end of the frontier list, and the algorithm A selects documents
from the beginning of the list, then this corresponds to a breadth-first algorithm.

The basic crawler algorithm proceeds as follows. First, the seed set of URLs is added
to the frontier list. In each iteration, the selection algorithm A picks one of the URLs
from the frontier list. This URL is deleted from the frontier list and then fetched using the

592 CHAPTER 18. MINING WEB DATA

Algorithm BasicCrawler(Seed URLs: S, Selection Algorithm: A)
begin
FrontierList = S;
repeat
Use algorithm A to select URL X ∈ FrontierSet;
FrontierList = FrontierList− {X};
Fetch URL X and add to repository;
Add all relevant URLs in fetched document X to
end of FrontierList;

until termination criterion;
end

Figure 18.1: The basic crawler algorithm

HTTP protocol. This is the same mechanism used by browsers to fetch Web pages. The
main difference is that the fetching is now done by an automated program using automated
selection decisions, rather than by the manual specification of a link by a user with a
Web browser. The fetched page is stored in a local repository, and the URLs inside it are
extracted. These URLs are then added to the frontier list, provided that they have not
already been visited. Therefore, a separate data structure, in the form of a hash table,
needs to be maintained to store all visited URLs. In practical implementations of crawlers,
not all unvisited URLs are added to the frontier list due to Web spam, spider traps, topical
preference, or simply a practical limit on the size of the frontier list. These issues will be
discussed later. After the relevant URLs have been added to the frontier list, the next
iteration repeats the process with the next URL on the list. The process terminates when
the frontier list is empty. If the frontier list is empty, it does not necessarily imply that
the entire Web has been crawled. This is because the Web is not strongly connected, and
many pages are unreachable from most randomly chosen seed sets. Because most practical
crawlers such as search engines are incremental crawlers that refresh pages over previous
crawls, it is usually easy to identify unvisited seeds from previous crawls and add them to
the frontier list, if needed. With large seed sets, such as a previously crawled repository
of the Web, it is possible to robustly crawl most pages. The basic crawler algorithm is
described in Fig. 18.1.

Thus, the crawler is a graph search algorithm that discovers the outgoing links from
nodes by parsing Web pages and extracting the URLs. The choice of the selection algo-
rithm A will typically result in a bias in the crawling algorithm, especially in cases where
it is impossible to crawl all the relevant pages due to resource limitations. For example, a
breadth-first crawler is more likely to crawl a page with many links pointing to it. Inter-
estingly, such biases are sometimes desirable in crawlers because it is impossible for any
crawler to index the entire Web. Because the indegree of a Web page is often closely related
to its PageRank, a measure of a Web page’s quality, this bias is not necessarily undesirable.
Crawlers use a variety of other selection strategies defined by the algorithm A.

1. Because most universal crawlers are incremental crawlers that are intended to refresh
previous crawls, it is desirable to crawl frequently changing pages. The change fre-
quency can be estimated from repeated previous crawls of the same page. Some
resources such as news portals are updated frequently. Therefore, frequently updated
pages may be selected by the algorithm A.

18.2. WEB CRAWLING AND RESOURCE DISCOVERY 593

2. The selection algorithm A may specifically choose Web pages with high PageRank
from frontier list. The computation of PageRank is discussed in Sect. 18.4.1.

A practice, a combination of factors are used by the commercial crawlers employed by search
engines.

18.2.2 Preferential Crawlers

In the preferential crawler, only pages satisfying a user-defined criterion need to be crawled.
This criterion may be specified in the form of keyword presence in the page, a topical crite-
rion defined by a machine learning algorithm, a geographical criterion about page location,
or a combination of the different criteria. In general, an arbitrary predicate may be specified
by the user, which forms the basis of the crawling. In these cases, the major change is to
the approach used for updating the frontier list during crawling.

1. The Web page needs to meet the user-specified criterion in order for its extracted
URLs to be added to the frontier list.

2. In some cases, the anchor text may be examined to determine the relevance of the
Web page to the user-specified query.

3. In context-focused crawlers, the crawler is trained to learn the likelihood that relevant
pages are within a short distance of the page, even if the Web page is itself not directly
relevant to the user-specified criterion. For example, a Web page on “data mining” is
more likely to point to a Web page on “information retrieval,” even though the data
mining page may not be relevant to the query on “information retrieval.” URLs from
such pages may be added to the frontier list. Therefore, heuristics need to be designed
to learn such context-specific relevance.

Changes may also be made to the algorithm A. For example, URLs with more relevant
anchor text, or with relevant tokens in the Web address, may be selected first by algorithm
A. A URL such as http://www.golf.com, with the word “golf” in the Web address may be
more relevant to the topic of “golf,” than a URL without the word in it. The bibliographic
notes contain pointers to a number of heuristics that are commonly used for preferential
resource discovery.

18.2.3 Multiple Threads

When a crawler issues a request for a URL and waits for it, the system is idle, with no work
being done at the crawler end. This would seem to be a waste of resources. A natural way to
speed up the crawling is by leveraging concurrency. The idea is to use multiple threads of the
crawler that update a shared data structure for visited URLs and the page repository. In such
cases, it is important to implement concurrency control mechanisms for locking or unlocking
the relevant data structures during updates. The concurrent design can significantly speed
up a crawler with more efficient use of resources. In practical implementations of large search
engines, the crawler is distributed geographically with each “sub-crawler” collecting pages
in its geographical proximity.

18.2.4 Combatting Spider Traps

The main reason that the crawling algorithm always visits distinct Web pages is that
it maintains a list of previously visited URLs for comparison purposes. However, some

http://www.golf.com

594 CHAPTER 18. MINING WEB DATA

shopping sites create dynamic URLs in which the last page visited is appended at the
end of the user sequence to enable the server to log the user action sequences within
the URL for future analysis. For example, when a user clicks on the link for page2
from http://www.examplesite.com/page1, the new dynamically created URL will be
http://www.examplesite.com/page1/page2. Pages that are visited further will continue
to be appended to the end of the URL, even if these pages were visited before. A natural
way to combat this is to limit the maximum size of the URL. Furthermore, a maximum
limit may also be placed on the number of URLs crawled from a particular site.

18.2.5 Shingling for Near Duplicate Detection

One of the major problems with the Web pages collected by a crawler is that many duplicates
of the same page may be crawled. This is because the same Web page may be mirrored
at multiple sites. Therefore, it is crucial to have the ability to detect near duplicates. An
approach known as shingling is commonly used for this purpose.

A k-shingle from a document is simply a string of k consecutively occurring words in the
document. A shingle can also be viewed as a k-gram. For example, consider the document
comprising the following sentence:

Mary had a little lamb, its fleece was white as snow.

The set of 2-shingles extracted from this sentence is “Mary had”, “had a”, “a little”, “little
lamb”, “lamb its”, “its fleece”, “fleece was”, “was white”, “white as”, and “as snow”. Note
that the number of k-shingles extracted from a document is no longer than the length of the
document, and 1-shingles are simply the set of words in the document. Let S1 and S2 be
the k-shingles extracted from two documents D1 and D2. Then, the shingle-based similarity
between D1 and D2 is simply the Jaccard coefficient between S1 and S2

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

. (18.1)

Typically, the value of k ranges between 5 and 10 depending on the corpus size and applica-
tion domain. The advantage of using k-shingles instead of the individual words (1-shingles)
for Jaccard coefficient computation is that shingles are less likely than words to repeat in
different documents. There are rk distinct shingles for a lexicon of size r. For k ≥ 5, the
chances of many shingles recurring in two documents becomes very small. Therefore, if two
documents have many k-shingles in common, they are very likely to be near duplicates. To
save space, the individual shingles are hashed into 4-byte (32-bit) numbers that are used
for comparison purposes. Such a representation also enables better efficiency.

18.3 Search Engine Indexing and Query Processing

After the documents have been crawled, they are leveraged for query processing. There are
two primary stages to the search index construction:

1. Offline stage: This is the stage in which the search engine preprocesses the crawled
documents to extract the tokens and constructs an index to enable efficient search. A
quality-based ranking score is also computed for each page at this stage.

http://www.examplesite.com/page1
http://www.examplesite.com/page1/page2

18.3. SEARCH ENGINE INDEXING AND QUERY PROCESSING 595

2. Online query processing: This preprocessed collection is utilized for online query pro-
cessing. The relevant documents are accessed and then ranked using both their rele-
vance to the query and their quality.

The preprocessing steps for Web document processing are described in Chap. 13 on mining
text data. The relevant tokens are extracted and stemmed. Stop words are removed. These
documents are then transformed to the vector space representation for indexing.

After the documents have been transformed to the vector space representation, an
inverted index is constructed on the document collection. The construction of inverted
indices is described in Sect. 5.3.1.2 of Chap. 5. The inverted list maps each word identifier
to a list of document identifiers containing it. The frequency of the word is also stored
with the document identifier in the inverted list. In many implementations, the position
information of the word in the document is stored as well.

Aside from the inverted index that maps words to documents, an index is needed for
accessing the storage location of the inverted word lists relevant to the query terms. These
locations are then used to access the inverted lists. Therefore, a vocabulary index is required
as well. In practice, many indexing methods such as hashing and tries are commonly used.
Typically, a hash function is applied to each word in the query term, to yield the logical
address of the corresponding inverted list.

For a given set of words, all the relevant inverted lists are accessed, and the intersection of
these inverted lists is determined. This intersection is used to determine the Web document
identifiers that contain all, or most of, the search terms. In cases, where one is interested only
in documents containing most of the search terms, the intersection of different subsets of
inverted lists is performed to determine the best match. Typically, to speed up the process,
two indexes are constructed. A smaller index is constructed on only the titles of the Web
page, or anchor text of pages pointing to the page. If enough documents are found in the
smaller index, then the larger index is not referenced. Otherwise, the larger index is accessed.
The logic for using the smaller index is that the title of a Web page and the anchor text of
Web pages pointing to it, are usually highly representative of the content in the page.

Typically, the number of pages returned for common queries may be of the order of
millions or more. Obviously, such a large number of query results will not be easy for a
human user to assimilate. A typical browser interface will present only the first few (say 10)
results to the human user in a single view of the search results, with the option of browsing
other less relevant results. Therefore, one of the most important problems in search engine
query processing is that of ranking. The aforementioned processing of the inverted index
does provide a content-based score. This score can be leveraged for ranking. While the
exact scoring methodology used by commercial engines is proprietary, a number of factors
are known to influence the content-based score:

1. A word is given different weights, depending upon whether it occurs in the title, body,
URL token, or the anchor text of a pointing Web page. The occurrence of the term
in the title or the anchor text of a Web page pointing to that page is generally given
higher weight.

2. The number of occurrences of a keyword in a document will be used in the score.
Larger numbers of occurrences are obviously more desirable.

3. The prominence of a term in font size and color may be leveraged for scoring. For
example, larger font sizes will be given a larger score.

596 CHAPTER 18. MINING WEB DATA

4. When multiple keywords are specified, their relative positions in the documents are
used as well. For example, if two keywords occur close together in a Web page, then
this increases the score.

The content-based score is not sufficient, however, because it does not account for the rep-
utation, or the quality, of the page. It is important to use such mechanisms because of the
uncoordinated and open nature of Web development. After all, the Web allows anyone to
publish almost anything, and therefore there is little control on the quality of the results.
A user may publish incorrect material either because of poor knowledge on the subject,
economic incentives, or with a deliberately malicious intent of publishing misleading infor-
mation.

Another problem arises from the impact of Web spam, in which Web site owners inten-
tionally serve misleading content to rank their results higher. Commercial Web site owners
have significant economic incentives to ensure that their sites are ranked higher. For exam-
ple, an owner of a business on golf equipment, would want to ensure that a search on the
word “golf” ranks his or her site as high as possible. There are several strategies used by
Web site owners to rank their results higher.

1. Content-spamming: In this case, the Web host owner fills up repeated keywords in
the hosted Web page, even though these keywords are not actually visible to the user.
This is achieved by controlling the color of the text and the background of the page.
Thus, the idea is to maximize the content relevance of the Web page to the search
engine, without a corresponding increase in the visible level of relevance.

2. Cloaking: This is a more sophisticated approach, in which the Web site serves different
content to crawlers than it does to users. Thus, the Web site first determines whether
the incoming request is from a crawler or from a user. If the incoming request is from
a user, then the actual content (e.g., advertising content) is served. If the request is
from a crawler, then the content that is most relevant to specific keywords is served.
As a result, the search engine will use different content to respond to user search
requests from what a Web user will actually see.

It is obvious that such spamming will significantly reduce the quality of the search results.
Search engines also have significant incentives to improve the quality of their results to sup-
port their paid advertising model, in which the explicitly marked sponsored links appearing
on the side bar of the search results are truly paid advertisements. Search engines do not
want advertisements (disguised by spamming) to be served as bona fide results to the query,
especially when such results reduce the quality of the user experience. This has led to an
adversarial relationship between search engines and spammers, in which the former use
reputation-based algorithms to reduce the impact of spam. At the other end of Web site
owners, a search engine optimization (SEO) industry attempts to optimize search results by
using their knowledge of the algorithms used by search engines, either through the general
principles used by engines or through reverse engineering of search results.

For a given search, it is almost always the case that a small subset of the results is
more informative or provides more accurate information. How can such pages be deter-
mined? Fortunately, the Web provides several natural voting mechanisms to determine the
reputation of pages.

1. Page citation mechanisms: This is the most common mechanism used to determine
the quality of Web pages. When a page is of high quality, many other Web pages
point to it. A citation can be logically viewed as a vote for the Web page. While the

18.4. RANKING ALGORITHMS 597

number of in-linking pages can be used as a rough indicator of the quality, it does
not provide a complete view because it does not account for the quality of the pages
pointing to it. To provide a more holistic citation-based vote, an algorithm referred
to as PageRank is used.

2. User feedback or behavioral analysis mechanisms: When a user chooses a Web page
from among the responses to a search result, this is clear evidence of the relevance
of that page to the user. Therefore, other similar pages, or pages accessed by other
similar users can be returned. Such an approach is generally hard to implement in
search because of limited user-identification mechanisms. Some search engines, such
as Excite, have used various forms of relevance feedback. While these mechanisms are
used less often by search engines, they are nevertheless quite important for commercial
recommender systems. In commercial recommender systems, the recommendations are
made by the Web site itself during user browsing, rather than by search engines. This
is because commercial sites have stronger user-identification mechanisms (e.g., user
registration) to enable more powerful algorithms for inferring user interests.

Typically, the reputation score is determined using PageRank-like algorithms. Therefore,
if IRScore and RepScore are the content- and reputation-based scores of the Web page,
respectively, then the final ranking score is computed as a function of these scores:

RankScore = f(IRScore,RepScore). (18.2)

The exact function f(·, ·) used by commercial search engines is proprietary, but it is always
monotonically related to both the IRScore and RepScore. Various other factors, such as
the geographic location of the browser, also seem to play a role in the ranking.

It should be pointed out, that citation-based reputation scores are not completely
immune to other types of spamming that involve coordinated creation of a large num-
ber of links to a Web page. Furthermore, the use of anchor text of pointing Web pages in
the content portion of the rank score can sometimes lead to amusingly irrelevant search
results. For example, a few years back, a search on the keyword “miserable failure” in the
Google search engine, returned as its top result, the official biography of a previous president
of the United States of America. This is because many Web pages were constructed in a
coordinated way to use the anchor text “miserable failure” to point to this biography. This
practice of influencing search results by coordinated linkage construction to a particular site
is referred to as Googlewashing. Such practices are less often economically motivated, but
are more often used for comical or satirical purposes.

Therefore, the ranking algorithms used by search engines are not perfect but have,
nevertheless, improved significantly over the years. The algorithms used to compute the
reputation-based ranking score will be discussed in the next section.

18.4 Ranking Algorithms

The PageRank algorithm uses the linkage structure of the Web for reputation-based ranking.
The PageRank method is independent of the user query, because it only precomputes the
reputation portion of the score in Eq. 18.2. The HITS algorithm is query-specific. It uses
a number of intuitions about how authoritative sources on various topics are linked to one
another in a hyperlinked environment.

598 CHAPTER 18. MINING WEB DATA

18.4.1 PageRank

The PageRank algorithm models the importance of Web pages with the use of the citation
(or linkage) structure in the Web. The basic idea is that highly reputable documents are
more likely to be cited (or in-linked) by other reputable Web pages.

A random surfer model on the Web graph is used to achieve this goal. Consider a random
surfer who visits random pages on the Web by selecting random links on a page. The long-
term relative frequency of visits to any particular page is clearly influenced by the number
of in-linking pages to it. Furthermore, the long-term frequency of visits to any page will
be higher if it is linked to by other frequently visited (or reputable) pages. In other words,
the PageRank algorithm models the reputation of a Web page in terms of its long-term
frequency of visits by a random surfer. This long-term frequency is also referred to as the
steady-state probability. This model is also referred to as the random walk model.

The basic random surfer model does not work well for all possible graph topologies.
A critical issue is that some Web pages may have no outgoing links, which may result in
the random surfer getting trapped at specific nodes. In fact, a probabilistic transition is
not even meaningfully defined at such a node. Such nodes are referred to as dead ends. An
example of a dead-end node is illustrated in Fig. 18.2a. Clearly, dead ends are undesirable
because the transition process for PageRank computation cannot be defined at that node.
To address this issue, two modifications are incorporated in the random surfer model. The
first modification is to add links from the dead-end node (Web page) to all nodes (Web
pages), including a self-loop to itself. Each such edge has a transition probability of 1/n.
This does not fully solve the problem, because the dead ends can also be defined on groups
of nodes. In these cases, there are no outgoing links from a group of nodes to the remaining
nodes in the graph. This is referred to as a dead-end component, or absorbing component.
An example of a dead-end component is illustrated in Fig. 18.2b.

Dead-end components are common in the Web graph because the Web is not strongly
connected. In such cases, the transitions at individual nodes can be meaningfully defined,
but the steady-state transitions will stay trapped in these dead-end components. All the
steady-state probabilities will be concentrated in dead-end components because there can
be no transition out of a dead-end component after a transition occurs into it. Therefore,
as long as even a minuscule probability of transition into a dead-end component1 exists,
all the steady-state probability becomes concentrated in such components. This situation is
not desirable from the perspective of PageRank computation in a large Web graph, where
dead-end components are not necessarily an indicator of popularity. Furthermore, in such
cases, the final probability distribution of nodes in various dead-end components is not
unique and it is dependent on the starting state. This is easy to verify by observing that
random walks starting in different dead-end components will have their respective steady-
state distributions concentrated within the corresponding components.

While the addition of edges solves the problem for dead-end nodes, an additional step is
required to address the more complex issue of dead-end components. Therefore, aside from
the addition of these edges, a teleportation, or restart step is used within the random surfer
model. This step is defined as follows. At each transition, the random surfer may either jump
to an arbitrary page with probability α, or it may follow one of the links on the page with
probability (1−α). A typical value of α used is 0.1. Because of the use of teleportation, the

1A formal mathematical treatment characterizes this in terms of the ergodicity of the underlying Markov
chains. In ergodic Markov chains, a necessary requirement is that it is possible to reach any state from any
other state using a sequence of one or more transitions. This condition is referred to as strong connectivity.
An informal description is provided here to facilitate understanding.

18.4. RANKING ALGORITHMS 599

DEAD END

1 2

1/4

1

1/4

1

1/4 1/31/3
1/4

1/2

3 4
1/2

1/3

1/4

DASHED TRANSITIONS ADDED
TO REMOVE DEAD END

1/2

DEAD END COMPONENT

1 4

DEAD END COMPONENT

1/2

2 3 5 6

1 1
1/2

1/2

1/2
2 3 5 6

11

(a) Dead-end node (b) Dead-end component

Figure 18.2: Transition probabilities for PageRank computation with different types of dead
ends

steady state probability becomes unique and independent of the starting state. The value
of α may also be viewed as a smoothing or damping probability. Large values of α typically
result in the steady-state probability of different pages to become more even. For example,
if the value of α is chosen to be 1, then all pages will have the same steady-state probability
of visits.

How are the steady-state probabilities determined? Let G = (N,A) be the directed Web
graph, in which nodes correspond to pages, and edges correspond to hyperlinks. The total
number of nodes is denoted by n. It is assumed that A also includes the added edges from
dead-end nodes to all other nodes. The set of nodes incident on i is denoted by In(i), and
the set of end points of the outgoing links of node i is denoted by Out(i). The steady-state
probability at a node i is denoted by π(i). In general, the transitions of a Web surfer can
be visualized as a Markov chain, in which an n × n transition matrix P is defined for a
Web graph with n nodes. The PageRank of a node i is equal to the steady-state probability
π(i) for node i, in the Markov chain model. The probability2 pij of transitioning from node
i to node j, is defined as 1/|Out(i)|. Examples of transition probabilities are illustrated in
Fig. 18.2. These transition probabilities do not, however, account for teleportation which
will be addressed3 separately below.

Let us examine the transitions into a given node i. The steady-state probability π(i) of
node i is the sum of the probability of a teleportation into it and the probability that one
of the in-linking nodes directly transitions into it. The probability of a teleportation into
the node is exactly α/n because a teleportation occurs in a step with probability α, and
all nodes are equally likely to be the beneficiary of the teleportation. The probability of a
transition into node i is given by (1−α) ·

∑
j∈In(i) π(j) · pji, as the sum of the probabilities

of transitions from different in-linking nodes. Therefore, at steady-state, the probability of
2In some applications such as bibliographic networks, the edge (i, j) may have a weight denoted by wij .

The transition probability pij is defined in such cases by
wij∑

j∈Out(i) wij
.

3An alternative way to achieve this goal is to modify G by multiplying existing edge transition proba-
bilities by the factor (1− α) and then adding α/n to the transition probability between each pair of nodes
in G. As a result G will become a directed clique with bidirectional edges between each pair of nodes. Such
strongly connected Markov chains have unique steady-state probabilities. The resulting graph can then be
treated as a Markov chain without having to separately account for the teleportation component. This
model is equivalent to that discussed in the chapter.

600 CHAPTER 18. MINING WEB DATA

a transition into node i is defined by the sum of the probabilities of the teleportation and
transition events are as follows:

π(i) = α/n+ (1− α) ·
∑

j∈In(i)

π(j) · pji. (18.3)

For example, the equation for node 2 in Fig. 18.2a can be written as follows:

π(2) = α/4 + (1− α) · (π(1) + π(2)/4 + π(3)/3 + π(4)/2).

There will be one such equation for each node, and therefore it is convenient to write the
entire system of equations in matrix form. Let π = (π(1) . . . π(n))T be the n-dimensional
column vector representing the steady-state probabilities of all the nodes, and let e be an
n-dimensional column vector of all 1 values. The system of equations can be rewritten in
matrix form as follows:

π = αe/n+ (1− α)PTπ. (18.4)

The first term on the right-hand side corresponds to a teleportation, and the second term
corresponds to a direct transition from an incoming node. In addition, because the vector
π represents a probability, the sum of its components

∑n
i=1 π(i) must be equal to 1:

n∑
i=1

π(i) = 1. (18.5)

Note that this is a linear system of equations that can be easily solved using an iterative
method. The algorithm starts off by initializing π(0) = e/n, and it derives π(t+1) from π(t)

by repeating the following iterative step:

π(t+1) ⇐ αe/n+ (1− α)PTπ(t). (18.6)

After each iteration, the entries of π(t+1) are normalized by scaling them to sum to 1. These
steps are repeated until the difference between π(t+1) and π(t) is a vector with magnitude
less than a user-defined threshold. This approach is also referred to as the power-iteration
method. It is important to understand that PageRank computation is expensive, and it
cannot be computed on the fly for a user query during Web search. Rather, the PageRank
values for all the known Web pages are precomputed and stored away. The stored PageRank
value for a page is accessed only when the page is included in the search results for a
particular query for use in the final ranking, as indicated by Eq. 18.2.

The PageRank values can be shown to be the n components of the largest left eigenvec-
tor4 of the stochastic transition matrix P (see Exercise 5), for which the eigenvalue is 1. The
largest eigenvalue of a stochastic transition matrix is always 1. The left eigenvectors of P
are the same as the right eigenvectors of PT . Interestingly, the largest right eigenvectors of
the stochastic transition matrix P of an undirected graph can be used to construct spectral
embeddings (cf. Sect. 19.3.4 of Chap. 19), which are used for network clustering.

4The left eigenvector X of P is a row vector satisfying XP = λX. The right eigenvector Y is a column
vector satisfying PY = λY . For asymmetric matrices, the left and right eigenvectors are not the same. How-
ever, the eigenvalues are always the same. The unqualified term “eigenvector” refers to the right eigenvector
by default.

18.4. RANKING ALGORITHMS 601

18.4.1.1 Topic-Sensitive PageRank

Topic-sensitive PageRank is designed for cases in which it is desired to provide greater
importance to some topics than others in the ranking process. While personalization is less
common in large-scale commercial search engines, it is more common in smaller scale site-
specific search applications. Typically, users may be more interested in certain combinations
of topics than others. The knowledge of such interests may be available to a personalized
search engine because of user registration. For example, a particular user may be more
interested in the topic of automobiles. Therefore, it is desirable to rank pages related to
automobiles higher when responding to queries by this user. This can also be viewed as the
personalization of ranking values. How can this be achieved?

The first step is to fix a list of base topics, and determine a high-quality sample of pages
from each of these topics. This can be achieved with the use of a resource such as the Open
Directory Project (ODP),5 which can provide a base list of topics and sample Web pages
for each topic. The PageRank equations are now modified, so that the teleportation is only
performed on this sample set of Web documents, rather than on the entire space of Web
documents. Let ep be an n-dimensional personalization (column) vector with one entry for
each page. An entry in ep takes on the value of 1, if that page is included in the sample
set, and 0 otherwise. Let the number of nonzero entries in ep be denoted by np. Then, the
PageRank Eq. 18.4 can be modified as follows:

π = αep/np + (1− α)PTπ. (18.7)

The same power-iteration method can be used to solve the personalized PageRank problem.
The selective teleportations bias the random walk, so that pages in the structural locality
of the sampled pages will be ranked higher. As long as the sample of pages is a good
representative of different (structural) localities of the Web graph, in which pages of specific
topics exist, such an approach will work well. Therefore, for each of the different topics, a
separate PageRank vector can be precomputed and stored for use during query time.

In some cases, the user is interested in specific combinations of topics such as sports and
automobiles. Clearly, the number of possible combinations of interests can be very large, and
it is not reasonably possible or necessary to prestore every personalized PageRank vector.
In such cases, only the PageRank vectors for the base topics are computed. The final result
for a user is defined as a weighted linear combination of the topic-specific PageRank vectors,
where the weights are defined by the user-specified interest in the different topics.

18.4.1.2 SimRank

The notion of SimRank was defined to compute the structural similarity between nodes.
SimRank determines symmetric similarities between nodes. In other words, the similarity
between nodes i and j, is the same as that between j and i. Before discussing SimRank, we
define a related but slightly different asymmetric ranking problem:

Given a target node iq and a subset of nodes S ⊆ N from graph G = (N,A), rank the
nodes in S in their order of similarity to iq.

Such a query is very useful in recommender systems in which users and items are arranged
in the form of a bipartite graph of preferences, in which nodes corresponds to users and
items, and edges correspond to preferences. The node iq may correspond to an item node,

5http://www.dmoz.org.

http://www.dmoz.org

602 CHAPTER 18. MINING WEB DATA

and the set S may correspond to user nodes. Alternatively, the node iq may correspond to
a user node, and the set S may correspond to item nodes. Recommender systems will be
discussed in Sect. 18.5. Recommender systems are closely related to search, in that they
also perform ranking of target objects, but while taking user preferences into account.

This problem can be viewed as a limiting case of topic-sensitive PageRank, in which
the teleportation is performed to the single node iq. Therefore, the personalized PageRank
Eq. 18.7 can be directly adapted by using the teleportation vector ep = eq, that is, a vector
of all 0s, except for a single 1, corresponding to the node iq. Furthermore, the value of np

in this case is set to 1:
π = αeq + (1− α)PTπ. (18.8)

The solution to the aforementioned equation will provide high ranking values to nodes in
the structural locality of iq. This definition of similarity is asymmetric because the simi-
larity value assigned to node j starting from query node i is different from the similarity
value assigned to node i starting from query node j. Such an asymmetric similarity mea-
sure is suitable for query-centered applications such as search engines and recommender
systems, but not necessarily for arbitrary network-based data mining applications. In some
applications, symmetric pairwise similarity between nodes is required. While it is possible to
average the two topic-sensitive PageRank values in opposite directions to create a symmetric
measure, the SimRank method provides an elegant and intuitive solution.

The SimRank approach is as follows. Let In(i) represent the in-linking nodes of i. The
SimRank equation is naturally defined in a recursive way, as follows:

SimRank(i, j) =
C

|In(i)| · |In(j)|
∑

p∈In(i)

∑
q∈In(j)

SimRank(p, q). (18.9)

Here C is a constant in (0, 1) that can be viewed as a kind of decay rate of the recursion.
As the boundary condition, the value of SimRank(i, j) is set to 1 when i = j. When either
i or j do not have in-linking nodes, the value of SimRank(i, j) is set to 0. To compute
SimRank, an iterative approach is used. The value of SimRank(i, j) is initialized to 1 if
i = j, and 0 otherwise. The algorithm subsequently updates the SimRank values between
all node pairs iteratively using Eq. 18.9 until convergence is reached.

The notion of SimRank has an interesting intuitive interpretation in terms of random
walks. Consider two random surfers walking in lockstep backward from node i and node j
till they meet. Then the number of steps taken by each of them is a random variable L(i, j).
Then, SimRank(i, j) can be shown to be equal to the expected value of CL(i,j). The decay
constant C is used to map random walks of length l to a similarity value of Cl. Note that
because C < 1, smaller distances will lead to higher similarity and vice versa.

Random walk-based methods are generally more robust than the shortest path distance
to measure similarity between nodes. This is because random walks measures implicitly
account for the number of paths between nodes, whereas shortest paths do not. A detailed
discussion of this issue can be found in Sect. 3.5.1.2 of Chap. 3.

18.4.2 HITS

The Hypertext Induced Topic Search (HITS) algorithm is a query-dependent algorithm for
ranking pages. The intuition behind the approach lies in an understanding of the typical
structure of the Web that is organized into hubs and authorities.

An authority is a page with many in-links. Typically, it contains authoritative content
on a particular subject, and, therefore, many Web users may trust that page as a resource of

18.4. RANKING ALGORITHMS 603

A

A

HUBA H

A

A
A

H

H

AUTHORITYH A

H
H

A

H

A

H

A

H

HUBS
AUTHORITIES

A

(a) Hub and authority (b) Network organization between
examples hubs and authorities

Figure 18.3: Illustrating hubs and authorities

knowledge on that subject. This will result in many pages linking to the authority page. A
hub is a page with many out-links to authorities. These represent a compilation of the links
on a particular topic. Thus, a hub page provides guidance to Web users about where they
can find the resources on a particular topic. Examples of the typical node-centric topology
of hubs and authorities in the Web graph are illustrated in Fig. 18.3a.

The main insight used by the HITS algorithm is that good hubs point to many good
authorities. Conversely, good authority pages are pointed to by many hubs. An example of
the typical organization of hubs and authorities is illustrated in Fig. 18.3b. This mutually
reinforcing relationship is leveraged by the HITS algorithm. For any query issued by the
user, the HITS algorithm starts with the list of relevant pages and expands them with a
hub ranking and an authority ranking.

The HITS algorithm starts by collecting the top-r most relevant results to the search
query at hand. A typical value of r is 200. This defines the root set R. Typically, a query
to a commercial search engine or content-based evaluation is used to determine the root
set. For each node in R, the algorithm determines all nodes immediately connected (either
in-linking or out-linking) to R. This provides a larger base set S. Because the base set S
can be rather large, the maximum number of in-linking nodes to any node in R that are
added to S is restricted to k. A typical value of k used is around 50. Note that this still
results in a rather large base set because each of the possibly 200 root nodes might bring
50 in-linking nodes, along with out-linking nodes.

Let G = (S,A) be the subgraph of the Web graph defined on the (expanded) base set
S, where A is the set of edges between nodes in the root set S. The entire analysis of the
HITS algorithm is restricted to this subgraph. Each page (node) i ∈ S is assigned both a
hub score h(i) and authority score a(i). It is assumed that the hub and authority scores are
normalized, so that the sum of the squares of the hub scores and the sum of the squares of

604 CHAPTER 18. MINING WEB DATA

the authority scores are each equal to 1. Higher values of the score indicate better quality.
The hub and authority scores are related to one another in the following way:

h(i) =
∑

j:(i,j)∈A

a(j) ∀i ∈ S (18.10)

a(i) =
∑

j:(j,i)∈A

h(j) ∀i ∈ S. (18.11)

The basic idea is to reward hubs for pointing to good authorities and reward authorities
for being pointed to by good hubs. It is easy to see that the aforementioned system of
equations reinforces this mutually enhancing relationship. This is a linear system of equa-
tions that can be solved using an iterative method. The algorithm starts by initializing
h0(i) = a0(i) = 1/

√
|S|. Let ht(i) and at(i) denote the hub and authority scores of the ith

node, respectively, at the end of the tth iteration. For each t ≥ 0, the algorithm executes
the following iterative steps in the (t+ 1)th iteration:

for each i ∈ S set at+1(i) ⇐
∑

j:(j,i)∈A ht(j);
for each i ∈ S set ht+1(i) ⇐

∑
j:(i,j)∈A at+1(j);

Normalize L2-norm of each of hub and authority vectors to 1;

For hub-vector h = [h(1) . . . h(n)]T and authority-vector a = [a(1) . . . a(n)]T , the updates
can be expressed as a = ATh and h = Aa, respectively, when the edge set A is treated as
an |S| × |S| adjacency matrix. The iteration is repeated to convergence. It can be shown
that the hub vector h and the authority vector a converge in directions proportional to the
dominant eigenvectors of AAT and ATA (see Exercise 6), respectively. This is because the
relevant pair of updates can be shown to be equivalent to power-iteration updates of AAT

and ATA, respectively.

18.5 Recommender Systems

Ever since the popularization of web-based transactions, it has become increasingly easy
to collect data about user buying behaviors. This data includes information about user
profiles, interests, browsing behavior, buying behavior, and ratings about various items.
It is natural to leverage such data to make recommendations to customers about possible
buying interests.

In the recommendation problem, the user–item pairs have utility values associated with
them. Thus, for n users and d items, this results in an n × d matrix D of utility values.
This is also referred to as the utility-matrix. The utility value for a user-item pair could
correspond to either the buying behavior or the ratings of the user for the item. Typically, a
small subset of the utility values are specified in the form of either customer buying behavior
or ratings. It is desirable to use these specified values to make recommendations. The nature
of the utility matrix has a significant influence on the choice of recommendation algorithm:

1. Positive preferences only: In this case, the specified utility matrix only contains posi-
tive preferences. For example, a specification of a “like” option on a social networking
site, the browsing of an item at an online site, or the buying of a specified quantity of
an item, corresponds to a positive preference. Thus, the utility matrix is sparse, with
a prespecified set of positive preferences. For example, the utility matrix may contain
the raw quantities of the item bought by each user, a normalized mathematical func-
tion of the quantities, or a weighted function of buying and browsing behavior. These

18.5. RECOMMENDER SYSTEMS 605

functions are typically specified heuristically by the analyst in an application-specific
way. Entries that correspond to items not bought or browsed by the user may remain
unspecified.

2. Positive and negative preferences (ratings): In this case, the user specifies the ratings
that represent their like or dislike for the item. The incorporation of user dislike in the
analysis is significant because it makes the problem more complex and often requires
some changes to the underlying algorithms.

An example of a ratings-based utility matrix is illustrated in Fig. 18.4a, and an example
of a positive-preference utility matrix is illustrated in Fig. 18.4b. In this case, there are six
users, labeled U1 . . . U6, and six movies with specified titles. Higher ratings indicate more
positive feedback in Fig. 18.4a. The missing entries correspond to unspecified preferences
in both cases. This difference significantly changes the algorithms used in the two cases. In
particular, the two matrices in Fig. 18.4 have the same specified entries, but they provide
very different insights. For example, the users U1 and U3 are very different in Fig. 18.4a
because they have very different ratings for their commonly specified entries. On the other
hand, these users would be considered very similar in Fig. 18.4b because these users have
expressed a positive preference for the same items. The ratings-based utility provides a
way for users to express negative preferences for items. For example, user U1 does not like
the movie Gladiator in Fig. 18.4a. There is no mechanism to specify this in the positive-
preference utility matrix of Fig. 18.4b beyond a relatively ambiguous missing entry. In other
words, the matrix in Fig. 18.4b is less expressive. While Fig. 18.4b provides an example of
a binary matrix, it is possible for the nonzero entries to be arbitrary positive values. For
example, they could correspond to the quantities of items bought by the different users.

This difference has an impact on the types of algorithms that are used in the two cases.
Allowing for positive and negative preferences generally makes the problem harder. From
a data collection point of view, it is also harder to infer negative preferences when they
are inferred from customer behavior rather than ratings. Recommendations can also be
enhanced with the use of content in the user and item representations.

1. Content-based recommendations: In this case, the users and items are both associated
with feature-based descriptions. For example, item profiles can be determined by using
the text of the item description. A user might also have explicitly specified their
interests in a profile. Alternatively, their profile can be inferred from their buying or
browsing behavior.

2. Collaborative filtering: Collaborative filtering, as the name implies, is the leveraging
of the user preferences in the form of ratings or buying behavior in a “collaborative”
way, for the benefit of all users. Specifically, the utility matrix is used to determine
either relevant users for specific items, or relevant items for specific users in the rec-
ommendation process. A key intermediate step in this approach is the determination
of similar groups of items and users. The patterns in these peer groups provide the
collaborative knowledge needed in the recommendation process.

The two models are not exclusive. It is often possible to combine content-based methods
with collaborative filtering methods to create a combined preference score. Collaborative
filtering methods are generally among the more commonly used models and will therefore
be discussed in greater detail in this section.

It is important to understand that the utility matrices used in collaborative filtering
algorithms are extremely large and sparse. It is not uncommon for the values of n and d in

606 CHAPTER 18. MINING WEB DATA

AT
O
R

U
R

AT
H
ER

FE
LL
A
S

A
CE

A
CU

S

G
LA

D
IA

BE
N
H

G
O
D
FA

G
O
O
D

SC
A
RF
A

SP
A
RT
A

U1 1 5 21

U2

35

5

1

4

U 35

3

1

4

U3

U4

3

5

5

4U6

U5

AT
O
R

U
R

AT
H
ER

FE
LL
A
S

A
CE

A
CU

S

G
LA

D
IA

BE
N
H

G
O
D
FA

G
O
O
D

SC
A
RF
A

SP
A
RT
A

U1 1 1 11

U2

11

1

1

1

U 11

1

1

1

U3

U4

1

1

1

1U6

U5

(a) Ratings-based utility (b) Positive-preference utility

Figure 18.4: Examples of utility matrices.

the n × d utility matrix to exceed 105. The matrix is also extremely sparse. For example,
in a movie data set, a typical user may have specified no more than 10 ratings, out of a
universe of more than 105 movies.

At a basic level, collaborative filtering can be viewed as a missing-value estimation or
matrix completion problem, in which an incomplete n × d utility matrix is specified, and
it is desired to estimate the missing values. As discussed in the bibliographic notes, many
methods exist in the traditional statistics literature on missing-value estimation. However,
collaborative filtering problems present a particularly challenging special case in terms of
data size and sparsity.

18.5.1 Content-Based Recommendations

In content-based recommendations, the user is associated with a set of documents that
describe his or her interests. Multiple documents may be associated with a user correspond-
ing to his or her specified demographic profile, specified interests at registration time, the
product description of the items bought, and so on. These documents can then be aggregated
into a single textual content-based profile of the user in a vector space representation.

The items are also associated with textual descriptions. When the textual descriptions
of the items match the user profile, this can be viewed as an indicator of similarity. When
no utility matrix is available, the content-based recommendation method uses a simple k-
nearest neighbor approach. The top-k items are found that are closest to the user textual
profile. The cosine similarity with tf-idf can be used, as discussed in Chap. 13.

On the other hand, when a utility matrix is available, the problem of finding the most
relevant items for a particular user can be viewed as a traditional classification problem.
For each user, we have a set of training documents representing the descriptions of the
items for which that user has specified utilities. The labels represent the utility values.
The descriptions of the remaining items for that user can be viewed as the test documents
for classification. When the utility matrix contains numeric ratings, the class variables are

18.5. RECOMMENDER SYSTEMS 607

numeric. The regression methods discussed in Sect. 11.5 of Chap. 11 may be used in this
case. Logistic and ordered probit regression are particularly popular. In cases where only
positive preferences (rather than ratings) are available in the utility matrix, all the specified
utility entries correspond to positive examples for the item. The classification is then per-
formed only on the remaining test documents. One challenge is that only a small number of
positive training examples are specified, and the remaining examples are unlabeled. In such
cases, specialized classification methods using only positive and unlabeled methods may be
used. Refer to the bibliographic notes of Chap. 11. Content-based methods have the advan-
tage that they do not even require a utility matrix and leverage domain-specific content
information. On the other hand, content information biases the recommendation towards
items described by similar keywords to what the user has seen in the past. Collaborative
filtering methods work directly with the utility matrix, and can therefore avoid such biases.

18.5.2 Neighborhood-Based Methods for Collaborative Filtering

The basic idea in neighborhood-based methods is to use either user–user similarity, or item–
item similarity to make recommendations from a ratings matrix.

18.5.2.1 User-Based Similarity with Ratings

In this case, the top-k similar users to each user are determined with the use of a similarity
function. Thus, for the target user i, its similarity to all the other users is computed.
Therefore, a similarity function needs to be defined between users. In the case of a ratings-
based matrix, the similarity computation is tricky because different users may have different
scales of ratings. One user may be biased towards liking most items, and another user may
be biased toward not liking most of the items. Furthermore, different users may have rated
different items. One measure that captures the similarity between the rating vectors of
two users is the Pearson correlation coefficient. Let X = (x1 . . . xs) and Y = (y1 . . . ys)
be the common (specified) ratings between a pair of users, with means x̂ =

∑s
i=1 xi/s

and ŷ =
∑s

i=1 yi/s, respectively. Alternatively, the mean rating of a user is computed by
averaging over all her specified ratings rather than using only co-rated items by the pair
of users at hand. This alternative way of computing the mean is more common, and it
can significantly affect the pairwise Pearson computation. Then, the Pearson correlation
coefficient between the two users is defined as follows:

Pearson(X,Y) =
∑s

i=1(xi − x̂) · (yi − ŷ)√∑s
i=1(xi − x̂)2 ·

√∑s
i=1(yi − ŷ)2

. (18.12)

The Pearson coefficient is computed between the target user and all the other users. The
peer group of the target user is defined as the top-k users with the highest Pearson coefficient
of correlation with her. Users with very low or negative correlations are also removed from
the peer group. The average ratings of each of the (specified) items of this peer group are
returned as the recommended ratings. To achieve greater robustness, it is also possible to
weight each rating with the Pearson correlation coefficient of its owner while computing
the average. This weighted average rating can provide a prediction for the target user. The
items with the highest predicted ratings are recommended to the user.

The main problem with this approach is that different users may provide ratings on
different scales. One user may rate all items highly, whereas another user may rate all
items negatively. The raw ratings, therefore, need to be normalized before determining the
(weighted) average rating of the peer group. The normalized rating of a user is defined by

608 CHAPTER 18. MINING WEB DATA

subtracting her mean rating from each of her ratings. As before, the weighted average of the
normalized rating of an item in the peer group is determined as a normalized prediction.
The mean rating of the target user is then added back to the normalized rating prediction
to provide a raw rating prediction.

18.5.2.2 Item-Based Similarity with Ratings

The main conceptual difference from the user-based approach is that peer groups are con-
structed in terms of items rather than users. Therefore, similarities need to be computed
between items (or columns in the ratings matrix). Before computing the similarities between
the columns, the ratings matrix is normalized. As in the case of user-based ratings, the
average of each row in the ratings matrix is subtracted from that row. Then, the cosine
similarity between the normalized ratings U = (u1 . . . us) and V = (v1 . . . vs) of a pair of
items (columns) defines the similarity between them:

Cosine(U, V) =
∑s

i=1 ui · vi√∑s
i=1 u

2
i ·

√∑s
i=1 v

2
i

. (18.13)

This similarity is referred to as the adjusted cosine similarity, because the ratings are nor-
malized before computing the similarity value.

Consider the case in which the rating of item j for user i needs to be determined. The
first step is to determine the top-k most similar items to item j based on the aforementioned
adjusted cosine similarity. Among the top-k matching items to item j, the ones for which user
i has specified ratings are determined. The weighted average value of these (raw) ratings is
reported as the predicted value. The weight of item r in this average is equal to the adjusted
cosine similarity between item r and the target item j.

The basic idea is to leverage the user’s own ratings in the final step of making the
prediction. For example, in a movie recommendation system, the item peer group will
typically be movies of a similar genre. The previous ratings history of the same user on
such movies is a very reliable predictor of the interests of that user.

18.5.3 Graph-Based Methods

It is possible to use a random walk on the user-item graph, rather than the Pearson corre-
lation coefficient, for defining neighborhoods. Such an approach is sometimes more effective
for sparse ratings matrices. A bipartite user-item graph G = (Nu ∪ Ni, A) is constructed,
where Nu is the set of nodes representing users, and Ni is the set of nodes representing
items. An undirected edge exists in A between a user and an item for each nonzero entry in
the utility matrix. For example, the user-item graph for both utility matrices of Fig. 18.4
is illustrated in Fig. 18.5. One can use either the personalized PageRank or the SimRank
method to determine the k most similar users to a given user for user-based collaborative
filtering. Similarly, one can use this method to determine the k most similar items to a
given item for item-based collaborative filtering. The other steps of user-based collaborative
filtering and item-based collaborative filtering remain the same.

A more general approach is to view the problem as a positive and negative link predic-
tion problem on the user-item graph. In such cases, the user-item graph is augmented with
positive or negative weights on edges. The normalized rating of a user for an item, after
subtracting the user-mean, can be viewed as either a positive or negative weight on the
edge. For example, consider the graph constructed from the ratings matrix of Fig. 18.4(a).
The edge between user U1 and the item Gladiator would become a negative edge because

18.5. RECOMMENDER SYSTEMS 609

Figure 18.5: Preference graph for utility matrices of Fig. 18.4

U1 clearly dislikes the movie Gladiator. The corresponding network would become a signed
network. Therefore, the recommendation problem is that of predicting high positive weight
edges between users and items in a signed network. A simpler version of the link-prediction
problem with only positive links is discussed in Sect. 19.5 of Chap. 19. Refer to the bibli-
ographic notes for link prediction methods with positive and negative links. The merit of
the link prediction approach is that it can also leverage the available links between differ-
ent users in a setting where they are connected by social network links. In such cases, the
user-item graph no longer remains bipartite.

When users specify only positive preference values for items, the problem becomes sim-
plified because most link prediction methods are designed for positive links. One can also
use the random walks on the user-item graph to perform recommendations, rather than
using it only to define neighborhoods. For example, in the case of Fig. 18.4b, the same
user-item graph of Fig. 18.5 can be used in conjunction with a random-walk approach. This
preference graph can be used to provide different types of recommendations:

1. The top ranking items for the user i can be determined by returning the item nodes
with the largest PageRank in a random walk with restart at node i.

2. The top ranking users for the item j can be determined by returning the user nodes
with the largest PageRank in a random walk with restart at node j.

The choice of the restart probability regulates the trade-off between the global popularity
of the recommended item/user and the specificity of the recommendation to a particular
user/item. For example, consider the case when items need to be recommended to user i.
A low teleportation probability will favor the recommendation of popular items which are
favored by many users. Increasing the teleportation probability will make the recommenda-
tion more specific to user i.

18.5.4 Clustering Methods

One weakness of neighborhood-based methods is the scale of the computation that needs
to be performed. For each user, one typically has to perform computations that are propor-
tional to at least the number of nonzero entries in the matrix. Furthermore, these compu-
tations need to be performed over all users to provide recommendations to different users.

610 CHAPTER 18. MINING WEB DATA

This can be extremely slow. Therefore, a question arises, as to whether one can use cluster-
ing methods to speed up the computations. Clustering also helps address the issue of data
sparsity to some extent.

Clustering methods are exactly analogous to neighborhood-based methods, except that
the clustering is performed as a preprocessing step to define the peer groups. These peer
groups are then used for making recommendations. The clusters can be defined either on
users, or on items. Thus, they can be used to make either user-user similarity recommen-
dations, or item-item similarity recommendations. For brevity, only the user-user recom-
mendation approach is described here, although the item-item recommendation approach
is exactly analogous. The clustering approach works as follows:

1. Cluster all the users into ng groups of users using any clustering algorithm.

2. For any user i, compute the average (normalized) rating of the specified items in its
cluster. Report these ratings for user i; after transforming back to the raw value.

The item–item recommendation approach is similar, except that the clustering is applied to
the columns rather than the rows. The clusters define the groups of similar items (or implic-
itly pseudo-genres). The final step of computing the rating for a user-item combination is
similar to the case of neighborhood-based methods. After the clustering has been performed,
it is generally very efficient to determine all the ratings. It remains to be explained how the
clustering is performed.

18.5.4.1 Adapting k-Means Clustering

To cluster the ratings matrix, it is possible to adapt many of the clustering methods dis-
cussed in Chap. 6. However, it is important to adapt these methods to sparsely specified
incomplete data sets. Methods such as k-means and Expectation Maximization may be used
on the normalized ratings matrix. In the case of the k-means method, there are two major
differences from the description of Chap. 6:

1. In an iteration of k-means, centroids are computed by averaging each dimension over
the number of specified values in the cluster members. Furthermore, the centroid itself
may not be fully specified.

2. The distance between a data point and a centroid is computed only over the speci-
fied dimensions in both. Furthermore, the distance is divided by the number of such
dimensions in order to fairly compare different data points.

The ratings matrix should be normalized before applying the clustering method.

18.5.4.2 Adapting Co-Clustering

The co-clustering approach is described in Sect. 13.3.3.1 of Chap. 13. Co-clustering is well
suited to discovery of neighborhood sets of users and items in sparse matrices. The specified
entries are treated as 1s and the unspecified entries are treated as 0s for co-clustering. An
example of the co-clustering approach, as applied to the utility matrix of Fig. 18.4b, is
illustrated in Fig. 18.6a. In this case, only a 2-way co-clustering is shown for simplicity.
The co-clustering approach cleanly partitions the users and items into groups with a clear
correspondence to each other. Therefore, user-neighborhoods and item-neighborhoods are
discovered simultaneously. After the neighborhoods have been defined, the aforementioned

18.5. RECOMMENDER SYSTEMS 611

R S R A
S

G
LA

D
IA
TO

R

BE
N

H
U
R

SP
A
RT
A
CU

S

G
O
D
FA
TH

E

G
O
O
D
FE
LL
A

SC
A
RF
A
CEINTEREST

GROUP A
CO CLUSTER

1U1

U4

U6

U2

11 1

2

U3

U

INTEREST
GROUP B

CO CLUSTER

1 1U5

CO CLUSTER

(a) Co-cluster (b) User-item graph

1 1

11

11

1 1

Figure 18.6: Co-clustering of user-item graph

user-based methods and item-based methods can be used to make predictions for the missing
entries.

The co-clustering approach also has a nice interpretation in terms of the user-item
graph. Let G = (Nu ∪ Ni, A) denote the preference graph, where Nu is the set of nodes
representing users, and Ni is the set of nodes representing items. An undirected edge exists
in A for each nonzero entry of the utility matrix. Then the co-cluster is a clustering of
this graph structure. The corresponding 2-way graph partition is illustrated in Fig. 18.6b.
Because of this interpretation in terms of user-item graphs, the approach is able to exploit
item-item and user-user similarity simultaneously. Co-clustering methods are also closely
related to latent factor models such as nonnegative matrix factorization that simultaneously
cluster rows and columns with the use of latent factors.

18.5.5 Latent Factor Models

The clustering methods discussed in the previous section use the aggregate properties of
the data to make robust predictions. This can be achieved in a more robust way with
latent factor models. This approach can be used either for ratings matrices or for positive
preference utility matrices. Latent factor models have increasingly become more popular in
recent years. The key idea behind latent factor models is that many dimensionality reduction
and matrix factorization methods summarize the correlations across rows and columns in
the form of lower dimensional vectors, or latent factors. Furthermore, collaborative filtering
is essentially a missing data imputation problem, in which these correlations are used to
make predictions. Therefore, these latent factors become hidden variables that encode the
correlations in the data matrix in a concise way and can be used to make predictions. A
robust estimation of the k-dimensional dominant latent factors is often possible even from
incompletely specified data, when the value of k is much less than d. This is because the
more concisely defined latent factors can be estimated accurately with the sparsely specified
data matrix, as long as the number of specified entries is large enough.

The n users are represented in terms of n corresponding k-dimensional factors, denoted
by the vectors U1 . . . Un. The d items are represented by d corresponding k-dimensional

612 CHAPTER 18. MINING WEB DATA

factors, denoted by the vectors I1 . . . Id. The value of k represents the reduced dimensionality
of the latent representation. Then, the rating rij for user i and item j is estimated by the
vector dot product of the corresponding latent factors:

rij ≈ Ui · Ij . (18.14)

If this relationship is true for every entry of the ratings matrix, then it implies that the
entire ratings matrix D = [rij]n×d can be factorized into two matrices as follows:

D ≈ FuserF
T
item. (18.15)

Here Fuser is an n × k matrix, in which the ith row represent the latent factor Ui for
user i. Similarly, Fitem is an d × k matrix, in which the jth row represents the latent
factor Ij for item j. How can these factors be determined? The two key methods to use for
computing these factors are singular value decomposition, and matrix factorization, which
will be discussed in the sections below.

18.5.5.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is discussed in detail in Sect. 2.4.3.2 of Chap. 2. The
reader is advised to revisit that section before proceeding further. Equation 2.12 of Chap.
2 approximately factorizes the data matrix D into three matrices, and is replicated here:

D ≈ QkΣkP
T
k . (18.16)

Here, Qk is an n× k matrix, Σk is a k × k diagonal matrix, and Pk is a d× k matrix. The
main difference from the 2-way factorization format is the diagonal matrix Σk. However,
this matrix can be included within the user factors. Therefore, one obtains the following
factor matrices:

Fuser = QkΣk (18.17)
Fitem = Pk. (18.18)

The discussion in Chap. 2 shows that the matrix QkΣk defines the reduced and transformed
coordinates of data points in SVD. Thus, each user has a new set of a k-dimensional coor-
dinates in a new k-dimensional basis system Pk defined by linear combinations of items.
Strictly speaking, SVD is undefined for incomplete matrices, although heuristic approxima-
tions are possible. The bibliographic notes provide pointers to methods that are designed
to address this issue. Another disadvantage of SVD is its high computational complexity.
For nonnegative ratings matrices, PLSA may be used, because it provides a probabilistic
factorization similar to SVD.

18.5.5.2 Matrix Factorization

SVD is a form of matrix factorization. Because there are many different forms of matrix
factorization, it is natural to explore whether they can be used for recommendations. The
reader is advised to read Sect. 6.8 of Chap. 6 for a review of matrix factorization. Equa-
tion 6.30 of that section is replicated here:

D ≈ U · V T . (18.19)

18.6. WEB USAGE MINING 613

This factorization is already directly in the form we want. Therefore, the user and item
factor matrices are defined as follows:

Fuser = U (18.20)
Fitem = V. (18.21)

The main difference from the analysis of Sect. 6.8 is in how the optimization objective
function is set up for incomplete matrices. Recall that the matrices U and V are determined
by optimizing the following objective function:

J = ||D − U · V T ||2. (18.22)

Here, || · || represents the Frobenius norm. In this case, because the ratings matrix D is
only partially specified, the optimization is performed only over the specified entries, rather
than all the entries. Therefore, the basic form of the optimization problem remains very
similar, and it is easy to use any off-the-shelf optimization solver to determine U and V .
The bibliographic notes contain pointers to relevant stochastic gradient descent methods.
A regularization term λ(||U ||2+ ||V ||2) containing the squared Frobenius norms of U and V
may be added to J to reduce overfitting. The regularization term is particularly important
when the number of specified entries is small. The value of the parameter λ is determined
using cross-validation.

This method is more convenient than SVD for determining the factorized matrices
because the optimization objective can be set up in a seamless way for an incompletely
specified matrix no matter how sparse it might be. When the ratings are nonnegative, it
is also possible to use nonnegative forms of matrix factorization. As discussed in Sect. 6.8,
the nonnegative version of matrix factorization provides a number of interpretability advan-
tages. Other forms of factorization, such as probabilistic matrix factorization and maximum
margin matrix factorization, are also used. Most of these variants are different in terms of
minor variations in the objective function (e.g., Frobenius norm minimization, or maxi-
mum likelihood maximization) and the constraints (e.g., nonnegativity) of the underlying
optimization problem. These differences often translate to variants of the same stochastic
gradient descent approach.

18.6 Web Usage Mining

The usage of the Web leads to a significant amount of log data. There are two primary types
of logs that are commonly collected:

1. Web server logs: These correspond to the user activity on Web servers. Typically
logs are stored in standardized format, known as the NCSA common log format, to
facilitate ease of use and analysis by different programs. A few variants of this format,
such as the NCSA combined log format, and extended log format, store a few extra
fields. Nevertheless, the number of variants of the basic format is relatively small. An
example of a Web log entry is as follows:

98.206.207.157 - - [31/Jul/2013:18:09:38 -0700] "GET /productA.pdf

HTTP/1.1" 200 328177 "-" "Mozilla/5.0 (Mac OS X) AppleWebKit/536.26

(KHTML, like Gecko) Version/6.0 Mobile/10B329 Safari/8536.25"

"retailer.net"

614 CHAPTER 18. MINING WEB DATA

2. Query logs: These correspond to the queries posed by a user in a search engine. Aside
from the commercial search engine providers, such logs may also be available to Web
site owners if the site contains search features.

These types of logs can be used with a wide variety of applications. For example, the
browsing behavior of users can be extracted to make recommendations. The area of Web
usage mining is too large to be covered by a section of a single chapter. Therefore, the goal of
this section is to provide an overview of how the various techniques discussed in this book can
be mapped to Web usage mining. The bibliographic notes contain pointers to more detailed
Web mining books on this topic. One major issue with Web log applications is that logs
contain data that is not cleanly separated between different users and is therefore difficult
to directly use in arbitrary application settings. In other words, significant preprocessing is
required.

18.6.1 Data Preprocessing

A log file is often available as a continuous sequence of entries that corresponds to the user
accesses. The entries for different users are typically interleaved with one another randomly,
and it is also difficult to distinguish different sessions of the same user.

Typically, client-side cookies are used to distinguish between different user sessions.
However, client-side cookies are often disabled due to privacy concerns at the client end.
In such cases, only the IP address is available. It is hard to distinguish between different
users on the basis of IP addresses only. Other fields, such as user agents and referrers,
are often used to further distinguish. In many cases, at least a subset of the users can be
identified to a reasonable level of granularity. Therefore, only the subset of the logs, where
the users can be identified, is used. This is often sufficient for application-specific scenarios.
The bibliographic notes contain pointers to preprocessing methods for Web logs.

The preprocessing leads to a set of sequences in the form of page views, which are also
referred to as click streams. In some cases, the graph of traversal patterns, as it relates
to the link structure of the pages at the site, is also constructed. For query logs, similar
sequences are obtained in the form of search tokens, rather than page views. Therefore, in
spite of the difference in the application scenario, there is some similarity in the nature of
the data that is collected. In the following, some key applications of Web log mining will be
visited briefly.

18.6.2 Applications

Click-stream data lead to a number of applications of sequence data mining. In the following,
a brief overview of the various applications will be provided, along with the pointers to the
relevant chapters. The bibliographic notes also contain more specific pointers.

Recommendations

Users can be recommended Web pages on the basis of their browsing patterns. In this case,
it is not even necessary to use the sequence information; rather, a user-pageview matrix can
be constructed from the previous browsing behavior. This can be leveraged to infer the user
interest in the different pages. The corresponding matrix is typically a positive preference
utility matrix. Any of the recommendation algorithms in this chapter can be used to infer
the pages, in which the user is most likely to be interested.

18.7. SUMMARY 615

Frequent Traversal Patterns

The frequent traversal patterns at a site provide an overview of the most likely patterns
of user traversals at a site. The frequent sequence mining algorithms of Chap. 15 as well
as the frequent graph pattern mining algorithms of Chap. 17 may be used to determine
the paths that are most popular. The Web site owner can use these results for Web site
reorganization. For example, paths that are very popular should stay as continuous paths
in the Web site graph. Rarely used paths and links may be reorganized, if needed. Links
may be added between pairs of pages if a sequential pattern is frequently observed between
that pair.

Forecasting and Anomaly Detection

The Markovian models in Chap. 15 may be used to forecast future clicks of the user.
Significant deviation of these clicks from expected values may correspond to anomalies. A
second kind of anomaly occurs when an entire pattern of accesses is unusual. These types
of scenarios are different from the case, where a particular page view in the sequence is
considered anomalous. Hidden Markov models may be used to discover such anomalous
sequences. The reader is referred to Chap. 15 for a discussion of these methods.

Classification

In some cases, the sequences from a Web log may be labeled on the basis of desirable
or undesirable activity. An example of a desirable activity is when a user buys a certain
product after browsing a certain sequence of pages at a site. An undesirable sequence may
be indicative of an intrusion attack. When labels are available, it may be possible to perform
early classification of Web log sequences. The results can be used to make online inferences
about the future behavior of Web users.

18.7 Summary

Web data is of two types. The first type of data corresponds to the documents and links
available on the Web. The second type of data corresponds to patterns of user behavior such
as buying behavior, ratings, and Web logs. Each of these types of data can be leveraged for
different insights.

Collecting document data from theWeb is often a daunting task that is typically achieved
with the use of crawlers, or spiders. Crawlers may be either universal crawlers that are used
by commercial search engines, or they may be preferential crawlers, in which only topics
of a particular subject are collected. After the documents are collected, they are stored
and indexed in search engines. Search engines use a combination of textual similarity and
reputation-based ranking to create a final score. The two most common algorithms used for
ranking in search engines are the PageRank and HITS algorithms. Topic-sensitive PageRank
is often used to compute similarity between nodes.

A significant amount of data is collected on the Web, corresponding to user-item pref-
erences. This data can be used for making recommendations. Recommendation methods
can be either content-based or user preference-based. Preference-based methods include
neighborhood-based techniques, clustering techniques, graph-based techniques, and latent
factor-based techniques.

616 CHAPTER 18. MINING WEB DATA

Web logs are another important source of data on the Web. Web logs typically result in
either sequence data or graphs of traversal patterns. If the sequential portion of the data is
ignored, then the logs can also be used for making recommendations. Typical applications
of Web log analysis include determining frequent traversal patterns and anomalies, and
identifying interesting events.

18.8 Bibliographic Notes

Two excellent resources for Web mining are the books in [127, 357]. An early description
of Web search engines, starting from the crawling to the searching phase, is provided by
the founders of the Google search engine [114]. The general principles of crawling may be
found in [127]. There is significant work on preferential crawlers as well [127, 357]. Numerous
aspects of search engine indexing and querying are described in [377].

The PageRank algorithm is described in [114, 412]. The HITS algorithm was described
in [317]. A detailed description of different variations of the PageRank and HITS algorithms
may be found in [127, 343, 357, 377]. The topic-sensitive PageRank algorithm is described
in [258], and the SimRank algorithm is described in [289].

Recommender systems are described well in Web and data mining books [343, 357]. In
addition, general background on the topic is available in journal survey articles and special
issues [2, 325]. The problem of collaborative filtering can be considered a version of the
missing data imputation problem. A vast literature exists on missing data analysis [364].
Item-based collaborative filtering algorithms are discussed in [170, 445]. Graph-based meth-
ods for recommendations are discussed in [210, 277, 528]. Methods for link-prediction in
signed networks are discussed in [341]. The origin of latent factor models is generally cred-
ited to a number of successful entries in the Netflix prize contest [558]. However, the use of
latent factor models for estimating missing entries precedes the work in the field of recom-
mendation analysis and the Netflix prize contest by several years [23]. This work [23] shows
how SVD may be used for approximating missing data entries by combining it with the EM
algorithm. Furthermore, the works in [272, 288, 548], which were performed earlier than the
Netflix prize contest, show how different forms of matrix factorization may be used for rec-
ommendations. After the popularization of this approach by the Netflix prize contest, other
factorization-based methods were also proposed for collaborative filtering [321, 322, 323].
Related matrix factorization models may be found in [288, 440, 456]. Latent semantic models
can be viewed as probabilistic versions of latent factor models, and are discussed in [272].

Web usage mining has been described well in [357]. Both Web log mining and usage
mining are described in this work. A description of methods for Web log preparation may
be found in [161, 477]. Methods for anomaly detection with Web logs are discussed in [5].
Surveys on Web usage mining appear in [65, 390, 425].

18.9 Exercises

1. Implement a universal crawler with the use of a breadth-first algorithm.

2. Consider the string ababcdef . List all 2-shingles and 3-shingles, using each alphabet
as a token.

3. Discuss why it is good to add anchor text to the Web page it points to for mining
purposes, but it is often misleading for the page in which it appears.

18.9. EXERCISES 617

4. Perform a Google search on “mining text data” and “text data mining.” Do you get
the same top-10 search results? What does this tell you about the content component
of the ranking heuristic used by search engines?

5. Show that the PageRank computation with teleportation is an eigenvector computa-
tion on an appropriately constructed probability transition matrix.

6. Show that the hub and authority scores in HITS can be computed by dominant
eigenvector computations on AAT and ATA respectively. Here, A is the adjacency
matrix of the graph G = (S,A), as defined in the chapter.

7. Show that the largest eigenvalue of a stochastic transition matrix is always 1.

8. Suppose that you are told that a particular transition matrix P can be diagonalized as
P = V ΛV −1, where Λ is diagonal. How can you use this result to efficiently determine
the k-hop transition matrix which defines the probability of a transition between each
pair of nodes in k hops? What would you do for the special case when k = ∞? Does
the result hold if we allow the entries of P and V to be complex numbers?

9. Apply the PageRank algorithm to the graph of Fig. 18.2b, using teleportation probabil-
ities of 0.1, 0.2, and 0.4, respectively. What is the impact on the dead-end component
(probabilities) of increasing the teleportation probabilities?

10. Repeat the previous exercise, except that the restart is performed from node 1. How
are steady-state probabilities affected by increasing the teleportation probability?

11. Show that the transition matrix of the graph of Fig. 18.4.1b will have more than one
eigenvector with an eigenvalue of 1. Why is the eigenvector with unit eigenvalue not
unique in this case?

12. Implement the neighborhood-based approach for collaborative filtering on a ratings
matrix.

13. Implement the personalized PageRank approach for collaborative filtering on a
positive-preference utility matrix.

14. Apply the PageRank algorithm to the example of Fig. 18.5 by setting restart proba-
bilities to 0.1, 0.2, and 0.4, respectively.

15. Apply the personalized PageRank algorithm to the example of Fig. 18.5 by restarting
at node Gladiator, and with restart probabilities of 0.1, 0.2, and 0.4, respectively.
What does this tell you about the most relevant users for the movie Gladiator What
does this tell you about the most relevant user for the movie “Gladiator,” who has
not already watched this movie? Is it possible for the most relevant user to change
with teleportation probability? What is the intuitive significance of the teleportation
probability from an application-specific perspective?

16. Construct the optimization formulation for the matrix factorization problem for
incomplete matrices.

17. In the bipartite graph of Fig. 18.5, what is the SimRank value between a user node
and an item node? In this light, explain the weakness of the SimRank model.

Chapter 19

Social Network Analysis

“I hope we will use the Net to cross barriers and connect cultures.”—Tim Berners-Lee

19.1 Introduction

The tendency of humans to connect with one another is a deep-rooted social need that
precedes the advent of the Web and Internet technologies. In the past, social interactions
were achieved through face-to-face contact, postal mail, and telecommunication technolo-
gies. The last of these is also relatively recent when compared with the history of mankind.
However, the popularization of the Web and Internet technologies has opened up entirely
new avenues for enabling the seamless interaction of geographically distributed participants.
This extraordinary potential of the Web was observed during its infancy by its visionary
founders. However, it required a decade before the true social potential of the Web could
be realized. Even today, Web-based social applications continue to evolve and create an
ever-increasing amount of data. This data is a treasure trove of information about user
preferences, their connections, and their influences on others. Therefore, it is natural to
leverage this data for analytical insights.

Although social networks are popularly understood in the context of large online net-
works such as Twitter, LinkedIn, and Facebook, such networks represent only a small minor-
ity of the interaction mechanisms enabled by the Web. In fact, the traditional study of
social network analysis in the field of sociology precedes the popularization of technologi-
cally enabled mechanisms. Much of the discussion in this chapter applies to social networks
that extend beyond the popular notions of online social networks. Some examples are as
follows:

• Social networks have been studied extensively in the field of sociology for more than
a century but not from an online perspective. Data collection was rather difficult in
these scenarios because of the lack of adequate technological mechanisms. Therefore,
these studies were often conducted with painstaking and laborious methods for manual
data collection. An example of such an effort is Stanley Milgram’s famous six degrees
of separation experiment in the sixties, which used postal mail between participants

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 19 619
c© Springer International Publishing Switzerland 2015

620 CHAPTER 19. SOCIAL NETWORK ANALYSIS

to test whether two arbitrary humans on the planet could be connected by a chain
of six relationships. Because of the difficulty in verifying local forwards of mail, such
experiments were often hard to conduct in a trustworthy way. Nevertheless, in spite of
the obvious flaws in the experimental setting, these results have recently been shown
to be applicable to online social networks, where the relationships between individuals
are more easily quantifiable.

• A number of technological enablers, such as telecommunications, email, and electronic
chat messengers, can be considered indirect forms of social networks. Such enablers
result in communications between different individuals, and therefore they have a
natural social aspect.

• Sites that are used for sharing online media content, such as Flickr, YouTube, or Deli-
cious, can also be considered indirect forms of social networks, because they allow an
extensive level of user interaction. In addition, social media outlets provide a num-
ber of unique ways for users to interact with one another. Examples include posting
blogs or tagging each other’s images. In these cases, the interaction is centered around
a specific service such as content-sharing; yet many fundamental principles of social
networking apply. Such social networks are extremely rich from the perspective of min-
ing applications. They contain a tremendous amount of content such as text, images,
audio, or video.

• A number of social networks can be constructed from specific kinds of interactions in
professional communities. Scientific communities are organized into bibliographic and
citation networks. These networks are also content rich because they are organized
around publications.

It is evident that these different kinds of networks illustrate different facets of social network
analysis. Many of the fundamental problems discussed in this chapter apply to these different
scenarios but in different settings. Most of the traditional problems in data mining, such as
clustering and classification, can also be extended to social network analysis. Furthermore, a
number of more complex problem definitions are possible, such as link prediction and social
influence analysis, because of the greater complexity of networks as compared to other kinds
of data.

This chapter is organized as follows. Section 19.2 discusses a number of fundamental
properties of social network analysis. The problem of community detection is explained
in Sect. 19.3. The collective classification problem is discussed in Sect. 19.4. Section 19.5
discusses the link prediction problem. The social influence analysis problem is addressed in
Sect. 19.6. The chapter summary is presented in Sect. 19.7.

19.2 Social Networks: Preliminaries and Properties

It is assumed that the social network can be structured as a graph G = (N,A), where N is
the set of nodes and A is the set of edges. Each individual in the social network is represented
by a node in N , and is also referred to as an actor. The edges represent the connections
between the different actors. In a social network such as Facebook, these edges correspond
to friendship links. Typically, these links are undirected, although it is also possible for
some “follower-based” social networks, such as Twitter, to have directed links. By default,
it will be assumed that the network G = (N,A) is undirected, unless otherwise specified.
In some cases, the nodes in N may have content associated with them. This content may

19.2. SOCIAL NETWORKS: PRELIMINARIES AND PROPERTIES 621

correspond to comments or other documents posted by social network users. It is assumed
that the social network contains n nodes and m edges. In the following, some key properties
of social networks will be discussed.

19.2.1 Homophily

Homophily is a fundamental property of social networks that is used in many applications,
such as node classification. The basic idea in homophily is that nodes that are connected
to one another are more likely to have similar properties. For example, a person’s friend-
ship links in Facebook may be drawn from previous acquaintances in school and work.
Aside from common backgrounds, the friendship links may often imply common interests
between the two parties. Thus, individuals who are linked may often share common beliefs,
backgrounds, education, hobbies, or interests. This is best stated in terms of the old proverb:

Birds of a feather flock together

This property is leveraged in many network-centric applications.

19.2.2 Triadic Closure and Clustering Coefficient

Intuitively, triadic closure may be thought of as an inherent tendency of real-world networks
to cluster. The principle of triadic closure is as follows:

If two individuals in a social network have a friend in common, then it is more likely
that they are either connected or will eventually become connected in the future.

The principle of triadic closure implies an inherent correlation in the edge structure of
the network. This is a natural consequence of the fact that two individuals connected to the
same person are more likely to have similar backgrounds and also greater opportunities to
interact with one another. The concept of triadic closure is related to homophily. Just as
the similarity in backgrounds of connected individuals makes their properties similar, it also
makes it more likely for them to be connected to the same set of actors. While homphily
is typically exhibited in terms of content properties of node attributes, triadic closure can
be viewed as the structural version of homophily. The concept of triadic closure is directly
related to the clustering coefficient of the network.

The clustering coefficient can be viewed as a measure of the inherent tendency of a
network to cluster. This is similar to the Hopkins statistic for multidimensional data (cf.
Sect. 6.2.1.4 of Chap. 6). Let Si ⊆ N be the set of nodes connected to node i ∈ N in the
undirected network G = (N,A). Let the cardinality of Si be ni. There are

(
ni

2

)
possible

edges between nodes in Si. The local clustering coefficient η(i) of node i is the fraction of
these pairs that have an edge between them.

η(i) =
|{(j, k) ∈ A : j ∈ Si, k ∈ Si}|(

ni

2

) (19.1)

The Watts–Strogatz network average clustering coefficient is the average value of η(i) over
all nodes in the network. It is not difficult to see that the triadic closure property increases
the clustering coefficient of real-world networks.

622 CHAPTER 19. SOCIAL NETWORK ANALYSIS

19.2.3 Dynamics of Network Formation

Many real properties of networks are affected by how they are formed. Networks such as
the World Wide Web and social networks are continuously growing over time with new
nodes and edges being added constantly. Interestingly, networks from multiple domains
share a number of common characteristics in the dynamic processes by which they grow.
The manner in which new edges and nodes are added to the network has a direct impact on
the eventual structure of the network and choice of effective mining techniques. Therefore,
the following will discuss some common properties of real-world networks:

1. Preferential attachment: In a growing network, the likelihood of a node receiving new
edges increases with its degree. This is a natural consequence of the fact that highly
connected individuals will typically find it easier to make new connections. If π(i) is
the probability that a newly added node attaches itself to an existing node i in the
network, then a model for the probability π(i) in terms of the degree of node i is as
follows:

π(i) ∝ Degree(i)α (19.2)

The value of the parameter α is dependent on the domain from which the network is
drawn, such as a biological network or social network. In many Web-centric domains,
a scale-free assumption is used. This assumption states that α ≈ 1, and therefore the
proportionality is linear. Such networks are referred to as scale-free networks. This
model is also referred to as the Barabasi–Albert model. Many networks, such as the
World Wide Web, social networks, and biological networks, are conjectured to be scale
free, although the assumption is obviously intended to be an approximation. In fact,
many properties of real networks are not completely consistent with the scale-free
assumption.

2. Small world property: Most real networks are assumed to be “small world.” This
means that the average path length between any pair of nodes is quite small. In
fact, Milgram’s experiment in the sixties conjectured that the distance between any
pair of nodes is about six. Typically, for a network containing n(t) nodes at time
t, many models postulate that the average path lengths grow as log(n(t)). This is
a small number, even for very large networks. Recent experiments have confirmed
that the average path lengths of large-scale networks such as Internet chat networks
are quite small. As discussed below, the dynamically varying diameters have been
experimentally shown to be even more constricted than the (modeled) log(n(t)) growth
rate would suggest.

3. Densification: Almost all real-world networks such as the Web and social networks add
more nodes and edges over time than are deleted. The impact of adding new edges
generally dominates the impact of adding new nodes. This implies that the graphs
gradually densify over time, with the number of edges growing superlinearly with the
number of nodes. If n(t) is the number of nodes in the network at time t, and e(t) is
the number of edges, then the network exhibits the following densification power law:

e(t) ∝ n(t)β (19.3)

The exponent β is a value between 1 and 2. The value of β = 1 corresponds to a
network where the average degree of the nodes is not affected by the growth of the
network. A value of β = 2 corresponds to a network in which the total number of

19.2. SOCIAL NETWORKS: PRELIMINARIES AND PROPERTIES 623

edges e(t) remains a constant fraction of the complete graph of n(t) nodes as n(t)
increases.

4. Shrinking diameters: In most real-world networks, as the network densifies, the average
distances between the nodes shrink over time. This experimental observation is in
contrast to conventional models that suggest that the diameters should increase as
log(n(t)). This unexpected behavior is a consequence of the fact that the addition of
new edges dominates the addition of new nodes. Note that if the impact of adding
new nodes were to dominate, then the average distances between nodes would increase
over time.

5. Giant connected component: As the network densifies over time, a giant connected
component emerges. The emergence of a giant connected component is consistent
with the principle of preferential attachment, in which newly incoming edges are
more likely to attach themselves to the densely connected and high-degree nodes
in the network. This property also has a confounding impact on network clustering
algorithms, because it typically leads to unbalanced clusters, unless the algorithms
are carefully designed.

Preferential attachment also has a significant impact on the typical structure of online
networks. It results in a small number of very high-degree nodes that are also referred to as
hubs. The hub nodes are usually connected to many different regions of the network and,
therefore, have a confounding impact on many network clustering algorithms. The notion
of hubs, as discussed here, is subtly different from the notion of hubs, as discussed in the
HITS algorithm, because it is not specific to a query or topic. Nevertheless, the intuitive
notion of nodes being central points of connectivity in a network, is retained in both cases.

19.2.4 Power-Law Degree Distributions

A consequence of preferential attachment is that a small minority of high-degree nodes
continue to attract most of the newly added nodes. It can be shown that the number of
nodes P (k) with degree k, is regulated by the following power-law degree distribution:

P (k) ∝ k−γ (19.4)

The value of the parameter γ ranges between 2 and 3. It is noteworthy that larger values of
γ lead to more small degree nodes. For example, when the value of γ is 3, the vast majority
of the nodes in the network will have a degree of 1. On the other hand, when the value of
γ is small, the degree distribution is less skewed.

19.2.5 Measures of Centrality and Prestige

Nodes that are central to the network have a significant impact on the properties of the
network, such as its density, pairwise shortest path distances, connectivity, and clustering
behavior. Many of these nodes are hub nodes, with high degrees that are a natural result of
the dynamical processes of large network generation. Such actors are often more prominent
because they have ties to many actors and are in a position of better influence. Their
impact on network mining algorithms is also very significant. A related notion of centrality
is prestige, which is relevant for directed networks. For example, on Twitter, an actor with a
larger number of followers has greater prestige. On the other hand, following a large number
of individuals does not bring any prestige but is indicative of the gregariousness of an actor.

624 CHAPTER 19. SOCIAL NETWORK ANALYSIS

The notion of PageRank, discussed in the previous chapter, is often used as a measure of
prestige.

Measures of centrality are naturally defined for undirected networks, whereas measures of
prestige are designed for directed networks. However, it is possible to generalize centrality
measures to directed networks. In the following, centrality measures will be defined for
undirected networks, whereas prestige measures will be defined for directed networks.

19.2.5.1 Degree Centrality and Prestige

The degree centrality CD(i) of a node i of an undirected network is equal to the degree of the
node, divided by the maximum possible degree of the nodes. The maximum possible degree
of a node in the network is one less than the number of nodes in the network. Therefore, if
Degree(i) is the degree of node i, then the degree centrality CD(i) of node i is defined as
follows:

CD(i) =
Degree(i)
n− 1

(19.5)

Because nodes with higher degree are often hub nodes, they tend to be more central to the
network and bring distant parts of the network closer together. The major problem with
degree centrality is that it is rather myopic in that it does not consider nodes beyond the
immediate neighborhood of a given node i. Therefore, the overall structure of the network is
ignored to some extent. For example, in Fig. 19.1a, node 1 has the highest degree centrality,
but it cannot be viewed as central to the network itself. In fact, node 1 is closer to the
periphery of the network.

Degree prestige is defined for directed networks only, and uses the indegree of the node,
rather than its degree. The idea is that only a high indegree contributes to the prestige
because the indegree of a node can be viewed as a vote for the popularity of the node,
similar to PageRank. Therefore, the degree prestige PD(i) of node i is defined as follows:

PD(i) =
Indegree(i)

n− 1
(19.6)

For example, node 1 has the highest degree prestige in Fig. 19.1b. It is possible to generalize
this notion recursively by taking into account the prestige of nodes pointing to a node,
rather than simply the number of nodes. This corresponds to the rank prestige, which will
be discussed later in this section.

The notion of centrality can also be extended to the node outdegree. This is defined as
the gregariousness of a node. Therefore, the gregariousness GD(i) of a node i is defined as
follows:

GD(i) =
Outdegree(i)

n− 1
(19.7)

The gregariousness of a node defines a different qualitative notion than prestige because it
quantifies the propensity of an individual to seek out new connections (such as following
many other actors in Twitter), rather than his or her popularity with respect to other actors.

19.2.5.2 Closeness Centrality and Proximity Prestige

The example of Fig. 19.1a shows that the degree centrality criterion is susceptible to picking
nodes on the periphery of the network with no regard to their indirect relationships to other
nodes. In this context, closeness centrality is more effective.

19.2. SOCIAL NETWORKS: PRELIMINARIES AND PROPERTIES 625

67
16

17
HIGHEST

BETWEENNESS

1 32 4 5

8

9
14

15CENTRALITY

10

11 13G S G HIGHEST
12

HI HEST DEGREE
CENTRALITY CLOSENESS

CENTRALITY

7

65

1 2

34

CINFLUENCE
SET OF NODE 1

centrality illustration proximity prestige(a) (b)

Figure 19.1: Illustration of centrality and prestige

The notion of closeness centrality is meaningfully defined with respect to undirected and
connected networks. The average shortest path distance, starting from node i, is denoted by
AvDist(i) and is defined in terms of the pairwise shortest path distances Dist(i, j), between
nodes i and j as follows:

AvDist(i) =

∑n
j=1 Dist(i, j)

n− 1
(19.8)

The closeness centrality is simply the inverse of the average distance of other nodes to
node i.

CC(i) = 1/AvDist(i) (19.9)

Because the value of AvDist(i) is at least 1, this measure ranges between 0 and 1. In the
case of Fig. 19.1a, node 3 has the highest closeness centrality because it has the lowest
average distance to other nodes.

A measure known as proximity prestige can be used to measure prestige in directed
networks. To compute the proximity prestige of node i, the shortest path distance to node i
from all other nodes is computed. Unlike undirected networks, a confounding factor in the
computation is that directed paths may not exist from other nodes to node i. For example,
no path exists to node 7 in Fig. 19.1b. Therefore, the first step is to determine the set of
nodes Influence(i) that can reach node i with a directed path. For example, in the case of
the Twitter network, Influence(i) corresponds to all recursively defined followers of node i.
An example of an influence set of node 1 is illustrated in Fig. 19.1b. The value of AvDist(i)
can now be computed only with respect to the influence set Influence(i).

AvDist(i) =

∑
j∈Influence(i) Dist(j, i)

|Influence(i)| (19.10)

Note that distances are computed from node j to i, and not vice versa, because we are
computing a prestige measure, rather than a gregariousness measure.

Both the size of the influence set and average distance to the influence set play a role
in defining the proximity prestige. While it is tempting to use the inverse of the average
distance, as in the previous case, this would not be fair. Nodes that have less influence
should be penalized. For example, in Fig. 19.1b, node 6 has the lowest possible distance
value of 1 from node 7, which is also the only node it influences. While its low average
distance to its influence set suggests high prestige, its small influence set suggests that it

626 CHAPTER 19. SOCIAL NETWORK ANALYSIS

cannot be considered a node with high prestige. To account for this, a multiplicative penalty
factor is included in the measure that corresponds to the fractional size of the influence set
of node i.

InfluenceFraction(i) =
|Influence(i)|

n− 1
(19.11)

Then, the proximity prestige PP (i) is defined as follows:

PP (i) =
InfluenceFraction(i)

AvDist(i)
(19.12)

This value also lies between 0 and 1. Higher values indicate greater prestige. The highest
possible proximity prestige value of 1 is realized at the central node of a perfectly star-
structured network, with a single central actor and all other actors as its (in-linking) spokes.

In the case of Fig. 19.1b, node 1 has an influence fraction of 4/6, and an average distance
of 5/4 from the four nodes that reach it. Therefore, its proximity prestige is 4 ∗ 4/(5 ∗ 6) =
16/30. On the other hand, node 6 has a better average distance of 1 to the only node that
reaches it. However, because its influence fraction is only 1/6, its proximity prestige is 1/6
as well. This suggests that node 1 has better proximity prestige than node 6. This matches
our earlier stated intuition that node 6 is not a very influential node.

19.2.5.3 Betweenness Centrality

While closeness centrality is based on notions of distances, it does not account for the
criticality of the node in terms of the number of shortest paths that pass through it. Such
notions of criticality are crucial in determining actors that have the greatest control of the
flow of information between other actors in a social network. For example, while node 3 has
the highest closeness centrality, it is not as critical to shortest paths between different pairs
of nodes as node 4 in Fig. 19.1a. Node 4 can be shown to be more critical because it also
participates in shortest paths between the pairs of nodes directly incident on it, whereas
node 3 does not participate in these pairs. The other pairs are approximately the same in
the two cases. Therefore, node 4 controls the flow of information between nodes 12 and 17
that node 3 does not control.

Let qjk denote the number of shortest paths between nodes j and k. For graphs that are
not trees, there will often be more than one shortest path between pairs of nodes. Let qjk(i)
be the number of these pairs that pass through node i. Then, the fraction of pairs fjk(i)
that pass through node i is given by fjk(i) = qjk(i)/qjk. Intuitively, fjk(i) is a fraction that
indicates the level of control that node i has over nodes j and k in terms of regulating the
flow of information between them. Then, the betweenness centrality CB(i) is the average
value of this fraction over all

(
n
2

)
pairs of nodes.

CB(i) =

∑
j<k fjk(i)(

n
2

) (19.13)

The betweenness centrality also lies between 0 and 1, with higher values indicating better
betweenness. Unlike closeness centrality, betweenness centrality can be defined for discon-
nected networks as well.

While the aforementioned notion of betweenness centrality is designed for nodes, it can
be generalized to edges by using the number of shortest paths passing through an edge
(rather than a node). For example, the edges connected to the hub nodes in Fig. 19.2 have
high betweenness. Edges that have high betweenness tend to connect nodes from different

19.3. COMMUNITY DETECTION 627

clusters in the graph. Therefore, these betweenness concepts are used in many community
detection algorithms, such as the Girvan–Newman algorithm. In fact, the computation
of node- and edge-betweenness values is described in Sect. 19.4 on the Girvan–Newman
algorithm.

19.2.5.4 Rank Centrality and Prestige

The concepts of rank centrality and prestige are defined by random surfer models. The
PageRank score can be considered a rank centrality score in undirected networks and a
rank prestige score in directed networks. Note that the PageRank scores are components of
the largest left eigenvector of the random walk transition matrix of the social network. If
the adjacency matrix is directly used instead of the transition matrix to compute the largest
eigenvector, the resulting scores are referred to as eigenvector centrality scores. Eigenvector
centrality scores are generally less desirable than PageRank scores because of the dispro-
portionately large influence of high-degree nodes on the centrality scores of their neighbors.

Because the computation of these scores was already discussed in detail in Chap. 18, it
will not be revisited here. The idea here is that a citation of a node by another node (such
as a follower in Twitter) is indicative of prestige. Although this is also captured by degree
prestige, the latter does not capture the prestige of the nodes incident on it. The PageRank
computation can be considered a refined version of degree prestige, where the quality of the
nodes incident on a particular node i are used in the computation of its prestige.

19.3 Community Detection

The term “community detection” is an approximate synonym for “clustering” in the context
of social network analysis. The clustering of networks and graphs is also sometimes referred
to as “graph partitioning” in the traditional work on network analysis. Therefore, the lit-
erature in this area is rich and includes work from many different fields. Much of the work
on graph partitioning precedes the formal study of social network analysis. Nevertheless, it
continues to be relevant to the domain of social networks. Community detection is one of
the most fundamental problems in social network analysis. The summarization of closely
related social groups is, after all, one of the most succinct and easily understandable ways
of characterizing social structures.

In the social network domain, network clustering algorithms often have difficulty in
cleanly separating out different clusters because of some natural properties of typical social
networks.

• Multidimensional clustering methods, such as the distance-based k-means algorithm,
cannot be easily generalized to networks. In small-world networks, the distances
between different pairs of nodes is a small number that cannot provide a sufficiently
fine-grained indicator of similarity. Rather, it is more important to use triadic closure
properties of real networks, explicitly or implicitly, in the clustering process.

• While social networks usually have distinct community structures, the high-degree
hub nodes connect different communities, thereby bringing them together. Examples
of such hub nodes connecting up different communities are illustrated in Fig. 19.2. In
this case, the nodes A, B, and C are hubs that connect up different communities. In
real social networks, the structure may be even more complicated, with some of the
high-degree nodes belonging to particular sets of overlapping communities.

628 CHAPTER 19. SOCIAL NETWORK ANALYSIS

COMMUNITY 1
COMMUNITY 2

BA

C
HUBS

COMMUNITY 4

COMMUNITY 3

Figure 19.2: Impact of hubs on communities

• Different parts of the social network have different edge densities. In other words, the
local clustering coefficients in distinct parts of the social network are typically quite
different. As a result, when specific choices of parameters are used to quantify the
clusters globally, it leads to unbalanced clusters because a single global parameter
choice is not relevant in many network localities.

• Real social networks often have a giant component that is densely connected. This
contributes further to the tendency of community detection algorithms to create imbal-
anced clusters, where a single cluster is the beneficiary of most of the nodes in the
network.

Many network clustering algorithms have built-in mechanisms to address such issues. In the
following, a discussion of some of the most well-known network clustering algorithms will
be provided.

Assume that the undirected network is denoted by G = (N,A). The weight of the edge
(i, j) between nodes i and j, is denoted by wij = wji. In some cases, the inverse concept of
edge costs (or lengths) is specified instead of weights. In such cases, we assume that the edge
cost is denoted by cij . These values can be converted to one another by using wij = 1/cij ,
or a suitably chosen kernel function.

The problem of network clustering, or community detection, is that of partitioning the
network into k sets of nodes, such that the sum of the weights of the edges with end points
in different partitions is minimized. Many variations of this basic objective function are
used in practice and are able to achieve different application-specific goals, such as partition
balancing in which different clusters have similar numbers of nodes.

In the special case, where wij = 1, and there are no balancing constraints on partitions,
the 2-way cut problem is polynomially solvable. The reader is advised to refer to the biblio-
graphic notes for pointers to Karger’s randomized minimum cut algorithm. This algorithm
can determine the minimum cut in O(n2logr(n)) time for a network containing n nodes,
where r is a constant regulating the desired level of probabilistic accuracy. However, the
resulting cut is usually not balanced. Incorporating arbitrary edge weights or balancing con-
straints makes the problem NP-hard. Many network clustering algorithms focus on balanced
2-way partitioning of graphs. A 2-way partitioning can be recursively used to generate a
k-way partitioning.

19.3. COMMUNITY DETECTION 629

19.3.1 Kernighan–Lin Algorithm

The Kernighan–Lin algorithm is a classical method for balanced 2-way graph partitioning.
The basic idea is to start with an initial partitioning of the graph into two equal1 subsets
of nodes. The algorithm then iteratively improves this partitioning, until it converges to an
optimal solution. This solution is not guaranteed to be the global optimum, but it is usually
a good heuristic approximation. This iterative improvement is performed by determining
sequences of exchanges of nodes between partitions that improve the clustering objective
function as much as possible. To evaluate the improvement in the clustering objective func-
tion by performing an exchange between a pair of nodes, some carefully chosen measures
need to be continuously tracked maintained at each node. These will be discussed below.

The internal cost Ii of node i is the sum of the weights of edges incident on i, whose
other end is present in the same partition as node i. The external cost Ei of node i, is the
sum of the weights of the edges incident on i, whose other end is in a different partition
than node i. Moving a node from one partition to the other changes its external cost to its
internal cost and vice versa. Therefore, the gain Di by moving a node i from one partition
to the other is given by the difference between the external and the internal cost.

Di = Ei − Ii (19.14)

Of course, we are not interested in simply moving a node from one partition to the other,
but in exchanging a pair of nodes i and j between two partitions. Then, the gain Jij of
exchanging nodes i and j is given by the following:

Jij = Di +Dj − 2 · wij (19.15)

This is simply a sum of the gains from moving nodes i and j to different partitions, with
a special adjustment for the impact on the edge (i, j) that continues to be a part of the
external cost of both nodes because of the exchange. The value of Jij therefore quantifies
the gain that one can obtain by exchanging nodes i and j. Positive values of Jij result in
an improvement of the objective function.

The overall algorithm uses repeated sequences of at most (n/2) heuristic exchanges
between the two partitions, which are designed to optimize the total gain from the
exchanges. Each such sequence of at most (n/2) exchanges will be referred to as an epoch.
Each epoch proceeds as follows. A pair of nodes is found, such that the exchange leads to
the maximum improvement in the objective function value. This pair of nodes is marked,
although the exchange is not actually performed. The values of Di for different nodes are
recomputed, however, as if the exchange were already performed. Then, the next pair of
unmarked nodes is determined with these recomputed values of Di, for which the exchange
leads to the maximum improvement in the objective function value. It should be pointed out
that the gains will not always decrease, as further potential exchanges are determined. Fur-
thermore, some intermediate potential exchanges might even have negative gain, whereas
later potential exchanges might have positive gain. The process of determining potential
exchange pairs is repeated until all n nodes have been paired. Any sequence of k ≤ n/2
contiguous potential pairs, starting with the first pair, and in the same order as they were
determined, is considered a valid potential k-exchange between the two partitions. Among
these different possibilities, the potential k-exchange maximizing the total gain is found.
If the gain is positive, then the potential k-exchange is executed. This entire process of a

1Without loss of generality, it can be assumed that the graph contains an even number of nodes, by
adding a single dummy node.

630 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Algorithm KernighanLin(Graph: G = (N,A), Weights:[wij])
begin
Create random initial partition of N into N1 and N2;
repeat
Recompute Di values for each node i ∈ N ;
Unmark all nodes in N ;
for i = 1 to n/2 do
begin
Select xi ∈ N1 and yi ∈ N2 to be the unmarked node pair with

the highest exchange-gain g(i) = Jxiyi
;

Mark xi and yi;
Recompute Dj for each node j, under the assumption that

xi and yi will be eventually exchanged;
end

Determine k that maximizes Gk =
∑k

i=1 g(i);
if (Gk > 0) then exchange {x1 . . . xk} and

{y1 . . . yk} between N1 and N2;
until (Gk ≤ 0);
return(N1, N2);

end

Figure 19.3: The Kernighan–Lin algorithm

k-exchange is referred to as an epoch. The algorithm repeatedly executes such epochs of
k-exchanges. If no such k-exchange with positive gain can be found, then the algorithm
terminates. The overall algorithm is illustrated in Fig. 19.3.

The Kernighan–Lin algorithm converges rapidly to a local optimum. In fact, a very
small number of epochs (fewer than five) may be required for the algorithm to terminate.
Of course, there is no guarantee on the required number of epochs, considering that the
problem is NP-hard. The running time of each epoch can be amortized to O(m·log(n)) time,
where m is the number of edges and n is the number of nodes. Variants of the algorithm
have been proposed to speed up the method significantly.

19.3.1.1 Speeding Up Kernighan–Lin

A fast variant of Kernighan–Lin is based on the modifications by Fiduccia and Mattheyses.
This version can also handle weights associated with both nodes and edges. Furthermore,
the approach allows the specification of the level of balance between the two partitions as a
ratio. Instead of pairing nodes in an epoch to swap them, one can simply move a single node
i from one partition to the other so that the gain Di of Eq. 19.14 is as large as possible. Only
nodes that can move without violating2 the balancing constraint are considered eligible for
a move at each step. After moving node i, it is marked so that it will not be considered
again in the current epoch. The values of Dj on the other vertices j ∈ N are updated to
reflect this change. This process is repeated until either all nodes have been considered for
a move in an epoch or the balancing criterion prevents further moves. The latter is possible

2Moving a node from one partition to the other will frequently cause violations unless some flexibility is
allowed in the balancing ratio. In practice, a slight relaxation (or small range) of required balancing ratios
may be used to ensure feasible solutions.

19.3. COMMUNITY DETECTION 631

when the desired partition ratios are unbalanced, or the nodes do not have unit weights.
Note that many potential moves in an epoch might have negative gain. Therefore, as in the
original Kernighan–Lin algorithm, only the best partition created during an epoch is made
final and the remaining moves are undone. A special data structure was also introduced by
Fiduccia and Mattheyses to implement each epoch in O(m) time, where m is the number
of edges. In practice, a small number of epochs is usually required for convergence in most
real-world networks, although there is no guarantee on the required number of epochs.

While the original improvement of Fiduccia and Mattheyses moves as many vertices as
possible in an epoch, it was observed by Karypis and Kumar that it is not necessary to do so.
Rather, one can terminate an epoch, if the partitioning objective function does not improve
in a predefined number np of moves. These np moves are then undone, and the epoch
terminates. The typical value of np chosen is 50. Furthermore, it is not always necessary to
move the vertex with the largest possible gain, as long as the gain is positive. Dropping the
restriction of finding a vertex with the largest gain improves the per-move cost significantly.
The improvements from these simple modifications are significant in many scenarios.

19.3.2 Girvan–Newman Algorithm

This algorithm uses edge lengths cij , rather than the edge weights wij . The edge lengths may
be viewed as in the inverse of the edge weights. In cases, where edge weights are specified,
one may heuristically transform them to edge lengths by using cij = 1/wij , or a suitable
application-specific function.

The Girvan–Newman algorithm is based on the intuition that edges with high between-
ness have a tendency to connect different clusters. For example, the edges that are incident
on the hub nodes in Fig. 19.2 have a high betweenness. Their high betweenness is a result
of the large number of pairwise shortest paths between nodes of different communities pass-
ing through these edges. Therefore, the disconnection of these edges will result in a set of
connected components that corresponds to the natural clusters in the original graph. This
disconnection approach forms the basis of the Girvan–Newman algorithm.

The Girvan–Newman algorithm is a top-down hierarchical clustering algorithm that
creates clusters by successively removing edges with the highest betweenness until the graph
is disconnected into the required number of connected components. Because each edge
removal impacts the betweenness values of some of the other edges, the betweenness values
of these edges need to be recomputed after each removal. The Girvan–Newman algorithm
is illustrated in Fig. 19.4.

The main challenge in the Girvan–Newman algorithm is the computation of the edge
betweenness values. The computation of node betweenness values is an intermediary step
in the edge-betweenness computation. Recall that all node and edge-betweenness centrality
values are defined as a function of the exhaustive set of shortest paths between all source–
sink pairs. These betweenness centrality values can, therefore, be decomposed into several
additive components, where each component is defined by the subset of the shortest paths
originating from a source node s. To compute these betweenness components, a two-step
approach is used for each possible source node s:

1. The number of shortest paths from the source node s to every other node is computed.

2. The computations in the first step are used to compute the component Bs(i) of the
node betweenness centrality of node i, and the component bs(i, j) of the edge between-
ness centrality of edge (i, j), that correspond to the subset of shortest paths originating
from a particular source node s.

632 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Algorithm GirvanNewman(Graph: G = (N,A), Number of Clusters: k,
Edge lengths: [cij])

begin
Compute betweenness value of all edges in graph G;
repeat
Remove edge (i, j) from G with highest betweenness;
Recompute betweenness of edges affected by removal of (i, j);

until G has k components remaining;
return connected components of G;

end

Figure 19.4: The Girvan–Newman Algorithm

These source node-specific betweenness centrality components can then be added over all
possible source nodes to compute the overall betweenness centrality values.

The first step in the betweenness centrality computation is to create a graph of edges
that lie on at least one shortest path from node s to some other node. Such edges are
referred to as tight edges for source node s. The betweenness value component of an edge
for a particular source node s can be nonzero only if that edge is tight for that source
node. The Dijkstra algorithm, described in Sect. 3.5.1.1 of Chap. 3, is used to determine
the shortest path distances SP (j) from the source node s to node j. In order for an edge
(i, j) to be tight, the following condition has to hold:

SP (j) = SP (i) + cij (19.16)

Therefore, the directed subgraph Gs = (N,As) of tight edges is determined, where As ⊆ A.
The direction of the edge (i, j) is such that SP (j) > SP (i). Therefore, the subgraph of tight
edges is a directed acyclic graph. An example of a base graph, together with its subgraph of
tight edges, is illustrated in Fig. 19.5. The edges are annotated with their lengths. In this
case, node 0 is assumed to be the source node. The subgraph of tight edges will obviously
vary with the choice of the source node. The shortest-path distances SP (i) of node i from
source node 0 are illustrated by the first component of the pair of numbers annotating the
nodes in Fig. 19.5b.

The number of shortest paths Ns(j) from the source node s to a given node j is relatively
easy to determine from the subgraph of tight edges. This is because the number of paths
to a given node is equal to the sum of the number of paths to the nodes incident on it.

Ns(j) =
∑

i:(i,j)∈As

Ns(i) (19.17)

The algorithm starts by setting Ns(s) = 1 for the source node s. Subsequently, the algorithm
performs a breadth first search of the subgraph of tight edges, starting with the source node.
The number of paths to each node is computed as the sum of the paths to its ancestors in
the directed acyclic graph of tight edges, according to Eq. 19.17. The number of shortest
paths to each node, from source node 0, is illustrated in Fig. 19.5b by the second component
of the pair of numbers annotating each node.

The next step is to compute the component of the betweenness centrality for both nodes
and edges starting at the source node s. Let fsk(i) be the fraction of shortest paths between
nodes s and k, that pass through node i. Let Fsk(i, j) be the fraction of shortest paths

19.3. COMMUNITY DETECTION 633

0
1 6 3

SOURCE
NODE

1 2

24

2

4 5

3
24

3
21

6

3

12

0

(SP(i), N(i)) = (0, 1)
SOURCE

NODE
1 3

1 2

3

(1, 1) (3, 2)

(
4 2

2

4 5

(5, 3)

(7, 3)(6, 3)

1 2

6
(8, 6)

2 1

Original graph Tight-edge subgraph(a) (b)

Figure 19.5: Original graph and subgraph of tight edges

between nodes s and k, that pass through edge (i, j). The corresponding components of
node betweenness centrality and edge betweenness centrality, specific to node s, are denoted
by Bs(i) and bs(i, j), and they are defined as follows:

Bs(i) =
∑
k
=s

fsk(i) (19.18)

bs(i, j) =
∑
k
=s

Fsk(i, j) (19.19)

It is easy to see that the unnormalized values3 of the node betweenness centrality of i and
the edge betweenness centrality of (i, j) may be obtained by respectively summing up each
of Bs(i) and bs(i, j) over the different source nodes s.

The graph Gs of tight edges is used to compute these values. The key is to set up
recursive relationships between Bs(i) and bs(i, j) as follows:

Bs(j) =
∑

i:(i,j)∈As

bs(i, j) (19.20)

Bs(i) = 1 +
∑

j:(i,j)∈As

bs(i, j) (19.21)

These relationships follow from the fact that shortest paths through a particular node always
pass through exactly one of its incoming and outgoing edges, unless they end at that node.
The second equation has an additional credit of 1 to account for the paths ending at node
i, for which the full fractional credit fsi(i) = 1 is given to Bs(i).

The source node s is always assigned a betweenness score of Bs(s) = 0. The nodes and
edges of the directed acyclic tight graph Gs are processed “bottom up,” starting at the
nodes without any outgoing edges. The score Bs(i) of a node i is finalized, only after the

3The normalized values, such as those in Eq. 19.13, may be obtained by dividing the unnormalized
values by n · (n − 1) for a network with n nodes. The constant of proportionality is irrelevant because the
Girvan–Newman algorithm requires only the identification of the edge with the largest betweenness.

634 CHAPTER 19. SOCIAL NETWORK ANALYSIS

scores on all its outgoing edges have been finalized. Similarly, the score bs(i, j) of an edge
(i, j) is finalized only after the score Bs(j) of node j has been finalized. The algorithm starts
by setting all nodes j without any outgoing edges to have a score of Bs(j) = fsj(j) = 1. This
is because such a node j, without outgoing edges, is (trivially) a intermediary between s
and j, but it cannot be an intermediary between s and any other node. Then, the algorithm
iteratively updates scores of nodes and edges in the bottom-up traversal as follows:

• Edge Betweenness Update: Each edge (i, j) is assigned a score bs(i, j) that is based on
partitioning the score Bs(j) into all the incoming edges (i, j) based on Eq. 19.20. The
value of bs(i, j) is proportional to Ns(i) that was computed earlier. Therefore, bs(i, j)
is computed as follows.

bs(i, j) =
Ns(i) ·Bs(j)∑
k:(k,j)∈As Ns(k)

(19.22)

• Node Betweenness Update: The value of Bs(i) is computed by summing up the values
of bs(i, j) of all its outgoing edges and then adding 1, according to Eq. 19.21.

This entire procedure is repeated over all source nodes, and the values are added up. Note
that this provides unscaled values of the node and edge betweenness, which may range from
0 to n · (n− 1). The (aggregated) value of Bs(i) over all source nodes s can be converted to
CB(i) of Eq. 19.13 by dividing it with n · (n− 1).

The betweenness values can be computed more efficiently incrementally after edge
removals in the Girvan–Newman algorithm. This is because the graphs of tight edges can
be computed more efficiently by the use of the incremental shortest path algorithm. The
bibliographic notes contain pointers to these methods. Because most of the betweenness
computations are incremental, they do not need to be performed from scratch, which makes
the algorithm more efficient. However, the algorithm is still quite expensive in practice.

19.3.3 Multilevel Graph Partitioning: METIS

Most of the aforementioned algorithms are quite slow in practice. Even the spectral algo-
rithm, discussed later in this section, is quite slow. The METIS algorithm was designed to
provide a fast alternative for obtaining high-quality solutions. The METIS algorithm allows
the specification of weights on both the nodes and edges in the clustering process. Therefore,
it will be assumed that the weight on each edge (i, j) of the graph G = (N,A) is denoted
by wij , and the weight on node i is denoted by vi.

The METIS algorithm can be used to perform either k-way partitioning or 2-way par-
titioning. The k-way multilevel graph-partitioning method is based on top-down 2-way
recursive bisection of the graph to create k-way partitionings, although variants to perform
direct k-way partitioning also exist. Therefore, the following discussion will focus on the
2-way bisection of the graph.

The METIS algorithm uses the principle that the partitioning of a coarsened represen-
tation of a graph can be used to efficiently derive an approximate partition of the original
graph. The coarsened representation of a graph is obtained by contracting some of the adja-
cent nodes into a single node. The contraction may result in self-loops that are removed.
Such self-loops are also referred to as collapsed edges. The weights of the contracted nodes
are equal to the sum of the weights of the constituent nodes in the original graph. Simi-
larly, the parallel edges across contracted nodes are consolidated into a single edge with the
weights of the constituent edges added together. An example of a coarsened representation
of a graph, in which some pairs of adjacent nodes are contracted, is illustrated in Fig. 19.6.

19.3. COMMUNITY DETECTION 635

1
11 2

3

4
2

4

31

1

13
2

13

PARTITIONING
INHERITED FROM

2 COARSENED GRAPH

3

5
3

1
4 3

3
1

A POSSIBLE

2
PARTITIONING OF

COARSENED GRAPH

Original graph with Coarsened graph with
inherited partition from partition

coarsened graph

(a) (b)

Figure 19.6: Illustration of coarsening and partitioning inheritance in uncoarsening

The corresponding node weights and edge weights are also illustrated in the same figure.
A good partitioning of this smaller coarsened graph maps to an approximate partitioning
of the original graph. Therefore, one possible approach is to compress the original graph
into a small one by using a coarsening heuristic, then partition this smaller graph more
efficiently with any off-the-shelf algorithm, and finally map this partition onto the original
graph. An example of mapping a partition on the coarsened graph to the original graph is
also illustrated in Fig. 19.6. The resulting partition can be refined with an algorithm, such
as the Kernighan–Lin algorithm. The multilevel scheme enhances this basic approach with
multiple levels of coarsening and refinement to obtain a good trade-off between quality and
efficiency. The multilevel partitioning scheme uses three phases:

1. Coarsening phase: Carefully chosen sets of nodes in the original graph G = G0 are
contracted to create a sequence of successively smaller graphs, G0, G1, G2 . . . Gr. To
perform a single step of coarsening from Gm−1 to Gm, small sets of nonoverlapping
and tightly interconnected nodes are identified. Each set of tightly interconnected
nodes is contracted into a single node. The heuristics for identifying these node sets
will be discussed in detail later. The final graph Gr is typically smaller than a 100
nodes. The small size of this final graph is important in the context of the second
partitioning phase. The different levels of coarsening created by this phase create
important reference points for a later uncoarsening phase.

2. Partitioning phase: Any off-the-shelf algorithm can be used to create a high-quality
balanced partitioning from graph Gr. Examples include the spectral approach of
Sect. 19.3.4 and the Kernighan–Lin algorithm. It is much easier to obtain a high-
quality partitioning with a small graph. This high-quality partitioning provides a good
starting point for refinement during the uncoarsening phase. Even relatively poor par-
titionings of this coarsest graph often map to good partitionings on the uncontracted

636 CHAPTER 19. SOCIAL NETWORK ANALYSIS

COARSENING GNINESRAOCNUESAHP PHASE

G0 G0

G1
G1

ORIGINAL
PARTITION

REFINED
PARTITION

1

(r 2) COARSENED GRAPHS (r 2) UNCOARSENED GRAPHS

Gr 1
Gr 1

BLACK BOX PARTITIONING

Gr

INITIAL PARTITIONING PHASE
ALGORITHM

Figure 19.7: The multilevel framework [301] of METIS

graph, because the collapsed edges during coarsening are not eligible to be cut during
this phase.

3. Uncoarsening phase (refinement): In this phase, the graphs are expanded back to their
successively larger versions Gr, Gr−1 . . . G0. Whenever the graph Gm is expanded to
Gm−1, the latter inherits the partitioning from Gm. This inheritance is illustrated in
Fig. 19.6. The fast variant of the Kernighan–Lin scheme, discussed in Sect. 19.3.1.1,
is applied to this partitioning of Gm−1 to refine it further before expanding it further
to Gm−2. Therefore, graph Gm−2 inherits the refined partition from Gm−1. Usually,
the refinement phase is extremely fast because the KL-algorithm starts with a very
high quality approximate partition of Gm−1.

A pictorial representation of the multilevel scheme, based on an illustration in [301], is
provided in Fig. 19.7. Note that the second and third phases use off-the-shelf schemes that
are discussed in other parts of this chapter. Therefore, the following discussion will focus
only on the first phase of coarsening.

A number of techniques are used for coarsening with varying levels of complexity. In the
following, a few simple schemes are described that coarsen only by matching pairs of nodes
in a given phase. In order for a pair of nodes to be matched, they must always be connected
with an edge. The coarsened graph will be at least half the size of the original graph in terms
of the number of nodes. In spite of the simplicity of these coarsening methods, these schemes
turn out to be surprisingly effective in the context of the overall clustering algorithm.

1. Random edge matching: A node i is selected at random and matched to an adjacently
connected unmatched node that is also selected randomly. If no such unmatched node
exists, then the vertex remains unmatched. The matching is performed, until no (adja-
cent) unmatched pair remains in the graph.

2. Heavy edge matching: As in random edge matching, a node i is selected at random
and matched to an adjacently connected unmatched node. However, the difference is
that the largest weight incident edge (i, j) is used to select the unmatched node j.

19.3. COMMUNITY DETECTION 637

The intuition is that it is better to contract heavy edges because they are less likely
to be part of an optimal partitioning.

3. Heavy clique matching: The contraction of densely connected sets of nodes in the
graph will maximize the number of collapsed edges. This method tracks the weight
vi of node i, which corresponds to the number of contracted nodes it represents.
Furthermore, the notation si denotes the sum of the weights of the collapsed edges at
node i (or its precursors) in previous contraction phases. Note that if the contracted
node i represents a clique in the original graph, then si will approach vi · (vi − 1)/2.
Because it is desirable to contract dense components, one must try to ensure that the
value of si resulting from the contraction approaches its upper limit. This is achieved
by computing the edge density μij ∈ (0, 1) of edge (i, j):

μij =
2 · (si + sj + wij)

(vi + vj) · (vi + vj − 1)
(19.23)

When nodes across high-density edges are contracted, they typically correspond to
cliques in the original graph G = G0, if it was unweighted. Even for weighted graphs,
the use of high-edge density is generally quite effective. The nodes of the graph are vis-
ited in random order. For each node, its highest density unmatched neighbor is selected
for matching. Unlike heavy edge matching, the heavy clique matching approach is not
myopic to the contractions that have occurred in previous phases of the algorithm.

The multilevel scheme is effective because of its hierarchical approach, where the early
clustering of coarsened graphs ensures a good initial global structure to the bisection. In
other words, key components of the graph are assigned to the appropriate partitions early
on, in the form of coarsened nodes. This partition is then successively improved in refinement
phases. Such an approach avoids local optima more effectively because of its “big picture”
approach to clustering.

19.3.4 Spectral Clustering

It is assumed that the nodes are unweighted, though the edge (i, j) is associated with the
weight wij . The n×n matrix of weights is denoted by W . The spectral method uses a graph
embedding approach, so that the local clustering structure of the network is preserved by
the embedding of the nodes into multidimensional space. The idea is to create a multidi-
mensional representation of the graph so that a standard k-means algorithm can be used
on the transformed representation.

The simpler problem of mapping the nodes onto a 1-dimensional space will be discussed
first. The generalization to the k-dimensional case is relatively straightforward. We would
like to map the nodes in N into a set of 1-dimensional real values y1 . . . yn on a line, so that
the distances between these points reflect the connectivity among the nodes. Therefore, it is
undesirable for nodes that are connected with high-weight edges to be mapped onto distant
points on this line. This can be achieved by determining values of yi, for which the following
objective function O is minimized:

O =
n∑

i=1

n∑
j=1

wij · (yi − yj)2 (19.24)

This objective function penalizes the distances between yi and yj with weight proportional
to wij . Therefore, when wij is very large, the data points yi and yj will be more likely to

638 CHAPTER 19. SOCIAL NETWORK ANALYSIS

be closer to one another in the embedded space. The objective function O can be rewritten
in terms of the Laplacian matrix L of weight matrix W . The Laplacian matrix L is defined
as Λ −W , where Λ is a diagonal matrix satisfying Λii =

∑n
j=1 wij . Let the n-dimensional

column vector of embedded values be denoted by y = (y1 . . . yn)T . It can be shown after
some algebraic rearrangement of Eq. 19.24, that the objective function O can be rewritten
in terms of the Laplacian matrix:

O = 2yTLy (19.25)

The matrix L is positive semidefinite with nonnegative eigenvalues because the sum-of-
squares objective function O is always nonnegative. We need to incorporate a scaling con-
straint to ensure that the trivial value of yi = 0 for all i is not selected by the optimization
solution. A possible scaling constraint is as follows:

yTΛy = 1 (19.26)

The matrix Λ is incorporated in the constraint of Eq. 19.26 to achieve normalization, so
that the resulting clusters are more balanced across partitions. If Λ is not used in the
constraint, the result is referred to as unnormalized spectral clustering. In practice, the
effect of this normalization is that low-degree nodes tend to clearly “pick sides” with either
large positive or large negative values of yi, whereas very high-degree nodes, which might
also be hub nodes, will be embedded closer to central regions near the origin (see Exercise 7).
Note that each diagonal entry Λii, which is the sum of the weights of the edges incident on
node i, can be viewed as the local density of the network at node i. It can also be shown
that incorporating Λ in the constraint approximates an unnormalized embedding in which
edge weights wij = wji have been divided by the geometric average

√
Λii · Λjj of the local

densities at their end points (see Exercise 8). As discussed in Chap. 3, normalizing distance
or similarity values with local densities is often helpful in obtaining high-quality results that
are more accurate in their local context.

This constrained optimization formulation can be solved by setting the gradient of its
Lagrangian relaxation yTLy − λ(yTΛy − 1) to 0. It can be shown that the resulting opti-
mization condition is Λ−1Ly = λy where λ is the Lagrangian parameter. In other words, y
is an eigenvector of Λ−1L and λ is an eigenvalue. Furthermore, this optimization condition
can be used to easily show that the objective function O = 2yTLy evaluates to twice the
eigenvalue λ for an eigenvector y satisfying this condition. Therefore, among the alternative
eigenvector solutions for y, the optimal solution is the smallest nontrivial eigenvector of
the normalized Laplacian Λ−1L. The smallest eigenvalue of Λ−1L is always 0, and it corre-
sponds to the trivial solution where the node embedding y is proportional to (1, 1, . . . 1)T .
Such a trivial 1-dimensional embedding corresponds to mapping every node to the same
point. This trivial eigenvector is noninformative. Therefore, it can be discarded, and it is
not used in the analysis. The second smallest eigenvector then provides an optimal solution
that is more informative.

This model can be generalized to a k-dimensional embedding by setting up an analogous
optimization formulation with its decision variables as an n × k matrix Y with k column
vectors Y = [y1 . . . yk] representing each dimension of the embedding. This optimization
formulation minimizes the trace of the k × k matrix Y TLY subject to the normalization
constraints Y TΛY = I. Because of the presence of Λ in the constraint, the columns of Y
will not necessarily be orthogonal. The optimal solutions for these k column vectors can be
shown to be proportional to the successive directions corresponding to the (not necessarily
orthogonal) right eigenvectors of the asymmetric matrix Λ−1L with increasing eigenvalues.
After discarding the first trivial eigenvector e1 with eigenvalue λ1 = 0, this results in a set

19.3. COMMUNITY DETECTION 639

of k eigenvectors e2, e3 . . . ek+1, with corresponding eigenvalues λ2 ≤ λ3 . . . ≤ λk+1. Because
k eigenvectors were selected, this approach creates an n× k matrix Dk = Y , corresponding
to a k-dimensional embedding of each of the n nodes. Note that even though the normal-
ization constraint Y TΛY = I will not result in columns of Dk having an L2-norm of 1,
each column (eigenvector) of Dk is scaled to an L2-norm of 1 as a post-processing4 step.
Because of this column scaling, the n × k matrix Dk does not exactly reflect the original
optimization formulation in terms of Y . The resulting k-dimensional embedding preserves
the clustering structure of the nodes because the optimization formulation of Y tries to
minimize distances between highly connected nodes. Therefore, any multidimensional clus-
tering algorithm discussed in Chap. 6, such as k-means, can be applied to this embedded
representation to generate the clusters on the nodes. This formulation is also sometimes
referred to as the random walk version of spectral clustering because of an interpretation
in terms of random walks. It is noteworthy that the small eigenvectors of the normalized
Laplacian Λ−1L are the same as the large eigenvectors of the stochastic transition matrix
Λ−1W (see Exercise 15).

An equivalent way of setting up the spectral clustering model is to use the related vector
of decision variables z =

√
Λy in the optimization formulation of Eqs. 19.25 and 19.26.

This related version is referred to as the symmetric version of the spectral clustering model,
although it is different from the random walk version only in terms of the scaling of decision
variables. By setting z =

√
Λy, it can be shown that the earlier formulation is equivalent to

optimizing zTΛ−1/2LΛ−1/2z subject to zT z = 1. We determine the smallest k (orthogonal)
eigenvectors of the symmetric normalized Laplacian Λ−1/2LΛ−1/2, excluding the first. Each
eigenvector of this matrix can also be (proportionally) obtained by pre-multiplying the
aforementioned solution Y of the random walk formulation with the diagonal matrix

√
Λ.

This relationship also reflects the relationship between z and y. The eigenvalues are the same
in both cases. For example, the first eigenvector with eigenvalue 0 will no longer be a vector
of 1s, but the various entries will be proportional to (

√
Λ11 . . .

√
Λnn)T . Because of this

differential scaling of various nodes, high-degree nodes will tend to have larger (absolute)
coordinate values in the symmetric version. By selecting the smallest k eigenvectors, one
can generate an n× k multidimensional representation Dk of the entire set of n nodes. Just
as the random walk version scales each column of Dk to unit norm in the final step, the
symmetric version scales each row of Dk to unit norm. The final step of row scaling is a
heuristic enhancement to adjust for the differential scaling of nodes with various degrees,
and it is not a part of the optimization formulation. Interestingly, even if the rows of the
random walk solution Y had been scaled to unit norm (instead of scaling the columns to
unit norm), exactly the same solution would be obtained as that obtained by scaling the
rows of the symmetric solution Z to unit norm (see Exercise 13).

Although the two different ways of performing spectral clustering are equivalent in terms
of the optimization problem solved, there are differences in terms of the heuristic scaling
adjustments. The scaling relationships are illustrated in Fig. 19.8. It is evident from Fig. 19.8
that the main practical difference between the two methods is regulated only by the heuristic
scaling used in the final phase, rather than their respective optimization models. Because of
the scaling variations, the clusters obtained in the two cases will not be exactly the same.
The relative quality will depend on the data set at hand. These optimization problems
can also be understood as linear programming relaxations of integer-programming formula-
tions of balanced minimum cut problems. However, the minimum-cut explanation does not

4In practice, the unit eigenvectors of Λ−1L can be directly computed, and therefore an explicit post-
processing step is not required.

640 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Minimize trace(YTLY)
bj t t YT Y I

Spectral embedding
(Random walk

version)
Minimize
trace(ZT 1/2L 1/2Z)

su ec to: YT =

Note that neither
rows nor columns

Spectral embedding
(Symmetric version)

subject to: ZTZ = I

Note that rows of
matrix Z will not

of matrix Y will
have unit norm

have unit norm

Figure 19.8: Scaling relationships between random walk and symmetric versions of spectral
clustering

intuitively generalize to the relaxed version of the problem because eigenvectors have both
positive and negative components.

19.3.4.1 Important Observations and Intuitions

A few observations are noteworthy about the relationships between spectral clustering,
PageRank, and eigenvector analysis:

1. Normalized random walk Laplacian: The smallest right eigenvectors of Λ−1L =
Λ−1(Λ − W) = I − P are used for the random walk embedding, where P is the
stochastic transition matrix of the graph. The smallest right eigenvectors of I−P are
the same as the largest right eigenvectors of P . The largest right eigenvector of P has
eigenvalue 1. It is noteworthy that the largest left eigenvector of P , which also has
eigenvalue 1, yields the PageRank of the graph. Therefore, both the left and the right
eigenvectors of the stochastic transition matrix P yield different insights about the
network.

2. Normalized symmetric Laplacian: The smallest eigenvectors of the symmetric Lapla-
cian Λ−1/2(Λ − W)Λ−1/2 are the same as the largest eigenvectors of the symmetric
matrix Λ−1/2WΛ−1/2. The matrix Λ−1/2WΛ−1/2 can be viewed as a normalized and
sparsified similarity matrix of the graph. Most forms of nonlinear embeddings such
as SVD, Kernel PCA, and ISOMAP are extracted as large eigenvectors of similar-
ity matrices (cf. Table 2.3 of Chap. 2). It is the choice of the similarity matrix that
regulates the varying properties of these different embeddings.

3. Goal of normalization: Spectral clustering is more effective when the unnormalized
Laplacian L is normalized with the node-degree matrix Λ. While it is possible to
explain this behavior with a cut-interpretation of spectral clustering, the intuition
does not generalize easily to continuous embeddings with both positive and negative
eigenvector components. A simpler way of understanding normalization is by examin-
ing the similarity matrix Λ−1/2WΛ−1/2 whose large eigenvectors yield the normalized
spectral embedding. In this matrix, the edge similarities are normalized by the geomet-
ric mean of the node degrees at their end points. This can be viewed as a normalization
of the edge similarities with a local measure of the network density. As discussed in
Chap. 3, normalizing similarity and distance functions with local density is helpful
even in the case of multidimensional data mining applications. One of the most well-
known algorithms for outlier analysis in multidimensional data, referred to as LOF,

19.4. COLLECTIVE CLASSIFICATION 641

TEST NODE

BA

BA

Figure 19.9: Label sparsity issues in collective classification

also uses this principle. Normalization will yield more balanced clusters in networks
with widely varying density over the network.

19.4 Collective Classification

In many social networking applications, labels may be associated with nodes. For example,
consider the case of a social networking application, where it is desirable to determine
all individuals interested in golf. The labels of a small number of actors may already be
available. It is desirable to use the available labels to perform the classification of nodes for
which the label is not known.

The solution to this model is crucially dependent on the notion of homophily. Because
nodes with similar properties are usually connected, it is reasonable to assume that this
is also true of node labels. A simple solution to this problem is to examine the k labeled
nodes in the proximity of a given node and report the majority label. This approach is,
in fact, the network analog of a nearest neighbor classifier. However, such an approach is
generally not possible in collective classification because of the sparsity of node labels. An
example of a network is illustrated in Fig. 19.9, in which the two classes are labeled A and
B. The remaining nodes are unlabeled. For the test node in Fig. 19.9, it is evident that it
is generally closer to instances of A in the network structure, but there is no labeled node
directly connected to the test instance.

Thus, it is evident that one must not only use the direct connections to labeled nodes,
but also use the indirect connections through unlabeled nodes. Thus, collective classification
in networks are always performed in a transductive semisupervised setting, where the test
instances and training instances are classified jointly. In fact, as discussed in Sect. 11.6.3
of Chap. 11, collective classification methods can be used for semisupervised classification
of any data type by transforming the data into a similarity graph. Thus, the collective
classification problem is important not only from the perspective of social network analysis,
but also for semisupervised classification of any data type.

19.4.1 Iterative Classification Algorithm

The Iterative Classification Algorithm (ICA) is one of the earliest classification algorithms
in the literature and has been applied to a wide variety of data domains. The algorithm has
the capability to use content associated with the nodes for classification. This is important
because many social networks have text content associated with the nodes in the form of user
posts. Furthermore, in cases where this framework is used5 for semisupervised classification

5cf. Sect. 11.6.3 of Chap. 11.

642 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Algorithm ICA(Graph G = (N,A), Weights: [wij], Node Class Labels: C,
Base Classifier: A, Number of Iterations: T)

begin
repeat
Extract link features at each node with current training data;
Train classifier A using both link and content features of

current training data and predict labels of test nodes;
Make (predicted) labels of most “certain” nt/T

test nodes final, and add these nodes to training
data, while removing them from test data;

until T iterations;
end

Figure 19.10: The iterative classification algorithm (ICA)

of relational data with similarity graphs, the relational features continue to be available at
the nodes for more effective classification.

Consider the (undirected) network G = (N,A) with class labels are drawn from {1 . . . k}.
Each edge (i, j) ∈ A is associated with the weight wij . Furthermore, the content Xi is
available at the node i in the form of a multidimensional feature vector. The total number
of nodes is denoted by n, from which nt nodes are unlabeled test nodes.

An important step of the ICA algorithm is to derive a set of link features in addition
to the available content features in Xi. The most important link features correspond to the
distribution of the classes in the immediate neighborhood of the node. Therefore a feature
is generated for each class, containing the fraction of its incident nodes belonging to that
class. For each node i, its adjacent node j is weighted by wij for computing its credit to
the relevant class. It is also possible, in principle, to derive other link features based on
structural properties of the graph such as the degree of the node, PageRank values, number
of closed triangles involving the node, or connectivity features. Such link features can be
derived on the basis of an application-specific understanding of the network data set.

The basic ICA is structured as a meta-algorithm. A base classifier A is leveraged within
an iterative framework. Many different base classifiers have been used in different implemen-
tations, such as the naive Bayes classifier, logistic regression classifier, and a neighborhood
voting classifier. The main requirement is that these classifiers should be able to output
a numeric score that quantifies the likelihood of a node belonging to a particular class.
While the framework is independent of specific choice of classifier, the use of the naive
Bayes classifier is particularly common because of the interpretation of its numeric score
as a probability. Therefore, the following discussion will assume that the algorithm A is
instantiated to the naive Bayes classifier.

The link and content features are used to train the naive Bayes classifier. For many nodes,
it is difficult to robustly estimate important class-specific features, such as the fractional
presence of the different classes in their neighborhood. This is a direct result of label sparsity,
and it makes the class predictions of such nodes unreliable. Therefore, an iterative approach
is used for augmenting the training data set. In each iteration, nt/T (test) node labels
are made “certain” by the approach, where T is a user-defined parameter controlling the
maximum number of iterations. The test nodes, for which the Bayes classifier exhibits the
highest class membership probabilities, are selected to be made final. These labeled test

19.4. COLLECTIVE CLASSIFICATION 643

TEST NODE X TEST NODE Y

STRONGLY CONNECTED NETWORK

BA

A B

UNIQUE PAGE RANK VECTORRANK VECTOR

TEST NODE X TEST NODE Y

LABELED NODES EVENTUALLY TRAP ALL RANDOM WALKS

BA

A B

NO UNIQUE PAGE RANK VECTORUNIQUE

No absorbing state With absorbing states(a) (b)

Figure 19.11: Creating directed transition graphs from undirected graph of Fig. 19.9

nodes can then be added to the training data, and the classifier is retrained by extracting
the link features again with the augmented training data set. The approach is repeated
until the labels of all nodes have been made final. Because the labels of nt/T nodes are
finalized in each iteration, the entire process terminates in exactly T iterations. The overall
pseudocode is illustrated in Fig. 19.10.

One advantage of the ICA is that it can seamlessly use content and structure in the
classification process. The classifier can automatically select the most relevant features using
off-the-shelf feature selection algorithms discussed in Chap. 10. This approach also has the
merit that it is not strongly dependent on the notion of homophily, and can, therefore,
be used for domains beyond social network analysis. Consider an adversarial relationship
network in which nodes connected by links might have different labels. In such cases, the ICA
algorithm will automatically learn the correct importance of adjacent class distributions, and
therefore it will yield accurate results. This property is not true of most of the other collective
classification methods, which are explicitly dependent on the notion of homophily. On the
other hand, the errors made in the earlier phases of iterative classification can propagate
and multiply in later phases because of augmented training examples with incorrect labels.
This can increase the cumulative error in noisy training data sets.

19.4.2 Label Propagation with Random Walks

The label propagation method directly uses random walks on the undirected network struc-
ture G = (N,A). The weight of edge (i, j) is denoted by wij = wji. To classify an unlabeled
node i, a random walk is executed starting at node i and terminated at the first labeled
node encountered. The class at which the random walk has the highest probability of ter-
mination is reported as the predicted label of node i. The intuition for this approach is that
the walk is more likely to terminate at labeled nodes in the proximity of node i. Therefore,
when many nodes of a particular class are located in its proximity, then the node i is more
likely to be labeled with that class.

An important assumption is that the graph needs to be label connected. In other words,
every unlabeled node needs to be able to reach a labeled node in the random walk. For
undirected graphs G = (N,A), this means that every connected component of the graph
needs to contain at least one labeled node. In the following discussion, it will be assumed
that the graph G = (N,A) is undirected and label-connected.

The first step is to model the random walks in such a way that they always terminate
at their first arrival at labeled nodes. This can be achieved by removing outgoing edges
from labeled nodes and replacing them with self-loops. Furthermore, to use a random walk
approach, we need to convert the undirected graph G = (N,A) into a directed graph
G′ = (N,A′) with an n× n transition matrix P = [pij]:

644 CHAPTER 19. SOCIAL NETWORK ANALYSIS

1. For each undirected edge (i, j) ∈ A, directed edges (i, j) and (j, i) are added to A′

between the corresponding nodes. The transition probability pij of edge (i, j) is defined
as follows:

pij =
wij∑n
k=1 wik

(19.27)

The transition probability pji of edge (j, i) is defined as follows:

pji =
wji∑n

k=1 wjk
(19.28)

For example, the directed transition graph created from the undirected graph of
Fig. 19.9 is illustrated in Fig. 19.11a.

2. All outgoing edges from labeled nodes are removed from the graph G′ constructed
in the previous step and replaced with a self-loop of transition probability 1. Such
nodes are referred to as absorbing nodes because they trap the random walk after
an incoming transition. An example of the final transition graph is illustrated in
Fig. 19.11b. Therefore, for each absorbing node i, the ith row of P is replaced with
the ith row of the identity matrix.

Assume that the final n × n transition matrix is denoted by P = [pij]. For any absorbing
node i, the value of pik is 1 only when i = k, and 0 otherwise. The transition matrix P does
not have a unique steady-state probability distribution (or, PageRank vector), because of the
presence of absorbing6 components. The steady-state probability distribution is dependent
on the starting state of the random walk. For example, a random walk starting at test node
X in Fig. 19.11b will always eventually end at label A, whereas a walk starting with node
Y might end at either label A or B. It is noteworthy that the PageRank computation of
Sect. 18.4.1 in Chap. 18 ensures unique steady-state probabilities by using teleportation to
implicitly create a strongly connected transition graph. Interestingly, the modifications that
create absorbing nodes have exactly the opposite effect because the steady state probability
distribution depends on the starting state. Strong connectivity of the transition graph is
required to ensure a unique steady-state distribution. However, if the starting state is fixed,
then each node does have a steady state probability distribution.

For any given starting node i, the steady-state probability distribution has positive values
only at labeled nodes. This is because a random walk will eventually reach an absorbing
node in a label-connected graph, and it will never emerge from that node. Therefore, if
one can estimate the steady-state probability distribution for starting node i, then the
probability values of the labeled nodes in each class can be aggregated. The class with the
highest probability is reported as the relevant label of the node i.

How can the steady-state probability be computed for a particular starting node i?
Let π(t) represent the n-dimensional (row) probability vector after t steps, starting with a
particular initial state π(0). When the starting state is node i, the value of π(0) is 1 for the
ith component in this vector, and 0 otherwise. Then, we have:

π(t) = π(t−1)P (19.29)

6In other words, the underlying Markov chain is not strongly connected, and therefore not ergodic. See
the description of the PageRank algorithm in Chap. 18.

19.4. COLLECTIVE CLASSIFICATION 645

By recursively applying the aforementioned condition t times, and then setting t = ∞, it is
possible to show the following:

π(t) = π(0)P t (19.30)

π(∞) = π(0)P∞ (19.31)

How can the steady-state transition matrix P∞ be computed? A key observation is that
the largest magnitude of the eigenvalue of a stochastic matrix is always 1 (see Exercise 7 of
Chap. 18). Therefore, P may be expressed as follows:

P = VΔV −1 (19.32)

Here, V is an n × n matrix, whose columns contain the eigenvectors, and Δ is a diagonal
matrix containing the eigenvalues, all of which have magnitude no larger than 1. Note that
stochastic matrices with absorbing components will have an eigenvector with unit eigenvalue
for each absorbing component. Then, by multiplying P with itself (t− 1) times, we get:

P t = VΔtV −1 (19.33)

In the limit where t approaches infinity, Δt will contain diagonal values of only 0 or 1. Any
eigenvalue in the original matrix Δ with magnitude less than 1 will approach 0 in Δ∞. In
other words, Δ∞ can be computed easily from Δ. Therefore, if V has been computed, then
P∞ can be computed easily as well. A further optimization is that the steady-state transition
matrix P∞ can be efficiently computed by determining only the l leading eigenvectors of
P , where l is the number of labeled (absorbing) nodes. Refer to the bibliographic notes for
more details of this optimization.

After P∞ has been computed, it is relatively straightforward to compute the n-
dimensional node probability vector π(∞) that results from starting the random walk at
node i. When the starting state is (unlabeled) node i, the n-dimensional vector for the
starting state π(0) contains 1 in the ith component, and 0 otherwise. According to our
earlier discussion, one can compute π(∞) = π(0)P∞. Note that π(∞) will contain positive
probabilities only for the labeled nodes, which are also absorbing states. By summing up the
probabilities in π(∞) of labeled nodes belonging to each class, one can obtain the probability
of each class for unlabeled node i. The class with the maximum probability is reported as
the relevant label.

There is, however, a simpler way of computing the class probability distributions of all
unlabeled nodes in one shot, rather than having to explicitly compute P∞, and then trying
different starting vectors for π(0). For each class c ∈ {1 . . . k}, let Nc ⊆ N be the set of
labeled nodes belonging to that class. In order for unlabeled node i to belong to class c, a
walk starting at node i must end at a node in Nc. The probability of this event is given by∑

j∈Nc
[P∞]ij . Let Yc be a column vector with n entries such that the jth entry is 1, if node

j belongs to class c, and 0, otherwise. Then, it is easy to see that the ith entry of the column
vector Zc = P∞Yc is equivalent to

∑
j∈Nc

[P∞]ij , which is the sum of the probabilities of a
walk starting at unlabeled node i terminating at various nodes belonging to class c.

Therefore, we need to compute Zc for each class c ∈ {1 . . . k}. Let Y be an n× k matrix
for which the cth column is Yc. Similarly, let Z be an n×k matrix for which the cth column
is Zc. Then Z can be obtained with simple matrix multiplication between P∞ and Y .

Z = P∞Y (19.34)

646 CHAPTER 19. SOCIAL NETWORK ANALYSIS

The class with the maximum probability in Z for unlabeled node (row) i may be reported
as its class label. This approach is also referred to as the rendezvous approach to label
propagation.

We make a few important observations. If the ith row of P is absorbing then it is the same
as the ith row of the identity matrix. Therefore, premultiplying Y with P for any number
of times will not change the ith row of Y . In other words, rows of Z that correspond to
labeled nodes will be fixed to the corresponding rows of Y . Therefore, predictions of labeled
nodes are fixed to their training labels. For unlabeled nodes, the rows of Z will always sum
to 1 in label-connected networks. This is because the sum of the values in row i in Z is
equal to the probability that a random walk starting at node i reaches an absorbing state.
In label-connected networks, every random walk will eventually reach an absorbing state.

19.4.2.1 Iterative Label Propagation: The Spectral Interpretation

Equation 19.34 suggests a simple iterative approach for computing the label probabilities
in Z, rather than computing P∞. One can initialize Z(0) = Y and then repeatedly use the
following update for increasing value of iteration index t.

Z(t+1) = PZ(t) (19.35)

It is easy to see that Z(∞) is the same as the value of Z in Eq. 19.34. For labeled (absorbing)
node i, the ith row of Z will always be unaffected by the update because the ith row of
P is the same as that of the identity matrix. The label-propagation update is executed
to convergence. In practice, a relatively small number of iterations are required to reach
convergence.

The label propagation update can be rearranged to show that the final solution Z will
satisfy the following relationship at convergence:

(I − P)Z = 0 (19.36)

Note that I−P is simply the normalized (random walk) Laplacian of the adjacency matrix of
the network G′ with absorbing states. Furthermore, each column of Z is a eigenvector of this
Laplacian with eigenvalue 0. In unsupervised spectral clustering, the first eigenvector with
eigenvalue 0 is discarded because it is not informative. However, in collective classification,
there are additional eigenvectors of (I − P) with eigenvalue 0 because of the presence
of absorbing states. Each class-specific column of Z contains a different eigenvector with
eigenvalue 0. In fact, the label propagation solution can also be derived with an optimization
formulation similar to spectral clustering on the original undirected graph G. In this case,
the optimization formulation uses a similar objective function as spectral clustering with
the additional constraint that the embedded values of all labeled nodes are fixed to 1 for
a particular (say, the cth) class and they are fixed to 0 for the remaining classes. The
embedded values of only the unlabeled nodes are unconstrained decision variables. The
solution to each such optimization problem can be shown to be an eigenvector of (I − P),
with eigenvalue 0. Iterative label propagation converges to these eigenvectors.

19.4.3 Supervised Spectral Methods

Spectral methods can be used in two different ways for collective classification of graphs.
The first method directly transforms the graph to multidimensional data to facilitate the
use of a multidimensional classifier such as a k-nearest neighbor classifier. The embedding

19.4. COLLECTIVE CLASSIFICATION 647

approach is identical to that used in spectral clustering except that the class information
is incorporated within the embedding. The second method directly learns an n × k class
probability matrix Z with an optimization formulation related to spectral clustering. This
class probability matrix Z is similar to that derived in label propagation. Interestingly, the
second method is also closely related to label propagation.

19.4.3.1 Supervised Feature Generation with Spectral Embedding

Let G = (N,A) be the undirected graph with weight matrix W . The approach consists of
the following steps, the first of which is to augment G with class-based supervision:

1. Add an edge with weight μ between each pair of nodes with the same label in G. If an
edge already exists between a pair of such nodes, then the two edges are consolidated
by adding μ to the weight of the existing edge. The resulting graph is denoted by G+.
The parameter μ controls the level of supervision from existing labels.

2. Use the spectral embedding approach of Sect. 19.3.4 to generate an r-dimensional
embedding of the augmented graph G+.

3. Apply any multidimensional classifier, such as a nearest neighbor classifier, on the
embedded data.

The value of μ may be tuned with the use of cross-validation. Note that this approach does
not directly learn the class probabilities. Rather, it creates a feature representation that
implicitly incorporates both the homophily effects and the existing label information. This
feature representation is sensitive to both network locality and label distribution. Therefore,
it can be used to design an effective multidimensional classifier.

19.4.3.2 Graph Regularization Approach

The graph regularization approach learns the labels of the nodes directly with an optimiza-
tion formulation related to spectral clustering. let Z be an n × k matrix of optimization
variables, in which the (i, c)th entry denotes the propensity of node i to belong to label c.
When the (i, c)th entry is large, it indicates that node i is more likely to belong to label
c. Therefore, for the ith row of Z, the index of the largest of the k entries provides a pre-
diction of the class label of node i. The column-vector Zc denotes the cth column of Z for
c ∈ {1 . . . k}. Furthermore, Y is an n× k binary matrix containing the label information. If
the ith node is labeled, then exactly one entry in the ith row of Y is 1, corresponding to the
relevant class label. Other entries are 0. For unlabeled nodes, all entries in the corresponding
row of Y are 0. The cth column of Y is denoted by the column vector Yc.

This approach directly uses the weighted matrix W of an undirected graph G = (N,A)
(e.g., Fig. 19.9) rather than a directed transition graph. The variables in the matrix Z are
derived with an optimization formulation related to spectral clustering. Each n-dimensional
vector Zc is viewed as a 1-dimensional embedding of the n nodes. The goal of this optimiza-
tion formulation is two-fold, which is reflected in the two additive terms of the objective
function:

1. Smoothness (homophily) objective: For each class c ∈ {1 . . . k}, the nodes connected
with high-weight edges should be mapped to similar values in Zc. This goal is iden-
tical to the unsupervised objective function in spectral clustering. In this case, the
symmetric Laplacian Ls is used because of its better convergence properties:

Ls = I − Λ−1/2WΛ−1/2 (19.37)

648 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Here, Λ is a diagonal matrix in which the ith diagonal entry contains the sum of the ith
row entries of the n×n weight matrix W . For brevity, we denote the normalized weight
matrix by S = Λ−1/2WΛ−1/2. Therefore, the smoothness term Os in the objective
function may be written as follows:

Os =
k∑

c=1

Zc
T
LsZc =

k∑
c=1

Zc
T
(I − S)Zc (19.38)

This term is referred to as the smoothness term because it ensures that the predicted
label propensities Z vary smoothly along edges, especially if the weights of the edges
are large. This term can also be viewed as a local consistency term.

2. Label-fitting objective: Because the embedding Z is designed to mimic Y as closely as
possible the value of ||Zc − Yc||2 should be as small as possible for each class c. Note
that unlabeled nodes are included within ||Zc − Yc||2, and for those nodes, this term
serves as a regularizer. The goal of a regularizer is to avoid7 ill-conditioned solutions
and overfitting in optimization models.

Of =
k∑

c=1

||Yc − Zc||2 (19.39)

This term can also be viewed as a global consistency term.

The overall objective function may be constructed as O = Os + μOf , where μ defines the
weight of the label-fitting term. The parameter μ reflects the trade-off between the two
criteria. Therefore, the overall objective function may be written as follows:

O =
k∑

c=1

Zc
T
(I − S)Zc + μ

k∑
c=1

||Yc − Zc||2 (19.40)

To optimize this objective function, one must use the partial derivative with respect to the
different decision variables in Zc and set it to zero. This yields the following condition:

(I − S)Zc + μ(Zc − Yc) = 0 ∀c ∈ {1 . . . k} (19.41)

Because this condition is true for each class c ∈ {1 . . . k} one can write the aforementioned
condition in matrix form as well:

(I − S)Z + μ(Z − Y) = 0 (19.42)

One can rearrange this optimization condition as follows:

Z =
SZ

1 + μ
+

μ

1 + μ
Y (19.43)

The goal is to determine a solution Z of this optimization condition. This can be achieved
iteratively by initializing Z(0) = Y and then iteratively updating Z(t+1) from Z(t) as follows:

Z(t+1) =
SZ(t)

1 + μ
+

μ

1 + μ
Y (19.44)

7In this case, the regularizer ensures that no single entry in Zc for unlabeled nodes is excessively large.

19.4. COLLECTIVE CLASSIFICATION 649

This solution is iterated to convergence. It can be shown that the approach converges to
the following solution:

Z(∞) =
μ

1 + μ

(
I +

S

1 + μ
+
(

S

1 + μ

)2

+ . . .

)
Y =

μ

1 + μ

(
I − S

1 + μ

)−1

Y (19.45)

Intuitively, the matrix
(
I − S

1+μ

)−1

=
(
I + S

1+μ +
(

S
1+μ

)2

+ . . .

)
is an n × n matrix of

pairwise weighted Katz coefficients (cf. Definition 19.5.4) between nodes. In other words,
the propensity of node i to belong to class j is predicted as a sum of its weighted Katz
coefficients with respect to labeled nodes of class j. Because the Katz measure predicts links
(cf. Sect. 19.5) between nodes, this approach illustrates the connections between collective
classification and link prediction.

It is possible to learn the optimal value of μ with the use of cross-validation. It is
noteworthy that, unlike the aforementioned label propagation algorithm with absorbing
states, this approach only biases Z with the labels, and it does not constrain the rows in
Z to be the same as the corresponding rows of Y for labeled nodes. In fact, the matrix Z
can provide a label prediction for an already labeled node that is different from its original
training label. Such cases are likely to occur when the original labeling in the training data
is error-prone and noisy. The regularization approach is, therefore, more flexible and robust
for networks containing noisy and error-prone training labels.

19.4.3.3 Connections with Random Walk Methods

Even though the graph regularization approach is derived using spectral methods, it is
also related to random walk methods. The n × k matrix-based update Eq. 19.44 can be
decomposed into k different vector-based update equations, one for each n-dimensional
column Zc of Z:

Zc =
SZc

1 + μ
+

μ

1 + μ
Yc ∀c ∈ {1 . . . k} (19.46)

Each of these update equations is algebraically similar to a personalized PageRank equation
where S replaces the transition matrix and the restart probability is μ

1+μ at labeled nodes
belonging to a particular class c. The vector Yc is analogous to the personalized restart
vector for class c multiplied with the number of training nodes in class c. Similarly, the
vector Zc is analogous to the personalized PageRank vector of class c multiplied with the
number of training nodes in class c. Therefore, the class-specific Eq. 19.46 can be viewed
as a personalized PageRank equation, scaled in proportion to the prior probability of class
c. Of course, the symmetric matrix S is not truly a stochastic transition matrix because its
columns do not sum to 1. Therefore, the results cannot formally be viewed as personalized
PageRank probabilities.

Nevertheless, this algebraic similarity to personalized PageRank suggests the possibility
of a closely related family of random walk methods, similar to label propagation. For exam-
ple, instead of using a nonstochastic matrix S derived from spectral clustering, one might
use a stochastic transition matrix P . In other words, Eqs. 19.27 and 19.28 are used to derive
P = Λ−1W . However, one difference from the transition matrix P used in label-propagation
methods is that the network structure is not altered to create absorbing states. In other
words, the directed transition graph of Fig. 19.11a is used, rather than that of Fig. 19.11b
to derive P . Replacing S with P in Eq. 19.46 leads to a variant of the label propagation

650 CHAPTER 19. SOCIAL NETWORK ANALYSIS

update (cf. Eq. 19.35) in which labeled nodes are no longer constrained to be predicted to
their original label.

Replacing S with PT in Eq. 19.46 leads to the (class-prior scaled) personalized PageR-
ank equations. This is equivalent to executing the personalized PageRank algorithm k times,
where the personalization vector for the cth execution restarts at labeled nodes belonging
to the cth class. Each class-specific personalized PageRank probability is multiplied with
the prior probability of that class, or, equivalently, the number of labeled training nodes
in that class. For each node, the class index that yields the highest (prior-scaled) person-
alized PageRank probability is reported. The performance of these alternative methods is
dependent on the data set at hand.

19.5 Link Prediction

In many social networks, it is desirable to predict future links between pairs of nodes in
the network. For example, commercial social networks, such as Facebook, often recommend
users as potential friends. In general, both structure and content similarity may be used to
predict links between pairs of nodes. These criteria are discussed below:

• Structural measures: Structural measures typically use the principle of triadic closure
to make predictions. The idea is that two nodes that share similar nodes in their
neighborhoods are more likely to become connected in the future, if they are not
already connected.

• Content-based measures: In these cases, the principle of homophily is used to make
predictions. The idea is that nodes that have similar content are more likely to become
linked. For example, in a bibliographic network containing scientific co-author rela-
tions, a node containing the keyword “data mining” is more likely to be connected to
another node containing the keyword “machine learning.”

While content-based measures have been shown to have potential in enhancing link predic-
tion, the results are rather sensitive to the network at hand. For example, in a network such
as Twitter, where the content is the form of short and noisy tweets with many nonstandard
acronyms, content-based measures are not particularly effective. Furthermore, while struc-
tural connectivity usually implies content-based homophily, the reverse is not always true.
Therefore, the use of content similarity has mixed results in different network domains. On
the other hand, structural measures are almost always effective in different types of net-
works. This is because triadic closure is ubiquitous across different network domains and
has more direct applicability to link prediction.

19.5.1 Neighborhood-Based Measures

Neighborhood-based measures use the number of common neighbors between a pair of nodes
i and j, in different ways, to quantify the likelihood of a link between them in the future.
For example, in Fig. 19.12a, Alice and Bob share four common neighbors. Therefore, it
is reasonable to conjecture that a link might eventually form between them. In addition
to their common neighbors, they also have their own disjoint sets of neighbors. There are
different ways of normalizing neighborhood-based measures to account for the number and
relative importance of different neighbors. These are discussed below.

19.5. LINK PREDICTION 651

Definition 19.5.1 (Common Neighbor Measure) The common-neighbor measure between
nodes i and j is equal to the number of common neighbors between nodes i and j. In other
words, if Si is the neighbor set of node i, and Sj is the neighbor set of node j, the common-
neighbor measure is defined as follows:

CommonNeighbors(i, j) = |Si ∩ Sj | (19.47)

The major weakness of the common-neighbor measure is that it does not account for the
relative number of common neighbors between them as compared to the number of other
connections. In the example of Fig. 19.12a, Alice and Bob each have a relatively small
node degree. Consider a different case in which Alice and Bob are either spammers or very
popular public figures who were connected to a large number of other actors. In such a case,
Alice and Bob might easily have many neighbors in common, just by chance. The Jaccard
measure is designed to normalize for varying degree distributions.

Definition 19.5.2 (Jaccard Measure) The Jaccard-based link prediction measure between
nodes i and j is equal to the Jaccard coefficient between their neighbor sets Si and Sj, respec-
tively.

JaccardPredict(i, j) =
|Si ∩ Sj |
|Si ∪ Sj |

(19.48)

The Jaccard measure between Alice and Bob in Fig. 19.12(a) is 4/9. If the degrees of either
Alice or Bob were to increase, it would result in a lower Jaccard coefficient between them.
This kind of normalization is important, because of the power-law degree distributions of
nodes.

The Jaccard measure adjusts much better to the variations in the degrees of the nodes
between which the link prediction is measured. However, it does not adjust well to the
degrees of their intermediate neighbors. For example, in Fig. 19.12a, the common neighbors
of Alice and Bob are Jack, John, Jill, and Mary. However, all these common neighbors
could be very popular public figures with very high degrees. Therefore, these nodes are
statistically more likely to occur as common neighbors of many pairs of nodes. This makes
them less important in the link prediction measure. The Adamic–Adar measure is designed
to account for the varying importance of the different common neighbors. It can be viewed
as a weighted version of the common-neighbor measure, where the weight of a common
neighbor is a decreasing function of its node degree. The typical function used in the case of
the Adamic–Adar measure is the inverse logarithm. In this case, the weight of the common
neighbor with index k is set to 1/log(|Sk|), where Sk is the neighbor set of node k.

Definition 19.5.3 (Adamic–Adar Measure) The common-neighbor measure between
nodes i and j is equal to the weighted number of common neighbors between nodes i and j.
The weight of node k is defined is 1/log(|Sk|).

AdamicAdar(i, j) =
∑

k∈Si∩Sj

1
log(|Sk|)

(19.49)

The base of the logarithm does not matter in the previous definition, as long as it is chosen
consistently for all pairs of nodes. In Fig. 19.12a, the Adamic-Adar measure between Alice
and Bob is 1

log(4) +
1

log(2) +
1

log(2) +
1

log(4) =
3

log(2) .

652 CHAPTER 19. SOCIAL NETWORK ANALYSIS

JACK

SAYANI

JIM

NICOLEJOHN

PREDICTED LINK
ALICE BOB

JILL
MICHAEL

PETER

MARY

ALICE SAYANI JIM

TOMTOM

BOBMARY

Many common neighbors (b)(a) Many indirect connections
between Alice and Bob between Alice and Bob

Figure 19.12: Examples of varying effectiveness of different link-prediction measures

19.5.2 Katz Measure

While the neighborhood-based measures provide a robust estimation of the likelihood of a
link forming between a pair of nodes, they are not quite as effective when the number of
shared neighbors between a pair of nodes is small. For example, in the case of Fig. 19.12b,
Alice and Bob share one neighbor in common. Alice and Jim also share one neighbor in
common. Therefore, neighborhood-based measures have difficulty in distinguishing between
different pairwise prediction strengths in these cases. Nevertheless, there also seems to
be a significant indirect connectivity in these cases through longer paths. In such cases,
walk-based measures are more appropriate. A particular walk-based measure that is used
commonly to measure the link-prediction strength is the Katz measure.

Definition 19.5.4 (Katz Measure) Let n
(t)
ij be the number of walks of length t between

nodes i and j. Then, for a user-defined parameter β < 1, the Katz measure between nodes
i and j is defined as follows:

Katz(i, j) =
∞∑
t=1

βt · n(t)
ij (19.50)

The value of β is a discount factor that de-emphasizes walks of longer length. For small
enough values of β, the infinite summation of Eq. 19.50 will converge. If A is the symmetric
adjacency matrix of an undirected network, then the n×n pairwise Katz coefficient matrix
K can be computed as follows:

K =
∞∑
i=1

(βA)i = (I − βA)−1 − I (19.51)

The eigenvalues of Ak are the kth powers of the eigenvalues of A (cf. Eq. 19.33). The value
of β should always be selected to be smaller than the inverse of the largest eigenvalue of
A to ensure convergence of the infinite summation. A weighted version of the measure can

19.5. LINK PREDICTION 653

be computed by replacing A with the weight matrix of the graph. The Katz measure often
provides prediction results of excellent quality.

It is noteworthy that the sum of the Katz coefficients of a node i with respect to other
nodes is referred to as its Katz centrality. Other mechanisms for measuring centrality, such
as closeness and PageRank, are also used for link prediction in a modified form. The reason
for this connection between centrality and link-prediction measures is that highly central
nodes have the propensity to form links with many nodes.

19.5.3 Random Walk-Based Measures

Random walk-based measures are a different way of defining connectivity between pairs of
nodes. Two such measures are PageRank and SimRank. Because these methods are described
in detail in Sect. 18.4.1.2 of Chap. 18, they will not be discussed in detail here.

The first way of computing the similarity between nodes i and j is with the use of the
personalized PageRank of node j, where the restart is performed at node i. The idea is that
if j is the structural proximity of i, it will have a very high personalized PageRank measure,
when the restart is performed at node i. This is indicative of higher link prediction strength
between nodes i and j. The personalized PageRank is an asymmetric measure between nodes
i and j. Because the discussion in this section is for the case of undirected graphs, one can use
the average of the values of PersonalizedPageRank(i, j) and PersonalizedPageRank(j, i).
Another possibility is the SimRank measure that is already a symmetric measure. This
measure computes an inverse function of the walk length required by two random surfers
moving backwards to meet at the same point. The corresponding value is reported as the
link prediction measure. Readers are advised to refer to Sect. 18.4.1.2 of Chap. 18 for details
of the SimRank computation.

19.5.4 Link Prediction as a Classification Problem

The aforementioned measures are unsupervised heuristics. For a given network, one of these
measures might be more effective, whereas another might be more effective for a different
network. How can one resolve this dilemma and select the measures that are most effective
for a given network?

The link prediction problem can be viewed as a classification problem by treating the
presence or absence of a link between a pair of nodes as a binary class indicator. Thus, a
multidimensional data record can be extracted for each pair of nodes. The features of this
multidimensional record include all the different neighborhood-based, Katz-based, or walk-
based similarities between nodes. In addition, a number of other preferential-attachment
features, such as node-degrees of each node in the pair, are used. Thus, for each node pair, a
multidimensional data record is constructed. The result is a positive-unlabeled classification
problem, where node pairs with edges are the positive examples, and the remaining pairs
are unlabeled examples. The unlabeled examples can be approximately treated as negative
examples for training purposes. Because there are too many negative example pairs in
large and sparse networks, only a sample of the negative examples is used. Therefore, the
supervised link prediction algorithm works as follows:

1. Training phase: Generate a multidimensional data set containing one data record for
each pair of nodes with an edge between them, and a sample of data records from pairs
of nodes without edges between them. The features correspond to extracted similarity
and structural features between node pairs. The class label is the presence or absence
of an edge between the pair. Construct a training model on the data.

654 CHAPTER 19. SOCIAL NETWORK ANALYSIS

2. Testing phase: Convert each test node pair to a multidimensional record. Use any
conventional multidimensional classifier to make label predictions.

The logistic regression method of Sect. 10.6 in Chap. 10 is a common choice for the base
classifier. Cost-sensitive versions of various classifiers are commonly used because of the
imbalanced nature of the underlying classification problem.

One advantage of this approach is that content features can be used in a seamless way.
For example, the content similarity between a pair of nodes can be used. The classifier will
automatically learn the relevance of these features in the training process. Furthermore,
unlike many link prediction methods, the approach can also handle directed networks by
extracting features in an asymmetric way. For example, instead of using node degrees, one
might use indegrees and outdegrees as features. Random walk features can also be defined
in an asymmetric way on directed networks, such as computing the PageRank of node j
with restart at node i, and vice versa. In general, the supervised model is more flexible
because of its ability to learn relationships between links and features of various types.

19.5.5 Link Prediction as a Missing-Value Estimation Problem

Section 18.5.3 of Chap. 18 discusses how link prediction can be applied to user-item graphs
for recommendations. In general, both the recommendation problem and the link prediction
problem may be viewed as instances of missing value estimation on matrices of different
types. Recommendation algorithms are applied to user-item utility matrices, whereas link
prediction algorithms are applied to incomplete adjacency matrices. All the 1s in the matrix
correspond to edges. Only a small random sample of the remaining entries are set to 0, and
the other entries are assumed to be unspecified. Any of the missing-value estimation methods
discussed in Sect. 18.5 of Chap. 18 may be used to estimate the values of the missing entries.
Among this class of methods, matrix factorization methods are among the most commonly
used methods. One advantage of using these methods is that the specified matrix does not
need to be symmetric. In other words, the approach can also be used for directed graphs.
Refer to the bibliographic notes.

19.5.6 Discussion

The different measures have been shown to have varying levels of effectiveness over different
data sets. The advantage of neighborhood-based measures is that they can be computed
efficiently for very large data sets. Furthermore, they perform almost as well as the other
unsupervised measures. Nevertheless, random walk-based and Katz-based measures are par-
ticularly useful for very sparse networks, in which the number of common neighbors cannot
be robustly measured. Although supervision provides better accuracy, it is computationally
expensive. However, supervision provides the greatest adaptability across various domains
of social networks, and available side information such as content features.

In recent years, content has also been used to enhance link prediction. While content can
significantly improve link prediction, it is important to point out that structural measures
are far more powerful. This is because structural measures directly use the triadic properties
of real networks. The triadic property of networks is true across virtually all data domains.
On the other hand, content-based measures are based on “reverse homophily,” where similar
or link-correlated content is leveraged for predicting links. The effectiveness of this is highly
network domain-specific. Therefore, content-based measures are often used in a helping role
for link prediction and are rarely used in isolation for the prediction process.

19.6. SOCIAL INFLUENCE ANALYSIS 655

19.6 Social Influence Analysis

All social interactions result in varying levels of influence between individuals. In traditional
social interactions, this is sometimes referred to as “word of mouth” influence. This general
principle is also true for online social networks. For example, when an actor tweets a message
in Twitter, the followers of the actors are exposed to the message. The followers may often
retweet the message in the network. This results in the spread of information, ideas, and
opinions in the social network. Many companies view this kind of information spread as
a valuable advertising channel. By tweeting a popular message to the right participants,
millions of dollars worth of advertising can be generated, if the message spreads through
the social network as a cascade. An example [532] is the famous Oreo Superbowl tweet
on February 3, 2013. The power went out during the Superbowl game between the San
Francisco 49ers and the Baltimore Ravens. Oreo used this opportunity to tweet the following
message, along with a picture of an Oreo cookie, during the 34 min interruption: “Power out?
No problem. You can still dunk in the dark.” Viewers loved Oreo’s message, and retweeted
it thousands of times. Oreo was thus able to generate millions of dollars of advertising at
zero cost, and apparently had a higher impact than paid television advertisements during
the Superbowl.

Different actors have different abilities to influence their peers in the social network. The
two most common factors that regulate the influence of an actor are as follows:

1. Their centrality within the social network structure is a crucial factor in their influence
level. For example, actors with high levels of centrality are more likely to be influential.
In directed networks, actors with high prestige are more likely to be influential. These
measures are discussed in Sect. 19.2.

2. The edges in the network are often associated with weights that are dependent on
the likelihood that the corresponding pair of actors can be influenced by each other.
Depending on the diffusion model used, these weights can sometimes be directly inter-
preted as influence propagation probabilities. Several factors may determine these prob-
abilities. For example, a well-known individual may have higher influence than lesser
known individuals. Similarly, two individuals, who have been friends for a long time,
are more likely to influence one another. It is often assumed that the influence propa-
gation probabilities are already available for analytical purposes, although a few recent
methods show how to estimate these probabilities in a data-driven way.

The precise impact of the aforementioned factors is quantified with the use of an influence
propagation model. These are also referred to as diffusion models. The main goal of such
models is to determine a set of seed nodes in the network, at which the dissemination
of information maximizes influence. Therefore, the influence maximization problem is as
follows:

Definition 19.6.1 (Influence Maximization) Given a social network G = (N,A),
determine a set of k seed nodes S, influencing which will maximize the overall spread of
influence in the network.

The value of k can be viewed as a budget on the number of seed nodes that one is allowed
to initially influence. This is quite consistent with real-life models, where advertisers are
faced with budgets on initial advertising capacity. The goal of social influence analysis is to
extend this initial advertising capacity with word-of-mouth methods.

656 CHAPTER 19. SOCIAL NETWORK ANALYSIS

Each model or heuristic can quantify the influence level of a node with the use of a
function of S that is denoted by f(·). This function maps subsets of nodes to real numbers
representing influence values. Therefore, after a model has been chosen for quantifying the
influence f(S) of a given set S, the optimization problem is that of determining the set S
that maximizes f(S). An interesting property of a very large number of influence analysis
models is that the optimized function f(S) is submodular.

What does submodularity mean? It is a mathematical way of representing the natural
law of diminishing returns, as applied to sets. In other words, if S ⊆ T , then the additional
influence obtained by adding an individual to set T cannot be larger than the additional
influence of adding the same individual to set S. Thus, the incremental influence of the
same individual diminishes, as larger supersets of cohorts are available as seeds. The sub-
modularity of set S is formally defined as follows:

Definition 19.6.2 (Submodularity) A function f(·) is said to be submodular, if for any
pair of sets S, T satisfying S ⊆ T , and any set element e, the following is true:

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T) (19.52)

Virtually all natural models for quantifying influence turn out to be submodular. Submod-
ularity is algorithmically convenient because a very efficient greedy optimization algorithm
exists for maximizing submodular functions, as long as f(S) can be evaluated for a given
value of S. This algorithm starts by setting S = {} and incrementally adds nodes to S that
increase the value of f(S) as much as possible. This procedure is repeated until the set S
contains the required number of influencers k. The approximation level of this heuristic is
based on a well-known classical result on optimization of submodular functions.

Lemma 19.6.1 The greedy algorithm for maximizing submodular functions provides a solu-
tion with an objective function value that is at least a fraction

(
e−1
e

)
of the optimal value.

Here, e is the base of the natural logarithm.

Thus, these results show that it is possible to optimize f(S) effectively, as long as an
appropriate submodular influence function f(S) can be defined for a given set of nodes S.

Two common approaches for defining the influence function f(S) of a set of nodes S
are the Linear Threshold Model and the Independent Cascade Model. Both these diffusion
models were proposed in one of the earliest works on social influence analysis. The general
operational assumption in these diffusion models is that nodes are either in an active or
inactive state. Intuitively, an active node is one which has already been influenced by the set
of desired behaviors. Once a node moves to an active state, it never deactivates. Depending
on the model, an active node may trigger activation of neighboring nodes either for a
single time, or over longer periods. Nodes are successively activated until no more nodes
are activated in a given iteration. The value of f(S) is evaluated as the total number of
activated nodes at termination.

19.6.1 Linear Threshold Model

In this model, the algorithm initially starts with an active set of seed nodes S and iteratively
increases the number of active nodes based on the influence of neighboring active nodes.
Active nodes are allowed to influence their neighbors over multiple iterations throughout
the execution of the algorithm until no more nodes can be activated. The influence of

19.6. SOCIAL INFLUENCE ANALYSIS 657

neighboring nodes is quantified with the use of a linear function of the edge-specific weights
bij . For each node i in the network G = (N,A), the following is assumed to be true:

∑
j:(i,j)∈A

bij ≤ 1 (19.53)

Each node i is associated with a random threshold θi ∼ U [0, 1] which is fixed up front
and stays constant over the course of the algorithm. The total influence I(i) of the active
neighbors of node i on it, at a given time-instant, is computed as the sum of the weights bij
of all active neighbors of i.

I(i) =
∑

j:(i,j)∈A,j is active
bij (19.54)

The node i becomes active in a step when I(i) ≥ θi. This process is repeated until no
further nodes can be activated. The total influence f(S) may be measured as the number of
nodes activated by a given seed set S. The influence f(S) of a given seed set S is typically
computed with simulation methods.

19.6.2 Independent Cascade Model

In the aforementioned linear threshold model, once a node becomes active, it has multiple
chances to influence its neighbors. The random variable θi was associated with a node, in
the form of a threshold. On the other hand, in the independent cascade model, after a node
becomes active, it obtains only a single chance to activate its neighbors, with propagation
probabilities associated with the edges. The propagation probability associated with an edge
is denoted by pij . In each iteration, only the newly active nodes are allowed to influence their
neighbors, that have not already been activated. For a given node j, each of the edges (i, j)
joining it to its newly active neighbors i flips a coin independently with success probability
pij . If the coin toss for edge (i, j) results in a success, then the node j is activated. If node
j is activated, it will get a single chance in the next iteration to influence its neighbors.
In the event that no nodes are newly activated in an iteration, the algorithm terminates.
The influence function value is equal to the number of active nodes at termination. Because
nodes are allowed to influence their neighbors only once over the course of the algorithm, a
coin is tossed for each edge at most once over the course of the algorithm.

19.6.3 Influence Function Evaluation

Both the linear threshold model and the independent cascade model are designed to compute
the influence function f(S) with the use of a model. The estimation of f(S) is typically
accomplished with simulation.

For example, consider the case of the linear threshold model. For a given seed node set
S, one can use a random number generator to set the thresholds at the nodes. After the
thresholds have been set, the active nodes can be labeled using any deterministic graph-
search algorithm starting from the seed nodes in S and progressively activating nodes when
the threshold condition is satisfied. The computation can be repeated over different sets
of randomly generated thresholds, and the results may be averaged to obtain more robust
estimates.

In the independent cascade model, a different simulation may be used. A coin with
probability pij may be flipped for each edge. The edge is designated as live if the coin toss
was a success. It can be shown that a node will eventually be activated by the independent

658 CHAPTER 19. SOCIAL NETWORK ANALYSIS

cascade model, when a path of live edges exists from at least one node in S to it. This
can be used to estimate the size of the (final) active set by simulation. The computation is
repeated over different runs and the results are averaged.

The proof that the linear threshold model and the independent cascade model are sub-
modular optimization problems can be found in pointers included in the bibliographic notes.
However, this property is not specific to these models. Submodularity is a very natural conse-
quence of the laws of diminishing returns, as applied to the incremental impact of individual
influence in larger groups. As a result, most reasonable models for influence analysis will
satisfy submodularity.

19.7 Summary

Social networks have become increasingly popular in recent years, because of their ability
to connect geographically and culturally diverse participants. A significant amount of data
is created because of the actions of social network participants. Much of this data are
structural, in the form of relationships between different individuals.

Social network structures exhibit a number of typical properties, because of the natural
dynamics of their formation. The most important similarity-based properties include triadic
closure, and homophily. Typically, social networks are formed by preferential attachment,
and they exhibit power-law degree distributions.

The problem of clustering social networks is challenging because of the presence of hub
nodes, and the natural tendency of social networks to cluster into a single large group.
Therefore, most community detection algorithms have built-in mechanisms to ensure that
the underlying clusters are balanced. Clustering methods are also sometimes referred to as
graph-partitioning. One of the earliest clustering methods was the Kernighan–Lin method,
which uses an iterative approach for clustering. Nodes are repeatedly exchanged between
partitions to iteratively improve the value of the objective function. The Girvan–Newman
algorithm uses notions of betweenness centrality to generate clusters. The METIS algorithm
generates an efficient partition by using coarsening and then creating the partitions on
the coarsened representation. The spectral method uses multidimensional embeddings to
generate the clusters.

In collective classification, the goal is to infer labels at the remaining vertices from the
pre-existing labels at a subset of the vertices. This is a problem that has dual applicability
to social network analysis and semisupervised learning. Multidimensional data sets can
be transformed into similarity graphs to apply collective classification methods. The most
common methods used for collective classification include iterative methods, random walk-
based label propagation methods, and spectral methods.

In the link-prediction problem, the goal is to predict the links from the currently avail-
able structure and content in the network. Structural measures are generally much more
effective for link-prediction than content-based measures. The structural methods use local
clustering measures such as the Jaccard measure or personalized PageRank values for mak-
ing predictions. Supervised methods are able to discriminatively determine the most relevant
features for link prediction.

Social networks are often used for influencing individuals using “word-of-mouth” tech-
niques. Typically, centrally located actors are more influential in the network. Diffusion
models are used to characterize the flow of information in social networks. Two examples
of such models include the linear threshold model and the independent cascade model.

19.8. BIBLIOGRAPHIC NOTES 659

19.8 Bibliographic Notes

Social network analysis has been studied extensively in the context of the field of sociol-
ogy [508], though more recent work has focused on online social networks [6, 192, 532]. A
detailed discussion on proximity and centrality measures may be found in [6, 192, 508, 532].
The dynamics of social network formation may be found in the excellent survey paper [69].
The derivation of the power-law with the use of the scale-free model is provided in [70]. A
detailed study of the power-law in the context of the Internet topology is provided in [201].
A study of graph densification and shrinking diameters is provided in [342]. Other random
graph models such as the Erdos–Renyi model and the Watts–Strogatz small-world model
are discussed in [196, 509].

A detailed survey on community detection methods may be found in [212]. The minimum
cut problem is polynomially solvable for some special cases. For example, the unweighted 2-
way cut problem is polynomially solvable without balancing constraints [299]. The original
Kernighan–Lin algorithm is presented in [312]. The enhancements to the Kernighan–Lin
algorithm was discussed in [206, 301]. The Girvan–Newman algorithm discussed in this
chapter is adapted from [230]. The METIS algorithm is presented in [301]. The normalized
cut method for spectral clustering was discussed in this chapter [466]. The normalized sym-
metric version was proposed in [405]. More details on spectral graph theory and clustering
methods may be found in [152, 371]. This chapter uses the Laplacian eigenmap interpre-
tation [90] of spectral clustering, rather than the more commonly used cut interpretation,
because of its comprehensive explanation of the non-integer and possibly negative eigenvec-
tor components.

ICA has been presented in the context of many different data domains, such as docu-
ment data [128], and relational data [404]. Several base classifiers have been used within
this framework, such as logistic regression [370] and a weighted voting classifier [373]. The
discussion in this chapter is based on [404]. The iterative label propagation method was
proposed in [554], and the absorbing random walk interpretation is adapted from [78]. The
iterative label propagation approach [554] was originally proposed with a spectral inter-
pretation although the random walk interpretation is also briefly discussed in the same
work. Most random walk methods can also be formulated as supervised versions of spectral
embeddings [530, 551, 554]. The regularization framework for collective classification is dis-
cussed in [551]. Collective classification of directed graphs is discussed in [552]. A method
for incorporating content within the random walk framework is discussed in [44]. Detailed
surveys on node classification methods may be found in [93, 368]. A toolkit for collective
classification may be found in [427].

The link-prediction problem for social networks was proposed in [353]. The measures
discussed in this chapter are based on this work. Since then, a significant amount of work
has been done on incorporating content into the link prediction process. Methods that use
content for link prediction may be found in [49, 64, 354, 484, 489]. The merits of supervised
methods are discussed in [354], and matrix factorization methods are discussed in [383].
Recently, it has been shown how to use link prediction across multiple networks in [428]. A
survey on link-prediction methods for social network analysis may be found in [63].

The problem of influence analysis in social networks was proposed in [304]. The linear
threshold and independent cascade models are presented in this work. The degree-discount
heuristic was proposed in [142]. A discussion of the submodularity property may be found
in [403]. Other recent models for influence analysis in social networks are discussed in [45,
143, 144, 362, 488]. One of the main problems in social influence models is a difficulty in
learning the influence propagation probabilities, though there has been some recent focus

660 CHAPTER 19. SOCIAL NETWORK ANALYSIS

on this issue [235]. Recent work has also shown how influence analysis can be performed
directly from the social stream [234, 482]. A survey on models and algorithms for social
influence analysis may be found in [483].

19.9 Exercises

1. For the figure in Example 19.1a, compute the highest-degree centrality, closeness cen-
trality and betweenness centrality. The nodes that take on these highest values are
already marked in the figure.

2. Implement the algorithms for determining the degree centrality, closeness centrality,
and betweenness centrality.

3. Implement the Kernighan–Lin algorithm.

4. Why is the balancing constraint more important in community detection algorithms,
as compared to multidimensional clustering algorithms? What would the uncon-
strained minimum 2-way cut look like in a typical real network?

5. Consider a variation of Girvan–Newman algorithm in which edges are randomly dis-
connected from a network, as opposed to those with high betweenness centrality.
Explain the negative impact of this change on the algorithm. Can you make minor
changes to the disconnection criterion to ameliorate this impact?

6. Write an integer-programming formulation for the minimum 2-way cut problem, so
that the cut is balanced in terms of the number of nodes.

7. For the random walk formulation of spectral clustering algorithm, show why the fol-
lowing are true:

(a) All nontrivial eigenvectors y have both positive and negative components.

(b) Provide an intuitive explanation why the normalization factor Λ in the constraint
yTΛy = 1, increases the propensity of low-degree nodes to be embedded away
from the origin, and the high-degree nodes to be embedded near the origin.

8. Suppose that all edge weights wij are discounted by the geometric mean of the
weighted node-degrees at their endpoints. Write an unnormalized formulation of spec-
tral clustering in terms of these normalized weights for discovering a 1-dimensional
embedding. What effect would the weight normalization have on the embedding?
Describe the algebraic similarities and differences of this formulation from the sym-
metric normalized formulation of spectral clustering. Discuss why the resulting eigen-
vectors will often be heuristically similar to those obtained with the symmetric for-
mulation of spectral clustering.

9. Explain the relationship between the random walk label propagation and the graph
regularization algorithm.

10. Discuss the connections between the link-prediction problem and network clustering.

11. Create a link prediction measure that can perform the degree normalizations per-
formed both by the Jaccard measure and the Adamic–Adar measure.

19.9. EXERCISES 661

12. Implement the linear threshold and independent cascade model for influence analysis.

13. The chapter provides a 1-dimensional formulation for the symmetric version using the
column vector z. Set up a generalized formulation for the symmetric version using an
n× k matrix Z.

(a) Let Y be the decision variables for the random walk formulation discussed in the
chapter. Show that Z =

√
ΛY .

(b) Show that the unit-norm scaled rows of Y and Z are the same.

14. It is well known that a symmetric matrix always has real eigenvalues. Use this result
to show that the stochastic transition matrix of an undirected graph always has real
eigenvalues.

15. Show that if (y, λ) is an eigenvector–eigenvalue pair of the normalized Laplacian
Λ−1(Λ−W), then (y, 1−λ) is an eigenvector–eigenvalue pair of the normalized weight
matrix Λ−1W . Here, Λ is a diagonal matrix containing the sum of each row in the
weighted adjacency matrix W .

Chapter 20

Privacy-Preserving Data Mining

“Civilization is the progress toward a society of privacy. The savage’s
whole existence is public, ruled by the laws of his tribe. Civilization is
the process of setting man free from men.”—Ayn Rand

20.1 Introduction

A significant amount of application data is of a personal nature. These kind of data sets
may contain sensitive information about an individual, such as his or her financial status,
political beliefs, sexual orientation, and medical history. The knowledge about such personal
information can compromise the privacy of individuals. Therefore, it is crucial to design
data collection, dissemination, and mining techniques, so that individuals are assured of
their privacy. Privacy-preservation methods can generally be executed at different steps of
the data mining process:

1. Data collection and publication: The privacy-driven modification of a data set may be
done at either the data collection time, or the data publication time. In anonymous data
collection, a modified version of the data is collected using a software plugin within
the collection platform. Therefore, the contributors of the data are assured that their
data is not available even to the entity collecting the data. The implicit assumption
in the collection-oriented model is that the data collector is not trusted, and therefore
the privacy must be preserved at collection time. In anonymous data publication, the
entire data set is available to a trusted entity, who has usually collected the data in the
normal course of business. An example is a hospital that has collected data about its
patients. Eventually, the entity may wish to release or publish the data to one of more
third-parties for data analysis. For example, a hospital may want to use the data to
study the long-term impact of various treatment alternatives. A real-world example
is the Netflix prize data set [559], in which the anonymized movie ratings of users
were published to advance studies on collaborative filtering algorithms. During data
publication, identifying or sensitive attribute values need to either be removed or be
specified approximately to preserve privacy. Generally, such publication algorithms

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 20 663
c© Springer International Publishing Switzerland 2015

664 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

can control the level of privacy much better than collection algorithms, because of
their access to the entire data set on a trusted server.

2. Output privacy of data mining algorithms: Privacy can also be violated by the output
of data mining algorithms. For example, consider a scenario where a user is allowed to
determine association patterns, or otherwise query the data through a Web service,
but is not provided access to the data set. In such a case, the output of the data
mining and query processing algorithms provides valuable information, some of which
may be private.

In some applications, organizations may wish to share their data in a private way, so that
only patterns in the shared data may be mined, but the statistics of the local databases
are not revealed to the participants. This problem is referred to as distributed privacy
preservation.

In general, most forms of privacy-preserving data mining reduce the representation accu-
racy of the data, in order to preserve privacy. This accuracy reduction is performed in a vari-
ety of ways, such as data distortion, approximation (generalization), suppression, attribute
value swapping, or microaggregation. Clearly, since the data is no longer specified exactly,
this will have a detrimental impact on the quality of the data mining results. The effective-
ness of the released data for mining applications is often quantified explicitly, and is referred
to as its utility. A natural trade-off exists between privacy and utility. For example, in a case,
where data values are suppressed, one might simply choose to suppress all entries. While
such a solution provides perfect privacy, it offers no utility. This observation is also true
for privacy-preserving publication algorithms in which noise is added to the data. When a
greater amount of noise is added, a higher level of privacy is achieved, but utility is reduced.
The goal of privacy-preservation methods is to maximize utility at a fixed level of privacy.

This chapter is organized as follows. Methods for privacy-preserving data collection
are addressed in Sect. 20.2. Section 20.3 addresses the problem of privacy-preserving data
publishing. This section includes several models such as the k-anonymity model, the �-
diversity model, and the t-closeness model. The problem of output privacy is addressed in
Sect. 20.4. Methods for distributed and cryptographic privacy are discussed in Sect. 20.5.
A summary is given in Sect. 20.6.

20.2 Privacy During Data Collection

The randomization method is designed for privacy-preservation at data collection time. The
implicit assumption is that the data collector is not trusted, and therefore the privacy must
be preserved at data collection time. The basic idea of the approach is to allow users to
enter the data through a software platform that is able to add random perturbations to
the data. This approach is one of the most conservative models for ensuring data privacy,
because the original data records are never stored on any single server.

The random perturbations are added using a publicly available distribution. Examples of
commonly used perturbing distributions include the uniform and the Gaussian distributions.
In other words, the probability distribution used to perturb the data is specified together
with the data set if and when the data collector releases the data for public use. This
additional distribution information is needed to use the data effectively in the context of
data mining algorithms. The basic idea is to reconstruct the distribution of the original
data, by “subtracting out” the noise distribution. This aggregate distribution is then used
for mining purposes. The overall approach is as follows:

20.2. PRIVACY DURING DATA COLLECTION 665

1. Privacy-preserving data collection: In this step, random noise is added to the data
while collecting data from users, with the use of a software plugin. The collected data
is publicly released along with the probability distribution function (and parameters)
used to add the random noise.

2. Distribution reconstruction: The aggregate distribution of the original data are recon-
structed, by “subtracting out” the noise. Thus, at the end of this step, we will have a
histogram representing the approximate probability distribution of the data values.

3. Data mining: Data mining methods are applied to the reconstructed distributions.

It is important to note that the last step of the process requires the design of data mining
algorithms that work with probability distributions of sets of data records, rather than
individual records. Thus, one disadvantage of this approach is that it requires the redesign
of data mining algorithms. Nevertheless, the approach can be made to work because many
data mining problems such as clustering and classification require only the probability
distribution modeling of either the whole data set, or segments (e.g., different classes) of
the data.

20.2.1 Reconstructing Aggregate Distributions

The reconstruction of the aggregate distribution of the original data is the key step in the
randomization method. Consider the case where the original data values x1 . . . xn are drawn
from the probability distribution X. For each original data value xi, a perturbation yi is
added by the software data collection tool, to yield the perturbed value zi. The perturbation
yi is drawn from the probability distribution Y, and is independent of X. It is assumed that
this distribution is known publicly. Furthermore, the probability distribution of the final set
of perturbed values is assumed to be Z. Therefore, the original distribution X, the added
perturbation Y and the final aggregate distribution Z are related as follows:

Z = X+Y

X = Z−Y

Thus, the probability distribution of X can be reconstructed, if the distributions of Y and Z
are known explicitly. The probability distribution of Y is assumed to be publicly available,
while discrete samples of Z are available in terms of z1 . . . zn. These discrete samples are
sufficient to reconstruct Z using a variety of methods, such as kernel density estimation.
Then, the distribution for X can be reconstructed using the relationship shown above.
The main problem with this approach emerges when the probability distribution of the
perturbation Y has a large variance and the number n of discrete samples of Z is small.
In such a case, the distribution of Z also has a large variance, and it cannot be accurately
estimated with a small number of samples. Therefore, a second approach is to directly
estimate the distribution of X from the discrete samples of Z and the known distribution
of Y.

Let fX and FX be the probability density and cumulative distributions functions of X.
These functions need to be estimated with the observed values z1 . . . zn. Let f̂X and F̂X be
the corresponding estimated probability density and cumulative distribution functions for
X. The key here is to use the Bayes formula with the use of observed values for Z. Consider
a simplified scenario in which only a single observed value z1 is available. This can be used

666 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

to estimate the cumulative distribution function F̂X(a) at any value of the random variable
X = a. The Bayes theorem yields the following:

F̂X(a) =

∫ w=a

w=−∞ fX(w|X+Y = z1)dw∫ w=∞
w=−∞ fX(w|X+Y = z1)dw

(20.1)

The conditional in the aforementioned equation corresponds to the fact that the sum of the
data values and perturbed values is equal to z1. Note that the expression fX(w|X+Y = z1)
can be expressed in terms of the unconditional densities of X and Y, as follows:

fX(w|X+Y = z1) = fY(z1 − w) · fX(w) (20.2)

This expression uses the fact that the perturbation Y is independent of X. By substituting
the aforementioned expression for fX(w|X+Y = z1) in the right-hand side of Eq. 20.1, the
following expression is obtained for the cumulative density of X:

F̂X(a) =

∫ w=a

w=−∞ fY(z1 − w) · fX(w)dw∫ w=∞
w=−∞ fY(z1 − w) · fX(w)dw

(20.3)

The expression for F̂X(a) was derived using a single observation z1, and needs to be gener-
alized to the case of n different observations z1 . . . zn . This can be achieved by averaging
the previous expression over n different values:

F̂X(a) =
1
n
·

n∑
i=1

∫ w=a

w=−∞ fY(zi − w) · fX(w)dw∫ w=∞
w=−∞ fY(zi − w) · fX(w)dw

(20.4)

The corresponding density distribution can be obtained by differentiating F̂X(a). This dif-
ferentiation results in the removal of the integral sign from the numerator and the corre-
sponding instantiation of w to a. Since the denominator is a constant, it remains unaffected
by the differentiation. Therefore, the following is true:

f̂X(a) =
1
n
·

n∑
i=1

fY(zi − a) · fX(a)∫ w=∞
w=−∞ fY(zi − w) · fX(w)dw

(20.5)

The aforementioned equation contains the density function fX(·) on both sides. This circu-
larity can be resolved naturally with the use of an iterative approach. The iterative approach
initializes the estimate of the distribution fX(·) to the uniform distribution. Subsequently,
the estimate of this distribution is continuously updated as follows:

Set f̂X(·) to be the uniform distribution;
repeat

Update f̂X(a) = (1/n) ·
∑n

i=1
fY(zi−a)·f̂X(a)

∫ w=∞
w=−∞ fY(zi−w)·f̂X(w)dw

until convergence

So far, it has been described, how to compute fX(a) for a particular value of a. In order
to generalize this approach, the idea is to discretize the range of the random variable X
into k intervals, denoted by [l1, u1] . . . [lk, uk]. It is assumed that the density distribution is
uniform over the discretized intervals. For each such interval [li, ui], the density distribution
is evaluated at the midpoint a = (li + ui)/2 of the interval. Thus, in each iteration, k
different values of a are used. The algorithm is terminated when the distribution does not

20.3. PRIVACY-PRESERVING DATA PUBLISHING 667

change significantly over successive steps of the algorithm. A variety of methods can be used
to compare the two distributions such as the χ2 test. The simplest approach is to examine
the average change in the density values, at the midpoints of the density distribution over
successive iterations. While this algorithm is known to perform effectively in practice, it
is not proven to be a optimally convergent solution. An expectation maximization (EM)
method was proposed in a later work [28], which provably converges to the optimal solution.

20.2.2 Leveraging Aggregate Distributions for Data Mining

The aggregate distributions determined by the algorithm can be leveraged for a variety of
data mining problems, such as clustering, classification, and collaborative filtering. This is
because each of these data mining problems can be implemented with aggregate statistics
of the data, rather than the original data records. In the case of the classification problem,
the probability distributions of each of the classes can be reconstructed from the data.
These distributions can then be used directly in the context of a naive Bayes classifier,
as discussed in Chap. 10. Other classifiers, such as decision trees, can also be modified to
work with aggregate distributions. The key is to use the aggregate distributions in order
to design the split criterion of the decision tree. The bibliographic notes contain pointers
to data mining algorithms that use the randomization method. The approach cannot be
used effectively for data mining problems such as outlier detection that are dependent on
individual data record values, rather than aggregate values. In general, outlier analysis is
a difficult problem for most private data sets because of the tendency of outliers to reveal
private information.

20.3 Privacy-Preserving Data Publishing

Privacy-preserving data publishing is distinct from privacy-preserving data collection,
because it is assumed that all the records are already available to a trusted party, who
might be the current owner of the data. This party then wants to release (or publish) this
data for analysis. For example, a hospital might wish to release anonymized records about
patients to study the effectiveness of various treatment alternatives.

This form of data release is quite useful, because virtually any data mining algorithm
can be used on the released data. To determine sensitive information about an individual,
there are two main pieces of information that an attacker (or adversary) must possess.

1. Who does this data record pertain to? While a straightforward way to determine
the identity is to use the identifying attribute (e.g., Social Security Number), such
attributes are usually stripped from the data before release. As will be discussed
later, these straightforward methods of sanitization are usually not sufficient, because
attackers may use other attributes, such as the age and ZIP code, to make linkage
attacks.

2. In addition to identifying attributes, data records also contain sensitive attributes
that most individuals do not wish to share with others. For example, when a hospital
releases medical data, the records might contain sensitive disease-related attributes.

Different attributes in a data set may play different roles in either facilitating identification
or facilitating sensitive information release. There are three main types of attributes:

668 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

Table 20.1: Example of a data table
SSN Age ZIP Code Disease

012-345-6789 24 10598 HIV
823-627-9231 37 90210 Hepatitis C
987-654-3210 26 10547 HIV
382-827-8264 38 90345 Hepatitis C
847-872-7276 36 89119 Diabetes
422-061-0089 25 02139 HIV

1. Explicit identifiers: These are attributes that explicitly identify an individual. For
example, the Social Security Number (SSN) of an individual can be considered an
explicit identifier. Because this attribute is almost always removed in the data saniti-
zation process, it is not relevant to the study of privacy algorithms.

2. Pseudo-identifier or quasi-identifier (QID): These are attributes that do not explicitly
identify an individual in isolation, but can nevertheless be used in combination to
identify an individual by joining them with publicly available information, such as
voter registration rolls. This kind of attack is referred to as a linkage attack. Examples
of such attributes include the Age and ZIP code. Strictly speaking, quasi-identifiers
refer to the specific combination of attributes used to make a linkage attack, rather
than the individual attributes.

3. Sensitive attribute: These are attributes that are considered private by most individu-
als. For example, in a medical data set, individuals would not like information about
their diseases to be known publicly. In fact, many laws in the USA, such as the Health
Insurance Portability and Accountability Act (HIPAA), explicitly forbid the release
of such information, especially when the sensitive attributes can be linked back to
specific individuals.

Most of the discussion in this chapter will be restricted to quasi-identifiers and sensitive
attributes. To illustrate the significance of these attribute types, an example will be used.
In Table 20.1, the medical records of a set of individuals are illustrated. The SSN attribute
is an explicit identifier that can be utilized to identify an individual directly. Such directly
identifying information will almost always be removed from a data set before release. How-
ever, the impact of attributes such as the age and the ZIP code on identification is quite
significant. While these attributes do not directly identify an individual, they provide very
useful hints, when combined with other publicly available information. For example, it is
possible for a small geographic region, such as a ZIP code, to contain only one individual
of a specific gender, race, and date of birth. When combined with publicly available voter
registration rolls, one might be able to identify an individual from these attributes. Such a
combination of publicly available attributes is referred to as a quasi-identifier.

To understand the power of quasi-identifiers, consider a snapshot of the voter registra-
tion rolls illustrated in Table 20.2. Even in cases, where the SSN is removed from Table 20.1
before release, it is possible to join the two tables with the use of the age and ZIP code
attributes. This will provide a list of the possible matches for each data record. For exam-
ple, Joy and Sue are the only two individuals in the voter registration rolls matching an
individual with HIV in the medical release of Table 20.1. Therefore, one can tell with 50%
certainty that Joy and Sue have HIV. This is not desirable especially when an adversary

20.3. PRIVACY-PRESERVING DATA PUBLISHING 669

Table 20.2: Example of a snapshot of fictitious voter registration rolls
Name Age ZIP Code

Mary A. 38 90345
John S. 36 89119
Ann L. 31 02139
Jack M. 57 10562
Joy M. 26 10547

Victor B. 46 90345
Peter P. 25 02139
Diana X. 24 10598

William W. 37 90210
Sue G. 26 10547

has other background medical information about Joy or Sue to further narrow down the
possibilities. Similarly, William is the only individual in the voter registration rolls, who
matches an individual with hepatitis C in the medical release. In cases, where only one data
record in the voter registration rolls matches the particular combination of age and ZIP
code, sensitive medical conditions about that individual may be fully compromised. This
approach is referred to as a linkage attack. Most anonymization algorithms focus on pre-
venting identity disclosure, rather than explicitly hiding the sensitive attributes. Thus, only
the attributes which can be combined to construct quasi-identifiers are changed or specified
approximately in the data release, whereas sensitive attributes are released in their exact
form.

Many privacy-preserving data publishing algorithms assume that the quasi-identifiers
are drawn out of a set of attributes that are not sensitive, because they can only be used
by an adversary by performing joins with (nonsensitive) publicly available information.
This assumption may, however, not always be reasonable, when an adversary has (sensi-
tive) background information about a target at hand. Adversaries are often familiar with
their targets, and they can be assumed to have background knowledge about at least a
subset of the sensitive attributes. In a medical application with multiple disease attributes,
knowledge about a subset of these attributes may reveal the identity of the subject of the
record. Similarly, in a movie collaborative filtering application, where anonymized ratings
are released, it may be possible to obtain information about a particular user’s ratings on a
subset of movies, through personal interaction or other rating sources. If this combination
is unique to the individual, then the other ratings of the individual are compromised as
well. Thus, sensitive attributes also need to be perturbed, when background knowledge is
available. Much of the work in the privacy literature assumes a rigid distinction between
the role of publicly available attributes (from which the quasi-identifiers are constructed)
and that of the sensitive attributes. In other words, sensitive attributes are not perturbed
because it is assumed that revealing them does not incur the risk of a linkage attack with
publicly available information. There are, however, a few algorithms that do not make this
distinction. Such algorithms generally provide better privacy protection in the presence of
background information.

In this section, several models for group-based anonymization, such as k-anonymity, �-
diversity, and t-closeness, will be introduced. While the recent models, such as �-diversity,
have certain advantages over the k-anonymity model, a good understanding of k-anonymity

670 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

is crucial in any study of privacy-preserving data publishing. This is because the basic
framework for most of the group-based anonymization models was first proposed in the
context of the k-anonymity model. Furthermore, many algorithms for other models, such
as �-diversity, build upon algorithms for k-anonymization.

20.3.1 The k-Anonymity Model

The k-anonymity model is one of the oldest ones for data anonymization, and it is credited
with the understanding of the concept of quasi-identifiers and their impact on data privacy.
The basic idea in k-anonymization methods is to allow release of the sensitive attributes,
while distorting only the attributes which are available through public sources of informa-
tion. Thus, even though the sensitive attributes have been released, they cannot be linked
to an individual through publicly available records. Before discussing the anonymization
algorithms, some of the most common techniques for data distortion will be discussed.

1. Suppression: In this approach, some of the attribute values are suppressed. Depending
on the algorithm used, the suppression can be done in a variety of ways. For example,
one might omit some of the age or ZIP code attribute values from a few selected data
records in Table 20.1. Alternatively, one might completely omit the entire record for a
specific individual (row suppression) or the age attribute from all individuals (column
suppression). Row suppression is often utilized to remove outlier records because such
records are difficult to anonymize. Column suppression is commonly used to remove
highly identifying attributes, or explicit identifiers, such as the SSN.

2. Generalization: In the case of generalization, the attributes are specified approxi-
mately in terms of a particular range. For example, instead of specifying Age = 26
and Location (ZIP Code) = 10547 for one of the entries of Table 20.1, one might
generalize it to Age ∈ [25, 30] and Location (State) = New York. By specifying the
attributes approximately, it becomes more difficult for an adversary to perform linkage
attacks. While numeric data can be generalized to specific ranges, the generalization of
categorical data is somewhat more complicated. Typically, a generalization hierarchy
of the categorical attribute values needs to be provided, for use in the anonymization
process. For example, a ZIP code may be generalized to a city, which in turn may be
generalized to a state, and so on. There is no unique way of specifying a domain hierar-
chy. Typically, it needs to be semantically meaningful, and it is specified by a domain
expert as a part of the input to the anonymization process. An example of a general-
ization taxonomy of categorical attributes for the location attribute of Table 20.1 is
provided in Fig. 20.1. This hierarchy of attribute values has a tree structure, and is
referred to as a value generalization hierarchy. The notations A0 . . . A3 and Z0 . . . Z4

in Fig. 20.1 denote the domain generalizations at different levels of granularity. The
corresponding domain generalization hierarchies are also illustrated in the Fig. 20.1
by the single path between Z0 . . . Z4 and A0 . . . A4.

3. Synthetic data generation: In this case, a synthetic data set is generated that mimics
the statistical properties of the original data, at the group level. Such an approach
can provide better privacy, because it is more difficult to map synthetic data records
to particular groups of records. On the other hand, the data records are no longer
truthful because they are synthetically generated.

4. Specification as probabilistic and uncertain databases: In this case, one might specify an
individual data record as a probability distribution function. This is different from the

20.3. PRIVACY-PRESERVING DATA PUBLISHING 671

AGE
(0 100]A3 ALLZ3

ZIP CODE
, Z

(0, 20]A2 (20, 40] (40, 60]
N.E. US W. USMID W. USZ2

A1 (0, 10] (10, 20] (20, 30] (30, 40] Z1 NY MA CA NV

A0 36 37 3842 6252 Z0 10547 10598 01239 90210 90345 89119

Figure 20.1: A value- and corresponding domain-generalization hierarchy for the age and
ZIP code attributes

Table 20.3: Example of a 3-anonymized version of Table 20.1
Row Index Age ZIP Code Disease

1 [20, 30] Northeastern US HIV
2 [30, 40] Western US Hepatitis C
3 [20, 30] Northeastern US HIV
4 [30, 40] Western US Hepatitis C
5 [30, 40] Western US Diabetes
6 [20, 30] Northeastern US HIV

aggregate distribution approach of randomization because the probability distribution
is data-record specific, and is designed to ensure k-anonymity. While this approach has
not been studied intensively, it has the potential to allow the use of recent advances
in the field of probabilistic databases for anonymization.

Among the aforementioned methods, the generalization and suppression methods are most
commonly used for anonymization. Therefore, most of the discussion in this section will be
focused on these methods. First, the notion of k-anonymity will be defined.

Definition 20.3.1 (k-anonymity) A data set is said to be k-anonymized, if the attributes
of each record in the anonymized data set cannot be distinguished from at least (k−1) other
data records.

This group of indistinguishable data records is also referred to as an equivalence class. To
understand how generalization and suppression can be used for anonymization, consider the
data set in Table 20.1. An example of a 3-anonymized version of this table is illustrated in
Table 20.3. The SSN has been fully suppressed with column-wise suppression and replaced
with an anonymized row index. Such explicit identifiers are almost always fully suppressed
in anonymization. The two publicly available attributes corresponding to the age and ZIP
code are now generalized and specified approximately. The subjects of the row indices 1,
3, and 6 can no longer be distinguished by using linkage attacks because their publicly
available attributes are identical. Similarly, the publicly available attributes of row indices
2, 4, and 5 are identical. Thus, this table contains two equivalence classes containing three
records each, and the data records cannot be distinguished from one another within these

672 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

ZIP CODE

ALL

ZIP CODE

Z4

1**** 9****Z3

10*** 90***Z2

105** 902** 903**

10547 10598 90210 90345Z0

Z1

10547 10598 90210 90345

Figure 20.2: An alternate value- and corresponding domain-generalization hierarchy for the
ZIP code attribute

equivalence classes. In other words, an adversary can no longer match the identification
of individual data records with voter registration rolls exactly. If any matching is found,
then it is guaranteed that at least k = 3 records in the data set will match any particular
individual in the voter registration roll.

The ZIP code is generalized with the use of the prespecified value generalization hierarchy
of Fig. 20.1. The generation of a domain generalization hierarchy for a categorical attribute
can be done in several ways, and depends on the skill of the analyst responsible for the
privacy modifications. An alternate example of a domain generalization hierarchy for the ZIP
code attribute is illustrated in Fig. 20.2. A value generalization hierarchy on the continuous
attributes does not require any special domain knowledge because it can be directly created
by the analyst, using the actual distribution of the continuous values in the underlying data.
This requires a simple hierarchical discretization of the continuous attributes.

The goal of the privacy-preservation algorithms is to replace the original values in the
data (numeric or discrete), with one of the discrete values illustrated in the taxonomy trees
of Fig. 20.1. Thus, the data is recoded in terms of a new set of discrete values. In most
cases, the numeric attributes do retain their ordering, because the corresponding ranges
are ordered. Different algorithms use different rules in the recoding process. These different
ways of recoding attributes may be distinguished as follows:

• Global versus local recoding: In global recoding, a given attribute value is always
replaced with the same discrete counterpart from the domain generalization hierarchy
over all data records. Consider the aforementioned example of Fig. 20.1, in which ZIP
code can be generalized either to state or region. In global recoding, the particular
ZIP code value of 10547 needs to be consistently replaced by either Northeastern US,
or New York over all the data records. However, for a different ZIP code such as
90210, a different level of hierarchy may be selected than for the 10547 value, as long
as it is done consistently for a particular data value (e.g., 10547 or 90210) across all
data records. In local recoding, different data records may use different generalizations
for the same data value. For example, one data record might use Northeastern US,
whereas another data record might use New York for 10547. While local recoding
might seem to be better optimized, because of its greater flexibility, it does lose a
different kind of information. In particular, because the same ZIP code might map to
different values, such as New York and Northeastern US, the similarity computation

20.3. PRIVACY-PRESERVING DATA PUBLISHING 673

between the resulting data records may be less accurate. Most of the current privacy
schemes use global recoding.

• Full-domain generalization: Full-domain generalization is a special case of global
recoding. In this approach, all values of a particular attribute are generalized to the
same level of the taxonomy. For example, a ZIP code might be generalized to its state
for all instances of the attribute. In other words, if the ZIP code 10547 is generalized
to New York, then the ZIP code 90210 must be generalized to California. The various
hierarchical alternatives for full-domain generalization of the age attribute are denoted
by A0, A1, A2, and A3 in Fig. 20.1. The possible full-domain generalization levels of
the ZIP code are denoted by Z0, Z1, Z2, and Z3. In this case, Z3 represents the high-
est level of generalization (column suppression), and Z0 represents the original values
of the ZIP code attribute. Thus, once it is decided that the anonymization algorithm
should use Z2 for the ZIP code attribute, then every instance of the ZIP code attribute
(Z0) in the data set is replaced with its generalized value in Z2. This is the reason
that the approach is referred to as full-domain generalization, as the entire domain of
data values for a particular attribute is generalized to the same level of the hierarchy.
Full-domain generalization is the most common approach used in privacy-preserving
data publishing.

Full-domain generalization is intuitively appealing because it ensures that the different
values of an attribute have the same level of granularity throughout the data set. The
earliest methods, such as Samarati’s original algorithm, and Incognito, were all full-domain
generalization algorithms.

20.3.1.1 Samarati’s Algorithm

Samarati’s algorithm was first proposed in the context of the definition of k-anonymity.
Samarati’s original AG-TS (Attribute Generalization and Tuple Suppression) algorithm for
k-anonymity provides the basic domain generalization framework, which is the basis for
group-based anonymization. It has already been discussed, how the domain generalization
of a single attribute can be represented as a path. For example, the path from Z0 to Z3

in Fig. 20.1 represents the generalization of the ZIP code attribute. The notion of domain
generalization can also be defined for combinations of attributes. However, in the case of
attribute combinations, the relationships are no longer expressed as a path, but as a special
kind of directed acyclic graph, known as a lattice. In this case, each node specifies a (full-
domain) generalization level for the different attributes For example, < A1, Z2 > denotes
the domain generalization level of age to A1 and ZIP code to Z2. In other words, every
data record is generalized to the level < A1, Z2 >. Note that < A1, Z2 > also represents
the generalization level of the (anonymized) Table 20.3 based on the domain-generalization
hierarchies specified in Fig. 20.1.

Thus, each node in the lattice specifies a possible level of full-domain generalization,
in terms of which the original data is represented. The edges in this graph represent the
direct generalization relationships among these tuples of domains. A directed path in the
lattice, from lower to higher levels, represents a sequence of generalizations. Conversely, a
lower-level node is a specialization of a higher-level node. For example, the node < A1, Z1 >
is a direct specialization of either < A1, Z2 >, or < A2, Z1 > because a single attribute in
either can be specialized once to immediately yield < A1, Z1 >. An example of the domain
generalization hierarchy for the age and ZIP code combination is illustrated in Fig. 20.3a.
The goal of the full-domain anonymization algorithm is to discover the node < Ai, Zj > in

674 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

Z3A3

Z3A2 Z2A3

Z3A1 Z2A2 Z1A3

Z3A0 Z2A1 Z1A2 Z0A3

Z A Z A Z AZ2A0 Z1A1 Z0A2

Z1A0 Z0A1

Z0A0

k ANONYMOUS SUB LATTICE
ON TWO ATTRIBUTESZ3A3

Z3A2 Z2A3

Z3A3

Z3A2 Z2A3

SATISFYING
k ANONYMITY

ON TWO ATTRIBUTES

Z3A1 Z2A2 Z1A3

Z3A2 Z2A3

Z2A2 Z1A3

Z3A0 Z2A1 Z1A2 Z0A3

Z A Z A Z A

MINIMAL GENERALIZATIONS
SATISFYING k ANONYMITY

Z2A0 Z1A1 Z0A2

Z1A0 Z0A1

NOT SATISFYING

Z0A0

NOT SATISFYING
k ANONYMITY

2-attribute lattice (b)(a) k-anonymous portion

Figure 20.3: Domain generalization hierarchies over combinations of attributes

this tuple-based domain generalization hierarchy that preserves k-anonymity with the least
amount of generalization. After such a node < Ai, Zj > has been discovered, the privacy
algorithm generalizes all ages to the level Ai and all ZIP codes to the level Zj .

In practice, some of the tuples may need to be suppressed in order to prevent undesirably
high levels of generalization. This is because these may represent outlier tuples that cannot
be incorporated in any group without significantly increasing the generalization level. For
example, an individual with an age of 125 may need to be suppressed because of the outlier
value of this attribute. Therefore, one of the parameters to the algorithm is a threshold
MaxSup, which specifies the maximum number of tuples that can be suppressed. The goal
is therefore to discover a node that is as low as possible in the lattice of Fig. 20.3a, such
that k-anonymity is satisfied after suppressing at most MaxSup tuples. The height of a
node in the lattice is defined as its path distance in the lattice from the most specific level
of representation. In the example of Fig. 20.3, the height of node < Zi, Aj > is (i + j).
A minimally generalized node may be defined as a node, for which the height is as small
as possible. Therefore, in this example, one way of determining minimal generalizations, is
to discover a k-anonymizable node < Zi, Aj >, such that the height (i + j) is as small as
possible.

When there are d attributes < Qi1 . . . Qid >, the sum
∑d

k=1 ik over all attributes rep-
resents the height of that particular combination of generalizations. It is easy to see that
any specialization of a node < Qi1 . . . Qid > that does not satisfy k-anonymity will also
not satisfy k-anonymity. Similarly, any generalization of a node satisfying k-anonymity will
also satisfy k-anonymity. Therefore, the subgraph of the lattice satisfying k-anonymity and
the subgraph violating k-anonymity are both connected subgraphs, and a border can be
constructed between them. An example of such a border1 is illustrated in Fig. 20.3b, and
the corresponding minimal generalizations are illustrated in the same figure. Note that
the minimal generalization is not unique, and that two possible minimal generalizations
< Z2, A2 > and < Z1, A3 > are possible in this example. The reason for using minimally
generalized nodes is to maximize the utility of the data for analytical algorithms. Other

1This border is for illustration purposes only, and does not correspond to any data set in this chapter.

20.3. PRIVACY-PRESERVING DATA PUBLISHING 675

more refined definitions can be used for quantifying utility that use the distribution of the
attribute values more explicitly. The bibliographic notes contain pointers to some of these
definitions.

Samarati’s algorithm uses a simple binary search over the lattice of domain generaliza-
tion tuples. Let [0, hmax] represent the range of heights of the lattice. It is then checked
whether any of the generalizations at level hmax/2 satisfies the k-anonymity constraint. If
this is indeed the case, then the height hmax/4 is checked. Otherwise, the height 3 · hmax/4
is checked. This approach is repeated, until the lowest height at which a k-anonymous solu-
tion exists, is found. All the corresponding domain generalizations are reported, and any of
these can be used for transforming the data. An important step in Samarati’s algorithm is
the process of using the original database to check whether a particular node in the lattice
satisfies k-anonymity. However, a discussion of this step is omitted here, because similar
steps are discussed below in the context of the Incognito algorithm.

20.3.1.2 Incognito

The lattice of Fig. 20.3 shares a number of conceptual similarities with the lattice of frequent
itemset mining algorithms, as discussed in Chap. 4. Therefore, some of the anonymization
algorithms for discovering full-domain generalization also have similar characteristics to
those of frequent itemset mining algorithms. The Incognito algorithm leverages a number
of principles from frequent pattern mining to efficiently discover the k-anonymous portion
of the lattice.

An important observation is that the size of the lattice is exponentially related to the
number of quasi-identifiers. This can lead to increasing computational complexity in many
practical scenarios. While it has been shown by Meyerson and Williams [385] that optimal
k-anonymization is NP-hard, it is possible to reduce the computational burden by careful
exploration of the lattice. The Incognito algorithm is based on the observation that the
k-anonymity of a subset of generalized attributes is a necessary (but not sufficient) con-
dition for the k-anonymity of a superset of attributes with matching generalization levels
of the common elements. Henceforth, this property will be referred to as attribute subset
closure. This property is a specific case of the generalization property which states that any
generalization of a k-anonymous node in the lattice will always be k-anonymous.

These properties can be used to both generate candidates and prune the search process
in a manner that is similar to the Apriori algorithm for frequent itemset mining. Therefore,
nodes that are not k-anonymous with respect to a set of attributes, can be discarded,
together with their specializations in the lattice hierarchy. Furthermore, generalizations of
subsets of attributes that do satisfy the k-anonymity constraint, do not need to be checked
because they are guaranteed to be k-anonymous.

The Incognito approach uses a levelwise approach, in which the following steps are
repeated iteratively, until the k-anonymous sublattice containing all d attributes has been
constructed. The set Fi denotes the set of all sublattices on i attributes that satisfies k-
anonymity. The algorithm starts by initializing F1 to the portions of the single-attribute
domain generalization hierarchies satisfying k-anonymity. This is quite simple, because sin-
gle attribute hierarchies are paths. Thus, F1 is simply the top portion of the path, such
that each generalized attribute value contains at least k tuples. Subsequently, as in frequent
pattern mining, the algorithm repeatedly generates candidate sublattices in Ci+1 by joining
sublattices in Fi that have exactly (i − 1) attributes in common. The process of joining
two sublattices will be described later. Note that Ci+1 is a set of candidate sublattices on
(i + 1) attributes. Each of these sublattices is then pruned of some of its nodes, using an

676 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

Apriori-style approach. Specifically, nodes of sublattices in Ci+1 whose generalizations are
not k-anonymous in Fi can be pruned. This step will also be described in detail later.

After candidate generation and pruning, the portion of each sublattice that satisfies
k-anonymity is retained by checking the constituent nodes against the base data records.
Thus, each sublattice in Ci+1 reduces further in size. At this point, the set Ci+1 has been
transformed to the set Fi+1. Thus, the following steps are repeated for increasing values of
the index i:

1. Generate Ci+1, the set of candidate sublattices on (i+ 1) attributes. This is achieved
by joining all pairs of k-anonymous sublattices in Fi that share (i−1) attributes. The
details of a join between a pair of sublattices will be described later.

2. Prune the nodes from each sublattice in Ci+1 that cannot possibly satisfy k-anonymity
by using the attribute subset closure property with respect to the set of k-anonymous
combinations in Fi. The details of how the nodes may be pruned from a sublattice,
will be described later.

3. Check each node in each (already pruned) sublattice of Ci+1 against the base data, and
remove those that do not satisfy k-anonymity. A node does not need to be checked,
if one of its specializations already satisfies k-anonymity. This step transforms the set
of candidate sublattices Ci+1 to the set of k-anonymous sublattices Fi+1 by removing
the anonymity-violating sublattices.

If there are a total of d attributes, then the set Fd will contain a single sublattice of nodes
satisfying k-anonymity. The nodes with the smallest height in this sublattice are reported.
Note that the detailed implementation of the Incognito algorithm uses a slightly different
approach for actually tracking the sublattices, by tracking the lattice nodes and edges
in separate tables. The i-dimensional tables containing the generalization levels of lattice
nodes of Fi are joined on their (i− 1) common attributes to create the (i+ 1)-dimensional
tables containing the nodes of Ci+1. Subsequently, the lattice edges are added between
the generated nodes based on the hierarchy relationships. Nevertheless, the simpler logical
description provided here matches the Incognito algorithm.

Next, the details of the join and pruning operations will be discussed with the use of an
example. In this case, three attributes will be used for greater clarity. As discussed earlier,
let Ar and Zr represent different generalization levels of the age and ZIP code attributes,
for varying values of the index r. Let Pr represent the generalization levels of an additional
attribute corresponding to the profession. Higher values of the index r indicate a greater
level of generalization. Consider the scenario where all three k-anonymous two-attribute
sublattices on these three attributes are already available in F2. It is possible to use any
pair of sublattices from these three possibilities, in order to perform the join. This will result
in a candidate sublattice on all three attributes.

Consider the case, where the sublattices on (ZIP code,Age) and (ZIP code,Profession)
are joined. The nodes in the new candidate sublattice will now have three attributes
(ZIP code,Profession,Age) instead of two. The nodes for the new candidate sublattice are
constructed by joining the nodes of the two k-anonymous sublattices. A pair of nodes
< Zr, Aj > and < Zs, Pl > will be joined, if and only if r = s. In other words, the gen-
eralization level of the ZIP code attribute needs to be the same in both cases. This will
result in the new node < Zr, Pl, Aj >. In general, for pairs of nodes with k attributes, a
join will be successfully executed, if and only if (a) they share (k − 1) attributes, and (b)
the generalization levels of the (k − 1) common attributes are the same. An example of a
join with two k-anonymous sublattices is illustrated in Fig. 20.4a.

20.3. PRIVACY-PRESERVING DATA PUBLISHING 677

Z3A3

Z A Z A

Z3P3A3

Z3A2 Z2A3

Z2A2 Z1A3

Z3P3A2 Z3P2A3 Z2P3A3

Z3P3
+ JOIN

Z2P3A2Z3P2A2 Z2P2A3Z3P1A3

Z3P2 Z2P3

Z2P2Z3P1

Z2P2A2Z3P1A2

CANDIDATE SUB LATTICE
ON THREE ATTRIBUTES2 23 1

k ANONYMOUS SUB LATTICES
ON TWO ATTRIBUTES

ON THREE ATTRIBUTES

(a) Incognito join between two sub-lattices

Z3P3A3

Z3P3A3

Z3P3A2 Z3P2A3

Z P AZ P A Z P AZ P A

Z2P3A3 P3A3

P3A2 P2A3

Z3P3A2 Z3P2A3 Z2P3A3

Z P A

Z2P3A2

Z P A

Z3P2A2 Z2P2A3Z3P1A3

PRUNE WITH k ANONYMOUS
SUB LATTICE ON TWO ATTRIBUTES

Z2P3A2 Z2P2A3

PRUNED CANDIDATE ON
THREE ATTRIBUTESZ2P2A2Z3P1A2

CANDIDATE SUB LATTICE
ON THREE ATTRIBUTES

(b) Incognito pruning

Figure 20.4: Incognito joins and pruning

In the previous example, the sublattice for the profession–age combination was not used
for the join. However, it is still useful for pruning. This is because, if a node < Pi, Aj >
is not present in this sublattice, then any node of the form < Zm, Pi, Aj > will also not
be k-anonymous. Therefore, such nodes can be removed from the constructed candidate
sublattice together with their specializations. An example of a pruning step on the candidate
sublattice is illustrated in Fig. 20.4b. This pruning is based on the attribute-subset closure
property, and it is reminiscent of Apriori pruning in frequent itemset mining. As in the case
of frequent itemset mining, all k-attribute subsets of each candidate (k + 1)-sublattice in
Ck+1 need to be checked. If a node violates the closure property in any of these checks, then
it is pruned.

Finally, the generated nodes in Ck+1 need to checked against the original database to
determine whether they satisfy k-anonymity. For example, in order to determine whether
< Z1, A1 > satisfies k-anonymity based on the value generalization in Fig. 20.1, one
needs to determine the number of individuals satisfying each of the pairs of condi-
tions such as (ZIP code ∈ NY, 0 < Age ≤ 10), (ZIP code ∈ NY, 10 < Age ≤ 20),
(ZIP code ∈ MA, 0 < Age ≤ 10), and so on. Therefore, for each node in the lattice,

678 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

a vector of frequency values need to be computed. This vector is also referred to as a
frequency vector or frequency set. The process of frequency vector computation can be
expensive because the original database may need to be scanned to determine the number
of tuples satisfying these conditions. However, several strategies can be used to reduce
the burden of computation. For example, if the frequency vector of < Z1, A1 > has
already been computed, one can use roll-up to directly compute the frequency vectors of
the generalization < Z2, A1 > without actually scanning the database. This is because
the frequency of the set (ZIP code ∈ Northeastern US, 0 < Age ≤ 10) is the sum of
the frequencies of (ZIP code ∈ NY, 0 < Age ≤ 10), (ZIP code ∈ NJ, 0 < Age ≤ 10),
(ZIP code ∈ MA, 0 < Age ≤ 10), and so on. The simplest approach is to use a breadth-first
strategy on the lattice of each set of (k+1) attributes, by determining the frequency vectors
of specific (lower-level) nodes in the lattice before determining the frequency vectors of more
general (higher-level) nodes. The frequency vectors of higher-level nodes can be computed
efficiently from those of lower-level nodes by using the roll-up property.

Note that a separate breadth-first search needs to be performed for each subset of
(k + 1) attributes in Ck+1 to compute its frequency vectors. Furthermore, once a node has
been identified by the breadth-first search to be k-anonymous, its generalizations in the
lattice are guaranteed to be k-anonymous. Therefore, they are automatically marked as
k-anonymous and are not explicitly checked. The original algorithm also supports a number
of other optimizations, referred to as Incognito super-roots and Bottom-up precomputation.
The bibliographic notes contain pointers to these methods.

20.3.1.3 Mondrian Multidimensional k-Anonymity

One of the disadvantages of the methods discussed so far is that the domain generalization
hierarchies for various attributes are constructed independently as a preprocessing step.
Thus, after the hierarchical discretization (domain generalization) for a numeric attribute
has been fixed by the preprocessing step, it is utilized by the anonymization algorithm. This
rigidity in the anonymization process creates inefficiencies in data representation, when the
various data attributes are correlated in multidimensional space. For example, the salary
distribution for older individuals may be different from that of younger individuals. A pre-
processed domain generalization hierarchy is unable to adjust to such attribute correlations
in the data set. In general, the best trade-offs between privacy and utility are achieved when
the multidimensional relationships among data points are leveraged in the anonymization
process. In other words, the attribute ranges for each attribute in a data point X should be
generated in a dynamic way depending on the specific multidimensional locality of X.

The Mondrian method generates multidimensional rectangular regions, containing at
least k data points. This is achieved by recursively dividing the bounding boxes with axis-
parallel cuts, until each region contains no more than k data points. This approach is not
very different from the methodology used by many traditional index structures, such as kd-
trees. An example of the partitioning induced by the Mondrian algorithm is illustrated in
Fig. 20.5. In this case, a 5-anonymous partitioning is illustrated. Thus, each group contains
at least five data points. It is easy to see that the same attribute value is represented by
different ranges in different portions of the data, in order to account for the varying density
of different regions. It is this flexibility that gives Mondrian a more compact representation
of the anonymized groups than the other methods.

The Mondrian algorithm dynamically maintains the set B of multidimensional gen-
eralizations that satisfy k-anonymity and cover the data set. The Mondrian algorithm
starts with a rectangular box B of all the data points. This represents the generalization

20.3. PRIVACY-PRESERVING DATA PUBLISHING 679

. . ..

.
.

. .
.

.

..
.
..
.

AGE
.

...

.
.

.

.
. .

SALARY

. . .

Figure 20.5: A sample 5-anonymous Mondrian multidimensional partitioning

of the entire data set to a single multidimensional region, and therefore trivially satisfies
k-anonymity. The algorithm therefore starts by initializing B = {B}. The algorithm repeat-
edly uses the following steps:

1. Select a rectangular region R ∈ B containing at least 2 · k data points, such that a
valid split into a pair of k-anonymous subsets exists.

2. Split the rectangular region R along any of the dimensions with an axis-parallel split,
so that each of R1 and R2 contains at least k data points.

3. Update B ⇐ B ∪ {R1, R2} −R

This iterative process is repeated, until the rectangular regions cannot be split any further
without violating k-anonymity. There is some flexibility in the choice of the dimension for
performing the split. A natural heuristic is to split the longest dimension of the selected
rectangular region. After the dimension has been selected, the split should be performed so
that the data points are partitioned as evenly as possible. In the absence of ties on attribute
values, the data points can be divided almost equally into the two regions.

The rectangular regions in B define the equivalence classes that are utilized for k-
anonymization. If each numeric attribute value is unique, it can be shown that every region
will contain at most 2 · k − 1 data points. However, if there are ties among attribute val-
ues, and tied values need to be assigned to be the same partition, then an upper bound of
m+2d · (k− 1) can be shown on the number of data points in each partition. Here m is the
number of identical copies of any data record. On the other hand, if ties on an attribute
value can be flexibly assigned to any partition, then the maximum number of points in any
rectangular partition, at the end of the process will be 2 · k − 1. The reader is referred to
the bibliographic notes for the pointer to the proof of this bound. After the data has been
divided into rectangular regions, the following approaches can be used for reporting the
anonymized data points:

1. The averages along each dimension may be reported for each anonymized equivalence
set.

2. The multidimensional bounding box of the data points may be reported.

The Mondrian algorithm has been shown to be more effective than the Incognito algorithm,
because of the greater flexibility provided by the multidimensional approach to partitioning.

680 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

TheMondrian approach is naturally designed for numeric attributes with an ordering on the
values. However, the approach can also be generalized to categorical attributes by designing
appropriate split rules for the attributes.

20.3.1.4 Synthetic Data Generation: Condensation-Based Approach

The condensation-based approach generates synthetic data that matches the original data
distribution, while maintaining k-anonymity. This means that k synthetic records are gen-
erated for each group of k records, by using the statistics of that group. The overall con-
densation approach may be described as follows:

1. Use any clustering approach to partition the data into groups of data records, such
that each group contains at least k data records. Denote the number of created groups
by m.

2. Compute the mean and covariance matrix for each group of data records. For a d-
dimensional data set, the covariance matrix of a group represents the d×d covariances
between pairs of attributes.

3. Compute the eigenvectors and eigenvalues of each covariance matrix. It is evident from
the discussion of Principal Component Analysis (PCA) in Chap. 2, that the eigenvec-
tors define a group-specific axis system, along which the data records are uncorrelated.
The variance of the data along each eigenvector is equal to the corresponding eigen-
value. The synthetic data set to be generated, is modeled as mixture of m clusters,
where the mean of each cluster is the mean of the corresponding group of original
data records.

4. Generate synthetic data records for each of them clusters. For each cluster, the number
and mean of the synthetic records matches its base group. Data records are gener-
ated independently along the eigenvectors, with variance equal to the corresponding
eigenvalues. The uniform distribution is typically used for synthetic data generation,
because it is assumed that the data distribution does not change significantly within
the small locality defined by a group. While the uniform distribution is a local approx-
imation, the global distribution of the generated records generally matches the original
data quite well.

The approach can also be generalized to data streams, by maintaining group statistics
incrementally. The idea here is that group sizes are allowed to vary between k and 2 · k− 1.
Whenever a group reaches the size of 2 · k, they are split into two groups. The details of
group splitting will be discussed later.

To maintain the covariance statistics incrementally in the streaming scenario, an
approach similar to the cluster-feature vector of CluStream (see Chap. 7) is used. The
only difference is that the product-wise sum statistics are also maintained incrementally.
For any pair of attributes i and j, the value of Sum(i, j) is equal to sum of the product
of attribute values i and j over the different data points. This can be easily maintained
incrementally in a data stream. Then, for a set of r ∈ (k, 2 · k − 1) data points in a group,
the covariance between attributes i and j may be estimated as follows:

Covariance(i, j) = Sum(i, j)/r −Mean(i) ·Mean(j) (20.6)

Covariance(i, j) = Sum(i, j)/r − Sum(i) · Sum(j)/r2 (20.7)

20.3. PRIVACY-PRESERVING DATA PUBLISHING 681

All the statistics in the aforementioned equation are additive, and can easily be maintained
incrementally in the stream setting.

It remains to be explained how the groups are split, once the group sizes reach 2 · k. It
is assumed that each group of size 2 · k is split into two groups of size k along the longest
eigenvector. The reason for choosing the longest eigenvector is to ensure the compactness of
the newly created groups. The splitting of groups can be a challenge, because the original
data records are not available in the streaming scenario to recalculate the statistics of each
of the split groups. Therefore, an approximation (i.e., modeling assumption) is needed. The
condensation approach works with the modeling assumption that the data records of a group
are independently distributed along each eigenvector according to a uniform distribution.
For group sizes that are much smaller than the number of points in the data set, this is not
an unreasonable assumption. This is because density distributions do not change drastically
over small regions of the data.

This modeling assumption of a uniform distribution is used to re-calculate the new
means of each of the child groups of equal size k. This is because the range of the uniform
distribution along the longest eigenvector can be approximated from its variance (eigen-
value), based on the modeling assumption. Note that the variance of a uniform distribution
is one twelfth the square of its range. Therefore, if λmax be the largest eigenvalue, then the
range R of the uniform distribution is computed as follows:

R =
√

12λmax (20.8)

This range R is then split into two equal parts to create the two new group means. Thus,
the two new group means are at a distance of R/4 from the old group mean in opposite
directions along the longest eigenvector.

The newly created groups are assumed to have the same eigenvectors as the parent
group, because the splitting is performed along an uncorrelated direction. Therefore, the
directions of correlation are not assumed to change after splitting. The largest eigenvalue of
the original (parent) group is replaced by an eigenvalue in each of the child groups, which
is one fourth2 the original value. Thus, if P is the d× d matrix with orthonormal columns
containing the eigenvectors, and Σ is the diagonal matrix of eigenvalues (after adjustment
of the largest eigenvalue), then the covariance matrix of the newly created split groups can
be computed as follows:

C = PΣPT (20.9)

This relationship is based on the standard PCA diagonalization discussed in Chap. 2. Note
that the covariance matrices of both the split groups are the same. The covariance matri-
ces and newly generated group means can be used to back-calculate the sum of pairwise
attribute products of each group according to Eq. 20.6. Thus, as more data points arrive,
these product values can continue to be updated incrementally.

The condensation-based approach is one of the few methods that can be applied to data
streams with a relatively low risk of disclosure, because of its approach of using synthetic
data. It is often difficult for an adversary to know which group of k synthetic records was
generated from a particular base group of original records. In the case of generalization-based
anonymization, it is relatively easy to identify groups of related data records, representing
equivalence classes. Thus, synthetic data sets provide some additional privacy protection.
Note that it is possible to generate larger data sets using this approach if needed. For
example, for each group of k records, one might generate α · k synthetic data records,

2Splitting a uniform distribution into two equal parts reduces its variance by a factor of 4.

682 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

using the statistics of that group. This scales up the size of the data with a factor of α, and
further reduces the mapping between the generated data and the original data. Furthermore,
additional noise can be incorporated during synthetic data generation to ensure greater
protection.

These additional options do come at a price. The truthfulness of the published data is
lost. The published data records are synthetic and therefore do not map onto any particular
individual. In many aggregation- or modeling-based applications, this is not necessarily an
issue, because the aggregate properties of the data are retained. In some medical data han-
dling scenarios, legal restrictions may prohibit release of downgraded data, when there is a
direct mapping between individuals and data records, even at a group level. The conden-
sation approach provides a solution in some of these scenarios, because the released data
records are synthetic, and are generally difficult to map onto specific groups.

The condensation approach shares a number of conceptual similarities with the Mon-
drian approach, except that it allows the use of any constrained clustering algorithm, rather
than rectangular partitions constructed with single dimensional cuts. The utility of the
resulting anonymization depends on the effectiveness of the clustering. Single dimensional
cuts will not be able to construct high-quality clusters with increasing dimensionality. Fur-
thermore, unlike Mondrian, synthetic data is generated to achieve greater anonymity.

The condensation approach does not distinguish between publicly available attributes
(used in combination to construct quasi-identifiers) and sensitive attributes, and applies the
approach to all the attributes. As will be evident from the subsequent discussion on the
dimensionality curse in Sect. 20.3.4, the distinction between quasi-identifier and sensitive
attributes is more fluid, than is often assumed in the literature on data privacy. Because it
is not possible to know the level of background knowledge available to adversaries about
the sensitive attributes, all attributes should be perturbed. When the sensitive attributes
are released without any perturbation, they become immediately available for identification
attacks, as long as background knowledge is available. For example, a number of privacy
attacks on data sets such as the Netflix data set [402], have been performed using attributes
that would normally not have been considered publicly available. This work [402] also
makes the argument that such strong distinctions between publicly available and sensitive
attributes are dangerous to make in real-world settings where the data and background
knowledge available to the public continues to increase over time.

20.3.2 The �-Diversity Model

While the k-anonymity model provides the basic framework for privacy-preserving data
publishing, there are scenarios in which it can lead to inadvertent sensitive attribute dis-
closure. Consider the 3-anonymized table illustrated in Table 20.3. In this case, the row
indices 1, 3, and 6 are in the same anonymized group, and cannot be distinguished from one
another. However, all three individuals have the value of “HIV” on the sensitive attribute.
Therefore, even though the identity of the specific individual from this group cannot be
inferred, it can be inferred that any individual in this group has HIV. Therefore, if a voter
registration roll is used to join this group to three unique individuals, then it can be inferred
that all three of them have HIV. This represents a breach of sensitive attribute information
about each of these three individuals. In other words, while the k-anonymity model prevents
identity disclosure, it does not prevent attribute disclosure.

The main reason for this breach is that the sensitive information is not diverse enough
within the anonymized groups. Since the goal of privacy-preserving data publishing is to
prevent the revelation of sensitive information, a model that does not use the sensitive

20.3. PRIVACY-PRESERVING DATA PUBLISHING 683

attribute values within the group formation process, cannot achieve this goal. The �-diversity
model is designed to ensure that the sensitive attributes within an equivalence class are
sufficiently diverse.

Definition 20.3.2 (�-diversity Principle) An equivalence class is said to be � diverse,
if it contains � “well-represented” values for the sensitive attribute. An anonymized table is
said to be �-diverse, if each equivalence class in it is �-diverse.

It is important to note that the notion of “well represented” can be instantiated in several
different ways. Therefore, the aforementioned definition provides the basic principle behind
this approach, but cannot be considered a hard definition. There are several ways in which
the notion of “well-represented” can be instantiated. These correspond to the notions of
entropy �-diversity and recursive �-diversity. These definitions are described below.

Definition 20.3.3 (Entropy �-diversity) Let p1 . . . pr be the fraction of the data records
belonging to different values of the sensitive attribute in an equivalence class. The equivalence
class is said to be entropy �-diverse, if the entropy of its sensitive attribute value distribution
is at least log(�).

−
r∑

i=1

pi · log(pi) ≥ log(�) (20.10)

An anonymized table is said to satisfy entropy �-diversity, if each equivalence class in it
satisfies entropy �-diversity.

It can be shown that the sensitive attributes in an equivalence class must have at least �
distinct values for the table to be �-diverse (see Exercise 7). Therefore, any �-diverse group
has at least � elements, and is �-anonymous as well.

One problem with this definition of �-diversity is that it may be too restrictive in many
settings, especially when the distributions of the sensitive attribute values are uneven. The
entropy of a table can be shown to be at least equal to the minimum entropy of the con-
stituent equivalence classes into which it is partitioned (see Exercise 8). Therefore, to ensure
�-diversity of each equivalence class, the sensitive attribute distribution in the entire table
must also be �-diverse. This is a restrictive assumption in many settings, because most real
distributions of sensitive attributes are very skewed. For example, in a medical application,
the sensitive (disease) attribute is likely to have uneven frequencies between normal indi-
viduals and various diseases. Greater attribute skew reduces the (global) entropy �-diversity
of the sensitive-attribute distribution across the entire table. When this global �-diversity is
less than �, it is no longer possible to create a globally �-diverse partition without suppressing
many data records.

Therefore, a more relaxed notion of recursive (c, �)-diversity has been proposed. The basic
goal of the definition is to ensure that the most frequent attribute value in an equivalence
class does not dominate the less frequent sensitive values in it. An additional parameter
c is used to control the relative frequency of the different values of the sensitive attribute
within an equivalence class.

Definition 20.3.4 (Recursive (c, �)-diversity) Let p1 . . . pr be the fraction of the data
records belonging to the r different values of the sensitive attribute in an equivalence class,
such that p1 ≥ p2 ≥ . . . ≥ pr. The equivalence class satisfies recursive (c, �)-diversity, if the
following is true:

p1 < c ·
r∑

i=

pi (20.11)

684 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

An anonymized table is said to satisfy recursive (c, �)-diversity, if each equivalence class in
it satisfies entropy (c, �)-diversity.

The idea is that the least frequent tail of the sensitive attribute values must contain sufficient
cumulative frequency compared to the most frequent sensitive attribute value. The value
of r has to be at least �, for the right-hand side of the aforementioned relationship to be
non-zero.

A key property of �-diversity is that any generalization of an �-diverse table is also
�-diverse. This is true for both definitions of �-diversity.

Lemma 20.3.1 (Entropy �-diversity monotonicity) If a table is entropy �-diverse,
then any generalization of the table is entropy �-diverse as well.

Lemma 20.3.2 (Recursive (c, �)-diversity monotonicity) If a table is recursive (c, �)-
diverse, then any generalization of the table is recursive (c, �)-diverse as well.

The reader is advised to work out Exercises 9(a) and (b), which are related to these results.
Thus, �-diversity exhibits the same monotonicity property exhibited by k-anonymity algo-
rithms. This implies that the algorithms for k-anonymity can be easily generalized to �-
diversity by making minor modifications. For example, both Samarati’s algorithm and the
Incognito algorithm can be adapted to the �-diversity definition. The only change to any
k-anonymity algorithm is as follows. Every time a table is tested for k-anonymity, it is now
tested for �-diversity instead. Therefore, algorithmic development of �-diverse anonymization
methods is typically executed by simply adapting existing k-anonymization algorithms.

20.3.3 The t-closeness Model

While the �-diversity model is effective in preventing direct inference of sensitive attributes,
it does not fully prevent the gain of some knowledge by an adversary. The primary reason for
this is that �-diversity does not account for the distribution of the sensitive attribute values
in the original table. For example, the entropy of a set of sensitive attribute values with
relative frequencies p1 . . . pr will take on the maximum value when p1 = p2 = . . . = pr = 1/r.
Unfortunately, this can often represent a serious breach of privacy, when there is a significant
skew in the original distribution of sensitive attribute values. Consider the example of a
medical database of HIV tests, where the sensitive value takes on the two values of “HIV” or
“normal,” with relative proportions of 1 : 99. In this case, a group with an equal distribution
of HIV and normal patients will have the highest entropy, based on the �-diversity definition.

Unfortunately, such a distribution is highly revealing when the distribution of the sensi-
tive values in the original data is taken into account. Sensitive values are usually distributed
in a skewed way, across most real data sets. In the medical example discussed above, it is
already known that only 1% of the patients in the entire data set have HIV. Thus, the
equal distribution of HIV-infected and normal patients within a group, provides a signifi-
cant information gain to the adversary. The adversary now knows, that this small group of
patients has a much higher expected chance of having HIV, than the base population.

In this context, a notion of Bayes optimal privacy exists, which ensures that the addi-
tional posterior information gained after release of information is as small as possible. Unfor-
tunately, the notion of Bayes optimal privacy is practically and computationally difficult to
implement. The t-closeness model may be viewed as a practical and heuristic approach that
attempts to achieve similar goals as the notion of Bayes optimal privacy. This is achieved
by using the distance functions between distributions. Informally, the goal is to create an

20.3. PRIVACY-PRESERVING DATA PUBLISHING 685

anonymization, such that the distance between the sensitive attribute distributions of each
anonymized group and the base data is bounded by a user-defined threshold.

Definition 20.3.5 (t-closeness Principle) Let P = (p1 . . . pr) be a vector representing
the fraction of the data records belonging to the r different values of the sensitive attribute
in an equivalence class. Let Q = (q1 . . . qr) be the corresponding fractional distributions in
the full data set. Then, the equivalence class is said to satisfy t-closeness, if the following is
true, for an appropriately chosen distance function Dist(·, ·):

Dist(P ,Q) ≤ t (20.12)

An anonymized table is said to satisfy t-closeness, if all equivalence classes in it satisfy
t-closeness.

The previous definition does not specify any particular distance function. There are many
different ways to instantiate the distance function, depending on application-specific goals.
Two common instantiations of the distance function are as follows:

1. Variational distance: This is simply equal to half the Manhattan distance between the
two distribution vectors:

Dist(P ,Q) =
∑r

i=1 |pi − qi|
2

(20.13)

2. Kullback-Leibler (KL) distance: This is an information-theoretic measure that com-
putes the difference between the cross-entropy of (P ,Q), and the entropy of P .

Dist(P ,Q) =
r∑

i=1

(pi · log(pi)− pi · log(qi)) (20.14)

Note that the entropy of the first distribution is −
∑r

i=1 pi · log(pi), whereas the cross-
entropy is −

∑r
i=1 pi · log(qi).

While these are the two most common distance measures used, other distance measures can
be used in the context of different application-specific goals.

For example, one may wish to prevent scenarios in which a particular equivalence class
contains semantically related sensitive attribute values. Consider the scenario, where a par-
ticular equivalence class contains diseases such as gastric ulcer, gastritis, and stomach can-
cer. In such cases, if a group contains only these diseases, then it provides significant infor-
mation about the sensitive attribute of that group. The t-closeness method prevents this
scenario by changing the distance measure, and taking the distance between different values
of the sensitive attribute into account in the distance-computation process. In particular,
the Earth Mover Distance can be used effectively for this scenario.

The earth mover’s distance (EMD) is defined in terms of the “work” (or cost) required
to transform one distribution to the other, if we allow sensitive attribute values in the
original data to be flipped. Obviously, it requires less “work” to flip a sensitive value to a
semantically similar value. Formally, let dij be the amount of “work” required to transform
the ith sensitive value to the jth sensitive value, and let fij be the fraction of data records
which are flipped from attribute value i to attribute value j. The values of dij are provided by
a domain expert. Note that there are many different ways to flip the distribution (p1 . . . pr)
to the distribution (q1 . . . qr), and it is desired to use the least cost sequence of flips to

686 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

compute the distance between P and Q. For example, one would rather flip “gastric ulcer”
to “gastritis” rather than flipping “HIV” to “gastritis” because the former is likely to have
lower cost. Therefore, fij is a variable in a linear programming optimization problem, which
is constructed to minimize the overall cost of flips. For a table with r distinct sensitive
attribute values, the cost of flips is given by

∑r
i=1

∑r
j=1 fij ·dij . The earth mover’s distance

may be posed as an optimization problem that minimizes this objective function subject to
constraints on the aggregate flips involving each sensitive attribute value. The constraints
ensure that the aggregate flips do transform the distribution P to Q.

Dist(P ,Q) = Minimize
r∑

i=1

r∑
j=1

fij · dij

subject to:

pi −
r∑

j=1

fij +
r∑

j=1

fji = qi ∀i ∈ {1 . . . r}

fij ≥ 0 ∀i, j ∈ {1, . . . r}

The earth mover’s distance has certain properties that simplify the computation of gener-
alizations satisfying t-closeness.

Lemma 20.3.3 Let E1 and E2 be two equivalence classes, and let P1, P2 be their sensitive
attribute distributions. Let P be the distribution of E1∪E2, and Q be the global distribution
of the full data set. Then, it can be shown that:

Dist(P ,Q) ≤ |E1|
|E1|+ |E2|

·Dist(P1, Q) +
|E2|

|E1|+ |E2|
·Dist(P2, Q) (20.15)

This lemma is a result of the fact that the optimal objective function of a linear programming
formulation is convex, and P can be expressed as a convex linear combination of P1 and P2

with coefficients |E1|
|E1|+|E2| and

|E2|
|E1|+|E2| , respectively. This convexity result also implies the

following:
Dist(P ,Q) ≤ max{Dist(P1, Q), Dist(P2, Q)}

Therefore, when two equivalence classes satisfying t-closeness are merged, the merged
equivalence class will also satisfy t-closeness. This implies the monotonicity property for
t-closeness.

Lemma 20.3.4 (t-closeness monotonicity) If a table satisfies t-closeness, then any gen-
eralization of the table satisfies t-closeness as well.

The proof of this lemma follows from the fact that the generalization A of any table B,
contains equivalence classes that are the union of equivalence classes inB. If each equivalence
class in B already satisfies t-closeness, then the corresponding union of these equivalence
classes must satisfy t-closeness. Therefore, the generalized table must also satisfy t-closeness.
This monotonicity property implies that all existing algorithms for k-anonymity can be
directly used for t-closeness. The k-anonymity test is replaced with a test for t-closeness.

20.3. PRIVACY-PRESERVING DATA PUBLISHING 687

20.3.4 The Curse of Dimensionality

As discussed at various places in this book, the curse of dimensionality causes challenges for
many data mining problems. Privacy preservation is also one of the problems affected by the
curse of dimensionality. There are two primary ways in which the curse of dimensionality
impacts the effectiveness of anonymization algorithms:

1. Computational challenges: It has been shown [385], that optimal k-anonymization is
NP-hard. This implies that with increasing dimensionality, it becomes more difficult
to perform privacy preservation. The NP-hardness result also applies to the �-diversity
and t-closeness models, using a very similar argument.

2. Qualitative challenges: The qualitative challenges to privacy preservation are even
more fundamental. Recently, it has been shown that it may be difficult to per-
form effective privacy preservation without losing the utility of the anonymized data
records. This is an even more fundamental challenge, because it makes the privacy-
preservation process less practical. The discussion of this section will be centered on
this issue.

In the following, a discussion of the qualitative impact of the dimensionality curse on group-
based anonymization methods will be provided. While a formal mathematical proof [10]
is beyond the scope of this book, an intuitive version of the argument is presented. To
understand why the curse of dimensionality increases the likelihood of breaches, one only
needs to understand the well-known notion of high dimensional data sparsity. For ease in
understanding, consider the case of numeric attributes. A generalized representation of a
table can be considered a rectangular region in d-dimensional space, where d is the number
of quasi-identifiers. Let Fi ∈ (0, 1) be the fraction of the range of dimension i covered
by a particular generalization. For the anonymized data set to be useful, the value of Fi

should be as small as possible. However, the fractional volume of the space, covered by a
generalization with fractional domain ranges of F1 . . . Fd, is given by

∏d
i=1 Fi. This fraction

converges to 0 exponentially fast with increasing dimensionality d. As a result, the fraction
of data points within the volume also reduces rapidly, especially if the correlations among
the different dimensions are weak. For large enough values of d, it will be difficult to create
d-dimensional regions containing at least k data points, unless the values of Fi are chosen
to be close to 1. In such cases, any value of an attribute is generalized to almost the entire
range of values. Such a highly generalized data set therefore loses its utility for data mining
purposes. This general principle has also been shown to be true for other privacy models,
such as perturbation, and �-diversity. The bibliographic notes contain pointers to some of
these theoretical results.

A real-world example of this scenario is the Netflix Prize data set, in which Netflix
released ratings of individuals [559] for movies to facilitate the study of collaborative filtering
algorithms. Many other sources of data could be found, such as the Internet Movie Database
(IMDb), from which the ratings information could be matched with the Netflix prize data
set. It was shown that the identity of users could be breached with a very high level of
accuracy, as the number of ratings (specified dimensionality) increased [402]. Eventually,
Netflix retracted the data set.

688 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

20.4 Output Privacy

The privacy-preservation process can be applied at any point in the data mining pipeline,
starting with data collection, publishing, and finally, the actual application of the data min-
ing process. The output of data mining algorithms can be very informative to an adversary.
In particular, data mining algorithms with a large output and exhaustive data descriptions
are particularly risky in the context of disclosure. For example, consider an association rule
mining algorithm, in which the following rule is generated with high confidence:

(Age = 26,ZIP Code = 10562) ⇒ HIV

This association rule is detrimental to the privacy of an individual satisfying the condition
on the left hand side of the aforementioned rule. Therefore, the discovery of this rule may
result in the unforseen disclosure of private information about an individual. In general,
many databases may have revealing relationships among subsets of attributes because of
the constraints and strong statistical relationships between attribute values.

The problem of association rule hiding may be considered a variation of the problem of
statistical disclosure control, or database inference control. In these problems, the goal is to
prevent inference of sensitive values in the database from other related values. However, a
crucial difference does exist between database inference control and association rule hiding.
In database inference control, the focus is on hiding some of the entries, so that the privacy
of other entries is preserved. In association rule hiding, the focus is on hiding the rules
themselves, rather than the entries. Therefore, the privacy preservation process is applied
on the output of the data mining algorithm, rather than the base data.

In association rule mining, a set of sensitive rules are specified by the system adminis-
trator. The task is to mine all association rules, such that none of the sensitive rules are
discovered, but all nonsensitive rules are discovered. Association rule hiding methods are
either heuristic methods, border-based methods, or exact methods. In the first class of meth-
ods, a subset of transactions are removed from the data. The association rules are discovered
on the set of sanitized transactions. In general, if too many transactions are removed, then
the remaining nonsensitive rules, which are discovered, will not reflect the true set of rules.
This may lead to the discovery of rules that do not reflect the true patterns in the under-
lying data. In the case of border-based methods, the border of the frequent pattern mining
algorithm is adjusted, so as to discover only nonsensitive rules. Note that when the bor-
ders of the frequent itemsets are adjusted, it will lead to the exclusion of nonsensitive rules
along with the sensitive rules. The last class of problems formulates the hiding process as a
constraint satisfaction problem. This formulation can be solved using integer programming.
While these methods provide exact solutions, they are much slower, and their use is limited
to problems of smaller size.

A related problem in output privacy is that of query auditing. In query auditing, the
assumption is that users are allowed to issue a sequence of queries to the database. However,
the response to one or more queries may sometimes lead to the compromising of sensitive
information about smaller sets of individuals. Therefore, the responses to some of the queries
are withheld (or audited) to prevent undesirable disclosure. The bibliographic notes contain
specific pointers to a variety of query auditing and association rule hiding algorithms.

20.5. DISTRIBUTED PRIVACY 689

GROCERY
CHAIN 1

DATABASE 1

JEWELRY

DATABASE 1

WOMEN’S WOMEN’S

DATABASE ESABATAD2 2

GROCERYGROCERY
APPAREL SHOES

DATABASE ESABATAD4 4

CHAIN 2

GROCERY

CHAIN 4

COSMETICS

DATABASE ESABATAD3 3

CHAIN 3

HORIZONTALLY PARTITIONED DATA VERTICALLY PARTITIONED DATAa b

Figure 20.6: Examples of horizontally and vertically partitioned data

20.5 Distributed Privacy

In distributed privacy-preserving data mining, the goal is to mine shared insights across mul-
tiple participants owning different portions of the data, without compromising the privacy
of local statistics or data records. The key is to understand that the different participants
may be partially or fully adversaries/competitors, and may not wish to provide full access of
their local data and statistics to one another. However, they might find it mutually beneficial
to extract global insights over all the data owned by them.

The data may be partitioned either horizontally or vertically across the different partic-
ipants. In horizontal partitioning, the data records owned by different adversaries have the
same attributes, but different adversaries own different portions of the database. For exam-
ple, a set of supermarket chains may own similar data related to customer buying behavior,
but the different stores may show somewhat different patterns in their transactions because
of factors specific to their particular business. In vertical partitioning, the different sites
may contain different attributes for the same individual. For example, consider a scenario
in which a database contains transactions by various customers. A particular customer may
buy different kinds of items at stores containing complementary products such as jewelery,
apparel, cosmetics, etc. In such cases, the aggregate association analysis across different
participants can provide insights, that cannot be inferred from any particular database.
Examples of horizontal and vertically partitioned data are provided in Figs. 20.6a and b,
respectively.

At the most primitive level, the problem of distributed privacy-preserving data mining
overlaps closely with a field in cryptography for determining secure multi-party compu-
tations. In this field, functions are computed over inputs provided by multiple recipients
without actually sharing the inputs with one another. For example, in a two-party setting,
Alice and Bob may have two inputs x and y, respectively, and may wish to compute the
function f(x, y) without revealing x or y to each other. This problem can also be general-
ized across k parties for computing the k argument function h(x1 . . . xk). Many data mining
algorithms may be viewed in the context of repetitive computations of primitive functions
such as the scalar dot product, secure sum, secure set union, etc. For example, the scalar
dot product of the binary representation of an itemset and a transaction can be used to
determine whether or not that itemset is supported by that transaction. Similarly, scalar

690 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

dot products can be used for similarity computations in clustering. To compute the function
f(x, y) or h(x1 . . . , xk), a protocol needs to be designed for exchanging information in such
a way that the function is computed without compromising privacy.

A key building-block for many kinds of secure function evaluations is the 1 out of 2
oblivious-transfer protocol. This protocol involves two parties: a sender, and a receiver. The
sender’s input is a pair (x0, x1), and the receiver’s input is a bit value σ ∈ {0, 1}. At the end
of the process, the receiver learns xσ only, and the sender learns nothing. In other words,
the sender does not learn the value of σ.

In the oblivious transfer protocol, the sender generates two encryption keys, K0 and K1,
but the protocol is able to ensure that the receiver knows only the decryption key for Kσ.
The sender is able to generate these keys by using an encrypted input from the receiver,
which encodes σ. This coded input does not reveal the value of σ to the sender, but is
sufficient to generate K0 and K1. The sender encrypts x0 with K0, x1 with K1, and sends
the encrypted data back to the receiver. At this point, the receiver can only decrypt xσ,
since this is the only input for which he or she has the decryption key. The 1 out of 2
oblivious transfer protocol has been generalized to the case of k out of N participants.

The oblivious transfer protocol is a basic building block, and can be used in order to
compute several data mining primitives related to vector distances. Another important pro-
tocol that is used by frequent pattern mining algorithms is the secure set union protocol.
This protocol allows the computation of unions of sets in a distributed way, without reveal-
ing the actual sources of the constituent elements. This is particularly useful in frequent
pattern mining algorithms, because the locally large itemsets at the different sites need to
be aggregated. The key in these methods is to disguise the frequent patterns at each site
with enough number of fake itemsets, in order to disguise the true locally large itemsets
at each site. Furthermore, it can be shown that this protocol can be generalized to com-
pute different kinds of functions for various data mining problems on both horizontally and
vertically partitioned data. The bibliographic notes contain pointers to surveys on these
techniques.

20.6 Summary

Privacy-preserving data mining can be executed at different stages of the information pro-
cessing pipeline, such as data collection, data publication, output publication, or distributed
data sharing. The only known method for privacy protection at data collection, is the ran-
domization method. In this method, additive noise is incorporated in the data at data
collection time. The aggregate reconstructions of the data are then used for mining.

Privacy-preserving data publishing is typically performed using a group-based approach.
In this approach, the sensitive attributes are treated in a different way from the attributes
that are combined to construct quasi-identifiers. Only the latter types of attributes are
perturbed, in order to prevent identification of the subjects of the data records. Numerous
models, such as k-anonymity, �-diversity, and t-closeness are used for anonymization. The
eventual goal of all these methods is to prevent the release of sensitive information about
individuals. When the dimensionality of the data increases, privacy preservation becomes
very difficult, without a complete loss of utility.

In some cases, the output of data mining applications, such as association rule mining
and query processing, may lead to release of sensitive information. Therefore, in many
cases, the output of these applications may need to be restricted in to prevent the release

20.7. BIBLIOGRAPHIC NOTES 691

of sensitive information. Two such well known techniques are association rule hiding, and
query auditing.

In distributed privacy, the goal is to allow adversaries or semi-adversaries to collaborate
in the sharing of data, for global insights. The data may be vertically partitioned across
columns, or horizontally partitioned across rows. Cryptographic protocols are typically used
in order to achieve this goal. The most well-known among these is the oblivious transfer
protocol. Typically, these protocols are used to implement primitive data mining operations,
such as the dot product. These primitive operations are then leveraged in data mining
algorithms.

20.7 Bibliographic Notes

The problem of privacy-preserving data mining has been studied extensively in the sta-
tistical disclosure control and security community [1, 512]. Numerous methods, such as
swapping [181], micro-aggregation [186], and suppression [179], have been proposed in the
conventional statistical disclosure control literature.

The problem of privacy-preserving data mining was formally introduced in [60] to the
broader data mining community. The work in [28] established models for quantification
of privacy-preserving data mining algorithms. Surveys on privacy-preserving data mining
may be found in [29]. The randomization method was generalized to other problems, such
as association rule mining [200]. Multiplicative perturbations have also been shown to be
very effective in the context of privacy-preserving data mining [140]. Nevertheless, numerous
attack methods have been designed for inferring the values of the perturbed data records [11,
367].

The k-anonymity model was proposed by Samarati [442]. The binary search algorithm
is also discussed in this work. This paper also set up the basic framework for group-based
anonymization, which was subsequently used by all the different privacy methods. The NP-
hardness of the k-anonymity problem was formally proved in [385]. A survey of k-anonymous
data mining may be found in [153]. The connections between the k-anonymity problem and
the frequent pattern mining problem were shown in [83]. A set enumeration method was
proposed in [83] that is similar to the set enumeration methods popularly used in frequent
pattern mining. The Incognito and Mondrian algorithms, discussed in this chapter, were
proposed in [335] and [336]. The condensation approach to privacy-preserving data mining
was proposed in [8]. Some recent methods perform a probabilistic version of k-anonymity
on the data, so that the output of the anonymization is a probability distribution [9]. Thus,
such an approach allows the use of probabilistic database methods on the transformed data.
Many metrics have also been proposed for utility-based evaluation of private tables, rather
than simply using the minimal generalization height [29, 315].

The �-diversity and t-closeness models were proposed in [348] and [372], respectively
with a focus on sensitive attribute disclosure. A different approach for addressing sensitive
attributes is proposed in [91]. A detailed survey of many of the privacy-preserving data pub-
lishing techniques may be found in [218]. A closely related model to group-based anonymiza-
tion is differential privacy, where the differential impact of a data record on the privacy of
other data records in the database is used to perform the privacy operations [190, 191].
While differential privacy provides theoretical more robust results than many group-based
models, its practical utility is yet to be realized. The curse of dimensionality in the context
of anonymization problems was first observed in [10]. Subsequently, it was shown that the
curse extends to other privacy models such as perturbation and �-diversity [11, 12, 372].

692 CHAPTER 20. PRIVACY-PRESERVING DATA MINING

A practical example [402] of how high-dimensional data could be used to make privacy
attacks is based on the Netflix data set [559]. Interestingly, this attack uses the sensitive
ratings attributes and background knowledge to make identification attacks. Recently, a few
methods [514, 533] have been proposed to address the curse of dimensionality in a limited
way.

The problem of output privacy is closely related to the problem of inference control and
auditing in statistical databases [150]. The most common problems addressed in this domain
are those of association rule hiding [497], and query auditing [399]. Distributed methods
transform data mining problems into secure multi-party computation primitives [188]. Typ-
ically, these methods are dependent on the use of the oblivious transfer protocol [199, 401].
Most of these methods perform distributed privacy-preservation on either horizontally par-
titioned data [297] or vertically partitioned data [495]. An overview of the various privacy
tools for distributed information sharing may be found in [154].

20.8 Exercises

1. Suppose that you have a 1-dimensional dataset uniformly distributed in (0, 1). Uniform
noise from the range (0, 1) is added to the data. Derive the final shape of the perturbed
distribution.

2. Suppose that your perturbed data was uniformly distributed in (0, 1), and your per-
turbing distribution was also uniformly distributed in (0, 1). Derive the original data
distribution. Will this distribution be accurately reconstructed, in practice, for a finite
data set?

3. Implement the Bayes distribution reconstruction algorithm for the randomization
method.

4. Implement the (a) Incognito, and (b) Mondrian algorithms for k-anonymity.

5. Implement the condensation approach to k-anonymity.

6. In dynamic condensation, one of the steps is to split a group into two equal groups
along the longest eigenvector. Let λ be the largest eigenvalue of the original group,
μ be the original d-dimensional mean, and V be the longest eigenvector, which is
normalized to unit norm. Compute algebraic expressions for the means of the two
split groups, under the uniform distribution assumption.

7. Show that the sensitive attribute in both the entropy- and recursive- �-diversity models
must have at least � distinct values.

8 Show that the global entropy of the sensitive attribute distribution is at least equal to
the minimum entropy of an equivalence class in it. [Hint: Use convexity of entropy]

9. Many k-anonymization algorithms such as Incognito depend upon the monotonicity
property. Show that the monotonicity property is satisfied by (a) entropy �-diversity,
and (b) recursive �-diversity.

10. Implement the (a) Incognito, and (b) Mondrian algorithms for entropy- and recursive
�-diversity, by making changes to your code in Exercise 4.

20.8. EXERCISES 693

11. Show that the monotonicity property is satisfied by (a) t-closeness with variational
distances, and (b) t-closeness with KL-measure.

12. Consider any group-based anonymity quantification measure f(P), in which the
anonymity condition is of the form f(P) ≥ thresh. (An example of such a measure
is entropy in �-diversity.) Here, P = (p1 . . . pr) is the sensitive attribute distribu-
tion vector. Show that if f(P) is concave, then the anonymity definition will satisfy
the monotonicity property with respect to generalization. Also show that convexity
ensures monotonicity in the case of anonymity conditions of the form f(P) ≤ thresh.

13. Implement the (a) Incognito, and (b) Mondrian algorithms for variational distance-
based, and KL distance-based t-closeness, by making changes to your code for Exercise
4.

14. Suppose that you had an anonymized binary transaction database containing the
items bought by different customers on a particular day. Suppose that you knew
that the transactions of your family friend contained a particular subset B of items,
although you did not know the other items bought by her. If every item is bought
independently with probability 0.5, show that the probability that at least one of n
other customers buys exactly the same pattern of items, is given by at most n/2B .
Evaluate this expression for n = 104 and B = 20. What does this imply in terms of
the privacy of her other buying patterns?

15. Repeat Exercise 14 for movie ratings taking on one of R possible values instead of
2. Assume that each rating possibility has identical probability of 1/R, and the rat-
ings of different movies are independent and identically distributed. What are the
corresponding probabilities of re-identification with B known ratings, and n different
individuals?

16. Write a computer program to re-identify the subject of a database with B known
sensitive attributes.

Bibliography

[1] N. Adam, and J. Wortman. Security-control methods for statistical databases. ACM
Computing Surveys, 21(4), pp. 515–556, 1989.

[2] G. Adomavicius, and A. Tuzhilin. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 17(6), pp. 734–749, 2005.

[3] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent item sets. Journal of parallel and Distributed Computing,
61(3), pp. 350–371, 2001. Also available as IBM Research Report, RC21341, 1999.

[4] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth-first generation of long
patterns. ACM KDD Conference, pp. 108–118, 2000. Also available as “Depth-first
generation of large itemsets for association rules.”IBM Research Report, RC21538,
1999.

[5] C. Aggarwal. Outlier analysis. Springer, 2013.

[6] C. Aggarwal. Social network data analytics. Springer, 2011.

[7] C. Aggarwal, and P. Yu. The igrid index: reversing the dimensionality curse for simi-
larity indexing in high-dimensional space. KDD Conference, pp. 119–129, 2000.

[8] C. Aggarwal, and P. Yu. On static and dynamic methods for condensation-based
privacy-preserving data mining. ACM Transactions on Database Systems (TODS),
33(1), 2, 2008.

[9] C. Aggarwal. On unifying privacy and uncertain data models. IEEE International
Conference on Data Engineering, pp. 386–395, 2008.

[10] C. Aggarwal. On k-anonymity and the curse of dimensionality, Very Large Databases
Conference, pp. 901–909, 2005.

[11] C. Aggarwal. On randomization, public information and the curse of dimensionality.
IEEE International Conference on Data Engineering, pp. 136–145, 2007.

[12] C. Aggarwal. Privacy and the dimensionality curse. Privacy-Preserving Data Mining:
Models and Algorithms, Springer, pp. 433–460, 2008.

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 695
c© Springer International Publishing Switzerland 2015

696 BIBLIOGRAPHY

[13] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu. Active learning: a survey. Data
Classification: Algorithms and Applications, CRC Press, 2014.

[14] C. Aggarwal. Instance-based learning: A survey. Data Classification: Algorithms and
Applications, CRC Press, 2014.

[15] C. Aggarwal. Redesigning distance-functions and distance-based applications for high-
dimensional data. ACM SIGMOD Record, 30(1), pp. 13–18, 2001.

[16] C. Aggarwal, and P. Yu. Mining associations with the collective strength approach.
ACM PODS Conference, pp. 863–873, 1998.

[17] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of distance-
metrics in high-dimensional space. ICDT Conference, pp. 420–434, 2001.

[18] C. Aggarwal. Managing and mining uncertain data. Springer, 2009.

[19] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast algorithms for projected
clustering. ACM SIGMOD Conference, pp. 61–72, 1999.

[20] C. Aggarwal, J. Han, J. Wang, and P. Yu. On demand classification of data streams.
ACM KDD Conference, pp. 503–508, 2004.

[21] C. Aggarwal. On change diagnosis in evolving data streams. IEEE Transactions on
Knowledge and Data Engineering, 17(5), pp. 587–600, 2005.

[22] C. Aggarwal, and P. S. Yu. Finding generalized projected clusters in high dimensional
spaces. ACM SIGMOD Conference, pp. 70–81, 2000.

[23] C. Aggarwal, and S. Parthasarathy. Mining massively incomplete data sets by con-
ceptual reconstruction. ACM KDD Conference, pp. 227–232, 2001.

[24] C. Aggarwal. Outlier ensembles: position paper. ACM SIGKDD Explorations, 14(2),
pp. 49–58, 2012.

[25] C. Aggarwal. On the effects of dimensionality reduction on high dimensional similarity
search. ACM PODS Conference, pp. 256–266, 2001.

[26] C. Aggarwal, and H. Wang. Managing and mining graph data. Springer, 2010.

[27] C. Aggarwal, C. Procopiuc, and P. Yu. Finding localized associations in market basket
data. IEEE Transactions on Knowledge and Data Engineering, 14(1), pp. 51–62, 2002.

[28] D. Agrawal, and C. Aggarwal. On the design and quantification of privacy-preserving
data mining algorithms. ACM PODS Conference, pp. 247–255, 2001.

[29] C. Aggarwal, and P. Yu. Privacy-preserving data mining: models and algorithms.
Springer, 2008.

[30] C. Aggarwal. Managing and mining sensor data. Springer, 2013.

[31] C. Aggarwal, and C. Zhai. Mining text data. Springer, 2012.

[32] C. Aggarwal, and C. Reddy. Data clustering: algorithms and applications, CRC Press,
2014.

BIBLIOGRAPHY 697

[33] C. Aggarwal. Data classification: algorithms and applications. CRC Press, 2014.

[34] C. Aggarwal, and J. Han. Frequent pattern mining. Springer, 2014.

[35] C. Aggarwal. On biased reservoir sampling in the presence of stream evolution. VLDB
Conference, pp. 607–618, 2006.

[36] C. Aggarwal. A framework for clustering massive-domain data streams. IEEE ICDE
Conference, pp. 102–113, 2009.

[37] C. Aggarwal, and P. Yu. Online generation of association rules. ICDE Conference,
pp. 402–411, 1998.

[38] C. Aggarwal, Z. Sun, and P. Yu. Online generation of profile association rules. ACM
KDD Conference, pp. 129–133, 1998.

[39] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data
streams, VLDB Conference, pp. 81–92, 2003.

[40] C. Aggarwal. Data streams: models and algorithms. Springer, 2007.

[41] C. Aggarwal, J. Wolf, and P. Yu. A new method for similarity indexing of market
basket data. ACM SIGMOD Conference, pp. 407–418, 1999.

[42] C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. Xproj: A framework for projected
structural clustering of XML documents. ACM KDD Conference, pp. 46–55, 2007.

[43] C. Aggarwal. A human-computer interactive method for projected clustering. IEEE
Transactions on Knowledge and Data Engineering, 16(4). pp. 448–460. 2004.

[44] C. Aggarwal, and N. Li. On node classification in dynamic content-based networks.
SDM Conference, pp. 355–366, 2011.

[45] C. Aggarwal, A. Khan, and X. Yan. On flow authority discovery in social networks.
SDM Conference, pp. 522–533, 2011.

[46] C. Aggarwal, and P. Yu. Outlier detection for high dimensional data. ACM SIGMOD
Conference, pp. 37–46, 2011.

[47] C. Aggarwal, and P. Yu. On classification of high-cardinality data streams. SDM
Conference, 2010.

[48] C. Aggarwal, and P. Yu. On clustering massive text and categorical data streams.
Knowledge and information systems, 24(2), pp. 171–196, 2010.

[49] C. Aggarwal, Y. Xie, and P. Yu. On dynamic link inference in heterogeneous networks.
SDM Conference, pp. 415–426, 2011.

[50] C. Aggarwal, Y. Xie, and P. Yu. On dynamic data-driven selection of sensor streams.
ACM KDD Conference, pp. 1226–1234, 2011.

[51] C. Aggarwal. On effective classification of strings with wavelets. ACM KDD Confer-
ence, pp. 163–172, 2002.

[52] C. Aggarwal. On abnormality detection in spuriously populated data streams. SDM
Conference, pp. 80–91, 2005.

698 BIBLIOGRAPHY

[53] R. Agrawal, K.-I. Lin, H. Sawhney, and K. Shim. Fast similarity search in the presence
of noise, scaling, and translation in time-series databases. VLDB Conference, pp. 490–
501, 1995.

[54] R. Agrawal, and J. Shafer. Parallel mining of association rules. IEEE Transactions
on Knowledge and Data Engineering, 8(6), pp. 962–969, 1996. Also appears as IBM
Research Report, RJ10004, January 1996.

[55] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. ACM SIGMOD Conference, pp. 207–216, 1993.

[56] R. Agrawal, and R. Srikant. Fast algorithms for mining association rules. VLDB Con-
ference, pp. 487–499, 1994.

[57] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of
association rules. Advances in knowledge discovery and data mining, 12, pp. 307–328,
1996.

[58] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace cluster-
ing of high dimensional data for data mining applications. ACM SIGMOD Conference,
pp. 94–105, 1998.

[59] R. Agrawal, and R. Srikant. Mining sequential patterns. IEEE International Confer-
ence on Data Engineering, pp. 3–14, 1995.

[60] R. Agrawal, and R. Srikant. Privacy-preserving data mining. ACM SIGMOD Confer-
ence, pp. 439–450, 2000.

[61] M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and
symbolic outlier mining techniques. Intelligent Data Analysis, 10(6). pp. 521–538,
2006.

[62] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: theory, algorithms, and applica-
tions. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[63] M. Al Hasan, and M. J. Zaki. A survey of link prediction in social networks. Social
network data analytics, Springer, pp. 243–275, 2011.

[64] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised
learning. SDM Workshop on Link Analysis, Counter-terrorism and Security, 2006.

[65] S. Anand, and B. Mobasher. Intelligent techniques for web personalization. Interna-
tional conference on Intelligent Techniques for Web Personalization, pp. 1–36, 2003.

[66] F. Angiulli, and C. Pizzuti. Fast Outlier detection in high dimensional spaces. Euro-
pean Conference on Principles of Knowledge Discovery and Data Mining, pp. 15–27,
2002.

[67] F. Angiulli, and F. Fassetti. Detecting distance-based outliers in streams of data.
ACM CIKM Conference, pp. 811–820, 2007.

[68] L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast and reliable anomaly detection
in categorical data. ACM CIKM Conference, pp. 415–424, 2012.

BIBLIOGRAPHY 699

[69] R. Albert, and A. L. Barabasi. Statistical mechanics of complex networks. Reviews of
modern physics 74, 1, 47, 2002.

[70] R. Albert, and A. L. Barabasi. Topology of evolving networks: local events and uni-
versality. Physical review letters 85, 24, pp. 5234–5237, 2000.

[71] P. Allison. Missing data. Sage, 2001.

[72] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. ACM PODS Conference, pp. 20–29, 1996.

[73] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lip-
man. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic acids research, 25(17), pp. 3389–3402, 1997.

[74] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[75] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik. LIMBO: Scalable clustering
of categorical data. EDBT Conference, pp. 123–146, 2004.

[76] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: ordering points
to identify the clustering structure. ACM SIGMOD Conference, pp. 49–60, 1999.

[77] A. Apostolico, and C. Guerra. The longest common subsequence problem revisited.
Algorithmica, 2(1–4), pp. 315–336, 1987.

[78] A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with markov
random walks. International Conference on Machine Learning, pp. 49–56, 2007.

[79] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman diver-
gences. Journal of Machine Learning Research, 6, pp. 1705–1749, 2005.

[80] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. ICML
Conference, pp. 27–34, 2002.

[81] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised
clustering. ACM KDD Conference, pp. 59–68, 2004.

[82] R. J. Bayardo Jr. Efficiently mining long patterns from databases. ACM SIGMOD,
pp. 85–93, 1998.

[83] R. J. Bayardo, and R. Agrawal. Data privacy through optimal k-anonymization. IEEE
International Conference on Data Engineering, pp. 217–228, 2005.

[84] R. Beckman, and R. Cook. Outliers. Technometrics, 25(2), pp. 119–149, 1983.

[85] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Scholkopf, and G. Ratsch. Support vector
machines and kernels for computational biology. PLoS computational biology, 4(10),
e1000173, 2008.

[86] M. Benkert, J. Gudmundsson, F. Hubner, and T. Wolle. Reporting flock patterns.
COMGEO, 2008

[87] D. Berndt, and J. Clifford. Using dynamic time warping to find patterns in time series.
KDD Workshop, 10(16), pp. 359–370, 1994.

700 BIBLIOGRAPHY

[88] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor”
meaningful? International Conference on Database Theory, pp. 217–235, 1999.

[89] V. Barnett, and T. Lewis. Outliers in statistical data. Wiley, 1994.

[90] M. Belkin, and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. NIPS, pp. 585–591, 2001.

[91] M. Bezzi, S. De Capitani di Vimercati, S. Foresti, G. Livraga, P. Samarati, and R.
Sassi. Modeling and preventing inferences from sensitive value distributions in data
release. Journal of Computer Security, 20(4), pp. 393–436, 2012.

[92] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. String Processing and Information Retrieval, 2000.

[93] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks.
Social Network Data Analytics, Springer, pp. 115–148. 2011.

[94] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning
in semi-supervised clustering. ICML Conference, 2004.

[95] C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.

[96] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[97] C. M. Bishop. Improving the generalization properties of radial basis function neural
networks. Neural Computation, 3(4), pp. 579–588, 1991.

[98] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learn-
ing Research, 3: pp. 993–1022, 2003.

[99] D. Blei. Probabilistic topic models. Communications of the ACM, 55(4), pp. 77–84,
2012.

[100] A. Blum, and T. Mitchell. Combining labeled and unlabeled data with co-training.
Proceedings of Conference on Computational Learning Theory, 1998.

[101] A. Blum, and S. Chawla. Combining labeled and unlabeled data with graph mincuts.
ICML Conference, 2001.

[102] C. Bohm, K. Haegler, N. Muller, and C. Plant. Coco: coding cost for parameter free
outlier detection. ACM KDD Conference, 2009.

[103] K. Borgwardt, and H.-P. Kriegel. Shortest-path kernels on graphs. IEEE International
Conference on Data Mining, 2005.

[104] S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A
comparative evaluation. SIAM Conference on Data Mining, 2008.

[105] L. Bottou, and V. Vapnik. Local learning algorithms. Neural Computation, 4(6),
pp. 888–900, 1992.

[106] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. A.
Müller, E. Säckinger, P. Simard, and V. Vapnik. Comparison of classifier methods:
a case study in handwriting digit recognition. International Conference on Pattern
Recognition, pp. 77–87, 1994.

BIBLIOGRAPHY 701

[107] J. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries by
means of free-sets. Principles of Data Mining and Knowledge Discovery, pp. 75–85,
2000.

[108] P. Bradley, and U. Fayyad. Refining initial points for k-means clustering. ICML Con-
ference, pp. 91–99, 1998.

[109] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-based local
outliers. ACM SIGMOD Conference, 2000.

[110] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and regression trees.
CRC press, 1984.

[111] L. Breiman. Random forests. Machine Learning, 45(1), pp. 5–32, 2001.

[112] L. Breiman. Bagging predictors. Machine Learning, 24(2), pp. 123–140, 1996.

[113] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing associ-
ation rules to correlations. ACM SIGMOD Conference, pp. 265–276, 1997.

[114] S. Brin, and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1–7), pp. 107–117, 1998.

[115] B. Bringmann, S. Nijssen, and A. Zimmermann. Pattern-based classification: A uni-
fying perspective. arXiv preprint, arXiv:1111.6191, 2011.

[116] C. Brodley, and P. Utgoff. Multivariate decision trees.Machine learning, 19(1), pp. 45–
77, 1995.

[117] Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu. Efficient anomaly monitoring over moving
object trajectory streams. ACM KDD Conference, pp. 159–168, 2009.

[118] M. Bulmer. Principles of Statistics. Dover Publications, 1979.

[119] H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, 18(8), pp. 689–694, 1997.

[120] H. Bunke, and K. Shearer. A graph distance metric based on the maximal common
subgraph.Pattern recognition letters, 19(3), pp. 255–259, 1998.

[121] W. Buntine. Learning Classification Trees. Artificial intelligence frontiers in statistics.
Chapman and Hall, pp. 182–201, 1993.

[122] T. Burnaby. On a method for character weighting a similarity coefficient employing
the concept of information. Mathematical Geology, 2(1), 25–38, 1970.

[123] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algo-
rithm for transactional databases. IEEE International Conference on Data Engineer-
ing, pp. 443–452, 2001.

[124] C. Burges. A tutorial on support vector machines for pattern recognition. Data mining
and knowledge discovery, 2(2), pp. 121–167, 1998.

[125] T. Calders, and B. Goethals. Mining all non-derivable frequent itemsets. Principles
of Knowledge Discovery and Data Mining, pp. 74–86, 2002.

702 BIBLIOGRAPHY

[126] T. Calders, C. Rigotti, and J. F. Boulicaut. A survey on condensed representations for
frequent sets. In Constraint-based mining and inductive databases, pp. 64–80, Springer,
2006.

[127] S. Chakrabarti. Mining the Web: Discovering knowledge from hypertext data. Morgan
Kaufmann, 2003.

[128] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. ACM SIGMOD Conference, pp. 307–318, 1998.

[129] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal
description length. VLDB Conference, pp. 606–617, 1998.

[130] K. P. Chan, and A. W. C. Fu. Efficient time series matching by wavelets.IEEE Inter-
national Conference on Data Engineering, pp. 126–133, 1999.

[131] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com-
puting Surveys, 41(3), 2009.

[132] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A
survey. IEEE Transactions on Knowledge and Data Engineering, 24(5), pp. 823–839,
2012.

[133] O. Chapelle. Training a support vector machine in the primal. Neural Computation,
19(5), pp. 1155–1178, 2007.

[134] C. Chatfield. The analysis of time series: an introduction. CRC Press, 2003.

[135] A. Chaturvedi, P. Green, and J. D. Carroll. K-modes clustering, Journal of Classifi-
cation, 18(1), pp. 35–55, 2001.

[136] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: Special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6, 2004.

[137] N. V. Chawla, K. W. Bower, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research (JAIR),
16, pp. 321–356, 2002.

[138] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer. SMOTEBoost: Improving prediction
of the minority class in boosting. PKDD, pp. 107–119, 2003.

[139] N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi. Automatically countering
imbalance and its empirical relationship to cost. Data Mining and Knowledge Discov-
ery, 17(2), pp. 225–252, 2008.

[140] K. Chen, and L. Liu. A survey of multiplicative perturbation for privacy-preserving
data mining. Privacy-Preserving Data Mining: Models and Algorithms, Springer,
pp. 157–181, 2008.

[141] L. Chen, and R. Ng. On the marriage of Lp-norms and the edit distance. VLDB
Conference, pp. 792–803, 2004.

[142] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.
ACM KDD Conference, pp. 199–208, 2009.

BIBLIOGRAPHY 703

[143] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral
marketing in large-scale social networks. ACM KDD Conference, pp. 1029–1038, 2010.

[144] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social networks
under the linear threshold model. IEEE International Conference on Data Mining,
pp. 88–97, 2010.

[145] D. Chen, C.-T. Lu, Y. Chen, and D. Kou. On detecting spatial outliers. Geoinformat-
ica, 12: pp. 455–475, 2008.

[146] T. Cheng, and Z. Li. A hybrid approach to detect spatialtemporal outliers. Interna-
tional Conference on Geoinformatics, pp. 173–178, 2004.

[147] T. Cheng, and Z. Li. A multiscale approach for spatio-temporal outlier detection.
Transactions in GIS, 10(2), pp. 253–263, March 2006.

[148] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on PAMI,
17(8), pp. 790–799, 1995.

[149] H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative frequent pattern analysis for
effective classification. ICDE Conference, pp. 716–725, 2007.

[150] F. Y. Chin, and G. Ozsoyoglu. Auditing and inference control in statistical databases.
IEEE Transactions on Software Enginerring, 8(6), pp. 113–139, April 1982.

[151] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. ACM
KDD Conference, pp. 493–498, 2003.

[152] F. Chung. Spectral Graph Theory. Number 92 in CBMS Conference Series in Math-
ematics, American Mathematical Society, 1997.

[153] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymous data
mining: A survey. Privacy-preserving data mining: models and algorithms, Springer,
pp. 105–136, 2008.

[154] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations Newsletter, 4(2),
pp. 28–34, 2002.

[155] N. Cristianini, and J. Shawe-Taylor. An introduction to support vector machines and
other kernel-based learning methods. Cambridge University Press, 2000.

[156] W. Cochran. Sampling techniques. John Wiley and Sons, 2007.

[157] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning.
Machine Learning, 5(2), pp. 201–221, 1994.

[158] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4, pp. 129–145, 1996.

[159] D. Comaniciu, and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on PAMI, 24(5), pp. 603–619, 2002.

[160] D. Cook, and L. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2),
pp. 32–41, 2000.

704 BIBLIOGRAPHY

[161] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining world wide
web browsing patterns. Knowledge and information systems, 1(1), pp. 5–32, 1999.

[162] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Transactions on Pattern Mining and Machine
Intelligence, 26(10), pp. 1367–1372, 2004.

[163] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proceedings of the VLDB Endowment,
1(1), pp. 364–375, 2008.

[164] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23:
pp. 31–42, January 1976.

[165] G. Cormode, and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1), pp. 58–75, 2005.

[166] S. Cost, and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10(1), pp. 57–78, 1993.

[167] T. Cover, and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1), pp. 21–27, 1967.

[168] D. Cutting, D. Karger, J. Pedersen, and J. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. ACM SIGIR Conference, pp. 318–
329, 1992.

[169] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for clustering-a
filter solution. ICDM Conference, pp. 115–122, 2002.

[170] M. Deshpande, and G. Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1), pp. 143–177, 2004.

[171] I. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-
tioning, ACM KDD Conference, pp. 269–274, 2001.

[172] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. ACM KDD
Conference, pp. 89–98, 2003.

[173] I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized
cuts. ACM KDD Conference, pp. 551–556, 2004.

[174] P. Domingos. MetaCost: A general framework for making classifiers cost-sensitive.
ACM KDD Conference, pp. 155–164, 1999.

[175] P. Domingos. Bayesian averaging of classifiers and the overfitting problem. ICML
Conference, pp. 223–230, 2000.

[176] P. Domingos, and G. Hulten. Mining high-speed data streams. ACM KDD Conference,
pp. 71–80. 2000.

[177] P. Clark, and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4),
pp. 261–283, 1989.

[178] W. W. Cohen. Fast effectve rule induction. ICML Conference, pp. 115–123, 1995.

BIBLIOGRAPHY 705

[179] L. H. Cox. Suppression methodology and statistical disclosure control. Journal of the
American Statistical Association, 75(370), pp. 377–385, 1980.

[180] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, and C. Yang. Find-
ing interesting associations without support pruning. IEEE Transactions on Knowl-
edge and Data Engineering, 13(1), pp. 64–78, 2001.

[181] T. Dalenius, and S. Reiss. Data-swapping: A technique for disclosure control. Journal
of statistical planning and inference, 6(1), pp. 73–85, 1982.

[182] G. Das, and H. Mannila. Context-based similarity measures for categorical databases.
PKDD Conference, pp. 201–210, 2000.

[183] B. V. Dasarathy. Nearest neighbor (NN) norms: NN pattern classification techniques.
IEEE Computer Society Press, 1990,

[184] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing by
latent semantic analysis. JASIS, 41(6), pp. 391–407, 1990.

[185] C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. SDM Conference, pp. 606–610, 2005.

[186] J. Domingo-Ferrer, and J. M. Mateo-Sanz. Practical data-oriented microaggregation
for statistical disclosure control. IEEE Transactions on Knowledge and Data Engi-
neering, 14(1), pp. 189–201, 2002.

[187] P. Domingos, and M. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29(2–3), pp. 103–130, 1997.

[188] W. Du, and M. Atallah. Secure multi-party computation: A review and open problems.
CERIAS Tech. Report, 2001-51, Purdue University, 2001.

[189] R. Duda, P. Hart, and D. Stork. Pattern classification. John Wiley and Sons, 2012.

[190] C. Dwork. Differential privacy: A survey of results. Theory and Applications of Models
of Computation, Springer, pp. 1–19, 2008.

[191] C. Dwork. A firm foundation for private data analysis. Communications of the ACM,
54(1), pp. 86–95, 2011.

[192] D. Easley, and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010.

[193] C. Elkan. The foundations of cost-sensitive learning. IJCAI, pp. 973–978, 2001.

[194] R. Elmasri, and S. Navathe. Fundamentals of Database Systems. Addison-Wesley,
2010.

[195] L. Ertoz, M. Steinbach, and V. Kumar. A new shared nearest neighbor clustering
algorithm and its applications. Workshop on Clustering High Dimensional Data and
its Applications, pp. 105–115, 2002.

[196] P. Erdos, and A. Renyi. On random graphs. Publicationes Mathematicae Debrecen, 6,
pp. 290–297, 1959.

706 BIBLIOGRAPHY

[197] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. ACM KDD Conference, pp. 226–231,
1996.

[198] M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering
for mining in a data warehousing environment. VLDB Conference, pp. 323–333, 1998.

[199] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6), pp. 637–647, 1985.

[200] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of
association rules. Information Systems, 29(4), pp. 343–364, 2004.

[201] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the inter-
net topology. ACM SIGCOMM Computer Communication Review, pp. 251–262, 1999.

[202] C. Faloutsos, and K. I. Lin. Fastmap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. ACM SIGMOD Conference,
pp. 163–174, 1995.

[203] W. Fan, S. Stolfo, J. Zhang, and P. Chan. AdaCost: Misclassification cost sensitive
boosting. ICML Conference, pp. 97–105, 1999.

[204] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Tech-
nical Report HPL-2003-4, Palo Alto, CA, HP Laboratories, 2003.

[205] X. Fern, and C. Brodley. Random projection for high dimensional data clustering: A
cluster ensemble approach. ICML Conference, pp. 186–193, 2003.

[206] C. Fiduccia, and R. Mattheyses. A linear-time heuristic for improving network parti-
tions. In IEEE Conference on Design Automation, pp. 175–181, 1982.

[207] R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugen-
ics, 7: pp. 179–188, 1936.

[208] P. Flajolet, and G. N. Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2), pp. 182–209, 1985.

[209] G. W. Flake. Square unit augmented, radially extended, multilayer perceptrons. Neu-
ral Networks: Tricks of the Trade, pp. 145–163, 1998.

[210] F. Fouss, A. Pirotte, J. Renders, and M. Saerens. Random-walk computation of sim-
ilarities between nodes of a graph with application to collaborative recommendation.
IEEE Transactions on Knowledge and Data Engineering, 19(3), pp. 355–369, 2007.

[211] S. Forrest, C. Warrender, and B. Pearlmutter. Detecting intrusions using system calls:
alternate data models. IEEE ISRSP, 1999.

[212] S. Fortunato. Community Detection in Graphs. Physics Reports, 486(3–5), pp. 75–174,
February 2010.

[213] A. Frank, and A. Asuncion. UCI Machine Learning Repository, Irvine, CA:
University of California, School of Information and Computer Science, 2010.
http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 707

[214] E. Frank, M. Hall, and B. Pfahringer. Locally weighted naive bayes. Proceedings of
the Nineteenth conference on Uncertainty in Artificial Intelligence, pp, 249–256, 2002.

[215] Y. Freund, and R. Schapire. A decision-theoretic generalization of online learning and
application to boosting. Computational Learning Theory, pp. 23–37, 1995.

[216] J. Friedman. Flexible nearest neighbor classification. Technical Report, Stanford Uni-
versity, 1994.

[217] J. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. Proceedings of the National
Conference on Artificial Intelligence, pp. 717–724, 1996.

[218] B. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A
survey of recent developments. ACM Computing Surveys (CSUR), 42(4), 2010.

[219] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algorithms, and applications.
SIAM, 2007.

[220] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS: Clustering categorical data
using summaries. ACM KDD Conference, pp. 73–83, 1999.

[221] M. Garey, and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. New York, Freeman, 1979.

[222] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an extensible data
cleaning tool. ACM SIGMOD Conference 29(2), pp. 590, 2000.

[223] J. Gao, and P.-N. Tan. Converting output scores from outlier detection algorithms
into probability estimates. ICDM Conference, pp. 212–221, 2006.

[224] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with
regular expression constraints. VLDB Conference, pp. 7–10, 1999.

[225] T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. COLT: Kernel 2003 Workshop Proceedings, pp. 129–143, 2003.

[226] Y. Ge, H. Xiong, Z.-H. Zhou, H. Ozdemir, J. Yu, and K. Lee. Top-Eye: Top-k evolving
trajectory outlier detection. CIKM Conference, pp. 1733–1736, 2010.

[227] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. BOAT: Optimistic decision
tree construction. ACM SIGMOD Conference, pp. 169–180, 1999.

[228] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest-a framework for fast decision
tree construction of large datasets. VLDB Conference, pp. 416–427, 1998.

[229] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: an approach
based on dynamical systems. The VLDB Journal, 8(3), pp. 222–236, 2000.

[230] M. Girvan, and M. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12), pp. 7821–7826.

[231] S. Goil, H. Nagesh, and A. Choudhary. MAFIA: Efficient and scalable subspace clus-
tering for very large data sets. ACM KDD Conference, pp. 443–452, 1999.

[232] D. W. Goodall. A new similarity index based on probability. Biometrics, 22(4),
pp. 882–907, 1966.

708 BIBLIOGRAPHY

[233] K. Gouda, and M. J. Zaki. Genmax: An efficient algorithm for mining maximal fre-
quent itemsets. Data Mining and Knowledge Discovery, 11(3), pp. 223–242, 2005.

[234] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social
influence maximization. VLDB Conference, pp. 73–84, 2011.

[235] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in
social networks. ACM WSDM Conference, pp. 241–250, 2011.

[236] R. Gozalbes, J. P. Doucet, and F. Derouin. Application of topological descriptors
in QSAR and drug design: history and new trends. Current Drug Targets-Infectious
Disorders, 2(1), pp. 93–102, 2002.

[237] M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier detection for temporal data.
Morgan and Claypool, 2014.

[238] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categor-
ical attributes. Information Systems, 25(5), pp. 345–366, 2000.

[239] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large
databases. ACM SIGMOD Conference, pp. 73–84, 1998.

[240] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data
streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineer-
ing, 15(3), pp. 515–528, 2003.

[241] D. Gunopulos, and G. Das. Time series similarity measures and time series indexing.
ACM SIGMOD Conference, pp, 624, 2001.

[242] V. Guralnik, and G. Karypis. A scalable algorithm for clustering sequential data.
IEEE International Conference on Data Engineering, pp. 179–186, 2001.

[243] V. Guralnik, and G. Karypis. Parallel tree-projection-based sequence mining algo-
rithms. Parallel Computing, 30(4): pp. 443–472, April 2004. Also appears in European
Conference in Parallel Processing, 2001.

[244] D. Gusfield. Algorithms on strings, trees and sequences. Cambridge University Press,
1997.

[245] I. Guyon (Ed.). Feature extraction: foundations and applications. Springer, 2006.

[246] I. Guyon, and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3, pp. 1157–1182, 2003.

[247] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: part I. ACM
SIGMOD record, 31(2), pp. 40–45, 2002.

[248] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking methods:
part II. ACM SIGMOD Record, 31(3), pp. 19–27, 2002.

[249] E. Han, and G. Karypis. Centroid-based document classification: analysis and exper-
imental results. ECML Conference, pp. 424–431, 2000.

[250] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques. Morgan Kauf-
mann, 2011.

BIBLIOGRAPHY 709

[251] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time
series database. International Conference on Data Engineering, pp. 106–115, 1999.

[252] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
ACM SIGMOD Conference, pp. 1–12, 2000.

[253] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery, 15(1), pp. 55–86, 2007.

[254] J. Haslett, R. Brandley, P. Craig, A. Unwin, and G. Wills. Dynamic graphics for
exploring spatial data with application to locating global and local anomalies. The
American Statistician, 45: pp. 234–242, 1991.

[255] T. Hastie, and R. Tibshirani. Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6), pp. 607–616,
1996.

[256] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.
Springer, 2009.

[257] V. Hautamaki, V. Karkkainen, and P. Franti. Outlier detection using k-nearest neigh-
bor graph. International Conference on Pattern Recognition, pp. 430–433, 2004.

[258] T. H. Haveliwala. Topic-sensitive pagerank. World Wide Web Conference, pp. 517-
526, 2002.

[259] D. M. Hawkins. Identification of outliers. Chapman and Hall, 1980.

[260] S. Haykin. Kalman filtering and neural networks. Wiley, 2001.

[261] S. Haykin. Neural networks and learning machines. Prentice Hall, 2008.

[262] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. Advances in Neural
Information Processing Systems, 18, 507, 2006.

[263] Z. He, X. Xu, J. Huang, and S. Deng. FP-Outlier: Frequent pattern-based outlier
detection. COMSIS, 2(1), pp. 103–118, 2005.

[264] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers, Pattern Recogni-
tion Letters, Vol 24(9–10), pp. 1641–1650, 2003.

[265] M. Henrion, D. Hand, A. Gandy, and D. Mortlock. CASOS: A subspace method for
anomaly detection in high-dimensional astronomical databases. Statistical Analysis
and Data Mining, 2012.
Online first: http://onlinelibrary.wiley.com/enhanced/doi/10.1002/sam.11167/

[266] A. Hinneburg, C. Aggarwal, and D. Keim. What is the nearest neighbor in high-
dimensional space? VLDB Conference, pp. 506–516, 2000.

[267] A. Hinneburg, and D. Keim. An efficient approach to clustering in large multimedia
databases with noise. ACM KDD Conference, pp. 58–65, 1998.

[268] A. Hinneburg, D. A. Keim, and M. Wawryniuk. HD-Eye: Visual mining of high-
dimensional data. Computer Graphics and Applications, 19(5), pp. 22–31, 1999.

http://onlinelibrary.wiley.com/enhanced/doi/10.1002/sam.11167/

710 BIBLIOGRAPHY

[269] A. Hinneburg, and H. Gabriel. DENCLUE 2.0: Fast clustering based on kernel-density
estimation. Intelligent Data Analysis, Springer, pp. 70–80, 2007.

[270] D. S. Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM (JACM), 24(4), pp. 664–675, 1975.

[271] T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, pp. 50–
57, 1999.

[272] T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions
on Information Systems (TOIS), 22(1), pp. 89–114, 2004.

[273] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspective on databases
and data mining, ACM KDD Conference, pp. 150–155, 1995.

[274] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6(3), pp. 151–180, 1998.

[275] D. Hosmer Jr., S. Lemeshow, and R. Sturdivant. Applied logistic regression. Wiley,
2013.

[276] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence
of isomorphism. IEEE ICDM Conference, pp. 549–552, 2003.

[277] Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative filtering.
ACM/IEEE-CS joint conference on Digital libraries, pp. 141–142, 2005.

[278] Z. Huang, and M. Ng. A fuzzy k-modes algorithm for clustering categorical data.
IEEE Transactions on Fuzzy Systems, 7(4), pp. 446–452, 1999.

[279] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. ACM
KDD Conference, pp. 97–106, 2001.

[280] J. W. Hunt, and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5), pp. 350–353, 1977.

[281] Y. S. Hwang, and S. Y. Bang. An efficient method to construct a radial basis function
neural network classifier. Neural Networks, 10(8), pp. 1495–1503, 1997.

[282] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm on mining fre-
quent substructures from graph data. Principles on Knowledge Discovery and Data
Mining, pp. 13–23, 2000.

[283] H. V. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-based queries. ACM PODS
Conference, pp. 36–45, 1995.

[284] A. K. Jain, and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1998.

[285] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys
(CSUR), 31(3):264–323, 1999.

[286] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,, 22(1), pp. 4–37, 2000.

BIBLIOGRAPHY 711

[287] V. Janeja, and V. Atluri. Random walks to identify anomalous free-form spatial scan
windows. IEEE Transactions on Knowledge and Data Engineering, 20(10), pp. 1378–
1392, 2008.

[288] J. Rennie, and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. ICML Conference, pp. 713–718, 2005.

[289] G. Jeh, and J. Widom. SimRank: a measure of structural-context similarity. ACM
KDD Conference, pp. 538–543, 2003.

[290] H. Jeung, M. L. Yiu, X. Zhou, C. Jensen, and H. Shen. Discovery of convoys in
trajectory databases. VLDB Conference, pp. 1068–1080, 2008.

[291] T. Joachims. Making Large scale SVMs practical. Advances in Kernel Methods, Sup-
port Vector Learning, pp. 169–184, MIT Press, Cambridge, 1998.

[292] T. Joachims. Training Linear SVMs in Linear Time. ACM KDD Conference, pp. 217–
226, 2006.

[293] T. Joachims. Transductive inference for text classification using support vector
machines. International Conference on Machine Learning, pp. 200–209, 1999.

[294] T. Joachims. Transductive learning via spectral graph partitioning. ICML Conference,
pp. 290–297, 2003.

[295] I. Jolliffe. Principal component analysis. John Wiley and Sons, 2005.

[296] M. Joshi, V. Kumar, and R. Agarwal. Evaluating boosting algorithms to classify rare
classes: comparison and improvements. IEEE ICDM Conference, pp. 257–264, 2001.

[297] M. Kantarcioglu. A survey of privacy-preserving methods across horizontally par-
titioned data. Privacy-Preserving Data Mining: Models and Algorithms, Springer,
pp. 313–335, 2008.

[298] H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. In Kernel Methods in
Computational Biology, MIT Press, Cambridge, MA, 2004.

[299] D. Karger, and C. Stein. A new approach to the minimum cut problem. Journal of
the ACM (JACM), 43(4), pp. 601–640, 1996.

[300] G. Karypis, E. H. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8), pp, 68–75, 1999.

[301] G. Karypis, and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing, 20(1), pp. 359–392, 1998.

[302] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partition-
ing: applications in VLSI domain. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1), pp. 69–79, 1999.

[303] L. Kaufman, and P. J. Rousseeuw. Finding groups in data: an introduction to cluster
analysis. Wiley, 2009.

[304] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. ACM KDD Conference, pp. 137–146, 2003.

712 BIBLIOGRAPHY

[305] E. Keogh, S. Lonardi, and C. Ratanamahatana. Towards parameter-free data mining.
ACM KDD Conference, pp. 206–215, 2004.

[306] E. Keogh, J. Lin, and A. Fu. HOT SAX: Finding the most unusual time series subse-
quence: Algorithms and applications. IEEE ICDM Conference, pp. 8, 2005.

[307] E. Keogh, and M. Pazzani. Scaling up dynamic time-warping for data mining appli-
cations. ACM KDD Conference, pp. 285–289, 2000.

[308] E. Keogh. Exact indexing of dynamic time warping. VLDB Conference, pp. 406–417,
2002.

[309] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction
for fast similarity searching in large time series datanases. Knowledge and Infomration
Systems, pp. 263–286, 2000.

[310] E. Keogh, S. Lonardi, and B. Y.-C. Chiu. Finding surprising patterns in a time series
database in linear time and space. ACM KDD Conference, pp. 550–556, 2002.

[311] E. Keogh, S. Lonardi, and C. Ratanamahatana. Towards parameter-free data mining.
ACM KDD Conference, pp. 206–215, 2004.

[312] B. Kernighan, and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 1970.

[313] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighborhood-based
fast graph search in large networks. ACM SIGMOD Conference, pp. 901–912, 2011.

[314] A. Khan, Y. Wu, C. Aggarwal, and X. Yan. Nema: Fast graph matching with label
similarity. Proceedings of the VLDB Endowment, 6(3), pp. 181–192, 2013.

[315] D. Kifer, and J. Gehrke. Injecting utility into anonymized datasets. ACM SIGMOD
Conference, pp. 217–228, 2006.

[316] L. Kissner, and D. Song. Privacy-preserving set operations. Advances in Cryptology–
CRYPTO, pp. 241–257, 2005.

[317] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5), pp. 604–632, 1999.

[318] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise
procedure for building and training a neural network. In J. Fogelman, editor, Neuro-
computing: Algorithms, Architectures and Applications. Springer-Verlag, 1990.

[319] E. Knorr, and R. Ng. Algorithms for mining distance-based outliers in large datasets.
VLDB Conference, pp. 392–403, 1998.

[320] E. Knorr, and R. Ng. Finding intensional knowledge of distance-based outliers. VLDB
Conference, pp. 211–222, 1999.

[321] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8), pp. 30–37, 2009.

[322] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. ACM KDD Conference, pp. 426–434, 2008.

BIBLIOGRAPHY 713

[323] Y. Koren. Collaborative filtering with temporal dynamics. Communications of the
ACM,, 53(4), pp. 89–97, 2010.

[324] D. Kostakos, G. Trajcevski, D. Gunopulos, and C. Aggarwal. Time series data clus-
tering. Data Clustering: Algorithms and Applications, CRC Press, 2013.

[325] J. Konstan. Introduction to recommender systems: algorithms and evaluation. ACM
Transactions on Information Systems, 22(1), pp. 1–4, 2004.

[326] Y. Kou, C. T. Lu, and D. Chen. Spatial weighted outlier detection, SIAM Conference
on Data Mining, 2006.

[327] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov models
in computational biology: Applications to protein modeling. Journal of molecular
biology, 235(5), pp. 1501–1531, 1994.

[328] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychome-
trika, 29(2), pp. 115–129, 1964.

[329] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a
kernel approach. Machine Learning, 74(1), pp. 1–22, 2009.

[330] S. Kulkarni, G. Lugosi, and S. Venkatesh. Learning pattern classification: a survey.
IEEE Transactions on Information Theory, 44(6), pp. 2178–2206, 1998.

[331] M. Kuramochi, and G. Karypis. Frequent subgraph discovery. IEEE International
Conference on Data Mining, pp. 313–320, 2001.

[332] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. ACM SIGMOD Conference, pp. 157–
168, 1999.

[333] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. Proceedings
of the National Conference on Artificial Intelligence, pp. 223–228, 1992.

[334] A. Lazarevic, and V. Kumar. Feature bagging for outlier detection. ACM KDD Con-
ference, pp. 157–166, 2005.

[335] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain
k-anonymity. ACM SIGMOD Conference, pp. 49–60, 2005.

[336] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. IEEE International Conference on Data Engineering, pp. 25, 2006.

[337] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect
framework. ICDE Conference, pp. 140–149, 2008.

[338] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group
framework. ACM SIGMOD Conference, pp. 593–604, 2007.

[339] J.-G. Lee, J. Han, X. Li, and H. Gonzalez. TraClass: trajectory classification using
hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB
Endowment, 1(1), pp. 1081–1094, 2008.

714 BIBLIOGRAPHY

[340] W. Lee, and D. Xiang. Information theoretic measures for anomaly detection. IEEE
Symposium on Security and Privacy, pp. 130–143, 2001.

[341] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links
in online social networks. World Wide Web Conference, pp. 641–650, 2010.

[342] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,
shrinking diameters, and possible explanations. ACM KDD Conference, pp. 177–187,
2005.

[343] J. Leskovec, A. Rajaraman, and J. Ullman. Mining of massive datasets. Cambridge
University Press, 2012.

[344] D. Lewis. Naive Bayes at forty: The independence assumption in information retrieval.
ECML Conference, pp. 4–15, 1998.

[345] D. Lewis, and J. Catlett. Heterogeneous uncertainty sampling for supervised learning.
ICML Conference, pp. 148–156, 1994.

[346] C. Li, Q. Yang, J. Wang, and M. Li. Efficient mining of gap-constrained subsequences
and its various applications. ACM Transactions on Knowledge Discovery from Data
(TKDD), 6(1), 2, 2012.

[347] J. Li, G. Dong, K. Ramamohanarao, and L. Wong. Deeps: A new instance-based lazy
discovery and classification system. Machine Learning, 54(2), pp. 99–124, 2004.

[348] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and �-diversity. IEEE International Conference on Data Engineering, pp. 106–115,
2007.

[349] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. IEEE ICDM Conference, pp. 369–376, 2001.

[350] Y. Li, M. Dong, and J. Hua. Localized feature selection for clustering. Pattern Recog-
nition Letters, 29(1), 10–18, 2008.

[351] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object
clusters. Proceedings of the VLDB Endowment, 3(1–2), pp. 732–734, 2010.

[352] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving
objects. ACM KDD Conference, pp. 1099–1108, 2010.

[353] D. Liben-Nowell, and J. Kleinberg. The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology, 58(7),
pp. 1019–1031, 2007.

[354] R. Lichtenwalter, J. Lussier, and N. Chawla. New perspectives and methods in link
prediction. ACM KDD Conference, pp. 243–252, 2010.

[355] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2), pp. 107–
144, 2003.

[356] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series. Proceedings
of the 2nd Workshop on Temporal Data, 2002.

BIBLIOGRAPHY 715

[357] B. Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer,
New York, 2007.

[358] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
ACM KDD Conference, pp. 80–86, 1998.

[359] G. Liu, H. Lu, W. Lou, and J. X. Yu. On computing, storing and querying frequent
patterns. ACM KDD Conference, pp. 607–612, 2003.

[360] H. Liu, and H. Motoda. Feature selection for knowledge discovery and data mining.
Springer, 1998.

[361] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic
projection. ACM KDD Conference, pp. 229–238, 2002.

[362] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in het-
erogeneous networks. ACM CIKM Conference, pp. 199–208, 2010.

[363] D. Lin. An Information-theoretic Definition of Similarity. ICML Conference, pp. 296–
304, 1998.

[364] R. Little, and D. Rubin. Statistical analysis with missing data. Wiley, 2002.

[365] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. IEEE ICDM Conference,
pp. 413–422, 2008.

[366] H. Liu, and H. Motoda. Computational methods of feature selection. Chapman and
Hall/CRC, 2007.

[367] K. Liu, C. Giannella, and H. Kargupta. A survey of attack techniques on privacy-
preserving data perturbation methods. Privacy-Preserving Data Mining: Models and
Algorithms, Springer, pp. 359–381, 2008.

[368] B. London, and L. Getoor. Collective classification of network data. Data Classifica-
tion: Algorithms and Applications, CRC Press, pp. 399–416, 2014.

[369] C.-T. Lu, D. Chen, and Y. Kou. Algorithms for spatial outlier detection, IEEE ICDM
Conference, pp. 597–600, 2003.

[370] Q. Lu, and L. Getoor. Link-based classification. ICML Conference, pp. 496–503, 2003.

[371] U. von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4),
pp. 395–416, 2007.

[372] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. �-diversity:
privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(3), 2007.

[373] S. Macskassy, and F. Provost. A simple relational classifier. Second Workshop on
Multi-Relational Data Mining (MRDM) at ACM KDD Conference, 2003.

[374] S. C. Madeira, and A. L. Oliveira. Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics.
1(1), pp. 24–45, 2004.

716 BIBLIOGRAPHY

[375] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Min-
ing, indexing, and querying historical spatiotemporal data. ACM KDD Conference,
pp. 236–245, 2004.

[376] G. Manku, and R. Motwani. Approximate frequency counts over data streams. VLDB
Conference, pp. 346–357, 2002.

[377] C. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval.
Cambridge University Press, Cambridge, 2008.

[378] M. Markou, and S. Singh. Novelty detection: a review, part 1: statistical approaches.
Signal Processing, 83(12), pp. 2481–2497, 2003.

[379] G. J. McLachian. Discriminant analysis and statistical pattern recognition. Wiler
Interscience, 2004.

[380] M. Markou, and S. Singh. Novelty detection: A review, part 2: neural network-based
approaches. Signal Processing, 83(12), pp. 2481–2497, 2003.

[381] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data
mining, EDBT Conference, pp. 18–32, 1996.

[382] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. An expected utility
approach to active feature-value acquisition. IEEE ICDM Conference, 2005.

[383] A. K. Menon, and C. Elkan. Link prediction via matrix factorization. Machine Learn-
ing and Knowledge Discovery in Databases, pp. 437–452, 2011.

[384] B. Messmer, and H. Bunke. A new algorithm for error-tolerant subgraph isomprohism
detection. IEEE Transactions on Pattern Mining and Machine Intelligence, 20(5),
pp. 493–504, 1998.

[385] A. Meyerson, and R. Williams. On the complexity of optimal k-anonymization. ACM
PODS Conference, pp. 223–228, 2004.

[386] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. Proceed-
ings of the AAAI, pp. 1–41, 1986.

[387] C. Michael, and A. Ghosh. Two state-based approaches to program-based anomaly
detection. Computer Security Applications Conference, pp. 21, 2000.

[388] H. Miller, and J. Han. Geographic data mining and knowledge discovery. CRC Press,
2009.

[389] T. M. Mitchell. Machine learning. McGraw Hill International Edition, 1997.

[390] B. Mobasher. Web usage mining and personalization. Practical Handbook of Internet
Computing, ed. Munindar Singh, pp, 264–265, CRC Press, 2005.

[391] D. Montgomery, E. Peck, and G. Vining. Introduction to linear regression analysis.
John Wiley and Sons, 2012.

[392] C. H. Mooney, and J. F. Roddick. Sequential pattern mining: approaches and algo-
rithms. ACM Computing Surveys (CSUR), 45(2), 2013.

BIBLIOGRAPHY 717

[393] B. Moret. Decision trees and diagrams. ACM Computing Surveys (CSUR), 14(4),
pp. 593–623, 1982.

[394] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and M. Westover. Exact discovery of time
series motifs. SDM Conference, pp. 473–484, 2009.

[395] A. Mueen, and E. Keogh. Online discovery and maintenance of time series motifs.
ACM KDD Conference, pp. 1089–1098, 2010.

[396] E. Muller, M. Schiffer, and T. Seidl. Statistical selection of relevant subspace projec-
tions for outlier ranking. ICDE Conference, pp, 434–445, 2011.

[397] E. Muller, I. Assent, P. Iglesias, Y. Mulle, and K. Bohm. Outlier analysis via subspace
analysis in multiple views of the data. IEEE ICDM Conference, pp. 529–538, 2012.

[398] S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary
survey. Data Mining and Knowledge Discovery, 2(4), pp. 345–389, 1998.

[399] S. Nabar, K. Kenthapadi, N. Mishra, and R. Motwani. A survey of query auditing
techniques for data privacy. Privacy-Preserving Data Mining: Models and Algorithms,
Springer, pp. 415–431, 2008.

[400] D. Nadeau, and S. Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1), 3–26, 2007.

[401] M. Naor, and B. Pinkas. Efficient oblivious transfer protocols. SODA Conference,
pp. 448–457, 2001.

[402] A. Narayanan, and V. Shmatikov. How to break anonymity of the netflix prize dataset.
arXiv preprint cs/0610105, 2006. http://arxiv.org/abs/cs/0610105

[403] G. Nemhauser, and L. Wolsey. Integer and combinatorial optimization. Wiley, New
York, 1988.

[404] J. Neville, and D. Jensen. Iterative classification in relational data. AAAI Workshop
on Learning Statistical Models from Relational Data, pp. 13–20, 2000.

[405] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering analysis and an algorithm.
Advances in Neural Information Processing Systems, pp. 849–856, 2001.

[406] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. ACM SIGMOD Conference, pp. 13–
24, 1998.

[407] R. T. Ng, and J. Han. CLARANS: A method for clustering objects for spatial data
mining. IEEE Transactions on Knowledge and Data Engineering, 14(5), pp. 1003–
1016, 2002.

[408] M. Neuhaus, and H. Bunke. Automatic learning of cost functions for graph edit dis-
tance. Information Sciences, 177(1), pp. 239–247, 2007.

[409] M. Neuhaus, K. Riesen, and H. Bunke. Fast suboptimal algorithms for the computa-
tion of graph edit distance. Structural, Syntactic, and Statistical Pattern Recognition,
pp. 163–172, 2006.

http://arxiv.org/abs/cs/0610105

718 BIBLIOGRAPHY

[410] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification with labeled
and unlabeled data using EM. Machine Learning, 39(2), pp. 103–134, 2000.

[411] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. International
Conference on Data Engineering, pp. 412–421, 1998.

[412] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation engine: Bring-
ing order to the web. Technical Report, 1999–0120, Computer Science Department,
Stanford University, 1998.

[413] F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki. CARPENTER: Finding closed
patterns in long biological datasets. ACM KDD Conference, pp. 637–642, 2003.

[414] T. Palpanas. Real-time data analytics in sensor networks. Managing and Mining Sen-
sor Data, pp. 173–210, Springer, 2013.

[415] F. Pan, A. K. H. Tung, G. Cong, and X. Xu. COBBLER: Combining column and row
enumeration for closed pattern discovery. International Conference on Scientific and
Statistical Database Management, pp. 21–30, 2004.

[416] C. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic index-
ing: A probabilistic analysis. ACM PODS Conference, pp. 159–168, 1998.

[417] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. International Conference on Database Theory, pp. 398–416, 1999.

[418] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series
databases. IEEE ICDM Conference, pp. 370–377, 2002.

[419] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-mine: Hyper-structure
mining of frequent patterns in large databases. IEEE ICDM Conference, pp. 441–448,
2001.

[420] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp, 21–30, 2000.

[421] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C.
Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering, 16(11), pp. 1424–1440, 2004.

[422] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent patterns with convertible
constraints. ICDE Conference, pp. 433–442, 2001.

[423] D. Pelleg, and A. W. Moore. X-means: Extending k-means with efficient estimation
of the number of clusters. ICML Conference, pp. 727–734, 2000.

[424] M. Petrou, and C. Petrou. Image processing: the fundamentals. Wiley, 2010.

[425] D. Pierrakos, G. Paliouras, C. Papatheodorou, and C. Spyropoulos. Web usage mining
as a tool for personalization: a survey. User Modeling and User-Adapted Interaction,
13(4), pp, 311–372, 2003.

[426] D. Pokrajac, A. Lazerevic, and L. Latecki. Incremental local outlier detection for data
streams. Computational Intelligence and Data Mining Conference, pp. 504–515, 2007.

BIBLIOGRAPHY 719

[427] S. A. Macskassy, and F. Provost. Classification in networked data: A toolkit and a
univariate case study. Joirnal of Machine Learning Research, 8, pp. 935–983, 2007.

[428] G. Qi, C. Aggarwal, and T. Huang. Link Prediction across networks by biased cross-
network sampling. IEEE ICDE Conference, pp. 793–804, 2013.

[429] G. Qi, C. Aggarwak, and T. Huang. Online community detection in social sensing.
ACM WSDM Conference, pp. 617–626, 2013.

[430] J. Quinlan. C4.5: programs for machine learning. Morgan-Kaufmann Publishers, 1993.

[431] J. Quinlan. Induction of decision trees. Machine Learning, 1, pp. 81–106, 1986.

[432] D. Rafiei, and A. Mendelzon. Similarity-based queries for time series data, ACM
SIGMOD Record, 26(2), pp. 13–25, 1997.

[433] E. Rahm, and H. Do. Data cleaning: problems and current approaches, IEEE Data
Engineering Bulletin, 23(4), pp. 3–13, 2000.

[434] R. Ramakrishnan, and J. Gehrke. Database Management Systems. Osborne/McGraw
Hill, 1990.

[435] V. Raman, and J. Hellerstein. Potter’s wheel: An interactive data cleaning system.
VLDB Conference, pp. 381–390, 2001.

[436] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from
large data sets. ACM SIGMOD Conference, pp. 427–438, 2000.

[437] M. Rege, M. Dong, and F. Fotouhi. Co-clustering documents and words using bipartite
isoperimetric graph partitioning. IEEE ICDM Conference, pp. 532–541, 2006.

[438] E. S. Ristad, and P. N. Yianilos. Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 20(5), pp. 522–532, 1998.

[439] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 286, 1958.

[440] R. Salakhutdinov, and A. Mnih. Probabilistic Matrix Factorization. Advances in Neu-
ral and Information Processing Systems, pp. 1257–1264, 2007.

[441] G. Salton, and M. J. McGill. Introduction to modern information retrieval. McGraw
Hill, 1986.

[442] P. Samarati. Protecting respondents identities in microdata release. IEEE Transac-
tions on Knowledge and Data Engineering, 13(6), pp. 1010–1027, 2001.

[443] H. Samet. The design and analysis of spatial data structures. Addison-Wesley, Read-
ing, MA, 1990.

[444] J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Density-based clustering in spatial
databases: The algorithm gdbscan and its applications. Data Mining and Knowledge
Discovery, 2(2), pp. 169–194, 1998.

[445] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. World Wide Web Conference, pp. 285–295, 2001.

720 BIBLIOGRAPHY

[446] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for mining
association rules in large databases. Very Large Databases Conference, pp. 432–444,
1995.

[447] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations
in a large database of customer transactions. IEEE ICDE Conference, pp. 494–502,
1998.

[448] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in
dual variables. ICML Conference, pp. 515–521, 1998.

[449] B. Scholkopf, and A. J. Smola. Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. Cambridge University Press, 2001.

[450] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5), pp. 1299–1319, 1998.

[451] B. Scholkopf, and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[452] H. Schutze, and C. Silverstein. Projections for efficient document clustering. ACM
SIGIR Conference, pp. 74–81, 1997.

[453] F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing
Surveys, 34(1), 2002.

[454] B. Settles. Active Learning. Morgan and Claypool, 2012.

[455] B. Settles, and M. Craven. An analysis of active learning strategies for sequence label-
ing tasks. Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1069–1078, 2008.

[456] D. Seung, and L. Lee. Algorithms for non-negative matrix factorization. Advances in
Neural Information Processing Systems, 13, pp. 556–562, 2001.

[457] H. Seung, M. Opper, and H. Sompolinsky. Query by committee. Fifth annual workshop
on Computational learning theory, pp. 287–294, 1992.

[458] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data
mining. VLDB Conference, pp. 544–555, 1996.

[459] S. Shekhar, C. T. Lu, and P. Zhang. Detecting graph-based spatial outliers: algorithms
and applications. ACM KDD Conference, pp. 371–376, 2001.

[460] S.Shekhar, C. T. Lu, and P. Zhang. A unified approach to detecting spatial outliers.
Geoinformatica, 7(2), pp. 139–166, 2003.

[461] S. Shekhar, and S. Chawla. A tour of spatial databases. Prentice Hall, 2002.

[462] S. Shekhar, C. T. Lu, and P. Zhang. Detecting graph-based spatial outliers. Intelligent
Data Analysis, 6, pp. 451–468, 2002.

[463] S. Shekhar, and Y. Huang. Discovering spatial co-location patterns: a summary of
results. In Advances in Spatial and Temporal Databases , pp. 236–256, Springer, 2001.

BIBLIOGRAPHY 721

[464] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-resolution clus-
tering approach for very large spatial databases. VLDB Conference, pp. 428–439, 1998.

[465] P. Shenoy, J. Haritsa, S. Sudarshan, G., Bhalotia, M. Bawa, and D. Shah. Turbo-
charging vertical mining of large databases. ACM SIGMOD Conference, 29(2), pp. 22–
35, 2000.

[466] J. Shi, and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 22(8), pp. 888–905, 2000.

[467] R. Shumway, and D. Stoffer. Time-series analysis and its applications: With R exam-
ples, Springer, New York, 2011.

[468] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A novel anomaly detection
scheme based on principal component classifier, ICDM Conference, pp. 353–365, 2003.

[469] R. Sibson. SLINK: An optimally efficient algorithm for the single-link clustering
method. The Computer Journal, 16(1), pp. 30–34, 1973.

[470] A. Siebes, J. Vreeken, and M. van Leeuwen. itemsets that compress. SDM Conference,
pp. 393–404, 2006.

[471] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, 1986.

[472] K. Smets, and J. Vreeken. The odd one out: Identifying and characterising anomalies.
SIAM Conference on Data Mining, pp. 804–815, 2011.

[473] E. S. Smirnov. On exact methods in systematics. Systematic Zoology, 17(1), pp. 1–13,
1968.

[474] P. Smyth. Clustering sequences with hidden Markov models. Advances in Neural
Information Processing Systems, pp. 648–654, 1997.

[475] E. J. Stollnitz, and T. D. De Rose. Wavelets for computer graphics: theory and appli-
cations. Morgan Kaufmann, 1996.

[476] R. Srikant, and R. Agrawal. Mining quantitative association rules in large relational
tables. ACM SIGMOD Conference, pp. 1–12, 1996.

[477] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Tan. Web usage mining: Discov-
ery and applications of usage patterns from web data. ACM SIGKDD Explorations
Newsletter, 1(2), pp. 12–23, 2000.

[478] I. Steinwart, and A. Christmann. Support vector machines. Springer, 2008.

[479] A. Strehl, and J. Ghosh. Cluster ensembles—a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research, 3, pp. 583–617,
2003.

[480] G. Strang. An introduction to linear algebra. Wellesley Cambridge Press, 2009.

[481] G. Strang, and K. Borre. Linear algebra, geodesy, and GPS. Wellesley Cambridge
Press, 1997.

722 BIBLIOGRAPHY

[482] K. Subbian, C. Aggarwal, and J. Srivasatava. Content-centric flow mining for influence
analysis in social streams. CIKM Conference, pp. 841–846, 2013.

[483] J. Sun, and J. Tang. A survey of models and algorithms for social influence analysis.
Social Network Data Analytics, Springer, pp. 177–214, 2011.

[484] Y. Sun, J. Han, C. Aggarwal, and N. Chawla. When will it happen?: relationship
prediction in heterogeneous information networks. ACM international conference on
Web search and data mining, pp. 663–672, 2012.

[485] P.-N Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Addison-Wesley,
2005.

[486] P. N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure
for association patterns. ACM KDD Conference, pp. 32–41, 2002.

[487] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. Enhancing effectiveness of outlier
detection for low density patterns. PAKDD Conference, pp. 535–548, 2002.

[488] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale net-
works. ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pp. 807–816, 2009.

[489] B. Taskar, M. Wong, P. Abbeel, and D. Koller. Link prediction in relational data.
Advances in Neural Information Processing Systems, 2003.

[490] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290 (5500), pp. 2319–2323, 2000.

[491] K. Ting, and I. Witten. Issues in stacked generalization. Journal of Artificial Intelli-
gence Research, 10, pp. 271–289, 1999.

[492] T. Mitsa. Temporal data mining. CRC Press, 2010.

[493] H. Toivonen. Sampling large databases for association rules. VLDB Conference,
pp. 134–145, 1996.

[494] V. Vapnik. The nature of statistical learning theory. Springer, 2000.

[495] J. Vaidya. A survey of privacy-preserving methods across vertically partitioned data.
Privacy-Preserving Data Mining: Models and Algorithms, Springer, pp. 337–358, 2008.

[496] V. Vapnik. Statistical learning theory. Wiley, 1998.

[497] V. Verykios, and A. Gkoulalas-Divanis. A Survey of Association Rule Hiding Meth-
ods for Privacy. Privacy-Preserving Data Mining: Models and Algorithms, Springer,
pp. 267–289, 2008.

[498] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1), pp. 37–57, 2006.

[499] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. ACM KDD Con-
ference, pp. 216–225, 2003.

BIBLIOGRAPHY 723

[500] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional tra-
jectories. IEEE International Conference on Data Engineering, pp. 673–684, 2002.

[501] T. De Vries, S. Chawla, and M. Houle. Finding local anomalies in very high dimen-
sional space. IEEE ICDM Conference, pp. 128–137, 2010.

[502] A. Waddell, and R. Oldford. Interactive visual clustering of high dimensional data by
exploring low-dimensional subspaces. INFOVIS, 2012.

[503] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. ACM KDD Conference, pp. 226–235, 2003.

[504] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining
frequent closed itemsets. ACM KDD Conference, pp. 236–245, 2003.

[505] J. Wang, Y. Zhang, L. Zhou, G. Karypis, and C. C. Aggarwal. Discriminating subse-
quence discovery for sequence clustering. SIAM Conference on Data Mining, pp. 605–
610, 2007.

[506] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to
spatial data mining. VLDB Conference, pp. 186–195, 1997.

[507] J. S. Walker. Fast fourier transforms. CRC Press, 1996.

[508] S. Wasserman. Social network analysis: Methods and applications. Cambridge Uni-
versity Press, 1994.

[509] D. Watts, and D. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393 (6684), pp. 440–442, 1998.

[510] L. Wei, E. Keogh, and X. Xi. SAXually Explicit images: Finding unusual shapes.
IEEE ICDM Conference, pp. 711–720, 2006.

[511] H. Wiener. Structural determination of paraffin boiling points. Journal of the Amer-
ican Chemical Society. 1(69). pp. 17–20, 1947.

[512] L. Willenborg, and T. De Waal. Elements of statistical disclosure control. Springer,
2001.

[513] D. Wolpert. Stacked generalization. Neural Networks, 5(2), pp. 241–259, 1992.

[514] X. Xiao, and Y. Tao. Anatomy: Simple and effective privacy preservation. Very Large
Databases Conference, pp. 139–150, 2006.

[515] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets.
VLDB Conference, pp. 709–720, 2005.

[516] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. SIGKDD
Explorations Newsletter, 12(1), pp. 40–48, 2010.

[517] H. Xiong, P. N. Tan, and V. Kumar. Mining strong affinity association patterns in
data sets with skewed support distribution. ICDM Conference, pp. 387–394, 2003.

[518] K. Yaminshi, J. Takeuchi, and G. Williams. Online unsupervised outlier detec-
tion using finite mixtures with discounted learning algorithms, ACM KDD Confer-
ence,pp. 320–324, 2000.

724 BIBLIOGRAPHY

[519] X. Yan, and J. Han. gSpan: Graph-based substructure pattern mining. IEEE Inter-
national Conference on Data Mining, pp. 721–724, 2002.

[520] X. Yan, P. Yu, and J. Han. Substructure similarity search in graph databases. ACM
SIGMOD Conference, pp. 766–777, 2005.

[521] X. Yan, P. Yu, and J. Han. Graph indexing: a frequent structure-based approach.
ACM SIGMOD Conference, pp. 335–346, 2004.

[522] X. Yan, F. Zhu, J. Han, and P. S. Yu. Searching substructures with superimposed
distance. International Conference on Data Engineering, pp. 88, 2006.

[523] J. Yang, and W. Wang. CLUSEQ: efficient and effective sequence clustering. IEEE
International Conference on Data Engineering, pp. 101–112, 2003.

[524] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting time series motifs
under uniform scaling. ACM KDD Conference, pp. 844–853, 2007.

[525] N. Ye. A markov chain model of temporal behavior for anomaly detection. IEEE
Information Assurance Workshop, pp. 169, 2004.

[526] B. K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. IEEE International Conference on Data Engineering, pp. 201–
208, 1998.

[527] B. K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris.
Online data mining for co-evolving time sequences. International Conference on Data
Engineering, pp. 13–22, 2000.

[528] H. Yildirim, and M. Krishnamoorthy. A random walk method for alleviating the
sparsity problem in collaborative filtering. ACM conference on Recommender systems,
pp. 131–138, 2008.

[529] X. Yin, and J. Han. CPAR: Classification based on predictive association rules. SIAM
international conference on data mining, pp. 331–335, 2003.

[530] S. Yu, and J. Shi. Multiclass spectral clustering. International Conference on Com-
puter Vision, 2003.

[531] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate
example weighting. ICDM Conference, pp. 435–442, 2003.

[532] R. Zafarani, M. A. Abbasi, and H. Liu. Social media mining: an introduction. Cam-
bridge University Press, New York, 2014.

[533] H. Zakerzadeh, C. Aggarwal, and K. Barker. Towards breaking the curse of dimension-
ality for high-dimensional privacy. SIAM Conference on Data Mining, pp. 731–739,
2014.

[534] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-
edge and Data Engineering, 12(3), pp. 372–390, 2000.

[535] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
learning, 42(1–2), pp. 31–60, 2001. 31–60.

BIBLIOGRAPHY 725

[536] M. J. Zaki, and M. Wagner Jr. Data mining and analysis: fundamental concepts and
algorithms. Cambridge University Press, 2014.

[537] M. J. Zaki, S. Parthasarathy, M. Ogihara, andW. Li. New algorithms for fast discovery
of association rules. KDD Conference, pp. 283–286, 1997.

[538] M. J. Zaki, and K. Gouda. Fast vertical mining using diffsets. ACM KDD Conference,
pp. 326–335, 2003.

[539] M. J. Zaki, and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining.
SIAM Conference on Data Mining, pp. 457–473, 2002.

[540] M. J. Zaki, and C. Aggarwal. XRules: An effective algorithm for structural classifica-
tion of XML data. Machine Learning, 62(1–2), pp. 137–170, 2006.

[541] B. Zenko. Is combining classifiers better than selecting the best one? Machine Learn-
ing, pp. 255–273, 2004.

[542] Y. Zhai, and B. Liu. Web data extraction based on partial tree alignment. World
Wide Web Conference, pp. 76–85, 2005.

[543] D. Zhan, M. Li, Y. Li, and Z.-H. Zhou. Learning instance specific distances using
metric propagation. ICML Conference, pp. 1225–1232, 2009.

[544] H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neigh-
bor classification for visual category recognition. Computer Vision and Pattern Recog-
nition, pp. 2126–2136, 2006.

[545] J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document
clustering with application to novelty detection. Advances in Neural Information Pro-
cessing Systems, pp. 1617–1624, 2004.

[546] J. Zhang, Q. Gao, and H. Wang. SPOT: A system for detecting projected outliers
from high-dimensional data stream. ICDE Conference, 2008.

[547] D. Zhang, and G. Lu. Review of shape representation and description techniques.
Pattern Recognition, 37(1), pp. 1–19, 2004.

[548] S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning from incomplete ratings
using nonnegative matrix factorization. SIAM Conference on Data Mining, pp. 549–
553, 2006.

[549] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering
method for very large databases. ACM SIGMOD Conference, pp. 103–114, 1996.

[550] Z. Zhao, and H. Liu. Spectral feature selection for supervised and unsupervised learn-
ing. ICML Conference, pp. 1151–1157, 2007.

[551] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local
and global consistency. Advances in Neural Information Processing Systems, 16(16),
pp. 321–328, 2004.

[552] D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled data on
a directed graph. ICML Conference, pp. 1036–1043, 2005.

726 BIBLIOGRAPHY

[553] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns
by core pattern fusion. ICDE Conference, pp. 706–715, 2007.

[554] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. ICML Conference, pp. 912–919, 2003.

[555] X. Zhu, and A. Goldberg. Introduction to semi-supervised learning. Morgan and Clay-
pool, 2009.

[556] http://db.csail.mit.edu/labdata/labdata.html.

[557] http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html.

[558] http://sifter.org/~simon/journal/20061211.html.

[559] http://www.netflixprize.com/.

http://db.csail.mit.edu/labdata/labdata.html
http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html
http://sifter.org/~simon/journal/20061211.html
http://www.netflixprize.com/

Index

χ2 Measure, 123
�-diversity, 682
k-anonymity, 670, 671
t-closeness, 684

AdaBoost, 381
Agglomerative Clustering, 167
Aggregate Change Points, 419
Almost Closed Sets, 139
AMS Sketch, 406
Approximate Frequent Patterns, 139
Apriori Algorithm, 100
AR Model, 467
ARIMA Model, 469
ARMA Model, 469
Association Pattern Mining, 15, 93
Association Rule Hiding, 688
Association Rules, 98
Associative Classifiers, 305
Authorities, 602
Autoregressive Integrated Moving Average

Model, 469
Autoregressive Model, 467
Autoregressive Moving Average Model, 469
AVC-set, 351

Bag-of-Words Kernel, 524
Bagging, 379
Balaban Index, 573
Barabasi-Albert Model, 622
Baum-Welch Algorithm, 520
Bayes Classifier, 306
Bayes Optimal Privacy, 684
Bayes Reconstruction Method, 665
Bayes Text Classifier, 448

Behavioral Attributes, 10, 458, 532
Bernoulli Bayes Model, 309
Between-Class Scatter Matrix, 291
Betweenness Centrality, 626
Bias Term in SVMs, 314
Biased Sampling, 38
Big Data, 389
Binarization, 31
Binning of Time Series, 460
Biological Sequences, 493
BIRCH, 214
Bisecting K-Means, 173
Bloom Filter, 399
BOAT, 351
Boosting, 381
Bootstrap, 337
Bootstrapped Aggregating, 379
Bucket of Models, 383
Buckshot, 435

C4.5rules, 300
Candidate Distribution Algorithm, 112
Cascade, 655
Categorical Data Clustering, 206
CBA, 148, 305
Centrality, 623
Centroid Distance Signature, 533
Centroid-based Text Classification, 447
Chebychev Inequality, 394
Chernoff Bound (Lower-Tail), 395
Chernoff Bound (Upper-Tail), 396
Circuit Rank, 573
CLARA, 213
CLARANS, 213
Classification, 285

C. C. Aggarwal, Data Mining: The Textbook, DOI 10.1007/978-3-319-14142-8 727
c© Springer International Publishing Switzerland 2015

728 INDEX

Classification Based on Associations, 305
Classification of Time Series, 488
Classifier Evaluation, 334
Classifying Graphs, 582
Cleaning Data, 34
CLIQUE, 219
Closed Itemsets, 137
Closed Patterns, 137
Closeness Centrality, 624
CLUSEQ, 504
Cluster Digest for Text, 434
Cluster Validation, 195
Clustering, 153
Clustering Coefficient, 621
Clustering Data Streams, 411
Clustering Graphs, 579
Clustering Tendency, 154
Clustering Text, 434
Clustering Time Series, 476
Clusters and Outliers, 246
CluStream, 413
Co-clustering, 438
Co-clustering for Recommendations, 610
Co-location Patterns, 548
Co-Training, 363
Coefficient of Determination, 361, 468
Collaborative Filtering, 149, 234, 605
Collective Classification, 367, 641
Combination Outliers in Sequences, 508
Community Detection, 627
Compression-based Dissimilarity Measure,

513
Concept Drift, 22, 390
Condensation-based Anonymization, 680
Confidence, 97
Confidence Monotonicity, 98
Constrained Clustering, 225
Constrained Pattern Mining, 146
Constrained Sequential Patterns, 500
Content-based Recommendations, 605
Contextual Attributes, 10, 458, 532
CONTOUR, 504
Coordinate Descent, 355
Core of Joined Subgraphs, 578
Count-Min Sketch, 403
Cross-Validation, 336
CSketch, 417
CURE, 216
CVFDT, 423

Cyclomatic Number, 573

Data Classification, 18, 285
Data Cleaning, 34
Data Clustering, 16, 153
Data Reduction, 37
Data Streams, 389
Data Type Portability, 30
Data Types, 6
Data-centered Ensembles, 278
DBSCAN, 181
Decision List, 300
Decision Trees, 293
Degree Centrality, 624
Degree Prestige, 624
DENCLUE, 184
Dendrogram, 168
Densification, 622
Density Attractors, 185
DepthProject Algorithm, 106
Differencing Time Series, 466
Diffusion Models, 655
Dijkstra Algorithm, 86
Dimensionality Curse in Privacy, 687
Dimensionality Reduction, 41
Discrete Cosine Transform, 464
Discrete Fourier Transform, 462
Discrete Sequence Similarity Measures, 82
Discretization, 30
Discriminative Classifier, 306
Distance-based Clustering, 159
Distance-based Entropy, 156
Distance-based Motifs, 473
Distance-based Outlier Detection, 248
Distance-based Sequence Clustering, 502
Distance-based Sequence Outliers, 513
Distributed Privacy, 689
Document Preparation, 431
Document-Term Matrix, 8
Domain Generalization Hierarchy, 670
Downward Closure Property, 96
DWT, 50
Dynamic Programming in HMM, 520
Dynamic Time Warping Distance, 79
Dynamics of Network Formation, 622

Early Termination Trick, 250
Earth Mover Distance, 685
Eckart-Young Theorem, 46

INDEX 729

Eclat, 110
Edit Distance, 82, 513
Edit Distance in Graphs, 567
Eigenvector Centrality, 627
EM Algorithm for Continuous Data, 173, 244
EM Algorithm for Data Clustering, 175
Embedded Models, 292
Energy of a Data Set, 46
Ensemble Classification, 373
Ensemble Clustering, 231
Ensemble-based Streaming Classification,

424
Entropy, 156, 289
Entropy �-diversity, 683
Enumeration Tree, 103
Equivalence Class in Privacy, 671
Error Tree of Wavelet Representation, 52
Estrada Index, 572
Euclidean Metric, 64
Event Detection, 485
Evolutionary Outlier Algorithms, 271
Example Re-weighting, 348
Expected Error Reduction, 372
Expected Model Change, 371
Expected Variance Reduction, 373
Explaining Sequence Anomalies, 519
Exponential Smoothing, 461
Extreme Value Analysis, 239

Feature Bagging, 274
Feature Selection, 40
Feature Selection for Classification, 287
Feature Selection for Clustering, 154
Filter Models, 155, 288
Finite State Automaton, 509
First Story Detection, 418, 453
Fisher Score, 290
Fisher’s Linear Discriminant, 290
Flajolet-Martin Algorithm, 408
FOIL’s Information Gain, 304
Forward Algorithm, 519
Forward-backward Algorithm, 520
Fowlkes-Mallows Measure, 201
Fractionation, 435
Frequency-based Sequence Outliers, 514
Frequent Itemset, 93
Frequent Pattern Mining, 15, 93
Frequent Pattern Mining in Streams, 409
Frequent Substructure Mining, 575

Frequent Trajectory Paths, 546
Frequent Traversal Patterns, 615
Full-Domain Generalization, 673

Generalization in Privacy, 670
Generalization Property, 675
Generalized Linear Models, 357
Generative Classifier, 306
Geodesic Distances, 71
Gini Index, 288
Girvan-Newman Algorithm, 631
GLM, 357
Global Recoding, 672
Global Statistical Similarity, 74
Goodall Measure, 75
Graph Classification, 582
Graph Clustering, 579
Graph Database, 557
Graph Distances and Matching, 565
Graph Edit Distance, 567
Graph Isomorphism, 559
Graph Kernels, 573
Graph Matching, 559
Graph Similarity Measures, 85
Graph-based Algorithms, 187
Graph-based Collaborative Filtering, 608
Graph-based Methods, 522
Graph-based Semisupervised Learning, 367
Graph-based Sequence Clustering, 502
Graph-based Spatial Neighborhood, 541
Graph-based Spatial Outliers, 542
Graph-based Time-Series Clustering, 481
Gregariousness in Social Networks, 624
Grid-based Outliers, 255
Grid-based Projected Outliers, 270
GSP Algorithm, 495

Haar Wavelets, 50
Heavy Hitters, 405
Hidden Markov Model Clustering, 506
Hidden Markov Models, 514
Hierarchical Clustering Algorithms, 166
High Dimensional Privacy, 687
Hinge Loss, 319
Histogram-based Outliers, 255
HITS, 602
HMETIS, 232
HMM, 514
HMM Applications, 521

730 INDEX

Hoeffding Inequality, 397
Hoeffding Trees, 421
Holdout, 336
Homophily, 58, 621
Hopkin’s Statistic, 157
Hosoya Index, 572
HOTSAX, 483
Hubs, 602
Hybrid Feature Selection, 159

Imputation, 49
Incognito, 675
Incognito Super-roots, 678
Inconsistent Data, 36
Independent Cascade Model, 656
Independent Ensembles, 276
Inductive Classifiers, 362
Influence Analysis, 655
Information Gain, 289
Information Theoretic Measures, 513
Instance-based Learning, 331
Instance-based Text Classification, 447
Interest Ratio, 124
Internal Validation Criteria, 196
Intrinsic Dimensionality, 41
Inverse Document Frequency, 74
Inverse Occurrence Frequency, 74
Inverted Index, 143
ISOMAP, 57, 71
Item-based Recommendations, 608
Itemset, 94
Iterative Classification Algorithm, 641

Jaccard Coefficient, 76, 432
Jaccard for Multiway Similarity, 125

K-Means, 162, 480
K-Medians, 164
K-Medoids, 164, 480, 579
K-Modes, 208
Katz Centrality, 653
Kernel Density Estimation, 256
Kernel Fisher’s Discriminant, 360
Kernel K-Means, 163, 325
Kernel Logistic Regression, 360
Kernel PCA, 44, 325
Kernel Ridge Regression, 359
Kernel SVM, 323, 524, 585
Kernel Trick, 323, 359

Kernels in Graphs, 573
Kernighan-Lin Algorithm, 629
Keyword-based Sequence Similarity, 502
Kruskal Stress, 56

Label Propagation Algorithm, 643
Lagrangian Optimization in NMF, 193
Large Itemset, 93
Lasso, 355
Latent Components of NMF, 192
Latent Components of SVD, 47
Latent Factor Models, 611
Latent Semantic Indexing, 447
Law Enforcement, 18
Lazy Learners, 331
Learn-One-Rule, 302
Leave-One-Out Bootstrap, 337
Leave-One-Out Cross-Validation, 336
Left Eigenvector, 600
Level-wise Algorithms, 100
Levenshtein Distance, 82
Lexicographic Tree, 103
Likelihood Ratio Statistic, 304
Linear Discriminant Analysis, 291
Linear Threshold Model, 656
Link Prediction, 650
Link Prediction for Recommendations, 608
Loadshedding, 390
Local Outlier Factor, 252
Local Recoding, 672
LOF, 252
Logistic Regression, 310, 358
Longest Common Subsequence, 84
Lookahead-based Pruning, 110
Lossy Counting Algorithm, 410
LSA, 47, 447

MA Model, 468
Macro-clustering, 413
Mahalanobis k-means, 163
Mahalanobis Distance, 70, 242
Manhattan Metric, 64
Margin, 314
Margin Constraints, 315
Markov Inequality, 394
Massive-Domain Stream Clustering, 417
Massive-Domain Streaming Classification,

425

INDEX 731

Match-based Distance Measures in Graphs,
565

Maximal Frequent Itemsets, 96, 136
Maximum Common Subgraph, 561
Maximum Common Subgraph Problem, 564
Mean-Shift Clustering, 186
Mercer Kernel Map, 324
Mercer’s Theorem, 323
METIS, 634
Metric, 565
Micro-clustering, 413
Min-Max Scaling, 37
Minkowski Distance, 65
Missing Data, 35
Missing Time-Series Values, 459
Mixture Modeling, 173, 244
Model Selection, 383
Model-centered Ensembles, 277
Mondrian Algorithm, 678
Moore-Penrose Pseudoinverse, 49
Morgan Index, 572
Motif Discovery, 472
Moving Average Model, 468
Moving Average Smoothing, 460
Multiclass Learning, 346
Multidimensional Change Points, 419
Multidimensional Scaling, 55
Multidimensional Spatial Neighborhood, 541
Multidimensional Spatial Outliers, 542
Multilayer Neural Network, 328
Multinomial Bayes Model, 309, 448, 449
Multivariate Extreme Values, 242
Multivariate Time Series, 10, 458, 459
Multivariate Time-Series Forecasting, 470
Multiview Clustering, 231

Naive Bayes Classifier, 306
NCSA Common Log Format, 613
Near Duplicate Detection, 594
Nearest Neighbor Classifier, 522
Neighborhood-based Collaborative Filtering,

607
Network Data, 12
Neural Networks, 326
NMF, 191
Node-Induced Subgraph, 560
Noise Removal from Time Series, 460
Non-stationary Time Series, 465
Nonlinear Regression, 359

Nonlinear Support Vector Machines, 321
Nonnegative Matrix Factorization, 191
Normalization, 37
Normalization of Time Series, 461
Normalized Wavelet Basis, 52
Novelties in Text, 453

Oblivious Transfer Protocol, 690
One-Against-One Multiclass Learning, 347
One-Against-Rest Multiclass Learning, 347
Online Novelty Detection, 419
Online Time-Series Clustering, 477
ORCLUS, 222
Ordered Probit Regression, 359
Outlier Analysis, 17
Outlier Detection, 17
Outlier Ensembles, 274
Outlier Validity, 258
Output Privacy, 688
Overfitting, 287

PAA, 460
PageRank, 86, 592, 598
Partial Periodic Patterns, 476
Partition Algorithm, 110, 128
Partition-1, 111
PCA, 42
Perceptron, 326
Periodic Patterns, 476
Perturbation for Privacy, 664
Pessimistic Error Rate, 304
Piecewise Aggregate Approximation, 460
PLSA, 440
Point Outliers in Time Series, 482
Poisson Regression, 359
Polynomial Regression, 359
Pool-based Active Learning, 369
Position Outliers in Sequences, 507
Power-Iteration Method, 600
Power-Law Degree Distribution, 623
Predictive Attribute Dependence, 155
Preferential Attachment, 622
Preferential Crawlers, 591
Prestige, 623
Principal Component Analysis, 42
Principal Components Regression, 356
Privacy-Preserving Data Mining, 663
Privacy-Preserving Data Publishing, 667
Probabilistic Classifiers, 306

732 INDEX

Probabilistic Clustering, 173
Probabilistic Latent Semantic Analysis, 440
Probabilistic Outlier Detection, 244
Probabilistic Suffix Trees, 510
Probabilistic Text Clustering, 436
Probit Regression, 359
PROCLUS, 220
Product Graph, 574
Profile Association Rules, 148
Projected Outliers, 270
Projection-based Reuse, 107
Projection-based Reuse of Support Count-

ing, 107
Proximal Gradient Methods, 355
Proximity Models for Mixed Data, 75
Proximity Prestige, 624
PST, 510
Pyramidal Time Frame, 415

Query Auditing, 688
Query-by-Committee, 371
Querying Patterns, 141
QuickSI Algorithm, 564

RainForest, 351
Randic Index, 573
Random Forests, 380
Random Subspace Ensemble, 274
Random Subspace Sampling, 273
Random Walks, 86, 598
Random-Walk Kernels, 573
Randomization for Privacy, 664
Rank Prestige, 627
Ranking Algorithms, 597
Rare Class Learning, 347
Ratings Matrix, 604
Recommendations, 149
Recommender Systems, 604
Recursive (c, �)-diversity, 683
Regression Modeling, 353
Regularization, 312, 355, 613
Regularization in Collective Classification,

647
Rendezvous Label Propagation, 646
Representative-based Clustering, 159
Representativeness-based Active Learning,

373
Reservoir Sampling, 39, 391
Response Variable, 353

Ridge Regression, 355
Right Eigenvector, 600
RIPPER, 300
Rocchio Classification, 448
ROCK, 209

Samarati’s Algorithm, 673
Sampling, 38
SAX, 32, 464
Scalable Classification, 350
Scalable Clustering, 212
Scalable Decision Trees, 351
Scale-Free Networks, 622
Scaling, 37
Scatter Gather Text Clustering, 434
Secure Multi-party Computation, 690
Secure Set Union Protocol, 690
Selective Sampling, 369
Self Training, 363
Semisupervised Bayes Classification, 364
Semisupervised Clustering, 224
Semisupervised Learning, 361
Sensor-Selection, 479
Sequence Classification, 521
Sequence Data, 10
Sequence Outlier Detection, 507
Sequential Covering Algorithms, 301
Sequential Ensembles, 275
Sequential Pattern Mining, 494
Shape Analysis, 533
Shape Clustering, 539
Shape Outliers, 543
Shape-based Time-Series Clustering, 479
Shared Nearest Neighbors, 73
Shingling, 594
Short Memory Property, 509
Shortest Path Kernels, 575
Shrinking Diameters, 623
Signature Table, 144
Similarity Computation with Mixed Data, 75
Simple Matching Coefficient, 513
Simple Redundancy, 143
SimRank, 86, 601
Singular Value Decomposition, 44
Small World Networks, 622
SMOTE, 350
Social Influence Analysis, 655
Soft SVM, 319
Spatial Co-location Patterns, 538

INDEX 733

Spatial Data, 11
Spatial Data Mining, 531
Spatial Outliers, 540
Spatial Tile Transformation, 547
Spatial Wavelets, 537
Spatiotemporal Data, 12
Spectral Clustering, 637
Spectral Decomposition, 47
Spectral Methods in Collective Classifica-

tion, 646
Spectrum Kernel, 524
Spider Traps, 593
Spiders, 591
SPIRIT, 472
Stacking, 384
Standardization, 37, 354, 462
Stationary Time Series, 465
Stop-word Removal, 431
STORM, 426
Stratified Cross-Validation, 336
Stratified Sampling, 39
STREAM Algorithm, 411
Streaming Classification, 421
Streaming Data, 389
Streaming Frequent Pattern Mining, 409
Streaming Novelty Detection, 419
Streaming Outlier Detection, 417
Streaming Privacy, 681
Streaming Synopsis, 391
Strict Redundancy, 143
String Data, 10
Subgraph Isomorphism, 560
Subgraph Matching, 560
Subsequence, 495
Subsequence-based Clustering, 503
Superset-based Pruning, 110
Supervised Feature Selection, 41
Supervised Micro-clusters for Classification,

424
Support, 95
Support Vector Machines, 313
Support Vectors, 314
Suppression in Privacy, 670
SVD, 44
SVM for Text, 451
SVMLight, 352
SVMPerf, 451
Symbolic Aggregate Approximation, 32, 464
Symmetric Confidence Measure, 124

Synopsis for Streams, 391
Synthetic Data for Anonymization, 680
Synthetic Over-sampling, 350
System Diagnosis, 493

Tag Trees, 433
TARZAN, 514
Temporal Similarity Measures, 77
Term Strength, 155
Text Classification, 446
Text Clustering, 434
Text SVM, 451
Tikhonov Regularization, 355
Time Series Similarity Measures, 77
Time Warping, 78
Time-Series Classification, 485
Time-Series Correlation Clustering, 477
Time-Series Data, 9
Time-Series Data Mining, 457
Time-Series Forecasting, 464
Time-Series Preparation, 459
Topic Modeling, 440
Topic-Sensitive PageRank, 601
Topological Descriptors, 571
Trajectory Classification, 553
Trajectory Clustering, 549
Trajectory Mining, 544
Trajectory Outlier Detection, 551
Trajectory Pattern Mining, 546
Transductive Classifiers, 362, 583
Transductive Support Vector Machines, 366
TreeProjection Algorithm, 106
Triadic Closure, 621

Ullman’s Isomorphism Algorithm, 562
Uncertainty Sampling, 370
Universal Crawlers, 591
Unsupervised Feature Selection, 40
User-based Recommendations, 607
Utility in Privacy, 664, 674, 687, 691
Utility Matrix, 604

Value Generalization Hierarchy, 670
Velocity Density Estimation, 419
Vertical Counting Methods, 110
VF2 Algorithm, 564
Viterbi Algorithm, 519

Ward’s Method, 171
Wavelet-based Rules, 523

734 INDEX

Wavelets, 50
Web Crawling, 591
Web Document Processing, 433
Web Resource Discovery, 591
Web Server Logs, 613
Web Usage Mining, 613
Weighted Degree Kernel, 525
Wiener Index, 572

Within-Class Scatter Matrix, 291
Wrapper Models, 158, 292

XProj, 581
XRules, 584

Z-Index, 572

	Contents
	Preface
	Acknowledgments
	Author Biography
	1 An Introduction to Data Mining
	1.1 Introduction
	1.2 The Data Mining Process
	1.2.1 The Data Preprocessing Phase
	1.2.2 The Analytical Phase

	1.3 The Basic Data Types
	1.3.1 Nondependency-Oriented Data
	1.3.1.1 Quantitative Multidimensional Data
	1.3.1.2 Categorical and Mixed Attribute Data
	1.3.1.3 Binary and Set Data
	1.3.1.4 Text Data

	1.3.2 Dependency-Oriented Data
	1.3.2.1 Time-Series Data
	1.3.2.2 Discrete Sequences and Strings
	1.3.2.3 Spatial Data
	1.3.2.4 Network and Graph Data

	1.4 The Major Building Blocks: A Bird's Eye View
	1.4.1 Association Pattern Mining
	1.4.2 Data Clustering
	1.4.3 Outlier Detection
	1.4.4 Data Classification
	1.4.5 Impact of Complex Data Types on Problem Definitions
	1.4.5.1 Pattern Mining with Complex Data Types
	1.4.5.2 Clustering with Complex Data Types
	1.4.5.3 Outlier Detection with Complex Data Types
	1.4.5.4 Classification with Complex Data Types

	1.5 Scalability Issues and the Streaming Scenario
	1.6 A Stroll Through Some Application Scenarios
	1.6.1 Store Product Placement
	1.6.2 Customer Recommendations
	1.6.3 Medical Diagnosis
	1.6.4 Web Log Anomalies

	1.7 Summary
	1.8 Bibliographic Notes
	1.9 Exercises

	2 Data Preparation
	2.1 Introduction
	2.2 Feature Extraction and Portability
	2.2.1 Feature Extraction
	2.2.2 Data Type Portability
	2.2.2.1 Numeric to Categorical Data: Discretization
	2.2.2.2 Categorical to Numeric Data: Binarization
	2.2.2.3 Text to Numeric Data
	2.2.2.4 Time Series to Discrete Sequence Data
	2.2.2.5 Time Series to Numeric Data
	2.2.2.6 Discrete Sequence to Numeric Data
	2.2.2.7 Spatial to Numeric Data
	2.2.2.8 Graphs to Numeric Data
	2.2.2.9 Any Type to Graphs for Similarity-Based Applications

	2.3 Data Cleaning
	2.3.1 Handling Missing Entries
	2.3.2 Handling Incorrect and Inconsistent Entries
	2.3.3 Scaling and Normalization

	2.4 Data Reduction and Transformation
	2.4.1 Sampling
	2.4.1.1 Sampling for Static Data
	2.4.1.2 Reservoir Sampling for Data Streams

	2.4.2 Feature Subset Selection
	2.4.3 Dimensionality Reduction with Axis Rotation
	2.4.3.1 Principal Component Analysis
	2.4.3.2 Singular Value Decomposition
	2.4.3.3 Latent Semantic Analysis
	2.4.3.4 Applications of PCA and SVD

	2.4.4 Dimensionality Reduction with Type Transformation
	2.4.4.1 Haar Wavelet Transform
	2.4.4.2 Multidimensional Scaling
	2.4.4.3 Spectral Transformation and Embedding of Graphs

	2.5 Summary
	2.6 Bibliographic Notes
	2.7 Exercises

	3 Similarity and Distances
	3.1 Introduction
	3.2 Multidimensional Data
	3.2.1 Quantitative Data
	3.2.1.1 Impact of Domain-Specific Relevance
	3.2.1.2 Impact of High Dimensionality
	3.2.1.3 Impact of Locally Irrelevant Features
	3.2.1.4 Impact of Different Lp-Norms

	3.2.1.5 Match-Based Similarity Computation
	3.2.1.6 Impact of Data Distribution
	3.2.1.7 Nonlinear Distributions: ISOMAP
	3.2.1.8 Impact of Local Data Distribution
	3.2.1.9 Computational Considerations

	3.2.2 Categorical Data
	3.2.3 Mixed Quantitative and Categorical Data

	3.3 Text Similarity Measures
	3.3.1 Binary and Set Data

	3.4 Temporal Similarity Measures
	3.4.1 Time-Series Similarity Measures
	3.4.1.1 Impact of Behavioral Attribute Normalization
	3.4.1.2 Lp-Norm
	3.4.1.3 Dynamic Time Warping Distance
	3.4.1.4 Window-Based Methods

	3.4.2 Discrete Sequence Similarity Measures
	3.4.2.1 Edit Distance
	3.4.2.2 Longest Common Subsequence

	3.5 Graph Similarity Measures
	3.5.1 Similarity between Two Nodes in a Single Graph
	3.5.1.1 Structural Distance-Based Measure
	3.5.1.2 Random Walk-Based Similarity

	3.5.2 Similarity Between Two Graphs

	3.6 Supervised Similarity Functions
	3.7 Summary
	3.8 Bibliographic Notes
	3.9 Exercises

	4 Association Pattern Mining
	4.1 Introduction
	4.2 The Frequent Pattern Mining Model
	4.3 Association Rule Generation Framework
	4.4 Frequent Itemset Mining Algorithms
	4.4.1 Brute Force Algorithms
	4.4.2 The Apriori Algorithm
	4.4.2.1 Efficient Support Counting

	4.4.3 Enumeration-Tree Algorithms
	4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori
	4.4.3.2 TreeProjection and DepthProject
	4.4.3.3 Vertical Counting Methods

	4.4.4 Recursive Suffix-Based Pattern Growth Methods
	4.4.4.1 Implementation with Arrays but No Pointers
	4.4.4.2 Implementation with Pointers but No FP-Tree
	4.4.4.3 Implementation with Pointers and FP-Tree
	4.4.4.4 Trade-offs with Different Data Structures
	4.4.4.5 Relationship Between FP-Growth and Enumeration-Tree Methods

	4.5 Alternative Models: Interesting Patterns
	4.5.1 Statistical Coefficient of Correlation
	4.5.2 χ2 Measure

	4.5.3 Interest Ratio
	4.5.4 Symmetric Confidence Measures
	4.5.5 Cosine Coefficient on Columns
	4.5.6 Jaccard Coefficient and the Min-hash Trick
	4.5.7 Collective Strength
	4.5.8 Relationship to Negative Pattern Mining

	4.6 Useful Meta-algorithms
	4.6.1 Sampling Methods
	4.6.2 Data Partitioned Ensembles
	4.6.3 Generalization to Other Data Types
	4.6.3.1 Quantitative Data
	4.6.3.2 Categorical Data

	4.7 Summary
	4.8 Bibliographic Notes
	4.9 Exercises

	5 Association Pattern Mining: Advanced Concepts
	5.1 Introduction
	5.2 Pattern Summarization
	5.2.1 Maximal Patterns
	5.2.2 Closed Patterns
	5.2.3 Approximate Frequent Patterns
	5.2.3.1 Approximation in Terms of Transactions
	5.2.3.2 Approximation in Terms of Itemsets

	5.3 Pattern Querying
	5.3.1 Preprocess-once Query-many Paradigm
	5.3.1.1 Leveraging the Itemset Lattice
	5.3.1.2 Leveraging Data Structures for Querying

	5.3.2 Pushing Constraints into Pattern Mining

	5.4 Putting Associations to Work: Applications
	5.4.1 Relationship to Other Data Mining Problems
	5.4.1.1 Application to Classification
	5.4.1.2 Application to Clustering
	5.4.1.3 Applications to Outlier Detection

	5.4.2 Market Basket Analysis
	5.4.3 Demographic and Profile Analysis
	5.4.4 Recommendations and Collaborative Filtering
	5.4.5 Web Log Analysis
	5.4.6 Bioinformatics
	5.4.7 Other Applications for Complex Data Types

	5.5 Summary
	5.6 Bibliographic Notes
	5.7 Exercises

	6 Cluster Analysis
	6.1 Introduction
	6.2 Feature Selection for Clustering
	6.2.1 Filter Models
	6.2.1.1 Term Strength
	6.2.1.2 Predictive Attribute Dependence
	6.2.1.3 Entropy
	6.2.1.4 Hopkins Statistic

	6.2.2 Wrapper Models

	6.3 Representative-Based Algorithms
	6.3.1 The k-Means Algorithm
	6.3.2 The Kernel k-Means Algorithm

	6.3.3 The k-Medians Algorithm

	6.3.4 The k-Medoids Algorithm

	6.4 Hierarchical Clustering Algorithms
	6.4.1 Bottom-Up Agglomerative Methods
	6.4.1.1 Group-Based Statistics

	6.4.2 Top-Down Divisive Methods
	6.4.2.1 Bisecting k-Means

	6.5 Probabilistic Model-Based Algorithms
	6.5.1 Relationship of EM to k-means and Other Representative Methods

	6.6 Grid-Based and Density-Based Algorithms
	6.6.1 Grid-Based Methods
	6.6.2 DBSCAN
	6.6.3 DENCLUE

	6.7 Graph-Based Algorithms
	6.7.1 Properties of Graph-Based Algorithms

	6.8 Non-negative Matrix Factorization
	6.8.1 Comparison with Singular Value Decomposition

	6.9 Cluster Validation
	6.9.1 Internal Validation Criteria
	6.9.1.1 Parameter Tuning with Internal Measures

	6.9.2 External Validation Criteria
	6.9.3 General Comments

	6.10 Summary
	6.11 Bibliographic Notes
	6.12 Exercises

	7 Cluster Analysis: Advanced Concepts
	7.1 Introduction
	7.2 Clustering Categorical Data
	7.2.1 Representative-Based Algorithms
	7.2.1.1 k-Modes Clustering

	7.2.1.2 k-Medoids Clustering

	7.2.2 Hierarchical Algorithms
	7.2.2.1 ROCK

	7.2.3 Probabilistic Algorithms
	7.2.4 Graph-Based Algorithms

	7.3 Scalable Data Clustering
	7.3.1 CLARANS
	7.3.2 BIRCH
	7.3.3 CURE

	7.4 High-Dimensional Clustering
	7.4.1 CLIQUE
	7.4.2 PROCLUS
	7.4.3 ORCLUS

	7.5 Semisupervised Clustering
	7.5.1 Pointwise Supervision
	7.5.2 Pairwise Supervision

	7.6 Human and Visually Supervised Clustering
	7.6.1 Modifications of Existing Clustering Algorithms
	7.6.2 Visual Clustering

	7.7 Cluster Ensembles
	7.7.1 Selecting Different Ensemble Components
	7.7.2 Combining Different Ensemble Components
	7.7.2.1 Hypergraph Partitioning Algorithm
	7.7.2.2 Meta-clustering Algorithm

	7.8 Putting Clustering to Work: Applications
	7.8.1 Applications to Other Data Mining Problems
	7.8.1.1 Data Summarization
	7.8.1.2 Outlier Analysis
	7.8.1.3 Classification
	7.8.1.4 Dimensionality Reduction
	7.8.1.5 Similarity Search and Indexing

	7.8.2 Customer Segmentation and Collaborative Filtering
	7.8.3 Text Applications
	7.8.4 Multimedia Applications
	7.8.5 Temporal and Sequence Applications
	7.8.6 Social Network Analysis

	7.9 Summary
	7.10 Bibliographic Notes
	7.11 Exercises

	8 Outlier Analysis
	8.1 Introduction
	8.2 Extreme Value Analysis
	8.2.1 Univariate Extreme Value Analysis
	8.2.2 Multivariate Extreme Values
	8.2.3 Depth-Based Methods

	8.3 Probabilistic Models
	8.4 Clustering for Outlier Detection
	8.5 Distance-Based Outlier Detection
	8.5.1 Pruning Methods
	8.5.1.1 Sampling Methods
	8.5.1.2 Early Termination Trick with Nested Loops

	8.5.2 Local Distance Correction Methods
	8.5.2.1 Local Outlier Factor (LOF)
	8.5.2.2 Instance-Specific Mahalanobis Distance

	8.6 Density-Based Methods
	8.6.1 Histogram- and Grid-Based Techniques
	8.6.2 Kernel Density Estimation

	8.7 Information-Theoretic Models
	8.8 Outlier Validity
	8.8.1 Methodological Challenges
	8.8.2 Receiver Operating Characteristic
	8.8.3 Common Mistakes

	8.9 Summary
	8.10 Bibliographic Notes
	8.11 Exercises

	9 Outlier Analysis: Advanced Concepts
	9.1 Introduction
	9.2 Outlier Detection with Categorical Data
	9.2.1 Probabilistic Models
	9.2.2 Clustering and Distance-Based Methods
	9.2.3 Binary and Set-Valued Data

	9.3 High-Dimensional Outlier Detection
	9.3.1 Grid-Based Rare Subspace Exploration
	9.3.1.1 Modeling Abnormal Lower Dimensional Projections
	9.3.1.2 Grid Search for Subspace Outliers

	9.3.2 Random Subspace Sampling

	9.4 Outlier Ensembles
	9.4.1 Categorization by Component Independence
	9.4.1.1 Sequential Ensembles
	9.4.1.2 Independent Ensembles

	9.4.2 Categorization by Constituent Components
	9.4.2.1 Model-Centered Ensembles
	9.4.2.2 Data-Centered Ensembles

	9.4.3 Normalization and Combination

	9.5 Putting Outliers to Work: Applications
	9.5.1 Quality Control and Fault Detection
	9.5.2 Financial Fraud and Anomalous Events
	9.5.3 Web Log Analytics
	9.5.4 Intrusion Detection Applications
	9.5.5 Biological and Medical Applications
	9.5.6 Earth Science Applications

	9.6 Summary
	9.7 Bibliographic Notes
	9.8 Exercises

	10 Data Classification
	10.1 Introduction
	10.2 Feature Selection for Classification
	10.2.1 Filter Models
	10.2.1.1 Gini Index
	10.2.1.2 Entropy
	10.2.1.3 Fisher Score
	10.2.1.4 Fisher's Linear Discriminant

	10.2.2 Wrapper Models
	10.2.3 Embedded Models

	10.3 Decision Trees
	10.3.1 Split Criteria
	10.3.2 Stopping Criterion and Pruning
	10.3.3 Practical Issues

	10.4 Rule-Based Classifiers
	10.4.1 Rule Generation from Decision Trees
	10.4.2 Sequential Covering Algorithms
	10.4.2.1 Learn-One-Rule

	10.4.3 Rule Pruning
	10.4.4 Associative Classifiers

	10.5 Probabilistic Classifiers
	10.5.1 Naive Bayes Classifier
	10.5.1.1 The Ranking Model for Classification
	10.5.1.2 Discussion of the Naive Assumption

	10.5.2 Logistic Regression
	10.5.2.1 Training a Logistic Regression Classifier
	10.5.2.2 Relationship with Other Linear Models

	10.6 Support Vector Machines
	10.6.1 Support Vector Machines for Linearly Separable Data
	10.6.1.1 Solving the Lagrangian Dual

	10.6.2 Support Vector Machines with Soft Marginfor Nonseparable Data
	10.6.2.1 Comparison with Other Linear Models

	10.6.3 Nonlinear Support Vector Machines
	10.6.4 The Kernel Trick
	10.6.4.1 Other Applications of Kernel Methods

	10.7 Neural Networks
	10.7.1 Single-Layer Neural Network: The Perceptron
	10.7.2 Multilayer Neural Networks
	10.7.3 Comparing Various Linear Models

	10.8 Instance-Based Learning
	10.8.1 Design Variations of Nearest Neighbor Classifiers
	10.8.1.1 Unsupervised Mahalanobis Metric
	10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis

	10.9 Classifier Evaluation
	10.9.1 Methodological Issues
	10.9.1.1 Holdout
	10.9.1.2 Cross-Validation
	10.9.1.3 Bootstrap

	10.9.2 Quantification Issues
	10.9.2.1 Output as Class Labels
	10.9.2.2 Output as Numerical Score

	10.10 Summary
	10.11 Bibliographic Notes
	10.12 Exercises

	11 Data Classification: Advanced Concepts
	11.1 Introduction
	11.2 Multiclass Learning
	11.3 Rare Class Learning
	11.3.1 Example Reweighting
	11.3.2 Sampling Methods
	11.3.2.1 Relationship Between Weighting and Sampling
	11.3.2.2 Synthetic Oversampling: SMOTE

	11.4 Scalable Classification
	11.4.1 Scalable Decision Trees
	11.4.1.1 RainForest
	11.4.1.2 BOAT

	11.4.2 Scalable Support Vector Machines

	11.5 Regression Modeling with Numeric Classes
	11.5.1 Linear Regression
	11.5.1.1 Relationship with Fisher's Linear Discriminant

	11.5.2 Principal Component Regression
	11.5.3 Generalized Linear Models
	11.5.4 Nonlinear and Polynomial Regression
	11.5.5 From Decision Trees to Regression Trees
	11.5.6 Assessing Model Effectiveness

	11.6 Semisupervised Learning
	11.6.1 Generic Meta-algorithms
	11.6.1.1 Self-Training
	11.6.1.2 Co-training

	11.6.2 Specific Variations of Classification Algorithms
	11.6.2.1 Semisupervised Bayes Classification with EM
	11.6.2.2 Transductive Support Vector Machines

	11.6.3 Graph-Based Semisupervised Learning
	11.6.4 Discussion of Semisupervised Learning

	11.7 Active Learning
	11.7.1 Heterogeneity-Based Models
	11.7.1.1 Uncertainty Sampling
	11.7.1.2 Query-by-Committee
	11.7.1.3 Expected Model Change

	11.7.2 Performance-Based Models
	11.7.2.1 Expected Error Reduction
	11.7.2.2 Expected Variance Reduction

	11.7.3 Representativeness-Based Models

	11.8 Ensemble Methods
	11.8.1 Why Does Ensemble Analysis Work?
	11.8.2 Formal Statement of Bias-Variance Trade-off
	11.8.3 Specific Instantiations of Ensemble Learning
	11.8.3.1 Bagging
	11.8.3.2 Random Forests
	11.8.3.3 Boosting
	11.8.3.4 Bucket of Models
	11.8.3.5 Stacking

	11.9 Summary
	11.10 Bibliographic Notes
	11.11 Exercises

	12 Mining Data Streams
	12.1 Introduction
	12.2 Synopsis Data Structures for Streams
	12.2.1 Reservoir Sampling
	12.2.1.1 Handling Concept Drift
	12.2.1.2 Useful Theoretical Bounds for Sampling

	12.2.2 Synopsis Structures for the Massive-Domain Scenario
	12.2.2.1 Bloom Filter
	12.2.2.2 Count-Min Sketch
	12.2.2.3 AMS Sketch
	12.2.2.4 Flajolet–Martin Algorithm for Distinct Element Counting

	12.3 Frequent Pattern Mining in Data Streams
	12.3.1 Leveraging Synopsis Structures
	12.3.1.1 Reservoir Sampling
	12.3.1.2 Sketches

	12.3.2 Lossy Counting Algorithm

	12.4 Clustering Data Streams
	12.4.1 STREAM Algorithm
	12.4.2 CluStream Algorithm
	12.4.2.1 Microcluster Definition
	12.4.2.2 Microclustering Algorithm
	12.4.2.3 Pyramidal Time Frame

	12.4.3 Massive-Domain Stream Clustering

	12.5 Streaming Outlier Detection
	12.5.1 Individual Data Points as Outliers
	12.5.2 Aggregate Change Points as Outliers

	12.6 Streaming Classification
	12.6.1 VFDT Family
	12.6.2 Supervised Microcluster Approach
	12.6.3 Ensemble Method
	12.6.4 Massive-Domain Streaming Classification

	12.7 Summary
	12.8 Bibliographic Notes
	12.9 Exercises

	13 Mining Text Data
	13.1 Introduction
	13.2 Document Preparation and Similarity Computation

	13.2.1 Document Normalization and Similarity Computation
	13.2.2 Specialized Preprocessing for Web Documents

	13.3 Specialized Clustering Methods for Text
	13.3.1 Representative-Based Algorithms
	13.3.1.1 Scatter/Gather Approach

	13.3.2 Probabilistic Algorithms
	13.3.3 Simultaneous Document and Word Cluster Discovery
	13.3.3.1 Co-clustering

	13.4 Topic Modeling
	13.4.1 Use in Dimensionality Reduction and Comparison with Latent Semantic Analysis
	13.4.2 Use in Clustering and Comparison with Probabilistic Clustering
	13.4.3 Limitations of PLSA

	13.5 Specialized Classification Methods for Text
	13.5.1 Instance-Based Classifiers
	13.5.1.1 Leveraging Latent Semantic Analysis
	13.5.1.2 Centroid-Based Classification
	13.5.1.3 Rocchio Classification

	13.5.2 Bayes Classifiers
	13.5.2.1 Multinomial Bayes Model

	13.5.3 SVM Classifiers for High-Dimensional and Sparse Data

	13.6 Novelty and First Story Detection
	13.6.1 Micro-clustering Method

	13.7 Summary
	13.8 Bibliographic Notes
	13.9 Exercises

	14 Mining Time Series Data
	14.1 Introduction
	14.2 Time Series Preparation and Similarity
	14.2.1 Handling Missing Values
	14.2.2 Noise Removal
	14.2.3 Normalization
	14.2.4 Data Transformation and Reduction
	14.2.4.1 Discrete Wavelet Transform
	14.2.4.2 Discrete Fourier Transform
	14.2.4.3 Symbolic Aggregate Approximation (SAX)

	14.2.5 Time Series Similarity Measures

	14.3 Time Series Forecasting
	14.3.1 Autoregressive Models
	14.3.2 Autoregressive Moving Average Models
	14.3.3 Multivariate Forecasting with Hidden Variables

	14.4 Time Series Motifs
	14.4.1 Distance-Based Motifs
	14.4.2 Transformation to Sequential Pattern Mining
	14.4.3 Periodic Patterns

	14.5 Time Series Clustering
	14.5.1 Online Clustering of Coevolving Series
	14.5.2 Shape-Based Clustering
	14.5.2.1 k-Means

	14.5.2.2 k-Medoids

	14.5.2.3 Hierarchical Methods
	14.5.2.4 Graph-Based Methods

	14.6 Time Series Outlier Detection
	14.6.1 Point Outliers
	14.6.2 Shape Outliers

	14.7 Time Series Classification
	14.7.1 Supervised Event Detection
	14.7.2 Whole Series Classification
	14.7.2.1 Wavelet-Based Rules
	14.7.2.2 Nearest Neighbor Classifier
	14.7.2.3 Graph-Based Methods

	14.8 Summary
	14.9 Bibliographic Notes
	14.10 Exercises

	15 Mining Discrete Sequences
	15.1 Introduction
	15.2 Sequential Pattern Mining
	15.2.1 Frequent Patterns to Frequent Sequences
	15.2.2 Constrained Sequential Pattern Mining

	15.3 Sequence Clustering
	15.3.1 Distance-Based Methods
	15.3.2 Graph-Based Methods
	15.3.3 Subsequence-Based Clustering
	15.3.4 Probabilistic Clustering
	15.3.4.1 Markovian Similarity-Based Algorithm: CLUSEQ
	15.3.4.2 Mixture of Hidden Markov Models

	15.4 Outlier Detection in Sequences
	15.4.1 Position Outliers
	15.4.1.1 Efficiency Issues: Probabilistic Suffix Trees

	15.4.2 Combination Outliers
	15.4.2.1 Distance-Based Models
	15.4.2.2 Frequency-Based Models

	15.5 Hidden Markov Models
	15.5.1 Formal Definition and Techniques for HMMs
	15.5.2 Evaluation: Computing the Fit Probability for Observed Sequence
	15.5.3 Explanation: Determining the Most Likely State Sequence for Observed Sequence
	15.5.4 Training: Baum–Welch Algorithm
	15.5.5 Applications

	15.6 Sequence Classification
	15.6.1 Nearest Neighbor Classifier
	15.6.2 Graph-Based Methods
	15.6.3 Rule-Based Methods
	15.6.4 Kernel Support Vector Machines
	15.6.4.1 Bag-of-Words Kernel
	15.6.4.2 Spectrum Kernel
	15.6.4.3 Weighted Degree Kernel

	15.6.5 Probabilistic Methods: Hidden Markov Models

	15.7 Summary
	15.8 Bibliographic Notes
	15.9 Exercises

	16 Mining Spatial Data
	16.1 Introduction
	16.2 Mining with Contextual Spatial Attributes
	16.2.1 Shape to Time Series Transformation
	16.2.2 Spatial to Multidimensional Transformation with Wavelets
	16.2.3 Spatial Colocation Patterns
	16.2.4 Clustering Shapes
	16.2.5 Outlier Detection
	16.2.5.1 Point Outliers
	16.2.5.2 Shape Outliers

	16.2.6 Classification of Shapes

	16.3 Trajectory Mining
	16.3.1 Equivalence of Trajectories and Multivariate Time Series
	16.3.2 Converting Trajectories to Multidimensional Data
	16.3.3 Trajectory Pattern Mining
	16.3.3.1 Frequent Trajectory Paths
	16.3.3.2 Colocation Patterns

	16.3.4 Trajectory Clustering
	16.3.4.1 Computing Similarity Between Trajectories
	16.3.4.2 Similarity-Based Clustering Methods
	16.3.4.3 Trajectory Clustering as a Sequence Clustering Problem

	16.3.5 Trajectory Outlier Detection
	16.3.5.1 Distance-Based Methods
	16.3.5.2 Sequence-Based Methods

	16.3.6 Trajectory Classification
	16.3.6.1 Distance-Based Methods
	16.3.6.2 Sequence-Based Methods

	16.4 Summary
	16.5 Bibliographic Notes
	16.6 Exercises

	17 Mining Graph Data
	17.1 Introduction
	17.2 Matching and Distance Computation in Graphs
	17.2.1 Ullman's Algorithm for Subgraph Isomorphism
	17.2.1.1 Algorithm Variations and Refinements

	17.2.2 Maximum Common Subgraph (MCG) Problem
	17.2.3 Graph Matching Methods for Distance Computation
	17.2.3.1 MCG-based Distances
	17.2.3.2 Graph Edit Distance

	17.3 Transformation-Based Distance Computation
	17.3.1 Frequent Substructure-Based Transformation and Distance Computation
	17.3.2 Topological Descriptors
	17.3.3 Kernel-Based Transformations and Computation
	17.3.3.1 Random Walk Kernels
	17.3.3.2 Shortest-Path Kernels

	17.4 Frequent Substructure Mining in Graphs
	17.4.1 Node-Based Join Growth
	17.4.2 Edge-Based Join Growth
	17.4.3 Frequent Pattern Mining to Graph Pattern Mining

	17.5 Graph Clustering
	17.5.1 Distance-Based Methods
	17.5.2 Frequent Substructure-Based Methods
	17.5.2.1 Generic Transformational Approach
	17.5.2.2 XProj: Direct Clustering with Frequent Subgraph Discovery

	17.6 Graph Classification
	17.6.1 Distance-Based Methods
	17.6.2 Frequent Substructure-Based Methods
	17.6.2.1 Generic Transformational Approach
	17.6.2.2 XRules: A Rule-Based Approach

	17.6.3 Kernel SVMs

	17.7 Summary
	17.8 Bibliographic Notes
	17.9 Exercises

	18 Mining Web Data
	18.1 Introduction
	18.2 Web Crawling and Resource Discovery
	18.2.1 A Basic Crawler Algorithm
	18.2.2 Preferential Crawlers
	18.2.3 Multiple Threads
	18.2.4 Combatting Spider Traps
	18.2.5 Shingling for Near Duplicate Detection

	18.3 Search Engine Indexing and Query Processing
	18.4 Ranking Algorithms
	18.4.1 PageRank
	18.4.1.1 Topic-Sensitive PageRank
	18.4.1.2 SimRank

	18.4.2 HITS

	18.5 Recommender Systems
	18.5.1 Content-Based Recommendations
	18.5.2 Neighborhood-Based Methods for Collaborative Filtering
	18.5.2.1 User-Based Similarity with Ratings
	18.5.2.2 Item-Based Similarity with Ratings

	18.5.3 Graph-Based Methods
	18.5.4 Clustering Methods
	18.5.4.1 Adapting k-Means Clustering

	18.5.4.2 Adapting Co-Clustering

	18.5.5 Latent Factor Models
	18.5.5.1 Singular Value Decomposition
	18.5.5.2 Matrix Factorization

	18.6 Web Usage Mining
	18.6.1 Data Preprocessing
	18.6.2 Applications

	18.7 Summary
	18.8 Bibliographic Notes
	18.9 Exercises

	19 Social Network Analysis
	19.1 Introduction
	19.2 Social Networks: Preliminaries and Properties
	19.2.1 Homophily
	19.2.2 Triadic Closure and Clustering Coefficient
	19.2.3 Dynamics of Network Formation
	19.2.4 Power-Law Degree Distributions
	19.2.5 Measures of Centrality and Prestige
	19.2.5.1 Degree Centrality and Prestige
	19.2.5.2 Closeness Centrality and Proximity Prestige
	19.2.5.3 Betweenness Centrality
	19.2.5.4 Rank Centrality and Prestige

	19.3 Community Detection
	19.3.1 Kernighan–Lin Algorithm
	19.3.1.1 Speeding Up Kernighan–Lin

	19.3.2 Girvan–Newman Algorithm
	19.3.3 Multilevel Graph Partitioning: METIS
	19.3.4 Spectral Clustering
	19.3.4.1 Important Observations and Intuitions

	19.4 Collective Classification
	19.4.1 Iterative Classification Algorithm
	19.4.2 Label Propagation with Random Walks
	19.4.2.1 Iterative Label Propagation: The Spectral Interpretation

	19.4.3 Supervised Spectral Methods
	19.4.3.1 Supervised Feature Generation with Spectral Embedding
	19.4.3.2 Graph Regularization Approach
	19.4.3.3 Connections with Random Walk Methods

	19.5 Link Prediction
	19.5.1 Neighborhood-Based Measures
	19.5.2 Katz Measure
	19.5.3 Random Walk-Based Measures
	19.5.4 Link Prediction as a Classification Problem
	19.5.5 Link Prediction as a Missing-Value Estimation Problem
	19.5.6 Discussion

	19.6 Social Influence Analysis
	19.6.1 Linear Threshold Model
	19.6.2 Independent Cascade Model
	19.6.3 Influence Function Evaluation

	19.7 Summary
	19.8 Bibliographic Notes
	19.9 Exercises

	20 Privacy-Preserving Data Mining
	20.1 Introduction
	20.2 Privacy During Data Collection
	20.2.1 Reconstructing Aggregate Distributions
	20.2.2 Leveraging Aggregate Distributions for Data Mining

	20.3 Privacy-Preserving Data Publishing
	20.3.1 The k-Anonymity Model

	20.3.1.1 Samarati's Algorithm
	20.3.1.2 Incognito
	20.3.1.3 Mondrian Multidimensional k-Anonymity

	20.3.1.4 Synthetic Data Generation: Condensation-Based Approach

	20.3.2 The �-Diversity Model

	20.3.3 The t-closeness Model

	20.3.4 The Curse of Dimensionality

	20.4 Output Privacy
	20.5 Distributed Privacy
	20.6 Summary
	20.7 Bibliographic Notes
	20.8 Exercises

	Bibliography
	Index

