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Abstract

This article presents a detailed analysis and implementation of the Scale Invariant Feature
Transform (SIFT) [1], a popular image matching algorithm. SIFT is a complex chain of trans-
formations; each element of this chain and the respective invariance properties are herein pre-
sented and analyzed. One of the main drawbacks of the SIFT algorithm is probably the large
number of parameters that need to be set. This work contributes to a detailed dissection of this
algorithm where a careful analysis of each of its design parameters is discussed and its impact
shown in an online demonstration.

1 General description

The scale invariant feature transform, SIFT [1], transforms an image into a large set of compact
descriptors. Each descriptor is formally invariant to an image translation, rotation and zoom out.
SIFT descriptors have also proved to be robust to a wide family of image transformations, such
as affine changes of viewpoint, noise, blur, contrast changes, scene deformation, while remaining
discriminative enough for matching purposes.

The algorithm, as generally conceived, consists of two successive operations: the detection of
interesting points (i.e., keypoints) and the extraction of a descriptor at each of them. Since these
descriptors are robust, they are usually used for matching images. Although the comparison stage
is not strictly within the SIFT algorithm, it is included in this paper for completeness.

The algorithm principle. From a multiscale representation of the image (i.e., a stack of images
with increasing blur), SIFT detects a series of keypoints mostly in the form of blob-like structures and
accurately locates their center (x, y) and their characteristic scale σ. Then, it computes the dominant
orientation θ over a region surrounding each one of these keypoint. The knowledge of (x, y, σ, θ)
permits to compute a local descriptor of each keypoint’s neighborhood. From a normalized patch
around each keypoint, SIFT computes a keypoint descriptor which is invariant to any translation,
rotation and scale. The descriptor encodes the spatial gradient distribution around a keypoint by
a 128-dimensional vector. This compact feature vector is used to match rapidly and robustly the
keypoints extracted from different images.

The algorithmic chain. In order to attain scale invariance, SIFT builds on the Gaussian scale-
space: a multiscale image representation simulating the family of all possible zooms out through
increasingly blurred versions of the input image (see [2] for a gentle introduction to the subject). In
this popular multiscale framework, the Gaussian kernel acts as an approximation of the optical blur
introduced by a camera (represented by its point spread function). Thus, the Gaussian scale-space
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can be interpreted as a stack of images, each of them corresponding to a different zoom factor. The
Gaussian scale-space representation is presented in Section 2.

In order to produce translation and scale invariant descriptors, structures must be unambiguously
located, both in scale and position. This excludes image edges and corners since they are translation
or scale invariant structures and therefore cannot be linked to a specific triplet (x, y, σ). However,
image blobs or more complex local structures characterized by their position and size, are the most
suitable structures for SIFT.

The detection and location of keypoints is done by extracting the 3d extrema of a differential
operator applied to the scale-space. The differential operator used in the SIFT algorithm is the
difference of Gaussians (DoG), presented in Section 3.1. The extraction of 3d continuous extrema
consists of two steps: first, the DoG representation is scanned for 3d discrete extrema. This gives a
first coarse location of the continuous extrema, which are then refined to subpixel precision using a
local quadratic model. The extraction of 3d extrema is detailed in Section 3.2. Since there are many
phenomena that can lead to the detection of unstable keypoints, SIFT incorporates a cascade of tests
to discard the less reliable ones. Only those that are precisely located and sufficiently contrasted are
retained. Section 3.3 discuses two different discarding steps: the rejection of 3d extrema with small
DoG value and the rejection of keypoint candidates laying on edges.

SIFT invariance to rotation is obtained by assigning a keypoint reference orientation. This ref-
erence is computed from the gradient orientation over a keypoint neighborhood. This is detailed
in Section 4.1. Finally the spatial distribution of the gradient inside an oriented patch is encoded
to produce the SIFT keypoint descriptor. The design of the SIFT keypoint invariant descriptor is
described in Section 4.2. This ends the algorithmic chain that defines the SIFT algorithm.

Additionally, Section 5 illustrates how SIFT descriptors are typically used to find local matches
between a pair of images. The method presented here is the matching procedure described in the
original paper by D. Lowe.

This complex chain of transformation is governed by a large number of parameters. Section 6
summarizes the parameters of the SIFT algorithm and provides an analysis of their respective influ-
ence.

Table 1 summarizes the consecutive steps of the SIFT algorithm while the details of the adopted
notation are presented in Table 2.

2 The Gaussian scale-space

The Gaussian scale-space representation is a stack of increasingly blurred images. This blurring
process simulates the loss of detail produced when a scene is photographed from farther and farther
(i.e. when the zoom-out factor increases). The scale-space, therefore, provides SIFT with scale
invariance as it can be interpreted as the simulation of a set of snapshots of a given scene taken at
different distances. In what follows we detail the construction of the SIFT scale-space.

2.1 Gaussian blurring

Consider a continuous image u(x) defined for every x = (x, y) ∈ R2. In this case, the continuous
Gaussian smoothing is defined as the convolution

Gσu(x) :=

∫
Gσ(x′)u(x− x′)dx′

where Gσ(x) = 1
2πσ2 e

− x2

2σ2 is the Gaussian kernel parameterized by its standard deviation σ ∈ R+.
The Gaussian smoothing operator satisfies a semi-group relation. More precisely, the convolution
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Stage Description

1.

Compute the Gaussian scale-space
in: image
out: scale-space

2.

Compute the Difference of Gaussians (DoG)
in: scale-space
out: DoG

3.

Find candidate keypoints (3d discrete extrema of DoG)
in: DoG
out: {(xd, yd, σd)} list of discrete extrema (position and scale)

4.

Refine candidate keypoints location with sub-pixel precision
in: DoG and {(xd, yd, σd)} list of discrete extrema
out: {(x, y, σ)} list of interpolated extrema

5.

Filter unstable keypoints due to noise
in: DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

6.

Filter unstable keypoints laying on edges
in: DoG and {(x, y, σ)}
out: {(x, y, σ)} list of filtered keypoints

7.

Assign a reference orientation to each keypoint
in: scale-space gradient and {(x, y, σ)} list of keypoints
out: {(x, y, σ, θ)} list of oriented keypoints

8.

Build the invariant keypoints descriptor
in: scale-space gradient and {(x, y, σ, θ)} list of keypoints
out: {(x, y, σ, θ, f)} list of described keypoints

Table 1: Summary of the SIFT algorithm.

u Images, defined on the continuous domain (x, y) = x ∈ R2

u Digital images, defined in a rectangular grid (m,n) ∈ {0, . . . ,M−1}×{0, . . . , N−1}

v Gaussian scale-space, defined on continuous domain (σ,x) ∈ R+ × R2

v Digital Gaussian scale-space, defined on octaves v = (vo), o = 1, . . . , noct

Each octave o is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+2}×{0, . . . ,Mo−1}×{0, . . . , No−1}

w Difference of Gaussians (DoG), defined on continuous domain (σ,x) ∈ R+ × R2

w Digital difference of Gaussians (DoG) defined on octaves w = (wo), o = 1, . . . , noct

Each octave o is defined on a discrete grid (s,m, n) ∈ {0, . . . , nspo+1}×{0, . . . ,Mo−1}×{0, . . . , No−1}

Gρ Continuous Gaussian convolution of standard deviation ρ

Gρ Digital Gaussian convolution of standard deviation ρ (see eq. (2.4))

S2 Subsampling operator by a factor 2, (S2u)(m,n) = u(2m, 2n)

Iδ Digital bilinear interpolator by a factor 1/δ (see Algorithm 2).

Table 2: Summary of the notation used in the article.
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of u with two successive Gaussian kernels of standard deviations σ1 and σ2 can be computed as a
Gaussian convolution of standard deviation

√
σ2
1 + σ2

2,

Gσ2(Gσ1u)(x) = G√
σ2
1+σ

2
2
u(x). (2.1)

We call Gaussian scale-space of u the three-dimensional (3d) function

v : (σ,x) 7→ Gσu(x). (2.2)

If u is continuous and bounded, v is the solution of the heat diffusion equation

∂v

∂σ
= σ∆v, (2.3)

with initial condition v(0,x) = u(x). This property will be useful to compute a differential operator
on the Gaussian scale-space.

In the case of digital images there is some ambiguity on how to define a discrete counterpart
to the continuous Gaussian smoothing operator. The original SIFT work of Lowe implements the
digital Gaussian smoothing through a discrete convolution with a sampled and truncated Gaussian
kernel.

Digital Gaussian smoothing. Let gσ be the one-dimensional digital kernel obtained by sampling
a truncated Gaussian function of standard deviation σ

gσ(k) = Ke−
k2

2σ2 , −b4σc ≤ k ≤ b4σc

where b·c denotes the floor function and K is set so that
∑
−b4σc≤k≤b4σc gσ(k) = 1. Let Gσ denote

the digital Gaussian convolution of parameter σ and u be a digital image of size M × N . Its
digital Gaussian smoothing, denoted Gσu, is computed via a separable two-dimensional (2d) discrete
convolution:

Gσu(k, l) :=

+b4σc∑
k′=−b4σc

gσ(k′)

+b4σc∑
l′=−b4σc

gσ(l′) ū(k − k′, l − l′), (2.4)

where ū denotes the extension of u to Z2 via symmetrization with respect to −0.5, namely, ū(k, l) =
u(sM(k), sN(l)) with sM(k) = min(k mod 2M, 2M − 1− k mod 2M).

For the range of values of σ considered in the described algorithm, the digital Gaussian smoothing
operator satisfies a semi-group relation [3]. Applying successively two digital Gaussian smoothings
of parameters σ1 and σ2 is equivalent to applying one digital Gaussian smoothing of parameter√
σ2
1 + σ2

2,
Gσ2(Gσ1u) = G√

σ2
1+σ

2
2
u. (2.5)

2.2 Digital Gaussian scale-space

As previously introduced, the scale-space v : (x, σ) 7→ Gσu(x) is a set of increasingly blurred images,
where the scale-space position (x, σ) refers to the pixel x in the image generated with blur σ. In what
follows, we detail how to compute the digital scale-space, a discrete counterpart of the continuous
Gaussian scale-space.

We will call digital scale-space a set of digital images with different levels of blur and different
sampling rates, all of them derived from an input image uin with an assumed blur level σin. This
set is split into subsets where images share a common sampling rate. Since in the original SIFT
algorithm the sampling rate is iteratively decreased by a factor of two, these subsets are called
octaves. Let noct be the total number of octaves in the digital scale-space, o ∈ {1, . . . , noct} be the
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index of each octave, and δo its inter-pixel distance. We will adopt as a convention that the input
image uin inter-pixel distance is δin = 1. Thus, an inter-pixel distance δ = 0.5 corresponds to a 2×
upsampling of this image while a 2× subsampling results in an inter-pixel distance δ = 2. Let nspo be
the number of scales per octave (the standard value is nspo = 3). Each octave o contains the images
vos for s = 1, . . . , nspo, each of them with a different level of blur σos . The level of blur in the digital
scale-space is measured taking as length unit the inter-sample distance in the sampling grid of the
input image uin (i.e. δin = 1). The adopted configuration is illustrated in Figure 1.

Figure 1: Convention adopted for the sampling grid of the digital scalespace v. The level of blur
is considered with respect to the sampling grid of the input image. The parameters are set to their
standard value, namely σmin = 0.8, σmin = 0.5, nspo = 5, noct = 8, σin = 0.5.

In practice, the digital scale-space will also include three additional images per octave, denoted
by vo0,v

o
nspo+1,v

o
nspo+2. The rationale for this will become clear later.

The construction of the digital scale-space begins with the computation of a seed image denoted
v1
0. This image will have a blur level of σ1

0 = σmin, which is the minimum level of blur considered,
and a sampling rate δ0 = δmin. It is computed from uin by

v1
0 = G 1

δmin

√
σ2
min−σ

2
in
Iδmin

uin, (2.6)

where Iδmin
is the digital bilinear interpolator by a factor 1/δmin (see Algorithm 1) and Gσ is the

digital Gaussian convolution already defined. The entire digital scale-space is derived from this seed
image. The standard value δmin = 0.5 implies an initial 2× interpolation. The blur level of the seed
image, relative to the input image sampling grid, is usually set to σmin = 0.8.

The second and posterior scale-space images s = 1, . . . , nspo + 2 at each octave o are computed
recursively according to

vos = Gρ[(s−1)→s]v
o
s−1 (2.7)

where
ρ[(s−1)→s] =

σmin

δmin

√
22s/nspo − 22(s−1)/nspo .
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The first images (i.e. s = 0) of the octaves o = 2, . . . , no are computed as

vo0 = S2v
o−1
nspo , (2.8)

where S2 denotes the subsampling operator by a factor of 2, (S2u)(m,n) = u(2m, 2n). This procedure
produces a set of images (vos), o = 1, . . . , noct and s = 0, . . . , nspo + 2, having inter-pixel distance

δo = δmin2o−1 (2.9)

and level of blur

σos =
δo
δmin

σmin2
s/nspo . (2.10)

Consequently, the simulated blurs follow a geometric progression. The scale-space construction
process is summarized in Algorithm 1. The digital scale-space architecture is thus defined by five
parameters:

- the number of octaves noct,

- the number of scales per octave nspo,

- the sampling distance δmin of the first image of the scale-space v1
0,

- the level of blur σmin of the first image of the scale-space v1
0, and

- σin the assumed level of blur in the input image uin.

The diagram in Figure 2 depicts the digital scale-space architecture in terms of the sampling rates
and levels of blur. Each point symbolizes a scale-space image vos with inter-pixel distance δo and the
level of blur σos . The featured configuration is produced from the original parameter values of the
Lowe SIFT algorithm: σmin = 0.8, δmin = 0.5, nspo = 3, and σin = 0.5. The number of octaves noct is
limited by the number of possible subsamplings. Figure 3 shows a subset of the digital scale-space
images generated with the given scale-space configuration.

3 Keypoints detection

Differential operators are frequently used to extract features of interest from an image. Differential
operators computed on a scale-space provide a keypoint location as well as its characteristic scale.

The extrema of the scale-space normalized Laplacian σ2∆v are the key features in the present
framework. A Laplacian extremum is unequivocally characterized by its coordinates (σ,x) in the
scale-space where x refers to its center spatial position and σ relates to its size. As will be presented in
Section 4, the knowledge of (σ,x) enables the production of an invariant description of the extremum
neighborhood. One possible solution for the detection of scale-space extrema is by computing the
Laplacian of the image by a finite difference scheme. Instead, SIFT uses a difference of Gaussians
operator (DoG) [4]. Let v be a scale-space and κ > 1. The difference of Gaussians (DoG) of ratio κ
is defined by w : (σ,x) 7→ v(κσ,x)− v(σ,x).

The DoG operator takes advantage of the link between the Gaussian kernel and the heat equation
to efficiently compute an approximation of the normalized Laplacian. Indeed, from a set of simulated
blurs following a geometric progression of ratio κ, the heat equation is approximated by

σ∆v =
∂v

∂σ
≈ v(κσ,x)− v(σ,x)

κσ − σ
=

ω(σ,x)

(κ− 1)σ
.

Thus, we have w(σ,x) ≈ (κ − 1)σ2∆v(σ,x), the difference of Gaussians function ω approximates a
constant factor of the normalized Laplacian σ2∆v.
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(a) Scalespace construction
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(b) Scalespace standard configuration

Figure 2: (a) The succession of subsamplings and Gaussian convolutions producing the SIFT scale-
space. The first image at each octave vo0 is obtained via subsampling, with the exception of the first
image at the first octave which is generated by a bilinear interpolation. (b) An illustration of the
digital scale-space in its standard configuration. The digital scale-space v is composed of images vos
for o = 1, . . . , noct and s = 0, . . . , nspo + 2. All images are computed directly or indirectly from uin (in
blue). Each image is characterized by its level of blur and its sampling rate, respectively noted by σ
and δ. The scale-space is split into octaves, namely sets of images sharing a common sampling rate.
Each octave is composed of nspo scales (in red) and other three auxiliary scales (in gray). The depicted
configuration features noct = 5 octaves and corresponds to the following parameter settings: nspo = 3,
σmin = 0.8. The assumed level of blur of the input image is σin = 0.5.
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Algorithm 1: Computation of the digital Gaussian scale-space

Input: uin, input digital image of M ×N pixels.
Output: (vos), digital scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.

vos is a digital image of size Mo ×No, blur level σos (eq. (2.10)) and inter-pixel distance

δo = δmin2o−1, with Mo = b δmin

δo
Mc and No = b δmin

δo
Nc. The samples of vos are denoted vos(m,n).

Parameters: - noct, number of octaves.
- nspo, number of scales per octave.
- σmin, blur level in the seed image.
- δmin, inter-sample distance in the seed image.
- σin, assumed level of blur in the input image.

//Compute the first octave

//Compute the seed image v1
0

//1.Interpolate original image (Bilinear interpolation, see Algo 2)
u′ ← bilinear interpolation(uin, δmin)
// 2. Blur the interpolated image (Gaussian blur, see eq (2.4))

v1
0 = G 1

δmin

√
σ2
min−σ

2
in
u′

// Compute the other images in the first octave

for s = 1, . . . , nspo + 2 do
v1
s = Gρ[(s−1)→s]v

1
s−1

// Compute subsequent octaves

for o = 2, . . . , noct do
// Compute the first image in the octave by subsampling

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do
vo0(m,n)← vo−1nspo(2m, 2n)

// Compute the other images in octave o

for s = 1, . . . , nspo + 2 do
vos = Gρ[(s−1)→s]v

o
s−1

Algorithm 2: Bilinear interpolation of an image

Input: u, digital image, M ×N pixels. The samples are denoted u(m,n).
Output: u′, digital image, M ′ ×N ′ pixels with M ′ = bM

δ′
c and N ′ = bN

δ′
c.

Parameter: δ′ < 1, inter-pixel distance of the output image.
for m′ = 0, . . . ,M ′ − 1 and n′ = 0, . . . , N ′ − 1 do

x = δ′m′

y = δ′n′

u′(m′, n′) = (x− bxc) ((y − byc) ū(dxe, dye) + (dye − y) ū(dxe, byc))
+ (dxe − x) ((y − byc) ū(bxc, dye) + (dye − y) ū(bxc, byc))

where ū denotes the extension of u to Z2 via symmetrization withe respect to −0.5:
ū(k, l) = u(sM(k), sN(l)) with sN(k) = min(k mod 2M, 2M − 1− k mod 2M).
note: b·c and d·e denote respectively the floor and the ceil functions.
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v1
1

δ1 = 0.5
σ1
1 = 1.0

v2
2

δ2 = 1.0
σ2
2 = 2.5

v3
2

δ3 = 2.0
σ3
2 = 5.1

v4
2

δ4 = 4.0
σ4
2 = 10.2

v5
3

δ5 = 8.0
σ5
3 = 25.6

v5
5

δ5 = 8.0
σ5
5 = 40.6

Figure 3: Crops of a subset of images extracted from the scale-space. The scale-space parameters
are set to nspo = 3, σmin = 0.8, and the assumed input image blur level σin = 0.5. Image pixels are
represented by a square of side δo for better visualization.

The SIFT keypoints of an image are defined as the 3d extrema of the difference of Gaussians
(DoG). Since we deal with digital images, the continuous 3d extrema of the DoG cannot be directly
computed. Nevertheless, we first detect the discrete extrema of the digital DoG and then refine their
position. The detected points must be finally validated to discard possible unstable detections and
false detections due to noise.

Hence, the detection of SIFT keypoints involves the following steps:

1. Compute the digital DoG.

2. Scan the digital DoG for 3d discrete extrema.

3. Refine position and scale of these candidates via a quadratic interpolation.

4. Discard unstable candidates such as uncontrasted candidates or candidates laying on edges.

We detail each of these steps in what follows.

3.1 Scale-space analysis: Difference of Gaussians

The digital DoG w is built from the digital scale-space v. In each octave o = 1, . . . , noct and for each
image wo

s with s = 0, . . . , nspo + 1

wo
s(m,n) = vos+1(m,n)− vos(m,n)

with m = 0, . . . ,Mo− 1, n = 0, . . . , No− 1. The image wo
s will be linked to the level of blur σos . This

computation is illustrated in Figure 4. See how, in the digital scale-space, the computation of the
auxiliary scale vonspo+2 is required for computing the DoG approximation wo

nspo+1. Figure 5 illustrates
the DoG scale-space w relative to the previously introduced scale-space v.
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Figure 4: The difference of Gaussians operator is computed by subtracting pairs of contiguous images
of the scale-space. The procedure is not centered: the difference between the images at scales κσ and
σ is attributed a level of blur σ.

Figure 5: The DoG scale-space. The difference of Gaussians in an approximation of the normalized
Laplacian σ2∆. The difference wo

s = vos+1−vos is relative to the level of blur σos . Each octave contains
nspo images plus two auxiliary images (in black).
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w1
1

δ1 = 0.5
σ1
1 = 1.0

w2
2

δ2 = 1.0
σ2
2 = 2.5

w3
2

δ3 = 2.0
σ3
2 = 5.1

w4
2

δ4 = 4.0
σ4
2 = 10.2

w5
1

δ5 = 8.0
σ5
1 = 16.1

w5
3

δ5 = 8.0
σ5
3 = 25.6

Figure 6: Crops of a subset of images extracted from the DoG space. The DoG operator is an
approximation of the normalized Laplacian operator σ2∆v. The DoG scale-space parameters used in
this example are as usual nspo = 3, σmin = 0.8, σin = 0.5. Image pixels are represented by a square of
side δo for better visualization.
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3.2 Extraction of candidate keypoints

Continuous 3d extrema of the digital DoG are calculated in two successive steps. The 3d discrete
extrema are first extracted from (wo

s) with pixel precision, then their location are refined through
interpolation of the digital DoG by using a quadratic model. In the following, samples vos(m,n) and
wo
s(m,n) are noted respectively vos,m,n and wo

s,m,n for better readability.

Detection of DoG 3D discrete extrema Each sample wo
s,m,n of the DoG scale-space, with

s = 1, . . . , nspo, o = 1, . . . , noct, m = 1, . . . ,Mo − 2, n = 1, . . . , No − 2 (which excludes the image
borders and the auxiliary images) is compared to its neighbors to detect the 3d discrete maxima and
minima (the number of neighbors is 26 = 3 × 3 × 3 − 1). Note that these comparisons are possible
thanks to the auxiliary images wo

0, wo
nspo+1 calculated for each octave o. This scanning process is

nevertheless a very rudimentary way to detect candidate points of interest. It is heavily subject
to noise, produces unstable detections, and the information it provides regarding the location and
scale may be flawed since it is constrained to the sampling grid. To amend these shortcomings, this
preliminary step is followed by an interpolation that refines the localization of the extrema and by a
cascade of filters that discard unreliable detections.

Keypoint position refinement At this stage, the location of each candidate keypoint is con-
strained to the sampling grid (defined by the octave o). Such coarse localization is an obstacle to
reach full scale and translation invariance. SIFT refines the position and scale of each candidate
keypoint using a local interpolation model.

Given a point (s,m, n) at the octave o in the digital DoG space, we denote by ωos,m,n(α) the
quadratic function at sample point (s,m, n) in the octave o, given by

ωos,m,n(α) = wo
s,m,n +αT ḡos,m,n +

1

2
αT H̄o

s,m,nα, (3.1)

where α = (α1, α2, α3) ∈ [−0.5, 0.5]3; ḡos,m,n and H̄o
s,m,n denote the 3d gradient and Hessian at

(s,m, n) in the octave o, computed with finite difference schemes as follows:

ḡos,m,n =

(wo
s+1,m,n −wo

s−1,m,n)/2
(wo

s,m+1,n −wo
s,m−1,n)/2

(wo
s,m,n+1 −wo

s,m,n−1)/2

 , H̄o
s,m,n =

h11 h12 h13
h12 h22 h23
h13 h23 h33

 (3.2)

with

h11 = wo
s+1,m,n + wo

s−1,m,n − 2.wo
s,m,n, h12 = (wo

s+1,m+1,n −wo
s+1,m−1,n −wo

s−1,m+1,n + wo
s−1,m−1,n)/4,

h22 = wo
s,m+1,n + wo

s,m−1,n − 2.wo
s,m,n, h13 = (wo

s+1,m,n+1 −wo
s+1,m,n−1 −wo

s−1,m,n+1 + wo
s−1,m,n−1)/4,

h33 = wo
s,m,n+1 + wo

s,m,n−1 − 2.wo
s,m,n, h23 = (wo

s,m+1,n+1 −wo
s,m+1,n−1 −wo

s,m−1,n+1 + wo
s,m−1,n−1)/4.

This quadratic function can be interpreted as an approximation of the second order Taylor de-
velopment of the underlying continuous function (where its derivatives are approximated by finite
difference schemes).

In order to refine the position of a discrete extremum (se,me, ne) at octave oe we proceed as
follows.

1. Initialize (s,m, n) by the discrete coordinates of the extremum (se,me, ne).

2. Compute the continuous extrema of ωos,m,n by solving ∇ωos,m,n(α) = 0. This yields

α∗ = −
(
H̄o
s,m,n

)−1
ḡos,m,n. (3.3)
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3. If max(|α∗1|, |α∗2|, |α∗3|) < 0.5 (i.e., the extremum of the quadratic function lies in its domain of
validity) the extremum is accepted. According to the scale-space architecture (see Eq (2.10)
and (2.9)), the corresponding keypoint coordinates are

(σ, x, y) =

(
δoe
δmin

σmin2(α∗1+s)/nspo , δoe(α
∗
2+m) , δoe(α

∗
3+n)

)
. (3.4)

4. If α∗ falls outside the domain of validity, the interpolation is rejected and another one is carried
out. Update (s,m, n) to the closest discrete value to (s,m, n) +α∗ and repeat from (2).

This process is repeated up to five times or until the interpolation is validated. If after five iterations
the result is still not validated, the candidate keypoint is discarded. In practice, the validity domain
is defined by max(|α∗1|, |α∗2|, |α∗3|) < 0.6 to avoid possible numerical instabilities due to the fact that
the piecewise interpolation model is not continuous. See Algorithm 6 for details.

According to the local interpolation model (3.1), the value of the DoG 3d interpolated extremum
is

ω = ωos,m,n(α∗) = wo
s,m,n + (α∗)T ḡos,m,n +

1

2
(α∗)T H̄o

s,m,nα
∗

= wo
s,m,n −

1

2
(ḡos,m,n)T

(
H̄o
s,m,n

)−1
ḡos,m,n. (3.5)

This value will be useful to assess the stability of the keypoint.

3.3 Filtering unstable keypoints

Discarding low contrasted extrema

Image noise will typically produce a large number of Laplacian extrema. Such extrema are normally
unstable and are not linked to any particular structure in the image. SIFT attempts to eliminate
these false detections by discarding candidate keypoints with a DoG value ω below a threshold CDoG

(standard value CDoG = 0.03 for nspo = 3),

if |ω| < CDoG then discard the candidate keypoint.

Since the DoG function approximates (κ − 1)σ2∆v, where κ is a function of the number of scales
per octave nspo, the value of threshold CDoG will depend on the value of parameter nspo. Before
the refinement of the extrema, and in order to avoid unnecessary computations, a less conservative
threshold at 80% of CDoG is applied to the discrete 3d extrema,

if |wo
s,m,n| < 0.8× CDoG then discard the discrete 3d extremum.

Discarding candidate keypoints on edges

In theory, perfect edges do not produce 3d DoG extrema. However, in practice, plenty of 3d discrete
extrema are detected on edges. Some of these detections may even subsist after the interpolation
refinement and the threshold on the DoG value. But as we have already pointed out, edges are not
interesting structures for SIFT. Since they are translation invariant along the edge direction, they are
poorly localized. Moreover, no reliable scale can be attributed to them. Hence, candidates keypoints
laying on edges must be discarded.

The 2d Hessian of the DoG provides a characterization of those undesirable keypoint candidates.
In terms of principal curvatures, edges present a large principal curvature orthogonal to the edge
and a small one along the edge. In terms of the eigenvalues of the Hessian matrix, the presence of
an edge amounts to a big ratio between the largest eigenvalue λmax and the smallest one λmin.
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The Hessian matrix of the DoG is computed at the nearest grid sample using a finite different
scheme:

Ho
s,m,n =

[
h11 h12
h12 h22

]
, (3.6)

where

h11 = wo
s,m+1,n + wo

s,m−1,n − 2wo
s,m,n, h22 = wo

s,m,n+1 + wo
s,m,n−1 − 2wo

s,m,n,

h12 = h21 = (wo
s,m+1,n+1 −wo

s,m+1,n−1 −wo
s,m−1,n+1 + wo

s,m−1,n−1)/4.

The SIFT algorithm discards those keypoint candidates whose ratio of eigenvalues r := λmax/λmin

is less than a certain threshold Cedge (the standard value is Cedge = 10). Since only this ratio is
relevant, the eigenvalues computation can be avoided by the following observation. The ratio of the
Hessian matrix determinant and its trace are related to r by

edgeness(Ho
s,m,n) =

tr(Ho
s,m,n)2

det(Ho
s,m,n)

=
(λmax + λmin)2

λmaxλmin

=
(r + 1)2

r
. (3.7)

This is known as the Harris-Stephen edge response [5]. Thus, the filtering of keypoint candidates on
edges consists in the following test:

if edgeness(Ho
s,m,n) >

(Cedge + 1)2

Cedge

then discard candidate keypoint.

Note that Ho
s,m,n is the bottom-right 2 × 2 sub-matrix of H̄o

s,m,n (3.2). Consequently the keypoint
interpolation and the filtering of on-edge keypoints can be carried out simultaneously to save unnec-
essary computations.

3.4 Pseudocodes

Algorithm 3: Computation of the difference of Gaussians scale-space (DoG)

Input: (vos), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
Output: (wo

s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

for o = 1, . . . , noct and s = 0, . . . , nspo + 1 do

for m = 0, . . . ,Mo − 1 and n = 0, . . . , No − 1 do

wo
s(m,n) = vos+1(m,n)− vos(m,n)

14



Algorithm 4: Scanning for 3d discrete extrema of the DoG scale-space

Input: (wo
s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

The samples of digital image wo
s are denoted wo

s,m,n.

Output: LA = {(o, s,m, n)}, list of the DoG 3d discrete extrema.

for o = 1, . . . , noct do
for s = 1, . . . , nspo , m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

if sample wo
s,m,n is larger or smaller than all of its 33 − 1 = 26 neighbors then

Add discrete extremum (o, s,m, n) to LA

Algorithm 5: Discarding low contrasted candidate keypoints (conservative test)

Inputs: - (wo
s), digital DoG, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

- LA = {(o, s,m, n)}, list of DoG 3d discrete extrema.

Output: LA’ = {(o, s,m, n)}, filtered list of DoG 3d discrete extrema.
Parameter: CDoG threshold.

for each DoG 3d discrete extremum (o, s,m, n) in LA do

if |wo
s,m,n| ≥ 0.8× CDoG then

Add discrete extremum (o, s,m, n) to LA’

Algorithm 6: Keypoints interpolation

Inputs: - (wo
s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

- LA’ = {(o, s,m, n)}, list of DoG 3d discrete extrema.

Output: LB = {(o, s,m, n, x, y, σ,ω)}, list of candidate keypoints.

for each DoG 3d discrete extremum (oe, se,me, ne) in LA do
(s,m, n)← (se,me, ne) // initialize interpolation location

repeat

// Compute the extrema location and value of the local quadratic function (see Algo 7)

(α∗,ω)← quadratic interpolation(oe, s,m, n)

// Compute the corresponding absolute coordinates

(σ, x, y) =
(
δoe
δmin

σmin2(α∗1+s)/nspo , δoe(α
∗
2+m) , δoe(α

∗
3+n)

)
.

// Update the interpolating position

(s,m, n)← ([s+ α∗1], [m+ α∗2], [n+ α∗3])

until max(|α∗1|, |α∗2|, |α∗3|) < 0.6 or after 5 unsuccessful tries.

if max(|α∗1|, |α∗2|, |α∗3|) < 0.6 then

Add candidate keypoint (oe, s,m, n, σ, x, y,ω) to LB

note: [·] denotes the round function.
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Algorithm 7: Quadratic interpolation on a discrete DoG sample

Inputs: - (wo
s), digital DoG scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 1.

- (o, s,m, n), coordinates of the DoG 3d discrete extremum.

Outputs: - α∗, offset from the center of the interpolated 3d extremum.
- ω, value of the interpolated 3d extremum.

Compute ḡos,m,n and H̄o
s,m,n //DoG 3d gradient and Hessian by eq.(3.2)

Compute α∗ = −
(
H̄o
s,m,n

)−1
ḡos,m,n

Compute ω = wo
s,m,n − 1

2
(ḡos,m,n)T

(
H̄o
s,m,n

)−1
ḡos,m,n

Algorithm 8: Discarding low contrasted candidate keypoints

Input: LB = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.
Output: LB’ = {(o, s,m, n, σ, x, y,ω)}, reduced list of candidate keypoints.
Parameter: CDoG threshold.

for each candidate keypoint (σ, x, y,ω) in LB do

if |ω| ≥ CDoG then

Add candidate keypoint (σ, x, y,ω) to LB’.

Algorithm 9: Discarding candidate keypoints on edges

Inputs: - (wo
s), DoG scale-space.

- LB’ = {(o, s,m, n, σ, x, y,ω)}, list of candidate keypoints.
Output: LC = {(o, s,m, n, σ, x, y,ω)}, list of the SIFT keypoints.
Parameter: Cedge, threshold over the ratio between first and second Hessian eigenvalues.

for each candidate keypoint (o, s,m, n, σ, x, y,ω) in LB’ do
Compute Ho

s,m,n by (3.6) // 2d Hessian

Compute
tr(Ho

s,m,n)
2

det(Ho
s,m,n)

// the Harris response

if
tr(Ho

s,m,n)
2

det(Ho
s,m,n)

<
(Cedge+1)2

Cedge
then

Add candidate keypoint (o, s,m, n, σ, x, y,ω) to LC.
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4 Keypoints description

In the literature, rotation invariant descriptors fall into one of two categories. On the one side
those based on properties of the image that are already rotation-invariant and on the other side
descriptors based on a normalization with respect to a reference orientation. The SIFT descriptor
achieves rotation invariance by using the dominant gradient angle computed locally as a reference
orientation, and then by normalizing the local gradient distribution with respect to this reference
direction (see Figure 7).

Figure 7: The description of a keypoint detected at scale σ (the radius of blue circle) consists of two
local analysis of the gradient distribution covering different areas. The first local analysis aims at
attributing a reference orientation to the keypoint (the blue arrow). It is performed over a Gaussian
window of standard deviation λinσ (the radius of the green circle). The patch Pori (green square) of
contributing samples has a width of 6λinσ. The figure features the standard value for λin = 1.5. The
second analysis aims at building the descriptor. It is performed over a Gaussian window of standard
deviation λdescrσ (the radius of the red circle) within a square patch Pdescr (the red square) of width of
approximately 2λdescrσ. The figure features the standard settings : λdescr = 6, with a Gaussian window
of standard deviation 6σ and a patch Pdescr of width 15σ.

The SIFT descriptor is built from the normalized image gradient orientation in the form of
quantized histograms. In what follows, we describe how the reference orientation specific to each
keypoint is defined and computed.

4.1 Keypoint reference orientation

The dominant gradient orientation over a keypoint neighborhood is used as its reference orientation.
This allows for orientation normalization and hence rotation-invariant description (see Figure 7).
Measuring this reference orientation involves three steps:

A. The local distribution of the gradient angle within a normalized patch is accumulated in an
orientation histogram.

B. The orientation histogram is smoothed.

C. One or more reference orientations are extracted from the smoothed histogram.

A. Orientation histogram accumulation. Given an interpolated keypoint (x, y, σ), the patch
to be analyzed is extracted from the image of the scale-space vos, whose σos is nearest to σ. This
normalized patch, noted Pori, is the set of pixels (m,n) of vos satisfying:

max(|δom− x|, |δon− y|) ≤ 3λoriσ. (4.1)

The orientation histogram h from which the dominant orientation is found covers the range [0, 2π].
It is composed of nbins bins with centers θk = 2πk/nbins. Each pixel (m,n) in Pori will contribute to
the histogram with a total weight of corim,n, which is the product of the gradient norm and a Gaussian

17



weight of standard deviation λoriσ (standard value λori = 1.5) reducing the contribution of distant
pixels.

corim,n =
1√

2πλoriσ
e
− ‖(mδo,nδo)−(x,y)‖2

2(λoriσ)
2

∥∥(∂mvos,m,n, ∂nv
o
s,m,n

)∥∥ . (4.2)

This contribution is assigned to the nearest bin, namely the bin of index

borim,n =

[
nbins

2π

(
arctan2

(
∂mvos,m,n, ∂nv

o
s,m,n

)
mod 2π

)]
. (4.3)

where [·] denotes the round function. The gradient components of the scale-space image vso are
computed through a finite difference scheme

∂mvos,m,n =
1

2

(
vos,m+1,n − vos,m−1,n

)
, ∂nv

o
s,m,n =

1

2

(
vos,m,n+1 − vos,m,n−1

)
, (4.4)

for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2.

B. Smoothing the histogram. After being accumulated and before being analyzed, the orienta-
tion histogram is smoothed by applying six times a circular convolution with the three-tap box filter
[1, 1, 1]/3.

C. Extraction of reference orientation(s). Keypoint reference orientations correspond to local
histogram maxima larger than t times the histogram’s maximum value with t < 1 (standard value
t = 0.8). Let k ∈ {1, . . . , nbins} be the index of a bin such that hk > hk− , hk > hk+ (k− =
(k − 1) mod nbins and k+ = (k + 1) mod nbins) and such that hk ≥ tmax(h). This bin is centered on

orientation θk = 2π(k−1)
nbins . The corresponding keypoint reference orientation θref is computed from the

maximum position of the quadratic function that interpolates the values hk− , hk, hk+ ,

θref = θk +
π

nbins

(
hk− − hk+

hk− + 2hk + hk+

)
. (4.5)

Each one of the extracted reference orientations leads to the computation of one invariant local
descriptor of a keypoint neighborhood. Note that consequently the number of descriptors may
exceed the number of keypoints.

4.2 Keypoint normalized descriptor

The local descriptor of each keypoint neighborhood is designed to be invariant to translation, zoom
and rotation. It describes the local spatial distribution of the gradient orientation over a normalized
neighborhood. Given a detected keypoint, the normalized neighborhood consists in a square patch
centered on the keypoint and aligned with the reference orientation. The descriptor consists in a set
of orientation weighted histograms, each located on a portion of the square patch.

The normalized patch For each keypoint (xkey, ykey, σkey, θkey), a normalized patch is isolated
inside the image relative to the nearest discrete scale (o, s) to scale σkey, namely vos. Any sample
(m,n) in vos, of coordinates (xm,n, ym,n) = (mδo, nδo) with respect to the sampling grid of the input
image, has normalized coordinates (x̂m,n, ŷm,n) with respect to the keypoint (xkey, ykey, σkey, θkey),

x̂m,n = ((mδo − xkey) cos θkey + (nδo − ykey) sin θkey) /σkey,

ŷm,n = (−(mδo − xkey) sin θkey + (nδo − ykey) cos θkey) /σkey. (4.6)
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Figure 8: Illustration of the reference orientation attribution. The normalized patch Pori (normalized
to scale and translation) has a width of 6λoriσkey. The gradient magnitude is weighted by a Gaussian
window of standard deviation λoriσkey. The gradient orientation are accumulated into an orientation
histogram h which is subsequently smoothed.
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The normalized patch denoted Pdescr is the set of samples (m,n) of vos with normalized coordinates
(x̂m,n, ŷm,n) satisfying

max(|x̂m,n|, |ŷm,n|) ≤ λdescr. (4.7)

Note that no image re-sampling is performed. Each of these samples (m,n) is characterized by the
gradient orientation normalized with respect to the keypoint orientation θkey,

θ̂m,n = arctan2
(
∂mvos,m,n, ∂nv

o
s,m,n

)
− θkey mod 2π, (4.8)

and its total contribution cdescrm,n , which is the product of its gradient norm and a Gaussian weight
(with standard deviation λdescrσkey) reducing the contribution of distant pixels,

cdescrm,n =
1√

2πλdescrσ
e
− ‖(mδ

o,nδo)−(x,y)‖2

2(λdescrσ)
2

∥∥(∂mvos,m,n, ∂nv
o
s,m,n

)∥∥ . (4.9)

The array of orientation histograms. The gradient orientation of each pixel in the normalized
patch Pdescr is accumulated into an array of nhist × nhist orientation histograms (standard value
nhist = 4). Each of these histograms, denoted hi,j for (i, j) ∈ {1, . . . , nhist}2, has an associated
position with respect to the keypoint (xkey, ykey, σkey, θkey), given by

x̂i =

(
i− 1 + nhist

2

)
2λdescr
nhist

, ŷj =

(
j − 1 + nhist

2

)
2λdescr
nhist

.

Each histogram hi,j consists of nori bins hi,jk with k ∈ {1, . . . , nori}, centered on θ̂k = 2π(k − 1)/nori

(standard value nori = 8). Each sample (m,n) in the normalized patch Pdescr contributes to the
nearest histograms (up to four histograms). Its total contribution cdescrm,n is split bi-linearly over the
nearest histograms depending on the distances to each of them (see Figure 10). In the same way,
the contribution within each histogram is subsequently split linearly between the two nearest bins.
This results, for the sample (m,n), in the following updates. For every (i, j, k) ∈ {1, . . . , nhist}2 ×
{1, . . . , nori} such that |x̂i − x̂m,n| ≤ 2λdescr

nhist , |ŷj − ŷm,n| ≤ 2λdescr
nhist and |θ̂k − θ̂m,n mod 2π| ≤ 2π

nori ,

hi,jk ← hi,jk +

(
1− nhist

2λdescr

∣∣x̂i − x̂m,n∣∣)(1− nhist

2λdescr

∣∣ŷj − ŷm,n∣∣)(1− nori

2π

∣∣∣θk − θ̂m,n mod 2π
∣∣∣) cdescrm,n . (4.10)

The SIFT feature vector. The accumulated array of histograms are encoded into a vector fea-
ture f of length nhist × nhist × nori, as follows:

f(i−1)nhistnori+(j−1)nori+k = hi,jk ,

where i = 1, . . . , nhist, j = 1, . . . , nhist and k = 1, . . . , nori. The components of the feature vector
f are saturated to a maximum value of 20% of its Euclidean norm, i.e, fk ← min (fk, 0.2‖f‖) and
then re-normalized to have ‖f‖ = 1. The saturation of the feature vector components seeks to
reduce the impact of non-linear illumination changes, such as saturated regions. The vector is finally
renormalized to set the vector maximum value to 255 and finally quantized to 8 bit integers. This is
done to accelerate the computation of distances between feature vectors of different images.
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Figure 9: Illustration of the SIFT descriptor construction. No explicit re-sampling of the described
normalized patch is performed. The normalized patch Pdescr is partitioned into a set of nhist × nhist
subpatches (with here nhist = 4). Each sample (m,n) inside Pdescr (located at (mδo, nδo)) contributes
by an amount which is a function of their normalized coordinates (x̂m,n, ŷm,n) (see (4.6)). Each
sub-patch Pdescr

(i,j) is centered at (x̂i, ŷj).

Figure 10: Illustration of the bi-linear spatial sharing of the contribution of a sample inside the patch
Pdescr. The sample (m,n) contributes to the weighted histograms (2, 2) (green), (2, 3) (orange), (3, 2)
(blue) and (3, 3) (pink); The contribution cdescrm,n is split over four pairs of bins according to (4.10).
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Figure 11: Array of histograms corresponding to an example keypoint is converted into a vector, that
undergoes a threshold and quantization. The first picture features the nhist × nhist array sub-patches
relative to a keypoint; the corresponding nori bins histograms are rearranged into a 1D-vector ~v. This
vector is subsequently thresholded and normalized so its Euclidean norm is 1. The dimension of the
feature vector in this example is 128, relative to parameter nhist = 4, nori = 8 (standard values).

4.3 Pseudocodes

Algorithm 10: Computation of the 2d gradient at each image of the scale-space

Input: (vos), digital Gaussian scale-space, o = 1, . . . , noct and s = 0, . . . , nspo + 2.
Outputs: - (∂mvos,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.

- (∂nv
o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

for o = 1, . . . , noct and s = 1, . . . , nspo do
for m = 1, . . . ,Mo − 2 and n = 1, . . . , No − 2 do

∂mvos,m,n = (vos,m+1,n − vos,m−1,n)/2
∂nv

o
s,m,n = (vos,m,n+1 − vos,m,n−1)/2
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Algorithm 11: Computing the keypoint reference orientation

Inputs: - (∂mvos,m,n), scale-space gradient along x, o = 1, . . . , noct and s = 1, . . . , nspo.
- (∂nv

o
s,m,n), scale-space gradient along y, o = 1, . . . , noct and s = 1, . . . , nspo.

- LC = {(okey, skey, xkey, ykey, σkey,ω)}, list of keypoints.
Parameters: - λori. The patch Pori is 6λoriσ wide.

The Gaussian window has a standard deviation of λoriσ.
- nbins, number of bins in the orientation histogram h.
- t, threshold for secondary reference orientations.

Output: LD = {(o, s′,m′, n′, x, y, σ,ω, θ)} list of oriented keypoints.

Temporary: hk, orientation histogram, k = 1, . . . , nbins and with hk covering
[2π(k−3/2)

nbins ; 2π(k−1/2)
nbins ].

for each keypoint (okey, skey, xkey, ykey, σkey,ω) in LC do

// Initialize the orientation histogram h

for 1 ≤ k ≤ nbins do hk ← 0

// Accumulate samples from the normalized patch Pori (eq.(4.1).

for m = [(xkey − 3λoriσkey
)
/δokey

]
, . . . , [(xkey + 3λoriσkey

)
/δokey

]
do

for n = [( ykey − 3λoriσkey
)
/δokey

]
, . . . , [( ykey + 3λoriσkey

)
/δokey

]
do

// Compute the sample contribution

corim,n = 1√
2πλoriσkey

e
−
‖(mδokey ,nδokey )−(xkey,ykey)‖

2

2(λoriσkey)
2

∥∥(∂mv
okey
skey,m,n, ∂nv

okey
skey,m,n

)∥∥
// Compute the corresponding bin index

borim,n =
[
nbins

2π

(
arctan2

(
∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)
mod 2π

)]
// Update the histogram

hborim,n ← hborim,n + corim,n

// Smooth h

Apply six times a circular convolution with filter [1, 1, 1]/3 to h.

// Extract the reference orientations

for 1 ≤ k ≤ nbins do
if hk > hk−, hk > hk+ and hk ≥ tmax(h) then

// Compute the reference orientation θkey

θkey = θk + π
nbins

(
hk−−hk+

hk−+2hk+hk+

)
note: [·] denotes the round function.
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Algorithm 12: Construction of the keypoint descriptor

Inputs: - (∂mvos,m,n), scale-space gradient along x.
- (∂nv

o
s,m,n), scale-space gradient along y (see Algorithm 10).

- LD = {(okey, skey, xkey, ykey, σkey, θkey)} list of keypoints.
Output: LE = {(okey, skey, xkey, ykey, σkey, θkey, f)} list of keypoints with feature vector f .
Parameters: - nhist. The descriptor is an array of nhist × nhist orientation histograms.

- nori, number of bins in the orientation histograms.
Feature vectors f have a length of nhist × nhist × nori

- λdescr.
The Gaussian window has a standard deviation of λdescrσkey.

The patch Pdescr is 2λdescr
nhist+1
nhist σkey wide.

Temporary: hi,jk , array of orientation weighted histograms, (i, j) ∈ {1, . . . , nhist} and
k ∈ {1, . . . , nori}

for each keypoint (okey, skey, xkey, ykey, σkey, θkey) in LD do

// Initialize the array of weighted histograms

for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do hi,jk ← 0

// Accumulate samples of normalized patch Pdescr in the array histograms (eq.(4.7))

for m =
[(
xkey −

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
, . . . ,

[(
xkey +

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
do

for n =
[(
ykey −

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
, . . . ,

[(
ykey +

√
2λdescrσkey

nhist+1
nhist

)
/δo

]
do

// Compute normalized coordinates (eq.(4.6)).

x̂m,n =
(
(mδokey − xkey) cos θkey + (nδokey − ykey) sin θkey

)
/σkey

ŷm,n =
(
−(mδokey − xkey) sin θkey + (nδokey − ykey) cos θkey

)
/σkey

// Verify if the sample (m,n) is inside the normalized patch Pdescr.

if max(|x̂m,n|, |ŷm,n|) < λdescr
nhist+1
nhist then

// Compute normalized gradient orientation.

θ̂m,n = arctan2
(
∂mv

okey
skey,m,n, ∂nv

okey
skey,m,n

)
− θkey mod 2π

// Compute the total contribution of the sample (m,n)

cdescrm,n = 1√
2πλdescrσkey

e
−
‖(mδokey ,nδokey )−(xkey,ykey)‖

2

2(λdescrσkey)
2

∥∥(∂mv
okey
skey,m,n, ∂nv

okey
skey,m,n

)∥∥
// Update the nearest histograms and the nearest bins (eq.(4.10)).

for (i, j) ∈ {1, . . . , nhist}2 such that |x̂i − x̂m,n| ≤ 2λdescr
nhist and |ŷj − ŷm,n| ≤ 2λdescr

nhist

do

for k ∈ {1, . . . , nori} such that
∣∣∣θ̂k − θ̂m,n mod 2π

∣∣∣ < 2π
nori do

hi,jk ← hi,jk +(
1− nhist

2λdescr
|x̂m,n−x̂i|

)(
1− nhist

2λdescr
|ŷm,n − ŷj|

)(
1− nori

2π
|θ̂m,n−θ̂k mod 2π|

)
cdescrm,n

// Build the feature vector f from the array of weighted histograms.

for 1 ≤ i ≤ nhist , 1 ≤ j ≤ nhist and 1 ≤ k ≤ nori do

f(i−1)nhistnori+(j−1)nori+k = hi,jk

for 1 ≤ l ≤ nhist × nhist × nori do
fl ← min (fl/‖f‖, 0.2) /*normalize and threshold f*/

fl ← b256flc /*quantize to 8 bit integers*/

Add (x, y, σ, θ, f) to LE
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5 Matching

The classical purpose of detecting and describing keypoints is to find matches (pairs of keypoints)
between two images. In the absence of extra knowledge on the problem (in the form of geometric
constraints for instance) a matching procedure should consist of two steps: the pairing of similar
keypoints from respective images and the selection of those that are reliable. Many algorithms
have been proposed to solve this problem efficiently. In what follows, we present a very simple
matching method described in the original article by D. Lowe [1]. Let LA and LB be the set of
descriptors associated to the keypoints detected in images uA and uB. The matching is done by
considering every descriptor associated to the list LA and finding one possible match in list LB. The
first descriptor fa ∈ LA is paired to the descriptor f b ∈ LB that minimizes the Euclidean distance
between descriptors,

f b = arg min
f∈LB

‖f − fa‖2.

Pairing a keypoint with descriptor fa requires then to compute distances to all descriptors in LB.
This pair is considered reliable only if its absolute distance is below a certain threshold Cmatch

absolute.
Otherwise it is discarded. The difficulty to setting this threshold constitutes nevertheless a major
drawback of this approach. Alternatively, the distance to the second nearest neighbor can be used
to define what constitutes a reliable match. For example, by considering an adaptive threshold
‖fa − f b

′‖Cmatch
relative, where fb′ is the second nearest neighbor

f b
′
= arg min

f∈LB\{fb}
‖f − fa‖2.

A description of this algorithm is presented in Algorithm 13. The major drawback of using a relative
threshold is that it omits detections for keypoints associated to a repeated structure in the image
(indeed, in such situation the distance to the nearest and second nearest descriptor are comparable).

Algorithm 13: Matching keypoints

Inputs: - LA = {(xa, ya, σa, θa, fa)} keypoints and descriptors relative to image uA.
- LB = {

(
xb, yb, σb, θb, f b

)
} keypoints and descriptors relative to image uB.

Output: M =
{

(xa, ya, σa, θa, fa) ,
(
xb, yb, σb, θb, f b

)}
list of matches with positions.

Parameter: Cmatch
relative relative threshold

for each descriptor fa in LA do
Find f b and f b

′
, nearest and second nearest neighbors of fa:

for each descriptor f in LB do
Compute distance d(fa, f)

Select pairs satisfying a relative threshold.
if d(fa, f b) < Cmatch

relative d(fa, f b
′
) then

Add pair (fa, f b) to M
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6 Summary of Parameters

The online demo provided with this publication examines in detail the behavior of each stage of the
SIFT algorithm. In what follows, we present all the parameters that can be adjusted in the demo
and their expected influence on the behavior of the algorithm.

Digital scale-space configuration and keypoints detection

Parameter Value Description

noct 8 Number of octaves (limited by the image size)

nspo 3 Number of scales per octave

σmin 0.8 Blur level of v1
0 (seed image)

δmin 0.5 The sampling distance in image v1
0 (corresponds to a 2× interpolation)

σin 0.5 Assumed blur level in uin (input image)

CDoG 0.03 Threshold over the DoG response
set for nspo = 3 and the image range in [0, 1]

Cedge 10 Threshold over the ratio of principal curvatures.

Table 3: Parameters for scale-space discretization and the detection of keypoints

In the present work, the structure of the digital sampling is unequivocally characterized by four
structural parameters (noct, nspo, σmin, δmin) and by the blur level in the input image σin. The
associated online demo allows one to change the value of these parameters. They can be tuned to
satisfy specific requirements. For example, by increasing the number of scales per octave nspo and
the initial interpolation factor δmin one can increase the precision of the keypoint localization stage.
On the other hand, reducing them will result in a faster algorithm.

The image structures that are potentially detected by SIFT have a scale ranging from σmin to
σmin2noct . Therefore, it may seem natural to choose the lowest possible value of σmin ( σmin = σin)
and the largest number of octaves allowed by the input image size. However, the relative level of blur
(relative to the image sampling grid) in the seed image v1

0 is σmin/δmin, resulting in a relative level of
blur for image vonspo

of 2σmin/δmin. To guarantee that vo+1
0 = S2v

o
nspo

(see Section 2) is aliasing free,
σmin/δmin should be larger than 0.8 [6]. The standard parameter value σmin/δmin = 1.6 conservatively
guarantees an aliasing free scale-space construction.

The threshold on the DoG value CDoG for discarding detections due to noise is undoubtedly the
most critical parameter in the detection phase. Unfortunately, since this threshold is closely related
to the level of noise in the input image, no universal value can be set. Additionally, the image
contrast of the input image plays the inverse role of the noise level. Hence, the threshold CDoG

should be set depending on the signal to noise ratio of the input image. Since the DoG approximates
(21/nspo − 1)σ2∆v, the threshold CDoG depends on the number of scales per octave nspo.

The threshold Cedge, applied to discard keypoints laying on edges, has in practice a negligible
impact on the algorithm performance. Indeed, keypoints laying on edges have a large edge response
and thus are easily discarded. Nevertheless, image noise may deteriorate the performance since the
edge response will be biased.

Computation of the SIFT descriptor

The provided demo allows shows the computation of the keypoint reference orientation, and also the
construction of the feature vector for any detected keypoint.
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Parameter Value Description

nbins 36 Number of bins in the gradient orientation histogram

λori 1.5 Sets how local the analysis of the gradient distribution is:

- Gaussian window of standard deviation λoriσ

- Patch width 6λoriσ

t 0.80 Threshold for considering local maxima in the gradient orientation histogram

nhist 4 Number of histograms in the normalized patch is (nhist × nhist)
nori 8 Number of bins in the descriptor histograms

The feature vectors dimension is nhist × nhist × nori
λdescr 6 Sets how local the descriptor is:

- Gaussian window of standard deviation λdescrσ

- Descriptor patch width (nhist + 1)/nhist2λdescrσ

Table 4: Parameters related to the computation of the keypoint reference orientation and feature vector

The parameter λori controls how local the computation of the reference orientation is. Localizing
the gradient analysis may result in an increase in the number of orientation references. Indeed, the
orientation histogram coming from an isotropic structure is almost flat and has many local maxima.
Another parameter of the algorithm, not included in Table 5 because of its insignificant impact, is
the level of smoothing applied to the histogram (Nconv = 6).

The size of the normalized patch used for computing the SIFT descriptor is governed by λdescr.
A larger patch will produce a more discriminative descriptor but will be less robust to complex
deformations on the scene. In the same fashion, the number of histograms nhist × nhist and the
number of bins nori can be set to make the feature vector more robust. Accumulating the sample
orientation in fewer bins (decreasing nori) or reducing the number of histograms covering the patch
(decreasing nhist) will result in an increase in robustness, at the expense, however, of discriminativity.

Matching of SIFT feature vectors

The SIFT algorithm consists of the detection of the image keypoints and their description. The
demo provides additionally two naive algorithms to match SIFT features: an absolute threshold
applied on the distance to the nearest keypoint feature or a relative threshold that depends on the
distance to the second nearest keypoint feature. An absolute threshold applied on the distance to the
nearest keypoint feature is very difficult to set properly. Depending on the matching problem, such
absolute threshold can range from 1 to 100 to give acceptable matching results. In a relative threshold
matching scenario, increasing the threshold Cmatch

relative results in an increased number of matches. In
particular, pairs corresponding to repeated structures in the image are less likely to be omitted.
However this may lead to an increased number of false matches.

Parameter Value Description

Cmatch
absolute 1 to 100 Threshold on the distance to the nearest neighbor

Cmatch
relative 0.6 Relative threshold between nearest and second nearest neighbors

Table 5: Parameters of the matching algorithm
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