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Abstract

In this paper we present a novel constraint
based structural learning algorithm for causal
networks. A set of conditional independence
and dependence statements (CIDS) is de-
rived from the data which describes the re-
lationships among the variables. Although
we implicitly assume that there exists a per-
fect map for the true, yet unknown, distribu-
tion, there does not need to be a perfect map
for the CIDSs derived from the limited data.
The reason is that the distribution of limited
data might differ from the true probability
distribution due to sampling noise. We de-
rive a necessary condition for the existence
of a perfect map given a set of CIDSs and
utilize it to check for inconsistencies. If an
inconsistency is detected, the algorithm finds
all Bayesian networks with a minimum num-
ber of edges such that a maximum number of
CIDSs is represented in each of the multiple
solutions. The advantages of our approach
are illustrated using the alarm network data
set.

1 INTRODUCTION

A Bayesian belief network represents conditional inde-
pendences in the underlying probability distribution
of the data in the form of a directed acyclic graph
(DAG). The DAG: A —» B « C states, for example,
that A and C' are independent if B is not known, but
A and C' become dependent as soon as the state of B is
fixed. If all conditional independences in the probabil-
ity distribution are represented in the DAG and vice
versa, then the Bayesian network is said to be a per-
fect map of the probability distribution, and is called a
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causal network [Pearl 1988]. Typically a Bayesian net-
work is constructed from expert knowledge although
recently there has been an increasing interest in learn-
ing the structure of Bayesian networks from data for
data mining applications. The basic idea is to display
probabilistic dependences and independences derived
from the data in a concise way by a Bayesian net-
work which has the potential of providing much more
information about a domain than visualizations solely
based on correlations and distance measures. Bayesian
networks can be used to display causal models which
can be understood by humans more intuitively than
models with undirected edges like Markov networks.

Model uncertainty is a serious problem in structural
learning of Bayesian network models and comes into
play if there does not exist a perfect map of the prob-
ability distribution of the data. If a limited data set is
given, its probability distribution might differ from the
true one due to sampling noise. For structural learn-
ing we assume that the true probability distribution is
such that there exists a perfect map.

It is important to present to the user truefully the
structural uncertainties since otherwise he or she might
draw incorrect conclusions from the presented struc-
ture. In a Bayesian approach, structural uncertainty
can be represented to the user by presenting multiple
solutions which have obtained a high score. The dis-
advantage is that one can never be sure that one has
found all solutions with a high score. Furthermore, it
is very difficult for a user to study multiple solutions
visually and to draw meaningful conclusions. In ad-
dition, the computationally cost of finding the K-best
solutions is even higher than for finding only the net-
work with the best score. Therefore we have focused
on an approximate way of structural learning without
losing model uncertainty in the result.

In the next section, we give a short summary of struc-
tural learning. Then we present a proposition which
serves as a necessary condition for the existence of a
perfect map given a set of conditional independence



and dependence statements (CIDS). This proposition
will be used to check for inconsistencies among the es-
timated CIDSs which then might lead to multiple so-
lutions. Then we present the algorithm utilizing this
proposition when checking the CIDSs for consistency
and comment on its complexity. We close with results
of the computer experiments.

2 STRUCTURAL LEARNING

There are two main approaches to structural learning
of Bayesian belief networks. In the Bayesian approach
[Cooper and Herskovits 1992, Heckerman et al. 1994,
Heckerman 1995] a global cost function — the poste-
rior probability of the (entire) network — is maximized.
This approach requires an involved search for the best
structure and is therefore computationally very expen-
sive and not directly applicable to data mining appli-
cations.

In this paper we pursue a constraint based approach
similar to the ones in [Wermuth and Lauritzen 1983,
Fung and Crawford 1990, Spirtes et al. 1993,
Suzuki 1996, Cheng et al. 1997]. The basic idea of
those algorithms is to derive a set of CIDSs from the
data without taking into account the Bayesian network
structure. The Bayesian network is then constructed
from the CIDSs in a later step. This is done in stan-
dard algorithms by removing an edge in the Bayesian
network whenever the corresponding pair of variables
is found conditional independent. There can, however,
occur inconsistencies among the CIDSs derived from
limited data when reconstructing the entire network
(up to equivalence), i.e. not all CIDSs can be repre-
sented in a perfect map simultaneously. These incon-
sistencies reflect model uncertainty, i.e. there might
exist more than one Bayesian network model describ-
ing the probability distribution of the data well (ac-
cording to some measure). This indicates how reliable
one particular structure learned from the database is.

These multiple solutions have usually many edges in
common and differ in the presence of a few edges only
which we call inconsistent edges, since they are related
to inconsistencies among the CIDSs. The set of in-
consistent edges can further be divided into subsets
such that the presence or absence of edges belonging
to different subsets is independent of each other in the
multiple solutions. Such a subset we call an ambiguous
region. Hence, we visualize the set of solutions in a sin-
gle graph (cf. Figure 3), in which the edges common
to all networks are sketched by solid lines, whereas the
edges belonging to the same ambiguous region are de-
picted by dashed lines of the same style. The possible
structures in each of the ambiguous regions cannot be
depicted in such a graph. They are hence stated in the

figure caption. The directions of the edges are spec-
ified in a later stage by this kind of constraint based
approach.

These possibly multiple solutions for the network
structures do not belong to the same equivalence class,
since they differ in the presence or absence of certain
edges. So the multiple solutions have to be distin-
guished from networks belonging to the same equiva-
lence class.

The advantage of our constraint based approach is that
it can systematically construct the set of all Bayesian
networks. Furthermore, it can take advantage of the
fact that the multiple solutions typically have many
edges in common and differ only in a few inconsistent
edges which can be partitioned into independent am-
biguous regions.

Regarding the derivation of the CIDSs from the data
set, the computation time of this approach relative to
the global Bayesian approach is appreciably shorter for
sparse network structures, i.e. when the probability
distribution exhibits many conditional independences.
For dense networks, this may not hold, but Bayesian
network models might not be the most suitable model
in such a situation, anyway. The computation time
can additionally be reduced by carrying it out in par-
allel. This can be realized in a simple master and slave
scheme.

3 NECESSARY PATH CONDITION

The algorithm we depict in this paper makes use of
the following proposition as a necessary condition for
the existence of a perfect map given a set of CIDSs
derived from the data. Essentially, the proposition
requires that if two variables' a, b only become inde-
pendent by conditioning on an additional variable ¢,
then there must be a path connecting them via ¢ in
the graph. Otherwise the dependence without condi-
tioning on ¢ would be unexplained. If there were no
necessary condition at all, then one would arrive at the

SGS or PC algorithm [Spirtes et al. 1993].

Proposition:  Let V be the set of variables and P a
probability distribution with the perfect map G': If two
variables a,b € V are conditionally independent in P
given a set of variables S C V\{a, b} and they are de-
pendent given any (proper) subset S’ C S, then there
is no edge between a and b in G and there exist (undi-
rected) paths between each s € S and a not crossing b
as well as between each s € S and b not crossing a.

'For brevity, we use nodes and variables synonymously
and denote both with small letters, since there is a one-to-
one correspondence.
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Figure 1: From the original network (A) we randomly generate data sets of various sizes (sample size between
10 and 10000). The distribution of the variables is given by b = ¢, @ = mgpb + ¢, and ¢ = mepb + 2. with
the parameters mgp = 3, me = 0.3 and with Gaussian distributed noise €; for i € {a,b, ¢} of unit variance and

zero mean. For comparison with the SGS and PC algorithms we used the test on vanishing partial correlations
with a significance level of 0.01 in this example in order to derive the conditional independence and dependence
statements (CIDSs) from the data sets. For details see section (3).

Proof: This proposition follows immediately from the
definitions of the perfect map and of the d-separation
(see for instance [Pearl 1988]). Given two variables a
and b and a set S C V\{q,b}, assume that there is
a variable v € S such that there is no (undirected)
path between a and v not crossing b in the perfect
map (. Then, if a and b are d-separated given S, they
are also d-separated given S\{v}. Hence, considering
the probability distribution P, if @ and b are indepen-
dent conditional on §, then they are also independent

conditional on S\{v}. QFED.
Necessary Path Condition:

In general one cannot expect that an arbitrary set of
CIDSs can be represented in a perfect map, since a per-
fect map implies certain relations among the CIDSs to
hold. Therefore it is desirable to have necessary and
sufficient conditions at hand for efficiently checking the
CIDSs for consistency, i.e. if all the CIDSs can simul-
taneously be displayed in one perfect map.

Since we like to retain the property of the learning
algorithm to sequentially learn the skeleton of the
Bayesian network, i.e. first the presence of its edges,
then the orientations of the edges and finally the pa-
rameters of the model, a sufficient condition for the
existence of a perfect map when constructing the skele-
ton cannot be available. The above proposition pro-
vides, however, a necessary condition for the existence
of a perfect map which means that it can be used to
check for inconsistencies among the CIDS in the sense
that if an inconsistency is found there cannot exist a
perfect map representing all the CIDSs.

In networks involving a large number of variables,
there might be several estimated conditional indepen-
dence statements (CIS) for each pair of variables a,
b. Therefore we propose the following Necessary Path
Condition to be used to check for inconsistencies in the
algorithm: For each absent edge [a,b] in the network
there has to be represented at least one — not all —
CIS I(a,b|S) — with the corresponding D(a, b|S’) for
all 8’ C S — in the perfect map according to the above
proposition. This is less strict than the proposition
itself, but makes the algorithm more robust, since an
inconsistency is only detected if there is an edges for
which no CIDSs can be found consistent.

Example (cf. Figure 1):

In Figure 1 it is shown in a toy model of three vari-
ables a, b and ¢ that it is essential to check the set of
CIDSs derived from limited data on consistency with
the Bayesian network model, since each conditional
independence statement (CIS) or conditional depen-
dence statement (CDS) is derived from the data with-
out taking into account the model at all. In (B) we
compare the resulting networks constructed from (pos-
sibly inconsistent) sets of CIDSs by two different algo-
rithms: First, the SGS and PC algorithms (dashed
arrows) which assumes an edge absent in the model
whenever a conditional independence is derived from
the data without checking for consistency. Second, the
proposed algorithm (solid arrows) checking for consis-
tency.

In the first scenario (cf. network (I) in (B)), assume
that the only conditional independence statement de-



rived from the data is I(a,c|{b}) (together with the
(conditional) dependence statements D(«a,b), D(a,c),
D(b,c), D(a,bl{c}), D(b,c|{a})). According to the
proposition this requires that there must exist a path
between a and b as well as between b and ¢, whereas
the edge [a, c]?> must be absent. Apparently, there ex-
ists a perfect map, namely comprising the edges [a, b]
and [b,c], i.e. the set of CIDSs is consistent.

In the second scenario (cf. networks (IT) in (B)), as-
sume the two CISs I(a, c|{b}) and I(b,c|{a}) — and the
CDSs D(a,b), D(a,c), D(b,c), D(a,b|{c}) — are found
from the data. The edge [a,b] is required by these
CIDSs, but the CIS I(a,c|{b}) together with D(a,c)
additionally requires the presence of the edge [b, ¢] and
the absence of the edge [a,c], whereas the other CIS
requires just the contrary. Hence, there cannot exist
a perfect map fulfilling all the CIDSs simultaneously.
For example, the set of CIDSs corresponding to a per-
fect map containing only the edge [a, b] (as found by
the SGS or PC algorithm) comprises I(«a, ¢) and I(b, ¢)
which violates both D(a,c¢) and D(b,¢). If one as-
sumes now that the inconsistencies among the CIDSs
are solely due to sampling noise in the limited data
set, it makes sense to search for all possible Bayesian
networks with a minimum number of edges each of
which constructed from a maximal consistent subset
of the CIDSs derived from the data. In this example,
it is apparent that exactly one of the two CISs cannot
be represented in a perfect map. Consequently, one
finds two possible network structures: the edge [a, b] is
common to both, and they contain edge [a, ¢] or [b, c],
respectively. Neither of the two networks represents
all the CISs which were derived from the data. Note
that the correct causal network, i.e. the perfect map of
the — in general unknown — true set of CIDSs is among
the multiple solutions in this example.

Finally, the set of CIDSs comprising the unconditional
CISs I(a, c) and I(b, ¢) are consistent and lead to a net-
work with only the edge [a, b] being present (cf. net-
work (IIT) in (B)), i.e. the original network structure
could not be recovered from these CIDSs which tend
to be derived from small data sets.

In (C) and (D) the resulting network structures de-
pending on the sample size is shown. While our ap-
proach yields multiple solutions (cf. (II) in (D)) for
"medium sized” data sets (sample size between ca. 70
and ca. 700), the SGS or PC algorithms find the net-
work comprising the single edge [a, ] (cf. (C)).

2In this notation for undirected edges, the order of the
variables does not matter, i.e. [a,b] = [b,a].

4 ALGORITHM

Before we go into details of the proposed algorithm, we
give a short overview of its main steps. After the set of
conditional independence and dependence statements
(CIDS) has been derived from the data the proposed
algorithm applies the Necessary Path Condition pre-
sented above in order to check, if a perfect map can
exist given the set of CIDSs. If inconsistencies are de-
tected, the algorithm searches for all possible Bayesian
networks as described in detail in section 4.3. For each
of the multiple solutions, the directions of the edges are
fixed in the last step. All these networks contain the
same number of edges. Among those are all the edge
resulting from the the SGS algorithm3. Each of the
minimal solutions found by the algorithm represents
an equivalence class, and is a candidate for being a
perfect map of the (unknown) true probability distri-
bution of the data set.

4.1 DERIVING THE CIDSs

The algorithm builds up the set of conditional indepen-
dence and dependence statements from a given data
set in the first step. This can efficiently be done by re-
lying on asymptotic results which appear reasonably
accurate in our experiments, for example by calculat-
ing the Bayesian Information Criterion or a test statis-
tic for each pair of variables given a subset of the re-
maining variables.

Considering independence tests it is apparent that
CDSs derived from the data are more reliable than
the CISs. This is because the null hypothesis of in-
dependence can only by falsified but not verified by a
test. This indicates that network structures learned
by a constraint based approach tend to remove too
many edges, in particular given small data sets. As
will be shown below, this tendency of removing too
many edges can largely be reduced by checking the
CIDSs for consistency.

For convenience we do not denote the conditional
dependence statements, i.e. if a statement is not
in the set of CISs (and cannot be inferred from it
by combining some of the CISs according to the
Faithfulness and Markov Conditions as described

3In this paper, we focus on how to construct the skeleton
of a Bayesian network from the CIDSs rather than how
to derive the CIDSs themselves. The CIDS derived by
the SGS and PC algorithms can differ, since the latter
facilitates heuristics. Here, we compare our algorithm with
the SGS algorithm, because the experiments carried out
here are based on the CIDSs derived by the SGS algorithm.
Of course, our algorithm can also be applied to the CIDSs
derived by the PC algorithm, and the same statements
apply as for the SGS algorithm.
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Figure 2: The alarm network contains 37 variables and 46 edges. The numbering of the variables is chosen as

in [Cheng et al. 1997].

in [Spirtes et al. 1993]), it is understood that this im-
plies a (conditional) dependence.

4.2 RULES

For each given CIS of the form I(a,b]S) with
D(a,b|S") ¥’ C S the proposed Necessary Path Con-
dition requires the absence of the edge [a,b] and the
presence of the paths between a and each variable
s € S as well as between b and each variable s € §.
We represent this constraint on the absence or pres-
ence of certain edges by a rule. Such a rule is of the
form X < Y, where X denotes an edge and Y is a
(possibly empty) set of edges. According to the Nec-
essary Path Condition, the above CIS with the CDSs
is translated into a rule as follows: X = [a,b] and
Y = U,estla; s],[b,s]}. It can be interpreted in the
way that edge X can only be absent in the Bayesian
network, if the edges in the set Y are present. Since
the above proposition requires certain paths rather
than certain edges to be present, this is absorbed in
the fact that new rules can be generated by substitut-
ing rules into each other as follows: Given two rules
X <Y and W < Z then a new rule can be generated
for edge X, if the edges W € Y and X ¢ Z, namely
X < (ZUY\{W}). Therefore an edge can be absent,
if there is at least one rule fulfilled (cf. Necessary Path
Condition).

Once the set of rules is derived from the set of CIDSs,
the associated perfect map can be constructed. If there
is a Bayesian network such that for all edges a rule is
fulfilled, then there might exist a perfect map asso-
ciated with the estimated probability distribution. If
there are some edges for which none of the given rules
can be fulfilled by a Bayesian network, we call the set
of rules and the set of CIDSs inconsistent. In this case,
there does not exist a perfect map associated with the

estimated probability distribution.

4.3 MULTIPLE SOLUTIONS

Our algorithm finds multiple solutions, when there
does not exist a perfect map of the estimated CIDSs
according to the Necessary Path Condition. If in-
consistencies among the CIDS are found by the al-
gorithm, it makes sense to consider these inconsisten-
cies to be present due to sampling noise in the lim-
ited data set and to retain the assumption that there
exists a perfect map associated with the (unknown)
set of (true) CIDSs. Therefore the algorithm searches
for all possible minimum subsets of the set of CIDSs
which are consistent in the above sense, i.e. the algo-
rithm searches for all possible network structures with
a minimum number of edges such that for a maximum
number of edges a rule is fulfilled. Each of these possi-
ble networks is a candidate for being the perfect map
of the (unknown) set of true CIDSs.

It turns out that the edges of the resulting networks
can be divided into three main groups: If there is no
rule X <Y for an edge X, then no estimated CIS was
found, and hence this edge is present in the network.
If there can be rendered a rule X < Y for edge X
such that Y is empty or contains only edges which are
present in the perfect map, then we call it a consistent
edge which is absent. An edge for which no such rule
can be generated indicates that there does not exist
a perfect map given the set of CIDSs. Such edges we
call inconsistent and they might be present or absent in
some of the multiple solutions. The multiple solutions
differ only in the presences of the the latter edges.

As we will see from the experiments (in section 5), the
inconsistent edges can usually be further subdivided:
They can be partitioned into sets of edges whose pres-
ences depend on each other, whereas edges belonging
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Figure 3: This graph sketches the multiple solutions learned from a data set of size 10000 with the significance
level 0.01 before the directions of the edges are added. Solid lines denote edges which are present in all the
possible network structures. The multiple solutions differ in the edges belonging to the 4 ambiguous regions
which are depicted in different line styles. The possible structures for each region are as follows: In region (A)
either edge [11,12] or edge [12,32] is present. In region (B) either [14,27] or [27,33] is present. In region (C)
either [15, 22] or [22, 35] is present. In region (D) either the single edge [18, 26] or the two edges [6, 18] and [3, 26]
are present; here, the only minimum structure is the one comprising the single edge [18,26]. Hence, there are two
minimum structures in each of the regions (A), (B) and (C), and one minimum structure in region (D). Therefore,
the overall number of multiple solutions is 8. 41 edges have correctly been identified which are present in all the
multiple solutions. Additional 4 edges have been found due to the Necessary Path Condition implemented in
our algorithm. The networks among the multiple solutions which are closest to the original one contain 45 (out
of 46) correct edges, and only one edge is missing, namely either [15,22] or [22,35]. The resulting network of
the SGS algorithm?® contains the same 41 edges, which are common to all multiple solutions of our algorithm, so
that 5 edges are missing.

to different sets do not depend on each other. Each of  different network structures is then given by the prod-
such a set we call an ambiguous region. There might uct of the number of different structures in each am-
be several of such regions. biguous region.

Technically speaking, the algorithm finds all the edges
belonging to the same ambiguous region in the fol-
lowing way: Only the rules for inconsistent edges are
considered. If for two inconsistent edges X and W
there can be rendered rules X <Y and W < Z such
that X € Z and W € Y, then they are grouped into
the same ambiguous region, because it might not be
possible to fulfill both of those rules simultaneously in
a Bayesian network. This can also be seen as searching
for cycles in a directed acyclic graph (DAG) which is
generated from the rules: Each node of that graph rep- tions are added to those edges which can be derived

resents an inconsistent edge of the Bayesian network, from the data so that the equivalence classes are iden-

and for each rule X' <Y edges are present pointing tified. This can be done like in [Spirtes et al. 1993],
from each node ¥ € Y to node X in that DAG.

4.4 FINDING DIRECTIONS OF EDGES

Constraint based algorithms of this kind have the
property that they can be split up into several steps.
First, the algorithm finds the (undirected) edges which
are present in the Bayesian network. We have focused
on that part in this paper. In the second step, direc-

for example.
Our algorithm takes advantage of the fact that the
multiple solutions differ only in the ambiguous regions
and that they are independent of each other. Since
each of such a region usually contains only a few edges,
searching for all possible structures such that the num-
ber of consistent CISs is maximum can be done very ef-
ficiently: Simply by carrying out an exhaustive search
in each ambiguous region separately. The number of

The fact that a data set is of limited size might, how-
ever, give rise to additional inconsistencies among the
estimated CIDSs regarding the directions of the edges.
This increases additionally the number of multiple so-
lutions which might differ in the directions of their
edges, although they have the same edges in common.
We do not present any details on that issue in this

paper.



4.5 COMPLEXITY

Calculating the Bayesian information criterion or a
test statistic for each pair of variables given every sub-
set of the remaining variables is intractable for large
numbers of variables. Since not all of those com-
putations are usually necessary for constructing the
Bayesian network from data, the complexity of the
problem can be reduced by applying heuristics (see
for instance [Spirtes et al. 1993]).

Carrying out the computations for all pairs of vari-
ables in ascending size of the conditioning set and up
to a certain maximum order only, reduces the com-
plexity greatly, i.e. it becomes polynomial in |V|.
For CISs of high orders which are not computed from
the data set it is assumed that exactly those are true
which can be inferred from the CISs of lower orders
according to the Faithfulness and Markov Conditions
as described in [Spirtes et al. 1993]. Calculations re-
lying on asymptotic results might yield more unreli-
able results for higher orders, anyway. Conditioning
only on neighbors of the pair of variables (in the undi-
rected graph) is an additional heuristic to speed up the
derivation of the CIDSs.

These heuristics require the algorithm of keeping track
of the network structure when deriving the CIDSs. Af-
ter finishing all calculations of a certain order of the
conditioning set, a new intermediate version of the net-
work can be built up based on the results available so
far. Then, this version can be used to decide, if car-
rying out computations on higher orders is necessary,
and if so, what the neighbors of each node are.

Finding all possible structures of the network from the
set of rules is, in principal, intractable for a large num-
ber of variables, too. As we found in our experiments,
however, there are edges which are present in all the
multiple solutions and only a few edges which belong
to ambiguous regions. Since the structures in different
ambiguous regions are independent of each other, all
the possible structures can be found for each ambigu-
ous region separately, which speeds up calculation very
much. Hence, the problem is exponential in the num-
ber of rules involved in the largest ambiguous region of
the network. In the experiments we found that the size
of the ambiguous regions is much smaller than the total
number of edges. Therefore, finding all the possibili-
ties in each ambiguous region becomes tractable. For
example, in our alarm network experiments, it took
less than a minute on a Sun UltraSPARC-II to gener-
ate all the possible structures given the set of CIDSs.

It turned out in our experiments that almost all the
calculation time is consumed for deriving the CIDSs
from the data and only a small fraction is needed for
constructing all the multiple solutions.

5 EXPERIMENTS

The alarm network [Beinlich et al. 1989] has evolved
as kind of a benchmark for structural learning of
Bayesian belief networks. We used the alarm network
from Norsis Corp. [Netica Alarm Network] to generate
randomly data sets of various size. The variables are
discrete and their number of states ranges from two
to four. The size of the sample data was varied be-
tween 50000 and 1000, which is much smaller than the
number of configurations in the joint state space.
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Figure 4: (a) The number of correct edges learned
from data depends on the sample size. The networks
among the multiple solutions which have the most
edges in common with the original network contain al-
most all the correct edges even for small sample sizes
(dots). The number of those edges is significantly
closer to the correct number of 46 edges than is the
number of edges which are common to all the learned
multiple solutions (triangles). The latter edges are
identical with the edges found by the SGS algorithm?.
(b) The difference of the two curves in (a) is the num-
ber of edges which are simultaneously present in the
ambiguous regions of any one of the multiple solutions
(dots). The number of edges missing in all the multiple
solutions rises for smaller sample sizes (squares), but
stays at smaller values than the number of edges being
present in the ambiguous regions due to the proposed
Necessary Path Condition. In contrast, the sum of
those edges (dots 4 squares) is missing in the network
resulting from the SGS algorithm?®. The number of er-
roneously added edges stays at small values (crosses)
due to a small significance level of 0.01. Each point
represents the mean of 5 experiments of the alarm net-
work.
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Figure 5: As the size of the data set decreases, the
number of multiple solutions increases and so does the
number of ambiguous regions (cf. inset). Each point
represents the mean of 5 experiments of the alarm net-
work with a significance level of 0.01.

In order to derive the conditional independences, we
used the likelihood ratio test with an asymptotic y?
distribution as described in [Spirtes et al. 1993] for
discrete variables.

A typical result of structural learning from a data set of
limited size is sketched in Figure 3. For this data set of
size 10000 the algorithm detected that there does not
exist a perfect map such that all the CIDSs derived
from the data can be fulfilled according to the Nec-
essary Path Condition. The multiple solutions differ
in the presence of the edges belonging to 4 ambigu-
ous regions, for each of which the possible structures
are depicted in the caption. The networks among the
multiple solutions of our algorithm which are closest
to the original network contain 45 correct edges (out
of 46) whereas the SGS algorithm?® yields a network
with only 41 correct edges.

In particular for fairly small data sets the differences
in the solutions of those two algorithms increase. In
our approach, the number of missing edges grows much
more slowly with the sample size decreasing than they
do in the resulting network of the SGS algorithm, be-
cause the number of edges present in the ambiguous
regions increases (cf. Figure 4). The number of edges
erroneously present stays particularly small due to the
fact that our algorithm allows to use a small signif-
icance level when applying conditional independence
tests.

The number of multiple solutions depends on the size
of the data set (cf. Figure 5). From a frequentist point

of view, the estimated probability distribution of a
larger data set is expected to be more similar to the
(unknown) true distribution so that the structure of
the causal network can uniquely be determined. As the
size of the data set shrinks, a unique causal network
cannot be derived any more and the number of possible
networks of the data increases. Hence, the number of
multiple solutions found by the algorithm indicates in
a way, if the size of the data set is sufficiently large for
learning the network structure with certainty.

As the size of the data set decreases, not only increases
the number of multiple solutions, but so does also the
number of ambiguous regions, whereas the number of
edges involved in each ambiguous region increases only
slowly.

6 CONCLUSIONS

Structural learning of causal networks based on this
kind of constraint based approach can be split up into
several steps which are carried out sequentially. First,
it is learned which (undirected) edges are present in the
network, then their directions are fixed and eventually
the values of the parameters are adapted to the data
set. In this paper we focus on the first step, deciding
which edges are present and absent in the situation
that only a limited amount of data is available.

The proposition presented here serves as a necessary
condition for the existence of a perfect map given a
set of conditional independence and dependence state-
ments (CIDS). Tt essentially states that if an edge is
absent in the perfect map, certain other paths are re-
quired to be present.

The proposed algorithm checks the set of CIDSs on
consistency with the Bayesian network model accord-
ing to the Necessary Path Condition. If inconsisten-
cies are found, it is assumed that they are solely due to
sampling noise in the limited data set and that there
nevertheless exists a perfect map of the true, yet un-
known, probability distribution. Therefore, the algo-
rithm searches for all network structures which contain
a minimum number of edges and represent a maximum
number of consistent CIDSs. This results in multiple
solutions.

It turned out in our experiments that all the multiple
solutions have many edges in common. There are also
some edges (which we call inconsistent edges) in which
the structures of the multiple solutions differ from each
other. Usually, they can be grouped together in what
we call an ambiguous region. In each of which the pos-
sibly multiple structures can be found efficiently, since
the ambiguous regions are independent of each other
and usually involve only a small number of edges. The



overall number of multiple solutions is given by the
product of the number of different minimum struc-
tures in each of the ambiguous regions. We found in
the experiments that the number of multiple solutions
increases when the size of the data set decreases. Fur-
thermore, also the number of ambiguous regions rises
with a decreasing number of data sets.

The multiple solutions of our algorithm contain all the
edges which are present in the network found by the
SGS algorithm? [Spirtes et al. 1993] as well as some
additional edges, since an estimated CIS does not nec-
essarily lead to the absence of the corresponding edge
in the Bayesian network. When the size of the data
set decreases, the overall number of correct edges in
the resulting networks of our algorithm drops much
more gradually than it does in the network found by
the SGS algorithm. Depending on the properties (e.g.
size) of the data set, we found in our experiments that
the number of edges present in the networks learned
by our approach can be larger than in the result of the

SGS or PC algorithms by 0 — 30%.

In Bayesian approaches like
[Cooper and Herskovits 1992, Heckerman et al. 1994,
Heckerman 1995], a cost function for the entire net-
work is evaluated. This can therefore be called a
global approach. Constraint based algorithms like
[Spirtes et al. 1993, Suzuki 1996, Cheng et al. 1997]
which remove all edges for which a conditional inde-
pendence statement can be derived from the data do
not take into account the structure of the Bayesian
network at all and can therefore be considered local.
The algorithm presented here is also constraint based,
but checks the set of CIDSs for consistency by requir-
ing the presence of certain paths for each edge being
absent in the network. Therefore, our approach is not
completely local, but takes into account the neighbor-
hood of each edge. The size of such a neighborhood can
vary as it depends on the number and lengths of the
required paths, for example.

From an application point of view we might state that
a sufficient number of data for arriving at a unique so-
lution is rarely ever available. If the number of data is
very small, one cannot really expect too much to start
with. In the intermediate region however, our new ap-
proach finds out that this is structure which could not
be uniquely identified and provides a clear statement
about its uncertainty. Without displaying this uncer-
tain structure much is lost in the interpretation of the
data.

In conclusion, we believe that Bayesian networks will
play an increasing role in data mining applications
where they are capable of displaying efficiently the
important dependences in a domain. The constraint

based approach is superior the global Bayesian ap-
proach in terms of learning speed. We have extended
the constraint based approach to truefully display
structural ambiguities which we feel is an important
step towards gaining the acceptance of the user.
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