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technique [8] was generalized to the first public key 
cryptosystem and is quite secure but computationally ex- 
pensive. The current work describes a computationally 
efficient public key cryptosystem. 

Recently, Rivest, Shamir, and Adleman [ 131 have pro- 
posed another public key cryptosystem that yields signa- 
tures more directly because the density of solutions in 

‘their problem is one. Their system also requires a smaller 
key (apparently 600 bits versus 20 kbits). Neither system’s 
security has been adequately established, but when 
iterated, the trapdoor knapsack appears less likely to 
possess a chink in its armor. When used for obtaining 
signatures the trapdoor knapsack appears to be the 
weaker of the two. Both public key systems clearly need 
further certification and study. 
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Compression of lndiwdual Sequences via 
Variable-Rate Coding 

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER, IEEE 

Abstract-Compressibiity of lndividmd sequences by the class of gener- 
alid fide-state iuformatlon-lomless encoders ls investigated. These en- 
codersrpnoperateinavariable-ratemodeasweUasaflxedrateone,nnd 
they allow for any fllte-state scheme of variable-length-to-variable-Ien@ 
coding. For every individual lnfllte seqence x a quantity p (x) is defined, 
calledthecompressibil ityofx,whirhisshowntobetheasymptotieatly 
attainable lower bound on the compression ratio tbat cao be achieved for x 
by any finite-state encoder. This is demonstrated by means of a amshc- 
tivecodtngtbeoremanditsconversethat,apartfnnntheirafymptotic 
siguificauca?, alsu prwidc useful performance criteria for finite and practf- 
cal data-compression tasks. The proposed concept of compressibility is also 
shown to play a role analogous to that of entropy in classicai informatfon 
theory where one deals with probabilistic ensembles of sequences ratbez 
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than with individual sequences. Wbiie the deflnition of p (x) allows a 
different machlne for each different sequence to be compressed, the 
coustruetive eodiug theorem leads to a universal algorithm that is asymp 
to&ally optfmal for ail sequences. 

I. INTRODUCTION 

I N A RECENT paper [l], data-compression coding 
theorems and their converses were derived for the class 

of finite-state encoders that map at a fixed rate input 
strings drawn from a source of (Y letters into equally long 
strings over an alphabet of /3 < (Y letters. In the context of 
data-compression, the aim is to m inimize the number of 
bits/symbol log, /3, while securing zero or negligibly small 
distortion. For every individual infinite sequence X, this 
m inimal bit/symbol rate was shown in [I] to be equal to a 
quantity H(x) that, in analogy with the Shannon entropy 
(which is defined for probabilistic ensembles rather than 

OOlS-9448/78/0900-053OWO.75 01978 IEEE 



ZIV AND LPMPEL: COMPRESSION OF SEQUENCES 531  

individual sequences),  corresponds to the smallest coding 
rate for x under  which the decoding error-rate can be  
made  arbitrarily small. 

In this paper, compressibil ity of individual sequences is 
investigated with respect to a  broader class of encoders 
that can operate in a  variable-rate mode  as well as in a  
fixed-rate one and that allow for any finite-state scheme 
of variable-length-to-variable-length coding.’ On  the other 
hand, no  distortion is allowed, and  the original data must ~ 
be  fully recoverable from the compressed image. This 
class of encoders can be  mode led by the class of finite- 
state information-lossless general ized automata 121, [3]. 

In our mode l, an  encoder E is def ined by a  quintuple 
(S,A,B,g,f) where S is a  finite set of states, A is a  finite 
input alphabet, B is a  finite set of output words over a  
finite output alphabet, g  is the “next-state” function that 
maps S x A into S, and  f is the output function that maps 
SXA into B. 

By allowing the words in B to be  of different finite 
lengths, we allow for block-to-variable coding, and  by 
including in B the null-word A (i.e., the “word” of length 
zero), we allow for any finite-state scheme of variable-to- 
variable coding. 

When  an  infinite sequence x=x,xz* * *, xi EA is fed 
into E = (S, A, B,g,j), the encoder em its an  infinite 
sequence y =y,y,. a., yi E B while going through an  in- 
finite sequence of states z = z,zz. * . , zi E S, according to 

Yi =.Kzi9 xi> 

‘i+l = g(zi3 xi)? i= 1,2;. . 

where zi is the state of E when it “sees” the input symbol 
Xi. 

A finite segment xixi+ 1  * * . xj, 1  < i < j, of x will be  
denoted by x{; similar notation will naturally apply to 
finite segments of other sequences. Following conven- 
tional practice, we shall extend the use of the encoder 
functions f and  g  to indicate the output sequence as well 
as the final state, which results from a  given initial state 
and a  finite sequence of input letters. For instance, we 
shall occasionally write f(z,,x;) for y; and  g(zi,x,“) for 
Zn+l* 

An encoder E is said to be  information lossless (IL) if for 
all z, E S and all x;‘E A”, n  > 1, the triple 
{zl,f(zl,x;),g(zl,x;)} uniquely determines x;. E is said 
to be  information lossless offinite order (ILF) if there exists 
a  finite positive integer m  such that for all z, ES and all 
x;” E A”, the pair {zJ(z,,x;t)} uniquely determines the 
first input letter x,. It is easy to verify [3] that if E is ILF 
then it is also IL, but there exist IL encoders that are not 
1LF.Z 

‘W e  regard block-to-block, block-to-variable, and  variable-to-block as 
special cases of variable-to-variable coding. 

ZEven [3] presented an  algorithm for determining whether a  given 
automaton is either IL, ILF, or neither. For an  automaton with s states, 
the algorithm will take a  number  of steps that are proport ional to s*. 

In the sequel, we assume the IL or the ILF property 
depending on  which leads to a  stronger result. For exam- 
ple, we prove a  coding theorem (Theorem 2) by means of 
an  ILF construction, while its converse (Theorem 1) is 
proved under  the broader IL assumption. 

To  simplify the discussion without any real loss of 
generality, we also assume throughout that the output 
alphabet of the encoder is binary and that the initial state 
z, is a  prescribed fixed member  of the state-set S. 

G iven an  encoder E=(S,A,B,gJ) and  an  input string 
x;, the compression ratio for x; with respect to E is 
def ined by 

L(Y3 
PA-G) A - n  log, a  

where (Y = IAl, y; =f( ~1~x3 L(~;)=Z:‘i’=l4~i), and  ICYi> is 
the length in bits of yi E B. (Note that when yi=X, /(yi)= 
0.1 

The  m inimum of pE(x;) over the class E(s) of all 
finite-state IL encoders with (Al = (Y and IS ( < s is denoted 
by Pi&;). mat is 

Furthermore let 

and  

It is clear that for every individual sequence x, 0  <p(x) 
< 1. This normalized quantity p(x) that depends solely on  
x will be  referred to as the (finite-state) compressibil ity of 
x. In Theorem 1  (the converse-to-coding theorem), we 
derive a  lower bound on  p&x;) and  show that in the 
lim it this bound approaches the normalized Lempel-Ziv 
complexity [4] and  becomes a  lower bound on  the com- 
pressibility of x. In Theorem 2  (the coding theorem), we 
demonstrate, using a  variant of the author’s universal 
compression algorithm [5], the existence of an  asymptoti- 
cally optimal universal ILF encoding scheme under  which 
the compression ratio attained for x tends in the lim it to 
the compressibil ity p(x) of x for every x. It is important to 
note that apart from their asymptotic significance, the 
results of Theorems 1  and 2  also provide useful perfor- 
mance criteria for finite (and practical) data-compression 
tasks. 

The  concept of compressibil ity as def ined here, like the 
quantity H( *) in [I], seems to play a  role analogous to that 
of entropy in classical information theory where one deals 
with probabilistic ensembles of sequences rather than with 
individual sequences. This analogy is reinforced by Theo-  
rems 3  and 4, where our concept of compressibil ity is 
examined from a  probabilistic point of view. 

The  remainder of this paper  contains two parts: de- 
scriptive part (Section II) where all the results are stated 
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and discussed and a formal part (Section III) where all where 
proofs except that of Theorem 2 are given. The proof of 
Theorem 2, which is constructive and thus informative, is 
presented in the mainstream of Section II. 

n(k)= f, i2’=(k- 1)2k+‘+2. 

It is easy to verify that when each u(i) is parsed into its 2’ 

II. STATEMENT AND DISCUSSION OF RESULTS 
distinct i-tuples, we obtain a parsing of UT(“) into a maxi- 
mum number of distinct phrases, namely, 

Our first result establishes a lower bound on the com- 
pression ratio attainable by any encoder E, from the class ,(,tfW)= i 2ic2k+l-2. 
E(s) of IL encoders with no more than s states, for any i=l 

finite input string X; over an alphabet A of (Y letters. In For example, u:(3) is parsed as follows: 
the theorem below and elsewhere in the sequel, log k u~~~~=0,1,00,01,10,11,ooo,001,010, 
means log,k. 011,100,101,110,111. (8) 

Theorem I (Converse-to-Coding Theorem): For every x; 
EA” 

For this particular sequence U, inequality (7a) implies 

c(x;)+? 
PEWW ) n log a 1% 

c(x;)+? 
4$2 

+ 2s2 
- (5) nloga 

where c(x;) is the largest number of distinct strings (or 
“phrases”) whose concatenation forms xl”. (The proof of 
this theorem is given in Section III.) 

It was shown in an earlier paper [4, Th. 21 that for all 
x;EA” 

c&x;)- l< c(xF)< nlogcw 
(l-e,) logn (6) 

where c&x;) is the Lempel-Ziv complexity of x; and en 
satisfies lim ,,, l ,, = 0. From (5) and (6) it follows that 

pEoj(x) = lim  sup pEcsj(x;) >lim sup 44) 1% 4x;) 
n+m n+cc n log (Y 

p(u) > lim  
(2k+‘-2) log (2k+‘-2) = 1 

k-too (k- 1)2k+‘+2 ’ 
In our next result we employ a variant of the authors’ 

universal compression algorithm [5] to demonstrate the 
existence of an ILF compression scheme under which, for 
every x, the compression ratio attained for x; tends to 
p(x) as n tends to infinity. 

Theorem 2 (Coding Theorem): For every n > 0 there ex- 
ists a finite-state ILF encoder & with s(n) states that 
implements a block-to-variable code with the following 
performance characteristics. 

i) For any given block length n and every input block 
x;, the compression-ratio attained by & satisfies 

&w) < c;;;;l log (2U(C(X3 + 1)); (9) 

which implies the bound (7a) of Corollary 1. The bound t e h 
(7b) of this corollary follows directly from (5) and (6). 

compression ratio attained for successive blocks 

Corollary 1 (Compressibility Bounds): 
x(;-~)~+,, i= 1, 2;. . , satisfies the same inequality with 
xl;- ijn+, replacing x;. 

c(x;) log c(x”’ ii) For every finite s, 
p(x) = ji% p,(,,(x) >lim sup 

n-+m n log (Y PQ(x;)<P,(,)(x;)+S,(n) 

p(x) Z  lim  sup lim  sup 1 where 

n-+co k+co knhw $s 6,(n)=O. 
k-l 

. izo c(x$;)“) log c(x$:;)“). (7b) 
iii) Given an infinite input sequence x, let &x,n) 

denote the compression ratio attained for x by G while 
feeding & with successive input blocks of length n. Then 

It also follows from (6) and (7) that lim ,,, sup I for any e >0 

(c&x ;) log n)/(n log a), the normalized Lempel-Ziv eAx9n)<dx)+4(x,n) (11) 
complexity of x, serves as a lower bound on the compress- where 
ibility p(x) of x. 

An interesting application of the compressibility bound 
is the use of (7) to identify certain infinite sequences x 
that, while being rather easy to describe, satisfy p(x)= 1 Proof: The proof is constructive, and before going 
and thus are incompressible by any finite-state IL en- into computational details, we present a short outline of 
coder. To illustrate this point, let u(k) denote the binary the construction. For the encoder &, we employ an ILF 
sequence of length k2k that lists, for example, in lexico- finite-state machine that realizes a concatenated coding 
graphic order, all the 2k binary words of length k, and let scheme by combining a fixed block-to-variable outer code 

with a state-dependent variable-to-variable inner code. 
u;ck)= u(l)u(2). . . u(k) The inner code is used to encode sequentially and state 
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dependent ly growing segments of an  input block of rela- 
tively large length n. Upon completion of a  block the 
machine returns to its initial state, thus “forgetting” all 
past history before starting to encode the next input block. 

The  segments of a  block that serve as input words of 
the inner code are determined according to a  so-called 
incremental parsing procedure. This procedure is sequen- 
tial, and  it creates a  new phrase as soon as a  prefix of the 
still unparsed part of the string differs from all preceding 
phrases. The  parsing is indicated as 

and is called incremental if the first p  words x~?-,+ ,, 
lCj<p, are all distinct and  if for allj=1,2;-.:p+l 
when nj - T-, > 1  there exists a  positive integer i <j such 
that x2+, + , = x2-;:, . 

It is clear from this definition that if (12) is an  incre- 
mental parsing of x;, then n, = 1. The  last word x;+ i may 
or may not be  distinct from the first p  words, and  for 
every word of length I > 1, its prefix of length I- 1  can be  
found as an  earlier word of the parsing. For example, (8) 
is an  incremental parsing of Q3). 

Now let xn”_“, + , k X, the word of length zero, and  (since 
x; = Ax;) let us adopt the convention that xnn_O,+, is always 
the initial word of an  incremental parsing. Also given a  
word W , let d(w) denote the word obtained by deleting the 
last letter of W . It follows that for every j = 1,2,. . * ,p + 1  
there exists a  unique nonnegat ive integer r(j)= i<j such 
that 4x,:i,+1)=x;~,+1. 

The  incremental parsing of a  given block x; and  the 
coding of the words determined by it are executed sequen- 
tially as follows. To  determine the jth word, 1  Cj <p + 1, 
we take 9  to be  the largest integer, not exceeding n, for 
which d(xnyel+ i) equals some earlier word, for example, 
xnn’_,+,, and  we set r(j)=i (e.g., forj=l, n,=l, x:=x,, 
d(x,)=h, and  n(l)=O). Having determined x2-,+i, it is 
encoded into the base-2 expansion of the integer 

where Z, is a  predetermined mapp ing from the input 
alphabet A onto the set of integers 0  through (Y - 1. Since 
O<n(j) Cj- 1, it follows that 

oqx~~*+, )<(j-l)a+a-l=j,-1, 

and  the number  of bits required to encode the jth word is 
Lj = [log (jo) 1, the least integer that is not smaller than 
1% U4. 

It is easy to verify that this code is uniquely decipher- 
able with bounded delay. G iven a  binary sequence b= 
b,b,. . . that begins with the coded image of x;, we can 
determine x; sequentially by reversing the encoding 
procedure. Namely, b  is parsed into the codewords 
b~,‘+,,b~;+,,. . . , which are decoded into the original 
phrases according to the following recursive procedure. 
Initially, set j=O, kj =O, and nj =O. G iven the current 

values of j, $, and  ni <n, procede with the following. 
i) Set $+,=~+[log((j+l)a)]. 
ii) Take Z(X~?;{) to be  the integer whose base-2 repre- 

sentation is given by b[f;;, and  determine the nonnegat ive 
integers i and  r that sa’tisfy 

Z(x$\) = ia + r, O<r<cr-1. 

iii) Take a=Z,-‘(r), and  if nj+(ni-nip,+ 1) >n, set 
=n take x” 

z+‘n. l&ers of 2;’ 
to be  the word formed by the first 

n._ + la, and  stop. O therwise, set nj+, = nj 
+niLni-,+l, take x2;;= I x2-,+ ,a, increment j, and  re- 
turn to (i). 

For cont inuous decoding of successive blocks, the 
“stop” instruction in iii) should be  replaced by the “reset” 
instruction: set j, 4, and  nj to their initial zero value and 
return to i). 

The  total number  of bits that go  into the coding of an  
input block x; that is parsed incrementally into p  + 1  
words is given by 

P+l P+l 

L= jzI Lj’ jzl px (.b)]* 

Hence 
P+l 

L < x log (2CXj) < (p + l)(log (p + 1) +log (2a)). 
j=l 

Since p  <c(x;), the maximum number  of distinct words 
into which x; can be  parsed, it follows that the compres- 
sion ratio attainable by the described encoder & for x; 
satisfies 

P&w) < $;;+al log [2a(c(x;)+ l)], 

which proves (9). 
From (5) and  (9) after some man ipulation, we obtain 

A(4 PGCG I( PE(S)M I+ ~ n log (Y 
where c = c(x;) and  

2a(c + 1) 
W=(c+l) 1% c+s2 

- (s2- 1) log (c + 32) + (c + s’) log (4s2). 

It is easy to verify that A(c) increases with c, which by (6) 
implies 

A(c) - (14) n  log cr * 

It is also easy to verify that 

&% &(n> = 0, 

which together with (13) and  (14) proves (10). 
F inally, the compression attained by our encoder & for 

an  infinite sequence x is by definition: 

Ps(x,n) = lim  sup 
k+czg 
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where Fi is the number of bits used to encode the ith 
block x;i”- l)n + , of x. Since (9) and (10) hold for any input 
block of length n, we can write 

L. 
A =P&-l)n+l n log (Y )<PE(s)(X’i;.-l)n+l)+6s(n). (16) 

From (15) and (16) we obtain 

pdx,n) G&(n)+ lip+sip i ,$I PB(s)(X~-l)n+l)~ 
Z-l 

which reduces to 

dx,n) <4(n) +~,&x)- (17) 
where lirnn+- S,(n)=O. By (4) we can write p,,,(x)=p(x) 
+ &T(x), where lim,,, 6,*(x)=0 for all x. Hence given x 
and any c > 0, there always exists a sufficiently large finite 
s for which 6,*(x) < l . Since (17) holds for every finite s, it 
follows that for any e > 0, we can write 

pE(x,n)<p(x)+E+6,(n), 

which proves (11) with &(x,n) g E+ 6,(n) and completes 
the proof of the theorem. Q.E.D. 

It is easy to verify that inequality (7b) and the proof of 
Theorem 2 also imply the following corollary. 

Corollary 2: Let p(x{) denote the number of phrases in 
the incremental parsing of x{. Then for every infinite 
sequence x, 

p(x) = lim sup lim sup 1 
n+oo k-m knhv 

We proceed now to examine the concept of compressi- 
bility from a different point of view. Given w E A’, an 
arbitrary word of length I over A, and an input string 
xf EA”, let 

qx;z;, w) = 
( 

1, if xi’,‘: = w O<i<n-I. 
0, otherwise 

(18) 

Then the relative frequency of occurence of w in x; is 

which can also be interpreted as a “probability measure” 
of w EA’ relative to x;. The corresponding normalized 
“entropy” is then given by 

fiiw= - & ,ziA, p(x;P 4 1% JwY w> (20) 
where by definition P log P = 0 whenever P =O. Now we 
take 

and 

fi/(x)=lim sup Z?[(x;) 
n+cc (21) 

z?(x) = /lI z?/(X). (22) 

The existence of this limit is established in Section III 
where we also prove the following results. 

Theorem 3: For every infinite sequence x 
p(x) = A(x). (23) 

Theorem 4: If x is drawn from an ergodic source with 
entropy H then 

Pr [p(x)=H] =l. (24) 
Corollary 3: If x is drawn from a stationary source with 

entropy H then 
Ep(x) = H (25) ’ 

where E denotes expectation. 
In a recent paper [l], compressibility of an individual 

infinite sequence x with respect to an IL fixed-rate en- 
coder is measured in terms of a “finite-state complexity” 
H(x), and results similar to those obtained here for p(x) 
are established there for H(x). Thus the roles played by 
p(x) and H(x) for individual sequences are analogous to 
that played by the Shannon entropy for probabilistic 
ensembles of sequences, and both Ep(x) and EH(x) are 
appropriate candidates for a concept of “generalized ent- 
ropy” in the nonstationary case. 

III. PROOFS 

Proof of Theorem I: Given an encoder E E E(s) and an 
input string x;, let 

x;=x;~x~,~+,x~~+,~~~x,:~,+, 

be a parsing of x; into c = c(x;) distinct phrases, and let cj 
denote the number of phrases x:-, + r, 1 < i < c, (where 
n, A 0 and n, 2 n) for which uq-, + ,, the corresponding 
output phrase, isj-bits long. Since the input phrases are all 
distinct, it follows from the IL property of E that 5 < s22j 
for all j. It is also clear that to obtain a lower bound on 
the length L(y;) in bits of JJ;, we may overestimate 5, 

j=o, 1; * *, at the expense of Zi>jci, provided the sum of 
all 5 remains equal to c. Thus if 4 and r are the nonnega- 
tive integers satisfying c = 4s2 + r, 0 < r < s2, and if 

9=,io2’+Ak, o<Ak<zki’, 

then we may assume that 5 =s22j for 0 < j < k, ck+, = 
s2Ak + r, and 5 = 0 for j > k + 1. Therefore 

c=s2 5 2j+s2Ak+r=s2(2k+1+t) w-9 j=o 
where 

t=A,-l+L 
2’ (27) 

/ s 

and 

=s2[(k-1)2k+‘+2]+(k+l)(s2Ak+r) 

=s2(k- 1)(2k+’ +t)+s2(k+3+2t) 
=(k-l)(c+s2)+2s2(t+2). (28) 
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From (26) we have Lemma 2  (General ized Kraft Inequality): For any given 

k-l=log .+ 
IL encoder E with s = 1  S 1  states, 

-2=log S-l,, [ 1+ (fe+-ls)4si]. 
Kk x 2- (30) 

WEA which together with (28) yields 
where 

(29) LCw>=~ {L(fhm 
L(g) > (c + s2) 

( 
log 

where 

(31) 
and L(f(z, w)) is the length in bits of f(z, w), the output 
from E when started in state z and fed with w. 

7= 2s2( t + 2) 
c+s2 

-log l+. ‘2  
[ 

. 
c-s t I Proof: Let $  denote the number  of w E A’ for which 

Let $I = ((t + l)s2)/(c - s2t). Then  L(w)=j. Then  K=Xj$2-j and  CX’=X~$. By the IL prop- 

r=2sz+ 
c+s2 

++-log(l+“). 

erty of E, it is clear that 4  < s22j. It is also clear that to 
obtain an  upper  bound on  K, we may overestimate kj, 
j=O, 1; * . , at the expense of Xi,jki, provided the sum of 

and  by (26) and  (27) we have all the $  remains equal  to (Y’. Thus we can write 

q,= A,+ 6  
( 1  

2-(k+‘). K< 5  (s22j)2-j= s’(m + 1) (32) 
j=o 

, (t+l).? 1  

From the definitions of Ak and r it follows that 0  < + < 1, where m  is the integer satisfying 
and one can readily verify that over this interval, 2+ > (1 m-1 

++) log (1 ++). Hence 7  > (2s2)/(c + s2), which together af< 2  s22j. 
with (29) yields 

jzo s22j< j=o 

L(y;)>(c+sq log %+2?. 
Furthermore 

m-l 

Dividing both sides of this inequality by n  log IX, we 
2”=l+ x 2%$+1 

j=o 
obtain the bound of Theorem 1. Q.E-D- which together with (32) yields (30). Q .E.D. 

Lemma 1: The  lim it of (22) exists. Proof of Theorem 3: From the definition of L(w) in 
Proof: By (20) and  (21) we can write (31) it is clear that for any IL encoder with s states 

PE(S)M ) =  & $I, L(f(zi~xi)) 

. l iy+zp 2  P(x;, w) log P(x;, w) 
wEA’+m 

=& ;$I1 ‘L(f(zi~xi)) 

= f-& lim  sup 2  x P(x;,uv) 
n-+m uEA’ oEAm 

fyx;, UU) 
e-q, u) 

+log P(x;,u) 1 
=lri,(x>+ & lim  sup x P(xl”,v) By (19), we can rewrite (33) as 

n-+ca t IEAm 

P(x& uu> qx;, u) PE(S)M > 2  
n-l+1 

2  P($ w)L(w), 

* .SA, pb;,4 log 

In log a  wEAf 

P(x;,W) * and  we obtain 

By the convexity of the logarithm function, we can further 
write 

. 
A I 

(I+ m)Z?l+,(x) < ZH,(x) +- log (Y By (20) and  (21) we have 

. lim  sup x P(x;,u) log x 
Jyx;, u) 

n+m t IEAM uEA’ p(x;,v) 

which reduces to 
A A 

(I+ m)H,+,(x) < &,(x) + mH,(x). 
Hence lfi[ is subaddit ive in I, and  since 0  < k/(x) < 1, the 
lim it of (22) exists. Q .E.D. 

lim  sup 
n+oo &x) - PE(S)W Q &y 

- 2  w?+% p(x;,w) -w) 
W E A ’ 

= & lim  sup x P(x;,w) log i(iy”:, 
n+cc WEA’ 1, 

(33) 
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which by the convexity of the logarithm function and where P(x, w)=lim,,,P(x;, w) and Pr (w) is the proba- 
Lemma 2 reduces to bility measure of w. Therefore, if H, = l/KX wEA I Pr (w) 

6(x) -P.&X) g$& liF+zP log wlA,2PL(w) 
log Pr (w), we obtain 

Pr [fi,(x)=H,]=l, 

=&(l+log $). 
which when I approaches infinity becomes 

Pr [I?(x)=H]=l. 
Taking the limit as I approaches infinity, we obtain From this and Theorem 3, we obtain Theorem 4. Q.E.D. 

ax) -PE(s)w < 07 (34) 
and since (34) holds for every finite s, we have ACKNOWLEDGMENT 

@4~PP(X) (35) The authors are thankful to M. Cohn, H. D. Shapiro, 
for every infinite sequence x. D. Slepian, and A. D. Wyner for many helpful discus- 

Using Huffman’s coding scheme for input blocks of sions. 
length I, it is easy to show [6] that 

log (Y 
p(x) ( Ij,(x) +I 9 

which when I tends to infinity becomes 

P(X) ( ax) 
121 

(36) 
for all x. Combining (35) with (36) completes the proof. f31 

Q.E.D. [41 
Proof of Theorem 4: Since x is drawn from an ergodic 

source, it follows that for every positive integer I and for f5] 
every WEA’ 

Pr [ P(x,w)=Pr (w)] = 1 f61 

REFERENCES 

J. Ziv, “Coding theorems for individual sequences,” IEEE Trans. 
Znform. Theory, IT-24, pp. 405-412, July 1978. 
S. Even, “Generalized automata and their information losslessness,” 
Switching Circuit Theory and L&Cal Des& AIEE Special Publ., 
s-141, pp. 144-147,1981. - - 
S. Even. “On information lossless automata of finite order,” IEEE 
Trans. kectronic Computers, vol. EC-l pp. 561-569, Aug. 1965. 
A. Lempel and J. Ziv, “On the com&xity of finite sequences,” 
IEEE Trans. Inform. Theorv. vol. IT-22. DV. 75-81. Jan. 1976. 
J. Ziv and A. Impel, “‘i &versa1 a&&hm foi sequential data 
compression,” IEEE Trans. Inform Theory, vol. IT-23, pp. 337-343, 
May 1977. 
R. G. Gallager, Znformation Theory and Reliable Communication. 
New York: Wiley, 1968. 


