
Bayesian Belief Networks for Data MiningHarald Steck �and Volker TrespSiemens AG, Corporate TechnologyInformation and Communications81730 Munich, GermanyfHarald.Steck, Volker.Trespg@mchp.siemens.deAbstractIn this paper we present a novel constraintbased structural learning algorithm for causalnetworks. A set of conditional independenceand dependence statements (CIDS) is de-rived from the data which describes the re-lationships among the variables. Althoughwe implicitly assume that there exists a per-fect map for the true, yet unknown, distribu-tion, there does not need to be a perfect mapfor the CIDSs derived from the limited data.The reason is that the distribution of limiteddata might di�er from the true probabilitydistribution due to sampling noise. We de-rive a necessary condition for the existenceof a perfect map given a set of CIDSs andutilize it to check for inconsistencies. If aninconsistency is detected, the algorithm �ndsall Bayesian networks with a minimum num-ber of edges such that a maximumnumber ofCIDSs is represented in each of the multiplesolutions. The advantages of our approachare illustrated using the alarm network dataset.1 INTRODUCTIONA Bayesian belief network represents conditional inde-pendences in the underlying probability distributionof the data in the form of a directed acyclic graph(DAG). The DAG: A ! B  C states, for example,that A and C are independent if B is not known, butA and C become dependent as soon as the state of B is�xed. If all conditional independences in the probabil-ity distribution are represented in the DAG and viceversa, then the Bayesian network is said to be a per-fect map of the probability distribution, and is called a�also with Technical University of Munich, Departmentof Computer Science, 80290 Munich, Germany

causal network [Pearl 1988]. Typically a Bayesian net-work is constructed from expert knowledge althoughrecently there has been an increasing interest in learn-ing the structure of Bayesian networks from data fordata mining applications. The basic idea is to displayprobabilistic dependences and independences derivedfrom the data in a concise way by a Bayesian net-work which has the potential of providing much moreinformation about a domain than visualizations solelybased on correlations and distance measures. Bayesiannetworks can be used to display causal models whichcan be understood by humans more intuitively thanmodels with undirected edges like Markov networks.Model uncertainty is a serious problem in structurallearning of Bayesian network models and comes intoplay if there does not exist a perfect map of the prob-ability distribution of the data. If a limited data set isgiven, its probability distribution might di�er from thetrue one due to sampling noise. For structural learn-ing we assume that the true probability distribution issuch that there exists a perfect map.It is important to present to the user truefully thestructural uncertainties since otherwise he or she mightdraw incorrect conclusions from the presented struc-ture. In a Bayesian approach, structural uncertaintycan be represented to the user by presenting multiplesolutions which have obtained a high score. The dis-advantage is that one can never be sure that one hasfound all solutions with a high score. Furthermore, itis very di�cult for a user to study multiple solutionsvisually and to draw meaningful conclusions. In ad-dition, the computationally cost of �nding the K-bestsolutions is even higher than for �nding only the net-work with the best score. Therefore we have focusedon an approximate way of structural learning withoutlosing model uncertainty in the result.In the next section, we give a short summary of struc-tural learning. Then we present a proposition whichserves as a necessary condition for the existence of aperfect map given a set of conditional independence



and dependence statements (CIDS). This propositionwill be used to check for inconsistencies among the es-timated CIDSs which then might lead to multiple so-lutions. Then we present the algorithm utilizing thisproposition when checking the CIDSs for consistencyand comment on its complexity. We close with resultsof the computer experiments.2 STRUCTURAL LEARNINGThere are two main approaches to structural learningof Bayesian belief networks. In the Bayesian approach[Cooper and Herskovits 1992, Heckerman et al. 1994,Heckerman 1995] a global cost function { the poste-rior probability of the (entire) network { is maximized.This approach requires an involved search for the beststructure and is therefore computationally very expen-sive and not directly applicable to data mining appli-cations.In this paper we pursue a constraint based approachsimilar to the ones in [Wermuth and Lauritzen 1983,Fung and Crawford 1990, Spirtes et al. 1993,Suzuki 1996, Cheng et al. 1997]. The basic idea ofthose algorithms is to derive a set of CIDSs from thedata without taking into account the Bayesian networkstructure. The Bayesian network is then constructedfrom the CIDSs in a later step. This is done in stan-dard algorithms by removing an edge in the Bayesiannetwork whenever the corresponding pair of variablesis found conditional independent. There can, however,occur inconsistencies among the CIDSs derived fromlimited data when reconstructing the entire network(up to equivalence), i.e. not all CIDSs can be repre-sented in a perfect map simultaneously. These incon-sistencies re
ect model uncertainty, i.e. there mightexist more than one Bayesian network model describ-ing the probability distribution of the data well (ac-cording to some measure). This indicates how reliableone particular structure learned from the database is.These multiple solutions have usually many edges incommon and di�er in the presence of a few edges onlywhich we call inconsistent edges, since they are relatedto inconsistencies among the CIDSs. The set of in-consistent edges can further be divided into subsetssuch that the presence or absence of edges belongingto di�erent subsets is independent of each other in themultiple solutions. Such a subset we call an ambiguousregion. Hence, we visualize the set of solutions in a sin-gle graph (cf. Figure 3), in which the edges commonto all networks are sketched by solid lines, whereas theedges belonging to the same ambiguous region are de-picted by dashed lines of the same style. The possiblestructures in each of the ambiguous regions cannot bedepicted in such a graph. They are hence stated in the

�gure caption. The directions of the edges are spec-i�ed in a later stage by this kind of constraint basedapproach.These possibly multiple solutions for the networkstructures do not belong to the same equivalence class,since they di�er in the presence or absence of certainedges. So the multiple solutions have to be distin-guished from networks belonging to the same equiva-lence class.The advantage of our constraint based approach is thatit can systematically construct the set of all Bayesiannetworks. Furthermore, it can take advantage of thefact that the multiple solutions typically have manyedges in common and di�er only in a few inconsistentedges which can be partitioned into independent am-biguous regions.Regarding the derivation of the CIDSs from the dataset, the computation time of this approach relative tothe global Bayesian approach is appreciably shorter forsparse network structures, i.e. when the probabilitydistribution exhibits many conditional independences.For dense networks, this may not hold, but Bayesiannetwork models might not be the most suitable modelin such a situation, anyway. The computation timecan additionally be reduced by carrying it out in par-allel. This can be realized in a simple master and slavescheme.3 NECESSARY PATH CONDITIONThe algorithm we depict in this paper makes use ofthe following proposition as a necessary condition forthe existence of a perfect map given a set of CIDSsderived from the data. Essentially, the propositionrequires that if two variables1 a, b only become inde-pendent by conditioning on an additional variable c,then there must be a path connecting them via c inthe graph. Otherwise the dependence without condi-tioning on c would be unexplained. If there were nonecessary condition at all, then one would arrive at theSGS or PC algorithm [Spirtes et al. 1993].Proposition: Let V be the set of variables and P aprobability distribution with the perfect map G: If twovariables a; b 2 V are conditionally independent in Pgiven a set of variables S � V nfa; bg and they are de-pendent given any (proper) subset S0 � S, then thereis no edge between a and b in G and there exist (undi-rected) paths between each s 2 S and a not crossing bas well as between each s 2 S and b not crossing a.1For brevity, we use nodes and variables synonymouslyand denote both with small letters, since there is a one-to-one correspondence.
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In networks involving a large number of variables,there might be several estimated conditional indepen-dence statements (CIS) for each pair of variables a,b. Therefore we propose the following Necessary PathCondition to be used to check for inconsistencies in thealgorithm: For each absent edge [a; b] in the networkthere has to be represented at least one { not all {CIS I(a; bjS) { with the corresponding D(a; bjS0) forall S0 � S { in the perfect map according to the aboveproposition. This is less strict than the propositionitself, but makes the algorithm more robust, since aninconsistency is only detected if there is an edges forwhich no CIDSs can be found consistent.Example (cf. Figure 1):In Figure 1 it is shown in a toy model of three vari-ables a, b and c that it is essential to check the set ofCIDSs derived from limited data on consistency withthe Bayesian network model, since each conditionalindependence statement (CIS) or conditional depen-dence statement (CDS) is derived from the data with-out taking into account the model at all. In (B) wecompare the resulting networks constructed from (pos-sibly inconsistent) sets of CIDSs by two di�erent algo-rithms: First, the SGS and PC algorithms (dashedarrows) which assumes an edge absent in the modelwhenever a conditional independence is derived fromthe data without checking for consistency. Second, theproposed algorithm (solid arrows) checking for consis-tency.In the �rst scenario (cf. network (I) in (B)), assumethat the only conditional independence statement de-



rived from the data is I(a; cjfbg) (together with the(conditional) dependence statements D(a; b), D(a; c),D(b; c), D(a; bjfcg), D(b; cjfag)). According to theproposition this requires that there must exist a pathbetween a and b as well as between b and c, whereasthe edge [a; c]2 must be absent. Apparently, there ex-ists a perfect map, namely comprising the edges [a; b]and [b; c], i.e. the set of CIDSs is consistent.In the second scenario (cf. networks (II) in (B)), as-sume the two CISs I(a; cjfbg) and I(b; cjfag) { and theCDSs D(a; b), D(a; c), D(b; c), D(a; bjfcg) { are foundfrom the data. The edge [a; b] is required by theseCIDSs, but the CIS I(a; cjfbg) together with D(a; c)additionally requires the presence of the edge [b; c] andthe absence of the edge [a; c], whereas the other CISrequires just the contrary. Hence, there cannot exista perfect map ful�lling all the CIDSs simultaneously.For example, the set of CIDSs corresponding to a per-fect map containing only the edge [a; b] (as found bythe SGS or PC algorithm) comprises I(a; c) and I(b; c)which violates both D(a; c) and D(b; c). If one as-sumes now that the inconsistencies among the CIDSsare solely due to sampling noise in the limited dataset, it makes sense to search for all possible Bayesiannetworks with a minimum number of edges each ofwhich constructed from a maximal consistent subsetof the CIDSs derived from the data. In this example,it is apparent that exactly one of the two CISs cannotbe represented in a perfect map. Consequently, one�nds two possible network structures: the edge [a; b] iscommon to both, and they contain edge [a; c] or [b; c],respectively. Neither of the two networks representsall the CISs which were derived from the data. Notethat the correct causal network, i.e. the perfect map ofthe { in general unknown { true set of CIDSs is amongthe multiple solutions in this example.Finally, the set of CIDSs comprising the unconditionalCISs I(a; c) and I(b; c) are consistent and lead to a net-work with only the edge [a; b] being present (cf. net-work (III) in (B)), i.e. the original network structurecould not be recovered from these CIDSs which tendto be derived from small data sets.In (C) and (D) the resulting network structures de-pending on the sample size is shown. While our ap-proach yields multiple solutions (cf. (II) in (D)) for"medium sized" data sets (sample size between ca. 70and ca. 700), the SGS or PC algorithms �nd the net-work comprising the single edge [a; b] (cf. (C)).2In this notation for undirected edges, the order of thevariables does not matter, i.e. [a; b] = [b; a].

4 ALGORITHMBefore we go into details of the proposed algorithm, wegive a short overview of its main steps. After the set ofconditional independence and dependence statements(CIDS) has been derived from the data the proposedalgorithm applies the Necessary Path Condition pre-sented above in order to check, if a perfect map canexist given the set of CIDSs. If inconsistencies are de-tected, the algorithm searches for all possible Bayesiannetworks as described in detail in section 4.3. For eachof the multiple solutions, the directions of the edges are�xed in the last step. All these networks contain thesame number of edges. Among those are all the edgeresulting from the the SGS algorithm3. Each of theminimal solutions found by the algorithm representsan equivalence class, and is a candidate for being aperfect map of the (unknown) true probability distri-bution of the data set.4.1 DERIVING THE CIDSsThe algorithmbuilds up the set of conditional indepen-dence and dependence statements from a given dataset in the �rst step. This can e�ciently be done by re-lying on asymptotic results which appear reasonablyaccurate in our experiments, for example by calculat-ing the Bayesian Information Criterion or a test statis-tic for each pair of variables given a subset of the re-maining variables.Considering independence tests it is apparent thatCDSs derived from the data are more reliable thanthe CISs. This is because the null hypothesis of in-dependence can only by falsi�ed but not veri�ed by atest. This indicates that network structures learnedby a constraint based approach tend to remove toomany edges, in particular given small data sets. Aswill be shown below, this tendency of removing toomany edges can largely be reduced by checking theCIDSs for consistency.For convenience we do not denote the conditionaldependence statements, i.e. if a statement is notin the set of CISs (and cannot be inferred from itby combining some of the CISs according to theFaithfulness and Markov Conditions as described3In this paper, we focus on how to construct the skeletonof a Bayesian network from the CIDSs rather than howto derive the CIDSs themselves. The CIDS derived bythe SGS and PC algorithms can di�er, since the latterfacilitates heuristics. Here, we compare our algorithm withthe SGS algorithm, because the experiments carried outhere are based on the CIDSs derived by the SGS algorithm.Of course, our algorithm can also be applied to the CIDSsderived by the PC algorithm, and the same statementsapply as for the SGS algorithm.



3

261825

17

6

10 21

1127 34

15

22

23
13

16

3736

24

35

1 2

32

3120

19

4
5

29
28

7
8 9

30 1433

12Figure 2: The alarm network contains 37 variables and 46 edges. The numbering of the variables is chosen asin [Cheng et al. 1997].in [Spirtes et al. 1993]), it is understood that this im-plies a (conditional) dependence.4.2 RULESFor each given CIS of the form I(a; bjS) withD(a; bjS0) 8S0 � S the proposed Necessary Path Con-dition requires the absence of the edge [a; b] and thepresence of the paths between a and each variables 2 S as well as between b and each variable s 2 S.We represent this constraint on the absence or pres-ence of certain edges by a rule. Such a rule is of theform X � Y, where X denotes an edge and Y is a(possibly empty) set of edges. According to the Nec-essary Path Condition, the above CIS with the CDSsis translated into a rule as follows: X = [a; b] andY = Ss2Sf[a; s]; [b; s]g. It can be interpreted in theway that edge X can only be absent in the Bayesiannetwork, if the edges in the set Y are present. Sincethe above proposition requires certain paths ratherthan certain edges to be present, this is absorbed inthe fact that new rules can be generated by substitut-ing rules into each other as follows: Given two rulesX � Y and W � Z then a new rule can be generatedfor edge X, if the edges W 2 Y and X =2 Z, namelyX � (Z [YnfWg). Therefore an edge can be absent,if there is at least one rule ful�lled (cf. Necessary PathCondition).Once the set of rules is derived from the set of CIDSs,the associated perfect map can be constructed. If thereis a Bayesian network such that for all edges a rule isful�lled, then there might exist a perfect map asso-ciated with the estimated probability distribution. Ifthere are some edges for which none of the given rulescan be ful�lled by a Bayesian network, we call the setof rules and the set of CIDSs inconsistent. In this case,there does not exist a perfect map associated with the

estimated probability distribution.4.3 MULTIPLE SOLUTIONSOur algorithm �nds multiple solutions, when theredoes not exist a perfect map of the estimated CIDSsaccording to the Necessary Path Condition. If in-consistencies among the CIDS are found by the al-gorithm, it makes sense to consider these inconsisten-cies to be present due to sampling noise in the lim-ited data set and to retain the assumption that thereexists a perfect map associated with the (unknown)set of (true) CIDSs. Therefore the algorithm searchesfor all possible minimum subsets of the set of CIDSswhich are consistent in the above sense, i.e. the algo-rithm searches for all possible network structures witha minimumnumber of edges such that for a maximumnumber of edges a rule is ful�lled. Each of these possi-ble networks is a candidate for being the perfect mapof the (unknown) set of true CIDSs.It turns out that the edges of the resulting networkscan be divided into three main groups: If there is norule X � Y for an edge X, then no estimated CIS wasfound, and hence this edge is present in the network.If there can be rendered a rule X � Y for edge Xsuch that Y is empty or contains only edges which arepresent in the perfect map, then we call it a consistentedge which is absent. An edge for which no such rulecan be generated indicates that there does not exista perfect map given the set of CIDSs. Such edges wecall inconsistent and they might be present or absent insome of the multiple solutions. The multiple solutionsdi�er only in the presences of the the latter edges.As we will see from the experiments (in section 5), theinconsistent edges can usually be further subdivided:They can be partitioned into sets of edges whose pres-ences depend on each other, whereas edges belonging
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12Figure 3: This graph sketches the multiple solutions learned from a data set of size 10000 with the signi�cancelevel 0:01 before the directions of the edges are added. Solid lines denote edges which are present in all thepossible network structures. The multiple solutions di�er in the edges belonging to the 4 ambiguous regionswhich are depicted in di�erent line styles. The possible structures for each region are as follows: In region (A)either edge [11; 12] or edge [12; 32] is present. In region (B) either [14; 27] or [27; 33] is present. In region (C)either [15; 22] or [22; 35] is present. In region (D) either the single edge [18; 26] or the two edges [6; 18] and [3; 26]are present; here, the only minimum structure is the one comprising the single edge [18; 26]. Hence, there are twominimumstructures in each of the regions (A), (B) and (C), and one minimum structure in region (D). Therefore,the overall number of multiple solutions is 8. 41 edges have correctly been identi�ed which are present in all themultiple solutions. Additional 4 edges have been found due to the Necessary Path Condition implemented inour algorithm. The networks among the multiple solutions which are closest to the original one contain 45 (outof 46) correct edges, and only one edge is missing, namely either [15; 22] or [22; 35]. The resulting network ofthe SGS algorithm3 contains the same 41 edges, which are common to all multiple solutions of our algorithm, sothat 5 edges are missing.to di�erent sets do not depend on each other. Each ofsuch a set we call an ambiguous region. There mightbe several of such regions.Technically speaking, the algorithm �nds all the edgesbelonging to the same ambiguous region in the fol-lowing way: Only the rules for inconsistent edges areconsidered. If for two inconsistent edges X and Wthere can be rendered rules X � Y and W � Z suchthat X 2 Z and W 2 Y, then they are grouped intothe same ambiguous region, because it might not bepossible to ful�ll both of those rules simultaneously ina Bayesian network. This can also be seen as searchingfor cycles in a directed acyclic graph (DAG) which isgenerated from the rules: Each node of that graph rep-resents an inconsistent edge of the Bayesian network,and for each rule X � Y edges are present pointingfrom each node Y 2 Y to node X in that DAG.Our algorithm takes advantage of the fact that themultiple solutions di�er only in the ambiguous regionsand that they are independent of each other. Sinceeach of such a region usually contains only a few edges,searching for all possible structures such that the num-ber of consistent CISs is maximumcan be done very ef-�ciently: Simply by carrying out an exhaustive searchin each ambiguous region separately. The number of
di�erent network structures is then given by the prod-uct of the number of di�erent structures in each am-biguous region.4.4 FINDING DIRECTIONS OF EDGESConstraint based algorithms of this kind have theproperty that they can be split up into several steps.First, the algorithm �nds the (undirected) edges whichare present in the Bayesian network. We have focusedon that part in this paper. In the second step, direc-tions are added to those edges which can be derivedfrom the data so that the equivalence classes are iden-ti�ed. This can be done like in [Spirtes et al. 1993],for example.The fact that a data set is of limited size might, how-ever, give rise to additional inconsistencies among theestimated CIDSs regarding the directions of the edges.This increases additionally the number of multiple so-lutions which might di�er in the directions of theiredges, although they have the same edges in common.We do not present any details on that issue in thispaper.



4.5 COMPLEXITYCalculating the Bayesian information criterion or atest statistic for each pair of variables given every sub-set of the remaining variables is intractable for largenumbers of variables. Since not all of those com-putations are usually necessary for constructing theBayesian network from data, the complexity of theproblem can be reduced by applying heuristics (seefor instance [Spirtes et al. 1993]).Carrying out the computations for all pairs of vari-ables in ascending size of the conditioning set and upto a certain maximum order only, reduces the com-plexity greatly, i.e. it becomes polynomial in jV j.For CISs of high orders which are not computed fromthe data set it is assumed that exactly those are truewhich can be inferred from the CISs of lower ordersaccording to the Faithfulness and Markov Conditionsas described in [Spirtes et al. 1993]. Calculations re-lying on asymptotic results might yield more unreli-able results for higher orders, anyway. Conditioningonly on neighbors of the pair of variables (in the undi-rected graph) is an additional heuristic to speed up thederivation of the CIDSs.These heuristics require the algorithm of keeping trackof the network structure when deriving the CIDSs. Af-ter �nishing all calculations of a certain order of theconditioning set, a new intermediate version of the net-work can be built up based on the results available sofar. Then, this version can be used to decide, if car-rying out computations on higher orders is necessary,and if so, what the neighbors of each node are.Finding all possible structures of the network from theset of rules is, in principal, intractable for a large num-ber of variables, too. As we found in our experiments,however, there are edges which are present in all themultiple solutions and only a few edges which belongto ambiguous regions. Since the structures in di�erentambiguous regions are independent of each other, allthe possible structures can be found for each ambigu-ous region separately, which speeds up calculation verymuch. Hence, the problem is exponential in the num-ber of rules involved in the largest ambiguous region ofthe network. In the experiments we found that the sizeof the ambiguous regions is much smaller than the totalnumber of edges. Therefore, �nding all the possibili-ties in each ambiguous region becomes tractable. Forexample, in our alarm network experiments, it tookless than a minute on a Sun UltraSPARC-II to gener-ate all the possible structures given the set of CIDSs.It turned out in our experiments that almost all thecalculation time is consumed for deriving the CIDSsfrom the data and only a small fraction is needed forconstructing all the multiple solutions.

5 EXPERIMENTSThe alarm network [Beinlich et al. 1989] has evolvedas kind of a benchmark for structural learning ofBayesian belief networks. We used the alarm networkfrom Norsis Corp. [Netica Alarm Network] to generaterandomly data sets of various size. The variables arediscrete and their number of states ranges from twoto four. The size of the sample data was varied be-tween 50000 and 1000, which is much smaller than thenumber of con�gurations in the joint state space.
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Figure 4: (a) The number of correct edges learnedfrom data depends on the sample size. The networksamong the multiple solutions which have the mostedges in common with the original network contain al-most all the correct edges even for small sample sizes(dots). The number of those edges is signi�cantlycloser to the correct number of 46 edges than is thenumber of edges which are common to all the learnedmultiple solutions (triangles). The latter edges areidentical with the edges found by the SGS algorithm3.(b) The di�erence of the two curves in (a) is the num-ber of edges which are simultaneously present in theambiguous regions of any one of the multiple solutions(dots). The number of edges missing in all the multiplesolutions rises for smaller sample sizes (squares), butstays at smaller values than the number of edges beingpresent in the ambiguous regions due to the proposedNecessary Path Condition. In contrast, the sum ofthose edges (dots + squares) is missing in the networkresulting from the SGS algorithm3. The number of er-roneously added edges stays at small values (crosses)due to a small signi�cance level of 0:01. Each pointrepresents the mean of 5 experiments of the alarm net-work.
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of view, the estimated probability distribution of alarger data set is expected to be more similar to the(unknown) true distribution so that the structure ofthe causal network can uniquely be determined. As thesize of the data set shrinks, a unique causal networkcannot be derived any more and the number of possiblenetworks of the data increases. Hence, the number ofmultiple solutions found by the algorithm indicates ina way, if the size of the data set is su�ciently large forlearning the network structure with certainty.As the size of the data set decreases, not only increasesthe number of multiple solutions, but so does also thenumber of ambiguous regions, whereas the number ofedges involved in each ambiguous region increases onlyslowly.6 CONCLUSIONSStructural learning of causal networks based on thiskind of constraint based approach can be split up intoseveral steps which are carried out sequentially. First,it is learned which (undirected) edges are present in thenetwork, then their directions are �xed and eventuallythe values of the parameters are adapted to the dataset. In this paper we focus on the �rst step, decidingwhich edges are present and absent in the situationthat only a limited amount of data is available.The proposition presented here serves as a necessarycondition for the existence of a perfect map given aset of conditional independence and dependence state-ments (CIDS). It essentially states that if an edge isabsent in the perfect map, certain other paths are re-quired to be present.The proposed algorithm checks the set of CIDSs onconsistency with the Bayesian network model accord-ing to the Necessary Path Condition. If inconsisten-cies are found, it is assumed that they are solely due tosampling noise in the limited data set and that therenevertheless exists a perfect map of the true, yet un-known, probability distribution. Therefore, the algo-rithm searches for all network structures which containa minimumnumber of edges and represent a maximumnumber of consistent CIDSs. This results in multiplesolutions.It turned out in our experiments that all the multiplesolutions have many edges in common. There are alsosome edges (which we call inconsistent edges) in whichthe structures of the multiple solutions di�er from eachother. Usually, they can be grouped together in whatwe call an ambiguous region. In each of which the pos-sibly multiple structures can be found e�ciently, sincethe ambiguous regions are independent of each otherand usually involve only a small number of edges. The



overall number of multiple solutions is given by theproduct of the number of di�erent minimum struc-tures in each of the ambiguous regions. We found inthe experiments that the number of multiple solutionsincreases when the size of the data set decreases. Fur-thermore, also the number of ambiguous regions riseswith a decreasing number of data sets.The multiple solutions of our algorithm contain all theedges which are present in the network found by theSGS algorithm3 [Spirtes et al. 1993] as well as someadditional edges, since an estimated CIS does not nec-essarily lead to the absence of the corresponding edgein the Bayesian network. When the size of the dataset decreases, the overall number of correct edges inthe resulting networks of our algorithm drops muchmore gradually than it does in the network found bythe SGS algorithm. Depending on the properties (e.g.size) of the data set, we found in our experiments thatthe number of edges present in the networks learnedby our approach can be larger than in the result of theSGS or PC algorithms by 0� 30%.In Bayesian approaches like[Cooper and Herskovits 1992, Heckerman et al. 1994,Heckerman 1995], a cost function for the entire net-work is evaluated. This can therefore be called aglobal approach. Constraint based algorithms like[Spirtes et al. 1993, Suzuki 1996, Cheng et al. 1997]which remove all edges for which a conditional inde-pendence statement can be derived from the data donot take into account the structure of the Bayesiannetwork at all and can therefore be considered local.The algorithm presented here is also constraint based,but checks the set of CIDSs for consistency by requir-ing the presence of certain paths for each edge beingabsent in the network. Therefore, our approach is notcompletely local, but takes into account the neighbor-hood of each edge. The size of such a neighborhood canvary as it depends on the number and lengths of therequired paths, for example.From an application point of view we might state thata su�cient number of data for arriving at a unique so-lution is rarely ever available. If the number of data isvery small, one cannot really expect too much to startwith. In the intermediate region however, our new ap-proach �nds out that this is structure which could notbe uniquely identi�ed and provides a clear statementabout its uncertainty. Without displaying this uncer-tain structure much is lost in the interpretation of thedata.In conclusion, we believe that Bayesian networks willplay an increasing role in data mining applicationswhere they are capable of displaying e�ciently theimportant dependences in a domain. The constraint
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