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Abstract—This work is devoted to creation of local average 

interpolating splines, which can be further used for solution of 

various problems, e.g for building surfaces by data from aerial 

and satellite imagery. An iterative process for obtaining of local 

splines that converge to average interpolating splines with any 

given accuracy is created. Examples of application of the 

obtained splines by example of computer graphics problems are 

given. 
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I. INTRODUCTION 

One of important areas of UAVs application is the 
observation of Earth’s surface during flight and digital 
photographing of chosen areas. Automatic flight of UAV 
depends on information about terrain which is usually 
presented in vector form. Splines are important tools for 
complex surfaces approximation with interpolating splines 
method being one of the most popular methods.  

In [1] we have created a method of local almost 
interpolating splines of two variables. If there is enough initial 
data, application of interpolating spline built on sparse grid 
leads to the loss of initial data. To avoid such losses, it is 
recommended to use math tools which aggregate data. Such 
tools include splines that preserve the average value of the 
approximated function.  

This work is devoted to the solving of this problem. 

Another important problem is analysis of objects 
discovered during aerial photography which often requires 
image resizing. This work is concerned with this task too.  

II. SURFACE APPROXIMATION 

Approximated surface is given on rectangular grid (ih,jH) 

where (i,j)  Z2. Biquadratic spline s of minimal defect with 
knots at the points (ih,jH) is called average interpolating spline 

for function f with bounded values f(u,v) over cells (u,v)  
[ih,jh] × [(i+1)h,(j+1)h] if 
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Let us consider surface approximation by tensor product 

of B-splines defined on a rectangular grid (ih,jH) where (i,j)  
Z2. Surface S2,2(u,v) defined by tensor product of second-order 
B-splines has the form 

  
  2

2,2 i , j 2,2

i , j Z

1 1
S P,u,v P N u i h,v j H ,

2 2

    
         

    
 

where (u,v)  R2 and N2,2(u,v) ≡ B2(u) ∙ B2(v) is a normalized 
tensor product of second-order B-splines on grid (i,j) which 
has the following plot (fig. 1). 

 
Fig. 1. Plot of function N2,2(u,v). 

Accordingly, we obtain the spline formula in matrix form: 
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III. MAIN RESULTS 

As noted before, in each cell of the partition spline must 
satisfy the following condition: 
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Using (1), we obtain that 
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Let us denote 
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Let 
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From this and from (2) it follows that 
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Therefore, if spline coefficients Pi,j are defined by (3), then 
for all (i,j) 

 
  

 
  i 1 h j 1 H i 1 h j 1 H

u ih v jH u ih v jH

1 1
S P,u,v dv du f u,v dv du.

h H h H

   

   


     

Thus, when spline coefficients are defined by (3) spline 
S2,2(P(f),u,v) interpolates on average function f over each cell 

(u,v)  [ih,jh] × [(i+1)h,(j+1)h]. 

Let 
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we denote the corresponding spline as 
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If function f(u,v) has all continuous derivatives up to fourth 
order inclusive, then 
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Thus, spline (4) is an average interpolating spline with 
precision of O((max{h,H})4) [2]. 

IV. EXAMPLE 

The proposed method is based on the requirement of the 
existence of the fourth derivative on the surface. However, it 
allows one to get satisfactory results even for non-smooth 
surfaces. As an example, application of the proposed method 
for image resizing is given. 

We consider pixels as cells and color value (for each color 
component) as the value of f on cell. We build spline by this 
data and then (using a new grid that is different from original 
one) get values for new pixels. By repeating this procedure 
once again we obtain image with original width and height 
that has been distorted two times by application of splines. 
Then we can compare the original image with the image which 
was distorted by splines application. 

PSNR (peak signal-to-noise ration) is used as a criterion 
of images similarity. For two images I, J of one and the same 
size H×W 
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Experiments were conducted using image collection 
TID2008 [3] with image Lenna added. In this article PSNR is 
given for images that were first doubled in size and then were 
resized back to original size. One can notice that the average 
interpolating spline demonstrated better results than the 
interpolating spline and they both showed better results than 
the standard B-spline (fig. 2). 

 
Fig. 2. PSNR comparison for S2 interpolation, S2 average and standard B-

spline. 

Comparison with other resizing methods (fig. 3) 
demonstrated that only Lanczos resampling produces results 
that are not inferior to the results obtained by application of 
our method. 

 

Fig. 3. Comparison of different image resizing methods. 

However, Lanczos kernel 
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pronouncedly “oscillating” derivatives (fig. 4). Therefore, it is 
poorly applicable for surface approximation when not only 
approximation of surface but also approximation of 
derivatives is needed. 

 
Fig. 4. Lanczos kernel (a=5), its first and second derivatives. 

V. CONCLUSION 

The proposed method enables one to create local average 
almost interpolating biquadratic splines. Experiments have 
demonstrated good results of application of such splines even 
for non-smooth surfaces, i.e. in image resizing. 
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