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Biquadratic Spline Approximations

By

Manabu SAKAI* and Riaz A, USMANI**

Abstract

We shall consider two kinds of spline approximations over a uniform mesh. The first
of them is mid-point spline interpolation and the second is histospline approximation. Our
methods don't need any knowledge of derivative values, that is, end conditions are homo-
geneous ones dealing with function values. The linear systems for computing approximations
may be conveniently and rapidly solved using the simple algorithm. Some numerical re-
sults are given which closely correspond with the prediction of the theory.

§ 1. Introduction

This paper is concerned with biquadratic spline approximations
of certain smooth functions f(x,y} in £=[0, 1] X [0, 1], Let n
and r be integers such that w > r > 0 ( w > 0 ) . By making use of B-

1 3 Y3\spline Q,3OiO =-n-S (~~ 1)'( • ) ( •*—0+ 5 we take the following spline
2. z=o \^/

function s(x, y) of the form

n n s(x v} =HY a\i * i J ^ V ^ J . / / / i "

with (/z + 2)2 undetermined coefficients aith i, j=—2(l)n — l. It is
known that
(i) in each region [*,., *i+1] X \_yh yj+l~\ (x~ih9 Jj=jh, i, j = 0(l)
n — 1) s coincides with an algebraic polynomial of degree 2 or less
with respect to x and jy, respectively,
(ii) jeC1^).

First we consider the mid-point interpolation problem :

(1-2) s
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where

. 7 = 1 ( 1 ) 1 2 - 1

With the help of the consistency relation (Lemma 2.2), the values
Sij = s(Xi, yj), i, j = Q(l)n may be determined by interpolation con-
dition (1.2) and 4n appropriate additional conditions. Here we take
these conditions to be boundary ones of the form :

(1.3)

where r = 3, 4 and J1? ^2(^15 ^2) are forward (backward) difference
operators with respect to x, y, respectively. In practical computation,
on using Lemmas 2.2—2.4 we have a system of linear equations
with stj whose coefficient matrix is block tridiagonal. This system
may be conveniently and rapidly solved using the sweep out method.
The restriction r = 3, 4 is not incisive. Because the constant terms
of the obtained system contain very large numbers in magnitude
for r>5. Since s depends upon (n + 2)2 parameters and conditions
(1.2)—(1.3) give us n2+4n equations toward the determination of
s,four additional conditions are required. On referring Figure 1, let us
impose only one condition on each linear segment of the boundary :

yz ^ _ ^ ^
( i ) • : given data

f i i ) O : determined by (1.2) and (1.3)
.

(iii) D : determined by (ii) and (1.4)

(iv) X : determined by (iii) and (1.2)

-e-
*o *i

Figure 1
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Since s(Q, jy) is a quadratic spline, by means of a consistency rela-
tion at mesh and mid points we have

2 °'*+-i- °.»—i- °-z+1 Oi> 0 > '~1

Hence values s0ii++, i = 0 ( l ) w —1 (which are unknown ones on the
boundary) are successively determined by coupling the above con-
sistency relation and additional end conditions (1.4) :

1 ,
(1.6) 2 ii-+) = (1/8)

Values sn,i++, si+±iQ and £*+-*.,„ on the boundary are similarly deter-
mined by the consistency relation and end conditions (1.4). Values
sij+*i i = l ( l ) w —1, j^0(1)f t — 1 (which are unknown ones denoted
by symbol * in Figure 1) are determined by

r n /&} (* . 4-fi? - 4 - 9 ^V1/ ^J \ai + l,J-f-&- l^ ̂  i,J+-t " i — !,.? + •£-/

/1 "y \ —— / r- . l ^ . ^7 m: 1 T1 1 J? 1

. Jo.j+i- and J«,j+-i.(which have been already determined).

Similarly values si+±j, i = Q ( l } n — l, j=l(l)n — l are determined by

1

. si+^.tQ and si+±<n(which have been already determined).

Hence we may have the following nine quantities in [#i5 xi+l~] X [y^

In terms of these values J may be easily represented at any points

in [>z-, *i+1] x [jyy, jyy+1] (see (4.15)).
Next we shall consider the so-called biquadratic histospline ap-

proximation determined by the conditions :

(1.9)
^ J - l -

x , = ( n -

with appropriate additional conditions. In this case we take the
following 4ft conditions together with (1.9) :
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(1.10)

Here we notice that the coefficient "4" in the above conditions is
related to "4" in Lemma 3.1 which is the main tool in analyzing
the histospline approximation. On using Lemmas 3.1 —3.3, from (1.9)
— (1.10) we have the block tridiagonal system of linear equations
with siiJ9 i, j =0 ( l )w . Since s depends upon (ra + 2)2 parameters, we

have to add four additional conditions to (1.10) toward the unique
determination of s. Then we impose only one condition on each
linear segment of the boundary, that is,

(1.11)

-H-

0 X

-e- -0 *

( i ) • : determined by (1.9) and (1. 10)
\( i i ) O '.determined by (i) and (1.11)
.(iii) D : determined by (ii) and Lemma 3. 6
I

(iv) X : determined by (i)3 (ii), (iii) and

Lemma 3. 5

Figure 2

On referring Figure 2, similarly as in mid-point interpolation,
may be uniquely determined.

§2. Some Lemmas for Mid-Point Interpolation

The following consistency relation is well known.

n-l

Lemma 2.1 ([2]). Let s(*) = 2 atQ^(x/h~i)9 then we have
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(2.1) (1/8) (^•+1 + 6^+J f_1) = ±-(si

On using this Lemma we have the following consistency relation for
the biquadratic spline.

n-l

Lemma 2.2. Let s(x9 y} = S «» y Q*(x/h —f)Q^(y/h — j),

(2.2) (1 /64) {ji+li y+

+ 6 fo.y + i + J/.y-! + 5-f + i.y + Jf- i .y) + 36jf-.y}

In order to transform the coefficient matrix of the system of
linear equations with unknown s i t j into the block tridiagonal one, we
shall require the following Lemmas 2.3 and 2.4. Let us denote the
right hand side of equation (2.2) be rf/.y, z, j=\(l)n — l, then we
have

Lemma 2.3. The boundary condition ^i(j0.o + 6^o.i + -yo.2>) =0 may be
rewritten as follows :

(2.3)

3, 4:

r-1
— 2 firidi,i

i = l

five some numerical values for the

Table 1

r ar

3 7

4 6

pi

72
65

quantities or and

K K
- 8

-10 1

Lemma 2.4. 77z£ boundary condition (dld2)
rs0i0 = Q may be rewritten

as follows :

(2.4) *o,o+*r(*o.i+Ji.o) +^1.
.

where we also give the numerical values for the quantities ^y, i, j = l(

r-l /or r = 3, 4 :
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Table 2. 1
Values of ft3,-

T^^^^L 1

1 81

2 -9

2

-9
1

Table 2. 2
Values of 64 #.y

^^\ j
2 ^ -^

1

2
3

1 2

4225 -650

-650 100

65 -10

3

65
-10

1

In order to prove the nonsingularity of the coefficient matrix
obtained by using the above Lemmas and the boundedness of its in-
verse, we shall require the following

Lemma 2.5([6]). // ff*?3 + 2il2, the tridiagonal mXm matrix J
is nonsingular and H/fHff)!! is bounded for sufficiently large m, where
stands for the maximum norm and

1 a

1 6 1

1 6 1

a 1

Let / be the m X m unit matrix, the m2 X m2 coefficient matrix of
the linear system with Sij may be represented as follows :

f Ji(ff) <rji(<r)
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~ I ai

I 61 I

I 61 I
ai I-

Hence on using the above auxiliary Lemma 2.5 we have the key

lemma on the coefficient matrix of the system of linear equations with

respect to sit^ i, j = 0 ( l )n .

Lemma 2.6. // 0-^3 + 2^2, the above block tridiagonal matrix Ji(0)

is nonsingular and \\Jil(0}\\ is bounded for sufficiently large m,

§ 3. Some Lemmas for Histospline Approximation

For histospline approximation we use the following consistency
relation whose proof will be done by substituting products of 1, x,

x\ (x-x^l and 1, y, /, (y-y^l.

n-l

Lemma 3.1. Let s(x, y) — 2 a,- jQj3(x/h—i)Q3(y/h—j), then we have
i,j = -2

C3-1) (1/36) fc/+u

Let the right hand side of the above equation be di j, then we have

Lemma 3.2. The boundary condition ^i(^o.o + 450,1 + ^0,2) — 0 may be

rewritten as follows :

(3.2) s(

=21=1

where we give some numerical values for the quantities ar and
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Table 3

r

3

4

*,

5
4

K

42
37

ft

-6

-8

ft

1

Lemma 3.3. The boundary condition (dld2)
rs0iQ = Q may be rewritten

as follows :

(3-3) Jo.O + *rU».l + Jl.o) + ftl.l=^Ziftjdij

/or £/z# quantities ^j are as follows :

Table 4.1
of j9?.y

1

49 -7

-7 1

Table 4.2
0/36A4,

1

1369 -296 37

-296 64 -8

37 -8 1

Let us define an mXm tridiagonal matrix J2(a} by

1 a

1 4 1

1 4 1

a 1 J

then the nf X nf coefficient matrix of the system of linear equations
with Sij is given by
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(<0 4/2(<7)

(0 = ar9 m=w + l).

In this case we have

Lemma 3.4. // (7^2 + ^/3, the above block tridiagonal matrix J2(<?)

is nonsingular and \\j2l(?}\\ is bounded for sufficiently large m.

In order to determine values .?,•+.$../, sitj+± and ,$•,•+-$.,_,•+-$., the following
consistency relations are required.

Lemma 3.5. 0?? each subinterval [#,-, xz-+1] X {j^

ryi-nf*i+i
(3.4) \ \ 5(x, y-)dxdy= (A2/36) {jf.y + J.-.

Proof. Since s is an algebraic polynomial of degree 2 or less

with respect to x and y in subregion [#,-, x^] X [jy;-, jpy+J, the above
relation is easily proved.

On combining Lemmas 2.1 and 3.5, we have

Lemma 3.6. On the interval [#,-, #/+1] x [j)'/_i, J);y+i], yo(

(35) ^f • +4^» -+^Z--L

, y)dxdy
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§4. Main Results for Mid-Point Interpolation

In what follows, for any finite dimensional row vector (£,•), let
us denote the transposed one (i.e., column vector) by (£*)'•

On combining Lemmas 2.2—2.4 we have

(4.1) (1/64) Ji(ar) (j0, Jiv • -9 O'= (do, dl9..., rfj'

where

(4.2) s-= (SQ • Si •..., sn •)'

By use of interpolation condition (1.2), the numbers d i t j , i, J = l ( l )
n — 1 are given by

(4.3) rf.-./ = 4-</<++./4

re-The remaining terms rf0fj, rf«,j, fif».o an(i ^f ,w , i, j = 0 ( l ) w may be
presented in terms of the above ditj :

' doj= (l/64)g]85d,-.j, dnj= (l/G^""1

d,- o- (1/64) 21 j8jd,-;-, rf,-ifl= (1/64) Z
3=1 3=1
r-l

(4.4)

On using Lemma 2.6, the system of linear equations with Sij, i, j =
0 ( l ) w may be solved for sufficiently large n. Before we proceed with
analysis, we notice that it is very easy to solve the system (4.1).
By multiplying the block diagonal matrix whose diagonal elements
are Jil(0r) on the both side of (4.1), we have
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(4.5)

- / orl

I 61 I
a a a

a « o

/ 67 /

arl I .

S o

?

B

sn

where let us denote Jil(0r}di by the same symbol d^ i = Q(l}n. From
(4.5), we have

(4.6)

That is, Sitj, z"5 j = 0 ( l ) ? 2 may be calculated by solving 2(w + l) systems
of linear equations which are different only in constant terms. For
any given vector k= (&0, Al5 . . ., £n), we only have to solve the matrix
problem

(4.7)

i

1 6 1

1 6 1

Zo

Zn-l

Zn )

This problem can be directly solved by the following simple algo-
rithm :

Since wQ(=ar}=6 for r = 4, it is impossible to calculate Wi. But
in this case, from the first and second equations of (4.7) we have
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from which follows

Hence we have a system of linear equations which is directly solved

by the above algorithm :

{ 1 0

1 6 1

1 6 1

6 1

Zn-l

Zn *.

Let A: and /> be integers such that 0<£</? and 4</?. Then, for
, let us denote

^j f
f ( * * ) v \ -- ° J

By the means of Taylor series expansion, we have

f (1/64) [ei+M

(4.8)

Hence, on using Lemmas 2.3, 2.4 and 2.6, we have

Theorem 1. // /(*, y)

( i ) Ay-^y=
(4.9) i,J

/or flwj; mesh points (xh y^ bounded away from the boundary.

Proof of (ii). From (4.1), we have
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(4.10) /!(*,) (*0, el9 . . ., O' = (4 4 - - ., 4,)'
where

. i

j=(doj, dlth . . . , rfBiJ.)'.

Since rfi,j= (82/j4/128)g f ij + ' • •, j, j = 1 ( l ) n — 1, on using the well known

technique in (Kershaw [3]) we have

(4.12) "the i-th component of the vector Jil(o?)d"

for any mesh points (xiy jy/) bounded away from the boundary. In

a manner similar to the derivation of (4.7), we have

(4.13) (*,-.o, eitl9 . .., eiiny

where for any vector c — (CQ, c^ . . . , cn) ', let us denote its i-th com-
ponent ci by (CQ, £15 . . . , O 'im
On using again Kershaw's technique we have the desired result.

Next we shall consider the global error estimation. By using
Theorem 1, (1.7) and (1.8), we have

for any points (xiy yj+±) and (xi+±, y^ bounded away from the bound-
ary. Since s is a quadratic polynomial with respect to x andj,

(4.15) s(x,

+ si++J++r {(x- xi++) /h, (y -

where

(4.16)

Hence we have

Theorem 2. For any points bounded away from the boundary, we have
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(4.17) /(*, jO -s(x, y) = -(h*/6}-x-- x

+0(/z4),

§ 5. Histospline Approximation

On using Lemmas 3.1—3.3 we have a system of linear equations
with Sij whose coefficient matrix is block tridiagonal. From Lemma
3.4, sfj, z j = 0 ( l ) w are uniquely determined for sufficiently large n.
Next we shall consider the asymptotic error estimation :

Theorem 3. ///(*, jv) eC6(^), we have

C i ) fij-sij
(5.1) i, j = 0 ( l ) » ;

( i i ) /^-^-

for any mesh points (xiy jy/) bounded away from the boundary.

Proof. From Lemma 3.1, on expanding f about (#;, yj) we have

( 1/36) {^+i>j+i

(5.2)

Application of Lemmas 3.2—3.4 to (5.2) yields asymptotic expansion
(i). The proof of (ii) is similar to that of (ii) in Theorem 1.
By use of Theorem 3 and Lemma 3.6, we also have

(5.3) /i+^.J.+^«j,.+^^=-(13AV5760)ft++iJ.++

+ 0(/z6), /z->0

for any mid-points (xi++, yj+±) bounded away from the boundary.

§ 6. Numerical Illustration

In this section we shall consider the application of the above
stated methods by taking f(x, y)=exp(x+y). Here we have given
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the numerical results only for r = 4. The approximate rate of de-

crease of the errors, 0(/za), where a is computed from the observed

decrease in the error from /z = l/16 to 1/32, is given in parentheses.

An comparison with Theorems 1 and 3 shows excellent agreement

with the asymptotic rates.

Table 5
Observed errors of biquadratic spline interpolation at mid-points.

(x, jO

(0 ,

(o ,
(0 ,

(f
(1
\ 2 '
( 1 ,

h

0)

2")
1)

1)

0
1)

1/8

0. 337-3*

0.281-3

0. 738-3

0.116-4

0.471-3

0. 152-2

1/16

0. 186-4

0. 155-4

0. 451-4

0. 648-6

0. 331-4

0. 107-3

1/32

0. 109-5

0.913-6

0. 280-5

0. 405-7

0. 220-5

0. 714-5

(4.1)

(4.1)

(4.0)

(3.9)

(3.9)

(3.9)

* We denote 0. 337 XlO'3 by 0.337-3.

Observed errors

T^T^^L
( 0 ,

( o ,
( 0 ,

(I
\2'

(f

(1,

0)

I)
1)

1)
0
1)

1/8

0. 244-3

0. 205-3

0. 535-3

0. 128-4

0. 346-3

0.111-2

Table 6

of biquadratic histospline

1/16

0. 136-4

0.113-4

0. 328-4

0. 462-6

0. 241-4

0. 738-4

approximation.

1/32

0. 796-6

0. 665-6

0. 204-5

0. 288-7

0. 160-5

0. 520-5

(4.1)

(4.1)

(4.0)

(4.0)

(4.0)

(3.9)

The observed errors eM and eH at f —, —J associated with mid-

point interpolation and histospline are 0.648-6, 0.405-7 and 0.462-6,
0.288-7, respectively, for h=l/l6 and 1/32. Hence we have

eM/eH = 1.403--., 1.406- •• for A = 1/16 and 1/32. On the other
hand, the theoretical value for eM/eH is 180/128= 1.406- •-.

1 1From Tables 5 and 6 we also have at •-=-, -=

(1/52) (180*M-128^) = -3.5 x 10'12 for h = 1/32.
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This result is predicted by the following relation (which is easily
obtained from Theorems 1 and 3) :

for any mid-points (tfivi/29 y 3+1/2) bounded away from the boundary.
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