Appeaed in KDD-98, New York, Aug 27-31, 1998

I ntegrating Classification and Association Rule Mining

Bing Liu

Wynne Hsu

Yiming Ma

Department of Information Systems and Computer Science
National University of Singapore
Lower Kent Ridge Road, Singapore 119260
{liub, whsu, mayiming} @iscs.nus.edu.sg

Abstract

Clasdfication rule mining aims to dscover a small set of
rules in the database that forms an acarate dassfier.
Assciation rule mining finds al the rules existing in the
database that satisfy some minimum suppat and minimum
confidence ®nstraints. For association rule mining, the
target of discovery is not pre-determined, while for
clasdficaion rule mining there is one aand orly ore pre-
determined target. In this paper, we propose to integrate
these two mining techniques. The integration is dore by
focusing on mining a speda subset of assciation rules,
cdled class association rules (CARs). An efficient
algorithm is also gven for building a dasdfier based onthe
set of discovered CARs. Experimental results show that the
clasdfier built this way is, in general, more acarate than
that produwced by the state-of-the-art classficaion system
C4.5. In addition, this integration helps to solve anumber
of problemsthat exist in the airrent classficaion systems.

I ntroduction

Clasdficaion rule mining and asciation rule mining are
two important data mining techniques. Classfication rule
mining aims to discover a small set of rulesin the database
to form an acarrate dassfier (e.g., Quinlan 1992 Breiman
et a 1984. Asciation rule mining finds all rules in the
database that satisfy some minimum suppat and minimum
confidence mnstraints (e.g., Agrawal and Srikant 1994).
For association rule mining, the target of miningis not pre-
determined, while for clasdficaion rule mining there is
one aad orly ore pre-determined target, i.e., the dass
Both clasdficaion rule mining and association rule mining
are indispensable to pradicd applications. Thus, grea
savings and conveniences to the user could result if the two
mining techniques can somehow be integrated. In this
paper, we propcse such an integrated framework, cdled
associative classification. We show that the integration can
be dore dficiently and without loss of performance, i.e.,
the acarragy of the resultant classfier.

The integration is done by focusing ona spedal subset
of asciation rules whose right-hand-side are restricted to
the dasdfication classattribute. We refer to this subset of

Copyright © 1998 American Asociation for Artificial Intelligence
(www.aaa.org). All rights reserved.

rules as the class association rules (CARS). An existing

asciation rule mining algorithm (Agrawal and Srikant

1999 is adapted to mine dl the CARs that satisfy the

minimum suppat and minimum confidence @nstraints.

This adaptationis necessary for two main reasons:

1. Unlike a transadional database normally used in
asciation rule mining (Agrawa and Srikant 1994 that
does not have many associations, clasdficdion cata
tends to contain a huge number of assciations.
Adaptation d the eisting aswociation rule mining
algorithm to mine only the CARs is needed so as to
reduce the number of rules generated, thus avoiding
combinatorial explosion (seethe evaluation sedion).

2. Clasdfication datasets often contain many continuots
(or numeric) attributes. Mining o association rules with
continuows attributes is gill a maor reseach isae
(Srikant and Agrawa 1996 Yoda @ a 1997 Wang,
Tay and Liu 199§. Our adaptation involves discretizing
continuows attributes based on the dasdficaion pe-
determined class target. There ae many good
discretization agorithms for this purpaose (Fayyad and
Irani 1993 Douglerty, Kohavi and Sahami 1995.

Data mining in the proposed assciative dasdficaion

framework thus consists of threesteps:

o discretizing continuous attributes, if any

e generating all the dassasociationrules (CARs), and

e buildinga dasdfier based onthe generated CARSs.

This work makes the foll owing contributions:

1. It proposes a new way to buld acarate dasdfiers.
Experimenta results iow that clasdfiers built this
way are, in general, more acarate than those
produced by the state-of-the-art classficaion system
C4.5 (Quinlan 1993.

2. It makes asxciation rule mining techniques
applicable to clasgfication tasks.

3. It helps to solve a number of important problems
with the existing clasdficéion systems.

Let usdiscusspoint 3in greder detail below:

e The framework helps to solve the understandability
problem (Clark and Matwin 1993 Pazzani, Mani and
Shankle 1997) in clasdfication rule mining. Many rules
produwced by standard clasdficdion systems are
difficult to uncerstand becaise these systems use
domain independent biases and teuristics to generate a
small set of rules to form a dasdfier. These biases,

however, may not be in agreement with the existing
knowledge of the human user, thus resulting in many
generated rules that make no sense to the user, while
many understandable rules that exist in the data are left
undiscovered. With the new framework, the problem of
finding understandable rules is reduced to a post-
processing task (since we generate al the rules).
Techniques such as those in (Liu and Hsu 1996; Liu,
Hsu and Chen 1997) can be employed to help the user
identify understandable rules.

o A related problem is the discovery of interesting or
useful rules. The quest for a small set of rules of the
existing classification systems results in many
interesting and useful rules not being discovered. For
example, in a drug screening application, the biologists
are very interested in rules that relate the color of a
sample to its final outcome. Unfortunately, the
classification system (we used C4.5) just could not find
such rules even though such rules do exist as
discovered by our system.

¢ |In the new framework, the database can reside on disk
rather than in the main memory. Standard classification
systems need to load the entire database into the main
memory (e.g., Quinlan 1992), although some work has
been done on the scaling up of classification systems
(Mahta, Agrawal and Rissanen 1996).

Problem Statement

Our proposed framework assumes that the dataset is a
normal relational table, which consists of N cases described
by | distinct attributes. These N cases have been classified
into g known classes. An attribute can be a categorica (or
discrete) or a continuous (or numeric) attribute.

In this work, we treat all the attributes uniformly. For a
categorical attribute, all the possible values are mapped to a
set of consecutive positive integers. For a continuous
attribute, its value range is discretized into intervals, and
the intervals are aso mapped to consecutive positive
integers. With these mappings, we can treat a data case as a
set of (attribute, integer-value) pairs and a class label. We
cal each (attribute, integer-value) pair an item.
Discretization of continuous attributes will not be discussed
in this paper as there are many existing algorithms in the
machine learning literature that can be used (see
(Dougherty, Kohavi and Sahami 1995)).

Let D be the dataset. Let | be the set of al itemsin D,
and Y be the set of class labels. We say that a data case d
eD contains X c |, a subset of items, if X < d. A class
association rule (CAR) isan implication of theform X — vy,
where X c I, andy € Y. A rule X —» y holds in D with
confidence c if c% of casesin D that contain X are labeled
with classy. Therule X — y has support sin D if s% of the
casesin D contain X and are labeled with classy.

Our objectives are (1) to generate the complete set of
CARs that satisfy the user-specified minimum support
(called minsup) and minimum confidence (called minconf)
congtraints, and (2) to build a classifier from the CARs.

Generating the Complete Set of CARs

The proposed agorithm is caled agorithm CBA
(Classification Based on Associations). It consists of two
parts, a rule generator (called CBA-RG), which is based
on algorithm Apriori for finding association rules in
(Agrawa and Srikant 1994), and a classifier builder
(called CBA-CB). This section discusses CBA-RG. The
next section discusses CBA-CB.

Basic concepts used in the CBA-RG algorithm

The key operation of CBA-RG is to find al ruleitems that
have support above minsup. A ruleitemis of the form:

<condset, y>
where condset is a set of items, y € Y isaclass label. The
support count of the condset (called condsupCount) is the
number of casesin D that contain the condset. The support
count of the ruleitem (called rulesupCount) is the number
of casesin D that contain the condset and are labeled with
classy. Each ruleitem basically representsarule:

condset — vy,

whose support is (rulesupCount / |DJ) * 100%, where |D| is
the size of the dataset, and whose confidence is
(rulesupCount / condsupCount)* 100%.

Ruleitems that satisfy minsup are called frequent
ruleitems, while the rest are called infrequent ruleitems.
For example, the following isaruleitem:

<{(A, 1), (B, 1)}, (class, 1)>,
where A and B are attributes. If the support count of the
condset {(A, 1), (B, 1)} is 3, the support count of the
ruleitemis 2, and the total number of casesin D is 10, then
the support of the ruleitem is 20%, and the confidence is
66.7%. If minsup is 10%, then the ruleitem satisfies the
minsup criterion. We say it is frequent.

For al the ruleitems that have the same condset, the
ruleitem with the highest confidence is chosen as the
possible rule (PR) representing this set of ruleitems. If
there are more than one ruleitem with the same highest
confidence, we randomly select one ruleitem. For example,
we have two ruleitems that have the same condset:

1. <{(A, 1), (B, 1)}, (class 1)>.

2. <{(A,1), (B, 1)}, (class: 2)>.
Assume the support count of the condset is 3. The support
count of the first ruleitem is 2, and the second ruleitem is
1. Then, the confidence of ruleitem 1 is 66.7%, while the
confidence of ruleitem 2 is 33.3% With these two
ruleitems, we only produce one PR (assume |D| = 10):

(A, 1), (B,1) > (class, 1) [supt =20%, confd= 66.7%]
If the confidence is greater than minconf, we say theruleis
accurate. The set of class association rules (CARS) thus
consists of al the PRsthat are both frequent and accurate.

The CBA-RG algorithm

The CBA-RG adgorithm generates all the frequent
ruleitems by making multiple passes over the data. In the
first pass, it counts the support of individual ruleitem and
determines whether it is frequent. In each subsequent pass,
it starts with the seed set of ruleitems found to be frequent

in the previous pass It uses this ®al set to generate new
possbly frequent ruleitems, cdled candidate ruleitems.
The adua suppats for these candidate ruleitems are
cdculated duing the passover the data. At the end d the
pass it determines which of the candidate ruleitems are
adually frequent. From this st of frequent ruleitems, it
produces the rules (CARS).

Let k-ruleitem denote aruleitem whose condset has k
items. Let F, denote the set of frequent k-ruleitems. Each
element of this st is of the following form:

<(condset, condsupCount), (y, rulesupCount)>.
Let C, be the set of candidate k-ruleitems. The CBA-RG
algorithm isgivenin Figure 1.
F, = {large 1-ruleitems};
CAR, = genRules(F);
prCAR, = pruneRules(CAR);
for (k=2; F_,# O, k++) do
C, = candidateGen(F, ,);
for ead datacased € D do
C, = ruleSubset(C,, d);
for eat candidatec € C,do
c.condsupCount++;
10 if d.class= c.classthen c.rulesupCount++
11 end
12 end
13 F.={c e C_| crulesupCourt > minsup};
14 CAR = genRules(F));
15 prCAR, = pruneRules(CAR);
16 end
17 CARs={J,CAR;
18 prCARs =J,prCAR;

Figure 1: The CBA-RG agorithm

Line 1-3 represents the first passof the dgorithm. It courts
the item and classoccurrences to determine the frequent 1-
ruleitems (line 1). From this st of 1-ruleitems, a set of
CARs (cdled CAR) is generated by genRules (line 2) (see
previous subsedion). CAR is sibjeded to a pruning
operation (line 3) (which can be optional). Pruning is also
dore in ead subsequent pass to CAR_(line 15). The
function pruneRules uses the pessmistic eror rate based
pruning methodin C4.5 (Quinlan 1992. It prunes arule &
follows: If rule r's pessmistic aror rate is higher than the
pessmistic aror rate of rule r~ (obtained by deleting ore
condtion from the andtions of r), then rule r is pruned.
This pruning can cut down the number of rules generated
substantially (seethe evaluation sedion).

For ead subsequent pass say pass k, the dgorithm
performs 4 major operations. First, the frequent ruleitems
F., found in the (k-1)th pass are used to generate the
candidate ruleitems C, using the condidateGen function
(line 5). It then scans the database and updites various
suppat courts of the candidates in C, (line 6-12). After
those new frequent ruleitems have been identified to form
F, (line 13), the dgorithm then produces the rules CAR,
using the genRules function (line 14). Finaly, rule pruning
is performed (line 15) onthese rules.

The candidateGen function is gmilar to the function
Apriori-gen in algorithm Apriori. The ruleSubset function

O©CO~NOUTA,WNE

takes a set of candidate ruleitems C,_ and a data cae d to
find al the ruleitems in C_ whose condsets are suppated
by d. This and the operations in line 8-10 are dso similar
to those in algorithm Apriori. The difference is that we
need to increment the suppat courts of the condset and the
ruleitem separately whereas in algorithm Apriori only one
court is upceted. This allows us to compute the mnfidence
of theruleitem. They are dso useful in rule pruning.

The final set of classaswociation rulesisin CARs (line
17). Those remaining rules after pruning are in prCARs
(line 18).

Building a Classifier

This dion presents the CBA-CB agorithm for building a
classfier using CARs (or prCARs). To produce the best
classfier out of the whole set of rules would involve
evaluating al the possble subsets of it on the training data
and seleding the subset with the right rule sequence that
gives the least number of errors. There ae 2" such subsets,
where m is the number of rules, which can be more than
10,000 not to mention dfferent rule sequences. This is
clealy infeasible. Our proposed algorithm is a heuristic
one. However, the dassfier it builds performs very well as
compared to that built by C4.5. Before presenting the
agorithm, let us define atotal order onthe generated rules.
Thisisused in seleding the rulesfor our classfier.
Definition: Given two rules, r, andr, r, 1, (also cdled r,

precedesr, or r, has a higher precedencethanr) if

1. the confidenceof r, is greaer than that of r;, or

2. their confidences are the same, but the suppat of r,

is greder than that of r;, or
3. both the confidences and suppats of r, and r; are
the same, but r, is generated ealier thanr;;

Let R be the set of generated rules (i.e., CARs or pCARS),
and D the training data. The basic ideaof the dgorithm is
to choose aset of high precadence rules in R to cover D.
Our clasdfier is of the following format:

<r,r, ..., I, default_class>,

wherer, € R r_ > r, if b > a. default_class is the default

class In clasdfying an urseen case, the first rule that

satisfies the cae will clasdfy it. If there is no rule that
applies to the case, it takes on the default classas in C4.5.

A naive version d our agorithm (cdled M1) for building

such a dassfier is siown in Figure 2. It has threesteps:

Step 1 (line 1): Sort the set of generated rules R acarding
to therelation “>". Thisisto ensure that we will chocse
the highest precadencerules for our classfier.

Step 2 (line 2-13): Seled rules for the dasdfier from R
following the sorted sequence. For ead rule r, we go
throughD to find those caes covered by r (they satisfy
the condtions of r) (line 5). We mark r if it corredly
clasdfies a cae d (line 6). d.id is the unique
identification number of d. If r can corredly classfy at
least one cae (i.e, if r is marked), it will be apotential
rulein ou classfier (line 7-8). Thase caesit covers are
then removed from D (line 9). A default classis aso
seleded (the majority class in the remaining deta),

which means that if we stop seleding more rules for our
clasdfier C this classwill be the default classof C (line
10). We then compute and record the total number of
errors that are made by the asrrent C and the default
class(line 11). This is the sum of the number of errors
that have been made by all the selected rules in C and
the number of errors to be made by the default classin
the training data. When there is no rule or no training
case |eft, the rule seledion processis completed.

Step 3 (line 14-15): Discard those rules in C that do nd
improve the acaragy of the dasdfier. The first rule &
which there is the least number of errors recorded onD
is the autoff rule. All the rules after this rule can be
discarded becaise they only produce more erors. The
undscarded rules and the default classof the last rulein
C form our clasdfier.

1 R=sort(R);

2 for eadruler € Rinsequencedo

3 temp=J;

4 for eadhcased € D do

5 if d satisfiesthe mndtionsof r then

6 store d.id in temp and mark r if it corredly
classfiesd;

7 if r ismarked then

8 insertr at the end 0 C;

9 delete dl the caes with the idsin temp from D;

10 seleding adefault classfor the aurrent C;

11 compute the total number of errors of C;

12 end

13 end

14 Findthefirst rule p in C with the lowest total number
of errorsand dop al therules after pin C;

15 Add the default class associated with p to end d C,
andreturn C (our classfier).

Figure 2. A naive dgorithm for CBA-CB: M1

This algorithm satisfies two main conditions:

Condition 1. Each training case is covered by the rule with
the highest precadence anong the rules that can cover
the cae. Thisis 9 because of the sorting dorein line 1.

Condition 2. Every rule in C corredly clasdfies at least
one remaining training case when it is chosen. Thisis ©
dueto line 5-7.

This agorithm is smple, but is inefficient espedally
when the database is not resident in the main memory
becaise it neads to make many passs over the database.
Below, we present an improved version d the dgorithm
(cdled M2), whereby ony dightly more than ore passis
made over D. The key pant is that instead of making ore
passover the remaining datafor ead rule (in M1), we now
find the best rule in R to cover eat case. M2 consists of
threestages (see(Liu, Hsu and Ma 1998 for more detail s):

Stage 1. For ead case d, we find bdh the highest

precadence rule (cdled cRule) that corredly classfies d,

and aso the highest precalence rule (cdled wRule) that

wrongdy classfies d. If cRule > wRule, the cae shoud be
covered by cRule. This sttisfies Condtion 1and 2 above.

We dso mark the cRule to indicae that it clasdfies a cae

corredly. If wRule > cRule, it is more complex becaise we

canna dedde which rule anongthe two or some other rule
will eventually cover d. In order to dedde this, for eat d
with wRule > cRule, we keep a data structure of the form:
<dID, y, cRule, wRule>, where dID is the unique
identification number of the cae d, y is the dassof d. Let
A denate the wlledion d <dID, y, cRule, wRule>'s, U the
set of al cRules, and Q the set of cRules that have ahigher
preceadence than their correspondng wRules. This gage of
the dgorithm is $rown in Figure 3.

The maxCoverRule function finds the highest
precedence rule that covers the cae d. C, (or C,) is the set
of rules having the same (or different) classas d. d.id and
d.classrepresent the identification number and the dassof
d respedively. For eat cRule, we dso remember how
many cases it covers in ead class using the field
classCasesCovered of therule.

Q=g U=0; A=J;
for eadhcased € D do

cRule = maxCoverRule(C,, d);

wRule = maxCoverRule(C,, d);

U=U u {cRule};
cRule.clasCasesCovered[d.class]++;

if cRule > wRule then

Q= Qu{cRulg};
mark cRule;

else A=A v <d.id, d.class cRule, wRule>
11 end

CoOoO~NOOhWNE

=
o

Figure 3: CBA-CB: M2 (Stage 1)

Stage 2. For ead case d that we could na dedde which
rule shoud cover it in Stage 1, we go throughd again to
find al rules that classfy it wrondy and heve a higher
precalence than the mrrespondng cRule of d (line 5 in
Figure 4). That isthe reason we say that this method makes
only dightly more than ore passover D. The details are &
follows (Figure 4):

1 for eadentry <dID,y, cRule, wRule> € Ado

2 if wRule is marked then

3 cRule.clasLCasesCovered[y]--;

4 WRule.clasCasesCovered[y] ++;

5 else wSet = al CoverRules(U, dID.case, cRule);
6 for eat rulew € wSet do

7 w.replace= w.replaceu {<cRule, dID, y>};
8 w.clasCasesCovered[y]++;

9 end

10 Q=Qu wSet

11 end

12 end

Figure 4: CBA-CB: M2 (Stage 2)
If wRule is marked (which meansit is the cRule of at least
one ca&e) (line 2), then it is clea that wRule will cover the
case represented by dID. This satisfies the two conditions.
The numbers of data caes, that cRule and wRule cover,
neal to be updated (line 3-4). Line 5 finds al the rules that
wrongdy classfy the dID case and have higher precadences
than that of its cRule (nate that we only need to use the
rules in U). This is dore by the function allCoverRules.
The rules returned are those rules that may replacecRule to
cover the cae becaise they have higher precalences. We

put this information in the replace field of ead rule (line

7). Line 8 increments the count of w.clasCasesCovered[y]

to indicae that rule w may cover the cae. Q contains all

therulesto be used to buld ou clasdfier.
Stage 3. Choose the fina set of rules to form our
clasdfier (Figure 5). It has two steps:

Step 1 (line 1-17): Choaose the set of patentia rulesto form
the dasdfier. We first sort Q acwrding to the relation
“»>". This ensures that Condtion 1 above is stisfied in
the final rule seledion. Line 1 and 2 are initiali zaions.
The compClassDistr function courts the number of
training cases in ead class(line 1) in the initial training
data. ruleErrors remrds the number of errors made so
far by the seleded rules onthe training dbta.

Inline 5, if rule r no longer corredly classfies any
training case, we discard it. Otherwise, r will be arulein
our clasdfier. This stisfies Condtion 2. In line 6, r will
try to replace # the rules in r.replace becaise r
precedes them. However, if the dID case has arealy
been covered by a previous rule, then the airrent r will
not replace rul to cover the cae. Otherwise, r will
replacerul to cover the cae, and the classCasesCovered
fields of r and rul are updated acardingly (line 7-9).

For eath seleded rule, we update ruleErrors and
classDistr (line 10-11). We dso choose adefault class
(i.e., defaultClass), which is the mgjority classin the
remaining training data, computed using classDistr (line
12). After the default classis chosen, we dso know the
number of errors (cdled defaultError) that the default
classwill make in the remaining training data (line 13).
The total number of errors (denoted by totalErrors) that
the seleded rulesin C and the default classwill make is
ruleErrors + defaultErrors (line 14).

Step 2 (line 18-20): Discard those rules that introduce
more arors, and return the final classfier C (thisis the
same asin M1).

1 classDistr = compClasDistri(D);

2 ruleErrors=0;

3 Q=sort(Q);

4 for eadiruler in Q in sequencedo

5 if r.clasCasesCovered[r.clasy = 0then

6 for ead entry <rul, dID, y> inr.replacedo

7 if the dID case has been covered by a
previousr then

8 r.clasgCasesCovered[y]--;

9 else rul.clasCasesCovered[y]--;

10 ruleErrors = ruleErrors + errorsOfRule(r);

11 clasDistr = update(r, clasDistr);

12 defaultClass= seledDefault(clasDistr);

13 defaultErrors = defErr(defaultClass clasDistr);

14 totalErrors = ruleErrors + defaultErrors,

15 Insert <r, default-class, totalErrors> at end d C

16 end

17 end

18 Find the first rule p in C with the lowest totalErrors,
andthen discard all the rules after p from C;

19 Addthe default classassociated with p to end o C;

20 Return C withou totalErrors and default-class;

Figure 5: CBA-CB: M2 (Stage 3)

Empirical Evaluation

We now compare the dassfiers produced by agorithm
CBA with those produced by C4.5 (tree ad rule) (Release
8). We used 26 datasets from UCI ML Repaository (Merz
and Murphy 1996 for the purpose. The exeaution time
performances of CBA-RG and CBA-CB are dso shown.

In our experiments, minconf is st to 50%. For minsup,
it is more complex. minsup has a strong effed on the
quality of the dasdfier produced. If minsup is st too high,
those posgble rules that canna satisfy minsup but with
high confidences will not be included, and also the CARs
may fail to cover al the training cases. Thus, the acaracgy
of the dassfier suffers. From our experiments, we observe
that once minsup is lowered to 1-2%, the dassfier built is
more acarate than that built by C4.5. In the experiments
reported below, we set minsup to 1%. We dso set alimit of
80,000 onthe total number of candidate rules in memory
(including bah the CARs and those dropped-off rules that
either do nd satisfy minsup or minconf). 16 (marked with a
* in Table 1) of the 26 datasets reported below canna be
completed within this limit. This diows that classficaion
data often contains a huge number of associations.

Discretizaion d continuows attributes is dore using
the Entropy method in (Fayyad and Irani 1993. The mde
is taken from MLC++ macdhine leaning library (Kohavi et
a 1994). In the experiments, all C4.5 parameters had their
default values. All the aror rates on ead dataset are
obtained from 10-fold crossvalidations. The experimental
results are shown in Table 1. The exeaution times here ae
based ondatasets that reside in the main memory.

Column 1: It lists the names of the 26 datasets. See (Liu,
Hsu and Ma 1998 for the description o the datasets.

Column 2: It shows C4.5rules’ meen error rates over ten
complete 10-fold crossvaidations using the origina
datasets (i.e., withou discretization). We do nd show
C4.5 treé s detail ed results becaise its average aror rate
over the 26 datasetsis higher (17.3).

Column 3: It shows C4.5rules mean error rate dter
discretization. The aror rates of C4.5 tree ae not used
here asits average aror rate (17.6) is higher.

Column 4: It gives the mean error rates of the dasdfiers
built using ou algorithm with minsup = 1% over the ten
crossvalidations, using bah CARs and infrequent rules
(dropped off rules that satisfy minconf). We use
infrequent rules because we want to see whether they
affed the dasdficaion acaracgy. The first value is the
error rate of the dasdfier built with rules that are not
subjeded to pruning in rule generation, and the seaond
value is the aror rate of the dasdfier built with rules
that are subjeded to pruningin rule generation.

Column 5: It shows the aror ratesusing oy CARsin ou
clasdfier construction withou or with rule pruning (i.e.,
prCARsS) in rule generation.

It is clea from these 26 datasets that CBA produces more

acarate dassfiers. On average, the eror rate deaeases

from 16.7% for C4.5rules (withou discretizaion) to 156-

15.8% for CBA. Furthermore, our system is superior to

Table 1: Experiment Results

c4.5rules| c4.5ruless CBA CBA No. of Run time (sec) | Run time (sec) | No. of
Datasets w/odiscr.| discr. | (CARs+ infreq (CARS) CARs (CBA-RG) (CBA-CB) Rules
Ww/opru. pru. {w/o pru pru. w/opru. pru. |w/opru pru. M1 M2 inC
anneal* 5.2 6.5 19 19 3.2 3.6 65081 611 |14.33 14.36 | 0.08 0.06 34
australian* 15.3 135 135 134 132 134 46564 4064 500 5.05 | 0.20 0.22 | 148
auto* 19.9 29.2 21.0 231 240 272 50236 3969 330 355 | 012 0.06 54
breast-w 5.0 3.9 3.9 3.9 4.2 4.2 2831 399 0.30 0.33 | 0.02 0.03 49
cleve* 21.8 18.2 181 19.1 16.7 16.7 48854 1634 | 4.00 4.30 | 0.04 0.06 78
crx* 15.1 15.9 143 143 141 141 42877 4717 490 5.06 | 043 0.30 | 142
diabetes 25.8 27.6 248 255 247 253 3315 162 0.25 0.28 | 0.03 0.01 57
german* 277 29.5 272 265 252 265 69277 4561 560 6.00 1.04 0.28 | 172
glass 313 275 274 274 274 274 4234 291 0.20 0.22 0.02 0.00 27
heart 19.2 18.9 196 19.6 185 185 52309 624 | 470 460 | 0.04 0.03 52
hepatitis* 194 22.6 151 151 151 151 63134 2275 280 279 0.09 0.05 23
horse* 17.4 16.3 182 179 187 187 62745 7846 32 333 | 035 0.19 97
hypo* 0.8 12 16 1.6 19 1.7 37631 493 | 45.60 45.30 1.02 0.40 35
ionosphere* 10.0 8.0 7.9 7.9 8.2 8.2 55701 10055 375 4.00 | 0.56 0.41 45
iris 4.7 53 7.1 7.1 7.1 7.1 72 23 0.00 0.00 | 0.00 0.00 5
|abor 20.7 21.0 170 170 170 170 5565 313 0.17 0.20 | 0.00 0.00 12
led7 26.5 26.5 278 2718 278 2718 464 336 040 045 | 011 0.10 71
lymph* 26.5 21.0 20.3 189 20.3 19.6 40401 2965 270 270 | 0.07 0.05 36
pima 24.5 275 269 270 274 276 2977 125 0.23 0.25 | 0.04 0.02 45
sick* 15 2.1 2.8 2.8 2.7 2.7 71828 627 | 32.60 3340 | 0.62 0.40 46
sonar* 29.8 27.8 243 217 243 217 57061 1693 534 522 0.30 0.12 37
tic-tac-toe 0.6 0.6 0.0 0.0 0.0 0.0 7063 1378 0.62 0.71 0.12 0.08 8
vehiclex 27.4 336 |313 312 315 313 23446 5704 6.33 6.33 1.40 0.40 | 125
waveform* 219 24.6 20.2 20.2 204 20.6 9699 3396 | 13.65 13.55 2.72 1.12 | 386
wine 7.3 7.9 84 84 84 84 38070 1494 234 265 | 011 0.04 10
Z00* 7.8 7.8 54 54 54 54 52198 2049 273 270 | 061 0.32 7
Average 16.7 17.1 156 15.6 157 158 35140 2377 6.35 6.44 | 0.39 0.18 69

C4.5rules on 16 of the 26 datasets. We also observe that
without or with rule pruning the accuracy of the resultant
classifier is amost the same. Thus, those prCARs (after
pruning) are sufficient for building accurate classifiers.
Note that when compared with the error rate (17.1) of
CA4.5rules after discretization, CBA is even more superior.

Let us now see the rest of the columns, which give the
number of rules generated and the run time performances
of our system (running on 192MB DEC a pha 500).

Column 6: It gives the average numbers of rules generated
by algorithm CBA-RG in each cross-validation. The first
value is the number of CARs. The second value is the
number of prCARs (after pruning). We see that the
number of rulesleft after pruning is much smaller.

Column 7: It gives the average time taken to generate the
rules in each cross-validation. The first value is the time
taken when no pruning is performed. The second value
is the time taken when pruning is used. With pruning,
algorithm CBA-RG only runs dightly slower.

Column 8: It shows the average times taken to build each
classifier using only prCARs. The first value is the
running time of method 1 (M1), and the second value is
that of method 2 (M2). We see that M2 is much more
efficient than M1.

Column 9: It gives the average number of rules in the
classifier built by CBA-CB using prCARs. There are
generally morerulesinour classifier than that produced

by C4.5 (not shown here). But this is not a problem as
these rules are only used to classify future cases.
Understandable and useful rules can be found in CARs
(or prCARS). These rules may or may not be generated
by C4.5 since C4.5 does not generate al the rules.

Below, we summarize two other important results.

e Although we cannot find all the rulesin 16 of the 26
datasets using the 80,000 limit, the classifiers
constructed with the discovered rules are already quite
accurate. In fact, when the limit reaches 60,000 in the
26 datasets (we have experimented with many
different limits), the accuracy of the resulting
classifiers starts to stabilize. Proceeding further only
generate rules with many conditions that are hard to
understand and difficult to use.

e We also ran the CBA algorithm with the datasets on
disk rather than in the main memory, and increased
the number of cases of al datasets by up to 32 times
(the largest dataset reaches 160,000 cases).
Experimental results show that both CBA-RG and
CBA-CB (M2) have linear scaleup.

Related Work

Our system is clearly different from the existing
classification systems, such as C4.5 (Quinlan 1992) and
CART (Breiman et a 1984), which only produce a small

set of biased rules. The proposed technique dms to
generate the complete set of potential clasdgficaionrules.

Severa reseachers, eg., Schlimmer (1993, Webb
(1993, and Murphy and Pazzani (1994 have tried to build
clasdfiers by performing extensive seach. None of them,
however, uses asociation rule mining techniques.

Our clasdfier building technique is related to the
covering method in (Michalski 1980. The vering
method works as follows. For ead classin turn, it finds
the best rule for the dassand then removes those training
cases covered by the rule. The strategy is then reaursively
applied to the remaining cases in the dass until no more
training cese is left. Seaching for the rule is dore
heuristicdly. In (Webb 1993 Quinlan and Cameron-Jones
1999, large scde beam-seach is used to seach for the
best rule. The results were, however, not encouraging. Our
method is different. We first find all the rules, and then
seled the best rules to cover the training cases. Test results
show that our classfier performs better than that built by
C4.5. Our best rules are “globa” best rules becaise they
are generated using all the training data, while the best
rules of the mvering method are “locd” best rules because
it removes those mvered cases after ead best rule is
found We dso implemented the @vering method in ou
framework, but the performanceis not good We believe it
isbecause “locd” best rules tend to overfit the data.

This reseach is closely related to assciation rule
mining (Agrawal and Srikant 1994). The Apriori agorithm
in (Agrawal and Srikant 1994 has been adapted for
discovering CARs. In CBA-RG, we do nd use itemset (a
set of items) as in agorithm Apriori. Instead, we use
ruleitem, which consists of a condset (a set of items) and a
class We dso use the rule pruning technique in (Quinlan
1992 to prune off those nonpredictive and overfitting
rules. This is not used in assciation rule mining. In
addition, we build an acarate dasdfier that can be used
for prediction from the generated rules. The asciation
rule discovery is not concerned with bulding classfiers.

(Bayardo 1997 uses an association rule miner to
generate high-confidence dasdfication rules (confidence >
90%). (Ali, Manganaris and Srikant 1997 uses an
aswciation rule miner to form rules that cen describe
individual classes. Both works are not concerned with
building a dasdfier from the rules. This paper has sown
that it is possble to buld an acarate dassfier for
prediction from the set of generated rules.

Conclusion

This paper propcses a framework to integrate dassficdion
and association rule mining. An agorithm is presented to
generate dl classassciation rules (CARS) and to buld an
acwrate dasdfier. The new framework not only gives a
new way to construct classfiers, but also helps to solve a
number of problems that exist in current classficaion
systems. In ou future work, we will focus on bulding
more acarate dasdfiers by using more sophisticaed
techniques and to mine CARs withou pre-discretizaion.

References

Agrawa, R. and Srikant, R. 1994 Fast agorithms for
mining asociation rules. VLDB-94, 1994

Ali, K., Manganaris, S. and Srikant, R. 1997 Partid
clasgficaion wsing asociationrules. KDD-97, 115118,

Bayardo, R. J. 1997 Bruteforce mining d high
confidence dassficaionrules. KDD-97, 123126,

Breiman, L, Friedman, J., Olshen, R. and Stone C. 1984
Clasdfication and regresson trees. Belmont:
Wadsworth.

Clark, P. and Matwin, S. 1993 Using qualitative models to
guide inductionleaning. ICML-93, 49-56.

Dougterty, J., Kohavi, R. Sahami, M. 1995 Supervised
and ursupervised discretization d continuows fedures.
ICML-95.

Fayyad, U. M. and Irani, K. B. 1993 Multi-interval
discretization o continuows-valued attributes for
classficdionleaning. IJCAI-93, 10221027

Kohavi, R., John, G., Long R., Manley, D., and Pfleger,
K. 1994 MLC++: a madine leaning library in C++.
Todswith artificial intelli gence, 740-743.

Liu, B. and Hsu, W. 1996 Post-analysis of leaned rules.
AAAI-96, 828-834.

Liu, B., Hsu, W. and Chen, S. 1997 Using ¢enera
impresgons to analyze discovered classficetion rules.
KDD-97, 31-36.

Liu, B., Hsu, W. and Ma, Y. 1998 Building an acarate
clasdfier using association rules. Tedhnicd report.

Mahta, M., Agrawal, R. and Rissanen, J. 1996 SLIQ: A
fast scdable dassfier for data mining. Proc. of the fifth
Int’l Conferenceon Extending Database Techndogy.

Merz, C. J, and Murphy, P. 1996 UCI repository of
machine leaning catabase.
[http://www.cs.uci.edu/~mlean/MLRepaository.html].

Michalski, R. 198Q Pattern reagntion as rule-guided
indwction inference |EEE Transaction On Pattern
Analysis and Machine Intelligence 2, 349-361

Murphy, P. and Pazzani, M. 1994 Exploring the dedsion
forest: an empiricd investigation o Occam’'s razor in
dedsiontreeinduction. J. of Al Research 1:257-275,

Pazzani, M., Mani, S. and Shankle, W. R. 1997 Beyond
concise and colorful: leaning intelli gible rules. KDD-97.

Quinlan, J. R. 1992 CA4.5: program for machine learning.
Morgan Kaufmann.

Quinlan, R. and CameronJones, M. 1995 Overseaching
and layered seach in empiricd leaning. |JCAI-95.

Schlimmer, J 1993 Efficiently inducing determinations: a
complete and systematic seach algorithm that uses
optimal pruning. ICML-93, 268-275.

Srikant, R. and Agrawal, R. 1996 Mining quantitative
asciationrulesin large relational tables. SGMOD-96.
Wang, K., Tay, W. and Liu, B. 1998 An interestingress
based interval merger for numeric association rules.

KDD-98.

Yoda, K., Fukuda, T. Morimoto, Y. Morishita, S. and
Tokuyama, T. 1997 Computing ogimized redili nea
regions for association rules. KDD-97.

