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Abstract
Classification rule mining aims to discover a small set of
rules in the database that forms an accurate classifier.
Association rule mining finds all the rules existing in the
database that satisfy some minimum support and minimum
confidence constraints. For association rule mining, the
target of discovery is not pre-determined, while for
classification rule mining there is one and only one pre-
determined target. In this paper, we propose to integrate
these two mining techniques. The integration is done by
focusing on mining a special subset of association rules,
called class association rules (CARs). An eff icient
algorithm is also given for building a classifier based on the
set of discovered CARs. Experimental results show that the
classifier built this way is, in general, more accurate than
that produced by the state-of-the-art classification system
C4.5. In addition, this integration helps to solve a number
of problems that exist in the current classification systems.

Introduction   

Classification rule mining and association rule mining are
two important data mining techniques. Classification rule
mining aims to discover a small set of rules in the database
to form an accurate classifier (e.g., Quinlan 1992; Breiman
et al 1984). Association rule mining finds all rules in the
database that satisfy some minimum support and minimum
confidence constraints (e.g., Agrawal and Srikant 1994).
For association rule mining, the target of mining is not pre-
determined, while for classification rule mining there is
one and only one pre-determined target, i.e., the class.
Both classification rule mining and association rule mining
are indispensable to practical applications. Thus, great
savings and conveniences to the user could result i f the two
mining techniques can somehow be integrated. In this
paper, we propose such an integrated framework, called
associative classification. We show that the integration can
be done eff iciently and without loss of performance, i.e.,
the accuracy of the resultant classifier.

The integration is done by focusing on a special subset
of association rules whose right-hand-side are restricted to
the classification class attribute. We refer to this subset of
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rules as the class association rules (CARs). An existing
association rule mining algorithm (Agrawal and Srikant
1994) is adapted to mine all the CARs that satisfy the
minimum support and minimum confidence constraints.
This adaptation is necessary for two main reasons:
1. Unlike a transactional database normally used in

association rule mining (Agrawal and Srikant 1994) that
does not have many associations, classification data
tends to contain a huge number of associations.
Adaptation of the existing association rule mining
algorithm to mine only the CARs is needed so as to
reduce the number of rules generated, thus avoiding
combinatorial explosion (see the evaluation section).

2. Classification datasets often contain many continuous
(or numeric) attributes. Mining of association rules with
continuous attributes is still a major research issue
(Srikant and Agrawal 1996; Yoda et al 1997; Wang,
Tay and Liu 1998). Our adaptation involves discretizing
continuous attributes based on the classification pre-
determined class target. There are many good
discretization algorithms for this purpose (Fayyad and
Irani 1993; Dougherty, Kohavi and Sahami 1995).

Data mining in the proposed associative classification
framework thus consists of three steps:

�  discretizing continuous attributes, if any
�  generating all the class association rules (CARs), and
�  building a classifier based on the generated CARs.

This work makes the following contributions:
1. It proposes a new way to build accurate classifiers.

Experimental results show that classifiers built this
way are, in general, more accurate than those
produced by the state-of-the-art classification system
C4.5 (Quinlan 1992).

2. It makes association rule mining techniques
applicable to classification tasks.

3. It helps to solve a number of important problems
with the existing classification systems.

Let us discuss point 3 in greater detail below:
�  The framework helps to solve the understandability

problem (Clark and Matwin 1993; Pazzani, Mani and
Shankle 1997) in classification rule mining. Many rules
produced by standard classification systems are
diff icult to understand because these systems use
domain independent biases and heuristics to generate a
small set of rules to form a classifier. These biases,
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however, may not be in agreement with the existing
knowledge of the human user, thus resulting in many
generated rules that make no sense to the user, while
many understandable rules that exist in the data are left
undiscovered. With the new framework, the problem of
finding understandable rules is reduced to a post-
processing task (since we generate all the rules).
Techniques such as those in (Liu and Hsu 1996; Liu,
Hsu and Chen 1997) can be employed to help the user
identify understandable rules.

�  A related problem is the discovery of interesting or
useful rules. The quest for a small set of rules of the
existing classification systems results in many
interesting and useful rules not being discovered. For
example, in a drug screening application, the biologists
are very interested in rules that relate the color of a
sample to its final outcome. Unfortunately, the
classification system (we used C4.5) just could not find
such rules even though such rules do exist as
discovered by our system.

�  In the new framework, the database can reside on disk
rather than in the main memory. Standard classification
systems need to load the entire database into the main
memory (e.g., Quinlan 1992), although some work has
been done on the scaling up of classification systems
(Mahta, Agrawal and Rissanen 1996).

Problem Statement

Our proposed framework assumes that the dataset is a
normal relational table, which consists of N cases described
by l distinct attributes. These N cases have been classified
into q known classes. An attribute can be a categorical (or
discrete) or a continuous (or numeric) attribute.

In this work, we treat all the attributes uniformly. For a
categorical attribute, all the possible values are mapped to a
set of consecutive positive integers. For a continuous
attribute, its value range is discretized into intervals, and
the intervals are also mapped to consecutive positive
integers. With these mappings, we can treat a data case as a
set of (attribute, integer-value) pairs and a class label. We
call each (attribute, integer-value) pair an item.
Discretization of continuous attributes will not be discussed
in this paper as there are many existing algorithms in the
machine learning literature that can be used (see
(Dougherty, Kohavi and Sahami 1995)).

Let D be the dataset. Let I be the set of all items in D,
and Y be the set of class labels. We say that a data case d

� D contains X �  I, a subset of items, if X �  d. A class
association rule (CAR) is an implication of the form X �  y,
where X �  I, and y �  Y. A rule X �  y holds in D with
confidence c if c% of cases in D that contain X are labeled
with class y. The rule X �  y has support s in D if s% of the
cases in D contain X and are labeled with class y.

Our objectives are (1) to generate the complete set of
CARs that satisfy the user-specified minimum support
(called minsup) and minimum confidence (called minconf)
constraints, and (2) to build a classifier from the CARs.

Generating the Complete Set of CARs

The proposed algorithm is called algorithm CBA
(Classification Based on Associations). It consists of two
parts, a rule generator (called CBA-RG), which is based
on algorithm Apriori for finding association rules in
(Agrawal and Srikant 1994), and a classifier builder
(called CBA-CB). This section discusses CBA-RG. The
next section discusses CBA-CB.

Basic concepts used in the CBA-RG algorithm
The key operation of CBA-RG is to find all ruleitems that
have support above minsup. A ruleitem is of the form:

<condset, y>
where condset is a set of items, y �  Y is a class label. The
support count of the condset (called condsupCount) is the
number of cases in D that contain the condset. The support
count of the ruleitem (called rulesupCount) is the number
of cases in D that contain the condset and are labeled with
class y. Each ruleitem basically represents a rule:

condset �  y,
whose support is (rulesupCount / |D|) *100%, where |D| is
the size of the dataset, and whose confidence is
(rulesupCount / condsupCount)*100%.

Ruleitems that satisfy minsup are called frequent
ruleitems, while the rest are called infrequent ruleitems.
For example, the following is a ruleitem:

<{(A, 1), (B, 1)}, (class, 1)>,
where A and B are attributes. If the support count of the
condset {(A, 1), (B, 1)} is 3, the support count of the
ruleitem is 2, and the total number of cases in D is 10, then
the support of the ruleitem is 20%, and the confidence is
66.7%. If minsup is 10%, then the ruleitem satisfies the
minsup criterion. We say it is frequent.

For all the ruleitems that have the same condset, the
ruleitem with the highest confidence is chosen as the
possible rule (PR) representing this set of ruleitems. If
there are more than one ruleitem with the same highest
confidence, we randomly select one ruleitem. For example,
we have two ruleitems that have the same condset:

1. <{(A, 1), (B, 1)}, (class: 1)>.
2.  <{(A, 1), (B, 1)}, (class: 2)>.

Assume the support count of the condset is 3. The support
count of the first ruleitem is 2, and the second ruleitem is
1. Then, the confidence of ruleitem 1 is 66.7%, while the
confidence of ruleitem 2 is 33.3% With these two
ruleitems, we only produce one PR (assume |D| = 10):

(A, 1), (B, 1) �  (class, 1) [supt = 20%, confd= 66.7%]
If the confidence is greater than minconf, we say the rule is
accurate. The set of class association rules (CARs) thus
consists of all the PRs that are both frequent and accurate.

The CBA-RG algorithm
The CBA-RG algorithm generates all the frequent
ruleitems by making multiple passes over the data. In the
first pass, it counts the support of individual ruleitem and
determines whether it is frequent. In each subsequent pass,
it starts with the seed set of ruleitems found to be frequent



in the previous pass. It uses this seed set to generate new
possibly frequent ruleitems, called candidate ruleitems.
The actual supports for these candidate ruleitems are
calculated during the pass over the data. At the end of the
pass, it determines which of the candidate ruleitems are
actually frequent. From this set of frequent ruleitems, it
produces the rules (CARs).

Let k-ruleitem denote a ruleitem whose condset has k
items. Let Fk denote the set of frequent k-ruleitems. Each
element of this set is of the following form:

<(condset, condsupCount), (y, rulesupCount)>.
Let Ck be the set of candidate k-ruleitems. The CBA-RG
algorithm is given in Figure 1.

1 F1 = { large 1-ruleitems} ;
2 CAR1 = genRules(F1);
3 prCAR1 = pruneRules(CAR1); 
4 for (k = 2; Fk-1 

�  
�

; k++) do
5 Ck = candidateGen(Fk-1);
6 for each data case d �  D do
7 Cd = ruleSubset(Ck, d);
8 for each candidate c �  Cd do
9 c.condsupCount++;
10 if d.class = c.class then c.rulesupCount++
11 end
12 end
13 Fk = { c �  Ck | c.rulesupCount �  minsup} ;
14 CARk = genRules(Fk);
15 prCARk = pruneRules(CARk);
16 end
17 CARs = � k CARk;
18 prCARs  = � k prCARk;

Figure 1: The CBA-RG algorithm

Line 1-3 represents the first pass of the algorithm. It counts
the item and class occurrences to determine the frequent 1-
ruleitems (line 1). From this set of 1-ruleitems, a set of
CARs (called CAR1) is generated by genRules (line 2) (see
previous subsection). CAR1 is subjected to a pruning
operation (line 3) (which can be optional). Pruning is also
done in each subsequent pass to CARk (line 15). The
function pruneRules uses the pessimistic error rate based
pruning method in C4.5 (Quinlan 1992). It prunes a rule as
follows: If rule r’ s pessimistic error rate is higher than the
pessimistic error rate of rule r �  (obtained by deleting one
condition from the conditions of r), then rule r is pruned.
This pruning can cut down the number of rules generated
substantially (see the evaluation section).

For each subsequent pass, say pass k, the algorithm
performs 4 major operations. First, the frequent ruleitems
Fk-1 found in the (k-1)th pass are used to generate the
candidate ruleitems Ck using the condidateGen function
(line 5). It then scans the database and updates various
support counts of the candidates in Ck (line 6-12). After
those new frequent ruleitems have been identified to form
Fk (line 13), the algorithm then produces the rules CARk

using the genRules function (line 14). Finally, rule pruning
is performed (line 15) on these rules.

The candidateGen function is similar to the function
Apriori-gen in algorithm Apriori. The ruleSubset function

takes a set of candidate ruleitems Ck and a data case d to
find all the ruleitems in Ck whose condsets are supported
by d. This and the operations in line 8-10 are also similar
to those in algorithm Apriori. The difference is that we
need to increment the support counts of the condset and the
ruleitem separately whereas in algorithm Apriori only one
count is updated. This allows us to compute the confidence
of the ruleitem. They are also useful in rule pruning.

The final set of class association rules is in CARs (line
17). Those remaining rules after pruning are in prCARs
(line 18).

Building a Classifier

This section presents the CBA-CB algorithm for building a
classifier using CARs (or prCARs). To produce the best
classifier out of the whole set of rules would involve
evaluating all the possible subsets of it on the training data
and selecting the subset with the right rule sequence that
gives the least number of errors. There are 2m such subsets,
where m is the number of rules, which can be more than
10,000, not to mention different rule sequences. This is
clearly infeasible. Our proposed algorithm is a heuristic
one. However, the classifier it builds performs very well as
compared to that built by C4.5. Before presenting the
algorithm, let us define a total order on the generated rules.
This is used in selecting the rules for our classifier.

Definition: Given two rules, ri and rj, ri �  rj (also called ri

precedes rj or ri has a higher precedence than rj) if
1. the confidence of ri is greater than that of rj, or
2. their confidences are the same, but the support of ri

is greater than that of rj, or
3. both the confidences and supports of ri and rj are

the same, but ri is generated earlier than rj;
Let R be the set of generated rules (i.e., CARs or pCARs),
and D the training data. The basic idea of the algorithm is
to choose a set of high precedence rules in R to cover D.
Our classifier is of the following format:

<r1, r2, …, rn, default_class>,
where ri �  R, ra �  rb if b > a. default_class is the default
class. In classifying an unseen case, the first rule that
satisfies the case will classify it. If there is no rule that
applies to the case, it takes on the default class as in C4.5.
A naive version of our algorithm (called M1) for building
such a classifier is shown in Figure 2. It has three steps:
Step 1 (line 1): Sort the set of generated rules R according

to the relation “ � ” . This is to ensure that we will choose
the highest precedence rules for our classifier.

Step 2 (line 2-13): Select rules for the classifier from R
following the sorted sequence. For each rule r, we go
through D to find those cases covered by r (they satisfy
the conditions of r) (line 5). We mark r if it correctly
classifies a case d (line 6). d.id is the unique
identification number of d. If r can correctly classify at
least one case (i.e., if r is marked), it will be a potential
rule in our classifier (line 7-8). Those cases it covers are
then removed from D (line 9). A default class is also
selected (the majority class in the remaining data),



which means that if we stop selecting more rules for our
classifier C this class will be the default class of C (line
10). We then compute and record the total number of
errors that are made by the current C and the default
class (line 11). This is the sum of the number of errors
that have been made by all the selected rules in C and
the number of errors to be made by the default class in
the training data. When there is no rule or no training
case left, the rule selection process is completed.

Step 3 (line 14-15): Discard those rules in C that do not
improve the accuracy of the classifier. The first rule at
which there is the least number of errors recorded on D
is the cutoff rule. All the rules after this rule can be
discarded because they only produce more errors. The
undiscarded rules and the default class of the last rule in
C form our classifier.

1 R = sort(R);
2 for each rule r �  R in sequence do
3 temp = 

�
;

4 for each case d �  D do
5 if d satisfies the conditions of r then
6 store d.id in temp and mark r if it correctly

classifies d;
7 if r is marked then  
8 insert r at the end of C;
9 delete all the cases with the ids in temp from D;
10 selecting a default class for the current C; 
11 compute the total number of errors of C;
12 end
13 end
14 Find the first rule p in C with the lowest total number

of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,

and return C (our classifier).

Figure 2. A naïve algorithm for CBA-CB: M1

This algorithm satisfies two main conditions:
Condition 1. Each training case is covered by the rule with

the highest precedence among the rules that can cover
the case. This is so because of the sorting done in line 1.

Condition 2.  Every rule in C correctly classifies at least
one remaining training case when it is chosen. This is so
due to line 5-7.
This algorithm is simple, but is ineff icient especially

when the database is not resident in the main memory
because it needs to make many passes over the database.
Below, we present an improved version of the algorithm
(called M2), whereby only slightly more than one pass is
made over D. The key point is that instead of making one
pass over the remaining data for each rule (in M1), we now
find the best rule in R to cover each case. M2 consists of
three stages (see (Liu, Hsu and Ma 1998) for more details):

Stage 1. For each case d, we find both the highest
precedence rule (called cRule) that correctly classifies d,
and also the highest precedence rule (called wRule) that
wrongly classifies d. If cRule �  wRule, the case should be
covered by cRule. This satisfies Condition 1 and 2 above.
We also mark the cRule to indicate that it classifies a case
correctly. If wRule �  cRule, it is more complex because we

cannot decide which rule among the two or some other rule
will eventually cover d. In order to decide this, for each d
with wRule �  cRule, we keep a data structure of the form:
<dID, y, cRule, wRule>, where dID is the unique
identification number of the case d, y is the class of d. Let
A denote the collection of <dID, y, cRule, wRule>’s, U the
set of all cRules, and Q the set of cRules that have a higher
precedence than their corresponding wRules. This stage of
the algorithm is shown in Figure 3.

The maxCoverRule function finds the highest
precedence rule that covers the case d. Cc (or Cw) is the set
of rules having the same (or different) class as d. d.id and
d.class represent the identification number and the class of
d respectively. For each cRule, we also remember how
many cases it covers in each class using the field
classCasesCovered of the rule.

1 Q = 
�

; U = 
�

; A = 
�

;
2 for each case d �  D do
3 cRule = maxCoverRule(Cc, d);
4 wRule = maxCoverRule(Cw, d);
5 U = U �  { cRule} ;
6 cRule.classCasesCovered[d.class]++;
7 if cRule �  wRule then
8 Q = Q �  { cRule} ;
9 mark cRule;
10 else  A = A �  <d.id, d.class, cRule, wRule>
11 end

Figure 3: CBA-CB: M2 (Stage 1)

Stage 2. For each case d that we could not decide which
rule should cover it in Stage 1, we go through d again to
find all rules that classify it wrongly and have a higher
precedence than the corresponding cRule of d (line 5 in
Figure 4). That is the reason we say that this method makes
only slightly more than one pass over D. The details are as
follows (Figure 4):

1 for each entry  <dID, y, cRule, wRule> �  A do
2 if wRule is marked then
3 cRule.classCasesCovered[y]--;
4 wRule.classCasesCovered[y]++;
5 else wSet = allCoverRules(U, dID.case, cRule);
6 for each rule w �  wSet do
7 w.replace = w.replace �  { <cRule, dID, y>} ;
8 w.classCasesCovered[y]++;
9 end
10 Q = Q �  wSet
11 end
12 end

Figure 4: CBA-CB: M2 (Stage 2)

If wRule is marked (which means it is the cRule of at least
one case) (line 2), then it is clear that wRule will cover the
case represented by dID. This satisfies the two conditions.
The numbers of data cases, that cRule and wRule cover,
need to be updated (line 3-4). Line 5 finds all the rules that
wrongly classify the dID case and have higher precedences
than that of its cRule (note that we only need to use the
rules in U). This is done by the function allCoverRules.
The rules returned are those rules that may replace cRule to
cover the case because they have higher precedences. We



put this information in the replace field of each rule (line
7). Line 8 increments the count of w.classCasesCovered[y]
to indicate that rule w may cover the case. Q contains all
the rules to be used to build our classifier.

Stage 3. Choose the final set of rules to form our
classifier (Figure 5). It has two steps:
Step 1 (line 1-17): Choose the set of potential rules to form

the classifier. We first sort Q according to the relation
“ � ” . This ensures that Condition 1 above is satisfied in
the final rule selection. Line 1 and 2 are initializations.
The compClassDistr function counts the number of
training cases in each class (line 1) in the initial training
data. ruleErrors records the number of errors made so
far by the selected rules on the training data.

In line 5, if rule r no longer correctly classifies any
training case, we discard it. Otherwise, r will be a rule in
our classifier. This satisfies Condition 2. In line 6, r will
try to replace all the rules in r.replace because r
precedes them. However, if the dID case has already
been covered by a previous rule, then the current r will
not replace rul to cover the case. Otherwise, r will
replace rul to cover the case, and the classCasesCovered
fields of r and rul are updated accordingly (line 7-9).

For each selected rule, we update ruleErrors and
classDistr (line 10-11). We also choose a default class
(i.e., defaultClass), which is the majority class in the
remaining training data, computed using classDistr (line
12). After the default class is chosen, we also know the
number of errors (called defaultError) that the default
class will make in the remaining training data (line 13).
The total number of errors (denoted by totalErrors) that
the selected rules in C and the default class will make is
ruleErrors + defaultErrors (line 14).

Step 2 (line 18-20): Discard those rules that introduce
more errors, and return the final classifier C (this is the
same as in M1).

1 classDistr = compClassDistri(D);
2 ruleErrors = 0;
3 Q = sort(Q);
4 for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class]  �  0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a

previous r then
8 r.classCasesCovered[y]--;
9 else rul.classCasesCovered[y]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);
11 classDistr = update(r, classDistr);
12 defaultClass = selectDefault(classDistr);
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end
18 Find the first rule p in C with the lowest totalErrors,

and then discard all the rules after p from C;
19 Add the default class associated with p to end of C;
20 Return C without totalErrors and default-class;

Figure 5: CBA-CB: M2 (Stage 3)

Empirical Evaluation

We now compare the classifiers produced by algorithm
CBA with those produced by C4.5 (tree and rule) (Release
8). We used 26 datasets from UCI ML Repository (Merz
and Murphy 1996) for the purpose. The execution time
performances of CBA-RG and CBA-CB are also shown.

In our experiments, minconf is set to 50%. For minsup,
it is more complex. minsup has a strong effect on the
quality of the classifier produced. If minsup is set too high,
those possible rules that cannot satisfy minsup but with
high confidences will not be included, and also the CARs
may fail to cover all the training cases. Thus, the accuracy
of the classifier suffers. From our experiments, we observe
that once minsup is lowered to 1-2%, the classifier built i s
more accurate than that built by C4.5. In the experiments
reported below, we set minsup to 1%. We also set a limit of
80,000 on the total number of candidate rules in memory
(including both the CARs and those dropped-off rules that
either do not satisfy minsup or minconf). 16 (marked with a
* in Table 1) of the 26 datasets reported below cannot be
completed within this limit. This shows that classification
data often contains a huge number of associations.

 Discretization of continuous attributes is done using
the Entropy method in (Fayyad and Irani 1993). The code
is taken from MLC++ machine learning library (Kohavi et
al 1994). In the experiments, all C4.5 parameters had their
default values. All the error rates on each dataset are
obtained from 10-fold cross-validations. The experimental
results are shown in Table 1. The execution times here are
based on datasets that reside in the main memory.
Column 1: It lists the names of the 26 datasets. See (Liu,

Hsu and Ma 1998) for the description of the datasets.
Column 2: It shows C4.5rules’ mean error rates over ten

complete 10-fold cross-validations using the original
datasets (i.e., without discretization). We do not show
C4.5 tree’s detailed results because its average error rate
over the 26 datasets is higher (17.3).

Column 3: It shows C4.5rules’ mean error rate after
discretization. The error rates of C4.5 tree are not used
here as its average error rate (17.6) is higher.

Column 4: It gives the mean error rates of the classifiers
built using our algorithm with minsup = 1% over the ten
cross-validations, using both CARs and infrequent rules
(dropped off rules that satisfy minconf). We use
infrequent rules because we want to see whether they
affect the classification accuracy. The first value is the
error rate of the classifier built with rules that are not
subjected to pruning in rule generation, and the second
value is the error rate of the classifier built with rules
that are subjected to pruning in rule generation.

Column 5: It shows the error rates using only CARs in our
classifier construction without or with rule pruning (i.e.,
prCARs) in rule generation.

It is clear from these 26 datasets that CBA produces more
accurate classifiers. On average, the error rate decreases
from 16.7% for C4.5rules (without discretization) to 15.6-
15.8%  for  CBA.  Furthermore, our  system  is  superior to



C4.5rules on 16 of the 26 datasets. We also observe that
without or with rule pruning the accuracy of the resultant
classifier is almost the same. Thus, those prCARs (after
pruning) are sufficient for building accurate classifiers.
Note that when compared with the error rate (17.1) of
C4.5rules after discretization, CBA is even more superior.

Let us now see the rest of the columns, which give the
number of rules generated and the run time performances
of our system (running on 192MB DEC alpha 500).
Column 6: It gives the average numbers of rules generated

by algorithm CBA-RG in each cross-validation. The first
value is the number of CARs. The second value is the
number of prCARs (after pruning). We see that the
number of rules left after pruning is much smaller.

Column 7: It gives the average time taken to generate the
rules in each cross-validation. The first value is the time
taken when no pruning is performed. The second value
is the time taken when pruning is used. With pruning,
algorithm CBA-RG only runs slightly slower.

Column 8: It shows the average times taken to build each
classifier using only prCARs. The first value is the
running time of method 1 (M1), and the second value is
that of method 2 (M2). We see that M2 is much more
efficient than M1.

Column 9: It gives the average number of rules in the
classifier built by CBA-CB using prCARs. There are
generally  more rules in our  classifier than that produced

by C4.5 (not shown here). But this is not a problem as
these rules are only used to classify future cases.
Understandable and useful rules can be found in CARs
(or prCARs). These rules may or may not be generated
by C4.5 since C4.5 does not generate all the rules.

Below, we summarize two other important results.
�  Although we cannot find all the rules in 16 of the 26

datasets using the 80,000 limit, the classifiers
constructed with the discovered rules are already quite
accurate. In fact, when the limit reaches 60,000 in the
26 datasets (we have experimented with many
different limits), the accuracy of the resulting
classifiers starts to stabilize. Proceeding further only
generate rules with many conditions that are hard to
understand and difficult to use.

�  We also ran the CBA algorithm with the datasets on
disk rather than in the main memory, and increased
the number of cases of all datasets by up to 32 times
(the largest dataset reaches 160,000 cases).
Experimental results show that both CBA-RG and
CBA-CB (M2) have linear scaleup.

Related Work

Our system is clearly different from the existing
classification systems, such as C4.5 (Quinlan 1992) and
CART (Breiman et al 1984), which only produce a small

 c4.5rules   c4.5rules  CBA  CBA    No. of         Run time (sec) Run time (sec) No. of
Datasets w/o discr.     discr.   (CARs + infreq)  (CARs)   CARs         (CBA-RG)    (CBA-CB)  Rules

 w/o pru. pru. w/o pru pru. w/o pru. pru. w/o pru pru. M1 M2   in C

anneal* 5.2 6.5 1.9 1.9 3.2 3.6 65081 611 14.33 14.36 0.08 0.06 34
australian* 15.3 13.5 13.5 13.4 13.2 13.4 46564 4064 5.00 5.05 0.20 0.22 148
auto* 19.9 29.2 21.0 23.1 24.0 27.2 50236 3969 3.30 3.55 0.12 0.06 54
breast-w 5.0 3.9 3.9 3.9 4.2 4.2 2831 399 0.30 0.33 0.02 0.03 49
cleve* 21.8 18.2 18.1 19.1 16.7 16.7 48854 1634 4.00 4.30 0.04 0.06 78
crx* 15.1 15.9 14.3 14.3 14.1 14.1 42877 4717 4.90 5.06 0.43 0.30 142
diabetes 25.8 27.6 24.8 25.5 24.7 25.3 3315 162 0.25 0.28 0.03 0.01 57
german* 27.7 29.5 27.2 26.5 25.2 26.5 69277 4561 5.60 6.00 1.04 0.28 172
glass 31.3 27.5 27.4 27.4 27.4 27.4 4234 291 0.20 0.22 0.02 0.00 27
heart 19.2 18.9 19.6 19.6 18.5 18.5 52309 624 4.70 4.60 0.04 0.03 52
hepatitis* 19.4 22.6 15.1 15.1 15.1 15.1 63134 2275 2.80 2.79 0.09 0.05 23
horse* 17.4 16.3 18.2 17.9 18.7 18.7 62745 7846 3.2 3.33 0.35 0.19 97
hypo* 0.8 1.2 1.6 1.6 1.9 1.7 37631 493 45.60 45.30 1.02 0.40 35
ionosphere* 10.0 8.0 7.9 7.9 8.2 8.2 55701 10055 3.75 4.00 0.56 0.41 45
iris 4.7 5.3 7.1 7.1 7.1 7.1 72 23 0.00 0.00 0.00 0.00 5
labor 20.7 21.0 17.0 17.0 17.0 17.0 5565 313 0.17 0.20 0.00 0.00 12
led7 26.5 26.5 27.8 27.8 27.8 27.8 464 336 0.40 0.45 0.11 0.10 71
lymph* 26.5 21.0 20.3 18.9 20.3 19.6 40401 2965 2.70 2.70 0.07 0.05 36
pima 24.5 27.5 26.9 27.0 27.4 27.6 2977 125 0.23 0.25 0.04 0.02 45
sick* 1.5 2.1 2.8 2.8 2.7 2.7 71828 627 32.60 33.40 0.62 0.40 46
sonar* 29.8 27.8 24.3 21.7 24.3 21.7 57061 1693 5.34 5.22 0.30 0.12 37
tic-tac-toe 0.6 0.6 0.0 0.0 0.0 0.0 7063 1378 0.62 0.71 0.12 0.08 8
vehicle* 27.4 33.6 31.3 31.2 31.5 31.3 23446 5704 6.33 6.33 1.40 0.40 125
waveform* 21.9 24.6 20.2 20.2 20.4 20.6 9699 3396 13.65 13.55 2.72 1.12 386
wine 7.3 7.9 8.4 8.4 8.4 8.4 38070 1494 2.34 2.65 0.11 0.04 10
zoo* 7.8 7.8 5.4 5.4 5.4 5.4 52198 2049 2.73 2.70 0.61 0.32 7

Average 16.7 17.1 15.6 15.6 15.7 15.8 35140 2377 6.35 6.44 0.39 0.18 69

Table 1: Experiment Results



set of biased rules. The proposed technique aims to
generate the complete set of potential classification rules.

Several researchers, e.g., Schlimmer (1993), Webb
(1993), and Murphy and Pazzani (1994) have tried to build
classifiers by performing extensive search. None of them,
however, uses association rule mining techniques.

Our classifier building technique is related to the
covering method in (Michalski 1980). The covering
method works as follows. For each class in turn, it finds
the best rule for the class and then removes those training
cases covered by the rule. The strategy is then recursively
applied to the remaining cases in the class until no more
training case is left. Searching for the rule is done
heuristically. In (Webb 1993; Quinlan and Cameron-Jones
1995), large scale beam-search is used to search for the
best rule. The results were, however, not encouraging. Our
method is different. We first find all the rules, and then
select the best rules to cover the training cases. Test results
show that our classifier performs better than that built by
C4.5. Our best rules are “global” best rules because they
are generated using all the training data, while the best
rules of the covering method are “local” best rules because
it removes those covered cases after each best rule is
found. We also implemented the covering method in our
framework, but the performance is not good. We believe it
is because “local” best rules tend to overfit the data.

This research is closely related to association rule
mining (Agrawal and Srikant 1994). The Apriori algorithm
in (Agrawal and Srikant 1994) has been adapted for
discovering CARs. In CBA-RG, we do not use itemset (a
set of items) as in algorithm Apriori. Instead, we use
ruleitem, which consists of a condset (a set of items) and a
class. We also use the rule pruning technique in (Quinlan
1992) to prune off those non-predictive and overfitting
rules. This is not used in association rule mining. In
addition, we build an accurate classifier that can be used
for prediction from the generated rules. The association
rule discovery is not concerned with building classifiers.

(Bayardo 1997) uses an association rule miner to
generate high-confidence classification rules (confidence >
90%). (Ali , Manganaris and Srikant 1997) uses an
association rule miner to form rules that can describe
individual classes. Both works are not concerned with
building a classifier from the rules. This paper has shown
that it is possible to build an accurate classifier for
prediction from the set of generated rules.

Conclusion

This paper proposes a framework to integrate classification
and association rule mining. An algorithm is presented to
generate all class association rules (CARs) and to build an
accurate classifier. The new framework not only gives a
new way to construct classifiers, but also helps to solve a
number of problems that exist in current classification
systems. In our future work, we will focus on building
more accurate classifiers by using more sophisticated
techniques and to mine CARs without pre-discretization.
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