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Abstract

We developed procedures for using Bayesian belief networks (BBNs) to model habitat and population viability of selected
at-risk fish and wildlife species. The BBN models represent the ecological causal web of key environmental correlates (KECs)
that most influence habitat capability, potential population response for each species, and influence of habitat planning
alternatives. BBN models represent site-specific KECs, habitat capability at the subwatershed level, and pattern of habitat
capability across all subwatersheds. BBNs use Dirichlet prior probability distributions and standard Bayesian updating of
posterior probabilities. We derived estimates of prior and conditional probabilities from a mix of empirical data and expert
judgment, mostly the latter. Sensitivity analyses identified planning decisions and KECs that most influence species outcomes,
and can help prioritize monitoring activities. BBN models, however, substitute for neither field studies nor empirical,
quantitative population viability analyses of population demography and genetics. Published by Elsevier Science B.V.
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1. Introduction are conducted. Much more commonly, the experts

must provide their best professional evaluation or step

Fish and wildlife experts are often faced with the
daunting task of analyzing effects on species from land
management activities when only scant scientific data
are available. Only under special circumstances, such
as with federally listed threatened or endangered
species, can management halt activities until studies
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aside and let activities proceed without their input.
One method for combining available scientific data
with expert knowledge and experience is the use of
Bayesian statistics and, more specifically, Bayesian
belief networks (BBNs).

Despite some controversy (Dennis, 1996), Bayesian
statistics have proven useful in ecology for evaluating
and managing wildlife species (Cohen, 1988) and
forests (Crome et al., 1996), and for other areas of
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environmental research and management (Dixon and
Ellison, 1996; Ellison, 1996; Wolfson et al., 1996).
BBNs provide a means of modeling likelihoods of
management effects (Oliver and Smith, 1990). A BBN
is a form of influence diagram which, as applied in
ecology, depicts the logical or causal relations among
ecological factors that influence the likelihood of
outcome states of some parameter(s) of interest, such
as forest condition or wildlife species viability. BBNs
have been used in ecology and forest management to
evaluate regeneration of aspen forests (Haas, 1991;
Haas et al., 1994), to depict and help frame resource
decision-making (Haas, 1992), to manage fisheries
resources (Lee and Rieman, 1997), and for other uses
(Olson et al., 1990).

The purpose of this paper is to present our methods
of using BBN models and to suggest cautions in their
application to conservation problems. Specific results
of analyzing planning alternatives are presented by
Rieman et al. (2001) on fish and by Raphael et al.
(2001) on wildlife. We describe the general framework
we devised for developing BBN models to evaluate
viability of fish and wildlife species for the Interior
Columbia Basin Ecosystem Management Project
(ICBEMP) of US Department of Agriculture (USDA)
Forest Service and US Department of the Interior
(USDI) Bureau of Land Management. We also direct
the reader to existing primers on BBN structure
(Charniak, 1991; Jensen, 1996; Morawski, 1989)
and Bayesian statistics (Press, 1989).

2. Methods

We selected a BBN approach to modeling species
viability after a broad review of numerous approaches
including data mining, rule induction, network induc-
tion, neural network, fuzzy logic, expert system, tradi-
tional statistics, simulation modeling, and other
modeling algorithms. BBNs best met our modeling
needs, particularly by providing a useful communica-
tions medium that (1) clearly displays major influ-
ences on wildlife population viability or quality of fish
habitat and their values and interactions; (2) combines
categorical and continuous variables; (3) combines
empirical data with expert judgment (Heckerman
et al., 1994), often from multiple experts; and (4)
expresses predicted outcomes as likelihoods as a basis

for risk analysis and risk management (Marcot, 1998).
Our BBN models of wildlife population response,
however, do not substitute for empirically based,
quantitative, stochastic analyses of population demo-
graphy, genetics, and persistence such as those used in
population viability analysis (PVA; Boyce, 1992).
Rather, our BBNs complement such PVA models,
and are most useful when empirical data on population
trends, demography, and genetics are unavailable.

We selected the BBN modeling shell Netica
(Norsys) for its ability to incorporate case files, pro-
vide sensitivity analysis, operate in batch mode, and
other functions (USDA Forest Service does not neces-
sarily promote any particular software product,
including this one). Netica performs standard belief
updating which solves the network by finding the
marginal posterior probability for each node. In
BBN analysis, a prior (unconditional) probability is
the likelihood that some input parameter will be in a
particular state, such as some habitat substrate being
present; a conditional probability is the likelihood of
the state of a parameter given the states of input
parameters affecting it, such as how presence of
several habitat substrates affect overall habitat suit-
ability; and a posterior probability is the likelihood
that some parameter will be in particular state, such as
population size being high, given the input parameters,
the conditional probabilities, and the rules governing
how the probabilities combine. A network is solved
when Bayesian belief updating has been done on the
nodes. As is mostly standard with BBN models,
Netica assumes that conditional probabilities are
independent and that prior probabilities are Dirichlet
functions (Spiegelhalter et al., 1993) meaning that
probabilities are continuous and bounded between 0
and 1 (Castillo et al., 1997) and are a multi-state
extension of the beta distribution.

We developed BBNs for selected aquatic and ter-
restrial vertebrate species found on federal lands
within the interior Columbia River basin in the United
States (hereafter, “Basin’’). The Basin encompasses
58.5 million hectares east of the Cascade Mountains
crest in Washington and Oregon and also includes
most of Idaho, western Montana, and parts of
Wyoming, Utah, and Nevada. The Basin has a wide
array of conifer and hardwood forests, shrublands,
grasslands, alpine, agriculture, urban, aquatic, and
other environments.
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The fish and wildlife BBN models were intended to
represent influences of the “causal web” of key
environmental correlates (KECs) on populations.
The fish BBN models were constructed based on
the expected influence of habitat and biotic conditions
on fish populations (see Rieman et al., 2001 for further
methods). For the wildlife BBNs, we first listed KECs
for each species from three sources: the species—
environment relations (SER) database that was pre-
viously developed for ICBEMP, published databases
of associations of species with suitable cover types and
seral stages (Wisdom et al., 2000), and additional
expert review. The SER database lists qualitative
and, where known, quantitative ecological factors
most influencing the distribution and abundance of
each wildlife species, and was developed from pub-
lished literature, theses and research reports, and
knowledge and judgment from panels of species
experts (Marcot et al., 1997). The SER database
was developed using a formal Delphi process to
elicit knowledge from species experts (Marcot et al.,
1997). We followed a similar method when querying
species experts for parameterizing the BBN model
probabilities.

The fish BBN models were developed at two scales,
one representing the influence of habitat, existing
biotic conditions, and ocean and migratory conditions
(for two anadromous fish species); and one represent-
ing landscape characteristics and the expected influ-
ence of management activities. The wildlife BBN
models were developed at three scales: site-specific,
subwatershed, and Basin. BBN models for fish and
wildlife were peer reviewed for each species.

The site-specific wildlife BBNs represented condi-
tions that would be determined on the ground from a
field-based inventory of resources, such as from a
watershed analysis. Subwatershed wildlife BBNs
represented use of habitats and resources as mapped
in geographic information systems (GIS) by ICBEMP
at 1km?® pixel resolution. For site-specific and
subwatershed wildlife BBNs, we arrayed the appro-
priate KECs for each species into influence diagrams
representing ecological causal webs that depict
how ecological factors influence wildlife habitat and
population density.

The Basin wildlife BBNs represented potential
population response at the scale of the entire distri-
bution of each wildlife species within the Basin. The

Basin BBN depicted the distributional pattern of
habitats within the Basin and predicted the probability
of each wildlife species occurring in five outcome
states ranging from populations being widely distrib-
uted and interconnected to isolated and disjunct
(Raphael et al., 2001). We revised these five popula-
tion outcome states from those used in Lehmkuhl et al.
(1997) and FEMAT (1993).

We structured the site-specific and subwatershed
BBN models as six shells of nodes representing: (1)
decisions, (2) GIS proxy variables that best represent
KECs, (3) KECs, (4) summary habitat nodes repre-
senting combinations of KECs, (5) population
response, and (6) utility or value of the population
outcome (Fig. 1). In practice, we did not include
decision and utility nodes, but we show here how
they can be made explicit and used in making deci-
sions for wildlife resources. The ecological “causal
web”” mentioned above is represented by shells 3-5.
Summary habitat nodes can be used to help clarify and
simplify relations in the model by combining effects
of KECs into themes of influence of habitat, other
species, endogenous population characteristics, and
human activities. Proxy variable nodes depict the
closest approximation to the KEC nodes based on
available resource inventories and GIS data.

In BBN parlance, node shells 2-5 are called states-
of-nature nodes, and each node of this type has an
associated conditional probability table (CPT). CPTs
represent the probability or frequency with which a
node takes on each discrete state, given the states of
any antecedent (“‘parent’”) nodes that interact with it.
CPTs can be derived and updated from empirical
information, expert judgment, or case examples; we
used all three sources but relied mostly on expert
judgment. Probabilities associated with proxy variable
nodes (shell 2) represent the probabilities of various
states associated with each planning choice in the
decision node. Species experts were used to help craft
the causal web of key environmental correlates and to
provide the probabilities in the CPTs, not to assign
values to species outcomes.

Decision and utility nodes do not have CPTs. Utility
nodes are linked to the population response or out-
come node (node shell 5) and have values representing
the utility of each possible outcome state (population
level). Utilities can be expressed as gross or net, social
or economic costs or benefits of each outcome.
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Fig. 1. General structure of a BBN model for evaluating population viability outcomes of wildlife species, showing six shells of nodes. See
Appendix A for description of node names. The state of nature nodes (shells 2-5) can depict parameters as multiple discrete values (as shown

here) or as continuous values.

Decision nodes can be used to set values of states-of-
nature nodes and to determine the expected outcome
utility of each decision choice. BBNs without decision
and utility nodes are still useful for expressing eco-
logical relations among KECs and resulting likeli-
hoods of population outcomes. BBNs with decision
and utility nodes, however, also can be used to help
explicitly judge optimal decision pathways that max-
imize outcome utilities and to help prioritize for
monitoring the uncertainties associated with each
decision choice.

3. Results and discussion

We present here a set of models for one example
wildlife species (see Rieman et al., 2001 for a fish
example) to illustrate the three scales of BBN models,
the six shells of nodes in the models, the content of the

CPTs for each node, and a potential use of decision
and utility nodes for informing and guiding manage-
ment. We also show how sensitivity testing of the BBN
can help guide monitoring in an adaptive management
context.

3.1. Example BBNs for evaluating and managing
for viable populations

Mustrated here is an example set of BBNs for
depicting potential population response of Townsend’s
big-eared bat (Corynorhinus townsendii) in the Basin
at three levels of geographic resolution (Fig. 2a—c).
The models at each geographic level run indepen-
dently, but they also can be nested within one seamless
evaluation process.

The subwatershed BBN (Fig. 2b) is used to estimate
the class of ecological density of the species within
each of the subwatersheds in the species’ range within



the overall Basin, accounting for broad-scale biophy-
sical conditions and broad-scale human disturbance
effects (see Appendix A). We calculated habitat den-
sity (node HD1 in Fig. 2b) outside the BBN as part of
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preprocessing in GIS, although it is possible to do this
calculation within the BBN itself by passing subwa-
tershed-specific data on habitat area and mean home
range size of the species into the model. An example

-
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Fig. 2. Example BBNs depicting population response of a wildlife species, Townsend’s big-eared bat (C. townsendii), in the interior Columbia
River basin, USA, at three levels of geographic resolution. (a) Site-specific BBN model: relations of site-specific key environmental correlates
(KECs). (b) Subwatershed BBN model: relations of subwatershed-scale KECs and their GIS proxies. (c) Basin BBN model: overall population
outcome. See Appendix A for description of node names.
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Fig. 2. (Continued).

run for the subwatershed BBN (Fig. 2b), where initial
calculation of habitat density (node HDI) was “low,”
mean elevation (node P1) was <2700 m, and predicted
road density (node P2) was ‘“moderate,” resulted in a
probability distribution of realized adjusted habitat
density of 39.0, 52.4, and 8.6% of zero, low, and high
states, respectively. We used such qualitative states of
habitat density instead of continuous values because
we did not feel confident in expressing outcomes as
absolute population numbers. Note that the significant
figures shown in the BBN models (Fig. 2) result from
the BBN calculations rather than from frequency data.

Once the user has ascertained that a particular
subwatershed has at least non-zero realized adjusted
habitat density (see Appendix A), the site-specific
BBN (Fig. 2a) can then be used to determine the
degree to which local conditions and substrates spe-
cifically provide for the species. This site-specific
BBN can be part of a procedure to implement the
chosen planning alternative. The site-specific BBN
accounts for habitat features and conditions too fine-
grained to depict in the GIS database at the subwa-
tershed level of geographic resolution.

For wildlife analyses, the subwatershed BBN was
designed to run in batch mode (the ‘““process cases”
function in Netica) across all subwatersheds (although
this function was not used for the fish BBNs). Results

are passed back to GIS where each subwatershed
is then mapped according to its expected value of
realized adjusted habitat density. The overall pattern
of realized adjusted habitat density across all subwa-
tersheds is then summarized in GIS, and this summary
is passed to the input nodes of the Basin wildlife BBN
model (Fig. 2¢). This model is used to determine the
likely overall population viability response across all
subwatersheds and is designed to explicitly evaluate
the three major factors that influence persistence of
wildlife metapopulations: habitat concentration (node
B in Fig. 2c¢), percent of range occupied (node D), and
connectivity of habitats (node E). The Basin wildlife
BBN analyzes habitat concentration and percent of
range occupied by comparing current or projected
patterns with historic patterns. The Basin fish model
(Rieman et al., 2001) similarly addressed aquatic
habitat capacity and connectivity.

The Basin model provides a first-level evaluation of
population viability response based on these habitat
patterns (node F “‘environmental outcome” in Fig. 2c¢),
and also a second-level evaluation given additional
influences of non-habitat factors including population
size and other organisms (predators, symbionts, etc.).
The final outcome (node M ‘““population outcome’ in
Fig. 2c) represents the likelihood distribution among
the five population outcome classes for the species
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across all lands, given both habitat and non-habitat
influences. Both the environmental outcomes and
population outcomes were carried into the environ-
mental impact statement effects analysis.

Site-specific BBN and subwatershed BBN models
were crafted for each species according to their indi-
vidual ecological causal webs, that is, the unique array
of KECs affecting their presence or abundance at these
two scales. The Basin BBN was mostly a generic
model applied to all species we evaluated. We chose to
use a generic approach in part because there was
neither time nor information available to customize
population viability analyses for each species indivi-
dually. Also, we suggest that the main components in
our general Basin BBN model represent conditions
common to all the species we evaluated that can affect
viability of metapopulations: viz., extent of overall
distributional range of the species, population con-
centration centers (“‘sources and sinks’’), and disper-
sion or degree of isolation of populations (Fagen,
1988; Quinn and Hastings, 1987; Gilpin and Hanski,
1991; Grasman and Hillerislambers, 1997). We recog-
nize the generality of our approach and welcome
focused autoecological studies and species-specific
viability analyses.

3.2. Internal structure of the BBNs

In each BBN, the input nodes (those without arrows
pointing to them; also called parentless nodes)
variously represented data taken from GIS themes,
from inventories, as analyzed from other BBNs, or
from expert judgment. That is, the input nodes in the
site-specific BBN (Fig. 2a) would be taken from a
site-specific inventory in the field. The input nodes in
the subwatershed BBN (Fig. 2b) are taken from
database calculations of habitat density (node HDI),
or from GIS data (nodes P1 and P2) serving as proxies
for the true KEC of the species (nodes KEC1 and
KEC?2). The habitat input nodes in the upper portion
of the Basin BBN (nodes B, D, and E in Fig. 2c) are
all taken from GIS post-processing of the subwa-
tershed BBN across the entire study area, and the
non-habitat input nodes in the lower portion of the
Basin BBN (nodes H and K) can be taken from
external population models or from expert judgment
on potential small population effects and presence of
other influential organisms.

CPTs for the example site-specific BBN are shown
in Appendix B. CPTs can be defined using expert
judgment by running the model, in part or whole, until
each part of the model behaves according to expecta-
tions. CPTs also can be established or updated with
empirical data of case examples, as available.

3.3. Using BBNs for managing fish and wildlife

We are using BBN species models to evaluate
effects on fish and terrestrial vertebrates of planning
alternatives for managing federal public lands within
the Basin (Rieman et al., 2001; Raphael et al., 2001).
BBN species models also can be used to help refine the
planning alternatives by providing a feedback for
determining conditions suited to given partial speci-
fication of the model. One way this can be done is by
running the models in “most probable explanations”
mode, which shows the most likely states for each
node for which values are not explicitly specified.

A more reliable way to use the BBN species models
for decision-making is to determine the decision with
the highest utility given a stated outcome. This is done
by incorporating the decision and utility nodes and
specifying a desired outcome, such as 80% probability
of a “high” population response. Through back-
calculation in the model, the probability belief bars
in the decision node then show the decision with the
highest likelihood of producing that outcome. This
approach assumes that the decision maker can accu-
rately express their preference for one outcome
over another, and for some acceptable probability of
an outcome. The BBN presents another piece of
information — the probability — that must be under-
stood and interpreted by the decision-maker biologi-
cally and in socio-political terms.

3.4. Representing uncertainty and prioritizing
monitoring for adaptive management

Mostly, however, the BBN species models provide a
means of articulating what we ecologists think we
know about the ecological causal web influencing
vertebrate species. The model is a tool and an aid
to help us represent ecological causal influences and
uncertainties.

BBNSs can help represent several kinds of uncer-
tainty. In a sense, the probability distribution (CPT) in
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Table 1

CPT for the node representing cave disturbance (node KEC2) in the example subwatershed wildlife BBN model (Fig. 2b)*

Value of input node, predicted

Probability of cave disturbance

road density (node P2)

Low Moderate High
None to very low 70 30 0
Low 40 40 20
Moderate 20 30 50
High to very high 10 30 60

 Probabilities in this node denote the degree to which the GIS data on predicted road density (node P2) truly represent cave disturbance.

each node is a depiction of uncertainty. For example,
in the subwatershed BBN model (Fig. 2b), the CPT for
the node representing cave disturbance (node KEC2)
represents the degree to which the GIS proxy variable
of predicted road density (node P2) actually depicts
cave disturbance. Although this was the best available
GIS proxy variable, it provides a fairly poor prediction
of cave disturbance, as the spread of probability values
show (Table 1). Solving the network then represents,
in a sense, how the propagation of that uncertainty
affects the probability distribution of the final
outcome. The probability distributions in the key
environmental correlate nodes are unconditional prob-
abilities, that is, not based on other random variables
(although they can link to GIS proxy variables). The
values of these prior probabilities can be determined
by analyzing existing inventory or monitoring data
to determine frequency distributions among the states
for each environmental correlate. We used uniform
priors because the actual value of each environmental
correlate was provided for each site or subwatershed
during analysis.

Another kind of uncertainty shown by BBNs
is sampling error as denoted by a mean =+ standard
deviation (S.D.) within individual nodes that are
depicted as range states. Examples are shown at the
bottom of some of the node boxes in Fig. 2b and c,
where the values refer to the expected value and spread
of uncertainty (S.D.) of the number of the states in
each box. For example, in Fig. 2b, notice how the
spread of uncertainty (S.D. values) increase in nodes
HD1 (S.D.=0), HD2 (S.D.=0.54), and HD3
(S.D. =0.62), as other factors are brought into
the calculations.

A third type of uncertainty pertains to the sensitivity
of specified nodes to values of other nodes. Sensitivity

testing can be used, for example, to determine the
relative influence on a species outcome from an array
of KECs, including human and natural disturbances.
This is best done in BBNs by first setting probabilities
to uniform for each input node and then running a
sensitivity analysis. Sensitivity is defined as the
expected reduction in variation of some query variable
due to the conditional probability structure of the BBN
and the specific value of the parent nodes.

As an example, in the site-specific BBN (Fig. 2a),
we determined the sensitivity of local population
response (node R) to the various KECs modeled for
the species, that is, caves or mines, boulder piles,
bridges or buildings, large snags or live trees, cliffs,
and forest edges (Table 2). Since the BBN nodes have
categorical states, the values in Table 2 are calcula-
tions of entropy reduction; with continuous value

Table 2

Results of a sensitivity analysis of the example site-specific wildlife
BBN model (Fig. 2a). Values are calculations of entropy
reduction®; the greater the value, the greater the influence on the
parameter of interest, in this case local population response (node
R)

Influencing node Entropy reduction value

KEC3: caves or mines 0.02902
KEC6: large snags or live trees 0.00953
KECS: forest edges 0.00599
KECT7: cliffs 0.00599
KECS: bridges or buildings 0.00063
KEC4: boulder piles 0.00002

2 Entropy reduction describes the expected reduction I in
mutual information of a query variable Q due to a finding F, and is
calculated as [ =3 5 P(q.f)log[P(q.f)/P(f)], where g is a
state of the query variable Q, f a state of the findings variable F, and
the summations refer to the sum of all states ¢ or f of variables
QorF.
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states, one would use equivalent calculations for var-
iance reduction (Pearl, 1991). Results suggest that the
KEC having the greatest influence on local population
response is caves and mines (node KEC3), which are
critical for winter hibernacula and are also used as
maternal roosts. Next most influential are snags and
large trees. The least influential KEC is boulder piles.
Thus for this species, the manager might want to
prioritize local inventory efforts on caves and mines,
and trees and snags, rather than on the other KECs
listed in the model. Such a use of sensitivity analysis
could be expanded to help the manager compare and
select the best standards and guidelines for producing
a desired outcome.

Sensitivity analysis can help identify the most
influential decisions and KECs as one basis for guid-
ing decision-making and for prioritizing monitoring
activities. As data are gathered and incorporated as
case files, thereby updating the CPTs within the
model, new sensitivity tests can be run to determine
the next most important factor to monitor or study. In
this way, BBN species models, sensitivity testing, and
prioritizing of monitoring studies can fit well into an
adaptive management framework of incrementally
learning by doing and testing.

4. Conclusions and recommendations

We found that BBNs were helpful for challenging
us to articulate what we know about ecological influ-
ences on vertebrate species at various levels of geo-
graphic resolution, and to knit those influences into
ecological causal webs. This is not often done in
ecological modeling but, in our view, is a necessary
first step in species viability analysis. We found that
BBNs could be quickly structured and made opera-
tional by combining empirical information with
expert experience to specify the probability tables
for each node. BBN models can use categorical,
ordinal scale, and continuous data in the same model,
and can be easily updated with new data and from
expert review.

Like many models in ecology, BBNs are crafted
after an expert’s mental map of how biological sys-
tems operate. We have not shown this here, but if
experts disagree on the fundamental causal web under-
lying a species’ response, each web can be modeled in

tandem and tested with empirical data for their pre-
diction accuracy. Mostly, however, BBNs should be
viewed as decision-aiding tools helpful for combining
expert experience with available empirical data.

In the case of our models, we sought peer review
and help from taxon-specific experts individually and
in panels, outside our science team, to build and
evaluate the site-specific and subwatershed models.
With some general peer review, we developed the
Basin BBN model to evaluate overall species viability.
It is easy to build BBN models that reflect personal
biases; we recognized this and sought extensive peer
review and participation from outside experts through-
out the process. At their best, BBNs, like any expert
evaluation should be neither arbitrary nor mere opi-
nion; it should provide solid rationale, synthesize
existing data with experts’ experience, and provide
explicitly quantifiable hypotheses to be tested with
validation studies. They should also provide a basis for
understanding the types, sources, degrees, and impli-
cations of uncertainties in existing data and expert
understanding.

We also found that incorporating decision and
utility nodes and using sensitivity analysis greatly
extended the models’ usefulness as a basis for eval-
uating and refining planning alternatives and prioritiz-
ing species—environmental parameters for monitoring
and further study. In this way, BBNs can be valuable
tools for decision-making. Although, we did not find it
necessary in our analysis, variants of a species model
can be developed based on different experts or sets of
experts, should there be legitimate disagreement on
interpreting available data. These ‘“‘competing mod-
els” can represent the range of expert opinion on
causal webs of, and management effects on, a given
species. In this way, the types and degrees of scientific
uncertainty should be clearly explained to decision-
makers. In some cases, where empirical data are truly
lacking, a BBN is no better than a simpler statement of
an educated guess, and in such cases we would not
promote the use of BBNs per se, although they may
still serve a useful purpose of organizing thinking and
posing testable hypotheses.

However, we also found that many of the subwa-
tershed scale BBN models began to look alike for
different wildlife species because there was only a
small pool of potential terrestrial GIS variables from
which to draw. That is, most of the KECs in each
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wildlife species’ ecological causal web could not be
analyzed with GIS data at the subwatershed scale,
and would have to be relegated to site-specific
BBN modeling.

BBN modeling has the disadvantage of not allowing
feedback loops among variables, particularly from the
response variable back to predictor variables. It is
difficult to represent temporal or spatial dynamics
and interactions in BBN models, and it is potentially
easy to unduly overemphasize uncertain expert opi-
nion. Where data exist, simulation models such as
spatially explicit models of metapopulation dynamics
(Pulliam and Dunning, 1995), which can better repre-
sent temporal or spatial dynamics, can nicely comple-
ment use of BBN models.

We found that several aspects of BBN model struc-
ture influence model operation and outcome: model
depth (number of nodes from top to bottom); number
of states in each node (as influencing sensitivity to
input conditions); and how the CPTs are parameter-
ized, that is, as either normalized probabilities (the
usual case with expert opinion) or as absolute prob-
abilities (as with empirical data).

In conclusion, BBNs can be useful for quickly
modeling species influences, especially where empiri-
cal data on population demography are lacking. BBNs
also provide a means of modeling fish and wildlife
species in similar ways and provide a trackable,
reviewable means of comparing effects of manage-
ment decisions on vertebrate populations.

Acknowledgements

We benefited greatly from discussions and con-
sultation with Tim Haas, David Cleaves, and Bruce
Rieman. We also thank the members of an invited
peer review panel of biologists and statisticians for
their helpful discussions and suggestions: David
Cleaves, Lisa Croft, Edward Guerrant Jr., Tim Hass,
Andy Hansen, Danny Lee, Wayne Owen, Terry
Rich, Nathan Schumacher, Bill Thompson, and
Barb Wales.

Appendix A

BBN node levels and names as used in the figures.

We designed wildlife species BBN models with
three levels of geographic resolution and six node
shells.

Levels of geographic resolution:

1. Site-specific BBN model: local substrates and
environmental conditions.

2. Subwatershed BBN model: subwatershed to sub-
basin scale habitat capability and disturbances.

3. Basin BBN model: effects of basin-wide habitat
distribution and abundance, and other disturbances
on population viability.

Node shells and designations (and short names)
(Fig. 1):

Shell 1: decision nodes (Dec);

Shell 2: GIS proxy nodes (P);

Shell 3: key environmental correlate nodes (KEC);
Shell 4: summary habitat nodes (SH);

Shell 5: population response node (R);

Shell 6: utility node (U)

Also, three HD nodes were used in the subwa-
tershed BBN model (Fig. 2b):

HD1 = habitat density

— calculated as total area of suitable habitat

divided by mean home range size;

HD2 = adjusted habitat density
— HD1 adjusted for broad-scale biophysical

conditions;

HD3 = realized adjusted habitat density
— HD2 adjusted for broad-scale human

disturbance effects.

The four BBN models presented in Figs. 1 and 2
for use with Netica (Norsys) are available at http://
www.spiritone.com/~brucem/bbns.htm.

Appendix B

Conditional probability tables (CPTs) from the site-
specific BBN example model on Townsend’s big-eared
bat (C. townsendii) in the interior Columbia River basin,
USA (Fig. 2a). Utility, proxy, and decision nodes are
not explicitly shown in this particular model.
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Note that two parentless nodes in Fig. 2a (KEC3a and prior probability distributions as listed below are also
KEC3b) are shown as having uniform prior probabil- uniform. This is because Fig. 2a shows one possible
ities, and the other parentless nodes (KEC3—KEC8) are model run for a hypothetical location where the states
shown in Fig. 2a forced to one state, even though their of all KECs are known except for cave temperature.

B.1. Shell 3: key environmental correlate nodes

KEC3: caves or mines (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5
KEC3a: temperature (°C) in hibernacula (type of node: state of nature with continuous value states)

More than 13 0.333333

—2to 13 0.333333

Less than —2 0.333333
KEC3b: temperature (°C) in maternal roosts (type of node: state of nature with continuous value states)

More than 30 0.333333

20-30 0.333333

Less than 20 0.333333
KEC4: boulder piles (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5
KECS: bridges or buildings (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5
KEC6: large snags or live trees (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5
KECT: cliffs (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5
KECS: forest edges (type of node: state of nature with discrete states)

Present 0.5

Absent 0.5

B.2. Shell 4: summary habitat nodes (SH) and habitat density nodes (HD)

Adequate Inadequate KEC3 KEC3a

SHI: hibernacula (type of node: state of nature, with discrete states)
0.1 0.9 Present More than 13
1 0 Present —21to 13
0.1 0.9 Present Less than —2
0 1 Absent More than 13
0 1 Absent —2to 13

0 1 Absent Less than —2
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B.2. Shell 4: (Continue)

Adequate Inadequate KEC4 KEC5 KEC3 KEC6
SH2: summer roosts (type of node: state of nature, with discrete states)
1 0 Present Present Present Present
0.95 0.05 Present Present Present Absent
0.9 0.1 Present Present Absent Present
0.85 0.15 Present Present Absent Absent
0.95 0.05 Present Absent Present Present
0.95 0.05 Present Absent Present Absent
0.8 0.2 Present Absent Absent Present
0.05 0.95 Present Absent Absent Absent
1 0 Absent Present Present Present
0.9 0.1 Absent Present Present Absent
0.9 0.1 Absent Present Absent Present
0.8 0.2 Absent Present Absent Absent
0.95 0.05 Absent Absent Present Present
0.9 0.1 Absent Absent Present Absent
0.7 0.3 Absent Absent Absent Present
0 1 Absent Absent Absent Absent
Adequate Inadequate KEC3 KEC6 KEC3b
SH3: maternal roosts (type of node: state of nature with discrete states)
0.8 0.2 Present Present More than 30
1 0 Present Present 20-30
0.8 0.2 Present Present Less than 20
0.1 0.9 Present Absent More than 30
1 0 Present Absent 20-30
0.1 0.9 Present Absent Less than 20
0.7 0.3 Absent Present More than 30
0.7 0.3 Absent Present 20-30
0.7 0.3 Absent Present Less than 20
0 1 Absent Absent More than 30
0 1 Absent Absent 20-30
0 1 Absent Absent Less than 20
Adequate Inadequate KECS8 KEC7
SH4: foraging sites (type of node: state of nature with discrete states)
1 0 Present Present
0.8 0.2 Present Absent
0.8 0.2 Absent Present
0 1 Absent Absent
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B.3. Shell 5: population response node (R)

High Low SH2 SH4 SH3 SH1

R: local (site-specific) population response (type of node: state of nature with discrete states)
1 0 Adequate Adequate Adequate Adequate
0.2 0.8 Adequate Adequate Adequate Inadequate
0.2 0.8 Adequate Adequate Inadequate Adequate
0.2 0.8 Adequate Adequate Inadequate Inadequate
0.2 0.8 Adequate Inadequate Adequate Adequate
0.2 0.8 Adequate Inadequate Adequate Inadequate
0.1 0.9 Adequate Inadequate Inadequate Adequate
0.1 0.9 Adequate Inadequate Inadequate Inadequate
0.2 0.8 Inadequate Adequate Adequate Adequate
0.2 0.8 Inadequate Adequate Adequate Inadequate
0.1 0.9 Inadequate Adequate Inadequate Adequate
0.1 0.9 Inadequate Adequate Inadequate Inadequate
0.1 0.9 Inadequate Inadequate Adequate Adequate
0.1 0.9 Inadequate Inadequate Adequate Inadequate
0 1 Inadequate Inadequate Inadequate Adequate
0 1 Inadequate Inadequate Inadequate Inadequate
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