

Image Processing and
Pattern Recognition

Neural Network Systems
Techniques and Applications

Edited by Cornelius T. Leondes

VOLUME 1. Algorithms and Architectures

VOLUME 2. Optimization Techniques

VOLUME 3. Implementation Techniques

VOLUME 4. Industrial and Manufacturing Systems

VOLUME 5. Image Processing and Pattern Recognition

VOLUME 6. Fuzzy Logic and Expert Systems Applications

VOLUME 7. Control and Dynamic Systems

Image Processing and
Pattern Recognition

Edited by

Cornelius T. Leondes
Professor Emeritus
University of California
Los Angeles, California

V O L U M E D O F

Neural Network Systems
Techniques and Applications

ACADEMIC PRESS
San Diego London Boston New York Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

Copyright © 1998 by ACADEMIC PRESS

All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Academic Press
a division of Harcourt Brace & Company
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.apnet.com

Academic Press Limited
24-28 Oval Road, London NWl 7DX, UK
http://www.hbuk.co.uk/ap/

Library of Congress Card Catalog Number: 97-80441

International Standard Book Number: 0-12-443865-2

PRINTED IN THE UNITED STATES OF AMERICA
97 98 99 00 01 02 ML 9 8 7 6 5 4 3 2 1

Contents

Contributors xiii
Preface xv

Pattern Recognition
Jouko Lampinen, Jorma Laaksonen, and Erkki Oja

I. Introduction 1
II. Pattern Recognition Problem 3

A. Data Collection 4
B. Registration 5
C. Preprocessing 5
D. Segmentation 5
E. Normalization 6
F. Feature Extraction 7
G. Classification and Clustering 8
H. Postprocessing 8
I. Loop-Backs between Stages 9
J. Trainable Parts in a System 10

III. Neural Networks in Feature Extraction 11
A. Feature Extraction Problem 11
B. Two Classes of Unsupervised Neural Learning 12
C. Unsupervised Back-Propagation 13
D. Nonlinear Principal Component Analysis 16
E. Data Clustering and Compression by the

Self-Organizing Map 17
IV. Classification Methods: Statistical and Neural 20

A. Mathematical Preliminaries 22
B. Density Estimation Methods 23
C. Regression Methods 27

vi Contents

D. Prototype Classifiers 30
E. Subspace Classifiers 32
F. Special Properties of Neural Methods 33
G. Cross-Validation in Classifier Design 35
H. Rejection 36
I. Committees 36
J. On Comparing Classifiers 37

V. Neural Network Applications in Pattern Recognition 38
A. Application Areas of Neural Networks 38
B. Examples of Neural Pattern Recognition Systems 41

VI. Summary 52
References 53

Comparison of Statistical and Neural Classifiers and
Their Applications to Optical Character Recognition
and Speech Classification
Ethem Alpaydtn and Fikret Gurgen

I. Introduction 61
II. Applications 63

III. Data Acquisition and Preprocessing 64
A. Optical Character Recognition 64
B. Speech Recognition 65

IV. statistical Classifiers 65
A. Parametric Bayes Classifiers 67
B. Nonparametric Kernel-Based Density Estimators 70
C. Semiparametric Mixture Models 72

V. Neural Classifiers 74
A. Simple Perceptrons 77
B. Multilayer Perceptrons 78
C. Radial Basis Functions 78

VI. Literature Survey 79
A. Optical Character Recognition 79
B. Speech Recognition 80

VII. Simulation Results 81
VIII. Conclusions 85

References 86

Contents vi:

Medical Imaging
Ying Sun and Reza Nekovei

I. Introduction 89
A. Medical Imaging 90
B. Media Used for Medical Imaging 90

11. Review of Artificial Neural Network Applications
in Medical Imaging 95
A. Model for Medical Image Processing 95
B. Review of Recent Literature 96

III. Segmentation of Arteriograms 99
A. Background 99
B. Problem Statement 101

IV. Back-Propagation Artificial Neural Network for
Arteriogram Segmentation: A Supervised Approach 101
A. Overview of the Feedforward Back-Propagation

Neural Network 101
B. Back-Propagation Artificial Neural Network Classifier

for Arteriogram Segmentation 104

V. Self-Adaptive Artificial Neural Network for Arteriogram
Segmentation: An Unsupervised Approach 107
A. Adaptive Systems and Gradient Search Method 107
B. Derivation of the Self-Adaptive Classifier 109
C. Performance Evaluation of the

Self-Adaptive Classifier 117
VI. Conclusions 124

A. Neural Network Applications in Medical Imaging 124
B. Supervised versus Unsupervised Artificial Neural

Network for Arteriogram Segmentation 127
C. Future Directions 128
References 129

Paper Currency Recognition
Fumiaki Takeda and Sigeru Omatu

I. Introduction 133
II. Small-Size Neuro-Recognition Technique Using

the Masks 134
A. Basic Idea of the Mask Technique 134

Contents

B. Study of the Mask Parameters 137
C. Experiments of the Neural Network Scale

Reduction Using the Masks 142
III. Mask Determination Using the Genetic Algorithm 143

A. Conventional Mask Determination 144
B. Basic Operations of the Genetic Algorithm 147
C. Experiments Using U.S. Dollars 149

IV. Development of the Neuro-Recognition Board Using
the Digital Signal Processor 152
A. Design Issue Using the Conventional Devices 152
B. Basic Architecture of the

Neuro-Recognition Board 152
V. Unification of Three Core Techniques 156

VI. Conclusions 158
References 159

Neural Network Classification Reliability:
Problems and Applications
Luigi P. Cordelia, Carlo Sansone, Francesco Tortorella, Mario Vento,
and Claudio De Stefano

I. Introduction 161
II. Classification Paradigms 164

III. Neural Network Classifiers 167
IV. Classification Reliability 172
V. Evaluating Neural Network

Classification Reliability 174
VI. Finding a Reject Rule 178

A. Method 178
B. Discussion 184

VII. Experimental Results 185
A. Case 1: Handwritten Character Recognition 186
B. Case 2: Fault Detection and Isolation 192

VIII. Summary 196
References 197

Contents ix

Parallel Analog Image Processing: Solving
Regularization Problems with Architecture Inspired
by the Vertebrate Retinal Circuit
Tetsuya Vagi Haruo Kohayashi, and Takashi Matsumoto

I. Introduction 201

II. Physiological Background 202
A. Structure of the Retina 203
B. Circuit Elements 205
C. Outer Retinal Circuit 210
D. Neuronal Adaptation 215
E. Analog Network Model of Outer Retina 215

III. Regularization Vision Chips 221
A. Introduction 221
B. Tikhonov Regularization 221
C. Two-Dimensional Problems 227
D. The SCE Filter 231
E. Light-Adaptive Architecture 244
F. Wiring Complexity 256

IV. Spatio-Temporal Stability of Vision Chips 264
A. Introduction 264
B. Stability-Regularity 269
C. Explicit Stability Criteria 280
D. Transients 283

References 283

Algorithmic Techniques and Their Applications
Rudy Setiono

I. Introduction 287

II. Quasi-Newton Methods for Neural
Network Training 289

III. Selecting the Number of Output Units 295

IV. Determining the Number of Hidden Units 296

V. Selecting the Number of Input Units 303

X Contents

VI. Determining the Network Connections by Pruning 309
VII. Applications of Neural Networks to Data Mining 313

VIII. Summary 316
References 317

Learning Algorithms and Applications of Principal
Component Analysis
Liang-Hwa Chen and Shyang Chang

I. Introduction 321
II. Adaptive Learning Algorithm 324

III. Simulation Results 335
IV. Applications 343
V. Conclusion 349

VI. Appendix 350
References 351

Learning Evaluation and Pruning Techniques
Leda Villalobos and Francis L. Merat

I. Introduction 353
A. Simplifying Architecture Complexity 354
B. Applications 355
C. Outline 356

II. Complexity Regularization 357
A. Weight Decay 357
B. Weight Elimination 358
C. Smoothness Constraint Generalization 360
D. Constrained Back-Propagation 361

III. Sensitivity Calculation 362
A. Neuron Relevance 363
B. Weight Sensitivity 364
C. Optimal Brain Damage 366
D. Optimal Brain Surgeon 367

IV. Optimization through Constraint Satisfaction 368
A. Constraints in Higher-Order Networks 368
B. Linear Programming Formulations 370
C. Optimizing Feature Space 372

Contents xi

V. Local and Distributed Bottlenecks 372
VI. Interactive Pruning 374

A. Neuron Redundancy 374
B. Information Measure 375

VII. Other Pruning Methods 376
A. Genetic Algorithms 377
B. Evolutionary Programming 377

VIII. Concluding Remarks 378
References 378

Index 383

This Page Intentionally Left Blank

Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Ethem Alpaydin (61), Department of Computer Engineering, Bogazigi
University, TR-80815 Istanbul, Turkey

Shyang Chang (321), Department of Electrical Engineering, National
Tsing Hua University, Hsin Chu, Taiwan, Republic of China

Liang-Hwa Chen (321), Applied Research Laboratory, Telecommunication
Laboratories, Chunghwa Telecom Co., Ltd., 12, Lane 551, Min-Tsu
Road, Sec. 3, Yang-Mei, Taoyuan, Taiwan, Republic of China

Luigi P. Cordelia (161), Dipartimento di Informatica e Sistemistica, Uni-
versita degh Studi di NapoH "Federico II," Via Claudio, 21, 1-80125
Napoli, Italy

Claudio De Stefano (161), Facolta di Ingegneria di Benevento, Diparti-
mento di Ingegneria dellTnformazione ed Ingegneria Elettrica, Uni-
versita degh Studi di Salerno, Piazza Roma, palazzo Bosco LucareUi,
1-82100 Benevento, Italy

Fikret Giirgen (61), Department of Computer Engineering, Bogazigi Uni-
versity, TR-80815 Istanbul, Turkey

Hanio Kobayashi (201), Department of Electronic Engineering, Gumma
University, 1-5-1 Tenjin-cho, Kiryu 376, Japan

Jorma Laaksonen (1), Laboratory of Computer and Information Science,
Helsinki University of Technology, FIN-02150 Espoo, Finland

Jouko Lampinen (1), Laboratory of Computational Engineering, Helsinki
University of Technology, FIN-02150 Espoo, Finland

Takashi Matsumoto (201), Department of Electrical, Electronics and
Computer Engineering, Waseda University, Tokyo 169, Japan

X l l l

xiv Contributors

Francis L. Merat (353), Electrical Engineering Department, Case Western
Reserve University, Cleveland, Ohio 44106-7221

Reza Nekovei (89), Remote Sensing Laboratory, University of Rhode
Island, Bay Campus, Narragansett, Rhode Island 02882

Erkki Oja (1), Laboratory of Computer and Information Science, Helsinki
University of Technology, FIN-02150 Espoo, Finland

Sigeru Omatu (133), Department of Computer and Systems Sciences,
College of Engineering, Osaka Prefecture University, Sakai, Osaka
593, Japan

Carlo Sansone (161), Dipartimento di Informatica e Sistemistica, Univer-
sita degU Studi di NapoU "Federico II," Via Claudio, 21, 1-80125
Napoli, Italy

Rudy Setiono (287), Department of Information Systems and Computer
Science, National University of Singapore, Kent Ridge, Singapore
119260, Republic of Singapore

Ying Sun (89), Department of Electrical and Computer Engineering,
University of Rhode Island, Kingston, Rhode Island 02881

Fumiaki Takeda (133), Technological Development Department, GLORY
Ltd., 3-1, Shimoteno, 1-Chome, Himeji, Hyogo 670, Japan

Francesco Tortorella (161), Dipartimento di Informatica e Sistemistica,
Universita degli Studi di Napoli "Federico II," Via Claudio, 21,
1-80125 Napoli, Italy

Mario Vento (161), Dipartimento di Informatica e Sistemistica, Universita
degU Studi di Napoli "Federico II," Via Claudio, 21,1-80125 Napoli,
Italy

Leda Villalobos (353), Engineering School, University of Texas at El Paso,
El Paso, Texas 79968-0521

Tetsuya Yagi (201), Kyushu Institute of Technology, 680-4 Kawazu, lizuka-
shi, Fukuoka Prefecture, 820 Japan

Preface

Inspired by the structure of the human brain, artificial neural networks
have been widely applied to fields such as pattern recognition, optimiza-
tion, coding, control, etc., because of their ability to solve cumbersome or
intractable problems by learning directly from data. An artificial neural
network usually consists of a large number of simple processing units, i.e.,
neurons, via mutual interconnection. It learns to solve problems by ade-
quately adjusting the strength of the interconnections according to input
data. Moreover, the neural network adapts easily to new environments by
learning, and can deal with information that is noisy, inconsistent, vague,
or probabilistic. These features have motivated extensive research and
developments in artificial neural networks. This volume is probably the
first rather comprehensive treatment devoted to the broad areas of algo-
rithms and architectures for the realization of neural network systems.
Techniques and diverse methods in numerous areas of this broad subject
are presented. In addition, various major neural network structures for
achieving effective systems are presented and illustrated by examples in all
cases. Numerous other techniques and subjects related to this broadly
significant area are treated.

The remarkable breadth and depth of the advances in neural network
systems with their many substantive applications, both realized and yet to
be realized, make it quite evident that adequate treatment of this broad
area requires a number of distinctly titled but well-integrated volumes.
This is the fifth of seven volumes on the subject of neural network systems
and it is entitled Image Processing and Pattern Recognition. The entire set
of seven volumes contains

Volume 1
Volume 2
Volume 3
Volume 4
Volume 5
Volume 6
Volume 7

Algorithms and Architectures
Optimization Techniques
Implementation Techniques
Industrial and Manufacturing Systems
Image Processing and Pattern Recognition
Fuzzy Logic and Expert Systems Applications
Control and Dynamic Systems

XV

xvi Preface

The first contribution to this volume is "Pattern Recognition," by Jouko
Lampinen, Jorma Laaksonen, and Erkki Oja. Pattern recognition (PR) is
the science and art of giving names to the natural objects in the real world.
It is often considered part of artificial intelligence. However, the problem
here is even more challenging because the observations are not in symbolic
form and often contain much variability and noise. Another term for PR is
artificial perception. Typical inputs to a PR system are images or sound
signals, out of which the relevant objects have to be found and identified.
The PR solution involves many stages such as making the measurements,
preprocessing and segmentation, finding a suitable numerical representa-
tion for the objects we are interested in, and finally classifying them based
on these representations. Presently, there are a growing number of appli-
cations for pattern recognition. A leading motive from the very start of the
field has been to develop user-friendly and flexible user interfaces that
understand speech and handwriting. Only recently have these goals be-
come possible with the highly increased computing power of workstations.
Document processing is emerging as a major application. In industrial
problems as well as in biomedicine, automatic analysis of images and
signals can be achieved with PR techniques. Remote sensing is routinely
using automated recognition techniques, too. This contribution is a rather
comprehensive presentation of the techniques and methods of neural
network systems in pattern recognition. Several substantive examples are
included. It is also worth noting as a valuable feature of this contribution
that almost 200 references, which have been selectively culled from the
literature, are included in the reference list.

The next contribution is "Comparison of Statistical and Neural Classi-
fiers and Their Applications to Optical Character Recognition and Speech
Classification," by Ethem Alpaydm and Fikret Giirgen. Improving
person-machine communication leads to wider use of advanced informa-
tion technologies. Toward this aim, character recognition and speech
recognition are two applications whose automatization allows easier inter-
action with a computer. As they are the basic means of person-to-person
communication, they are known by everyone and require no special
training. Speech in particular is the most natural form of human communi-
cation and writing is the tool by which humanity has stored and transferred
its knowledge for millennia. In a typical pattern recognition system, the
first step is the acquisition of data. These raw data are preprocessed to
suppress noise and normalize input. Features are those parts of the signal
that carry information salient to its identity, and their extraction is an
abstraction operation where the important information is extracted and
the irrelevant is discarded. Classification is assignment of the input as an
element of one of a set of predefined classes. The rules for classification

Preface xvii

are generally not known exactly and thus are estimated. A classifier is
written as a parametric model whose parameters are computed using a
given training sample to optimize particular error criterion. Approaches
for classification differ in their assumptions about the model, in the way
parameters are computed, or in the error criterion they optimize. This
contribution treats what are probably the two principle approaches to
classifiers as embodied by neural and statistical classifiers, and applies
them to the major areas of optical character recognition and speech
recognition. Illustrative examples are included as well as the literature for
the two application categories.

The next contribution is "Medical Imaging," by Ying Sun and Reza
Nekovei. The history of medical imaging began a century ago. The land-
mark discovery of X-rays by Wilhelm Conrad Rontgen in 1895 ushered in
the development of noninvasive methods for visualization of internal
organs. The birth of the digital computer in 1946 brought medical imaging
into a new era of computer-assisted imagery. During the second half of the
20th century, medical imaging technologies have diversified and advanced
at an accelerating rate. Today, clinical diagnostics rely heavily on the
various medical imaging systems. In addition to conventional X-ray radiog-
raphy, computer-assisted tomography and magnetic resonance imaging
produce two-dimensional cross sections and three-dimensional imagery of
the internal organs that drastically improve our capability to diagnose
various diseases. X-ray angiography used in cardiac catheterization labora-
tories allows us to detect stenoses in the coronary arteries and guide
treatment procedures such as balloon angioplasty and cardiac ablation.
Ultrasonography has become a routine procedure for fetal examination.
Two-fetal dimensional echocardiography combined with color Doppler
flow imaging has emerged as a powerful and convenient tool for diagnos-
ing heart valve abnormahties and for assessing cardiac functions. In the
area of nuclear medicine, the scintillation gamma camera provides two-
dimensional images of pharmaceuticals labeled by radioactive isotopes.
Single photon emission computed tomography and positron emission to-
mography further allow for three-dimensional imaging of radioactive trac-
ers. This contribution is a rather in-depth treatment of the important role
neural network system techniques can play in the greatly significant area
of medical imaging systems. Two major application areas are treated, i.e.,
detection of blood vessels in angiograms and image segmentation.

The next contribution is "Paper Currency Recognition," by Fumiaki
Takeda and Sigeru Omatu. Three core techniques are presented. The first
is the small size neurorecognition technique using masks. The second is
the mask determination technique using the genetic algorithm. The third is
the neurorecognition board technique using the digital signal processor.

xviii Preface

Unification of these three techniques demonstrates that reaUzation of
neurorecognition machines capable of transacting various kinds of paper
currency is feasible. The neurosystem technique enables acceleration in
the commercialization of a new type of banking machine in a short period
and in a few trials. Furthermore, this technique will be effective for various
kinds of recognition applications owing to its high recognition abiUty, high
speed transaction, short developing period, and reasonable cost. It can be
presumed that it is so effective that it applies not only to paper currency
and coins, but also to handwritten symbols such as electron systems or
questionnaires.

The next contribution is "Neural Network Classification Reliability:
Problems and Applications," by Luigi P. Cordelia, Carlo Sansone, Fran-
cesco Tortorella, and Claudio De Stefano. Classification is a process
according to which an entity is attributed to one of a finite set of classes
or, in other words, it is recognized as belonging to a set of equal or similar
entities, possibly identified by a name. In the framework of signal and
image analysis, this process is generally considered part of a more complex
process referred to as pattern recognition. In its simplest and still most
commonly followed approach, a pattern recognition system is made of two
distinct parts:

1. A description unit, whose input is the entity to be recognized,
represented in a form depending on its nature, and whose output
is generally a structured set of quantities, called features, which
constitutes a description characterizing the input sample. A
description unit implements a description scheme.

2. A classification unit, whose input is the output of the description
unit and whose output is the assignment to a recognition class.

This contribution is a rather comprehensive treatment of pattern recogni-
tion in the classification problem by means of neural network systems. The
techniques presented are illustrated by their application to two problem
areas of major significance, i.e., handwritten character recognition and
fault detection and isolation.

The next contribution is "Parallel Analog Image Processing: Solving
Regularization Problems with Architecture Inspired by the Vertebrate
Retinal Circuit," by Tetsuya Yagi, Haruo Kobayashi, and Takashi Mat-
sumoto. Almost all digital image processors employ the same architecture
for the sensor interface and data processing. A camera reads out the
sensed image in a raster scan-out of pixels, and the pixels are serially
digitized and stored in a frame buffer. The digital processor then reads the
buffer serially or as blocks to smooth the noise in the acquired image,
enhance the edges, and perhaps normalize it in other ways for pattern

Preface xix

matching and object recognition. There have been several attempts in
recent years to implement these functions in the analog domain, to attain
low-power dissipation and compact hardware, or simply to construct an
electrical model of these functions as they are found in biological systems.
Analog implementations must have their performance evaluated in com-
parison with their digital counterparts, and systematic techniques for their
design and implementation are evaluated therefrom. This contribution
presents methods for the development of image processing parallel analog
chips based on a class of parallel image processing algorithms. The
architecture for these chips is motivated by physiological findings in lower
vertebrates. The various aspects involved in this process are presented in
an in-depth treatment, and illustrative examples are presented which
clearly manifest the substantive effectiveness of the techniques presented.

The next contribution is "Algorithmic Techniques and Their Applica-
tions," by Rudy Setiono. Pattern recognition is an area where neural
networks have been widely applied with much success. The network of
choice for pattern recognition is a multilayered feedforward network
trained by a variant of the gradient descent method known as the back-
propagation learning algorithm. As more applications of these networks
are found, the shortcomings of the backpropagation network become
apparent. Two drawbacks often mentioned are the need to determine the
architecture of a network before training can begin and the inefficiency of
the backpropagation learning algorithm. Without proper guidelines on
how to select an appropriate network for a particular problem, the archi-
tecture of the network is usually determined by trial-and-error adjustments
of the number of hidden layers and/or hidden units. The backpropagation
algorithm involves two parameters: the learning rate and the momentum
rate. The values of these parameters have a significant effect on the
efficiency of the learning process. However, there have been no clear
guidelines for selecting their optimal values. Regardless of the values of
the parameters, the backpropagation method is generally slow to converge
and prone to get trapped at a local minimum of the error function. When
designing a neural network system, the choice of a learning algorithm for
training the network is crucial. As problems become more complex, larger
networks are needed and the speed of training becomes critical. Instead of
the gradient descent method, more sophisticated methods with faster
convergence rate can be used to speed up network training. This contribu-
tion describes a variant of the quasi-Newtonian that can be used to reduce
the network training time significantly. The substantively effective tech-
niques presented in this contribution can be applied to a diverse array of
significant problems, and several examples are included here. These are
applications to the well-known spiral problem (described in this contribu-

XX Preface

tion), the multidisciplinary field of data mining in which it is desired to
discover important patterns of interest that are hidden in databases, and
the utiUzation of a neural network system as a means of distinguishing
between benign and malignant samples in a breast cancer data set.

The next contribution is "Learning Algorithms and Applications of
Principal Component Analysis," by Liang-Hwa Chen and Shyang Chang.
The principal component analysis (PCA) learning network is one of a
number of types of unsupervised learning networks. It is also a single layer
neural network but the neurons are linear as described in this contribu-
tion. The learning is essentially based on the Hebb rule. It is utilized to
perform PCA, i.e., to find the principle components embedded in the input
data. PCA is one of the feature extraction methods, of which this contribu-
tion is a rather comprehensive treatment. Illustrative examples are in-
cluded which demonstrate the substantive effectiveness of PCA (coupled
with adaptive learning algorithms) to such problems as data compression,
image coding, texture segmentation, and other significant applications.

The final contribution to this volume is "Learning Evaluation and
Pruning Techniques," by Leda Villalobos and Francis L. Merat. In neural
network system pruning, the process is initiated with a neural network
system architecture that is larger than the minimum needed for learning.
Such a neural network system architecture is then progressively reduced by
pruning or weakening neurons and synaptic weights. This contribution is a
rather comprehensive treatment of neural network system pruning tech-
niques and their many significant applications. Not the least of the many
applications noted in this contribution is that of evaluation and improve-
ment of feature space in pattern recognition problems. Improving feature
space quality has an unmeasurable value: a pattern recognition problem
cannot be solved without good feature representation.

This volume on neural network systems techniques in image processing
and pattern recognition systems clearly reveals the effectiveness and
essential significance of the techniques available and, with further develop-
ment, the essential role they will play in the future. The authors are all to
be highly commended for their splendid contributions to this volume which
will provide a significant and unique reference source for students, re-
search workers, practitioners, computer scientists, and others on the inter-
national scene for years to come.

Cornelius T. Leondes

Pattern Recognition

Jouko Lampinen
Laboratory of
Computational
Engineering
Helsinki University
of Technology
FIN-02150 Espoo, Finland

Jorma Laaksonen
Laboratory of Computer
and Information Science
Helsinki University
of Technology
FIN-02150 Espoo, Finland

Erkki Oja
Laboratory of Computer
and Information Science
Helsinki University
of Technology
FIN-02150 Espoo, Finland

I. INTRODUCTION

Pattern recognition (PR) is the science and art of giving names to the natu-
ral objects in the real world. It is often considered part of artificial intelligence.
However, the problem here is even more challenging because the observations
are not in symbolic form and often contain much variability and noise: another
term for PR is artificial perception. Typical inputs to a PR system are images or
sound signals, out of which the relevant objects have to be found and identified.
The PR solution involves many stages such as making the measurements, pre-
processing and segmentation, finding a suitable numerical representation for the
objects we are interested in, and finally classifying them based on these represen-
tations.

Presently, there are a growing number of applications for pattern recognition.
A leading motif from the very start of the field has been to develop user-friendly
and flexible user interfaces, that would understand speech and handwriting. Only
recently these goals have become possible with the highly increased computing
power of workstations. Document processing is emerging as a major application.
In industrial problems as well as in biomedicine, automatic analysis of images and

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1

2 Jouko Lampinen et al.

signals can be achieved with PR techniques. Remote sensing is routinely using
automated recognition techniques, too.

A central characteristic of the PR problem is that the number of different targets
or objects that the system has to cope with is at least in principle unUmited, due
to the variations caused, e.g., by viewing angles and illumination. Thus the prob-
lem cannot be solved by straightforward matching or data base searches. Still, the
number of classes is finite and often relatively small. Each object has to be clas-
sified to one of the classes. The system is designed based on a sample of typical
objects representing the different classes, and after this it must be able to classify
also new, unknown objects with minimum error. This is often called generaliza-
tion. A feasible design approach is to use some kind of model fitting or tuning
based on the design set; traditionally, this has been called learning. Various adap-
tive and machine learning approaches have been popular in the PR system design
problem.

Artificial neural networks (ANNs) are a class of flexible semiparametric mod-
els for which efficient learning algorithms have been developed over the years.
They have been extensively used on PR problems. Even though realistic sys-
tems for such hard PR problems such as computer vision are hybrids of many
methodologies including signal processing, classification, and relational match-
ing, it seems that neural networks can be used to an advantage in certain subprob-
lems, especially in feature extraction and classification. These are also problems
amenable to statistical techniques, because the data representations are real vec-
tors of measurements or feature values, and it is possible to collect training sam-
ples on which regression analysis or density estimation become feasible. Thus, in
many cases neural techniques and statistical techniques are seen as alternatives.
This approach has led on one hand to a fruitful analysis of existing neural net-
works, and on the other hand brought new viewpoints to current statistical meth-
ods, and sometimes produced a useful synthesis of the two fields. Recently, many
benchmark and comparison studies have been published on neural and statistical
classifiers [1-6]. One of the most extensive was the Statlog project [5] in which
statistical methods, machine learning, and neural networks were compared using
a large number of different data sets.

The purpose of the present review study is to discuss the ways in which neu-
ral networks can enter the PR problem and how they might be useful compared
to other approaches. Comparisons are made both from an analytical and a prac-
tical point of view. Some illuminating examples are covered in detail. The con-
tents of the subsequent sections are as follows: In Section II, we introduce the
PR problem and show the general solution as a sequence of consequent, mutually
optimized stages. The two stages in which neural networks seem to be the most
useful are feature extraction and classification, and these will be covered in Sec-
tions III and IV. Then in Section V, applications will be explained, and Section VI

Pattern Recognition 3

presents some conclusions. An extensive publication list is given at the end of this
chapter.

11. PATTERN RECOGNITION PROBLEM

This section presents an introduction to divergent aspects of pattern recogni-
tion. The operation of a pattern recognition system is presented as a series of con-
secutive processing stages. The functions of all these stages are elaborated, even
though only few of them may actually be neural. The term pattern recognition
can be defined in many ways, including the following [7]. Pattern recognition is
an information-reduction process: the assignment of visual or logical patterns to
classes based on the features of these patterns and their relationships.

The basic setting of pattern recognition is as follows. There is one unknown
object presented as a set of signals or measurements in the input of a black box
called a pattern recognition system. At the output of the system, there is a set of
predefined classes. The purpose of the system is to assign the object to one of the
classes. In a more general setting, there is more than one object to be recognized.
In that case, the classification of the subsequent or nearby objects may or may not
be interdependent. The list of classes may also contain a special reject class for
the objects the system is unable to classify.

Depending on the measurements and the classes we are led to divergent ar-
eas of pattern recognition, including recognition of speech or speaker, detection
of clinical malformations in medical images or time-signals, document analysis
and recognition, etc. All these disciplines call for expertise in both the subject
matter and the general theory and practice of pattern recognition. There exists an
extensive amount of literature on both overall and specific questions of pattern
recognition systems and applications. The classical textbook sources include, in
the order of appearance, [8-17], some of which are actually revised versions of
earlier editions. Recent developments—such as use of neural methods—are con-
tained in such books as [18-23]. During the past thirty years, many valuable arti-
cle collections have been edited in the field, including [24-28].

Technical systems are often considered as being comprised of consecutive
blocks each performing its precisely defined task in the processing. The whole
system can then be modeled in a bottom-up fashion as a block diagram. In the
simplest case the flow of the data stream is one-directionally from left to right
as shown in Fig. 1, presenting a general pattern recognition system. The diagram
shown is naturally only one intuition of how to depict a view, and alternative
structures can be seen, e.g., in [15,17, 20, 29].

The following subsections shortly describe each of the stages with examples
emanating principally from optical character recognition and speech recognition.

Jouko Lampinen et al

Data Collection h ^ Registration [—*i Preprocessing \-*\ Segmentation

Normalization r-*i Feature Extraction f—H Classification Postprocessing

Figure 1 A block diagram of a generic pattern recognition system.

Some of the described stages may thus be obsolete or obscure in other types of
pattern recognition systems.

A. DATA COLLECTION

The first stage in any pattern recognition system is data collection. Before a
pattern vector is made up of a set of measurements, these measurements need to
be performed using some technical equipment and converted to numerical form.
In the case of image analysis or character recognition, such equipment includes
video cameras and scanners; in the case of speech recognition, microphones, etc.
The input data, whatever its form is, is sampled at fixed intervals in time or image
metric domain and digitized to be presented with a preset number of bits per
measurement. In any case, the data collection devices should record the objects
with the highest fidelity available. Any additional noise will be disadvantageous
to successful operation of the system. The data collection phase should also be
designed in such a manner that the system will be robust to variations in operation
of individual signal measurement devices.

The data collection stage possibly includes auxiliary storage for the collected
data. The use of temporary storage is inevitable, if the recognition phase cannot be
performed simultaneously with the data acquisition. More permanent data storage
is needed for training material while a pattern recognition system is being con-
structed or tested. In some occasions, the amount of data storage needed may turn
out to be a prohibitive factor in the development or use of an automated pattern
recognition system. This discrepancy can be somewhat eased by compressing the
stored data, but in the worst case, the fidelity of the data has to be sacrificed for
the sake of storage shortage. This sacrifice is most often performed by reduc-
ing the spatial or temporal resolution of the data sampling or by presenting the
measurements with a degraded accuracy using fewer bits per sample. Similar
problems and solutions arise if the channel used in transferring the data is a bot-
tleneck for the requirements of on-line processing.

Pattern Recognition 5

B. REGISTRATION

In the registration of data, rudimentary model fitting is performed. The internal
coordinates of the recognition system are somehow fixed to the actual data ac-
quired. At least some a priori knowledge about the world surrounding the system
is utilized in designing the registration stage. This external information mainly
answers questions such as: How has the data been produced? Where or when
does the sensible input begin and end? The registration process thus defines the
framework in which the system operates so that it knows what to expect as valid
input.

In speech recognition, the registration phase consists of ignoring epochs during
which input is comprised of pure noise only and locating the beginnings and ends
of utterances. In optical character recognition, the system must locate in the input
image the area of interest. In the case of fill-in forms the area may be registered
with some special printed marks, but in document analysis the system has to locate
it automatically, based upon the overall layout of the page image.

C. PREPROCESSING

Real-world input data always contains some amount of noise and certain pre-
processing is needed to reduce its effect. The term noise is to be understood
broadly: anything that hinders a pattern recognition system in fulfilling its com-
mission may be regarded as noise no matter how inherent this "noise" is in the
nature of the data. Some desirable properties of the data may also be enhanced
with preprocessing before the data is fed further in the recognition system.

Preprocessing is normally accomplished by some simple filtering method on
the data. In the case of speech recognition, this may mean linear high-pass filtering
aimed to remove the base frequency and to enhance the higher frequencies. In im-
age recognition, the image may be median filtered to remove spurious point noise
which might hamper the segmentation process. An advantageous preprocessing
step for color images is decorrelation of the color components. Such a process
transfers an image originally in the RGB (red-green-blue) coordinates linearly to
the YIQ (luminosity-inphase-quadrature) system.

D . SEGMENTATION

The registered and preprocessed input data has to be spUt in subparts which
make meaningful entities for classification. This stage of processing is called seg-
mentation. It may either be a clearly separate process or tightly interwoven with

6 Jouko Lampinen et al.

previous or following processes. In either case, after the pattern recognition sys-
tem has completed the processing of a totality of data, the resulting segmentation
of the data to its subparts can be revealed. Depending on how the application has
been realized, the segmentation block may either add the information regarding
the segment boundaries to the data flow, or alternatively, copy all the segments in
separate buffers and hand them over to the following stage one by one.

In speech recognition, a meaningful entity is most likely a single phoneme or a
syllable containing a small but varying number of phonemes. In optical character
recognition, the basic units for classification are single characters or some of the
few composite glyphs such as fi and fl.

Some pattern recognition applications would be described better if, in Fig. 1,
segmentation were placed after the classification stage. In such systems, the input
data is partitioned with fixed-sized windows at fixed spatial or temporal intervals.
The actual segmentation can take place only after the subparts have been labeled
in the classification stage.

E. NORMALIZATION

A profound conmion characteristic of the environments where automated pat-
tern recognition systems are used is the inherent variance of the objects to be
recognized. Without this variance the pattern recognition problem would not ex-
ist at all. Instead, we would be concerned with deterministic algorithms such as
those for sorting, searching, computer language compiling, Fourier transform, etc.
The central question in pattern recognition, therefore, is how these variances can
be accounted for. One possibility is to use feature extraction or classification algo-
rithms which are invariant to variations in the outcomes of objects. For example,
image features that are invariant to rotation are easy to define, but some types
of natural variance will inevitably always evade the invariant feature extraction.
Therefore, a separate normalization step is called for in almost all pattern recog-
nition systems.

NormaUzation always causes as a side effect loss of degrees of freedom.
This is reflected as dimension reduction in the intrinsic dimensionality of the
data. If the normalization could be done ideally, only the dimensionality increase
caused by the noise would be canceled out. This is unfortunately not true, but
as will be explained in the following section, the dimensionality of the data has
to be anyhow reduced. Insignificant loss in intrinsic dimensionaUty of the data
during the otherwise beneficial normalization process is therefore not a serious
problem.

For example, depending on individual habits, our handwriting is not straight
upwards but somewhat slanted to left or right. Normahzed characters can be
achieved by estimating the slant and reverting it. In speech recognition, the loud-

Pattern Recognition 7

ness of speech can be normalized to a constant level by calculating the energy of
an utterance and then scaling the waveform accordingly.

R FEATURE EXTRACTION

The meaning of the feature extraction phase is most conveniently defined re-
ferring to the purpose it serves [14]: feature extraction problem . . . is that of ex-
tracting from the raw data the information which is most relevant for classification
purposes, in the sense of minimizing the within-class pattern variability while en-
hancing the between-class pattern variability.

During the feature extraction process the dimensionality of data is reduced.
This is almost always necessary, due to the technical limits in memory and com-
putation time. A good feature extraction scheme should maintain and enhance
those features of the input data which make distinct pattern classes separate from
each other. At the same time, the system should be immune to variations produced
both by the humans using it and the technical devices used in the data acquisition
stage.

Besides savings in memory and time consumptions, there exists another impor-
tant reason for proper dimensionality reduction in the feature extraction phase. It
is due to the phenomenon known as the curse of dimensionality [30], that in-
creasing the dimensionality of the feature space first enhances the classification
accuracy but rapidly leads to sparseness of the training data and poor represen-
tation of the vector densities, thereby decreasing classification performance. This
happens even though the amount of information present in data is enriched while
its dimensionality is increased. The curse thus forces the system designer to bal-
ance between the amount of information preserved as the dimensionality of the
data, and the amount of density information available as the number of training
samples per unit cube in the feature vector space. A classical rule of thumb says
that the number of training samples per class should be at least 5-10 times the
dimensionality [31].

An issue connected to feature extraction is the choice of metric. The variances
of individual features may vary orders of magnitude, which inevitably impairs the
classifier. The situation can be eased by applying a suitable linear transform to the
components of the feature vector.

In speech recognition, the features are most often based on first assuming mo-
mentary stability of the waveform. In that case spectral, cepstral, or linear predic-
tion coefficients can be used as descriptive features. The diverse possibilities for
feature extraction in recognition of handwritten characters include features cal-
culated from the outline of the character, the distribution of mass and direction
in the character area, etc. Neural networks provide some ways for dimensional-

8 Jouko Lampinen et al.

ity reduction and feature extraction. The connection of neural networks to feature
extraction will be covered in depth in Section III.

G. CLASSIFICATION AND CLUSTERING

In addition to feature extraction, the most crucial step in the process of pat-
tern recognition is classification. All the preceding stages should be designed and
tuned aiming at success in the classification phase. The operation of the classifi-
cation step can be simplified as being that of a transform of quantitative input data
to qualitative output information. The output of the classifier may either be a dis-
crete selection of one of the predefined classes, or a real-valued vector expressing
the likelihood values for the assumptions that the pattern was originated from the
corresponding class.

The primary division of the various classification algorithms used is that be-
tween syntactic and statistical methods. The statistical methods and neural net-
works are related in the sense that the same features can be used with both. Due
to the centrality of classification methods to this text, they are not covered in this
introductory section but analyzed in full depth in Section IV.

A topic closely related to classification is clustering. In clustering, either the
existence of predefined pattern classes is not assumed, the actual number of
classes is unknown, or the class memberships of the vectors are generally un-
known. The task of the clustering process is therefore to group the feature vectors
to clusters in which the resemblance of the patterns is stronger than between the
clusters [32]. The processing blocks surrounding the classification stage in Fig. 1
are generally also applicable to clustering problems.

H. POSTPROCESSING

In most pattern recognition systems, some data processing is performed also
after the classification stage. These postprocessing subroutines, like the normal-
ization processes, bring some a priori information about the surrounding world
into the system. This additional expertise can be utilized in improving the overall
classification accuracy. A complete postprocessing block may itself be a hybrid of
successive or cooperative entities. In the context of this representation it however
suffices to regard the postprocessor as an atomic operator.

The postprocessing phase is generally possible if the individual objects or seg-
ments make up meaningful entities such as bank account numbers, words, or sen-
tences. The soundness or existence of these higher-level objects can be examined

Pattern Recognition 9

and if an error is indicated, further steps can be taken to correct the misclassifica-
tion. The postprocessing phase thus resolves interdependencies between individ-
ual classifications. This is possible either by the operation of the postprocessing
stage alone, or in cooperation with the segmentation and classification blocks as
will be explained in the following section.

I. LOOP-BACKS BETWEEN STAGES

In Fig. 1, a block diagram of an idealized pattern recognition application was
depicted. Such systems, in which the data flows exclusively from left to right, can
hardly ever be optimal in the sense of recognition accuracy. By making the suc-
cessive blocks interact, the overall performance of the system can be considerably
enhanced. The system, of course, becomes much more complicated, but generally
there is no other way to increase the classification accuracy.

Three possible routes for the backward links are drawn in Fig. 2 with dashed
arrows and labeled (a), (b), and (c). The motivations behind these three configu-
rations are:

(a) Information is fed back from postprocessing to classification. When the
postprocessor detects an impossible or highly improbable combination of outputs
from the classifier, it notifies the classifier. Either the postprocessor itself is able
to correct the fault, or it asks the classifier for a new trial. In either case, the
classifier ought to be able to revise its behavior and to not produce similar errors
in the future. The classifier may also mediate this feedback information back to
the segmentation block as will be explained below.

—H Data Collection Registration Preprocessing Segmentation

b)

• -^ Normalization Feature Extraction

c)
a) L

Classification Postprocessing

Figure 2 A block diagram of a pattern recognition system with some possible loop-back routes
added.

10 Jouko Lampinen et ah

(b) The classifier revises the segmentation phase. In this case, the classifier or
the postprocessor has detected one or more successive patterns that are hard to
classify. This might be an indication of malformed segmentation which should be
located and corrected. This scheme can also be viewed as a segmentation algo-
rithm probing the succeeding stages with tentative segments. It is then left for the
classifier to select the most probable combination.

This view can also acconmiodate the possibihty that segmentation is performed
after classification. In this scheme, the data flows unmodified in its first pass
through the segmentation block. When classification has taken place, the data
is fed back to the segmenter and the actual segmentation is performed.

(c) The correctness of the classifications is used to revise the feature extrac-
tor. This kind of operation is mostly possible only during the training phase and
generally necessitates the redesign of the classifier. This kind of scheme may be
called error-corrective feature extraction [33].

J. TRAINABLE PARTS IN A SYSTEM

All the stages of a pattern recognition system contain parameters or variables
which need to be given appropriate values. Some of these parameters are so del-
icate that they have to be selected by an expert of the application area and kept
constant thereafter. Others may be tunable by trial and error or cross-vahdation
processes in cooperation with an expert observing the overall performance of the
system top-down. Profoundly more interesting are, however, parameters which
the system is able to learn by itself from training with available data. Neural net-
works provide a whole new family of divergent formalisms for adaptive systems.
Error-corrective neural training can be used in various parts of a pattern recogni-
tion system to improve the overall performance.

In most cases, the adaptive nature of the neural networks is only utilized
during the training phase and the values of the free parameters are fixed at the
end of it. A long-term goal, however, is to develop neural systems which retain
their abihty to adapt to slowly evolving changes in their operation environments.
In such automata, the learning of the system would continue automatically and
by itself endlessly. Evidently, the stability of such systems is more or less in
doubt.

In many systems claimed to be neural, just a traditional classifier has been re-
placed by a neural solution. This is of course reasonable if it makes the system
perform better. However, a more principled shift to bottom-up neural solution
might be possible and called for. At least the normalization and feature extraction
stages, together with classification, could be replaced with neural counterparts in
many systems. Only then, the full potentiaHty of neural systems would be ful-
filled.

Pattern Recognition 11

III. NEURAL NETWORKS
IN FEATURE EXTRACTION

A. FEATURE EXTRACTION PROBLEM

In real-world pattern recognition problems such as image analysis, the input
dimensionality can be very high (of the order of hundreds) and the discriminant
functions to be approximated are very nonUnear and complex. A classifier based
on the measured objects (e.g., images) directly would require a large number of
parameters in order to approximate and generalize well all over the input domain.
Such a "black box" modeling approach is shown in Fig. 3. The central block could
be a supervised learning network, such as the multilayer perceptron network, the
radial basis function network, or the LVQ network. Together with their powerful
training algorithms such as the error back-propagation, these networks provide
highly efficient model-free methods to design nonlinear mappings or discrimi-
nant functions between inputs and outputs using a data base of training samples.
Prominent examples are pattern recognition, optical character readers, industrial
diagnostics, condition monitoring, modeUng complex black box systems for con-
trol, and time series analysis and forecasting.

However, it is well known [34] that even neural networks cannot escape the pa-
rameter estimation problem, which means that the amount of training data must
grow in proportion to the number of free parameters. Consequently, very large
amounts of training data and training time are needed in highly complex and
large-dimensional problems to form the input-output mappings [35]. Collecting
the training samples would eventually be very expensive if not impossible. This
seems to be a major limitation of the supervised learning paradigm. In conven-
tional pattern recognition (see Section II), the answer is to divide the task in two
parts: feature extraction which maps the original input patterns or images to a
feature space of reduced dimensions and complexity, followed by classification
in this space. This approach is shown in Fig. 4.

There is no well-developed theory for feature extraction; mostly features are
very application oriented and often found by heuristic methods and interactive

>•

Inputs

Modeling of

the

input - output

mapping

Outputs

^

Figure 3 Black box modeling approach.

12

>.

Inputs

**

Feature

extraction

Reduced input

representations

Jouko Lampinen et al

Input -

output -

mapping

>•

Outputs

Figure 4 Feature extraction approach.

data analysis. It is not possible to give an overview of such interactive feature ex-
traction methods; in any specific problem such as, e.g., character or speech recog-
nition, there is an accumulated knowledge of the most feasible ways to extract the
relevant information, and the reader is advised to look up review articles on the
given application fields. Instead, some generic principles of neural-network-based
feature extraction are reviewed here.

An important basic principle is that the feature extraction method should not
depend on the class memberships of the objects, because by definition at the fea-
ture extraction stage these are not yet known. The same features are extracted
from all the inputs, regardless of the target classes. It follows that if any learning
methods are used for developing the feature extractors, they can be unsupervised
in the sense that the target class for each object does not have to be known.

B. Two CLASSES OF UNSUPERVISED
NEURAL LEARNING

Unsupervised learning algorithms are an important subclass of neural learning.
The characteristic feature of unsupervised neural learning is that the training set
only contains input samples. No desired outputs or target outputs are available
at all. Basically, these algorithms fall into one of two categories [36]: first, ex-
tensions of the linear transform coding methods of statistics, especially principal
component analysis, and second, learning vector coding methods that are based
on competitive learning.

The first class of neural feature extraction and compression methods are moti-
vated by standard statistical methods such as principal component analysis (PCA)
or factor analysis (see, e.g., [37]), which give a reduced subset of linear combina-
tions of the original input variables. Many of the neural models are based on the
PCA neuron model introduced by one of the authors [38]. The additional advan-
tage given by neural learning is that neural networks are nonlinear, and thus pow-
erful nonlinear generalizations to linear compression can be obtained. Typically,
the compressed representation thus obtained would be input to another neural net-

Pattern Recognition 13

Inputs

Clustering,

vector coding
Codes, to be used in
post - processing

Figure 5 Clustering approach.

work working in the supervised mode, as shown in Fig. 4. These techniques will
be covered in Sections III.C and III.D.

The second class of methods apply to cases when the entire problem to be
solved is of the unsupervised nature: there are no target labels or values available
at all. The results of the unsupervised neural network are used as such, as shown
in Fig. 5. A typical application is clustering and data compression. It is of interest
to find out what kind of typical clusters there are among the input measurement
vectors. A competitive learning neural network gives an efficient solution to this
problem. Section III.E reviews the best-known competitive learning network, the
self-organizing map (SOM) introduced by Kohonen [39], and its use in massive
data clustering.

This chapter is a review of the essential principles and theory underlying the
two models of unsupervised learning, with some central references cited. It is not
possible here to give even a rudimentary list of applications of these techniques.
Instead, two large collections of references available on the Internet are cited:
[40] and [41]. Together they give well over two thousand references to the use of
unsupervised learning and feature extraction in neural networks.

C. UNSUPERVISED BACK-PROPAGATION

In this section, it is shown that a powerful generalization of the linear prin-
cipal component analysis method is given by a multilayer perceptron network
that works in the auto-associative mode. To show this analogy, let us define
some notation first. The overall input-output mapping formed by the network
is / : R^ -^ W^, the input vector is x e R^, the output vector is y e R^, and
there is a training sample (x i , . . . , x^) of inputs available. Let us require that the
output is X, too, i.e., y = / (x) = x for all x. This mode of operation is called auto-
associative, since the network is associating the inputs with themselves. Note that
in back-propagation learning, the same training samples x/ are then used both as
inputs and as desired outputs. Therefore, this is unsupervised learning.

14 Jouko Lampinen et ah

d

X

w, ,

N

W2 ,

h =

P
Wz .

S(Ty25(VFix))

TV

d

W^4 ,

y = = WiSiWzh)

5(Wix) S{Wzh)

Figure 6 A five-layer network with linear output layer and three nonlinear hidden layers. The boxes
denote layers; the number of units in each layer is given above the box, and the output vector of the
layer is given under the box. The arrows give the transformations between the layers. The Wi are the
weight matrices including the offsets, and S is the nonlinear neuron activation function.

To avoid the trivial solution, let us impose a constraint: the network has three
or more layers, with the input and output layers having d units but one of the inter-
mediate or hidden layers having a smaller number p < d units [42-44]. This con-
straint means that the network has a bottleneck layer, giving the network the hour-
glass shape shown by the five-layer network in Fig. 6. Denoting the output vector
of the bottleneck hidden layer by h G R^, the total mapping / from x to y breaks
down to two parts: h = /i(x) = S{W2S{Wxx)), y = /2(h) = WASiW^h)). S is
here a nonlinear scalar function, eventually a sigmoidal activation function. The
expression S(W^x) is to be understood as a vector that is obtained from W^x by
applying the function S to each element of this vector separately.

In this network, the equality / (x) = x cannot hold for all x. Instead, we require
that / must minimize the squared training set error

Js(f) = J2\\Xi-f(Xi)\\\ (1)
i=l

This is the standard cost function of MLPs and is minimized by back-propagation
learning. It is a finite-sample estimate of

Je(f)^E[\\x-f{x)f}.

Substituting the forms of the functions from Fig. 6 gives

Je(f) = E{\\x-W4S{W3S{W2SiWix)))f}.

(2)

(3)

Pattern Recognition 15

It is now possible to interpret the function / i from the input vector x to the
central hidden layer output vector h as iht feature extraction function: the outputs
h of the hidden layer can be interpreted as features. The data compression rate
is adjusted by choosing the dimensions of x and h, respectively d and p, and the
faithfulness of the representation is measured by how well the original input x
can be retrieved from the feature vector h, i.e., by the criterion (1) or (3). If the
criterion gets a low value, then obviously the network has been able to capture
the information in x in a nonlinear function of reduced dimensionality. In theory,
if such a compression is possible, then the multilayer nonlinear net of Fig. 6 can
approximate it to an arbitrary accuracy, because of the well-known approximation
properties of MLPs [45,46]. The extra hidden layers of Â units each are essential,
because actually the two functions f\ and fi must be represented and both require
a hidden layer.

To operate this network after learning, a new input x is transformed to the com-
pressed representation h, which is then input to another postprocessing network
according to Fig. 4. So, in most cases the last hidden layer and the output layer of
the five-layer network are only used in learning and then discarded. A notable ex-
ception is data compression: then the first part of the net is used for compression
and the second part is needed for decompression.

The network will now be shown to be a nonlinear generalization of principal
components. The problem of PC A is to find a linear mapping W from the input
vector X G R^ to the lower-dimensional feature vector h € M^ such that the
information loss is minimal. The linear mapping can be represented by a matrix
W: h = W^x. There are several equivalent criteria for PC A [47], one of them
being to minimize

JvCAiW) = E[\\x - Whf] = E{\\x - WW^xf}. (4)

This means that a good approximation of x is obtained by applying the same
matrix W to h. The solution of Eq. (4) is that W will have orthonormal columns
that span the same subspace as the p dominant eigenvectors of the data covariance
matrix.

Comparing Eqs. (3) and (4) shows that the five-layer MLP network is indeed
a nonlinear extension in the sense that the feature vector h = W^x of PCA is
replaced by h = S{W2S{Wix)) in the MLP, and the reconstruction of x, Wh, is
replaced by y = W45'(W3h).

This is potentially a very powerful technique of nonlinear feature extraction
and compression. Some demonstrations of the feature extraction ability of the
five-layer MLP were given by [42] where a helix was faithfully mapped by the
network, and by [48] who showed that image compression with lower error than
PCA is possible using a large five-layer MLP network.

16 Jouko Lampinen et al.

D. NONLINEAR PRINCIPAL COMPONENT ANALYSIS

A problem in using the five-layer perceptron network is that it can be very large
in practical applications. For example, when the inputs are 8 x 8 digital image
windows and the hidden layers have moderate numbers of elements, the number
of free weights will be in the thousands. Even for a 64-16-8-16-64 architecture,
the number of weights is 2408. The training set size must be comparable, and the
training times are very long.

A relevant question is whether similar improvements over the Hnear PCA tech-
nique could be obtained with a smaller network. A key property of a neural net-
work is then its nonlinearity: a least-mean-square criterion involving nonlinear
functions of input x means a deviation from the second-order statistics to higher
orders which may have much more power in representing the relevant informa-
tion. In general statistics, there is presently a strong trend to explore nonlinear
methods, and neural networks are an ideal tool.

Starting from a simple linear neuron model proposed by the author in [38],
that was able to learn the first principal component of the inputs using a con-
strained Hebbian learning rule, several linear and nonlinear extensions have been
suggested over the years; for overviews, see [49] and [50]. The simplest extension
of the linear PCA criterion (4) to a nonlinear one is

JnonliW) = E{\\x~WS{W^x)f}, (5)

where S is again a nonlinear scalar function, eventually a sigmoidal activation
function.

It was first shown in [51] that an associated learning rule minimizing Eq. (5)
is

WM = Wk + yk[xkS{xlWk) - WkS{wlxk)S{xlWk)l (6)

In learning, a set of training vectors {xĵ } are input to the algorithm and Wk is up-
dated at each step. The parameter yk is the usual learning rate of neural learning
algorithms. After several epochs with the training set, the weight matrix Wk will
converge to a "nonlinear PCA" weight matrix.

It has been shown recently by [52] and [53] that the nonlinear network is able
to learn the separate components of inputs in the case when the input is an un-
known weighted sum of independent source signals, a task that is not possible
for the linear PCA technique. The neurons develop into feature detectors of the
individual input components. However, to achieve this with the learning rule, a
preliminary preprocessing is necessary that whitens or spheres the input vectors
x^ in such a way that after sphering E{xkxl} = / . In signal processing, terms
such as independent component analysis (ICA) or blind source separation (BSS)
are used for this technique; some classical references are [54-56].

Pattern Recognition 17

The algorithm (6) has an implementation in a one-layer network of nonlinear
neurons with activation function S, that are learning by the constrained Hebbian
learning principle. The first term in the update expression (6), XkS(x[Wk), when
taken element by element, is the product of the input to a neuron and the output of
that neuron. The second term is a constraint term, forcing the weights to remain
bounded. Preceded by a linear PCA neural layer that takes care of the input vector
sphering, a two-layer ICA network is obtained [53]. Several applications of the
ICA network in feature extraction have been reported in [57].

E. DATA CLUSTERING AND COMPRESSION
BY THE S E L F - O R G A N I Z I N G IVIAP

One of the best-known neural networks in the unsupervised category is the
self-organizing map (SOM) introduced by Kohonen [39]. It belongs to the class
of vector coding algorithms. In vector coding, the problem is to place a fixed
number of vectors, called codewords, into the input space which is usually a
high-dimensional real space R^. The input space is represented by a training set
(x i , . . . , x„) € R^. For example, the inputs can be grayscale windows from a
digital image, measurements from a machine or a chemical process, or financial
data describing a company or a customer. The dimension d is determined by the
problem and can be large.

Each codeword will correspond to and represent a part of the input space: the
set of those points in the space which are closer in distance to that codeword
than to any other codeword. Each such set is convex and its boundary consists of
intersecting hyperplanes. This produces a so-called Voronoi tessellation into the
space. The overall criterion in vector coding is to place the codewords in such a
way that the average distances from the codewords to those input points belonging
to their own Voronoi set are minimized. This is achieved by learning algorithms
that are entirely data-driven and unsupervised.

Coding facilitates data compression and makes possible postprocessing using
the discrete signal codes. Typically, the codewords are found to correspond to rel-
evant clusters among the input training data, e.g., typical clusters of microfeatures
in an image [35], and they can be efficiently used to cluster new inputs.

One way to understand the SOM [39, 58, 59] is to consider it as a neural
network implementation of this basic idea: each codeword is the weight vector
of a neural unit. However, there is an essential extra feature in the SOM. The
neurons are arranged to a one-, two-, or multidimensional lattice such that each
neuron has a set of neighbors; see Fig. 7. The goal of learning is not only to find
the most representative code vectors for the input training set in the mean-square
sense, but at the same time to realize a topological mapping from the input space
to the grid of neurons. Mathematically, this can be defined as follows.

18]ouko Lampinen et al.

Inputs
Winner-take-all
(WTA) layer

Output:
index of
the best-matching
neuron

Figure 7 The SOM network. Each neuron in the map layer receives the same inputs. The best match-
ing neuron (BMU) can be found by a Winner-take-all (WTA) layer which outputs its index. In learning,
the BMU and its neighbors receive a learning signal from the WTA (only the signal to the BMU is
shown by the thick arrow), telling them to update their weights.

For any data point x in the input space, one or several of the codewords are
closest to it. Assume that m^ is the closest among all I codewords:

X — Ttii = m m X — m ,• j = h...,L (7)

To make the correspondence unique, assume that the codeword with the small-
est index is chosen if several codewords happen to be at exactly the minimum
distance from x. The unit / having the weight vector m/ is then called the best-
matching unit (BMU) for vector x, and index / = / (x) can be considered as the
output of the map. Note that for fixed x, Eq. (7) defines the index / of the BMU,
and for fixed /, it defines the Voronoi set of unit / as the set of points x that satisfy
Eq. (7). By the above relation, the input space is mapped to the discrete set of
neurons.

By a topological mapping the following property is meant: if an arbitrary point
x is mapped to unit /, then all points in neighborhoods of x are mapped either
to / itself or to one of the units in the neighborhood of / in the lattice. This im-
plies that if / and j are two neighboring units on the lattice, then their Voronoi
sets in the input space have a conmion boundary. Whether the topological prop-
erty can hold for all units, however, depends on the dimensionalities of the input

Pattern Recognition 19

space and the neuron lattice: because no topological maps between two spaces of
different dimensions can exist in the strict mathematical sense, a two-dimensional
neural layer can only follow locally two dimensions of the multidimensional input
space. Usually the input space has a much higher dimension, but the data cloud
(x i , . . . , x„) used in training may be roughly concentrated on a lower-dimensional
manifold that the map is able to follow at least approximately [60].

The fact that the mapping has a topological property has the advantage that
it is more error-tolerant: a perturbation of the input x may cause the output i (x)
(the index of the BMU) to jump from the original unit to one of its neighbors,
but usually not to an arbitrary position on the lattice, as would be the case if no
neighborhood relation existed among the neurons. In a layered neural system in
which the next layer "reads" the feature map but does not know the original inputs,
such a property is essential to guarantee stable behavior.

The SOM network is shown as a feedforward network in Fig. 7. The role of
the output "winner-take-all" layer is to compare the outputs from the map layer
(equivalently, the distances ||x — m/1|) and give out the index of the BMU. The
SOM can be described without specifying the activation functions of the neu-
rons; an equivalent network is obtained if the activation function is a radial basis
function, hence the output of a neuron is a monotonically decreasing function of
| | x -m/ | | .

The well-known Kohonen algorithm for self-organization of the code vectors
is as follows [58]:

1. Choose initial values randomly for the weight vectors m/ of the units /.
2. Repeat Steps 3, 4 until the algorithm has converged.
3. Draw a sample x from the probability distribution of the input samples and

find the best-matching unit / according to Eq. (7).
4. Adjust the weight vectors of all units by

m̂ - := 111;- + yhrix - mj), (8)

where y is a gain factor and hr is a function of the distance r = \\i — j \\ of
units / and j measured along the lattice.

(In the original version [39], the neighborhood function hr was equal to 1 for a
certain neighborhood of /, and 0 elsewhere. The neighborhood and the gain y
should slowly decrease in time.)

The convergence and the mathematical properties of this algorithm have been
considered by several authors, e.g., [59] and [61].

The role of the SOM in feature extraction is to construct optimal codewords
in abstract feature spaces. Individual feature values can then be replaced by these
codes, which results in data compression. Furthermore, hierarchical systems can
be built in which the outputs from the maps are again used as inputs to subsequent

20 Jouko Lampinen et al

layers. The topological property of the feature maps is then essential for low-error
performance [62].

In data clustering, the weight vectors of the SOM neurons develop into code
vectors under unsupervised learning in which a representative training set of input
vectors are used. The learning is slow, but it is an "off-line" operation. After the
map has been formed, it can be used as such to code input vectors having similar
statistical properties with the training vectors. Note that due to the unsupervised
learning, the algorithm cannot give any semantic meanings to each unit, but this
must be done by the user. The two-dimensional map is also a powerful tool for
data visualization: e.g., a color code can be used in which each unit has its own
characteristic color.

The unsupervised feature extraction scheme is especially suitable for general
scene analysis in computer vision, since it is fairly inexpensive to collect large
amounts of image data to be used in unsupervised training, as long as the images
need no manual analysis and classification. One example is cloud classification
from satellite images [63] in which even human experts have difficulties in giving
class labels to cloud patches as seen by a weather satelUte. The map can be used
to cluster the patches, and after learning a human expert can go over the map and
interpret what each unit is detecting.

A data base of well over two thousand applications of SOM is given by [40].
A recent review of the use of the SOM for various engineering tasks, including
pattern recognition and robotics, is given by [64].

IV. CLASSIFICATION IMETHODS:
STATISTICAL AND NEURAL

Numerous taxonomies for classification methods in pattern recognition have
been presented. None has been so clearly more advantageous than the others
that it would have gained uncontested status. The most profound dichotomy,
however, is quite undisputed and goes between statistical and syntactic classi-
fiers. The domain of this text is limited to the former, whereas the latter—also
known as linguistic or structural approaches—is treated in many textbooks in-
cluding [12, 15, 21].

The statistical alias decision-theoretic methods can further be divided in many
ways depending on the properties one wants to emphasize. Opposing parametric
and nonparametric methods is one often-used dichotomy. In parametric methods,
a specific functional form is assumed for the feature vector densities, whereas
nonparametric methods refer directly to the available exemplary data. Somewhere
between these extremes, there are semiparametric methods which try to achieve
the best of both worlds using a restricted number of adaptable parameters depend-
ing on the inherent complexity of the data [22].

Pattern Recognition 21

One commonly stated (e.g., [20]) division goes between neural and classical
statistical methods. It is useful only if one wants to regard these two approaches as
totally disjoint competing alternatives. On the opposite extreme, neural methods
have been seen only as iterative ways to arrive at the classical results of the tra-
ditional statistical methods (e.g., [23]). Better off, both methods can be described
using common terms as was done by [65] and summarized in this text.

Neural methods may additionally be characterized by their learning process:
supervised learning algorithms require all the exemplary data to be classified be-
fore the training phase begins, whereas unsupervised algorithms may utilize un-
labeled data as well. Due to the general nature of classification, primarily only
supervised methods are applicable to it. For clustering, data mining, and neural
feature extraction, the unsupervised methods can be beneficial as well; see Sec-
tion III.

If the pattern recognition problem is examined not from the viewpoint of math-
ematical theory but from the perspective of a user of a hypothetical system, a
totally different series of dichotomies is obtained. Figure 8 represents one such
taxonomy [66].

In the following sections, a set of classification algorithms are described and a
taxonomy presented according to the structure of Table I. The methods are thus
primarily grouped by belonging to either density estimators, regression methods,
or others. The parametric or nonparametric nature of each method is discussed
in the text. In Section IV.F, the neural characteristics of the various classification
methods are addressed. In Table I, the algorithms regarded as neural are printed
in itaUcs.

"Optimal" Plug-in Density fc-NN
Rules Rules Est imat ion Rules

No. of Pa t t e rn
Classes Unknown

Mixture Cluster Analysis
Resolving

Figure 8 Dichotomies in the design of a statistical pattern recognition system, adapted from [66].

22 Jouko Lampinen et ah

Table I

Taxonomy of Classification Algorithms Reviewed in the Text

Density estimators Regression methods Others

Parametric QDA LDA RDA
Semiparametric RKDA MLPRBF CLAFIC ALSM
Nonparametric KDA PNN MARS LLR k-NN LVQ L-k-NN

A. MATHEMATICAL PRELIMINARIES

In order to place the neural network classifiers in the context of statistical de-
cision estimation, and to describe their functionality, we have to first define some
mathematical concepts. A central mathematical notation in the theory of clas-
sifiers is the classification function g: R^ i-^ { 1 , . . . , c}. For each real-valued
^-dimensional input feature vector x to be classified, the value of g(x) is thus
an integer in the range 1 , . . . , c, c being the number of classes. The classes are
indexed with j when appropriate. The training set used in designing a classifier
consists of n vectors x/, / = 1,.. ,,n, of which nj vectors x/y, / = 1 , . . . , nj,
belong to class j .

The ordered pair (x, j) is stochastically speaking one realization of (X, /) , an
ordered pair of a random vector variable X and a discrete-valued random vari-
able / . By assuming the realizations (x/, jt) to be stochastically independent and
identically distributed, many considerations are simplified notably, although tak-
ing advantage of context-dependent information might certainly be beneficial in
many applications.

The a priori probability of class j is denoted by Pj, its probability density
function by //(x), and that of the pooled data with all the classes combined
by / (x) = Yfj=i ^jfj(^y Naturally, the priors have to meet the condition
Yfj=i Pj = 1- Using this notation, the Bayes classifier that minimizes the non-
weighted misclassification error [14] is defined by

gBAYES (x) = argmax Pj fj (x). (9)

We may alternatively consider the a posteriori probability qj(x) = P(J = j \
X = x) of class j given x and use the rule

gBAYEs(x) = argmax ̂ y(x). (10)

Pattern Recognition 23

The rules of Eqs. (9) and (10) are equivalent since

qj(x) = p{j = j \ x = x) = ^4rv-' (11)
However, in practice the classifiers Eq. (9) and Eq. (10) have to be estimated
from training data (xi, 71) , . . . , (x„, j^) of pattern vectors with known classes,
and then two distinct approaches emerge. The use of rule Eq. (9) requires explicit
estimation of the class-conditional probability density functions fj. For Eq. (10),
some regression technique can be used to estimate the posterior probabilities qj
directly without separate consideration of the class-conditional densities.

The probability of a vector x to be misclassified is notated 6(x). Using the
Bayes rule it is ^BAYES(X) = 1 — maxy=i,...,c ^; (x). The overall misclassification
rate {€) of the Bayes classifier is thus

^BAYES = 1 - / /gBAYEs(x)(x)^-^. (12)

B. DENSITY ESTIMATION METHODS

In the density estimation approach one needs estimates for both the prior prob-
abilities Pj and the class-conditional densities fj in Eq. (9). The former esti-
mation task is quite straightforward and the difficult and underdetermined part
is to estimate the class-conditional densities. A classical parametric approach is
to model the class-conditional densities as multivariate Gaussians. Depending on
whether unequal or equal class covariances are assumed, the logarithm of Pj fj (x)
is then either a quadratic or linear function of x, giving rise to quadratic discrim-
inant analysis (QDA) and linear discriminant analysis (LDA). A recent devel-
opment is regularized discriminant analysis (RDA) which interpolates between
LDA and QDA.

The success of these methods heavily depends on the validity of the normal-
ity assumption. If the class-conditional densities truly are normal, near-Bayesian
classification error level can be achieved. On the other hand, if the densities are
neither unimodal nor continuous, disastrous performance may follow. However,
the critical areas for the classification accuracy are those where the distributions
of the classes overlap. If the normality assumption holds there, the classification
accuracy may be good even though the overall performance of the density estima-
tion would be poor.

In nonparametric density estimation no fixed parametrically defined form for
the estimated density is assumed. Kernel or Parzen estimates as well as A:-nearest
neighbor methods with large k are examples of popular nonparametric density
estimation methods. They give rise to kernel discriminant analysis (KDA) and
/c-nearest neighbor (A:-NN) classification rules (see Section IV.D.l).

24 Jouko Lampinen et al.

In another approach the densities are estimated as finite mixtures of some stan-
dard probability densities by using the expectation-maximization (EM) algorithm
or some other method [67-71]. Such an approach can be viewed as an econo-
mized KDA or an instance of the radial basis function (RBF) approach [22]. The
self-organizing reduced kernel density estimator estimates densities in the spirit
of radial basis functions, and the corresponding classification method is here re-
ferred to as reduced kernel discriminant analysis (RKDA).

1. Discriminant Analysis Methods

Quadratic discriminant analysis (QDA) [72] is based on the assumption that
pattern vectors from class j are normally distributed with mean vector ^ij and
covariance matrix Zy. Following the density estimation approach then leads to
the rule

gQDA(x) = argmax[log Pj - \ logdet X̂ - -\{x- Jijfl.j\x - Jij)]. (13)
;=l,...,c

Here jEty and Xy denote the sample mean and the sample covariance estimates of
the corresponding theoretical quantities.

If one assumes that the classes are normally distributed with different mean
vectors but with a common covariance matrix T,, then the previous formula sim-
plifies to the linear discriminant analysis (LDA) [72] rule

gLDA(x) = argmaxpog Pj + / t J X ' ^ x - ^jJ^)], (14)
j=l,...,c

where a natural estimate for E is the pooled covariance matrix estimate

c

Regularized discriminant analysis (RDA) [73] is a compromise between LDA
and QDA. The decision rule is otherwise the same as Eq. (13) but instead of T,j
one uses regularized covariance estimates Jlj (k,y) with two regularizing param-
eters. Parameter X controls the shrinkage of the class-conditional covariance esti-
mates toward the pooled estimate and y controls the shrinkage toward a multiple
of the identity matrix. Let us denote by Ky the matrix

^ (x , ; - ^j)(Xij - ^jf, and let K = ^ K;.
/=1 ; = 1

Pattern Recognition 15

Then

Xy(A, y) = (1 - X)tj{k) + Ux{tj{X))L (15)

where

(1 - A) K / + A K
X/CA) = -̂ ^—^— . (16)

One obtains QDA when A = 0, y = 0, and LDA when A = 1, y = 0, provided
one uses the estimates Hj = Kj/nj and P^ = ^y/w.

2. Kernel Discriminant Analysis
and Probabilistic Neural Network

In kernel discriminant analysis (KDA) [74, 75] one forms kernel estimates / /
of the class-conditional densities and then applies rule Eq. (9). The estimate of
the class-conditional density of class j is

1 ""'
fj(x) = — ^ Khj (x - Xij),

•' 1=1

l , . . . , c , (17)

where, given a fixed probability density function K(') called the kernel, hj >
0 is the smoothing parameter of class 7, and Kh denotes the scaled kernel
Kh(x) = h-^K(x/h). This scaling ensures that Kh and hence also each fj
is a probability density. A popular choice is the symmetric Gaussian kernel
K(x) = (27r)~^/^ exp(- ||x|p/2). The choice of suitable values for the smoothing
parameters is crucial and several approaches have been proposed in the literature;
see, e.g., [72,76-78].

The selection of the smoothing parameters can be based on cross-validated
error count. In the first method, KDAl, all the smoothing parameters hj are fixed
to be equal to a parameter h. Optimal value for h is then selected using cross-
validation (see Section IV.G) as the value which minimizes the cross-validated
error count. In the second method, KDA2, the smoothing parameters are allowed
to vary separately starting from a common value selected in KDAl.

In the second method the nonsmoothness of the object function is trouble-
some. Instead of minimizing the error count directly, it is advantageous to min-
imize a smoothed version of it. In a smoothing method described in [79], the
class-conditional posterior probabihty estimates qj (x) corresponding to the cur-
rent smoothing parameters are used to define the functions Uj

c

Uj(x) = &xip{yqj{x)) ̂ ^txp{yqk(x)), (18)
k=i

26 Jouko Lampinen et al

where y > 0 is a parameter. Then the smoothed error count is given by n —
X!"=i ^ji (x/). As y ^- oo, this converges towards the true error count. Since the
smoothed error count is a differentiable function of the smoothing parameters,
one can use a gradient-based minimization method for the optimization.

The probabilistic neural network (PNN) [80] is the neural network counterpart
of KDA. Basically, all training vectors are stored and used as a set of Gaussian
densities. In practice, only a subset of the kernels are actually evaluated when the
probability values are calculated.

3. Reduced Kernel Density Analysis and Radial
Basis Functions

The standard kernel density estimate suffers from the curse of dimensionality:
as the dimension d of data increases, the size of a sample x i , . . . , x„ required for
an accurate estimate of an unknown density / grows quickly. On the other hand,
even if there are enough data for accurate density estimation, the application at
hand may limit the complexity of the classifier one can use in practice. A kernel
estimate with a large number of terms may be computationally too expensive to
use. One solution is to reduce the estimate, that is, to use fewer kernels but to place
them at optimal locations. One can also introduce kernel-dependent weights and
smoothing parameters. Various reduction approaches have been described in [81-
85]. Some of these methods are essentially the same as the radial basis function
(RBF) [22] approach of classification.

The self-organizing reduced kernel density estimate [86] has the form

I

f(x) = J2^kKh,(x-mk), (19)
k=i

where m i , . . . , m ^ are the reference vectors of a self-organizing map [59],
wi,,.. ,Wi are nonnegative weights with J2k=i ^k = ^, and hk is a smooth-
ing parameter associated with the ^th kernel. In order to achieve substantial re-
duction one takes t <^ n. The kernel locations mjt are obtained by training the
self-organizing map using the whole available sample x i , . . . , x„ from / . The
weights Wk are computed iteratively and they reflect the number of training data
in the Voronoi regions of the corresponding reference vectors. The smoothing pa-
rameters are optimized via stochastic gradient descent that attempts to minimize
a Monte Carlo estimate of the integrated squared error / (/ — /) ^ . Simulations
have shown that when the underlying density / is multimodal, the use of the
feature map algorithm gives better density estimates than /:-means clustering, the
approach proposed in [87]. Reduced kernel discriminant analysis (RKDA) con-
stitutes using estimates Eq. (19) for the class-conditional densities in the classifier
Eq. (9). A drawback of RKDA in pattern classification applications is that the

Pattern Recognition 27

smoothing parameters of the class-conditional density estimates used in the ap-
proximate Bayes classifier are optimized from the point of view of integrated
squared error and not discrimination performance which is the true focus of
interest.

C. REGRESSION METHODS

In the second approach to classification the class posterior probabilities qj =
P(7 = 7 I X = x) are directly estimated using some regression technique.
Parametric methods include linear and logistic regression. Examples of nonpara-
metric methodologies are projection pursuit [88, 89], additive models [90], mul-
tivariate adaptive regression splines (MARS), local linear regression (LLR), and
the Nadaraya-Watson kernel regression estimator [78, 91], which is also called
the general regression neural network [92]. Neural network approaches include
multilayer perceptrons and radial basis function (RBF) expansions [22, 36].

One can use "one-of-c" coding to define the response y/ to pattern x/ to be the
unit vector [0 , . . . , 0, 1, 0 , . . . , 0]^ G W with 1 in the y'/th place. In the least-
squares approach one then tries to minimize

n ^ ^ ^ ^ ' ren
1=1 j=l

over a family IZ of E^-valued functions r, where we denote the 7 th component of
a vector z by z^J\ The corresponding mathematical expectation is minimized by
the vector of class posterior probabilities, q = [^1 , . . . , qcV. Of course, this ideal
solution may or may not belong to the family 7Z, and besides, sampling variation
will anyhow prevent us from estimating q exactly even when it does belong to IZ
[93,94].

The least-squares fitting criterion Eq. (20) can be thought to rise from using the
maximum likelihood principle to estimate a regression model where errors are dis-
tributed normally. The logistic approach [72, Chap. 8] uses binomially distributed
error, clearly the statistically correct model. One natural multivariate logistic re-
gression approach is to model the posterior probabilities as the softmax [95] of
the components of r,

PiJ = j\X = x) = qj(x) = ^ r ^ ^ ^ ' ^ c f w , , - (21)
E)t=i exp(r(^Hx))

Note that this also satisfies the natural condition Ylk=\ Â: = 1- A suitable fitting
criterion is to maximize the conditional log-likelihood of y i , . . . , y„ given that
Xi = x i , . . . , X„ = x„. In the case of two classes this approach is equivalent to
the use of the cross-entropy fitting criterion [22].

28 Jouko Lampinen et ah

A very natural approach would be a regression technique that uses the error
rate as the fitting criterion to be minimized [96]. Classification and regression
trees (CART) are an example of a nonparametric technique that estimates the
posterior probabilities directly but uses neither the least-squares nor the logistic
regression approach [97].

1. Multilayer Perceptron

In the standard multilayer perceptron (MLP), there are d inputs, i hidden units,
and c output units, all the feedforward connections between adjacent layers are
included, and the logistic activation function is used in the hidden and output
layers [22, 36]. Such a network has {d + \)i + (€ + l)c adaptable weights, which
are determined by minimizing the sum of squared errors criterion Eq. (20).

Using the notation of Section IV.C, one can use the vector y/ = 0.1 + 0.8y/
as the desired output for input x ,̂ i.e., the vectors y/ are scaled to better fit within
the range of the logistic function. Then the scaled outputs \.25{Y^^\X) — 0.1) of
the optimized network can be regarded as estimating the posterior probabilities
P(y = 7 | X = x).A good heuristic is to start the local optimizations from many
random initial points and to keep the weights yielding the minimum value for the
sum of squared errors to prevent the network from converging to a shallow local
minimum. It is advisable to scale the random initial weights so that the inputs to
the logistic activation functions are of the order unity [22, Chap. 7.4].

In weight decay regularization [22, Chap. 9.2], one introduces a penalty for
weights having a large absolute value in order to encourage smooth network map-
pings. When training MLPs with weight decay (MLP+WD), one minimizes the
criterion

^^(yO-)_rO-)(x,,w)f+Aj:
/ = 1 7 = 1 weW

M? (22)

Here w comprises all the weights and biases of the network, W is the set of
weights between adjacent layers excluding the biases, and A is the weight de-
cay parameter. The network inputs and the outputs of the hidden units should
be roughly comparable before the weight decay penalty in the form given above
makes sense. It may be necessary to rescale the inputs in order to achieve this.

2. Local Linear Regression

Local linear regression (LLR) [78, 98] is a nonparametric regression method
which has its roots in classical methods proposed for the smoothing of time se-
ries data; see [99]. Such estimators have received more attention recently; see,
e.g., [100]. The particular version described below is also called LOESS [98,99].

Pattern Recognition 29

Local linear regression models the regression function in the neighborhood of
each point x by means of a linear function z h^ a + B(z — x). Given training data
(xi, y i) , . . . , (x„, y„), the fit at point x is calculated as follows. First one solves
the weighted linear least-squares problem

n

J2 lly/ - a - B(x/ - x)fw{\\xi - x\\/h(x)) = min! (23)

and then the fit at x is given by the coefficient a. A reasonable choice for the
function w is the tricube weight function [98], w(u) = max((l — |Mp)^, 0). The
local bandwidth h(x) is controlled by a neighborhood size parameter 0 < a < 1:
one takes k equal to an rounded to the nearest integer and then takes h(x) equal to
the distance to the ^th closest neighbor of x among the vectors x i , . . . , x„. If the
components of x are measured in different scales, then it is advisable to select the
metric for the nearest neighbor calculation carefully. At a given x, the weighted
linear least-squares problem can be reduced to inverting Si{d-\-l)x(d-\-l) matrix,
where d is the dimensionality of x; see, e.g., [78, Chap. 5].

3. Tree Classifier, Multivariate Adaptive Regression Splines,
and Flexible Discriminant Analysis

The introduction of tree-based models in statistics dates back to [101] although
their current popularity is largely due to the seminal book [97]. For EucUdean pat-
tern vectors x = [jci,.. . , xj]^, a classification tree is a binary tree where at each
node the decision to branch either to left or right is based on a test of the form
JCi > A. The cutoff values k are chosen to optimize a suitable fitting criterion.
The tree growing algorithm recursively splits the pattern space R^ into hyperrect-
angles while trying to form maximally pure nodes, that is, subdivision rectangles
that ideally contain training vectors from one class only. Stopping criteria are used
to keep the trees reasonably sized, although the commonly employed strategy is to
first grow a large tree that overfits the data and then use a separate pruning stage
to improve its generalization performance. A terminal node is labeled according
to the class with the largest number of training vectors in the associated hyper-
rectangle. The tree classifier therefore uses the Bayes rule with the class posterior
probabilities estimated by locally constant functions. The particular tree classi-
fier described here is available as a part of the S-Plus statistical software package
[102-104]. This implementation uses a likelihood function to select the optimal
splits [105]. Pruning is performed by the minimal cost-complexity method. The
cost of a subtree T is taken to be

R^(T) = e(T)-\-a'Size(T), (24)

30 Jouko Lampinen et al.

where e (r) is an estimate of the classification error of T, size of T is measured
by the number of its terminal nodes, and a > 0 is a cost parameter. An overfitted
tree is pruned by giving a increasingly large values and selecting nested subtrees
that minimize/?«.

MARS [106] is a regression method that shares features with tree-based mod-
eling. MARS estimates an unknown function r using an expansion

M

f(x) = ao-\-J2''kBk(x), (25)

where the functions Bk are multivariate splines. The algorithm is a two-stage pro-
cedure, beginning with a forward stepwise phase which adds basis functions to the
model in a deliberate attempt to overfit the data. The second stage of the algorithm
is standard linear regression backward subset selection. The maximum order of
variable interactions (products of variables) allowed in the functions Bk, as well
as the maximum value of M allowed in the forward stage, are parameters that
need to be tuned experimentally. Backward model selection uses the generalized
cross-validation criterion introduced in [107].

The original MARS algorithm fits only scalar-valued functions and is there-
fore not well suited to discrimination tasks with more than two classes. A recent
proposal called flexible discriminant analysis (FDA) [108] with its publicly avail-
able S-Plus implementation in the StatLib program library contains vector-valued
MARS as one of its ingredients. However, FDA is not limited to just MARS as
it allows the use of other regression techniques as its building blocks as well. In
FDA, one can first train c separate MARS models r̂ -̂ ^ with equal basis function
sets but different coefficients ak to map training vectors x/ to the corresponding
unit vectors yt. Then a linear map A is constructed to map the regression function
output space R^ onto a lower-dimensional feature space R^ in a manner that op-
timally facilitates prototype classification based on the transformed class means
A{r(iij)) and a weighted Euclidean distance function.

D. PROTOTYPE CLASSIFIERS

One distinct branch of classifiers appearing under the title others in Table I are
prototype classifiers LVQ, ^-NN, and L-^-NN. They share in common the prin-
ciple that they keep copies of training samples in memory, and the classification
decision ^(x) is based on the distances between the memorized prototypes and
the input vector x. Either the training vectors are retained as such or some sort of
a training phase is utilized to extract properties of a multitude of training vectors
to each of the memorized prototypes. In either case, the prototype classifiers are
typical representatives of the nonparametric classification methods.

Pattern Recognition 31

1. /^-Nearest Neighbor Classifiers

In a k-nearest neighbor (A:-NN) classifier each class is represented by a set
of prototype vectors [27]. The k closest neighbors of an input pattern vector are
found among all the prototypes and the class label is decided by the majority vot-
ing rule. A possible tie of two or more classes can be broken, e.g., by decreasing
k by one and revoting.

In classical pattern recognition, the nonparametric /:-NN classification method
has been very popular since the first publication by Fix and Hodges [109] and
an important limiting accuracy proof by Cover and Hart [110]. The A:-NN rule
should even now be regarded as a sort of a baseline classifier, against which other
statistical and neural classifiers should be compared [111]. Its advantage is that no
time is needed in training the classifier, and the corresponding disadvantage is that
huge amounts of memory and time are needed during the classification phase. An
important improvement in memory consumption—while still keeping the classi-
fication accuracy moderate—may be achieved using some editing method [112].
An algorithm known as multiedit [14] removes spurious vectors from the training
set. Another algorithm known as condensing [113] adds new vectors to the clas-
sifier when it is unable to classify the pattern correctly. In both methods, a vector
set originally used as a A:-NN classifier is converted to a smaller edited set to be
used as a 1-NN classifier.

2. Learning Vector Quantization

The learning vector quantizer (LVQ) algorithm [59] produces a set of proto-
type or codebook pattern vectors m/ that can be used in a 1-NN classifier. Train-
ing consists of moving a fixed number i of codebook vectors iteratively toward
or away from the training samples x/. The variations of the LVQ algorithm differ
in the way the codebook vectors are updated. The LVQ learning process can be
interpreted either as an iterative movement of the decision boundaries between
neighboring classes, or as a way to generate a set of codebook vectors whose
density reflects the shape of the function s defined as

s(x) = Pjfj(x) - max Pkfk(x), (26)

where j = gBAYEs(x). Note that the zero set of s consists of the Bayes optimal
decision boundaries.

3. Learning *:-NN Classifier

Besides editing rules, iterative learning algorithms can be applied to A:-NN clas-
sifiers [114]. The learning rules of the learning k-NN (L-k-NN) resemble those of
LVQ but at the same time the classifier still utilizes the improved classification

32 Jouko Lampinen et ah

accuracy provided by the majority voting rule. The performance of the standard
A:-NN classifier depends on the quality and size of the training set, and the per-
formance of the classifier decreases if the available computing resources limit the
number of training vectors one can use. In such a case, the learning A:-NN rule is
better able to utilize the available data by using the whole training set to optimize
the classification based on a smaller set of prototype vectors.

For the training of the A;-NN classifier, three slightly different training schemes
have been presented. As in the LVQ, the learning A:-NN rules use a fixed number
of code vectors mtj with predetermined class labels j for classification. Once the
code vectors have been tuned by moving them to such positions in the input space
that give a minimal error rate, the decision rule for an unknown input vector is
based on the majority label among its k closest code vectors.

The objective of all the learning rules is to make the correct classification of the
training samples more probable. This goal is achieved by incrementally moving
some of the vectors in the neighborhood of a training input vector toward the
training sample and some away from it. For all the rules, the modifications to the
code vectors m/ are made according to the LVQ rule:

uiiit -f 1) = unit) ± a{t){x(t) - m,(0), (27)

where x(t) is the training sample at the step t. With a positive sign of a(t), the
movement of the code vector is directed toward the training sample, and with
negative sign away from it. The learning rate a(t) should decrease slowly in order
to make the algorithm convergent; in practice it may be sufficient to use a small
constant value.

E. SuBSPACE C L A S S I F I E R S

The motivation for the subspace classifiers originates from compression and
optimal reconstruction of multidimensional data. The use of linear subspaces as
class models is based on the assumption that the data within each class approx-
imately lie on a lower-dimensional subspace of the pattern space K^. A vector
from an unknown class can then be classified according to its shortest distance
from the class subspaces.

The sample mean ^ of the whole training set is first subtracted from the pat-
tern vectors. For each class j , the correlation matrix R^ is estimated and its first
few eigenvectors u iy , . . . , u^jj are used as columns of a basis matrix U^. The
classification rule of the class-featuring information compression (CLAFIC) al-
gorithm [115] can then be expressed as

ĈLAFIC (x) = argmax||uyx|| . (28)

Pattern Recognition 33

The averaged learning subspace method (ALSM) introduced by one of the
current authors [47] is an iterative learning version of CLAFIC, in which the un-
normahzed sample class correlation matrices 8^(0) = ^i^x ^U^fj ^^ sUghtly
modified according to the correctness of the classifications,

Sj(k + 1) = S;(̂) +aJ2 x/xf -PJ2 ^i^f' (^^)
ieAj ieBj

Here x iy , . . . , Xnjj is the training sample from class j , oc and P are small positive
constants, Aj is the set of indices / for which x/ comes from class j but is classi-
fied erroneously to a different class, and Bj consists of those indices for which x/
is classified to j although it actually originates from a different class. The basis
matrices Uy are recalculated after each training epoch as the dominant eigenvec-
tors of the modified S;. The subspace dimensions ij need to be somehow fixed.
One effective iterative search algorithm and a novel weighting solution have been
recently presented [116].

R SPECIAL PROPERTIES OF NEURAL IVIETHODS

In the previous discussion we characterized some popular classification tech-
niques in terms of the mathematical principles they are based on. In this general
view many neural networks can be seen as representatives of certain larger fami-
lies of statistical techniques. However, this abstract point of view fails to identify
some key features of neural networks that characterize them as a distinct method-
ology.

From the very beginning of neural network research [117-119] the goal was
to demonstrate problem-solving without explicit programming. The neurons and
networks were supposed to learn from examples and store this knowledge in a
distributed way among the connection weights.

The original methodology was exactly opposite to the goal-driven or top-down
design of statistical classifiers in terms of explicit error functions. In neural net-
works, the approach has been bottom-up: starting from a very simple linear neuron
that computes a weighted sum of its inputs, adding a saturating smooth nonlinear-
ity, and constructing layers of similar parallel units, it turned out that "intelligent"
behavior such as speech synthesis [120] emerged by simple learning rules. The
computational aspect has always been central. At least in principle, everything
that the neural network does should be accomplished by a large number of simple
local computations using the available input and output signals, as in real neu-
rons, but unlike heavy numerical algorithms involving such operations as matrix
inversions. Perhaps the best example of a clean-cut neural network classifier is
the LeNet system [4, 121] for handwritten digit recognition (see Section V.B.I).

34 Jouko Lampinen et al.

Such a computational model supports well the implementation in regular VLSI
circuits.

In the current neural network research, these original views are clearly becom-
ing vague as some of the most fundamental neural networks such as the one-
hidden-layer MLP or RBF networks have been shown to have very close connec-
tions to statistical techniques. The goal remains, however, of building much more
complex artificial neural systems for demanding tasks such as speech recogni-
tion [122] or computer vision [35], in which it is difficult or eventually impossible
to state the exact optimization criteria for all the consequent processing stages.

Figure 9 is an attempt to assess the neural characteristics of some of the clas-
sification methods discussed earlier. The horizontal axis measures the flexibility
of a classifier architecture in the sense of the richness of the discriminant func-
tion family encompassed by a particular method. High flexibility of architecture
is a property often associated with neural networks. In some cases (MLP, RBF,
CART, MARS) the flexibility can also include algorithmic model selection during
learning.

In the vertical dimension, the various classifiers are categorized on the basis of
how they are designed from a training sample. Training is considered nonneural

neural
training

inflexible

ALSM

L-ik-NN
MLP© LVQ
RKDA RBF

CART MARS

flexible
architecture architecture

LDA
%

QDA

RDA CLAFIC KDA LLR

fc-NN

nonneural
training

Figure 9 Neural characteristics of some classifiers according to [65].

Pattern Recognition 35

if the training vectors are used as such in classification (e.g., A:-NN, KDA), or if
some statistics are first estimated in batch mode and the discriminant functions
are computed from them (e.g., QDA, CLAFIC). Neural learning is characterized
by simple local computations in a number of real or virtual processing elements.
Neural learning algorithms are typically of the error correction type; for some
such algorithms, not even an explicit cost function exists. Typically, the train-
ing set is used several times (epochs) in an on-line mode. Note, however, that
for some neural networks (MLP, RBF) the current implementations in fact often
employ sophisticated optimization techniques which would justify moving them
downwards in our map to the lower half plane.

In this schematic representation, the classical LDA and QDA methods are seen
as least neural with the RDA and CLAFIC possessing at least some degree of flex-
ibility in their architecture. The architecture of KDA, A:-NN, and LLR is extremely
flexible. Compared to CLAFIC, the ALSM method allows for both incremental
learning and flexibility of architecture in the form of subspace dimensions that
can change during learning. In this view, neural classifiers are well exemplified
in particular by such methods as MLP, RBF, RKDA, LVQ, and learning /:-NN
(L-/:-NN), but also to some degree by ALSM, CART, and MARS.

G. CROSS-VALIDATION IN CLASSIFIER DESIGN

In order to get reliable estimates of classifier performance, the available data
should first be divided into two separate parts: the training sample and the testing
sample. The whole process of classifier design should then be based strictly on
the training sample only. In addition to parameter estimation, the design of some
classifiers involves the choice of various tuning parameters and model or archi-
tecture selection. To utilize the training sample efficiently, cross-validation [123]
(or "rotation," cf. [14, Chap. 10.6.4]) can be used. In i;-fold cross-validation, the
training sample is first divided into v disjoint subsets. One subset at a time is then
put aside; a classifier is designed based on the union of the remaining i; — 1 subsets
and then tested for the subset left out. Cross-validation approximates the design
of a classifier using all the training data and then testing it on an independent set
of data, which enables defining a reasonable object function to be optimized in
classifier design. For example, for a fixed classifier, the dimension of the pattern
vector can be selected so that it minimizes the cross-validated error count. Af-
ter optimization, one can obtain an unbiased estimate of the performance of the
optimized classifier by means of the separate testing sample. Notice that the per-
formance estimates might become biased if the testing sample were in any way
used during the training of the classifier.

36 Jouko Lampinen et al.

H. REJECTION

Other criteria than minimum classification error can be important in practice,
including use of class-dependent misclassification costs and Neyman-Pearson-
style classification [11, 124]. The use of a reject class can help reduce the mis-
classification rate e in tasks where exceptional handling (e.g., by a human expert)
of particularly ambiguous cases is feasible. The decision to reject a pattern x and
to handle it separately can be based on its probability to be misclassified, which
for the Bayes rule is 6(x) = 1 — maxj=i,...,c^;(x). The highest misclassifica-
tion probability occurs when the posterior probabilities qj{x) are equal and then
€(x) = 1 — 1/c. One can therefore select a rejection threshold 0 < ^ < l - l / c
and reject x if

€{x)>e. (30)

The notation ^(x) used for the classification function can be extended to in-
clude the rejection case by denoting with ^(x) = 0 all the rejected vectors x.
When the overall rejection rate of a classifier is denoted by p, the rejection-error
balance can be depicted as a curve in the p€ plane, parameterized with the 0 value.
In recognition of handwritten digits, the rejection-error curve is found to be gen-
erally linear in the p log € plane [125]. This phenomenon can also be observed in
Fig. 18.

I. COMMITTEES

In practice, one is usually able to classify a pattern using more than one
classifier. It is then quite possible that combining the opinions of several paral-
lel systems results in improved classification performance. Such hybrid classi-
fiers, classifier ensembles, or committees, have been studied intensively in recent
years [126].

Besides improved classification performance, there are other reasons to use a
committee classifier. The pattern vectors may be composed of components that
originate from very diverse domains. Some may be statistical quantities such as
moments and others discrete structural descriptors such as numbers of endpoints,
loops, and so on. There may not be an obvious way to concatenate the various
components into a single pattern vector suitable for any single classifier type.
In some other situations, the computational burden can be reduced either during
training or in the recognition phase if the classification is performed in several
stages.

Various methods exist for forming a conmiittee of classifiers even when their
output information is of different types. In the simplest case, a classifier only out-
puts its decision about the class of an input pattern, but sometimes some measure

Pattern Recognition 37

of the certainty of the decision is also provided. The classifier may propose a set
of classes in the order of decreasing certainty, or a measure of decision certainty
may be given for all the classes. Various ways to combine classifiers with such
types of output information are analyzed in [127-130].

The simplest decision rule is to use a majority rule among the classifiers in
the committee, possibly ignoring the opinion of some of the classifiers [131].
Two or more classifiers using different sets of features may be combined to
implement rejection of ambiguous patterns [132-135]. A genetic algorithm
can be applied in searching for optimal weights to combine the classifier out-
puts [136]. Theoretically more advanced methods may be derived from the
EM algorithm [128, 129, 137-139] or from the Dempster-Shafer theory of evi-
dence [127, 140].

The outputs of several regression-type classifiers may be combined lin-
early [141] or nonlinearly [142] to reduce the variance of the posterior proba-
bility estimates. A more general case is the reduction of variance in continuous
function estimation: a set of MLPs can be combined into a committee classi-
fier with reduced output variance and thus smaller expected classification er-
ror [143-146]. A separate confidence function may also be incorporated in each
of the MLPs [147].

Given a fixed feature extraction method, one can either use a conmion training
set to design a number of different types of classifiers [148] or, alternatively, use
different training sets to design several versions of one type of classifier [149-
153].

J. O N C O M P A R I N G CLASSIFIERS

Some classification accuracies attained using the classification algorithms de-
scribed in the previous sections will be presented later in this text in Section V.B.4.
Such comparisons need, however, to be considered with utmost caution.

During the last years, a large number of papers have been published in which
various neural and other classification algorithms have been described and ana-
lyzed. The results of such experiments cannot generally be compared due to the
use of different raw data material, preprocessing, and testing poUcies. In [154] the
methods employed in experimental evaluations concerning neural algorithms in
two major neural networks journals in 1993 and 1994 were analyzed. The bare
conclusion was that the quality of the quantitative results—if presented at all—
was poor. For example, the famous NETtalk experiments [120] were in [155]
repHcated and compared to the performance of a A:-NN classifier. The conclusion
was that the original results were hard to reproduce and the regenerated MLP
results were outperformed by the A:-NN classifier.

38 Jouko Lampinen et al.

Some larger evaluations or benchmarking studies have also been published in
which a set of classification algorithms have been tried to be assessed in a fair and
impartial setting. Some of the latest in this category include [2,5,6,156,157]. The
profound philosophical questions involved in comparisons are addressed in [158].
In [159] the distribution-free bounds for the difference between the achieved and
achievable error levels are calculated for a set of classification algorithms in the
cases of both finite and infinite training sets.

V. NEURAL NETWORK APPLICATIONS
IN PATTERN RECOGNITION

A. APPLICATION AREAS OF NEURAL NETWORKS

Neural computing has proved to be a useful solution technique in many appli-
cation areas that are difficult to tackle using conventional computing. In a recent
ESPRIT research project Siena [160], a large number of commercial neural net-
work applications developed in Europe were reviewed. Figure 10 shows the dis-
tribution of the cases by application type. About 9% of the cases in the study were
clear pattern recognition applications. To solve some part of the whole task, pat-
tern recognition was applied in a much larger number of the applications; many
prediction and identification problems contain similar recognition and classifica-
tion stages as used in pattern recognition applications.

Forecasting,
Prediction

34%

Other
11%

Pattern
Recognition,

Detection
9%

Control, Monitoring,
Modeling

46%

Figure 10 Distribution of categories of commercial neural network applications [160].

Pattern Recognition 39

As neural networks provide rather general techniques for modeling and recog-
nition, they have found applications in many diverse engineering fields. Table II
presents some neural network application areas together with some typical ap-
plications compiled from case Hsting in [160]. Note that pattern recognition is
needed in three of the five categories in the table: recognition, classification, and
visual processing.

Table II
Neural Network Application Areas and Case Applications [160]

Application type Case applications

Recognition and identification

Assessment and classification

Monitoring and control

Forecasting and prediction

Sensory and visual

Oil exploration
Fiber optic image transmission
Automated data entry
Number plate recognition
Fingerprint analysis

Credit risk management
Medical diagnosis
Bridge construction analysis
Fruit grading
TV picture quality control
Industrial nondestructive testing
Tyre quality control
Improving hospital treatment and reducing expenses
Property valuation
Product pricing sensitivity analysis
Route scheduling optimization
Quality control in livestock carcasses

Machine health monitoring
Dynamic process modeling
Chemical synthesis
Chemical manufacture
Bioprocess control

Stock market prediction
Classifying psychiatric care
Holiday preference prediction
Traffic jam reduction
Survey analysis
TV audience prediction
Future business demand forecasting

Automated industrial inspection
Railway track visual maintenance inspection
Mail sorting

40 Jouko Lampinen et al.

In the early days of neural computing, the first applications were in pattern
recognition, but since then neural computing has spread to many other fields
of computing. Consequently, large engineering fields, modeling and control, to-
gether with prediction and forecasting, made up two-thirds of the cases in the
study.

Still, the relative impact of neural network techniques is perhaps largest in the
area of pattern recognition. In some application types, such as optical character
recognition, neural networks have already become a standard choice in commer-
cial products. The main reasons for the success of neural network methods in
such problems are outlined in the previous chapters—^by carefully designed pre-
processing and feature extraction the main difficulties in the applications are in

Table III

Examples of Neural Pattern Recognition Applications

Application Neural network solution

Problem Domain
Identification and verification

Face recognition

Face identification
Paper currency recognition
Signature verification

Ultrasonic weld testing
Wood defect recognition

Medical applications
Blood vessel detection
Contour finding in MRI

Aerial imaging and reconnaissance
Radar target classification
Automatic target recognition

Character recognition
Numeric handprint recognition

Handwritten form processing
On-line recognition

Speech processing
"Phonetic typewriter"
Speech recognition

Classification of small images by MLP tree [161]
Dynamic link matching, Gabor-jet features [162]
ZN-Face^^ system [163], based on [162]
Geometric features, MLP classifier [164]
Wavelet decomposition, MLP classifier [165]
Fisher's discriminant analysis enhanced with NN^^ [166]
Manually selected features, MLP classifier^^ [167]
Self-organizing features^\ see Section V.B.3

Convolution filter bank, MLP classifier [168]
MLP detection of contour pixels [169]

Spectral features, MLP classifier [170]
Biological vision modeling [171]
See [172] for survey on ATR

LeNet architecture^^ [121], see Section V.B.I
Zemike moment features, MLP classifier [173]
Geometric and moment features, MLP classifier [174]
Selected features, MLP classifier^ ̂ [167]
Dynamic stroke features, RBF classification [175]

Cepstral feature classification by SOM [122]
Phoneme classification by time delay neural network [176]

1) Conmiercial products are marked by ^̂ in the table.

Pattern Recognition 41

determining the nonlinear class boundaries, which is a very suitable problem for
neural network classifiers.

In Table III we have collected recent neural network applications in pattern
recognition. Typical architecture of neural pattern recognition algorithms follows
that shown in Fig.l. In most of the applications listed in Table III, conventional
features, such as moment invariants or spectral features, are computed from the
segmented objects and neural networks are used for the final classification.

Then the value of using neural networks in the application depends on the
goodness of the classifier. Although any classifier cannot solve the actual recogni-
tion problem if the selected features do not separate the target classes adequately,
the choice of the most efficient classifier can give the few extra percent in recog-
nition rate to make the solution sufficient in practice. The advantages of neural
classifiers compared to other statistical methods were reviewed in Section IV.F.

In the next section we review some more integral neural network pattern rec-
ognition systems, in which the feature extraction is integrated to the learning
procedure.

B. EXAMPLES OF NEURAL PATTERN
RECOGNITION SYSTEMS

In this section we review some pattern recognition systems, in which neural
network techniques have a central role in the solution, including the lower levels
of the system. As the vast majority of neural network solutions in pattern recogni-
tion are based on carefully engineered preprocessing and feature extraction, and
neural network classifier, the most difficult parts of the recognition problem, such
as invariances, are thus solved by hand before they ever reach the network.

Moreover, the handcrafted feature presentations cannot produce similar invari-
ances and tolerance to varying conditions that are observed in biological visual
systems. A possible direction to develop more capable pattern recognition sys-
tems might be to include the feature extraction stage as part of the adaptive trained
system.

In the pattern recognition systems considered here also a considerable amount
of the lower parts of the recognition problem are solved by neural networks. In
Table III, examples of such systems are, e.g., [121, 163, 171].

1. System Solution with Constrained MLP
Architecture—LeNet

The basic elements of virtually all pattern recognition systems are preprocess-
ing, feature extraction, and classification, as elaborated in previous sections. The
methods and practices to design the feature extraction stage to be efficient with

42 Jouko Lampinen et al.

neural network classifiers were reviewed in Section III. A, including methods such
as manual selection, and data reduction by, e.g., principal component analysis.

In theory it is possible to integrate the feature extraction and classification in
one processing block and to use supervised learning to train the whole system.
However, the dimensionality of the input patterns causes a serious challenge in
this approach. In a typical visual pattern recognition application the input to the
feature extraction stage is an image comprising thousands or even hundreds of
thousands of pixels, and in the feature extraction stage this very high-dimensional
space is mapped to the feature space of much reduced dimensionality. A system
with the original (sub)image as the input would have far too many free parameters
to generalize correctly, with any practical number of training samples.

LeNet Architecture

The solution proposed by LeCun etal. [121,177] is based on constraining the
network structure with prior knowledge about the recognition problem. The net-
work architecture, named LeNet, is rather similar to the Neocognitron architecture
(see Section V.B.2): the feature extraction is carried out by scanning the input im-
age with neurons that have local receptive fields to produce convolutional feature
maps (corresponding to S layers in the Neocognitron), followed by subsampling
layer to reduce the dimensionality of the feature space and to bring in distor-
tion tolerance to the recognition (corresponding to the C layers in the Neocogni-
tron). Figure 11 shows the basic architecture of a LeNet with two layers of feature
detectors.

In the Neocognitron the feature extracting neurons are trained with unsuper-
vised competitive learning, while in the LeNet network back-propagation is used
to train the whole network in a supervised manner. This has the considerable
advantage that the features are matched to separate the target classes, while in
unsupervised feature extraction the features are independent of the target classes.
The trade-off is that a rather large number of training samples are needed and the
training procedure may be computationally expensive.

Example of the LeNet Network

The following example of the architecture of the LeNet network was reported
in [177]. The task was to recognize handwritten digits, that were segmented and
transformed to fit in 16 x 16 pixel images in preprocessing. The network had four
feature construction layers (named HI, H2, H3, and H4) and an output layer with
ten units. Layers HI and H3 corresponded to the feature map layers in Fig. 11,
and H2 and H4 to the resolution reduction layers, respectively.

Pattern Recognition 43

Feature maps Feature maps Resolution Classification
reduction

Figure 11 Schematic diagram illustrating the basic structure of many successful neural pattern
recognition systems, such as the Neocognitron and LeNet. The main differences in the networks are in
the training algorithm, the number of feature map layers, and the connection pattern of the classifier.

• The layer HI contained four different feature detectors with 5 x 5 pixel
receptive fields. Thus the output of the HI layer contained four maps produced by
scanning the input image with each of the feature detector neurons.

• The following layer H2 performed averaging and subsampling of the HI fea-
ture maps: in the layer H2 there was a neuron connected with equal fixed weights
to each nonoverlapping 2 x 2 area in the HI feature map.

• Layer H3 constructed higher-order features from combinations of the pri-
mary features in H2 maps. The layer had 12 different feature detecting neurons,
each neuron connected to one or two of the H2 maps by 5 x 5 receptive fields. In
an earlier version of the system the H3 neurons were connected to all H2 maps,
resulting in a large number of free parameters in this stage [121]. The reduced
connection patterns were determined by pruning the network with the optimal
brain damage technique [178].

• The layer H4 was identical to layer H2, averaging and subsampling the H3
feature maps. The output layer was fully connected to layer H4.

The network was trained on a large data base of manually labeled digits, and
was able to produce state-of-the-art level recognition [177]. The example shows
that it is possible to use back-propagation-based supervised learning techniques
to solve large parts of the pattern recognition problem, by carefully constraining
the network structure and weights according to prior knowledge about the task

A comparison of this architecture, including several variations in the number
of feature maps, and other learning algorithms for handwritten digit recognition is

44 Jouko Lampinen et al.

presented in [179]. The report concentrates on methods where there is no separate
handcrafted feature extraction stage, but the feature extraction is combined with
classification and trained together.

2. Invariant Recognition with Neocognitron

One of the first pattern recognition systems based solely on neural network
techniques was the Neocognitron paradigm, developed by Fukushima et al [180].
The architecture of the network was originally inspired by Hubel and Wiesel's
hierarchy model of the visual cortex [181]. According to the model, cells at the
higher layers in the visual cortex have a tendency to respond selectively to more
complicated features of the stimulus patterns and, at the same time, have larger
receptive fields.

The basic structure of the Neocognitron is shown in Fig. 11. It consists of
alternating feature detector and resolution reduction layers, called S and C lay-
ers, respectively. Each S layer contains several feature detector arrays called cell
planes, shown as the small squares inside the layers in Fig. 11. All neurons in
a cell plane have similar synaptic connections, so that functionally a cell plane
corresponds to a spatial convolution, since the neurons are linear in weights. The
S layers are trained by competitive learning, so that each plane will learn to be
sensitive to a different pattern.

The C layers are essential to the distortion tolerance of the network. Each cell
plane in the S layer is connected by fixed weights to a similar but smaller cell
plane in the successive C layer. The weights of the C cells are chosen so that one
active S layer cell in its receptive field will turn the C cell on. The purpose of the
C layers is to allow positional variation to the features detected by the preceding
S layer. The successive S layer is of the same size as the previous C layer, and
the S cells are connected to all the C planes. Thus the next-level cell planes can
detect any combinations of the previous level features. Finally the sizes of the cell
planes decrease so that the last C plane contains only one cell, with receptive field
covering the whole input plane.

In Fig. 12 the tolerance to small distortions is elucidated; the dashed circles
show the areas where the key features distinguishing "A" must be found. The
features may appear in any place inside the circles.

In the later versions of the Neocognitron [182] a selective attention mechanism
is implemented to allow segmentation and recognition of overlapping patterns, as
in cursive handwriting.

3. Self-Organizing Feature Construction System

In this section we review a neural pattern recognition system based on self-
organizing feature construction. The system is described in more detail in [35,
183, 184].

Pattern Recognition 45

/ i&"
\

I

Feature detector
receptive field (S) /

Resolution reduction \
receptive field (C) \

Figure 12 Illustration of the principle for recognizing deformed patterns by the Neocognitron.

The basic principle in the system is to define a set of generic local primary
features, which are assumed to contain pertinent information of the objects, and
then to use unsupervised learning techniques for building higher-order features
from the primary features and reducing the number of degrees of freedom in the
data. Then the final supervised classifiers can have a comparably small number of
free parameters and thus require a small amount of preclassified training samples.

The feature extraction-classification system is composed of a pipelined block
structure, where the number of neurons and connections decrease and the connec-
tions become more adaptive in higher layers. The major elements of the system
are the following.

Primary features'. The primary features should detect local, generic shape-
related information from the image. A self-similar family of Gabor filters (see,
e.g., [185]) is used for this task, since the Gabor filters have optimal combined
resolution in spatial and frequency domains.

Self-organized features'. To form complex features the Gabor filter outputs are
clustered to natural, possibly nonconvex clusters by a multilayer self-organizing
map.

Classifier: Only the classifier is trained in a supervised manner in the highly
reduced feature space.

Figure 13 shows the principle of the self-organizing feature construction in
face recognition [35]. At the lowest levels, two banks of eight Gabor filters were
used. The two filter banks had different spatial resolution and eight orientations,
as shown in Fig. 13. The primary feature was thus comprised of the two eight-
dimensional vectors of the filter outputs.

The complex features were then produced by a two-layer self-organizing map.
The first-level map contained 10 x 10 units, so that the eight-dimensional fea-
ture vectors of both resolutions were separately mapped through the 10 x 10

46 Jouko Lampinen et al.

Gabor filters

"Gabor Jet"

Feature Clustering

Multilayer Self-Organizing Map

Feature value

Figure 13 Schematic drawing of the feature extraction system. Left part: eight-dimensional Gabor
vectors at two resolutions are extracted from every pixel location in the 128 x 128 digital image. Right
part: the two-layer SOM produces a feature value c{p) for each pixel location p.

map, to produce two two-dimensional vectors. These were stacked to form a
four-dimensional input vector for the second-layer map, that had 100 units in a
one-dimensional lattice. Thus the feature extraction stage maps a neighborhood
of a pixel to a feature value, such that similar details are mapped to nearby fea-
tures. A special virtue of the multilayer SOM is that the cluster shapes can be
also nonconvex [186]. Figure 14 shows an example of feature mapping, where a
face image is scanned with the feature detector and the resulting feature values
are shown as gray scales.

It was shown in [186] and [35] that such feature images can be classified with
very simple classifiers. Often it is sufficient to take feature histograms of the object
regions, to form translation-invariant classification features.

The role of the classifier is more important in this feature construction system
than with manually selected features, since the features are not directly related to
the object classes. For any given class, many of the filters, and features, are irrele-
vant, and the classifier must be able to pick up the combination of the relevant fea-
tures. Thus the pure Euclidean distance of the feature histograms cannot be used
as the basis of the classification. The most suitable classifiers are then methods
that are based on hyperplanes, such as subspace classifiers and multilayer percep-
tron, while the distance-based methods, such as nearest neighbor classifiers and
radial basis function networks, might be less effective.

Pattern Recognition 47

Image Feature image

j i .
10 20 30 40 50 60 70 80 90 100

Feature histogram

Figure 14 Upper part: an example image and the feature image. The image was a part of a 128 x 128
image. The 100 feature values are represented by gray levels in the feature image. The circle gives
the approximate face area to be used in computing the feature histogram. Lower part: the Gaussian
weighted feature histogram. The Gaussian weight function had width R = 50 and was centered as
shown by the circle of radius R in the feature image.

Practical Example: Recognition of Wood Surface Defects

The proposed self-organizing feature construction method has been applied in
some industrial pattern recognition problems, as described in [184] in detail. Here
we give a short review on the recognition of wood surface defects.

As a natural material, wood has significant variation both within and between
species, making it a difficult material for automatic grading. In principle, the in-
spection and quality classification of wood is straightforward: the quality class of
each board depends on its defects and their distribution, as dictated by the qual-
ity standard. However, the definitions of the defects are based on their biological
origin, appearance, or cause, so that the visual appearance of defects in the same
class has substantial variation. The Finnish standards alone define 30 different de-

48 Jouko Lampinen et al.

Sound

knot

Decayed

knot

Dry

knot

Encased

knot

Leaf

knot

Horn

knot

Edge

knot

I I I I I E l l I

liiiiiHM

Figure 15 Examples of various knot types in spruce boards.

feet elasses, sueh as sound, dry, eneased, and decayed knots, resin pockets, splits,
bark, wane, mould, etc., each with various degrees of seriousness.

Knots are the most common defect category and have a crucial role in sorting
lumber. Figure 15 shows the most important knot classes on spruce boards.

Figure 16 shows a schematic of a wood surface defect recognition system,
where the shape-related information is encoded by a self-organizing feature con-
struction system into a "shape histogram," and the color histogram is collected
by another multilayer SOM as an additional classification feature. A third type
of information used as a classification feature, in addition to the shape and color
feature histograms, was the energy of each Gabor filter over the whole image.
It corresponds to a logarithmically sampled frequency spectrum of the image, and
yields about 2% better recognition rates.

The image set used in the knot identification tests consisted of 438 spruce
samples. The imaging was done at 0.5 mm x 0.5 mm resolution by a 3-CCD
matrix camera with 8 bits/pixel quantization. Half of the samples (219) were used
for training the classifier and the other half for evaluating the results.

Table IV shows the confusion matrix in the knot classification [184]. The
recognition rate was about 85%, yielding about 90% correctness in the final grad-
ing of the boards, which is clearly better than the sustained performance of manual
grading (about 70-80%). Based on these results, an industrial machine-vision-
based system for automatic wood surface inspection has been developed, and is
reported in [187]. The system is implemented on signal processors, so that it can

Pattern Recognition 49

FMrtur* ckistMing

8hap« histogram

MLP

cl«tsifi«r

Color features
Color histogram

Figure 16 A schematic of the classification system combining shape-based and color-based infor-
mation.

process more than one 2 x 2-m veneer sheet in a second, with imaging resolution
of 1 mm, with about 20 defects on an average sheet.

4. Classification of Handwritten Digits

This section summarizes the results of a large comparison between various
neural and classical statistical classification methods [157]. The data used in
the experiments consisted of handwritten digits. Eight hundred ninety-four fill-

Table IV

Classification Results of Wood Surface Defects

Dry
Encased
Decayed
Leaf
Edge
Horn
Sound

N
From other cl. %

Dry

26
1
5
0
0
0
4

36
28

Encased

1
10
0
0
0
0
0

11
9

Decayed

0
0
1
1
0
0
0

2
50

Leaf

1
0
0

24
0
0
0

25
4

Edge

0
0
0
0
34
6
0

40
15

Horn

0
0
0
0
2

10
0

12
17

Sound

4
2
3
3
0
0

81

93
13

N

32
13
9

28
36
16
85

219

To other cl. %

19
23
89
14
6

37
4

15

50 Jouko Lampinen et al.

in forms were digitized using an automatically fed flat binary scanner with the
resolution of 300 x 300 dots per inch. The form was designed to allow simple
segmentation of digits: each digit was written in a separate box so that for most
cases there was no connecting, touching, or overlapping of the numerals. The size
of each digit was normalized retaining the original aspect ratio to fit to a 32 x 32-
pixel box. In the direction of the smaller size, the image was centered, and then
the slant of writing was eliminated. The resulting image was finally concatenated
to form a 1024-dimensional pattern vector having component values of ±1 repre-
senting black and white pixels, respectively. The whole handwritten digit corpus
of 17880 vectors was divided equally to form separate training and testing sets.
The former was used in computing the Karhunen-Loeve transform which was ap-
plied to both sets. The feature vectors so created were 64-dimensional, but each
classification algorithm was allowed to select a smaller input vector dimensional-
ity using training set cross-validation.

Figure 17 displays a sample of the digit images in the leftmost column. In the
remaining columns, images reconstructed from an increasing number of features
are shown. For the clarity of the visualization, the mean of the training set has been
first subtracted from the digit images and then added back after the reconstruction.

0 1 2 4 8 16 32
Figure 17 Some handwritten digits on the left and their reconstruction from varying number of
features. The number of features used is shown below the images.

Pattern Recognition 51

It can be noted how rapidly the reconstruction fidehty is increased due to the
optimal information-preserving property of the Karhunen-Loeve transform.

In the experiments, the maximum feature vector dimension was thus 64. Due
to the effects of the curse of dimensionaUty, cross-vaHdation indicated smaller
input dimensionality to be optimal for some classifiers. Each classifier algorithm
had its own set of cross-validated parameters. The cross-validation procedure was
ten-fold: 8046 vectors were used in training a classifier and the remaining 894
vectors of the training set were used to evaluate the classification accuracy. This
procedure was then repeated nine times until all the vectors in the training set
had been used exactly nine times in training and once in evaluation. The cross-
validated classification accuracy for the given set of parameter values was then
calculated as the mean of the ten evaluations. By varying the parameter values,
an optimal combination was found and it was used in creating the actual classi-
fier using the whole training set. The final classification accuracy was calculated
with that classifier and the original testing set. The classification error percentages
are collected in Table V. Shown are testing set classification errors and, in paren-
theses, estimated standard deviation in ten independent trials for certain stochas-

Table V

Classification Accuracies for Handwritten Digit Data

Classifier

LDA
QDA
RDA
KDAl
KDA2
RKDA

MLP
MLP+WD
LLR
Tree classifier
FDA^ARS

1-NN
3-NN
L-3-NN
LVQ

CLAFIC
ALSM

Committee

Error %

9.8
3.7
3.4
3.7
3.5
5.2

5.4
3.5
2.8

16.8
6.3

4.2
3.8
3.6
4.0

4.3
3.1

2.5

(.1)

(.3)
(.1)

(.1)
(.1)

Cross-validated parameters

d = 64
d = 47
d = 6l, y =0.25, A = 0
d = 32, h = 3.0
d — 36, hi,... ,hiQ
d = 32, £ = 35

d = 36, e=40
[d = 36, € = 40], X = 0.05
J = 36, Of = 0.1
d = 16, 849 terminal nodes
d = 32, 195 terms, second order

^ = 64
d = 3S
[d = 38, a = 0.1], e = 5750, ^epochs = 7
[d = 38, aiO) = 0.2, w = 0.5, 10 epochs LVQl],
i = 8000, 1 epoch LVQ2

[d = 64], D = 29
[d = 64, D = 29], a = ^ = 3.1, Epochs = 9

[LLR, ALSM, L-3-NN]

52 Jouko Lampinen et at.

Figure 18 Error-reject curve for the LLR classifier. The rejection percentages are shown on the
horizontal axis whereas the logarithmic vertical axis displays the remaining error percentages. The
threshold parameter 6 is given at selected points. The diamonds indicate the results obtained with the
committee classifier using different voting strategies.

tic classifiers. The cross-validated parameters are given and parameters selected
without cross-validation are shown in brackets.

Some evident conclusions can be drawn from the classification accuracies of
Table V. First, the discriminant analysis methods, e.g., QDA, LDA, KDA, per-
form surprisingly well. This can be interpreted as an indirect indication that the
distribution of the data closely resembles Gaussian in the Bayesian class border
areas. Second, MLP performs surprisingly badly without the weight decay regu-
larization modification. The tree classifier and MARS also disappoint. Third, the
learning or adaptive algorithms such as ALSM and LVQ perform better than their
nonadaptive counterparts such as CLAFIC and k-NH.

The committee classifier, the results of which are shown in the last line of Ta-
ble V, was formed utilizing the majority voting principle from the LLR, ALSM,
and L-3-NN classifiers. It can be seen that the committee quite clearly outper-
forms all the individual classifiers. Rejection option was also implemented. By
using the LLR classifier and varying the rejection threshold 0 of Eq. (30), the
reject-error curve shown in Fig. 18 was obtained. The three diamonds in the figure
display reject-error trade-off points obtained using the above described committee
classifier with voting strategies allowing for rejection.

VI. SUMMARY

This chapter gave a review of neural network systems, techniques, and applica-
tions in pattern recognition (PR). Our point of view throughout the chapter is that,
at the present state of the art, neural techniques are closely related with more con-

Pattern Recognition 53

ventional feature extraction and classification algorithms, which emanate from
general statistical principles such as data compression, Bayesian classification,
and regression. This helps in understanding the advantages and shortcomings
of neural network models in pattern recognition tasks. Yet, we argue that neu-
ral networks have indeed brought new and valuable additions and insights to the
PR theories, especially in their large flexible architectures and their emphasis on
data-driven learning algorithms for massive training sets. It is no accident that
the popularity of neural networks has coincided with the growing accessibility of
computing power provided by the modem workstations.

We started the chapter by giving an overview of the problem and by introduc-
ing the general PR system, consisting of several consequent processing stages,
neural or nonneural. We then concentrated on the two most important stages, fea-
ture extraction and classification. These are also the system components in which
neural network techniques have been used most widely and to their best advan-
tage. The most popular neural network approaches to these problems were given
and contrasted with other existing solution methods.

Several concrete applications of neural networks on PR problems were then
outlined partly as a literature survey, partly by summarizing the authors' own ex-
periences in the field. Our original applications deal with face recognition, wood
surface defect recognition, and handwritten digit recognition, in all of which neu-
ral networks have provided flexible and powerful PR methods. We hope that these
case studies indicate that neural networks really work, but also that their use is not
simple. As with any other engineering methodology, neural networks have
to be carefully integrated into the total PR system in order to get out maximal
performance.

REFERENCES

[1] B. D. Ripley. / Roy. Statist. Soc. Ser. B 56:409-^56, 1994.
[2] B. Cheng and D. Titterington. Statist. Sci. 9:2-54, 1994.
[3] Y. Idan, J.-M. Auger, N. Darbel, M. Sales, R. Chevallier, B. Dorizzi, and G. Cazuguel. In

Proceedings of the International Conference on Artificial Neural Networks (I. Aleksander and
J. Taylor, Eds.), Vol. 2, pp. 1607-1610. North-Holland, Brighton, England, 1992.

[4] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A. Miiller,
E. Sackinger, R Y. Simard, and V. Vapnik. In Proceedings of 12th International Conference on
Pattern Recognition, Vol. II, pp. 77-82. IEEE Computer Society Press, Jerusalem, 1994.

[5] D. Michie, D. J. Spiegelhalter, and C. C. Taylor (Eds.). Machine Learning, Neural and Statisti-
cal Classification. Ellis Horwood Limited, 1994.

[6] F. Blayo, Y Cheneval, A. Guerin-Dugue, R. Chentouf, C. Aviles-Cruz, J. Madrenas,
M. Moreno, and J. L. Voz. Deliverable R3-B4-P task B4: Benchmarks. Technical Report ES-
PRIT Basic Research Project Number 6891, 1995.

54 Jouko Lampinen et al.

[7] Britannica Online. Encyclopaedia Britannica on the Internet, 1996. Available at <http://www.
eb.com/>.

[8] H. C. Andrews. Introduction to Mathematical Techniques in Pattern Recognition. John Wiley
& Sons Inc., New York, 1972.

[9] R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. John Wiley & Sons Inc.,
New York, 1973.

[10] J. T. Ton and R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley, Reading, MA,
1974.

[11] T. Y. Young and T. W Calvert. Classification, Estimation and Pattern Recognition. Elsevier
Science Publishers, New York, 1974.

[12] R. Gonzalez and M. Thomason. Syntactic Pattern Recognition. Addison-Wesley, Reading, MA,
1978.

[13] J. Sklansky and G. N. Wassel. Pattern Classifiers and Trainable Machine. Springer-Verlag,
Berlin/New York, 1981.

[14] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall Inter-
national, London, 1982.

[15] K. S. Fu. Syntactic pattern recognition and applications. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[16] K. Fukunaga. Introduction to Statistical Pattern Recognition, 2nd ed. Academic Press, New
York, 1990.

[17] S.-T. Bow. Pattern Recognition and Image Preprocessing. Marcel Dekker, Inc., New York,
1992.

[18] Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA,
1989.

[19] C. W. Therrien. Decision, Estimation, and Classification. John Wiley and Sons, New York,
1989.

[20] R. J. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches. John Wiley
& Sons, New York, 1992.

[21] M. Pavel. Fundamentals of Pattern Recognition, 2nd ed. Marcel Dekker, New York, 1993.
[22] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, London/New

York, 1995.
[23] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, London/

New York, 1996.
[24] J. Kittier, K. S. Fu, and L. F. Pau (Eds.). Pattern Recognition Theory and Applications; Pro-

ceedings of the NATO Advanced Study Institute. D. Reidel, Dordrecht, 1982.
[25] L. N. Kanal (Ed.). Progress in Pattern Recognition I. North-Holland, Amsterdam, 1981.
[26] L. N. Kanal (Ed.). Progress in Pattern Recognition 2. North-Holland, Amsterdam, 1985.
[27] B. V. Dasarathy. Nearest Neighbor Pattern Classification Techniques. IEEE Computer Society

Press, New York, 1991.
[28] C. H. Chen, L. F. Pau, and P. S. P. Wang. Handbook of Pattern Recognition and Computer

Vision. World Scientific PubUshing, Singapore, 1993.
[29] K. S. Fu and A. Rosenfeld. Computer 17:274-282, 1984.
[30] R. Bellman. Adaptive Control Processes: A Guided Tour Princeton University Press, Princeton,

NJ, 1961.
[31] A. K. Jain and B. Chandrasekaran. In Handbook of Statistics (P. R. Krishnaiah and L. N. Kanal,

Eds.), Vol. 2, pp. 835-855. North-Holland, Amsterdam, 1982.
[32] J. Hartigan. Clustering Algorithms. John Wiley & Sons, New York, 1975.
[33] J. Laaksonen and E. Oja. In Proceedings of the International Conference on Engineering Ap-

plications of Neural Networks, Stockholm, Sweden, 1997.
[34] B. Widrow and M. Lehr. Proc. IEEE1%.U\5-\U2, 1990.

Pattern Recognition 55

[35] J. Lampinen and E. Oja. IEEE Trans. Neural Networks 6:539-547, 1995.
[36] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing

Company, Inc., New York, 1994.
[37] S. Wold. Pattern Recog. 8:127-139, 1976.
[38] E. Oja. J. Math. Biol. 15:267-273, 1982.
[39] T. Kohonen. Biol. Cybernet. 43:59-69, 1982.
[40] T. Kohonen et al. 2358 studies of the self-organizing map (SOM) and learning vector quantiza-

tion (LVQ), 1996. Available at <http://www.cis.hut.fi/nnrc/>.
[41] E. Oja et al. A list of references related to PCA neural networks, 1996. Available at

<http://www.cis.hut.fi/projects/pca/>.
[42] D. DeMers and G. Cottrell. In Neural Information Processing Systems 5 (S. Hanson, J. Cowan,

and L. Giles, Eds.), pp. 580-587. Morgan Kaufmann PubHshers, San Francisco, CA, 1993.
[43] E. Oja. In Proceedings of the International Conference on Artificial Neural Networks (T. Koho-

nen, K. Makisara, O. Simula, and J. Kangas, Eds.), Vol. 1, pp. 737-745. North-Holland, Espoo,
Finland, 1991.

[44] S. Usui, S. Nakauchi, and M. Nakano. In Proceedings of the International Conference on Artifi-
cial Neural Networks (T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds.), pp. 867-872.
North-Holland, Espoo, Finland, 1991.

[45] ¥..¥\mzhd&\ii. Neural Networks l\\%?>-\92, 1989.
[46] K. Homik, M. Stinchcombe, and H. White. Neural Networks 2:359-368, 1989.
[47] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press Ltd., Letchworth,

England, 1983.
[48] Z. Wang and J. V. Hanson. In Proceedings of the World Congress on Neural Networks, pp.

IV-605-608. Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.
[49] E.O']di. Neural Networks 5:921-9^5, 1992.
[50] E. Oja and J. Karhunen. Nonlinear PCA: Algorithms and applications. Technical Report A18,

Laboratory of Computer and Information Science, Helsinki University of Technology, 1993.
[51] J. Karhunen and J. Joutsensalo. Neural Networks 7:13-127, 1994.
[52] E. Oja. The nonlinear PCA learning rule and signal separation—mathematical analysis, Tech-

nical Report A26, Laboratory of Computer and Information Science, Helsinki University of
Technology, 1995.

[53] J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo. IEEE Trans. Neural Networks, to
appear.

[54] C. Jutten and J. Herault. Signal Process. 24:1-10, 1991.
[55] R Comon. Signal Process. 36:287-314, 1994.
[56] J.-F. Cardoso and B. Laheld. IEEE Trans. Signal Process. 44, 1996.
[57] J. Karhunen, A. Hyvarinen, R. Vig^o, J. Hurri, and E. Oja. In Proceedings of the IEEE 1997

International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany,
1997.

[58] T. Kohonen. Proc. /£££: 78:1464-1480, 1990.
[59] T Kohonen, Self-Organizing Maps. Springer-Verlag, Beriin/New York, 1995.
[60] T. Kohonen. Self-Organization and Associative Memory, 2nd ed. Springer-Verlag, Berlin, Hei-

delberg, New York, 1988.
[61] H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing Maps: An

Introduction. Addison-Wesley, Reading, MA, 1992.
[62] J. Lampinen. Neural pattern recognition: Distortion tolerance by self-organizing maps. Ph.D.

Thesis, Lappenranta University of Technology, Lappeenranta, Finland, 1992.
[63] A. Visa, K. Valkealahti, and O. Simula. In Proceedings of the International Joint Conference

on Neural Networks (JJCNN), pp. 1001-1006, Singapore, 1991.
[64] T Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Proc. IEEE 84:1358-1384, 1996.

56 Jouko Lampinen et ah

[65] L. Holmstrom, P. Koistinen, J. Laaksonen, and E. Oja. Comparison of neural and statistical
classifiers—^theory and practice. Technical Report A13, Rolf Nevanlinna Institute, Helsinki,
1996.

[66] A. K. Jain and J. Mao. In Computational Intelligence Imitating Life (J. M. Zurada, R. J. Marks
II, and C. J. Robinson, Eds.). Chap. IV-1, pp. 194-212. IEEE Press, New York, 1994.

[67] R. A. Redner and H. R Walker. SIAMRev. 26, 1984.
[68] H. G. C. Traven. IEEE Trans. Neural Networks 2:366-377, 1991.
[69] C. E. Priebe and D. J. Marchette. Pattern Recog. 24:1197-1209, 1991.
[70] C. E. Priebe and D. J. Marchette. Pattern Recog. 26:771-785, 1993.
[71] T. Hastie and R. Tibshirani. J. Roy. Statist. Soc. (Series B) 58:155-176, 1996.
[72] G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition. John Wiley &

Sons, New York, 1992.
[73] J. H. Friedman. /. Amen Statist. Assoc. 84:165-175, 1989.
[74] D. J. Hand. Kernel Discriminant Analysis. Research Studies Press, Chichester, 1982.
[75] B. W. Silverman and M. C. Jones. Intemat. Statist. Rev. 57:233-247, 1989.
[76] B. W Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, Lon-

don/New York, 1986.
[77] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley

& Sons, New York, (1992.
[78] M. P Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, London, New York, 1995.
[79] G.E.Tutz.B/omefnita 73:405-411, 1986.
[80] D. E Specht. Neural Networks 3:109-118, 1990.
[81] K. Fukunaga and J. M. Mantock. IEEE Trans. Pattern Anal. Machine Intell PAMI-6:115-118,

1984.
[82] K. Fukunaga and R. R. Hayes. IEEE Trans. Pattern Anal. Machine Intell. 11:423^25, 1989.
[83] I. Grabec. Biol. Cybernet. 63:403^09, 1990.
[84] P. Smyth and J. Mellstrom. \n Advances in Neural Information Processing Systems 4 (J. Moody,

S. Hanson, and R. Lippmann, Eds.), pp. 667-674. Morgan Kaufmann, San Mateo, CA, 1992.
[85] L. Wu and F Fallside. Computer Speech Lang. 5:207-229, 1991.
[86] L. Holmstrom and A. Hamalainen. In Proceedings of the 1993 IEEE International Conference

on Neural Networks, Vol. 1, pp. All-All, San Francisco, California, 1993.
[87] J. MacQueen. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Problems (L. M. LeCam and J. Neyman, Eds.), pp. 281-297. U.C. Berkeley Press, Berkeley,
CA, 1967.

[88] J. H. Friedman and W Stuetzle. J. Amen Statist. Assoc. 76:817-823, 1981.
[89] T. E. Flick, L. K. Jones, R. G. Priest, and C. Herman. Pattern Recog. 23:1367-1376, 1990.
[90] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall, London/New

York, 1990.
[91] P. Koistinen and L. Holmstrom. In Advances in Neural Information Processing Systems 4

(J. E. Moody, S. J. Hanson, and R. P. Lippman, Eds.), pp. 1033-1039. Morgan Kaufmann,
San Mateo, CA, 1992.

[92] D. F Specht. IEEE Trans. Neural Networks 2:568-576, 1991.
[93] n. White. Neural Comput. 1:425-464, 1989.
[94] M. D. Richard and R. R Lippman. Neural Comput. 3:461^83, 1991.
[95] J. S. Bridle. In Advances in Neural Information Processing Systems 2 (D. Touretzky, Ed.), pp.

211-217. Morgan Kaufmann, San Mateo, CA, 1990.
[96] W H. Highleyman. Proc. //?£: 50:1501-1514, 1962.
[97] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Chap-

man & Hall, London/New York, 1984.
[98] W S. Cleveland and S. J. Devlin. J. Amen Statist. Assoc. 83:596-610, 1988.

Pattern Recognition 57

[99] W. Cleveland and C. Loader. Smoothing by local regression: Principles and methods. Technical
Report, AT&T Bell Laboratories, 1995.

100] T. J. Hastie and C. Loader. Statist. Sci. 8:120-143, 1993.
101] J. N. Morgan and J. A. Sonquist. / Amer. Statist. Assoc. 58:415^34, 1963.
102] R. A. Becker, J. M. Chambers, and A. R. Wilks. The NEW S Language. Chapman & Hall, New

York, 1988.
103] J. M. Chambers and T. J. Hastie (Eds.). Statistical Models in S. Chapman & Hall, New York,

1992.
104] W. N. Venables and B. D. Ripley. Modem Applied Statistics with S-Plus. Springer-Verlag, New

York, 1994.
105] L. A. Clark and D. Pregibon. In Statistical Models in S (J. M. Chambers and T. J. Hastie, Eds.),

Chap. 9. Chapman & Hall, New York, 1992.
106] J. H. Friedman. Ann. Statist. 19:1-141, 1991.
107] P Craven and G. Wahba. Numer. Math. 31:317-403, 1979.
108] T. Hastie, R. Tibshirani, and A. Buja. J. Amer. Statist. Assoc. 89:1255-1270, 1994.
109] E. Fix and J. L. Hodges. Discriminatory analysis—nonparametric discrimination: Consistency

properties. Technical Report Number 4, Project Number 21-49-004, USAF School of Aviation
Medicine, Randolph Field, TX, 1951.

110] T. M. Cover and P E. Hart. IEEE Trans. Inform. Theory 13:21-27, 1967.
I l l] G. T. Toussaint, E. Backer, P. Devijver, K. Fukunaga, and J. Kittler. In Pattern Recognition The-

ory and Applications; Proceedings of the NATO Advanced Study Institute (J. Kittler, K. S. Fu,
and L. E Pau, Eds.), pp. 569-572. D. Reidel, Dordrecht, 1982.

112] D. L. Wilson. IEEE Trans. Systems, Man, Cybernet. 2:408^20, 1972.
113] P E. Hart. IEEE Trans. Inform. Theory 14:515-516, 1968.
114] J. Laaksonen and E. Oja. In Proceedings of the International Conference on Neural Networks,

Vol. 3, pp. 1480-1483. Washington, DC, 1996.
115] S. Watanabe, P. F. Lambert, C. A. Kulikowski, J. L. Buxton, and R. Walker. In Computer and

Information Sciences II (J. Tou, Ed.). Academic Press, New York, 1967.
116] J. Laaksonen and E. Oja. In Proceedings of the International Conference on Artificial Neural

Networks, pp. 227-232. Bochum, Germany, 1996.
117] W S. McCuUoch and W Pitts. Bull. Math. Biophys. 5:115-133, 1943.
118] F Rosenblatt. Psychol. Rev. 65:386-408, 1958.
119] F. Rosenblatt. Principles ofNeurodynamics: Perceptrons and the Theory of Brain Mechanisms.

Spartan Books, Washington, DC, 1961.
120] T. J. Sejnowski and C. R. Rosenberg. J. Complex Syst. 1:145-168, 1987.
121] Y LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W Hubbard, and L. D. Jackel.

Neural Comput. 1:541-551, 1989.
122] T. Kohonen. Computer ll-.W-ll, 1988.
123] C. J. Stone. J. Roy Statist. Soc. Sen B 36:111-147, 1974.
124] L. Holmstrom, S. Sain, and H. Miettinen. Computer Phys. Commun. 88:195-210, 1995.
125] J. Geist, R. A. Wilkinson, S. Janet, P J. Grother, B. Hammond, N. W Larsen, R. M. Klear,

M. J. Matsko, C. J. C. Burges, R. Creecy, J. J. Hull, T. P Vogl, and C. L. Wilson. The sec-
ond census optical character recognition systems conference. Technical Report NISTIR 5452,
National Institute of Standards and Technology, 1992.

126] M. P. Perrone. In Neural Information Processing Systems 6 (J. D.Cowan, G. Tesauro, and J. Al-
spector, Eds.), pp. 1188-1189. Morgan Kaufmann, San Francisco, CA, 1994.

127] L. Xu, A. Krzyzak, and C. Y Suen. IEEE Trans. Systems, Man, Cybernet. 22:418-435, 1992.
128] T. K. Ho, J. J. Hull, and S. N. Srihari. In Proceedings ofSPIE Conference on Machine Vision

Applications in Character Recognition and Industrial Inspection (D. P. D'Amato, W.-E. Blanz,
B. E. Dom, and S. N. Srihari, Eds.), no. 1661 in SPIE, pp. 137-145. SPIE, 1992.

58 Jouko Lampinen et ah

[129] T. K. Ho, J. J. Hull, and S. N. Srihari. IEEE Trans. Pattern Anal Machine Intell 16:66-75,
1994.

[130] Y S. Huang, K. Liu, and C. Y. Suen. Intern. J. Pattern Recog. Artif. Intell. 9:579-597, 1995.
[131] L. Xu, A. Krzyzak, and C. Y Suen, In Proceedings of 1991 International Joint Conference on

Neural Networks, Vol. 1, pp. 43-48. Seattle, WA, 1991.
[132] C. Nadal, R. Legault, and C. Y Suen. In Proceedings of the 10th International Conference on

Pattern Recognition, pp. 443-449. Atlantic City, NJ, 1990.
[133] F. Kimura and IVI. Shridhar. Pattern Recog. 24:969-983, 1991.
[134] C. Y Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Proceedings of the IEEE 80:1162-

1180,1992.
[135] L. Lam and C. Y Suen. In Proceedings of 12th International Conference on Pattern Recogni-

tion, Vol. II, pp. 418^20. IEEE Computer Society Press, Jerusalem, 1994.
[136] L. Lam and C. Y Suen. Pattern Recog. Lett. 16:945-954, 1995.
[137] L. Xu and M. I. Jordan. In Proceedings of the World Congress on Neural Networks, Vol. IV, pp.

227-230, 1993.
[138] L. Xu, M. I. Jordan, and G. E. Hinton. In Neural Information Processing Systems 7 (G. Tesauro,

D. S. TouretzJcy, and T. K. Leen, Eds.), pp. 633-640. MIT Press, Cambridge, MA, 1995.
[139] M. I. Jordan and R. A. Jacobs. Neural Comput. 6:181-214, 1994.
[140] J. Franke and E. Mandler. In Proceedings of the 11th International Conference on Pattern

Recognition, Vol. II, pp. 611-614. The Hague, 1992.
[141] R. A. Jacobs. Neural Comput. 7:867-888, 1995.
[142] V Tresp and M. Taniguchi. In Neural Information Processing Systems 7 (G. Tesauro,

D. S. Touretzky, and T. K. Leen, Eds.), pp. 419-426. MIT Press, Cambridge, MA, 1995.
[143] M. P. Perrone and L. N. Cooper. In Artificial Neural Networks for Speech and Vision (R. J. Mam-

mone, Ed.), pp. 126-142. Chapman & Hall, London/New York, 1993.
[144] L. K. Hansen and R Salamon. IEEE Trans. Pattern Anal. Machine Intell. 12:993-1001, 1990.
[145] A. Krogh and J. Vedelsby. In Neural Information Processing Systems 7 (G. Tesauro,

D. S. Touretzky, and T. K. Leen, Eds.), pp. 231-238. MIT Press, Cambridge, MA, 1995.
[146] D. H. Wolpert. Neural Networks 5:241-259, 1992.
[147] F. Smieja. The pandemonium system of reflective agents. Technical Report 1994/2, German

National Research Center for Computer Science (GMD), 1994.
[148] Y Idan and J.-M. Auger. In Proceedings ofSPIE Conference on Neural and Stochastic Methods

in Image and Signal Processing (S.-S. Chen, Ed.), no. 1766 in SPIE, pp. 437-443, SPIE, 1992.
[149] H. Drucker, R. Schapire, and R Simard. Intemat. J. Pattern Recog. Artif Intell. 7:705-719,

1993.
[150] H. Drucker, C. Cortes, L. D. Jackel, Y LeCun, and V. Vapnik. Neural Comput. 6:1289-1301,

1994.
[151] G. E. Hinton, M. Revow, and P. Dayan. In Neural Information Processing Systems 7

(G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds.), pp. 1015-1022. MIT Press, Cambridge,
MA, 1995.

[152] H. Schwenk and M. Milgram. In Neural Information Processing Systems 7 (G. Tesauro,
D. S. Touretzky, and T. K. Leen, Eds.), pp. 991-998. MIT Press, Cambridge, MA, 1995.

[153] P. Sollich and A. Krogh. In Neural Information Processing Systems 8 (D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, Eds.). MIT Press, Cambridge, MA, 1995.

[154] L. Prechelt. A study of experimental evaluations of neural network learning algorithms: Current
research practice. Technical Report 19/94, Fakultat fur Informatik, Universitat Karlsruhe, D-
76128 Karlsruhe, Germany, 1994.

[155] W. R Schmidt, D. F. Levelt, and R. P W. Duin. In Pattern Recognition in Practice fV
(E. S. Gelsema and L. S. Kanal, Eds.), Vol. 16 of Machine Intelligence and Pattern Recog-
nition. Elsevier Science, New York, 1994.

Pattern Recognition 59

[156] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson. Pattern Recog. 27:485-
501, 1994.

157] L. Holmstrom, P. Koistinen, J. Laaksonen, and E. Oja. IEEE Trans. Neural Networks 8, 1997.
158] R. R W. Duin. Pattern Recog. Lett. 17:529-536, 1996.
159] L. Devroye. IEEE Trans. Pattern Anal. Machine Intell. 10:530-543, 1988.
160] SIENA—Stimulation Initiative for European Neural Applications, ESPRIT Project 9811. Avail-

able at <http://www.mbfys.kun.nl/snn/siena>.
161] M. Zhang and J. Fulcher. IEEE Trans. Neural Networks 7:555-567, 1996.
162] W. Konen, T. Maurer, and C. von der IVIalsburg. Neural Networks 7:1019-1030, 1994.
163] W. Konen, S. Fuhrmann, M. Hormel, and A. Flugel. In Proceedings of the Industrial Conference

"Applications in Industrial & Service Sectors" in the International Conference on Artificial
Neural Networks, ICANN'95, 1995.

164] R Takeda and S. Omatu. IEEE Trans. Neural Networks 6:73-77, 1995.
165] Y. Qi and B. R. Hunt. IEEE Trans. Image Process. 4:870-874, 1995.
166] C. S. Cruz et al. Hybrid neural methods in classification problems. Technical Report IIC 9501,

Instituto de Ingenieria del Conocimiento, Universidad Autonoma, 28049 Madrid, 1995.
167] A. Hogervorst et al. In Neural Networks: Artificial Intelligence and Industrial Applications.

Proceedings of the 3rd Annual SNN Symposium on Neural Networks. Springer-Verlag, London,
1995.

168] R. Nekovei and Y. Sung. IEEE Trans. Neural Networks 6:64-72, 1995.
169] G. Chiou and J.-N. Hwang. IEEE Trans. Image Process. 4:1407-1416, 1995.
170] S.Chakrabarti, N. Bindal, and K. Theaghadran. IEEE Trans. Neural Networks 6:760-766, 1995.
171] A. Waxman, M. Seibert, A. Gove, D. Fay, A. Bemardon, C. Lazott, W. Steele, and R. Cunning-

ham. iV^Mra/A^̂ fwor̂ ^ 8:1029-1051, 1995.
172] M. W. Roth. IEEE Trans. Neural Networks 1:1990, 1990.
173] R. Bailey and M. Srinath. IEEE Trans. Pattern Anal. Machine Intell. 18:389-399, 1996.
174] W. Weideman, M. Manry, H.-C. Yau, and W. Gong. IEEE Trans. Neural Networks 6:1524-

1530, 1995.
175] S. Lee and J. C.-J. Pan. IEEE Trans. Neural Networks 7:455-474, 1996.
176] A. Waibel et al. IEEE Trans. Acoustics, Speech, Signal Process. 37:328-339, 1989.
177] Y. L. Cun, J. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackal. In Neural

Networks, Current Applications (P. Lisboa, Ed.), pp. 185-195. Chapman & Hall, London, 1992.
178] Y Le Cun, J. Denker, S. SoUa, R. Howard, and L. Jackel. In Neural Information Processing

Systems (D. Touretzky, Ed.), Vol. 2. Morgan Kaufman, San Mateo, CA, 1989.
179] Y. Le Cun, L. Jackel, L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. MuUer,

E. Sackinger, P. Simard, and V. Vapnik. In Proceedings of the International Conference on
Artificial Neural Networks ICANN'95, Vol. 1, pp. 53-60, Paris, France, 1995.

180] K. Fukushima, S. Miyake, and T. Ito. IEEE Trans. Systems, Man, Cybernet. 13:826-834, 1983.
181] D. Hubel and T Wiesel. / Physiol. 160:106-154, 1962.
182] K. Fukushima. In Artificial Neural Networks (T. Kohonen, K. Makisara, J. Kangas, and O. Sim-

ula, Eds.), Vol. 1, pp. 105-110. North-Holland, Amsterdam, 1991.
183] J. Lampinen. In Applications of Artificial Neural Networks II, Proc. SPIE1469 (S. K. Rogers,

Ed.), pp. 832-842, 1991.
184] L. Lampinen and S. Smolander. Internat. J. Pattern Recog. Artif Intell. 10:97-113, 1996.
185] J. Daugman. / Opt. Soc. Amer (A) 2:1160-1169, 1985.
186] J. Lampinen and E. Oja. / Math. Imag. Vision 2:261-272, 1992.
187] J. Lampinen, S. Smolander, and M. Korhonen. In Proceedings of the Industrial Conference

"Technical Diagnosis & Nondestructive Testing" in the International Conference on Artificial
Neural Networks, ICANN'95, 1995.

This Page Intentionally Left Blank

Comparison of Statistical
and Neural Classifiers
and Their Applications
to Optical Character
Recognition and Speech
Classification

Ethem Alpaydm Fikret Giirgen
Department of Computer Engineering Department of Computer Engineering
Bogazi^i University Bogazi^i University
TR-80815 Istanbul, Turkey TR-80815 Istanbul, Turkey

I. INTRODUCTION

Improving person-machine communication leads to a wider use of advanced
information technologies. Toward this aim, character recognition and speech
recognition are two applications whose automatization allows easier interaction
with a computer. As they are the basic means of person-to-person communication,
they are known by everyone and require no special training. Speech in particular
is the most natural form of human communication and writing is the tool by which
humanity has stored and transferred its knowledge for many millennia.

In a typical pattern recognition system (Fig. 1), the first step is the acquisition
of data. This raw data is preprocessed to suppress noise and normalize input.
Features are those parts of the signal that carry information salient to its identity
and their extraction is an abstraction operation where the important is extracted
and the irrelevant is discarded. Classification is the assignment of the input as an
element of one of a set of predefined classes.

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 6 1

62 Ethem Alpaydin and Fikret Gurgen

INPUT DATA

\r\tIirA

Raw Data Enhanced data Feature vector Class code

PREPROCESSING FEATURE
EXTRACTION

CLASSMCATION

Figure 1 A pattern recognition system where input is an image, as in optical character recognition,
or a time series, as in speech classification.

The rules for classification are generally not known exactly and thus are esti-
mated. A classifier is written as a parametric model whose parameters are com-
puted using a given training sample to optimize a given error criterion. Different
approaches for classification differ in their assumptions about the model, in the
way parameters are computed, or in the error criterion they optimize.

Statistical classifiers model the class-conditional densities and base their deci-
sions on the posteriors which are computed using the class-conditional likelihoods
and the priors. Likelihoods are assumed to either come from a given probability
density family, e.g., normal, come from a mixture of such densities, or be writ-
ten in a completely nonparametric way. Bayes decision theory then allows us to
choose the class that minimizes the decision risk. The parameters of the densities
are estimated to maximize the likelihood of the given sample for that class.

This contrasts with approaches where the discriminants are directly estimated.
Neural networks are such approaches and their outputs can be converted directly
to posteriors, eliminating the need of assuming a statistical model. From a statisti-
cal perspective, a multilayer network is a linear sum of nonlinear basis functions.
In the neural network terminology, the nonlinear basis functions are called hid-
den units and the parameters are called connection weights. In a training process,
given a training sample, the weights that minimize the difference between net-
work outputs and required outputs are computed.

This chapter has the aim of comparing these two approaches and extends a
previous study [1]. In Section II, we define the two applications that we are con-
cerned with in this study, namely, optical character recognition and speech recog-
nition. We show that these two applications have many common subproblems
and quite similar approaches have been used in the past to implement them, both
statistical and neural. Section III details how, in the two applications, data are ac-
quired and preprocessed before they can be fed to the classifier. In Section IV,
we define formally the problem from a statistical point of view and explain the
three approaches of parametric, nonparametric, and semiparametric estimation.
In Section V, we discuss the neural approaches such as simple and multilayer
perceptrons and radial basis function networks. A literature survey for the two

Comparison of Statistical and Neural Classifiers 63

applications is given in Section VI. In Section VII, we give simulation results on
two data sets. We conclude in Section VIII.

11. APPLICATIONS

Character recognition is of two forms. In printed character recognition, any
character image is one of a predefined number of styles which are calltd fonts.
Printed character recognition systems generally work by storing templates of
character images for all fonts and matching the given image against these stored
images to choose the best match. This contrasts with handwritten character recog-
nition where there are practically infinite ways of writing a character. It is this
latter that we are interested in. In handwritten character recognition, the medium
may be two sorts. In optical character recognition, the writer writes generally on
paper by using a marker of different brightness. The contrast is acquired optically
through a scanner or camera and a two-dimensional image is formed. Because
recognition is done generally long after the writing is done, it is named off-line.
In pen-based character recognition, the writing is done on a touch-sensitive pad
using a special pen. While it is moved over the pad, the coordinates of the pen-
tip are returned at each sampHng, leading to a sequence of pen-tip positions for
each written character. Recognition is done while writing takes place and is called
on-line. A special journal issue on different approaches to character recognition,
edited by Pavlidis and Mori [2], recently appeared.

In speech recognition, there is no analogy to printed character recognition as
the sound to be recognized is natural, never synthetic. Speech is captured using a
microphone and is digitized to get a set of samples in time from the sound wave-
form. The sound spectrogram is a three-dimensional representation of the speech
intensity, in different frequency bands, over time. Another way of representing
speech is by modeling the human vocal tract as a tube whose resonances produce
speech; they are cailQd formants and they represent the frequencies that pass the
most acoustic energy; typically there are three. For a more detailed analysis, refer
to the book by Rabiner and Juang [3].

The two tasks of character recognition and speech recognition have a num-
ber of conmion problems. One is the segmentation of characters or phonemes
from a stream of text image or speech. This is especially a problem when cursive
handwriting or continuous phrases is the case; the system, before recognizing in-
dividual characters or phonemes, should determine the boundaries. To facilitate
recognition, some systems require that inputs be isolated before recognition, by
providing separate boxes for different characters or slow, careful articulation of
words.

Another problem is that of being independent from writer or speaker; a recog-
nizer that can recognize inputs from a small set of people is rarely useful. But the

64 Ethem Alpaydtn and Fikret Gurgen

recognizer should also have the ability to adapt to a particular user if required so
as to be able to recognize that user's handwriting/speech with higher accuracy.

Recognition is also dependent on the domain. If only postal codes are to be
optically recognized, then in most countries only digits are valid classes; a voice-
controlled system may have a small set of commands to be recognized. To min-
imize errors and rejects, more complicated tasks require also the integration of a
vocabulary so as to be able to use lexical information to aid in recognition. This
creates the problems of storing a lexicon and accessing it efficiently.

The best existing systems perform well only on artificially constrained tasks.
Performance is better if samples are provided for all speakers/writers, when words
are spoken/letters are written in isolation, when the vocabulary size is small, and
when restricted language models are used to constrain allowable sequences [2,4].

III. DATA ACQUISITION AND PREPROCESSING

A. OPTICAL CHARACTER RECOGNITION

In optical character recognition, preprocessing should be done before individ-
ual character images can be fed to the classifier.

Depending on how small the characters are, a suitable resolution should be
chosen first for scanning. Typically a resolution of 300 dpi (dots per inch) is used.
With smaller resolutions and smaller character images, dots and accents may be
lost or images may get connected.

In most applications, characters are written in special places on preprinted
forms [2, 5]. So the first step after scanning is registration, which is the deter-
mination of how the original form is translated and rotated to get the final image.
This is done by matching a number of points in the input form to the original
blank form. Then given the coordinates of the input fields, their coordinates in the
input form can be computed and the input field images extracted. The characters
in a field are then segmented and individual character images are obtained. These
are then size-normalized to scale all characters to the same height and width and
slant-normalized to reduce the slant variations in order to be left only with shape
differences.

The so-formed bitmap can be fed as input to the classifier, or features may
be extracted from the image to get invariances and/or reduce dimensionality. One
common approach is low-pass filtering the image, which gives invariance to small
translations. Easy-to-extract features in character images are the ratio of width to
height, number of on pixels, number of line crossings along certain horizontal
and vertical directions, etc. A more expensive preprocessing is to have small local
kernels with which all parts of the image are convolved, to detect line segments,
comers, etc.

Comparison of Statistical and Neural Classifiers 65

B. SPEECH RECOGNITION

Digitized speech samples are obtained by an antialiasing filter and an analog-
to-digital converter (A/D) [3,6]. A low-pass antialiasing filter should be set below
the Nyquist frequency (half of the sample rate) so that the Fourier transform of the
signal will be bandlimited. An A/D converter commonly consists of a sampling
circuit and a hold circuit. A 10-12-kHz sampling frequency usually includes the
first five formants for most talkers, but may not capture all the unvoiced energy
such as the /s/ phoneme. An 8-kHz sampling frequency can be selected to be used
in a 4-kHz telephone channel.

Once the speech signal has been digitized, the discrete-time representation is
usually analyzed within short-time intervals. Depending on the application, an
analysis window of 5-25 ms is chosen in which it is assumed that the speech
signal is time-invariant or quasi-stationary. Time-invariant analysis is essential
since parameter estimation in a time-varying (nonstationary) system is a much
more difficult problem.

The utterances of speakers are recorded in a soundproof room or in certain
environmental conditions such as no-noise with a microphone at a certain band-
width. The required segments of each utterance are manually, or by use of an
accurate segmentation algorithm, endpointed and processed into frames.

A linear predictive coding (LPC)-based analysis procedure [3, 6, 7] can be
used to obtain desired features such as cepstrum coefficients or fast Fourier trans-
form (FFT) coefficients. Recent feature extraction methods concentrate also on
auditory modeling and time-frequency representation of speech signals.

IV. STATISTICAL CLASSIFIERS

In pattern recognition, we are asked to assign a multidimensional input x edi^
to one of a set of classes Cj, 7 = 1 , . . . , m [8,9]. Sometimes the additional action
of reject is added to choose when no class or more than one class is probable.
A classifier is then a mapping from di^ to {Ci,..., Cm, Crej}-

In statistical decision theory, actions have costs and the decision having the
minimum cost is made [10]. Assuming that correct decisions have no cost, all
incorrect decisions have equal cost, and no rejects, for minimum expected cost
(or risk), the so-called Bayes' decision rule states that a given input should be
assigned to the class with the hi^tsi posterior probability [8-10]:

c = argmaxP(Cy|jc). (1)
j

The posteriors are almost never exactly known and thus are estimated. We are
given a sample X = {x/, yt}, i = I,... ,n and y e {Ci , . . . , C^}. In statistical

66 Ethem Alpaydin and Fikret Gurgen

ASSUMPTIONS
REGARDING LIKELIHOOD
DENSITIES

TRAINING
ALGORITHM
(Max Likelihood)

BAYES RULE

CLASS LIKELIHOODS

p(xlCj)

b POSTERIORS

P(Cjlx)

Figure 2 Building a statistical classifier.

pattern recognition theory (Fig. 2), Bayes rule factors the posterior into a prior
class probabiUty PiCj) and a class-conditional density or likelihood p(x\Cjy.

PiCj\x) =
p(x\Cj)P(Cj) p{x\Cj)PiCj)

P(x) EkPWCk)P{Cky
(2)

The estimate of the prior is just the fraction of samples belonging to that class.
If Hj is the number of samples belonging to class j , ^j tij = n, then

P(Cj) = nj/n. (3)

The real problem is that of estimating the class-conditional likelihood densities
p(x\Cj). There are three approaches:

1. Parametric Methods. These assume that class-conditional densities have a
certain parametric form, e.g., normal, whose sufficient statistics are estimated
from the data [8, 9]. These methods generally reduce to distance-based meth-
ods where, depending on assumptions made on the data, the good distance metric
is chosen.

2. Nonparametric Methods. When no such assumptions can be made, the den-
sities need to be estimated directly from the data. These are also known as kernel-
based estimators [8,11,12].

3. Semiparametric Methods. The densities are written as a mixture model
whose parameters are estimated [8, 13-16]. In the case of normal mixtures, this
approach is equivalent to cluster-based classification strategies such as LVQ of
Kohonen [17] and is similar to Gaussian radial basis function networks [18].

A decision rule as given in Eq. (1) has the effect of dividing the input space
into mutually exclusive regions called the decision regions where each region is
assigned to one of the m classes. Bounding these decision regions are the decision
boundaries or discriminants that separate the examples of one class from others.

Comparison of Statistical and Neural Classifiers 67

Pattern classification may equally well be thought of as defining appropriate dis-
criminant functions, gj (x), and we assign feature vector x to class c if

gc{x) = mdix gj{x). (4)

An immediate discriminant function is the posterior probability, or its variants.
The following are all equivalent:

gj{x) = P{Cj\x).

g'jix) = p(x\Cj)P(Cj), (5)

g](x) = log/7(JC|C,)+log P(C;).

A. PARAMETRIC BAYES CLASSIFIERS

The shape of decision regions defined by a Bayes classifier depends on the
assumed form for p(x\Cj) [8, 9]. Most frequently, it is taken to be multivariate
normal which assumes that examples from a class are noisy versions of an ideal
class member. The ideal class prototype is given by the class mean fij, and the
characteristics of the noise appear as the covariance matrix Ey. When p(x\Cj) ^
Af(fij, Sy), it is written as

P^^^Cj) = (2 ^) J | ^ . , i / 2 exp[-(l/2)(x - ^jf^jHx - M;)]. (6)

This leads to the following discriminant function [ignoring the common term of
-(J /2) log2;r] :

gj(x) = - (1/2) log IE,-1 - (l/2)(jc - njfj:j\x - fij) + logP(Cj). (7)

When X is ^-dimensional, the free parameters are d for the mean vector and
d(d -\- l) /2 for the (symmetric) covariance matrix. This latter is 0(d^) which is
disturbing if d is large. A large number of free parameters both makes the system
more complex and requires larger training samples for their reliable estimation.
Thus assumptions are made to keep the number of parameters small, which has
the effect of regularization.

1. Independent Features of Equal Variances

When the dimensions of the feature vector x are independent, i.e., Cov(jCjt, JC/)
= 0, A: 7̂ /, V/:, / = 1 , . . . , J, and have equal variances Var(x^) = a^, VA: =
1 , . . . , J, then Ey = E = o^I. Because the covariance matrices are equal, the
first term of Eq. (7) can be ignored. E~^ = (1/a^)/ and we obtain

gj{x) = -{l/2a^)\\x - fijf + logP(Cj). (8)

68

Class A

Ethem Alpaydin and Fikret Gurgen

Discriminant

Class B

Figure 3 Example two-class problem with equal variances and zero covariances and the linear dis-
criminant.

Assuming equal priors, this reduces to assigning input to the class with the
nearest mean. If the priors are not equal, the discriminant is moved toward the
less likely mean. Geometrically speaking, class densities are hyperspherical with
[ij as the center and a^ defining the radius (Fig. 3). It can easily be shown that
the discriminants {x\gi(x) = gj(x), i / j] are linear. The number of parameters
for m classes ism - d for the means and 1 for a^.

2. Independent Features of Unequal Variances

If features are independent and the variances along different dimensions vary:
Y3i(xk) = or̂ , VA: = 1 , . . . , J, but are equal for all classes, we obtain

;̂W = - E
k=l

2al
+ \ogP{Cj), (9)

This also assigns the input to the class of the nearest mean but now Eu-
clidean distance is generalized to Mahalanobis distance taking also differences
in variances into account. Class densities now are axis-aligned hyperellipsoids
and the discriminants they lead to are linear (Fig. 4). The number of parameters
\sm ' d -\-d.

Comparison of Statistical and Neural Classifiers 69

Class A Discriminant

Class B

Figure 4 Example two-class problem with different variances and zero covariances and the linear
discriminant.

3. Arbitrary Covariances

We are not interested in estimating full covariance matrices as 0(d^) parame-
ters require quite large training samples for accurate estimation. It is known that
when classes have arbitrary but equal covariances, the discriminants are linear,
and we will be considering linear discriminants in more detail in Section V. A.

When classes have different and full covariances, discriminants can be
quadratic. The total number of parameters to be estimated is m(d + d(d -f- l)/2)
and this can only be feasible with quite small d and/or a very large number of sam-
ples as otherwise we may have ill-conditioned covariance matrices. It may thus
be preferable to use a linear discriminant, e.g., Fisher's Hnear discriminant, when
we do not have enough data even if we know that the two covariance matrices are
different and the discriminant is quadratic. When a common covariance matrix is
assumed, this introduces an effect of regularization. Friedman's regularized dis-
criminant analysis writes the covariance matrix of a class as a weighted sum of
the estimated covariance matrix of that class and the covariance matrix common
to all classes, the relative weight of two being estimated using cross-validation.
The common covariance matrix can even be forced to be diagonal if there is even
less data available, providing further regularization [9].

There are also techniques to decrease the dimensionality. One is subset selec-
tion which means choosing the most important p dimensions from d, ignoring

70 Ethem Alpaydtn and Fikret Gurgen

the d — p dimensions. Principal component analysis (PCA) chooses the most
important p linear combinations of the d dimensions.

B. NONPARAMETRIC K E R N E L - B A S E D

DENSITY ESTIMATORS

In parametric estimation, we assume the knowledge of a certain form of density
family for the likelihood whose parameters are estimated from the data. In the
nonparametric case, we directly estimate the entire density function. Then we
need a large sample for our estimate not to be biased by the particular sample we
use. The kernel estimator is given as

P^'iC» = ^t'^{^). (.0,

h is the window width or the smoothing parameter. Depending on the shape of K,
one can have various estimators [11].

One disadvantage of kernel estimators is the requirement of storing the whole
sample. One possibility is to selectively discard patterns that do not convey much
information [19]. Another is to cluster data and keep reference vectors that rep-
resent clusters of patterns instead of the patterns themselves. The semiparametric
mixture models discussed in Section IV.C correspond to this idea.

1. A:-Nearest Neighbor (A:-NN)

Let us denote the A:th nearest sample to x as x^^^ and let V^(x) be the volume
of the ^-dimensional sphere of radius r^ = ||jc — JĈ ^̂ H; thus V^(x) = r^Cd,
where Cd is the volume of the unit sphere in d dimensions, e.g., ci = 2, C2 = TT,
C3 = 47r/3, etc. If out of the k neighbors, ^ of them are labelled coj, then the
fc-nearest neighbor estimate is (Fig. 5)

Picoj\x)=kJ/k. (11)

2. Parzen Windows

For p to be a legitimate density function, K should be nonnegative and inte-
grate to 1. For a smooth approximation, K is generally taken to be the normal
density:

Comparison of Statistical and Neural Classifiers

Discriminant

Class A

71

/ Class B

Figure 5 Example two-class problem with sample points and the arbitrary discriminant found by
one nearest neighbor. The dotted hnes show the Voronoi tesselation.

Here the kernel estimator is a sum of "bumps" placed at the observations. K de-
termines the shape of the bumps while h determines their widths. When spheric
bumps with equal h in all dimensions are used, this corresponds to using Eu-
clidean distance. If this assumption of equal variances (and independent dimen-
sions) is not valid, then different variances (and covariances) can be estimated and
Mahalanobis distance can be used instead. This also applies to A:-NN.

3. Choosing h or k

In kernel-based estimation, the correct choice of the spread parameter (k or h)
is critical. If it is large, then even distant neighbors affect the density at x leading
to a very smooth estimate. If it is small, p is the superposition of n sharp pulses
centered at the samples and is a "noisy" estimate.

With Parzen windows, when h is small with a small sample, it is possible that
no samples fall in the kernel, leading to a zero estimate; A:-NN guarantees that k
samples fall in the kernel. Small or large h leads to a decrease in success. When h
is small, there are few samples, and when it is large, there are too many. The good
h value is to be found using cross-validation on a separate set.

72 Ethem Alpaydin and Fikret Gurgen

For the /^-nearest neighbor, it has been shown [8] that the performance of the
1-nearest neighbor in classification is never worse than twice the Bayesian risk
where complete knowledge of the distributions is assumed. It can thus be said
that at least half of this knowledge is provided by the nearest neighbor. The per-
formance can be improved by increasing the number of neighbors considered, in
which case the error asymptotically converges to the Bayes risk.

When the samples are noisy, we expect fc-NN with small k not to perform
well. Large k takes into account the effect of very distant samples and thus is
not good either. When h (or k) is decreased to decrease bias, variance increases
and vice versa. This can intuitively be explained as follows [20]. When h (or
k) is large, p is the weighted average of many samples and thus does not change
much from one sample set to another. The variance contribution is small; however,
response is biased toward the population response. (In the extreme case, when
h -> oo, p is the sample average and is independent of the input x.) On the
other extreme, when h is small, there is small bias but the response is dependent
on the particular sample used; therefore, the variance contribution is high. The
same argument holds with k-NN, with k in place of h. Choosing h ork implies a
trade-off between bias (systematic error) and variance (random error).

C. SEMIPARAMETRIC MIXTURE MODELS

The parametric approach assumes that examples of a class are corrupted ver-
sions of an ideal class prototype. This ideal prototype is estimated by the mean
of the examples and examples are classified depending on how similar they are to
these prototypes. In certain cases, for a class, it is not possible to choose one sin-
gle prototype; instead there may be several. For example, in character recognition,
while writing "7" one prototype may be a seven with a horizontal middle bar (Eu-
ropean version) and one without (American version). A mixture density defines
the class-conditional density as a sum of a small number of densities [8, 9,15]:

p(x\Cj) = J2p(x\^Jh, <^j)P(cojh), (13)
h=l

where the conditional densities p(x\cojh, ^j) are called the component densities
and the prior probabilities P(cojh) are called the mixing parameters. Note that
here we have one mixture model for each class leading to an overall mixture of
mixtures [16].

We want to estimate the parameters Oy, that include the sufficient statistics of
the component densities, and the mixing proportions, that maximize the likelihood

Comparison of Statistical and Neural Classifiers 73

of a given iid sample Af/ of class j :

= J2^ogJ2P{xi\cojh, <^j)Pi(Ojh). (14)
/ h

This does not have an analytical solution but an iterative procedure exists based
on the expectation-maximization (EM) algorithm [13, 21]. In the expectation (E)
step of the algorithm, using the current set of parameters, we compute the proba-
bility that the sample x/ is generated by component h of class j :

P(0)jhXi, Oy) = ^ . ; ' , _ ; , = Tjhi. (15)

Assuming Gaussian components, i.e., p(x\cojh, ^j) "̂ J^ifJijh, ^jh), we have

P(cojh)\'^jhr^/^cxp[-(l/2)(Xi - fijhfJlJj^iXi - ^jh)]
'Cihi = —1 • (16)

E / P{coji)\Y,ji\-y^txv[-{\/2){xi - ,iji)Tj:-\xi - ^ji)]
In the M step, we update the component parameters Oy based on the probabil-

ities computed in the E step:

P(cojh) = (l/nj)^rjhi.

i

fljh = -^ , (1/)

E / T^jhiiXi - fljhXXi - fljh)'^
E / ̂ jhi

As in the parametric approaches, simplifying assumptions can be made on the
covariance matrices for regularization. Assuming equal hyperspheric densities,
one uses (squared) Euclidean distance in computing the posteriors. If we merely
compute the Euclidean distance || JC/ — fijh |P, find the nearest mean fijc nearest to
X, and set its r to 1 and all others to zero, and only update fijc for that example,
we get the A:-means procedure. The on-line version of the same algorithm updates
the mean after each pattern. For each pattern x e Cj, we find fijc such that

\\x -tijcW =mm\\x -fijhW, (18)
h

and then do the update immediately:

Afijc = r](x - fijc), (19)

74 Ethem Alpaydtn and Fikret Gurgen

Class A /Discriminant

Class B

Figure 6 Example two-class problem with two reference vectors per class and the arbitrary discrim-
inant found by LVQ. The dotted lines show the Voronoi tesselation.

where r; is a learning factor that is gradually decreased toward zero for conver-
gence. The rationale of this method is that by moving the mean closer to the
sample we increase the likelihood of seeing that sample.

1. Learning Vector Quantization

Kohonen [17] proposed learning vector quantization which also moves means
of wrong classes away. For a given input x, we find the closest mean fijc among
all classes (Fig. 6):

ll^-i^;cll =mm\\x-fikhh
k,h

and then we move the mean toward the input if the classes of the mean and the
input agree and we move the mean away from the input if they disagree:

Afijc =
_ I -\-rj(x - fijc),

\ -T](X - fljc),

if X € Cj,
otherwise.

(20)

V. NEURAL CLASSIFIERS

An artificial neural network is a network of simple processing units that are
interconnected through weighted connections [17, 22, 23]. The interconnection
topology between the units and the weights of the connections define the operation

Comparison of Statistical and Neural Classifiers 75

of the network. We are generally interested in feedforward networks where a set
of units are designated as the input units through which input features are fed to
the network. There is then a layer of hidden units that extract features from the
input. This is followed by the layer of output units where in classification each
output corresponds to one class.

There are a number of advantages to using neural network-type classifiers for
pattern recognition [24]:

1. They can learn, i.e., given a sufficiently large labelled training set, the
parameters can be computed to optimize a given error criterion.

2. They can generate any kind of nonlinear function of the input.
3. Because they are capable of incorporating multiple constraints and finding

optimal combinations of constraints for classification, features do not need
to be treated as independent. More generally, there is no need for strong
assumptions about the statistical distributions of the input features (as is
usually required in Bayes classifiers).

4. Artificial neural networks are highly parallel and regular structures which
makes them especially amenable to high-performance parallel
architectures and hardware implementations.

Statistical pattern recognition assumes a certain model for the densities and,
using Bayes decision rule, we see what type of discriminant functions they lead
to. The neural approach is to assume a certain model for the discriminants (poste-
riors) directly, as defined by the network operation (Fig. 7). For simplicity gj{x)
can be assumed to be linear in x:

k=\

(21)

where JcMs (jt, 1)^, augmented to include also an intercept (or bias) term. This
is a neural network called a perceptron where units in the input layer take the

ASSUMPTIONS
REGARDING
DISCRIMINANT FORMS

SOFTMAX

TRAINING
ALGORITHM
(Cross Entropy)

NETWORK OUTPUTS

8i

h POSTERIORS
hj=P(Cjlx)

Figure 7 Building a neural classifier.

76

h 82

Ethem Alpaydtn and Fikret Gurgen

1 Xj X2 x^

Figure 8 A linear classifier realized as a perceptron neural network.

value X and units in the output layer take gj(x). The weights of the connections
between are W (Fig. 8).

Discriminants in real life are rarely linear so one way to approximate nonlinear
functions is by estimating them as a linear sum of a number of nonlinear basis
functions (Fig. 9):

H

^7W = I] ^ ; / ^ ^ ^ W + ^ ; 0 . (22)
h=l

In neural network terminology, the basis functions, (ph (•), are called the hidden
units, and if the basis function is Gaussian this approach is called a radial basis
function network; it is called a multilayer perceptron if it is a sigmoid. The well-
known statistical technique of projection pursuit regression has the difference that
basis functions need not be fixed identical but are estimated in a nonparametric
manner.

In classification, we know that outputs are probabilities and that they sum up
to 1. This can be enforced using the softmax model [23]:

Ejfcexpgfc
(23)

and the error measure to be minimized is the cross-entropy between the two dis-
tributions [9,23]:

E = -Y^^rijloghjixi), (24)

Comparison of Statistical and Neural Classifiers

xj X2

77

1 Xj X2 x^

Figure 9 A multilayer neural network.

where nj = 1 if jc, e Cj and 0 otherwise. Wj, j = 1,
using gradient descent:

AWjh = -T]
dE

, m, can be optimized

(25)

Internal parameters of the basis functions, i.e., weights from the input layer
to the hidden layer, can also be trained similarly if 0 () is differentiable. This
technique is called back-propagation of errors [22].

Note that because of the dependence introduced through softmax, a given pat-
tern is used to train the discriminants of all classes. This contrasts with the statis-
tical approach where a pattern affects the likelihood of one class only.

A. SIMPLE PERCEPTRONS

A perceptron as defined in Eq. (21) defines a linear discriminant and works if
samples from a class can be separated linearly from samples of all other classes
where Wj defines the position and orientation of the separating hyperplane. This
model is attractive due to a number of reasons. It is optimal when classes are nor-
mal and share a common covariance matrix. It has a small number of parameters
and thus does not require large amounts of memory, and it is simple to implement.

78 Ethem Alpaydin and Fikret Gurgen

B. MULTILAYER PERCEPTRONS

In a multilayer perceptron as defined in Eq. (22), there is also a hidden layer
whose units correspond to the basis functions, 0/i(). They extract nonlinear in-
put combinations to be able to define nonlinear discriminants [22]. Usually, the
hidden units implement perceptrons passed through the sigmoid function:

*,i., = ,(r^.')= . (26)
1

+ expT-r/xn
Connection weights of both layers, T and W, are trained in a supervised man-

ner by gradient descent over a cost function like the cross-entropy.
It has been shown [25, 26] that this type of a neural network is a universal ap-

proximator, i.e., can approximate any continuous function with desired accuracy.
It has also been shown [27] that in the large sample case, multilayer perceptrons
estimate posterior probabilities, thus building a link between multilayer networks
and statistical classifiers. These theorems do not tell how many hidden units are
necessary, so one should test several alternatives on a cross-validation set and
choose the best.

C. RADIAL BASIS FUNCTIONS

A radial basis function (RBF) network [18,28] is another type of feedforward,
multilayer network where the basis function is a Gaussian:

Mx) = 0(117), - jcll) = expl"-"^^^"^-^" 1. (27)

Sometimes 0 (•) are normalized to sum up to 1. RBF is also a universal approx-
imator. Unlike Parzen windows where we have one Gaussian for each sample, in
RBF networks we have less. Means of Gaussians may be seen as reference vectors
in vector quantization or components in mixture models, the difference being that
in the latter cases, a reference vector or a component belongs to one class only
whereas here, class discriminants are defined as a linear combination of them.

Training can be done in one of two ways. In the uncoupled version, originally
proposed by Moody and Darken [18], the Gaussian centers are trained in an un-
supervised manner, e.g., using A:-means. a, the spread of Gaussians, is computed
as a factor of the average of intercenter distances. The second layer of W is a
single-layer perceptron and is trained using gradient-descent rule in a supervised
manner. In the coupled version, all parameters are trained in a supervised manner
together, using back-propagation.

Because units have local responses, only a small number of Gaussians are ac-
tive for each input, thus one generally needs many more Gaussians than sigmoids.

Comparison of Statistical and Neural Classifiers 79

but learning is faster when only a few units need to be updated for an input. The
generalization ability of REF can be extended by having the weight of each hidden
unit, Wjh, not a scalar but a linear function of the input [29]. This corresponds to
a piecewise linear approximation of the discriminant instead of a piecewise con-
stant approximation.

VI. LITERATURE SURVEY

A. OPTICAL CHARACTER RECOGNITION

Optical character recognition is one of the most popular pattern recognition
applications and many systems have been proposed in the past toward this aim;
see the special journal issue edited by Pavlidis and Mori for a review [2]. This is
because it is a significant application of evident economic utility and also because
it is a test bed before more complicated visual pattern recognition applications are
attempted.

One of the earliest neural network-based systems for handwritten character
recognition is the Neocognitron of Fukushima [30]. A significant amount of work
on optical recognition of postal ZIP codes was done by a group at AT&T Bell Labs
by Le Cun and others [31,32]. The system uses a multilayered network with local
connections and weight sharing trained with back-propagation for classification.
This implements a hierarchical cone where simpler local features are extracted in
parallel which combine to form higher-level, less local features and which finally
define the digits. An extensive study of back-propagation for optical recognition
of both handwritten letters and digits is given by Martin and Pittman [33].

Keeler, Martin, and others at MCC worked on combining segmentation and
recognition in one integrated system [34, 35]. This is necessary if characters are
touching in such a way that they cannot be segmented by a straightforward seg-
mentation procedure.

Several comparative studies have also been done, either by fixing the data set
and varying the methods or by also using a number of data sets. Guy on et al [36]
is an early reference where simple and multilayer perceptrons are compared with
statistical distance-based classifiers such as A:-NN in recognizing handwritten dig-
its for automatic reading of postal codes. A comparison of /c-NN, multilayer per-
ceptron, and radial basis functions in recognizing handwritten digits is given by
Lee [37]. A review of the task and several neural and conventional approaches is
given by Senior [38]. Comparison of distance-based classifiers, single and multi-
layer perceptrons, and radial basis function networks is given in [39].

For the task of optical handwritten character recognition, a significant step
was the production of a CDROM (Special Database 3) by the National Institute
of Standards and Technology (NIST) [5] which includes a large set of digitized

80 Ethem Alpaydin and Fikret Gurgen

character images and computer subroutines that process them. This allowed many
researchers a conmion test bed of significant size and quality on which to com-
pare their approaches. Many of the above-mentioned works use this data set or
its predecessor. It is available by writing to NIST. A comparison of four statis-
tical and three neural network classifiers is given by Blue et al. [40] for optical
character recognition and a similar task, fingerprint recognition (for which a sim-
ilar CDROM was also made available by NIST). Researchers from NIST made
several studies using this data set and technical reports can be accessed over the
Internet.

Recently with the reduction of cost of computing power and memory, it has
been possible to have multiple systems for the same task which are then combined
to improve accuracy [41, 42]. One approach is to have parallel models and then
take a vote. Another approach is to have models cascaded where simpler models
are used to classify simpler images and complex methods are used to classify
images of poorer quality.

B. SPEECH RECOGNITION

In speech recognition, the input is dynamic, i.e., changes in time. Classifiers
we have considered up to now are static, i.e., assume that the whole input feature
vector is available for classification. To use a static classifier for a dynamic task, a
time delay approach is used [43]. This uses an input layer with tapped delay lines
and can be used if the input buffer is large enough to accommodate the longest
possible sequence or if a resampling is done to normalize length. This basically is
mapping time into space by having multiple copies of the input units.

If the classifier is to accept input vectors sequentially, the classifier should have
some kind of internal state that is a function of the current input and the previ-
ous internal state. In the neural network terminology, these are named recurrent
networks which contrast with feedforward networks by having also connections
between units in the same layer or connections to units of a preceding layer [22].
For short sequences, a recurrent network can be converted into an equivalent feed-
forward network by unfolding it over time. This is another way of mapping time
into space, the difference being that now copies of the whole network are done.
In some recurrent architectures, a separate set of units are designated di^ feedback
units containing the hidden or output values generated by the preceding input. In
theory, the current state of the whole network will nonlinearly depend on a com-
bination of the previous network state and the current input [24]. A comparison
of different recurrent architectures and learning rules is given in [44].

Furui [45] discusses various methods for speech recognition. Lippmann [4]
and Waibel and Hampshire [46] give two reviews on using neural networks for
speech recognition. Early work used recurrent neural networks for representation

Comparison of Statistical and Neural Classifiers 81

of temporal context but after the introduction of time delay neural networks by
Waibel et al. [43], feedforward networks were also used for phoneme recogni-
tion. Lee and Lippmann [47] and Ng and Lippmann [48] for the same two ar-
tificial and two speech tasks compare a large number of conventional and neural
pattern classifiers. Comparison of distance-based classifiers, single and multilayer
perceptrons, and radial basis function networks for phoneme recognition is given
in [49]. The recent book by Bourlard and Morgan [24] discusses in more detail
neural approaches to speech classification. Currently the most efficient approach
for speech recognition is accepted to be hidden Markov models (HMMs) [24].
An HMM models speech as a sequence of discrete stationary states with instanta-
neous transition between states. At any state, there is a stochastic output process
that describes the probability of occurrence of some feature vectors and a stochas-
tic state-transition matrix conditioned on the input. It is called "hidden" because
the sequence of states is not directly observable but is apparent only from the ob-
served sequence of events. Generally there is one HMM for every word and states
correspond to phonemes, syllables, or demi-syllables. HMMs are also used to rec-
ognize individual phonemes where states correspond to substructures. Bourlard
and Morgan [24] give a detailed discussion of HMM models and their use in
speech recognition. They also show [7] how HMMs and multilayer networks can
be combined for continuous speech recognition where the network estimates the
emission probabilities for HMMs. A recent reference on current speech recogni-
tion methodologies is [50].

VII. SIMULATION RESULTS

For optical character recognition (OCR) experiments, we used the set of pro-
grams recently made available by NIST [5] to generate a data base on which
to test the algorithms we discuss. Forty-four people have filled in forms which
are scanned and processed to get 32 x 32 matrices of handwritten digits. These
matrices are then low-pass filtered and undersampled to 8 x 8 to decrease dimen-
sionality. Each element is in the range 0-16. These 44 forms are divided into two
clusters randomly as 30 forms in one side and 14 forms in the other. From the
first 30, we generated three sets: training set, cross-validation set, and the writer-
dependent test set. The training set has 1934 digits. The cross-validation set con-
tains 946 digits and is used to choose the best set of parameters during training,
e.g., number of basis functions, point to stop training, neighborhood size, etc. The
writer-dependent test set is used for testing after training and has 943 digits. The
remaining 14 forms have no relationship with those used in training and they con-
stitute the writer-independent test set containing 1797 digits. We make sure that
all sets contain approximately equal numbers of examples from each class.

82 Ethem Alpaydin and Fikret Giirgen

OCR
SR

Number
of

features

64
112

Input
data
type

int:0..16
real: 0..1

Table I

Properties of the Data Sets Used

Number
of

classes

10
6

Number of
training

examples

1934
600

Number of
cross-validation

examples

946
300

Number of
test

examples

943
300

Number of
indep. test
examples

1797
683

For /b,d,g,ni,n,N/ speech phoneme recognition (SR) experiments, the data base
contains 5240 Japanese isolated words and phrases. Two hundred samples for
each class are taken from the even-numbered and odd-numbered words. Six hun-
dred samples are used for training, 300 for cross-validation, and 300 for testing.
A further 683 phrases are used only for testing after having trained on isolated
words. As is known, the speaking style and speed of phrases differ from the iso-
lated words. Phonemes are extracted from hand-labelled discrete word utterances
and phrase utterances which have a sampling frequency of 12 KHz. Seven speech
frames (each 10 ms) are used as input. For each 10-ms frame, 16 Mel-scaled FFT
coefficients are computed as feature values. The final input fed to the classifier
has 112 dimensions. Properties of the data sets are summarized in Table I.

Results with various algorithms on the two sets are given in Table II. For each
data set, the first column contains results on the test set that is generated in an

Table II

Results on the Two Applications

Method

Bayes
A:-NN
Parzen
LVQ
SP
MLP
RBF

(
Test

90.77
97.56
97.99
96.48, 0.34
96.06, 0.44
97.51,0.41
98.11,0.17

OCR«

Independent test

89.43
97.61
97.44
96.42, 0.32
93.85, 0.32
94.78, 0.41
95.41,0.31

Test

63.33 (82.00)
87.67 (96.33)
90.00 (95.67)

SR'

83.43,1.83 (92.73,2.10)
92.10, 0.75
93.83, 0.82
91.90, 1.51

2,b

Phrases

36.75 (58.86)
62.52 (72.91)
67.50 (72.91)

61.93, 2.71 (67.57, 2.88)
56.41, 2.59
64.86, 2.44

57.13,5.54 (60.38,5.59)

Values reported are average and standard deviations of ten independent runs (when applicable).
Values in parentheses for SR are improved results by allowing different variances for different fea-
tures.

Comparison of Statistical and Neural Classifiers 83

identical manner with the training set, i.e., the same writers or the same artic-
ulation. The second column contains data that are taken from different writers
or continuous-speech phrases and thus are more natural than the first, and it is
actually the success in these columns that matters.

A visual analysis of the results is possible through Figs. 10 and 11. The two
axes are accuracy on the independent test set and phrases for OCR and SR re-
spectively and memory requirement. We assumed each real-valued parameter to
require 32 bits of storage. Input features require 4 bits for OCR (a value in the
range 0 . . . 16) and 16 bits for SR (32,768 discrete levels). The number of training
epochs is also marked for each technique.

100

98

96 h

o
<

92

90

88

OCR

+K-NN(1)

:+Lvq(12) ':

': +Rbf(31);

+Mlp(17)

••+sp(i'6)"i ;

+Bayes(2)

2 3
Memory (bits) x 1 0

Figure 10 Results on the optical digit recognition data set. Accuracy is percent correct classification
on writer-independent test set and memory is the number of bits required to store the free parameters
of the system. Each pattern value (in the range 0 . . . 16) requires four bits and connection weights are
assumed to require 32 bits. Values in parentheses are the number of epochs required for calculating
the parameters.

84 Ethem Alpaydin and Fikret Gurgen

SR
75

70

o

g65
o
<

60

55

+Uvq (50)

•+MIPC29):;

.:..+RbU3p)

+Bayes (2).

+Sp (24)

+K-NN(1)

4 6
Memory (bits)

10

x10^

Figure 11 Results on phoneme recognition data set. Accuracy is percent correct classification on
phrase set and memory is the number of bits required to store the free parameters of the system. Each
pattern value is assumed to require 16 bits and connection weights are assumed to require 32 bits.
Values in parentheses are the number of epochs required for calculating the parameters.

In SR, using different variances for different features leads to a big improve-
ment, whereas in OCR it does not. This information is also used in k-NN, Parzen
windows, and LVQ, where it improves accuracy; note the large difference in ac-
curacy between the two percentages in the fourth column of Table II. Knowing
that variances differ with RBF, we allowed Gaussians to have different spreads
along different dimensions. A similar method that can be used with any classifier,
and not only distance-based ones, is z-normalization where each feature value
is normalized to have zero mean and unit variance. Note that this assumes that
all samples for a feature are drawn from one unimodal normal distribution and
thus may fail if this assumption does not hold. For example, with the multilayer
perceptron on SR, though success on the test set increases after z-normalization.

Comparison of Statistical and Neural Classifiers 85

success on phrases decreases; this shows that feature values for phrases obey a
different distribution.

In both appHcations, ^-NN (or Parzen windows) has the highest accuracy. It
is also the most expensive technique in terms of computation and memory. This
however is no longer a serious drawback as the cost of storage and computation is
getting cheaper. LVQ uses less storage by clustering data but has lower accuracy.
RBF requires less storage than LVQ by sharing clusters between classes. A mul-
tilayer perceptron (MLP) generalizes better than a single-layer perceptron (SP),
indicating that discriminants are not linear. Parametric Bayes classifiers that as-
sume independent features do not perform well, indicating that the input features
are highly correlated.

VIII. CONCLUSIONS

The similarity between statistical and neural techniques is greater than gen-
erally agreed. Many of the neural techniques are either identical or bear much
resemblance to previously proposed statistical techniques. For a good discussion
of neural networks from statisticians' point of view and vice versa, see the collec-
tion of articles in [51]. The recent interest in neural networks did much to revive
interest in the old field of statistical pattern recognition [23].

Omohundro [52] discusses how nonparametric kernel estimators can be im-
plemented as neural networks (by representing each sample with a Gaussian cen-
tered at the sample) and also discusses efficient data structures for the purpose.
One example is the probabilistic neural network of Specht [12] which is a neu-
ral network implementation of Parzen windows. This approach is also known as
memory-based as it can be seen as interpolating from a table of stored samples,
and is called lazy in machine-learning literature as there is no learning process but
the computation is deferred up until recognition is done.

Neural networks based on mixture models have also been proposed. Nowlan
[15] considers them as "soft" variants of competitive approaches when used for
vector quantization. Traven [14] proposes to use a mixture of Gaussians and calls
this a "neural network approach" and uses EM to optimize parameters without
saying so.

Statistics can also be used to improve the performance of neural techniques.
Analysis of variances and use of a preprocessing such as z-normalization or prin-
cipal component analysis improve accuracy considerably in practice. The quality
of the training sample is perhaps the most important factor, as with an unrepre-
sentative sample any statistic would be wrong.

Known statistical techniques such as /:-NN also provide a benchmark against
which more complex approaches such as multilayer perceptrons can be compared.
Simple methods such as A:-NN generally perform quite well and much of the func-

86 Ethem Alpaydin and Fikret Giirgen

tionality of neural networks such as parallel distributed processing can be obtained
from such distance-based methods without requiring compUcated computation,
precise weights, and lengthy error-minimization techniques.

We have also reached the conclusion that generally there is not one method
that is significantly superior to all others in all respects of generahzation accu-
racy, learning time, memory requirements, and implementation complexity. The
relative importances of these four factors differ from one application to another
and thus in choosing one method, all of these should be taken into account, and
not only generalization accuracy as has frequently been done in the past.

ACKNOWLEDGMENTS

This work is supported by Grant EEEAG-143 from TUBITAK, the Turkish Scientific and Techni-
cal Research Council and Grant 95HA0108 from Bogazi9i University Research Funds. The OCR data
set has been collected and processed by C. Kaynak using programs made available by NIST. Thanks
to E MasuUi and S. Furui for comments on this chapter.

REFERENCES

[1] E. Alpaydm and F. Giirgen. Comparison of kernel estimators, perceptrons and radial-basis func-
tions for OCR and speech classification. Neural Comput. Appl 3:38^9, 1995.

[2] T. Pavlidis and S. Mori. Special issue on optical character recognition. Proc. IEEE 80(7), 1992.
[3] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice-Hall, Englewood

Cliffs, NJ, 1993.
[4] R. P. Lippmann. Review of neural networks for speech recognition. Neural Comput. 1:1-38,

1989.
[5] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet,

and C. L. Wilson. NIST form-based handprint recognition system. NISTIR 5469, National Insti-
tute of Standards and Technology, Computer Systems Laboratory, Advanced Systems Division,
Gaithersburg, MD, 1994.

[6] D. P. Morgan and L. S. Christopher. Neural Networks and Speech Processing. Kluwer Academic,
Dordrecht/Norwell, MA, 1991.

[7] N. Morgan and H. Bourlard. Continuous speech recognition: An introduction to the hybrid
HMM/connectionist approach. IEEE Signal Process. Mag. 12:25^2, 1995.

[8] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.
[9] G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York,

1992.
[10] J. O. Berger. Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer-Verlag,

Berhn/New York, 1980.
[11] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London,

1986.
[12] D. F. Specht. ProbabiUstic neural networks. Neural Networks 3:109-118, 1990.
[13] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.

SIAMRev. 26:195-239, 1984.

Comparison of Statistical and Neural Classifiers 87

[14] H. G. C. Traven. A neural network approach to statistical pattern classification by 'semipara-
metric' estimation of probability density functions. IEEE Trans. Neural Networks 2:366-377,
1991.

[15] S. J. Nowlan. Soft competitive adaptation: Neural network learning algorithms based on fitting
statistical mixtures. Ph.D. Thesis, School of Computer Science, Carnegie Mellon University,
1991.

[16] R. L. Streit and T. E. Luginbuhl. Maximum likelihood training of probabilistic neural networks.
IEEE Trans. Neural Networks 5:764-783, 1994.

[17] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin/New York,
1988.

[18] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural
Comput. 1:281-294, 1989.

[19] E. Alpaydm. GAL: Networks that grow when they learn and shrink when they forget. Internat.
J. Pattern Recog. Artif. Intell. 8:391^14, 1994.

[20] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Comput. 4:1-58, 1992.

[21] A. R Dempster, N. M., Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. J. Roy. Statist. Soc. B 39:1-38, 1977.

[22] J. Hertz, A. Krogh, and R. Palmer. An Introduction to the Theory of Neural Computation.
Addison-Wesley, Reading, MA, 1991.

[23] B. D. Ripley. Neural networks and related methods for classification. /. Roy. Statist. Soc. B
56:409-456, 1994.

[24] H. A. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid Approach. Kluwer
Academic, Dordrecht/Norwell, MA, 1994.

[25] K. Funahashi. On the approximate realization of continuous mapping by neural networks. Neural
Networks 2:IS3-192, 1989.

[26] K. Homik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-
proximators. Neural Networks 2:359-366, 1989.

[27] D. W Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter. The multi-layer perceptron
as an approximation to a bayes optimal discriminant function. IEEE Trans. Neural Networks
1:296-298, 1990.

[28] T Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE 78:1481-1497,
1990.

[29] E. Alpaydm and M. I. Jordan. Local linear perceptrons for classification. IEEE Trans. Neural
Networks 7:788-792, 1996.

[30] K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recogni-
tion. Neural Networks 1:119-130, 1988.

[31] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Handwritten digit recognition with a back-propagation network. In Advances in Neural Infor-
mation Processing Systems 2 (D. Touretzky, Ed.), pp. 396-404. Morgan Kaufmann, San Mateo,
CA, 1990.

[32] O. Matan, H. S. Baird, J. Bromley, C. J. C. Burges, J. S. Denker, L. D. Jackel, Y. Le Cun,
E. P. D. Pednault, W. D. Satterfield, C. E. Stenard, and T. J. Thompson. Reading handwritten
digits: A zip code recognition system. IEEE Computer 25:59-62, 1992.

[33] G. L. Martin and J. A. Pittman. Recognizing hand-printed letters and digits using backpropa-
gation learning. In Advances in Neural Information Processing Systems 2 (D. Touretzky, Ed.),
pp. 405-^14. Morgan Kaufmann, San Mateo, CA, 1990.

[34] J. Keeler and D. E. Rumelhart. A self-organizing integrated segmentation and recognition neu-
ral net. In Advances in Neural Information Processing Systems 4 (J. E. Moody, S. J. Hanson,
R. P. Lippmann, Eds.), pp. 496-503. Morgan Kaufmann, San Mateo, CA, 1992.

88 Ethem Alpaydtn and Fikret Gurgen

[35] G. L. Martin and M. Rashid. Recognizing overlapping hand-printed characters by centered-
object integrated segmentation and recognition. In Advances in Neural Information Processing
Systems 4 (J. E. Moody, S. J. Hanson, R. R Lippmann, Eds.), pp. 504-511. Morgan Kaufmann,
San Mateo, CA, 1992.

[36] I. Guyon, I. Poujoud, L. Personnaz, G. Dreyfus, J. Denker, and Y. Le Gun. Comparing differ-
ent neural architectures for classifying handwritten digits. In International Joint Conference on
Neural Networks 1989, Vol. 2, pp. 127-132, Washington, DC, 1989.

[37] Y. Lee. Handwritten digit recognition using ^-nearest-neighbor, radial-basis function, and back-
propagation neural networks. Neural Comput. 3:440-449, 1991.

[38] A. W. Senior. Off-line handwriting recognition: A review and experiments. CUED/F-
INFENG/TR 105. Cambridge University Engineering Department, 1992.

[39] E. Alpaydm, S. Aratma, and M. Yagci. Recognition of handwritten digits using neural networks.
ELEKTRiK, Turk J. Elect. Engin. Computer Sci. 2:20-31, 1994.

[40] J. L. Blue, G. T. Candela, R J. Grother, R. Chellappa, and C. L. Wilson. Evaluation of pattern
classifiers for fingerprint and OCR applications. Pattern Recogn. 27:485-501, 1994.

[41] S. N. Srihari. High-performance reading machines. Proc. IEEE 80:1120-1132, 1992.
[42] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Computer recognition of unconstrained

handwritten numerals. Proc. IEEE SOiUei-USO, 1992.
[43] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition using

time-delay neural networks. IEEE Trans. Acoustics, Speech, Signal Process. 37:328-339, 1989.
[44] F. Gurgen, M. §ihmanoglu, and E. Alpaydm. Learning speech dynamics by neural networks with

delay elements. In ICT'96, International Conference on Telecommunications (B. Sankur, Ed.),
pp. 156-161, Bogazi9i University Press, Istanbul, 1996.

[45] S. Furui. Digital Speech Processing, Synthesis and Recognition. Marcel Dekker, New York,
1989.

[46] A. Waibel and J. B. Hampshire II. Neural network applications to speech. In Neural Networks:
Concepts, Applications, and Implementations 1 (P. Antognetti & V. Milutinovic, Eds.), pp. 54-
76. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[47] Y. Lee and R. Lippmann. Practical characteristics of neural network and conventional pattern
classifiers on artificial and speech problems. In Advances in Neural Information Processing Sys-
tems 2 (D. Touretzky, Ed.), pp. 168-177. Morgan Kaufmann, San Mateo, CA, 1990.

[48] K. Ng and R. Lippmann. Practical characteristics of neural network and conventional pattern
classifiers. In Advances in Neural Information Processing Systems 3 (R. Lippmann, J. Moody,
D. Touretzky, Eds.), pp. 970-976. Morgan Kaufmann, San Mateo, CA, 1991.

[49] F. Gurgen, R. Alpaydm, U. Unliiakin, and E. Alpaydm. Distributed and local neural classifiers
for phoneme recognition. Pattern Recogn. Lett. 15:1111-1118, 1994.

[50] C.-H. Lee, F. K. Soong, and K. K. Paliwal. Automatic Speech and Speaker Recognition: Ad-
vanced Topics. Kluwer Academic, Dordrecht/Norwell, MA, 1996.

[51] V. Cherkassky, J. H. Friedman, and H. Wechsler. From Statistics to Neural Networks: Theory and
Pattern Recognition Applications, NATO ASI Series F, Vol. 136. Springer-Verlag, Beriin/New
York, 1994.

[52] S. M. Omohundro. Efficient algorithms with neural network behavior. Complex Syst. 1:273-347,
1987.

Medical Imaging

Ying Sun Reza Nekovei
Department of Electrical and Remote Sensing Laboratory
Computer Engineering University of Rhode Island
University of Rhode Island Bay Campus
Kingston, Rhode Island 02881 Narragansett, Rhode Island 02882

I. INTRODUCTION

The purpose of this chapter is twofold. First, we report the findings of a Ht-
erature search for appHcations of artificial neural networks (ANNs) in medical
imaging. Based on the literature search we review the current status of ANN tech-
niques in the medical imaging area. Second, using an example of detecting blood
vessels in angiograms we show the formulation and performance of a feedfor-
ward back-propagation (BP) network as well as a self-adaptive (SA) network for
image segmentation. The example illustrates the use of both supervised and un-
supervised ANN classifiers for feature extraction at the lower (pixel) level of pro-
cessing medical images. We also compare the ANNs with the more conventional
classifiers in terms of their classification performance.

The chapter is organized into six sections. In Section I, we introduce the vari-
ous modalities of medical imaging used in modem hospitals nowadays. This sec-
tion is intended to review the basic physics of the medical imaging. In Section II,
we review the recent research efforts of ANN applications in medical imaging.
The intention here is to give a general, collective view of the past and ongoing
researches on the relevant topics. In Section III, we state our own research prob-
lem, i.e., the identification of blood vessels in X-ray angiograms. In Section IV,
we present the result of applying a feedforward back-propagation network to the
blood-vessel segmentation problem. With this problem, we demonstrate the use
of ANN for supervised feature extraction and discuss the important issues re-
lated to the network configuration and training parameters. In Section V, using
the same segmentation problem we show the formulation and performance of a
self-adaptive network, which represents an unsupervised ANN approach to this

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 89

90 Ying Sun and Reza Nekovei

problem. In Section VI, we draw conclusions based on our experimental results
and discuss the implications of our study for the general applications of neural
networks in medical imaging.

A. MEDICAL IMAGING

The history of medical imaging began a century ago. The landmark discovery
of X-rays by Wilhelm Conrad Rontgen in 1895 ushered in the development of
noninvasive methods for visualization of internal organs. The birth of the digital
computer in 1946 brought medical imaging into a new era of computer-assisted
imagery. During the second half of the twentieth century the medical imaging
technologies have diversified and advanced at an accelerating rate.

Today, cUnical diagnostics rely heavily on the various medical imaging sys-
tems. In addition to the conventional X-ray radiography, computer-assisted to-
mography (CAT) and magnetic resonance imaging (MRI) produce two-dimen-
sional (2D) cross sections and three-dimensional (3D) imagery of the internal
organs, drastically improving our capabihty to diagnose various diseases. X-ray
angiography used in the cardiac catheterization laboratory allows us to detect
stenoses in the coronary arteries and guide the treatment procedures such as bal-
loon angioplasty and cardiac ablation. Ultrasonography has become a routine pro-
cedure for fetus examination. Two-dimensional echocardiography combined with
color Doppler flow imaging has emerged as a powerful and convenient tool for di-
agnosing heart valve abnormalities and for assessing cardiac functions. In the area
of nuclear medicine, the scintillation gamma camera provides 2D images of phar-
maceuticals labeled by radioactive isotopes. Single photon emission computed
tomography (SPECT) and positron emission tomography (PET) further allow for
3D imaging of radioactive tracers.

Whereas a detailed study of medical imaging is beyond the scope of this chap-
ter, introducing some background knowledge of the routinely used medical imag-
ing systems should help us better understand the nature of the problems under
investigation. We approach this by first studying the different media used in med-
ical imaging. Then, we summarize the physics involved in the various imaging
modalities. For a detailed treatment of this subject the readers are referred to the
book by Webb [1].

B. MEDIA USED FOR MEDICAL IMAGING

1. X-Rays

X-rays are electromagnetic waves generated by the X-ray tube. The wave-
length of the X-rays is between 0.1 and 100 angstroms (A), where lA = 10~^^ m.
The wavelength of X-rays is much shorter than that of visible light, which is be-

Medical Imaging 91

tween 3800 A (violet) and 7600 A (red). The energy of the X-ray photons is
on the order of 0.1 to 100 KeV. Energy, frequency, and wavelength are related
by Einstein's photon formula: E = hv = (hc)/X, where E is photon energy,
V is frequency, X is wavelength, h is the Planck constant (6.626 x 10"̂ "̂ J • s or
4.1375 X 10""̂ ^ eV • s), and c is the speed of light (3 x 10^ m/s). By substituting the
constants into the equation, E (eV) and X (m) are related by £ = 1.24 x 10~^/A.
A shorter wavelength corresponds to a higher photon energy and a higher degree
of penetration through the human tissue.

Figure la shows the arrangement of X-ray source. X-ray detector, and subject
under examination in an X-ray imaging system. The X-ray image is a 2D pro-
jection of the spatial distribution of the X-ray absorption coefficient within the
subject. The parameters in an X-ray imaging system are adjusted such that a suit-
able trade-off between image contrast and X-ray dose is made. To minimize the
X-ray dose given to the patient, the X-ray exposure should be set at a minimal
level but enough to produce a sufficient image contrast for the intended diagnos-
tic purpose. The energy range for diagnostic X-rays is between 10 and 150 KeV.
Within this range the human tissue appears to be semitransparent to the X-rays.
X-rays with energy below this range are mostly absorbed by the tissue and X-rays
with energy beyond this range mostly penetrate through the tissue; neither would
produce an adequate contrast in the X-ray image.

A. X-ray Imaging

x-ray
Source

D

Subject Detector

B. Radionuclide Imaging

Detector

Radionuclide
Tracer

C. Magnetic Resonance Imaging D. Ultrasound Imaging

RF Transmitter

' RF Receiver

Magnetic
field

Ultrasound
Transducer cm

Figure 1 Schematic diagrams depicting four frequently used modalities of medical imaging.

92 Ying Sun and Reza Nekovei

In conventional X-ray radiography, the 3D function of absorption coefficient
is projected onto the 2D image plane. In computer-assisted tomography (CAT),
X-ray projections are acquired around the subject. Then, the 2D cross-sectional
slices of the subject are reconstructed from the projection data. The mathematical
relationship between the projections and the reconstructed slice was first stud-
ied by Johann Radon in 1907 [2]. The modem methods for tomographic recon-
struction include the filtered-backprojection, which is based on the inverse Radon
transform, and the algebraic reconstruction technique, which is an iterative nu-
merical approach.

2. y-Rays

Radioactive isotopes emitting /-rays can be combined with appropriate phar-
maceuticals and used as tracers for radionuclide imaging. Because the radioactive
tracer is injected into the human body, as shown by the sketch in Fig. lb, it is
preferable to have a somewhat higher photon energy allowing for better pene-
tration of the radiations from inside the body. However, photons with too high
an energy can penetrate the components of the imaging system as well, resulting
in a low detection efficiency. The most frequently used radionuclide for medi-
cal imaging is the Technitium in the metastable state (^^Tc'̂) which has a decay
half-life of 6.02 hours and emits y-rays with a photon energy of 140 KeV. At this
energy photons penetrate well through the tissue and can still be effectively de-
tected. Detection of y-rays is typically accomplished by the sodium iodide (Nal)
crystals in the scintillation gamma camera, which produces 2D images of the ra-
dioactive tracer. For single photon emission computed tomography (SPECT), the
gamma camera is mounted on a rotational gantry and used as an area detector.
The acquired data are tomographically reconstructed to produce 2D slices. The
3D imagery can also be rendered from the 2D slices.

The radionuclides used in positron emission tomography (PET) emit positrons
instead of y-rays. A positron has the same rest mass as an electron (9.11 x 10~^^
Kg), but carries a positive charge. A positron does not travel far in the tissue
before it encounters and annihilates with an electron. The annihilation creates
two photons traveling in opposite directions. The energy of each photon can be
computed from the ubiquitous Einstein's equation: E = mc^. By substituting the
mass of the positron and the speed of light into the above equation and applying
the conversion factor of 1 eV = 1.6 x 10""̂ ^ J, the photon energy is determined
to be 511 KeV. Detection of the 511-KeV photons cannot be effectively achieved
by the standard gamma camera because of the high photon energy. It is typically
accomplished with a ring-shaped array of bismuth germanate (BGO) crystals [3]
or two xenon-filled multiwire chambers positioned at the opposite sides of the
subject.

Medical Imaging 93

Positron-emitting radionuclides are proton-rich isotopes prepared by bombard-
ing specimens with accelerated protons in a cyclotron. Gallium 68 is a frequently
used tracer for PET scan, and has a half-life of 68 minutes. The short half-life of
^^Ga requires that the PET system be installed in the vicinity of a cyclotron such
that the radionuclides can be prepared and applied to patients within a sufficiently
short period of time.

3. Magnetic Resonance

The principle of nuclear magnetic resonance was discovered in 1946 and
has been successfully applied to identifying chemical compounds and molecular
structures since then. The development of the commercial systems for magnetic
resonance imaging (MRI) began in the late 1970s. For the past two decades MRI
has rapidly emerged as an important diagnostic tool in many areas of medicine
such as neurology, oncology, and sports medicine.

Although in principle MRI is capable of imaging the distribution of different
types of molecules in the tissue, clinical MRI systems nowadays are designed to
image the distribution of the H2O molecules which constitute over 80% of the
total body weight. The H2O molecules are randomly oriented in the tissue. Under
the influence of a strong magnetic field all the H2O molecules orient themselves
in the direction of the magnetic field and spin at a specific angular frequency. This
angular frequency, called Larmor angular frequency, is directly proportional to the
strength of the magnetic field. The magnetic field strength required for diagnostic
MRI is around 1 Tesla, which is on the order of 10,000 times stronger than the
earth's magnetic field. The corresponding resonance frequency is in the megahertz
range.

The basic concept of MRI can be represented by Fig. Ic, although the ac-
tual MRI system is far more sophisticated. Once the water molecules are aligned
by the magnetic field, additional energy can be introduced by using a radio-
frequency (RF) transmitter. The electromagnetic wave generated by the RF trans-
mitter is polarized and tuned to the resonance frequencies of the molecules.
A short burst of the RF electromagnetic wave (pulse) is sent and pushes the
water molecules off their original axis. As the water molecules return to their
original orientation, energy is released also in the form of an RF signal. The
magnitude of the received RF signal is proportional to the amount of the wa-
ter molecules. The time constant for the molecules to recover their orientation
is the T\ time constant, which can be extracted by use of special pulse se-
quences. The received RF signal shows an exponential decay. The decay time
constant, called the T2 time constant, is related to the dephasing. As the water
molecules gradually recover their orientation, they release the RF energy and spin
out of phase, resulting in signal cancellation at the receiver. The T2 decay is re-

94 Ying Sun and Reza Nekovei

lated to the inhomogeneity of the water molecules in their surrounding environ-
ment.

The spatial information in MRI is encoded by applying a small magnetic field
gradient across the imaging plane. Each point on the imaging plane has a unique
magnetic field strength corresponding to a unique resonance frequency. Thus, the
MR images can be reconstructed from the Fourier transform of the received RF
signals.

4. Ultrasound

Sound wave is transmitted by propagating the vibration from molecules to
molecules. The velocity of sound in tissue is on average 1540 m/s, varying over
a range of ±6% for the different types of tissue. At the interface of two different
types of tissue a portion of the wave energy is reflected back. Medical ultrasonog-
raphy nowadays predominantly exploits the reflected echoes. The appropriate fre-
quency for diagnostic sound wave is in the megahertz range, beyond the human
audible range (20 Hz to 20 KHz).

As shown in Fig. Id, an ultrasound probe is used for both transmitting and
receiving the ultrasound waves. The probe usually consists of an array of piezo-
electric transducers. The beam-forming technique can be used to steel the ultra-
sound wave and scan the beam over a fan-shaped sector. This is accomplished by
transmitting and receiving phase-shifted signals across the array. For each angle a
burst of ultrasound is transmitted. Then, its echoes are recorded over a time period
and converted to image intensity along the scan line.

Two-dimensional echocardiography provides dynamic imaging of the cardio-
vascular system. The velocity of blood flow contributes to a frequency shift in the
returned echoes, i.e., the well-known Doppler effect. The frequency shift can be
used to estimate the velocity of blood flow in the direction of the incident wave.
The Doppler flow information is often coded with pseudocolors and overlapped
with the 2D echocardiogram shown in grayscale.

5. Other Media

Visible fight and infrared light have been used for medical imaging. However,
their applications are fimited because of the low degree of penetration through
the tissue. For electrical impedance tomography low-level electrical currents can
be injected into the body via multiple electrodes to measure the distribution of
impedance. The formidable problem in electrical impedance tomography is re-
lated to the fact that the electrical current follows the least-resistance path, not
necessarily a straight line.

Medical Imaging 95

11. REVIEW OF ARTIFICIAL NEURAL NETWORK
APPLICATIONS IN MEDICAL IMAGING

A. MODEL FOR MEDICAL IMAGE PROCESSING

Detecting/classifying patterns is one area where ANNs have made significant
contributions. For medical diagnostics, detecting abnormalities and associating
them with the possible causes are the two fundamental tasks. From this point
of view, the diagnostic problems in medicine lend themselves to neural network
computing. Medical diagnostics rely mainly on:

1. input data—^patient history, symptoms, and test results;
2. knowledge—cumulative experiences in medical diagnostics; and
3. analysis—medical expert's interpretation of data based on his/her

knowledge.

To apply an ANN to a medical diagnostic problem, the relevant diagnostic knowl-
edge can be used in training. The trained ANN takes the patient's data as input
and generates diagnostic output, which can be compared to the medical expert's
diagnostics for the purpose of verification.

The interpretation of diagnostic medical images, however, is usually quite so-
phisticated and involves multiple levels of processing. To provide a common plat-
form for studying the various problems of medical-imaging-based diagnostics,
we employ a three-level model as shown in Fig. 2. At the lowest level, images are
formed. Some imaging modalities, such as the conventional X-rays, do not require

Features

Images

Higher-level Processing
Classification, Labeling,

Outcome Prediction

Diagnostics

Lower-level Processing
Enhancement, Feature

Extraction, Segmentation

Image
Formation

Figure 2 Model for diagnostic system using medical images.

96 Ying Sun and Reza Nekovei

any computation, whereas others, such as CAT scan, require extensive computa-
tion for reconstructing images from projections. Image processing is separated
into two levels: the lower-level processing and the higher-level processing. The
lower-level processing takes image pixels as input and performs tasks such as im-
age enhancement, feature extraction, and image segmentation. The higher-level
processing takes the output from the lower-level processing as input and gener-
ates output related to medical diagnostics. Tasks accomplished in the higher-level
processing include classification of features, detection of specific lesions, and di-
agnosis for various abnormalities.

B. REVIEW OF RECENT LITERATURE

Based on the three-level model discussed previously we now review the recent
research works involving neural network applications in medical imaging. Ob-
viously, not every research in this area can be properly pigeonholed into one of
the three levels in our model, i.e., image formation, lower-level processing, and
higher-level processing. Nevertheless, we will attempt to categorize these works
so that the review can be conducted in a more coherent manner and with a fo-
cus on the neural network system techniques. The scope of the Uterature search
is limited to published journal articles in the past five years, between 1992 and
1996. The search is by no means exhaustive but should reflect the current state
of ANN applications in the medical imaging area. The review is focused on the
problems intended and the techniques applied. We do not include the results
from the individual studies because a simplified presentation of the data with-
out detailed discussion may sometimes be misleading. The interested readers are
referred to the original articles. For related research works prior to 1992 the read-
ers are referred to the paper by Miller et al [4] who conducted a comprehen-
sive review of ANN applications in medical imaging as well as medical signal
processing.

1. Image Formation

In the SPECT system, the tomograms are reconstructed from the planar data
which are acquired by use of a gamma camera rotating around the subject. Kerr
and Bartlett [5] showed that this tomographic reconstruction problem can be
solved by using a standard back-propagation (BP) ANN trained on either a set
of simulated images or a series of rudimentary geometric SPECT scans; the per-
formance can be further improved by employing a statistically tailored BP ANN.
Munley et al. [6] used a supervised ANN to perform the SPECT reconstruc-
tion and to simultaneously compensate for coUimator, attenuation, and scatter
effects.

Medical Imaging 97

For MRI, the design of the various pulse sequences and the processing of MR
signals remain important research areas. Cagnoni et al [7] trained an ANN to
synthesize a spin echo multiecho sequence for each slice of a multislice sequence
for improved signal-to-noise ratio. Yan and Mao [8] used a BP ANN to reduce the
artifact caused by the truncation of high-frequency MR signals; their method was
improved upon by Hui and Smith [9].

For electrical impedance tomography, Adler and Guardo [10] showed that the
reconstruction can be conducted on a finite element model using an ANN trained
by the Widrow-Hoff learning rule.

2. Lower-Level Processing

The MRI is particularly capable of differentiating soft tissues such as gray mat-
ter, white matter, and cerebrospinal fluid in the brain. Computer algorithms for au-
tomated segmentation and labeling of MRI brain scans are useful for quantifying
tissue volumes. Raff et al [11] employed an ANN to determine the appropriate
threshold between the gray matter and the white matter; the BP ANN was trained
by the bimodal histogram of the remaining image with the cerebrospinal-fluid
regions removed. Li et al [12] developed an automated system for segmenta-
tion and labeling of the MRI brain scan based on two Boolean neural networks
which have binary inputs, binary outputs, and integer weights. Ozkan et al [13]
approached this segmentation problem by applying a supervised ANN to multi-
modal images including Ti-weighted, 72-weighted, and proton-density-weighted
MRI brain scans and CT scans. Unsupervised ANNs were also employed: Cheng
et al [14] and Lin et al [15] approached the problem of medical image seg-
mentation by using a Hopfield neural network with a winner-takes-all learning
mechanism.

Three-dimensional imagery of internal anatomical structures can be generated
from 2D MRI or CT scans by a 3D rendering algorithm. Coppini et al [16] devel-
oped an ANN-based system for automated segmentation and recognition of 3D
structures from a set of 2D slices; they employed two supervised ANNs trained
by back-propagation.

Radionuclide imaging with a gamma camera has Hmited accuracy in quanti-
tative applications due to the scatter effect and the loss of photons that penetrate
through the detector. Qian et al [17] studied the restoration of gamma-camera
images by combining an order statistic filter and an unsupervised Hopfield neural
network.

In the area of chest radiography Lo et al [18] applied a 2D convolution BP
ANN to lung nodule detection.

In the area of X-ray angiography Nekovei and Sun [19] applied a BP ANN to
segmentation of vascular structures in coronary arteriograms and systematically
studied the effects of various ANN parameters on training and generalization.

98 Ying Sun and Reza Nekovei

3. Higher-Level Processing

Cerebral perfusion has been routinely studied with brain SPECT scans by using
appropriate radiopharmaceuticals, such as ^^Tc'^-HMPAO, that can pass through
the blood-brain barrier. Chan et al [20] trained a BP ANN to discriminate normal
from abnormal perfusion patterns with inputs from 120 standard cortical regions.
DeFigueiredo et al. [21] used a supervised ANN to discriminate elderly normal,
Alzheimer disease, and vascular dementia subjects based on intensities averaged
over various regions defined by suitable masks. Page et al [22] used the theoreti-
cal profiling technique to extract cortical perfusion patterns which were then input
to an ANN for diagnosing Alzheimer disease.

Myocardial perfusion has been routinely studied with cardiac SPECT scans by
using appropriate radiopharmaceuticals such as ^^^Tl-chloride. Fujita et al. [23]
employed a BP ANN to diagnose coronary artery disease with 256 inputs rep-
resenting the perfusion patterns in SPECT. Hamilton et al. [24] trained an ANN
to predict lesion presence without the need to compare the SPECT data with a
normal data base.

Ventilation-perfusion lung scans are simultaneous radionucUde images of
lung ventilation distribution and pulmonary blood perfusion. Scott et al. [25]
trained an ANN to diagnose pulmonary embolism with 28 inputs representing the
ventilation-perfusion findings; training was based on 100 consecutive ventilation-
perfusion scans with angiographic correlation. Tourassi et al. [26] employed
a supervised ANN to predict pulmonary embolism by using both ventilation-
perfusion scans £ind chest radiographs as inputs. Fisher et al. [27] found that brief
training (50-100 iterations) was suitable for an ANN that predicted pulmonary
embolism from ventilation-perfusion features; further training diminished net-
work performance.

MRI scans have also been studied by employing ANNs for higher-level pro-
cessing. Kischell et al. [28] extracted a comprehensive feature vector from MRI
brain scans which was used as input to an ANN for classifying brain compart-
ments and head injury lesions; they studied two ANNs involving supervised
training (back-propagation and counter-propagation) as well as two unsupervised
ANNs (Kohonen learning vector quantifier and analog adaptive resonance the-
ory). Azhari et al. [29] studied myocardial motions by using tagged MRI in dogs;
a supervised ANN was used to map acute ischemic regions with features obtained
from 24 cuboids from the 3D MRI images of the left ventricle.

In the area of coronary angiography Suzuki et al. [30] employed a BP ANN
to estimate the percent diameter stenosis with inputs from a vessel tracking algo-
rithm.

In the area of X-ray mammography Zheng et al [31] detected microcalcifica-
tions by employing an ANN trained by back-propagation with Kalman filtering;
inputs to their neural network were spatial and spectral features extracted with a
preprocessing stage. Sahiner et al [32] used a convolution ANN classifier to clas-

Medical Imaging 99

sify regions of interest on mammograms as either mass or normal tissue. Baker
et al. [33] used standardized mammographic descriptors and patient histories as
inputs to an ANN for predicting the outcome of breast biopsy.

Ultrasonography has also been used to diagnose breast tumors. Goldberg et al.
[34] used an ANN to improve the specificity of detecting malignant breast lesions
based on selected texture features from the ultrasonograms.

III. SEGMENTATION OF ARTERIOGRAIVIS

A. BACKGROUND

An angiogram is a time sequence of X-ray images of blood vessels or car-
diac chambers infused with an X-ray contrast agent. Angiography is used during
cardiac catheterization for various diagnostic purposes [35] and for guiding treat-
ment procedures such as coronary angioplasty [36]. An angiogram of the arteries
is termed an arteriogram. The arteriogram can be used to study the artery's lumen
geometry, dimensions, and blood flow; however, extracting such information is
not a trivial task because of the following problems. First, the signal-to-noise ra-
tio of the arteriogram is generally low due to the need for minimizing the X-ray
dose and the dosage of the X-ray contrast agent given to the patient. Second, the
complex imaging chain of the angiographic system contributes to the presence
of various types of noise in the images [37]. Third, segmentation of the vascular
structures is complicated by the overlapping of vessel branches and the interfer-
ence from irrelevant anatomical structures. Fourth, analysis of the arteriogram is
further complicated by the dynamics from motions of the heart, blood flows, and
infusion of the X-ray contrast agent.

Segmentation of arteriograms can be accomplished by use of a vessel tracking
algorithm such as the recursive tracking algorithm that we developed previously
[38, 39]. This algorithm begins with a user-defined root node, tracks one vessel
segment at a time, and identifies the entire vascular tree structures in a recursive
fashion. Figure 3 shows two examples of coronary arteriograms and the results
of the vessel tracking algorithm. The tracking approach produces a segment-by-
segment description of the vascular network which is useful for applications such
as 3D reconstruction of coronary arteries from biplane angiograms [40]. However,
the tracking approach may not be suitable for some other applications because
of the following drawbacks. User intervention such as specifying the root node,
although minimal, is nonetheless required. The tracking approach is based on
sequential search that does not take advantage of distributive parallel processing.

The tracking algorithm is also susceptible to noise and background variations.
For example, in Fig. 3 the segmentation of the bottom image is better than that
of the top image. The top image is a digitized cineangiogram (DCA) originally

100 Ying Sun and Reza Nekovei

a. Digitized cineangiogram of left coronary artery and tracking result

b. Digital substration angiogram of right coronary artery and tracking result

Figure 3 Two arteriograms and segmentations by vessel tracking.

recorded on 35-mm film, whereas the bottom image is a digital subtraction an-
giogram (DSA) with improved signal-to-noise ratio. DSA [41] is obtained by
digitally subtracting two frames: one during and one before the injection of the
X-ray contrast agent. The two frames correspond to the same point of the cardiac
cycle by synchronization with respect to the R wave of the electrocardiogram. In
addition to DCA and DSA, a third type of angiograms used in this study is the
direct video angiogram (DVA). The DVA is digitized on-line via a video camera
focused on the X-ray image intensifier. In our study, the DCA contains the high-
est level of noise due to the involvement of the complex imaging chain. The DSA
has the highest signal-to-noise ratio (SNR) but may contain subtraction artifacts
caused by miss-registration between the two frames during subtraction. The DVA
has an intermediate image quality, between those of DCA and DSA.

Medical Imaging 101

In another previous research [42], we studied the problem of arteriogram seg-
mentation by an approach based on the pixel grayscale. We developed an itera-
tive ternary classification (ITC) algorithm which used two grayscale thresholds to
classify each pixel to one of three classes, i.e., artery, background, and undecided.
By iterating on the undecided class the two thresholds are brought closer together
and the output converges to a two-class segmentation. The result from the ITC
algorithm will be compared with the ANN result as demonstrated later.

B. PROBLEM STATEMENT

In this study, the problem we attempt to solve is the segmentation of arte-
riograms. The arteriogram is to be segmented into two classes, i.e., vessel and
background, with the ANN approach. The ANN-based segmentation is conducted
at the lower-level processing. Image pixel values are used as direct input to the
ANN. Because we are particularly interested in ANN's capability of extracting
features from the raw image data, we do not consider the possibiUty of using a
separate non-ANN stage for preprocessing. However, a postprocessing stage may
be employed if necessary.

The purpose of this study is twofold: (1) to develop practical ANN-based clas-
sifiers for the segmentation of arteriograms, and (2) using the arteriogram seg-
mentation problem as an example, to study the neural network system techniques
in terms of network topology, training parameters, generalization capability, su-
pervised versus unsupervised trade-off, and mechanisms for self-organization. In
the following two sections, we discuss two ANN classifiers. In Section IV, we
review a BP ANN classifier developed in a previous study [19]. In Section V, we
derive and evaluate an unsupervised ANN classifier that employs a self-adaptive
mechanism for grayscale thresholding on a pixel-by-pixel basis.

IV. BACK-PROPAGATION ARTIFICIAL NEURAL
NETWORK FOR ARTERIOGRAM
SEGMENTATION: A SUPERVISED APPROACH

A. OVERVIEW OF THE FEEDFORWARD
BACK-PROPAGATION NEURAL NETWORK

Multilayer perceptron with back-propagation learning [43] is perhaps the most
common paradigm for supervised neural network computing to date. This has
been observed in the medical imaging area (see Section II) as well as many other
pattern recognition areas. In a multilayer feedforward network the neurons are

102 Ying Sun and Reza Nekovei

i'l

k^ neuron on /* layer

kF(y) i

1
490

0

^p'(y)

• 11 i,l . • V
0 e 0 e

Figure 4 Neuron model with sigmoid activation function.

fully connected in the sense that a neuron on a layer other than the input layer
receives signals from all neurons on the previous layer, but from no other. Figure 4
shows the standard neuron model, representing the A:th neuron on the /th layer of
a feedforward network. The summation operator produces the linear combination
of the weighted outputs from all neurons on the previous (/ — l)th layer:

y'k
all;

jk^j (1)

where WĴ is the weight associated with the Unk that connects the yth neuron on
the (/ — l)th layer to the fcth neuron on the /th layer. The nonlinearity associated
with each neuron is an important element, without which the multilayer structure
would collapse down to a single-layer linear perceptron [44]. In order to propagate
the learning information backward and through the nonlinearity, the nonlinear
function needs to be differentiable. The sigmoidal function has frequently been
used for this purpose. The output from the nonlinearity is given by

X ^ ny) =
1

1 + ^(-j+^)/^o •
(2)

J^iy) is between 0 and 1; 0 is the activation point where T(0) = (1/2). The
nonlinearity parameter ^o controls the slope of the transition. A lower ^o results
in a steeper transition. The sigmoidal function approaches to the hard-limiter as

Medical Imaging 103

OQ approaches to zero. This function has an advantage that its derivative can be
easily computed:

The sigmoid function and its derivative are shown in Fig. 4.
The back-propagation learning employs a gradient descent method to train the

network weights such that the mean squared error between the actual network
output vectors and the desired output vectors is minimized. The back-propagation
learning algorithm, often referred to as the generalized delta rule, was elegantly
derived by Rumelhart et al [43]. The amount of weight adjustment at each itera-
tion is proportional to the input and the associated 5 which can be computed in a
back-propagation fashion. Let p be the iteration number. At the p\h iteration the
weight adjustment is according to

^W)j,{p + 1) ^ W)j,{p + 1) - W)j^{p) = p . 4(/7) . xy^ + ct. AWJ^(/7), (4)

where p is an empirical parameter controlling the rate of learning. The second
term on the right-hand side is the momentum term which improves stability and
accuracy by slowing the learning process near convergence. The 5 function is
updated for each neuron at each iteration according to

^i _ \ ^'{y'kWk - 4) ' for output layer,
^ ' (y i) E „ e ^ ^ L ^ ^ otherwise,

where dk is the labeled output for the A:th neuron on the output layer. Because the
5 s on the /th layer can be determined only when the 5 s on the (/ + l)th layer are
known, the learning must be carried out in the backward direction, i.e., from the
output layer toward the input layer.

The weights are typically initialized to small random values before the back-
propagation learning commences. For a training set consisting of Â pairs of input
and labeled output and for an output layer containing M neurons, we define the
system error {E) as

^ M N

k=l n=l

The training process iterates on computing the 8s and updating the weights. The
process terminates upon the satisfaction of a stopping criterion, e.g., when the
system error is below an acceptable threshold or when the number of iterations
exceeds a predetermined threshold.

104 Ying Sun and Reza Nekovei

B. BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK
CLASSIFIER FOR ARTERIOGRAM SEGMENTATION

We developed a classifier based on the standard feedforward back-propagation
ANN to segment the arteriograms. The structure of this supervised classifier is
shown in Fig. 5. The neural network takes image grayscale values as direct in-
puts. The grayscale values are taken from a window centered about the pixel to be
classified. The output layer contains two neurons—one represents vessel and the
other represents background—and whichever outputs the larger value prevails.
The feedforward network classifies one pixel at a time. Segmentation of the vas-
cular structures is accomplished by scanning the window over the entire image.

In contrast to the elegant derivation of the back-propagation learning, the the-
ories for configuring the neural networks and selecting training parameters are
relatively weak. We therefore conducted a systematic study on the various config-
urations and training parameters for this problem. We attempted to answer ques-
tions such as:

• Given a fixed complexity in terms of the total number of weights in the
network, what is the most suitable network topology for our segmentation
problem? What is the optimal number of hidden layers? How should the
neurons be distributed among the input and hidden layers? Do the deep,
shallow, and bottleneck network topologies [45] perform differently?

• How should the training set be defined? How many test samples should be
included? Should the test samples be hand-picked or randomly selected?

• Does the initial random weight pattern affect the result of learning?

Figure 5 Back-propagation ANN classifier for arteriogram segmentation.

Medical Imaging 105

• What values should be used for the learning rate (P) and the momentum
rate (a)l

• How many iterations of the learning process should be allowed to run?
Does overlearning have a negative effect on generalization?

The study addressing these questions has recently been published [19] and is not
repeated here. The interested readers are referred to the original publication for
the details. In the following we summarize the important findings from that study
which are relevant to the present discussion.

We implemented the BP ANN classifiers in the C language for the VAX
11/780 or compatible machines (Digital Equipment Corporation, Maynard, Mas-
sachusetts). The training for each network took between 2 and 10 CPU hours,
depending on the number of iterations required to reach the specified system er-
ror. A systematic study was conducted on the various combinations of network
configurations and parameters. The combined computational time for the entire
study was on the order of 5000 CPU hours using several networked VAX sys-
tems. A topology that yielded the optimal performance was identified, as shown
in Fig. 6. This feedforward network consisted of 121 neurons on the input layer to
receive grayscale values from an 11 x 11 window, 17 neurons in the hidden layer,
and 2 neurons on the output layer. The total number of weights for the neural net-
work was 2091 (121 X 17 + 17 X 2). This classifier is referred to as "121-17-2"
in the following discussion.

The selection of the training samples had a significant effect on the perfor-
mance of the classifier. Random selection of samples over the entire image re-
sulted in a training set containing many more background pixels than vessel pix-
els. A training set consisting of carefully chosen pixels at various parts of the
background, edges, and centers of the vessels gave the best performance. The
coronary arteriogram shown in Fig. 6 was used to provide the training data. This
image contained 256 x 256 pixels with 8-bit grayscale. The arteriogram was seg-
mented by a human operator to produce a target image. The 75 samples marked
by crosses in the arteriogram defined the training set for this study. The BP ANN
classifier was repetitively training over these 75 samples until either the system
error was less than 0.15 or the total number of iterations reached 3500.

The 121-17-2 classifier was considered converged after 764 iterations during
training; it correctly classified 65 samples, i.e., 87% of the 75 training samples
corresponding to a system error of 0.13. It generalized quite well. For the re-
maining 60,441 pixels of the test angiogram—excluding the 75 training samples
and the 5-pixel-wide borders that cannot be reached by the center of the 11 x 11
window—the classification accuracy was 92%. The generalization performance
was even better than the training performance because the training set was chosen
to represent iht problematic cases. The 121-17-2 classifier also generalized well
for other arteriograms including the DC A, DVA, and DSA types. These results

106 Ying Sun and Reza Nekovei

Digitized Cineangiogram and
75 Selected Training Samples

Targei image GDiainea oy
Manual Segmentation

osfe:

2 § § i ? ^

^

I Vessel
Background

tO^^

''O^^s,.

' ^ î̂ ^
Weight Patterns

1 2 3

17 16 15 14 13 12 11 10

Figure 6 Training data and weight patterns for 121-17-2 back-propagation classifier.

Medical Imaging 107

will be presented and compared with the results from an unsupervised classifier
in the next section.

To gain an insight into the classification mechanisms of the 121-17-2 classi-
fier, in Fig. 6 the weight patterns between input and hidden layer are displayed
as image templates, and the weight patterns between hidden and output layer are
plotted in a bar graph. The ANN classifier first acts as a matched filter—the 17
weight templates are convolved over the image to search for specific vessel pat-
terns. Templates 1-6 and templates 12-17 show well-structured patterns and there
seems to be a complement relationship between the two sets of templates. Notice
that, because the vessels may appear in any orientation, these patterns are more
or less radially symmetric. The 17 hidden neurons are activated when the corre-
sponding patterns are sufficiently matched. The weights connecting to the vessel
output neuron vary systematically from positive to negative, indicating some form
of spatial differentiation. As expected, the weights connecting to the background
output neuron show exactly the complement of those connecting to the vessel neu-
ron. Thus, we conclude that the trained BP ANN classifier behaves as a matched
filter followed by a nonlinear decision tree.

V. SELF-ADAPTIVE ARTIFICIAL NEURAL NETWORK
FOR ARTERIOGRAM SEGMENTATION:
AN UNSUPERVISED APPROACH

A. ADAPTIVE SYSTEMS AND GRADIENT
SEARCH METHOD

An adaptive system is a system capable of altering its internal structure to
improve its performance by means of an iterative learning algorithm. It is typically
a nonlinear system which produces the desirable output by manipulating the input
signals through a set of adjustable variables (weights). The weight adjustment is
accomplished through an optimization procedure based on a certain performance
criterion.

The adaptive system approach is attractive for classification tasks due to its
self-organizing, generalizable, and fault-tolerant characteristics. However, the
adaptive system is generally difficult to analyze and to control because of its com-
plex implicit mechanisms for decision making. The nonlinear elements in the sys-
tem also make it difficult to back-track the cause when an erroneous decision is
made by the system.

The adaptive systems can be classified in terms of open-loop adaptation and
closed-loop adaptation [46]. The open-loop adaptive system adjusts its weights
solely based on its input, whereas the closed-loop adaptation is based on both in-

108 Ying Sun and Reza Nekovei

put and feedback from the output. The closed-loop adaptive system has proven to
be by far the more powerful model, especially for nonhnear, time-varying, and/or
nonstationary processes.

During adaptation the weights are adjusted in such a way that the output is
brought closer to the desired response. In contrast to the supervised neural net-
work, the adaptive system does not rely on user-defined training data. The desired
response is guided by an internal mechanism designed to solve the specific classi-
fication problem. The adaptation process is accomplished by means of minimiz-
ing an error signal (§), which is usually based on a distance measure between the
desired response and the actual response. For a given set of input, the error sig-
nal forms a performance surface in the multivariate space defined by the weights.
An adaptation algorithm (or learning algorithm) adjusts the weights to move the
operating point down the performance surface until the minimum is reached. For
most practical applications it is impossible to derive an analytical expression of
the performance surface, nor is it possible to conduct an exhaustive search for the
global minimum over the multivariate space due to the large number of weights
in the system. The adaptation algorithm must be designed to find an optimal or
near-optimal solution via a step-by-step search based solely on the local behavior
of the performance surface.

The estimate of the local gradient can be used to guide the search toward the
minimum on the performance surface. A widely used gradient search method is
the steepest descent method since it has fewer restrictions on data and system
characteristics than other adaptation algorithms. Steepest descent search is an it-
erative method in which all the system weights are modified in the direction of
the negative gradient. The search begins with an initial weight vector, usually ar-
bitrarily selected. At the A:th iteration the new weight vector is determined from
the present weight vector Wjt and the gradient Vjt according to

W;t+i=Wit + ^ (-V^) , (7)

where fi is the learning rate that controls the stability and the rate of convergence.
The gradient defined by

(8)
W=Wit

needs to be estimated at each step of the iteration. The search terminates when
the gradient is a null vector, or WA;+I = Wjt, indicating a minimum on the per-
formance surface is reached.

For a linear system the performance surface based on the mean squared er-
ror is shaped like a bowl (a hyperparaboloid for more than two weights) and has
only a single minimum. Therefore, it is guaranteed to converge to the optimal
solution. Although the linear adaptive classifier has proven to be a statistically
optimal classifier [47-49], it is only applicable to the Unearly separable problems

Medical Imaging 109

such as detecting a signal in the presence of white Gaussian noise. For more com-
phcated problems, such as arteriogram segmentation with the presence of back-
ground variation and other types of noise, it is necessary to consider a nonlinear
adaptive classifier.

For a nonlinear system, however, the performance surface may embody a com-
bination of steep and flat regions [50]. Hence, it is possible that the search is
guided to a local minimum and terminates prematurely before the global min-
imum is reached. The search may also become unstable at a steep part of the
surface especially when the learning rate (^) is not sufficiently small. These prob-
lems arise as the consequence of forcing the search always in the downhill di-
rection on an ill-conditioned performance surface. Fortunately, it has been shown
that in a variety of practical applications the system is quasi-linear [43]. The per-
formance surface for a quasi-linear system is differentiable and nondecreasing in
all directions away from the global minimum. Thus, if the system is quasi-Unear,
the performance surface does not contain local minima to trap a gradient-based
search.

B. DERIVATION OF THE SELF-ADAPTIVE CLASSIFIER

1. Architecture

An intuitive approach to the arteriogram segmentation problem is to apply a
grayscale threshold on the arteriogram—assume that the pixel values of the vessel
are generally higher than the pixel values of the background over the entire im-
age. If the histogram of the arteriogram is bimodal showing a peak for vessel and
a peak for background, the appropriate value for the threshold can be either man-
ually selected or statistically determined [51]. The single-threshold approach may
work for a digital subtraction angiogram with the background properly removed.
Unfortunately, the histogram of an unprocessed arteriogram is almost never bi-
modal. Due to the large background variation, segmentation based on a single
threshold usually performs poorly. To improve the segmentation a variable thresh-
old can be used. The idea of variable thresholding is demonstrated with the inten-
sity profile of a scan line across an arteriogram as shown in Fig. 7. Notice that the
background intensity is significantly increased on the right side. The threshold is
adapted for each pixel based on statistics extracted from the neighborhood of the
pixel.

In the following, we derive a self-adaptive (SA) classifier for arteriogram seg-
mentation. The SA classifier employs a variable threshold in conjunction with an
adaptation algorithm to segment an arteriogram into the vessel class and the back-
ground class. The classification is achieved through an iterative process in which
the expected input is estimated from the system output and compared to the actual

110

Signal
Local Threshold
Global Threshold

Ying Sun and Reza Nekovei

Figure 7 Graphic illustration of fixed versus variable thresholding for intensity profile of scan line
across arteriogram. Arrows indicate locations of vessels.

input. The comparison produces an error signal which controls the thresholding
parameters.

The variable threshold (local threshold) for each pixel (/, j) in the image is
determined according to

Tij =fiij-\-Wijaij. (9)

Wij is the weight that controls the threshold for pixel (/, j). iitj is the mean in a
neighborhood of CL>O X COO pixels centered about (/, j):

(coo-l)/2

^^^ = i E
((oo-l)/2

(10)
^0 m=(l-coo)/2 n=(l-coo)/2

where x is the pixel grayscale value, atj is a measure of scatter about the mean
(standard deviation) in the neighborhood:

1

co'-l

(a)o-l)/2 icoo-l)/2

m=(l-(oo)/2 n=il-o)o)/2

1/2

(11)

Once the local thresholds are computed, the entire image is segmented to create a
binary image:

ytj =
0, if Xij < Tij, Xij e background,
1, if Xij > Tij, Xij e vessel. (12)

In selecting the window size <wo, there exists a trade-off between rejecting noise
and retaining threshold locality. As the window size increases, local thresholding
acts more like global thresholding. As the window size decreases, statistics esti-
mated from the neighborhood become less reliable. Although local thresholding

Medical Imaging 111

favors a small window size in general, the low signal-to-noise ratio in the arteri-
ogram requires a sufficiently large window size to provide reliable statistics for
estimating the local threshold. To circumvent the difficulty of the window-size
trade-off, we use a one-layer self-adaptive network to control the weight (Wij)
applied to the standard deviation for each pixel. The SA classifier performs vari-
able thresholding for each pixel with a threshold computed from the estimates of
the neighborhood's mean plus the weighted standard deviation.

In most adaptive systems the error signal is the difference between the desired
output and the actual output. In our case, however, we do not have the desired
output because the information about the vessel location is not available a priori
in the unsupervised situation. Thus, instead of comparing the outputs, we com-
pare the inputs. The adaptive system presented here obtains its error signal from
the distance between the actual input Xfj and the estimated input xtj. Figure 8
demonstrates the overall architecture for the SA classifier.

Another important feature of the present system is that, instead of using Eq.
(12) to perform thresholding, the hard-limiter can be replaced by a soft-limiter.
When the soft-Hmiter is used, the system output (yf.) comes from the sigmoid
function:

yij = ^{^ij-f^ij-^ij^ij)^ (13)

Iterative /Adaptation

^ v _ Xij-Mij-WijOij f;g^;] Yij

Figure 8 Architecture for self-adaptive classifier.

112 Ying Sun and Reza Nekovei

where the sigmoid function J^ is defined by Eq. (2). The sigmoid function is
continuous and varies monotonically from 0 to 1. The output yf- is not exactly
binary; it can be considered as the probabiHty that pixel (/, j) belongs to the vessel
class. The derivative of the sigmoid function exists, as defined by Eq. (3), allowing
us to carry the adaptation process through the nonlinearity as discussed in the
following.

2. Estimation of the Error Signal

At the A:th iteration the error signal (^^) is defined as the distance between the
actual input (xtj) and an estimated input (x^) from the present output within an
(o X (o window:

uk II ^ k II

where a is a normahzing constant; the notation ^ ^ denotes the summation over
the 0) X CO pixels centered about pixel (/, j). Notice that this window size co is
not necessarily the same as the window size COQ which was used in the previous
section for obtaining the means and standard deviations from the input image. To
simplify the derivation of the algorithm, we choose the error measure (s^) as the
sum of squared errors:

CO

The estimate of the input signal is based on the mean value of each class (vessel
or background) in the moving window. At each iteration, the estimated input for
a vessel (background) pixel is set to the mean value of all detected vessel (back-
ground) pixels within the co x co window.

First, let us assume that the system's nonlinearity function is the hard-limiter.
In this case, the system output is a binary image consisting of ones and zeros. The
input estimate is given by

xfj=(i'yfj+iiHi-yfj), (16)

where fi^ and jl^ are the means for the vessel class and the background class,
respectively. That is.

(17)

Medical Imaging 113

The mean of each class can be estimated by

/̂

M

Eco^' mnymn (18)

(19)

Our adaptation algorithm described in the next section requires differentiability
along the signal path. The adaptation process would be blocked by the hard-
limiter because its derivative does not exit. Substituting the hard-limiter by the
soft-limiter for the above input estimator will introduce some error. This error,
however, should be negligibly small, especially for a soft-limiter that has a low
^0 corresponding to an abrupt transition between 0 and 1. Notice that as Go ap-
proaches to zero, the soft-limiter approaches to the hard-limiter. The error also
diminishes as the output pixel values converge to either 0 or 1.

By substituting Eqs. (18) and (19) into Eq. (16), the input estimate is given by

E k
co^mnymn k

T y^ '^ +
rCl-yL)

L EJi ymn)
(1 • yfj)] (20)

3. Adaptation Algorithm

The adaptation algorithm developed in this section is analogous to the steepest
descent method in the sense that the operating point descends on the performance
surface toward the minimum. The weights are initialized to small random val-
ues. At the ^th iteration the weights are adjusted in the direction opposed to the
gradient of the error signal e:

w:
^+1 wt^-fi

ds''
dWu

(21)
w^,

where P is the adaptation coefficient or learning rate that regulates the speed and
stability of the system. The partial derivative ds^/d Wtj can be evaluated using the
chain-rule:

\dxU\dWijJ'

Substituting Eq. (15) into the first term on the right-hand side, we have

dx^. =« E (^\^mn ^mn^

{m,n)ea)
ox.j

(22)

(23)

114 Ying Sun and Reza Nekovei

The only nonzero term in the summation is at (m, n) = (/, y), thus

(24)

To solve for the second term on the right-hand side of Eq. (22), we apply the
chain-rule again:

94 _/^4v%\ (25)

The second term on the right-hand side can be determined based on the fact that
yfj = J^ixij — ixij — Wf-Oij), where ^ (0 is the sigmoidal function with its deriva-
tive defined by Eq. (3). We have

dWi eo
dixij - fiij - Wj^atj)

dWi

= -^^50-4K- (26)

Substituting xfj given by Eq. (16) into the first term of Eq. (25), we obtain

dxfj 9[/ i*y*+M*(l-4)]

= [|.̂ ..̂].[|a-4)-/^^]
we define

(27)

(28)

(29)

(30)

and

"'~ dyfj

9/i* Xij Y,Jl - y*„) - Y.0,Xmnil - J L)

Cc.a-yL)]'
(31)

Medical Imaging 115

Therefore,

!4 v^j'f,.+A*-v*(l-3'f,•)-/i*• (32)

Finally, by combining Eqs. (24), (26), and (32), the weight update Eq. (21) can be
solved according to

W.^+l (i,j)e(o = Kmco-^[-H^ij-^u)] ̂M'-yijh ijrij

= Kneco - P^iji^ij - 4) 4 (1 - yfj)

x[(A'+44)-(/^' + (i-4)4)]'

(33)

(34)

where p = Ifia/Oo.
Due to the complexity of the above expression the mechanisms of the adap-

tation are not self-evident. In the following, we isolate and study the individual
terms in Eq. (34) with the intention to obtain a better insight into the weight up-
date mechanisms. In Fig. 9, we plot the term yij(l — ytj) versus ytj. This term,
affecting the rate of weight adjustment, has the maximum at yij = 1/2, decreases
on both sides, and reaches 0 at yij = 0 and yij = 1. This term contributes to
the reduction of the learning rate when the output converges to either 0 or 1, and
thereby improves accuracy and stability. Thus, it has a similar effect as the mo-
mentum term used in supervised BP learning discussed in Section IV.

The amount of weight adjustment is proportional to (xfj — xf-), which is self-
explanatory. The remaining term can be rewritten in the following form:

{f,^-fi^) + [vf.yf.-vf.(l-yf.)]. (35)

y(i -y)

0 i 1

Figure 9 Weight update rate, j (l — y), plotted versus output, y.

116 Ying Sun and Reza Nekovei

Furthermore, vf- and vf- can be rearranged as

Vf; = IJ \^ yk
CO ymn 2-^co ymn 2^co ymn 2^(o yn

^ ^{xij - fi''), (36)
K

v'
1

Z^co^ ymn^

1 ' -M

^ij Z-̂ aj(̂ ymn) _ Z^co^fnnK^ ymn)

2^co^ ~ ymn) 2^co^^ ~ ymn)

^T.{xij--iX% (37)

where k and li are the pixel counts for the vessel class and the background class,
respectively. Now the term can be presented as

(A'-Ai*) j(.,7-A*K-k-.7-M*)(l-4)]- (38)

The first part of this term is the difference between the mean vessel intensity and
the mean background intensity within the a> x o) window. The second part repre-
sents a consistency measure for the present classification of pixel (/, j) within the
CO y. CO window. For example, if the present classification is vessel (yij = 1), this
part is reduced to (l/k)(xij — fi^) which is the difference between the pixel in-
tensity and the mean vessel intensity normalized by the vessel pixel count within
the CO y. 0) window.

4. Postprocessing

Some background variations have features similar to those of vessels. These
background variations are incorrectly classified as vessel and result in speckled
artifacts scattered over the background area in the segmented arteriogram. For-
tunately, these speckled artifacts are easily detectable due to their appearance as
isolated small clusters and can be removed by a postprocessing stage. The various
filtering techniques based on mathematical morphology [52] seem to be particu-
larly suitable for this purpose.

The following describes one feasible algorithm for postprocessing based on a
simple median filter.

Step 1. Make a binary image by assigning all output pixels which have not
reached vessel class to the background class. In other words, all the
unclassified pixels are absorbed by the background:

Medical Imaging 117

Step 2. Remove the speckled artifacts by applying a moving median filter
over the binary image. Within a local window the center pixel value ytj is
replaced by the median of all pixel values within the window. For a binary
image the median filter can be implemented simply by assigning the
dominant class within the window to the center pixel.

The median filter is useful here because it reduces single-pixel noise while
it preserves edges in the image. The simple median filter can be generalized to
ann X n median filter which can correctly remove a noise pixel as long as the
total number of noise pixels with the window is less than (n^ + l)/2. We have
found that a 5 x 5 median filter provides a satisfactory performance for the post-
processing.

C. PERFORMANCE EVALUATION
OF THE S E L F - A D A P T I V E CLASSIFIER

We implemented the SA classifier on a conventional computer to evaluate its
properties and classification performance. First, we conducted a systematic study
on the effects of various system parameters including input window size COQ, adap-
tation window size co, nonlinearity parameter ^o. and learning rate fi. We should
emphasize that it is very important to study the sensitivity of these empirical pa-
rameters. Should the performance be very sensitive to certain parameters, the sys-
tem would not generalize well and the adaptation scheme associated with those
parameters should be reevaluated. Next, after the system parameters were prop-
erly selected, we applied the SA classifier to arteriograms including the DCA,
DVA, and DSA types described in Section IIL The segmentation results by the
SA classifier were also compared with those by the BP classifier discussed in
Section IV.

1. Convergence

As with any adaptive system, a primary concern with the SA classifier is its
convergence. In our experiments, the SA classifier converged in practically ev-
ery case within 10 iterations. The rapid convergence of the system was observed
from the weight matrix values, Wtj, through the iterations. The weight matrix was
initiahzed with random values. As the iteration commenced, it rapidly organized
itself to provide the appropriate local thresholds for the vessel pixels in the arteri-
ogram. As expected, when the weight matrix was shown as an image, it resembled
the vascular structure in the input image. In Fig. 10 we demonstrate the conver-
gence of weight matrix by displaying it as an image at the first, third, and tenth
iterations (left to right). The weights were mapped into 8-bit grayscale and the
resulting image was histogram-equalized to improve visualization.

Ying Sun and Reza Nekovei

10th Iteration

Weight Patterns

Figure 10 Weights (Wij) in SA classifier shown as images through iterations.

2. Window Effects

The SA classifier employs two moving windows. The input window with size
coo is used to estimate the mean and variance around each pixel from the arteri-
ogram. The adaptation window with size co is used to assess the error signal. The
input window is applied only once before the iteration begins, whereas the adap-
tation window is used at each step of the iteration. The experimental results show
that the two moving window sizes have direct but relatively minor effects on the
performance of the SA classifier. Figure 11 shows the effects of COQ and co on the
segmentation of an arteriogram.

The input window size (COQ) controls the smoothness of the segmented im-
age. A small input window produces less reliable statistics and results in a rela-
tively noisy segmentation. In contrast, a large input window produces a relatively
smooth segmentation but has a smearing effect on edges and anatomical details.

The adaptation window size (co) shows a somewhat greater effect on the per-
formance than the input window size does. The adaptation window size affects the
segmentation quality and, to a lesser extent, the convergence rate. A small adapta-
tion window slows the adaptation and can cause premature convergence at a local
minimum. An adaptation window significantly larger than the vessel width makes
the system behave like a global-thresholding method and reduces the classifica-
tion accuracy. The best performance is associated with an adaptation window size
slightly larger than the average width of the vessels under investigation.

3. Rate Parameters

Referring to Eq. (34), the learning process is affected by three parameters:
learning rate fi, nonlinearity parameter OQ, and normalization factor a. The nor-
malization factor is a constant calculated according to the size of the adaptation

Medical Imaging

1st Iteration

119

3rd Iteration 10th Iteration

Figure 11 Effects of input window size COQ and adaptation window size co on system output through
iterations.

window. This is why the adaptation window size affects the rate of convergence
as discussed above. Once the adaptation window size is determined, the learning
rate and the nonhnearity parameter are the only two parameters that can control
the rate of convergence.

How learning rate should be controlled to achieve the best performance is a
common problem to all the steepest-descent-type algorithms. Learning rate con-
trols not only the rate of convergence but also the stability of the system. A high
learning rate can result in an unstable system producing noisy and inaccurate out-
puts. A low learning rate can result in slow convergence or premature conver-
gence to a local minimum. Figure 12 illustrates the effects of learning rate on the
test image. The best performance was achieved by choosing ^ between 0.01 and
0.09.

120

1st iteration Srd iteration

Ying Sun and Reza Nekovei

10th iteration

Figure 12 Effects of learning rate fi on system output through iterations.

The nonlinear transition of the sigmoid function is affected by ^o- A small ^o
results in an abrupt transition and a large ^o results in a gradual transition. The ad-
justment of ^0 has two effects on the system. Referring to parameter p in Eq. (34),
^0 is combined with fi to control the rate of weight update, ̂ o also directly controls
the quantization of the system output and affects the amount of information be-
ing fed back from output to weight adaptation. A large ^o slows the convergence,
increases the likelihood of local-minimum convergence, but provides more infor-
mation (less quantization) for better adaptation. A small ^o makes the sigmoid
function closer to a hard-limiter. In the extreme case of hard-limiter (̂ o = 0) the
adaptation mechanism stops functioning completely because the derivative of the
nonlinearity required by Eq. (26) no longer exists. Figure 13 shows the effects of
^0 on the segmentation of the test image. According to the experimental results
the appropriate range for ^o is between 0.1 and 1.0.

Medical Imaging 111

1st iteration 3rd iteration 10th iteration

Figure 13 Effects of nonlinearity parameter ô on system output through iterations. Smaller ô cor-
responds to more abrupt transition in sigmoid function.

4. Segmentation of Arteriograms

We evaluated the performance of the SA classifier with a set of arteriograms
representing a broad range of image quaUty. The supervised BP classifier de-
veloped in Section IV was also applied to the same set of arteriograms so that
the performance between the unsupervised and supervised classifier can be com-
pared. Figure 14 shows the results for the original arteriogram, which was used
by the BP classifier for training and by the SA classifier for parameter optimiza-
tion. This image is a digitized cineangiogram (DCA) of the left coronary artery. In
Fig. 14 the four images are arteriogram (upper-left), segmentation by the BP clas-
sifier (upper-right), output of the SA classifier before postprocessing (lower-left),
and segmentation after postprocessing (lower-right). In the same format. Fig. 15
shows the results for a different DCA frame that belongs to the same sequence
of the original arteriogram shown in Fig. 14. Figure 16 shows the results for a
direct video angiogram (DVA) of the right iUac arteries. Finally, Fig. 17 shows
the results for a digital subtraction angiogram (DSA) of the right coronary artery.

The results presented above have provided a qualitative comparison between
the supervised BP classifier and the unsupervised SA classifier. Generally speak-
ing, the two classifiers are comparable in performing the task of arteriogram seg-
mentation. The SA classifier shows a high sensitivity for detecting smaller vessels,
as seen in Figs. 16 and 17. The SA classifier also produces a cleaner background;

122 Ying Sun and Reza Nekovei

Figure 14 Digitized cineangiogram of left coronary artery (original test image) and segmentation
results by BP classifier, SA classifier before postprocessing, and SA classifier after postprocessing.

however, much of that should be attributed to the postprocessing stage. In Fig. 15,
a large dark background area can be observed on the left side of the arteriogram.
The S A classifier incorrectly extracts the edge of this area as part of the vascular
structure. In contrast, the BP classifier correctly ignores this edge. The SA clas-
sifier does not contain a mechanism to take advantage of the fact that a vessel
segment has two parallel borders. The BP classifier, on the other hand, seems to
be well trained to handle this situation.

To further provide a quantitative evaluation of the two classifiers, we use the
original DCA image and the target image shown in Fig. 6. The target image de-
fined by a human operator is used as the gold standard. In this comparison, we also
include two other classifiers: the iterative ternary classifier (ITC) developed in a
previous study [42] and a maximum likelihood estimator (MLE) that computes
a global threshold based on the classic Bayesian approach [19]. Figure 18 shows

Medical Imaging 123

Figure 15 Digitized cineangiogram of left coronary artery and segmentation results by BP classifier,
SA classifier before postprocessing, and SA classifier after postprocessing.

the segmentation results from these four classifiers: SA, BP, ITC, and MLE. The
performance indexes including classification accuracy, learning time, and classi-
fication time are summarized in Table I. The SA classifier showed the best per-
formance with 94% accuracy, closely followed by the BP classifier's 92%. The

Table I

Performance Comparison of Four Classifiers

Algorithm Accuracy
Learning
time (s)

Classification
time (s)

Self-adaptive ANN classifier
Back-propagation ANN classifier
Iterative ternary classifier
Maximum likelihood estimator

94%
92%
83%
68%

0
7,150

0
60

360
540
170
350

124 Ying Sun and Reza Nekovei

Figure 16 Direct video angiogram of iliac arteries and segmentation results by BP classifier, SA
classifier before postprocessing, and SA classifier after postprocessing.

parameters for the SA classifier were: COQ = II, co = 11, ^o = 0.1, and fi = 0.03.
The parameters for the BP classifier were: topology = 121-17-2, a = 0.5, and fi =
0.05. The two ANN-based classifiers generally performed better than the other
two methods. This may be attributed to the ability of ANN to form highly nonlin-
ear decision boundaries and to classify patterns with non-Gaussian distributions.

VI. CONCLUSIONS

A. NEURAL NETWORK APPLICATIONS
IN M E D I C A L I M A G I N G

The literature review in Section II—although it was neither exhaustive nor in-
depth—should provide a perspective for the trend of ANN applications in the
medical imaging area. While technique-oriented researches have been conducted

Medical Imaging 125

Angiogram (OSA|
Coronary Arteries

Figure 17 Digital subtraction angiogram of right coronary artery and segmentation results by BP
classifier, SA classifier before postprocessing, and SA classifier after postprocessing.

by using ANNs for lower-level processing of medical images, clinical applications
have been predominantly for higher-level processing whereby features are first ex-
tracted in a preprocessing stage by using more conventional pattern recognition
methods. The use of ANNs for higher-level processing is attractive for several
reasons. First, the lower-level processing involves a large amount of data from
image pixels and usually requires customized software. Second, by incorporat-
ing a preprocessing stage for data reduction, it is much easier to adopt a general
commercial neural network software for the specific diagnostic problem. Third,
medical experts are accustomed to the use of image features extracted by conven-
tional pattern recognition techniques and information from patient history, which
are more suitable as inputs to an ANN at the higher processing level. Fourth, the
inputs to the higher-level processing are usually more meaningful and bear clini-
cal significance; therefore, it is easier to back-track the problem when the output
of the ANN is erroneous.

126 Ying Sun and Reza Nekovei

Figure 18 Arteriogram segmentation by self-adaptive classifier, back-propagation classifier, iterative
ternary classifier, and maximum likelihood estimator.

If the ANN classifiers can be considered separable from the conventional clas-
sification methods, it must be due to the distributive parallel processing nature of
neural network computing. Thus, a neural network classifier using a small set of
extracted features as input may not fully exploit the power of distributive paral-
lel processing. When a preprocessing stage is used, the higher-level ANN is at
the mercy of the lower-level preprocessing stage. A crucial portion of the feature
information may have been inadvertently excluded by the preprocessing even be-
fore it reaches the ANN classifier. To mimic the human perception of diagnostic
medical images, it is important to apply the ANN to extracting features directly
from the raw image data. Thus, the use of ANN for lower-level medical image
processing should be a fruitful area that merits continuing research.

Another observation regarding ANN applications in medical imaging is that
supervised learning has been the more dominant approach. The popularity of the
feedforward back-propagation network may have contributed to this dominance.
A supervised ANN classifier can also be trained on a continuing basis, hoping to
improve upon the mistakes that the ANN has made on a retrospective basis. In

Medical Imaging 127

contrast, the unsupervised neural network classifiers rely on their internal adap-
tation mechanisms to perform certain classification tasks. Although it is possible
to improve their classification performance by optimizing the system parameters,
such optimization is less intuitive and usually much more difficult to control.

B. SUPERVISED VERSUS UNSUPERVISED
ARTIFICIAL NEURAL NETWORK
FOR A R T E R I O G R A M S E G M E N T A T I O N

In this study, we used the arteriogram segmentation problem as an example
for lower-level processing of medical images. We developed a supervised ANN
(the BP classifier) as well as an unsupervised ANN (the SA classifier) to classify
pixels in arteriograms into either the vessel class or the background class. It was
shown that both classifiers performed satisfactorily for arteriograms over a broad
range of image quality. They also outperformed two other classifiers based on
some more conventional approaches.

Although we ought to be prudent in generaUzing our findings, the comparison
of the supervised versus unsupervised classifier for this problem should provide
a useful guideline for developing medical image processing systems. In Table II,
we summarize the important features for the SA and BP classifiers. The main dif-
ficulty associated with the supervised BP classifier was the choice of its topology.
The appropriate topology for our BP classifier was identified via a brute-force

Table II

Comparison between the SA and BP Classifiers

Learning

Classification

Mechanisms
Preprocessing
Postprocessing

Empirical parameters

SA classifier

Unsupervised

Iterative
Converged fast

Implemented internally
No
Yes

Input window size
Adaptation window size
Learning rate
Nonlinearity parameter

BP classifier

Supervised

One-pass
Feedforward

Learned from training
No
No

Network topology
Training set
Learning rate
Momentum rate
Training period

128 Ying Sun and Reza Nekovei

search. We experienced some very poor performance from BP neural networks
with slightly different configurations. The performance of the BP classifier was
also very sensitive to the choice of the training set, the learning rate, the momen-
tum rate, and the training period. For clinical applications it is conceivable that a
supervised ANN may not respond in a positive way to continuing training with
new data; its performance may also degrade by overtraining.

On the other hand, the performance of the SA classifier was less sensitive to its
parameters. There were also fewer parameters to be identified. For the arteriogram
segmentation problem under investigation, the S A classifier stood out as the best
performer when all things were considered. A drawback of the S A classifier is that
the classification mechanisms must be studiously implemented into the adaptation
algorithm, making it more difficult to generalize to other problems. The need for
postprocessing is another minor drawback associated with the SA classifier.

C. FUTURE DIRECTIONS

Based on the results from this study, we attempt to identify some potentially
fruitful directions for future research in applying ANNs to medical imaging. First,
much can be learned about the distributive parallel processing of medical-image-
based diagnostics by applying ANN models to lower-level processing tasks such
as image enhancement, feature extraction, and segmentation. Second, the adapta-
tion mechanisms in unsupervised ANNs should merit further studies for extract-
ing various features in medical images such as malignant mass in mammogram,
underperfused area in cardiac or brain SPECT, and lesion in brain MRI or CT.
Third, general software tools especially for unsupervised classification and low-
level processing should be developed to reduce the effort of adopting an ANN
model for a specific clinical application in medical imaging.

Finally, in Fig. 19, we propose a generalized model for neural-network-based
processing of medical images. Image features are extracted from pixel data and
represented by designated hidden nodes in the network. Multimodality images can
also be fused at an early stage of the neural network computing. Both unsuper-
vised learning and supervised learning take place in the same system and interact
with each other. The unsupervised learning is guided by adaptation schemes de-
signed to extract specific features from the images. The supervised learning is
based on retrospective data of known diagnostic outcomes. The system represents
a unification among multimodality images, between lower-level processing and
higher-level processing, and between supervised neural network computing and
unsupervised neural network computing.

Medical Imaging

Multi-Modal
Medical Images

129

Feature Nodes Output Nodes

Diagnostics

Figure 19 Proposed unified model for diagnostic system using medical images.

REFERENCES

[1] S. Webb. The Physics of Medical Imaging. Adam Hilger, New York, 1990.
[2] J. Radon. On the determination of functions from their integral values along certain manifolds.

IEEE Trans. Med. Imaging MI-5:170-176, 1986. Translated by P. C. Parks.
[3] C. J. Thompson, Y. L. Yamamoto, and E. Meyer. Positome II: A high efficiency position imaging

device for dynamic brain studies. IEEE Trans. Nucl. Sci. NS-26:583-389, 1979.
[4] A. S. Miller, B. H. Blott, and T. K. Hames. Review of neural network applications in medical

imaging and signal processing. Med. & Biol. Eng. & Comput. 30:449^64, 1992.
[5] J. P. Kerr and E. B. Bartlett. A statistically tailored neural network approach to tomographic

image reconstruction. Med. Phys. 22:601-610, 1995.
[6] M. T. Munley, C. E. Floyd, Jr., J. E. Bowsher, and R. E. Coleman. An artificial neural network

approach to quantitative single photon emission computed tomographic reconstruction with col-
limator, attenuation, and scatter compensation. Med. Phys. 21:1889-1899, 1994.

[7] S. Cagnoni, D. Caramella, R. De Dominicis, and G. Valli. Neural network synthesis of spin echo
multiecho sequences. /. Digit. Imaging 5:89-94, 1992.

[8] H. Yan and J. Mao. Data truncation artifact reduction in MR imaging using a multilayer neural
network. IEEE Trans. Med. Imaging 12:73-77, 1993.

[9] Y. Hui and M. R. Smith. Comments on "Data truncation artifact reduction in MR imaging using
a multilayer neural network." IEEE Trans. Med. Imaging 14:409^12, 1995.

[10] A. Adler and R. Guardo. A neural network image reconstruction technique for electrical
impedance tomography. IEEE Trans. Med. Imaging 13:594-600, 1994.

130 Ying Sun and Reza Nekovei

[11] U. Raff, A. L. Scherzinger, R. F. Vargas, and J. H. Simon. Quantitation of grey matter, white
matter, and cerebrospinal fluid from spin-echo magnetic resonance images using an artificial
neural network technique. Med. Phys. 21:1933-1942, 1994.

[12] X. Li, S. Bhide, and M. R. Kabuka. Labeling of MR brain images using Boolean neural network.
IEEE Trans. Med Imaging 15:628-638, 1996.

[13] M. Ozkan, B. M. Dawant, and R. J. Maciunas. Neural-network-based segmentation of multi-
modal medical images: A comparative and prospective study. IEEE Trans. Med. Imaging
12:534-544, 1993.

[14] K.-S. Cheng, J.-S. Lin, and C.-W. Mao. The apphcations of competitive Hopfield neural network
to medical image segmentation. IEEE Trans. Med. Imaging 15:560-567, 1996.

[15] J.-S. Lin, K.-S. Cheng, and C.-W. Mao. A fuzzy Hopfield neural network for medical image
segmentation. IEEE Trans. Nucl. Sci. 43:2389-2398, 1996.

[16] G. Coppini, R. Poli, and M. Rucci. A neural network architecture for understanding discrete
three-dimensional scenes in medical imaging. Comput. Biomed. Res. 25:569-585, 1992.

[17] W. Qian, M. Kallergi, and L. R Clarke. Order statistic-neural network hybrid filters for gamma
camera-Bremsstrahlung image restoration. IEEE Trans. Med. Imaging 12:58-64, 1993.

[18] S.-C. B. Lo, S.-L. A. Lou, and S. K. Mun. Artificial convolution neural network techniques and
apphcations for lung nodule detection. IEEE Trans. Med. Imaging 14:711-718, 1995.

[19] R. Nekovei and Y. Sun. Back-propagation network and its configuration for blood vessel detec-
tion in angiograms. IEEE Trans. Neural Networks 6:64-72, 1995.

[20] K. H. Chan, K. A. Johnson, J. A. Becker, A. SatUn, J. Mendelson, B. Garada, and B. L. Holman.
A neural network classifier for cerebral perfusion imaging. /. Nucl. Med. 35:771-774, 1994.

[21] R. J. deFigueiredo, W. R. Shankle, A. Maccato, M. B. Dick, R Mundkur, L Mena, and C. W. Cot-
man. Neural-network-based classification of cognitively normal, demented, Alzheimer disease
and vascular dementia from single photon emission with computed tomography image data from
brain. Proc. Nat. Acad. Sci. U.S.A. 92:5530-5534, 1995.

[22] M. R Page, R. J. Howard, J. T. O'Brien, M. S. Buxton-Thomas, and A. D. Pickering. Use of
neural networks in brain SPECT to diagnose Alzheimer's disease. J. Nucl. Med. 37:195-200,
1996.

[23] H. Fujita, T. Katafuchi, T. Uehara, and T. Nishimura. Application of artificial neural network to
computer-aided diagnosis of coronary artery disease in myocardial SPECT bull's-eye images.
/ Nucl. Med 33:272-276, 1992.

[24] D. Hamilton, P. J. Riley, U. J. Miola, and A. A. Amro. Identification of a hypoperfused segment
in bull's-eye myocardial perfusion images using a feed forward neural network. Br J. Radiol.
68:1208-1211, 1995.

[25] J. A. Scott and E. L. Palmer. Neural network analysis of ventilation-perfusion lung scans. Radi-
ology 186:661-664, 1993.

[26] G. D. Tourassi, C. E. Floyd, H. D. Sostman, and R. E. Coleman. Artificial neural network for di-
agnosis of acute pulmonary embolism: Effect of case and observer selection. Radiology 194:889-
893,1995.

[27] R. E. Fisher, J. A. Scott, and E. L. Palmer. Neural networks in ventilation-perfusion imaging.
Radiology 198:699-706, 1996.

[28] E. R. Kischell, N. Kehtamavaz, G. R. Hillman, H. Levin, M. Lilly, and T. A. Kent. Classification
of brain compartments and head injury lesions by neural networks applied to MRJ. Neuroradiol-
ogy 37:535-541, 1995.

[29] H. Azhari, S. Oliker, W. J. Rogers, J. L. Weiss, and E. P. Shapiro. Three-dimensional
mapping of acute ischemic regions using artificial neural networks and tagged MRL IEEE
Trans. Biomed Eng. 43:619-626, 1996.

[30] K. Suzuki, L Horiba, and M. Nanki. Recognition of coronary arterial stenosis using neural net-
work on DSA system. Systems Computers Japan 26:66-74, 1995.

Medical Imaging 131

[31] B. Zheng, W. Qian, and L. P. Clarke. Digital mammography: Mixed feature neural network
with spectral entropy decision for detection of microcalcifications. IEEE Trans. Med. Imaging
15:589-597, 1996.

[32] B. Sahiner, H.-P. Chan, and M. M. Goodsitt. Classification of mass and normal breast tissue: A
convolution neural network classifier with spatial domain and texture images. IEEE Trans. Med.
Imaging 15:598-610, 1996.

[33] J. A. Baker, P. J. Komguth, J. V. Lo, and C. E. Floyd, Jr. Artificial neural network: Improving the
quality of breast biopsy recommendations. Radiology 198:131-135, 1996.

[34] V. Goldberg, A. Manduca, D. L. Ewert, J. J. Gisvold, and J. F. Greenleaf. Improvement in
specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence.
Med. Phys. 19:1475-1481, 1992.

[35] B. G. Brown, E. Bolson, M. Primer, and H. T. Dodge. Quantitative coronary arteriography: Es-
timation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions
using the arteriogram and digital computation. Circulation 55:329-337, 1977.

[36] G. W. Vetrovec. Evolving apphcations of coronary angioplasty: Technical and angiographic con-
siderations. Amer J. Cardiol. 64:27E-32E, 1989.

[37] G. A. White, K. W. Taylor, and J. A. Rowlands. Noise in stenosis measurement using digital
subtraction angiography. Med. Phys. 12:705-712, 1981.

[38] Y. Sun. Automated identification of vessel contours in coronary arteriograms by an adaptive
tracking algorithm. IEEE Trans. Med. Imaging 8:78-88, 1989.

[39] I. Liu and Y. Sun. Recursive tracking of vascular networks in angiograms based on the detection-
deletion scheme. IEEE Trans. Med. Imaging 12:334-341, 1993.

[40] I. Liu and Y Sun. Fully automated reconstruction of 3-D vascular tree structures from two or-
thogonal views using computational algorithms and production rules. Optical Eng. 31:2197-
2207, 1992.

[41] R. Kruger, C. Mistretta, and A. Crummy. Digital k-edge subtraction radiography. Radiology
125:243-245, 1977.

[42] D. Kottke and Y Sun. Segmentation of coronary arteriograms by iterative ternary classification.
IEEE Trans. Biomed Eng. 37:778-785, 1990.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Nature 323:533-536, 1986.

[44] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychol. Rev. 65:386-408, 1958.

[45] J. K. Kruschke. Improving generalization in back-propagation networks with distributed bottle-
necks. In IEEE-INNS International Joint Conference on Neural Networks, pp. 443^147, 1989.

[46] B. Widrow and S. D. Steams. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1985.

[47] K. Steinbuch and U. A. W. Piske. Learning matrices and their applications. IEEE Trans. Electron.
Computers 12:856-862, 1963.

[48] J. S. Koford and G. F. Groner. The use of an adaptive threshold element to design a linear optimal
pattern classifier. IEEE Trans. Inform. Theory 12:42-50, 1966.

[49] I. P. Devyaterikov, A. I. Propoi, and Y Z. Tsypkin. Iterative algorithms for pattern recognition.
Automation Remote Control 28:108-117, 1967.

[50] D. Hush, B. Home, and J. M. Salas. Error surface for multilayer perceptrons. IEEE Trans. Sys-
tems, Man, Cybernet. 22:1152-1161, 1992.

[51] R. Kohler. A segmentation system based on thresholding. Comput. Graph. Image Proc. 15:319-
338, 1981.

[52] R. C. Gonzalez and P. Wintz. Digital Image Processing, pp. 351^50. Addison-Wesley, Reading,
MA, 1987.

This Page Intentionally Left Blank

Paper Currency
Recognition

Fumiaki Takeda
Technological Development Department
GLORY Ltd.
3-1, Shimoteno, 1-Chome, Himeji
Hyogo 670, Japan

Sigeru Omatu
Department of Computer and
Systems Sciences
College of Engineering
Osaka Prefecture University
Sakai, Osaka 593, Japan

I. INTRODUCTION

Up to now, we have proposed paper currency recognition methods by a neural
network (NN) to aim at development for the new type of paper currency recog-
nition machines [1-5]. Especially, we have proposed three core techniques using
the NN. The first is the small-size neuro-recognition technique using masks [1-6].
The second is the mask determination technique using a genetic algorithm (GA)
[7-12]. The third is the neuro-engine technique using a digital signal processor
(DSP) [13-15]. In the first technique, we regard the sum of input pixels as a char-
acteristic value. This is based on a slab-like architecture in Widrow's algorithm
[6] which is invariant to various fluctuations of the input image.

Especially, in the neuro-paper currency recognition technique, we have
adopted random masks in a preprocessor [1-5], which have masked some parts
of the input image. The sum of nonmasked pixels by the mask is described as a
slab value. This is the characteristic value of the input image. We input not pixel
values but slab values to the NN. This technique enables us to realize a small-size
neuro-recognition. However, in this technique, we must decide a masked area by
the random numbers. So we cannot always get effective masks which reflect the
difference between the patterns of input image to the slab values. We must opti-
mize the masks and systematize their determination.

In the second technique, in order to determine the excellent masks which can
generate the characteristic values of the input image effectively, we have adopted

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 133

134 Fumiaki Takeda and Sigeru Omatu

the GA [10-12] to the mask determination. This is a unique technique which is
a searching procedure based on the mechanism of natural selection and natural
genetics [11, 12]. The second technique on the mask determination can generate
effective masks which satisfy the purposive generalization of the NN owing to the
GA mechanism being like the evolutional process of a life [11, 12]. In this tech-
nique, we regard the position of a masked part as a gene. We operate "coding,"
"sampling," "crossover," "mutation," and "selection" for some genes. By repeat-
ing a series of these operations, we can get effective masks automatically.

In the third technique, we have developed a high-speed neuro-recognition
board to realize the neuro-recognition machines [13-15]. In this neuro-recogni-
tion board, we have used a DSP, which has been widely used for image process-
ing. The adopted DSP has the exponential function which is used in the sigmoid
function [f{x) = 1/(1 + exp(—x))] as a library. Furthermore, the DSP can exe-
cute various calculations of the floating-point variables. This matter enables us to
implement the neuro-software, which is made on the EWS or the large computer,
to this neuro-recognition board easily. Its computational speed is ten times faster
compared with the current recognition machines.

In this chapter, we unify these three techniques for the paper currency recog-
nition and describe this neuro-system technique. Then the possibility and effec-
tiveness of this system technique in the experimental systems constructed by the
various current banking machines are shown. The physical meaning of the unified
system [14, 15] is made clear.

11. SIVIALL-SIZE NEURO-RECOGNITION
TECHNIQUE USING THE JVIASKS

Here, we discuss the first technique. First of all, we describe its basic idea
which comes from Widrow's algorithm [6]. Then we show the effectiveness for
reduction of NN's scale with various experiments.

A. BASIC IDEA OF THE IVIASK TECHNIQUE

We define a sum of input pixels as a characteristic value of the input image,
which is described as a slab value [1-6]. We can get 31 as the slab value of pattern
A in Fig. la. We can get 25 as the slab value of pattern B in Fig. lb. In this
case, the slab value is useful to the input of the NN. However, the slab value
corresponding to pattern C in Fig. 2a is 23, while the slab value corresponding
to pattern D in Fig. 2b is also 23. In this case, we cannot use the slab value as
an input of the NN. We must reflect the difference of the input image to the slab
value. This problem can be solved by adopting a mask [1-5] which covers some

Paper Currency Recognition 135

^

8 •
•
•

•
•
•

l b

•
•
•
•

•
•

i

•
•
•

•

N

_|/

p^

8

e i) P a

1

•
•
•
•

•

•

•
•
•
•

1 1

16

e r n A

^

•

•
•

•
•

•
•

•

N

_y

31
L

Different
slab value

T

(b) p a t t e r n B

Figure 1 Different input patterns and different slab values.

parts of the input image in Fig. 3c. The slab value becomes 13 when the pattern
C in Fig. 2a is covered by the mask. Otherwise, the slab value becomes 23 when
the pattern D in Fig. 2b is covered by the mask. In this way, we can use the
slab value as an input to the NN using the mask. Thus, the mask enables us to
measure a two-dimensional image from various viewpoints as if we measured a
three-dimensional object from various viewpoints. Furthermore, we use various
masks and make some slab values from one input image since the probability to
obtain effective slab values for pattern recognition becomes high [2, 3, 5].

J

8

•->

1

•
•
• •

•

•

•
•
• •

lb ^

•

•
•

•
•

•
• •

N

U/

(b) p a t t e r n D

Figure 2 Different input patterns and same slab values.

136 Fumiaki Takeda and Sigeru Omatu

15 \

•

•

•

•

•
•

•
•

(a) p a t t e r n C

• • • •

w^m^A

• • • D
• • • •

• • • • • • • •

• • • D
D
• • I

H i • • ^ H

• D
•

• D
• D
• • D
•

• • •

slab va I ue

masked area

W^W/A

'^W/A:^A

• •

(c) m a s k

slab v a l u e
(b) p a t t e r n D

Figure 3 Mask and slab values.

As shown in Fig. 4, we show the construction of the mask processing for the
NN. Some parts of the input image are covered with various masks in preprocess-
ing. The sum of input pixels which are not covered becomes one slab value which
is taken as an input of the NN.

various masks dJen layer

part of mask
processing

Figure 4 Construction of the mask processing for the NN.

Paper Currency Recognition

B. STUDY OF THE MASK PARAMETERS

137

We make some experiments for the mask parameters in order to standardize
the mask technique. In the mask technique, we discuss mask number and its area
with 12 alphabetical letters which are from "A" to "L" [2-5] and they are binary
data written on an 8 x 8 matrix as shown in Fig. 5. We adopt the back propagation
method with oscillation term [1-5] and this equation is given by

rk-lkr ^kJc-\
^'7 J '-

AW: k-\k
ij

dj = {oJ-yj)f(iJ),

d) = (EW^f+^jf+V'OJ)'

(t-l)-\-pAWlf^it-2),

for output layer,

for hidden layer.

(1)

where Wij(t) is the weight from unit / to j , AWij(t) is the change of weight
Wij (0, d is the generalized error, o is the output unit value, t is the sample, / is
the input unit value, y is the supervised value for the output unit, k is the layer
number, s is the positive learning coefficient, a is the proportional coefficient of
inertia term, and fi is the proportional coefficient of oscillation term. Especially,
the P term has the role of escaping from a local minimum [1-5].

The neuro-weights are modified at the presentation of each alphabetical letter.
We regard that convergence is completed when the summation of the squared
error between the output unit value and the desired one for each pattern becomes

I
1=1 n=o

i I

11 ^P^ 111 11 f^pi 111 11 PI ffl 11 11 ff rpi 11
Figure 5 Alphabetical letters in 8 x 8 matrix.

138 Fumiaki Takeda and Sigeru Omatu

less than a threshold value or its iteration number reaches a maximum number.
This summation of the squared error is given by

N N

p=i j=\

(2)

where Â is pattern number. Here iteration number is defined as 1 in case of pre-
senting from "A" to "L."

1. Mask Number

We discuss an effect of the mask number. First, we generate masks of the mask
technique in the following way. We generate 64 (= 8 x 8) random values among
[—1,1] using random numbers and they are equal to the input pixels. We mask
the pixels which correspond to minus values.

The mask numbers that we discuss are 2, 4, 8, 16, 24, and 32. Figure 6 shows
the learning status for the six patterns of mask numbers until the iteration number
reaches 30,000. The horizontal axis shows the iteration number and the verti-
cal one shows the summation of the squared error which we have already de-
scribed. From this figure, it is impossible to make the pattern recognition for the
NN when mask numbers are 2 and 4. The learning can converge using more than
eight masks. When we recognize alphabetical letters from "A" to "L" using these
weights, we show every output unit value as shown in Fig. 7. From this figure,
we can find that the recognition ability is almost the same when the mask number
is more than 8. This matter shows that we can get enough output unit values for
pattern recognition. Furthermore, we also recognize inputs with noise as shown in

(m a s k N o . = 2)
, (m a s k N o . = 4)

(m a s k N o . = 8)

m a s k No . = 3 2)
m a s k N o . = 2 4)

s k N o . = 1 6)

"VuiJ

Figure

t e r a t l o n number

6 Relationship between the learning convergence and mask number.

Paper Currency Recognition 139

- 0.5

:3
o

J:inaskNo.=32 @:iDaskNo.=8
@:iiiaskNo.=24 ©:iaaskNo.=4
@:iiiaskNo.= 16 (i):inaskNo.=2

A B C D E F G H I J K L

O u t p u t u n i t

Figure 7 Output unit values for the various mask numbers.

Fig. 8 [4, 5]; its result is shown in Fig. 9. Here, "*" denotes the noise-added point
where we change a 1 to a 0 or vice versa. From this result, the recognition ability
depends on mask numbers. Thus, we select mask number 8 which is sufficient to
get correct recognition from a series of experiments with the alphabetical letters
[2-5].

2. Mask Area

We discuss a mask area in this section. First, we adjust a mask area with the
alteration width of random numbers. Namely, the width of generating random
numbers is [—1, 1] as abasis. We change the width of generating random numbers

no i s e -

>(i

^

^

1 no i s e -

>l̂

^

^
^

^

2

^

no i s e -

^
^

^

^
^

^

3

* : n o i s e added p o i n t B-^HH , D-^KU

Figure 8 Various noises.

140 Fumiaki Takeda and Sigeru Omatu

2 4 8 16 24 32
Mask number

Figure 9 Result of robustness for the noisy input using the various mask numbers.

as [—2,1], [—3,1], or [—4, 1] according to increasing the mask area. Otherwise,
[—1, 2], [—1, 3], or [—1,4] is selected according to decreasing the mask area.
Figure 10 shows the learning status until the iteration number reaches 30,000
when we alter the width of generating random numbers. From this figure, we
can find that the learning convergence does not depend on the mask area. Still
more, we show every output unit value as shown in Fig. 11. We can find that

(w i d t h = [- 2 , 1])

; w i d t h = [- 1, 4])
[w i d t h s [- 4 , 1])

• (wI d t h = [- 1, 1
w i d t h
w i d t h =
w i d t h =

1,
- 3 ,
- 1 ,

' t e r a t I on number

Figure 10 Relationship between the learning convergence and mask area.

Paper Currency Recognition 141

1.0

0.8

c

O

].4

0.2

®:width=[-4. 11 ©:width=(-1.2 1
@:width=[-3. 11 @:widih=[-1.3]
@:width=l-2. 11 ®:widtli=[-l,4 1
@:width=[-l. 11

I I I L _ L I I I I

A B C D E F G H 1 J K L
O u t p u t u n i t

Figure 11 Output unit values for the various mask areas.

the recognition ability does not depend on the mask area from this result. We
also recognize noisy inputs as in the discussion of the mask numbers [4, 5]. Its
experimental result is shown in Fig. 12. From this result, the recognition ability
does not depend on the mask area [4, 5].

[-1, 4][-l, 3][-l. 2][-l. lH-2, ll[-3, l][-4, 11
Mask area (-^increased direction)

Figure 12 Result of robustness for the noisy input using the various mask areas.

142 Fumiaki Takeda and Sigeru Omatu

C. EXPERIMENTS OF THE NEURAL NETWORK
SCALE REDUCTION USING THE MASKS

Here, we make some experiments to show the effectiveness of the scale reduc-
tion by the mask technique. The first is the case using the alphabetical letters and
the second is the one using the paper currency.

1. Experiment Using the Alphabetical Letters

For comparison of the proposed technique with the conventional one, we con-
sider the ordinary technique [1, 3-5] for the alphabetical letters. Figure 13 shows
the NN constructions of both techniques for the alphabetical letters. In this or-

p - part of generating
slab values

(b)
Figure 13 NN constructions of the ordinary technique and the proposed one for the alphabetical
letters: (a) ordinary technique; (b) proposed technique.

Paper Currency Recognition 143

dinary technique, we give directly the pixels to the input layer of the NN. How-
ever, this construction is three layers and the input unit number is 64 (= 8 x 8).
This is equal to pixel number. The hidden unit number is 32 and the output unit
number is 12 which is equal to recognition patterns. Here, we have decided the
hidden unit number of the ordinary technique through various experiments con-
sidering the recognition ability [1-3, 5]. The squared errors by the proposed tech-
nique and the ordinary one converged within 0.01. In both cases, recognition ra-
tios are 100% by using the unknown data. Here, we regard the NN scale as the
weight number which is (input unit number) x (hidden unit number) + (hidden
unit number) x (output unit number) [1-3, 5]. The weight number for each tech-
nique is the following:

• the number for the proposed technique i s 8 x 8 - h 8 x l 2 = 1 6 0 ,
• the number for the ordinary technique is 64 x 32 + 32 x 12 = 2432.

In this way, we find that the NN scale can be reduced without spoiling recognition
ability.

2. Experiment Using the Paper Currency

Here we use the Japanese paper currency data which are partly sensed to com-
pare the scale of the proposed technique with that of the ordinary one [1-3,5]. Fig-
ure 14 shows the NN constructions of both techniques for the paper currency. We
directly input these sensed pixels to the NN. When we input the pixels to this ordi-
nary technique, the input unit number is 128 (= 32 sample x 4 sensor) and this is
equal to pixel number. The hidden unit number is 64. The output unit number is 12
and this is equal to the recognition pattern. Using another Japanese paper currency
data which includes worn-out and defective ones, both of these recognition ratios
are 100%. Still more, the weight number for each technique is the following:

• the proposed technique is 16x16-1-16x12 = 448,
• the ordinary technique is 128 x 64 + 64 x 12 = 8960.

Therefore, we find that the proposed technique is also effective for the paper
currency data and does not spoil recognition ability.

III. MASK DETERMINATION USING
THE GENETIC ALGORITHM

Here, we discuss the mask determination using the GA [11, 12]. First, we de-
scribe a few conventional mask determination methods and show the problem of
each method on optimizing and systematizing the mask determination. Second,
we show the basic idea of adopting the GA operations to the mask determination.

144 Fumiaki Takeda and Sigeru Omatu

input layer hidden layer output layer

^ ¥ i a OOO-head
^ ¥ i a O O O - t a i l

^

input layer hidden layer output layer

[oa
¥lO.OOO-lieail

^¥lO.OOO-tall

Figure 14 NN constructions of the ordinary technique and the proposed one for the paper currency:

(a) ordinary technique; (b) proposed technique.

A. CONVENTIONAL MASK DETERMINATION

1. Mask Determination by the Random Numbers

Initially, we determine the masks by the random numbers [1-5]. As shown in
Fig. 15, we divide the paper currency by the least masked area (column) equally
and each masked area is ordered. Here, the number of them is 16. We generate 16
random numbers among [—1,1] and they are equal to the column numbers. We
mask the column whose number is equal to the ordered number of the random one
which has a minus value. We repeat this procedure from the first random number
to the sixteenth random one. So we can obtain one kind of mask. Second, we
change the initial value which generates random numbers and repeat this proce-
dure several times. Finally, we can obtain a series of plural nonduplicated masks.
In the experiment, we decide 16 as the number of masks from the various kinds of
simulation [4,5]. Both the numbers of input units and the hidden ones are 16. The
kinds of paper currency are US $1, $5, $10, $20, $50, and $100. Thus, the number
of output units which corresponds to the kinds of paper currency becomes six.

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

A
A

A
A

A
A

A
A

ro

iT
iJ

i

C
D

D
O

<a

So

146 Fumiaki Takeda and Sigeru Omatu

Here, the NN needs plural masks and these are one treatment unit in the mask
technique. After all, we describe these plural masks as a mask set and discriminate
it from a mask. In the following, we decide 30 random mask sets and investigate
their ability (generalization of the NN) using the unknown US dollars which in-
clude damaged paper currency and fluctuation error by conveyance.

In the experiment, we construct the experimental system using the current
banking machine. It can sample image data such as 216 x 30 pixels which are
represented by one byte gray level. Its conveyed speed is more than ten pieces per
second. We adopt the back propagation method with oscillation term for learning
[1-5]. We use ten pieces of paper currency for each kind as learning data. We
define one iteration as learning from $1 to $100. We continue learning until the
iteration number reaches 5000 times. To evaluate the method, 30 other pieces of
paper currency for each kind are used.

From experimental results, the recognition abilities of the NN obtained by the
30 random mask sets are from 59% to 99% as shown in Fig. 16 [8-10]. In this
way, generalization of the NN is largely influenced by mask sets. Furthermore, we
cannot always have gotten the excellent mask sets by using the random numbers.

2. Every Mask Combination

It is supposed that we take a method to investigate every mask set [7-10].
Then every combination constructed by the least masked area can be considered
as the mask. The inputs of every mask set can be generated. Learning should be
executed by using each input. We have to investigate the ability with every mask
set by using unknown data. In this case, we could choose the mask set which
generates the input that shows the highest ability as the optimized one.

However, this method could be calculated in the case of a small number of
mask set combinations. If the number of mask set combinations were to be in-
creased, this method would no longer be effective and reasonable to determine
the mask sets because the number of masks could be calculated as 2^ , where M
denotes the number of the least masked area, and that is 16 in these experiments.

cz
o
• —
+-»

.^
cr
O)
o
o

^

>>
- M

.^
• •

.—
CD-jQ

Q^ <a

70

• • •

• • • • •
• I l l T 1 11 iTi i#l

1 5 10 15 20 25

Trial mask set number
Figure 16 Abilities of the various random mask sets.

30

Paper Currency Recognition 147

B. B A S I C O P E R A T I O N S

OF THE G E N E T I C A L G O R I T H M

Under this background, we adopt the GA [11, 12] to the mask determination
as shown in some figures. The basic operations are stated as follows.

Coding

First, we prepare some random mask sets which are candidates of the
crossover. We represent the masked part as " 1 " and the nonmasked part as "0"
in the mask as shown in Fig. 17a. This coding is easily understood and satisfies
completeness, soundness, and nonredundancy, which are proposed as an evalua-
tion standard of coding [12].

Sampling

Second, we regard the ability of the mask set as an evaluation value of the GA.
We sample the mask sets which have the higher evaluation values as the parental
mask sets [10, 14, 15]. As shown in Fig. 17b, this sampling method is similar to
the roulette system which has the area in proportion to the evaluation value of the
mask set [10, 12, 14, 15]. Furthermore, we scale the ability of the mask set to
emphasize the superiority of the mask set [10, 12, 14, 15], which is given by

evaluation value = (AbiUty of the mask set)^. (3)

Crossover

We crossover the half parts of genes in the two parental mask sets as shown in
Fig. 17c. The crossover satisfies character preservation, which is proposed as an
evaluation standard of crossover [12].

Mutation

Furthermore, as shown in Fig. 18a, to provide variety to the crossovered mask
set, mutation, which reverses some bits of the genes in the mask, is randomly oper-
ated during the determination of the new mask. Learning is executed by using the
inputs obtained by the mask sets. After that, using unknown data we investigate
the generalization of the NN with mask sets, which means ability of the mask sets.

Selection

If we select only the descendant mask sets which satisfy purposive ability, there
is some risk such that descendant mask sets will disappear in a few generations.
We must maintain the number of descendant mask sets which are sampled for

CVJ

«o

t^

C
D

> O

CO

C
O

o

IL
,

o

-̂—
*"

o

—

^

11
®

D

—

(0

> c o

—

-H

(0
D

—

(Q

>
[iJ

0
C

/)

J^
f/1
<a
S

 CD

JT

h

H
-O

>s
•H

—

^ —

X
)

<
v

-^

t-H

o

2
-o

^

•g

o

'H
H

00

1-^

2 3D

(iM

Paper Currency Recognition 149

r e v e r s e b i t s

, 1 , 1, ,
n u n I inn I

ininin urn

type of mask

mask set A

mask set A'

abil ity selection

90%|| X

98%4| O

replacement

A'-^A

1 ability is improved

(a) m u t a t i on (b) s e I e c t i on

Figure 18 Mutation and selection of the basic GA operations: (a) mutation; (b) selection.

crossover in the next generation. As shown in Fig. 18b, we replace the parental
mask set by the crossovered one when the ability of the crossovered mask set is
better than that of the parental one [7-10,14,15]. Thus, the number of descendant
mask sets is maintained. Finally, we show the flowchart of the GA operations in
Fig. 19. By repeating a series of the GA operations, we can get excellent mask
sets in a few number of generations. These mask sets enable us to shorten the
learning time and to improve the generalization of the NN.

C. EXPERIMENTS USING U.S. DOLLARS

The experimental condition is the same as in Section III.A.l. The number of
mask sets is ten. We continue the GA operations until the purposive mask set
whose ability is more than 95% is obtained. Figure 20a shows the transition of
the ability of the mask set by the GA operations. We can obtain the purposive
mask set (mask set 5) in the fifth generation. Furthermore, we change the initial
mask sets and make an experiment one more time. Its result is shown in Fig. 20b.
The purposive mask set (mask set 9) was obtained in the sixth generation. Its
improvement rate is 20.3% [from 80.8% (initial) to 97.2% (final)]. For each ex-
periment, the average ability of every ten mask sets (one point dotted line in the
figure) is increased gradually.

From both experiments, we can obtain excellent mask sets in a few number of
generations and automatically by the proposed GA operations. The possibility that
the optimized mask set by the GA covers the area which have the picture similar to
a watermark is supposed to decrease [10, 15]. We analyze the result of this mask
determination of the experiment 2 in Fig. 20b. Figure 21 shows the changed genes
of the initial mask set. In this result, the second, tenth, thirteenth, and fourteenth
columns (arrow marks in the figure) have different pictures from each other for
every kind of US dollars [14, 15]. Here, we regard a column as an important
one when there are more than three bits which have "1 . " When the columns have

150 Fumiaki Takeda and Sigeru Omatu

[START]

set the initial mask sets A, B, •

regarding the masked
position as a gene

pet counter
K=o

sample the mask sets
for crossover

crossover between
A and B

crossovered
mask set A'

new mask set A' kH

X

mutation for A'

learning using the
each mask set A, A'

check the NN ability
using the unknown datal

NÔ "̂

1 renewal counter
1 K=K+i

-•-i!|. replace
A by A'

END

Figure 19 Flowchart of the GA operations.

Paper Currency Recognition 151

70

^
r ^^---^r^ Average ,^

XTarget Ability

D;mask setO

^;mask set9
\ L

2 3 4 5 6 7 8 9 10
G e n e r a t i on n u m b e r

(a)

mask setO

^ (iimask setO
J \ I I I I L

1 2 3 4 5 6 7 8 9 10
G e n e r a t i o n n u m b e r

(b)
Figure 20 Transition for the ability of the mask sets by the GA: (a) experiment 1; (b) experiment 2.

Initial
Gene

Changed
Gene /

2r\d 1 0 t h 1 3 t h 1 4 t h

change T Y j Y

^ j i |9PI9 | i |0 |n |n | , i , | i |9 l , i , l9 | i | c^
1i|V| i | , l , |n| i |n| ip|n|, i ,p|9| i | i |q

changed
masks

3 ; 3 : 4 2 - 2 g : l : 3 2 - 3 ; 2 : 2 3J 3 : 2 • 2 j ^ ^ - f p eOUenCY

" of the
mask

II ?l 31 41 51 61 71 81 911 nil]IIPll311411 ai61

paper currency

0 :masked area l:mask on 0:mask o f f

Figure 21 Analysis of the determined mask set by the GA.

152 Fumiaki Takeda and Sigeru Omatu

a similar figure for every kind of US dollars, we have conventionally checked
those columns and avoided them for the mask area manually [14, 15]. From this
result, we suppose that the mask set is automatically optimized in some degree by
the GA.

Thus, the proposed GA technique is effective to systematize the determina-
tion of the mask set. If the kind of paper currency is changed from US dollars to
another kind, the better mask set to the paper currency can be easily and automat-
ically determined in a short period by the proposed GA technique [14, 15].

IV. DEVELOPMENT OF THE NEURO-RECOGNITION
BOARD USING THE DIGITAL SIGNAL PROCESSOR

A. DESIGN ISSUE USING THE CONVENTIONAL DEVICES

We show the neuro-experimental systems which are developed using a single-
board computer. Figure 22a is the original type and Fig. 22b is its portable one
[5, 7, 13]. These experimental systems can recognize eight pieces of the paper
currency per second. However, their recognition speed is not enough for real-time
systems such as the banking machines, since we have to recognize one piece of
the paper currency for several tens of seconds, which is the recognition interval of
the paper currency. If we use the ordinary low-cost CPU (central processing unit)
such as Intel's 180 series which is used in the current recognition machines, its
calculation speed for the neuro-transaction is not enough to recognize the paper
currency in real time [13].

Meanwhile, it has been reported that there are various neuro-devices such as a
super parallel computer, a neuro-accelerator, and a special neuro-chip such as In-
tel's 80170NX as shown in Fig. 23 [13,16-20]. Their calculation speeds are quite
enough for the current banking machines. However, they are very expensive and
are just on the way to development. Thus, we cannot adopt these neuro-devices
to the design of the banking machines. We need another neuro-device which has
low cost and whose calculation speed is enough for the real-time computation.

B. BASIC ARCHITECTURE OF THE
NEURO-RECOGNITION BOARD

To realize the neuro-paper currency recognition in the commercial products,
we have developed a high-speed neuro-recognition board using the DSP as shown
in Fig. 24 [7-10,13-15]. Figure 24a shows the first type and Fig. 24b shows the
second one. In Fig. 24a, the left side is the DSP circuit and the right side is the

Paper Currency Recognition 153

(a)

Figure 22 Initial neuro-experimental systems: (a) original type; (b) portable type.

interface circuit for the sensors. This DSP (TMS320C31) is produced by Texas
Instruments. It runs under 33 MHz machine clock and its performance is 33.3
MFLOPS (miUion floating-point instructions per second) as shown in Fig. 23.
Figure 25 shows the block diagram of the neuro-recognition board. The neuro-
program boots up from EPROM (electrical programmable read only memory).
The neuron's weights are saved in flash memory and they can be renewed by the
connected extra-computer easily. Furthermore, the adopted DSP has the exponen-
tial function which is used in the sigmoid function [f(x) = 1/(1 + exp(—x))]
as a library. This enables easy implementation of the neuro-algorithm from EWS
(engineering work station) or another large computer to the real-time systems. Its

154 Fumiaki Takeda and Sigeru Omatu

10̂

human being

water scale.
Integration

r

I S T i
neurojchip
(n.fljftni)

"oproelectT onics

1^—LSI neuro-chip {0,2/tm)
-\ super computer 2000

(lOOGFLOPS)

neuro-accelerator

Adopted DSP

present super computer
(IGFLOPS)

10̂ 10̂ 10̂ 10^

In terconnec t ion

Figure 23 Comparison of the special neuro-devices.

10'

(b)

Figure 24 Feature of the neuro-recognition board: (a) first type; (b) second type.

Paper Currency Recognition 155

1 extra-
conputer

level
converter

SRAM (1)
OOOOOOh
-OOFFFFh

SRAM (2)

SRAM (3)
020000h
-02FFFFh

EPRQM
400000h
-47FFFFh

Flash Memory
eoooooh
-63FFFFh

18251
AlOOOOh
-AlOOOlh

DSP

1

DPRAM
AOOOOOh
-AOIFFFh

HC273
FOOOOOh

HC244
FlOOOOh

FIFO (1)
BOOOOOh

FIFO (2)
BlOOOOh

mechanisn
control
CPU

sensor
circuit

sensor
circuit

Figure 25 Block diagram of the neuro-recognition board.

computational speed is ten times faster compared with the current recognition ma-

chines [13-15]. Figure 26 shows the construction of the neuro-software modules.

Core parts of this neuro-recognition algorithm are written in Assembly language

and other parts are written in C language.

m a I n () (

r e a d _ I m a g e () ;

s r c h c n t r ()

n o r m a z e () ;

m k s 1 a b () ;

c a 1 _ m o u t (

c a 1 _ n o u t () ;

read image data
^ of the paper currency

detect edge and search
center of the paper currency

normalize image

-^ make slab values
f o r N N

-̂ calculate output values
of hidden layer

-^ calculate output values
of output layer

Figure 26 Construction of the neuro-software modules.

156 Fumiaki Takeda and Sigeru Omatu

V. UNIFICATION OF THREE CORE TECHNIQUES

We unify the small-size neuro-recognition technique using masks, the mask
determination technique by the GA, and the high-speed neuro-recognition board
technique to realize the development of the worldwide paper currency recog-
nition machine [14]. We have developed several business prototypes using the
neuro-system technique as shown in Fig. 27. We have realized the neuro-banking
machine which can transact the Japanese yen, the US dollar, the German mark,

(b) (c)
Figure 27 Business prototypes for currency recognition using the neuro-technique: (a) prototype 1;
(b) prototype 2; (c) prototype 3.

Paper Currency Recognition 157

the Belgian franc, the Korean won, the AustraHan dollar, and the British pound
by only changing the neuro-weights and mask set. In these experiments, we use
about 50 to 100 pieces of paper currency for each kind as learning data and eval-
uate more than about 20,000 pieces for each country's paper currency. Especially,
we test the abilities for Japanese yen and US dollar using about 100,000 pieces
of the paper currency which are sampled in the commercial market and involve
worn-out, defective, and new paper currency. For every testing, recognition ability
is more than 97%. There is no error recognition. Here, in these experiments, we
regard a pattern according to the output unit which has the highest response value
as a neuro-judged pattern. In order to increase the reliability of recognition, we
check the highest value by a threshold level and check the difference between the
highest response value and the second highest by another threshold level. Even if
the neuro-judged pattern is correct because its unit has the highest response value,
the paper currency will be rejected unless the above two checks are satisfied.

Furthermore, connecting the extra-computer to the neuro-recognition board,
image data of the paper currency is transported to the extra-computer and learn-
ing is executed on it. After learning, the neuro-weights are easily downloaded to
the flash memory. In this way, we can easily develop the paper currency recog-
nition machines [14, 15]. Therefore, each development period for each country's
paper currency needs less than one-fifth the work compared with the conventional
developing style and its recognition method. We suppose that all calculation for
recognition on one piece of the paper currency is 100; it needs 28, 35, and 37 for
the detecting currency edge from the image frame, mask transaction, and neuro-
calculation, respectively.

We illustrate the first construction of the NN for the US dollars as shown in
Fig. 28. In this case, we use the random numbers to decide the mask sets. Since

iiage data from
sensor 1

inag
sens

part of mi
processing

e Jata from
orl

J((X> {

,. I j u d g e m e n t
^ b y t h e NN

i s $1

Figure 28 Initial construction of the NN for US dollars.

158 Fumiaki Takeda and Sigeru Omatu

we i ght
f i le r

USA
•JAPAN

GERMANY

O M l head upright

O M l head inverse

c 4 ^ 1 0 0 t a i l upright

^^lasked area 'fm^ the slab values

Figure 29 Universal construction of the NN using the optimized mask set by the GA.

all US dollars have similar patterns to each other and their basic color is green,
recognition of US dollars is the most difficult problem [4, 9, 10]. In this figure,
we use two NNs to recognize one piece of the paper currency. Namely, we sample
the head and tail images [4, 5] of the paper currency at the same time using two
sensors, up side one and down side one. One of the NNs obtains the tail images
(landscape images). Then we decide the paper currency's kind by only that one
NN which transacts the tail images, because the head images (figure images) of
the paper currency are too similar to each other to recognize the currency's kind,
while the tail images (landscape images) are not so similar to each other.

However, we optimize the mask set for US dollars using the proposed GA
technique. Then we can also recognize kinds of US dollars by using the head
images (figure images). We show the second construction of the NN for US dollars
in Fig. 29. In this case, we need only one sensor's data to recognize the kind of US
dollars owing to the excellent mask set [14, 15]. This construction can become a
universal one for every kind of paper currency by changing the mask set and
weights.

VI. CONCLUSIONS

We have proposed a paper currency recognition method using a NN. Espe-
cially, we have proposed three core techniques. The first is the small-size neuro-
recognition technique using masks. The second is the mask determination tech-
nique using the GA. The third is the neuro-recognition board technique using the
DSP. By unification of these three techniques, we confirmed realization of neuro-

Paper Currency Recognition 159

recognition machines which can transact various kinds of paper currency. The
neuro-system technique enables us to accelerate the commercialization of a new
type of banking machine in a short period and in a few trials.

Furthermore, this technique will be effective for various kinds of recognition
applications owing to its high ability for recognition, high-speed transaction, short
developing period, and reasonable cost. We suppose that it is effective enough to
apply to not only paper currency and coins but also handwritten symbols such as
election systems or questionnaires.

REFERENCES

[1] F. Takeda and S. Omatu. High speed paper currency recognition by neural networks. IEEE Trans.
Neural Networks 6:13-11, 1995.

[2] F. Takeda, S. Omatu, T. Inoue, and S. Onami. A structure reduction of neural network with
random masks and bill money recognition. In Proceedings of the 2nd International Conference
on Fuzzy Logic and Neural Networks IIZUKA'92, Vol. 2, pp. 809-813. lizuka, Japan, 1992.

[3] F. Takeda, S. Omatu, T. Inoue, and S. Onami. High speed conveyed bill money recognition
with neural network. In Proceedings of International Symposium on Robotics, Mechatronics and
Manufacturing Systems'92, Vol. 1, pp. 16-20. Kobe, Japan, 1992.

[4] F. Takeda and S. Omatu. Bank note recognition system using neural network with random masks.
In Proceedings of the World Congress on Neural Networks, Vol.1, pp. 241-244. Portland, OR,
1993.

[5] F. Takeda and S. Omatu. Recognition system of US dollars using a neural network with random
masks. In Proceedings of the International Joint Conference on Neural Networks, Vol. 2, pp.
2033-2036. Nagoya, Japan, 1993.

[6] B. Widrow, R. G. Winter, and R. A. Baxter. Layered neural nets for pattern recognition. IEEE
Trans. Acoust., Speech Signal Process. 36:1109-1118, 1988.

[7] F. Takeda, S. Omatu, S. Onami, T. Kadono, and K. Terada. A paper currency recognition method
by a small size neural network with optimized masks by GA. In Proceedings of IEEE World
Congress on Computational Intelligence, Vol. 7, pp. 4243-4246. Orlando, FL, 1994.

[8] F. Takeda, S. Omatu, S. Onami, T. Kadono, and K. Terada. A paper currency recognition
method by a neural network using masks and mask optimization by GA. In Proceedings of
World Wisemen/Women Workshop on Fuzzy Logic and Neural Networks/Genetic Algorithms of
lEEE/Nagoya University, Nagoya, Japan, 1994.

[91 F. Takeda and S. Omatu. A neuro-money recognition using optimized masks by GA. Advances in
Fuzzy Logic, Neural Networks and Genetic Algorithms, Lecture Notes in Artificial Intelligence
1011, pp. 190-201. Springer-Verlag, Berlin/New York, 1995.

[10] F. Takeda and S. Omatu. A neuro-paper currency recognition method using optimized masks
by genetic algorithm. In Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, Vol. 5, pp. 4367^371. Vancouver, Canada, 1995.

[11] D. E, Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[12] Kitano. Genetic algorithm. Sangyo Tosyo, pp. 44-60, 1993. [in Japanese]
[13] F. Takeda and S. Omatu. Development of neuro-paper currency recognition board. Trans. lEE

Japan 116-C:336-340, 1996. [in Japanese]
[14] F. Takeda and S. Omatu. A neuro-system technology for bank note recognition. In Proceedings

of Japan-USA Symposium, Vol. 2, pp. 1511-1516. Boston, MA, 1996.

160 Fumiaki Takeda and Sigeru Omatu

[15] F. Takeda and S. Omatu. A neuro-recognition technology for paper currency using optimized
masks by GA and its hardware. In Proceedings of International Conference on Information Sys-
tems Analysis and Synthesis, pp. 147-152. Orlando, FL, 1996.

[16] J. Ghosh and K. Hwang. Critical issues in mapping neural networks on message-passing multi-
computers. Presented at the 15th International Symposium on Computer Architecture, 1988.

[17] J. Alspector, R, B. Allen, V. Hu, and S. Satyanarayana. Stochastic learning networks and their
electronic implementation. In Proceedings of Neural Information Processing Systems—Neural
and Synthetic, Denver, CO, 1987.

[18] N. H. Farhat, D. Psalits, A. Prata, and E. Paek. Optical implementation of the Hopfield model.
Appl Optics 24:U69-U15, 1985.

[19] J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale. Optical interconnection for VLSI
systems. Proc. IEEE 12:S50-S66, 1984.

[20] R. Hect-Nielsen. Performance limits of optical, electro-optical and electronic neurocomputers.
TRW Rancho Carmel AI Center Report, pp. 1^5, 1986.

Neural Network
Classification Reliability:
Problems and Applications

Luigi P. Cordelia
Dipartimento di Inf ormatica
e Sistemistica
Universita degli Studi di
Napoli "Federico II"
Via Claudio, 21
1-80125 Napoli, Italy

Mario Vento
Dipartimento di Inf ormatica
e Sistemistica
Universita degli Studi di
Napoli 'Tederico IF'
Via Claudio, 21
1-80125 Napoli, Italy

Carlo Sansone
Dipartimento di Informatica
e Sistemistica
Universita degli Studi di
Napoli 'Tederico IF'
Via Claudio, 21
1-80125 Napoli, Italy

Claudio De Stefano
Facolta di Ingegneria
di Benevento
Dipartimento di Ingegneria
delFInformazione ed
Ingegneria Elettrica
Universita degli Studi di
Salerno
Piazza Roma, palazzo Bosco
Lucarelli
1-82100 Benevento, Italy

Francesco Tortorella
Dipartimento di Informatica
e Sistemistica
Universita degli Studi di
Napoli 'Tederico IF'
Via Claudio, 21
1-80125 Napoli, Italy

L INTRODUCTION

Classification is a process according to which an entity is attributed to one of
a finite set of classes or, in other words, it is recognized as belonging to a set
of equal or similar entities, possibly identified by a name. In the framework of
signal and image analysis, this process is generally considered part of a more
complex process referred to as pattern recognition [1]. In its simplest and still

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 161

162 Luigi P. Cordelia et al

most commonly followed approach, a pattern recognition system is made of two
distinct parts:

1. a description unit, whose input is the entity to be recognized, represented
in a form depending on its nature, and whose output is a generally
structured set of quantities, called features, which constitutes a description
characterizing the input sample. A description unit implements a
description scheme.

2. a classification unit, whose input is the output of the description unit and
whose output is the assignment to a recognition class.

These two parts should not be considered perfectly decoupled, although this
assumption is generally made for the sake of simplicity. In the following the term
pattern recognition will be used in general to refer to the whole process culminat-
ing in classification, even if no hypotheses are made on the nature of the entities to
be recognized. In fact, it is obvious that, in order to be classified, a sample entity
has to be represented in terms that are suitable for the classifier. However, without
affecting the generality of the treatment, examples will usually be taken from the
field of image recognition.

Selecting the features to be used in the description phase is one of the most del-
icate aspects of the whole system design since general criteria for quantitatively
evaluating the effects of the performed choices are not available. In the case of im-
ages, for instance, the main goal of the description phase is to transform a pictorial
representation of the input sample, often obtained after a preliminary processing
of the initial raw data, into an abstract representation made up of a structured set
of numbers and/or symbols. Ideally, the whole process leading up to description
should be able to select the most salient characteristics shared by all the samples
of a same class so as to have identical descriptions for all of them, while keep-
ing the descriptions of samples belonging to different classes quite separate. In
practice, in application domains characterized by high variability among samples,
it is extremely difficult to obtain descriptions near to the ideal ones. The aim of
the classifier is to obtain the best possible results on the basis of the descriptions
actually available.

Without losing generality, it can be said that a classifier operates in two subse-
quent steps:

(i) a training phase, during which it is provided with specific knowledge on
the considered application domain, using information about a representative set of
samples (training set) described according to the considered description scheme.
If the samples of the training set are labeled, i.e., their identity is known, the
training is said to be supervised; otherwise it is unsupervised.

(ii) an operative phase in which the description of a sample to be recognized
is fed to the classifier that assigns it to a class on the basis of the experience
acquired in the training phase. Equivalently, classification can be described as the

Neural Network Classification Reliability 163

matching between the description of a sample and a set of prototype descriptions
generally defined during the training phase.

Different approaches to classification have been proposed in the past, from the
purely statistical ones to those based on syntactic and structural descriptions, to
hybrid schemes [2 ^] . These will be briefly reviewed in Section 11.

In recent years, artificial neural networks (ANN) [5] have come back into favor
and their use for classification purposes has been widely explored [6]. In an in-
ternational competition held in 1992 [7], about 40 character recognition systems
were compared on a common data base of presegmented handwritten characters
(NIST) [8], and the top ten used either neural classifiers or nearest neighbor meth-
ods [9]. There has been experimental evidence that the performance of neural
network classifiers can be considered comparable to that obtained by using con-
ventional statistical classifiers. Moreover, the ANN abiUty to learn automatically
from examples makes them attractive and simple to use even in complex domains.

Regardless of the classification paradigm adopted, a problem of great practical
interest lies in the evaluation of the reliability of the decisions taken by a classifier.
Classification reliability can be expressed by associating a reliability parameter to
every decision taken by the classifier. This is especially important whenever the
classifier deals with input samples whose descriptions vary so much with respect
to the prototypal ones that the risk of misclassifying them becomes high. In the
framework of a recognition system, the knowledge of classification reliabihty can
be exploited in different ways in order to define its action strategy. One possibility
is to use it to identify unreliable classifications and thus to take a decision about
the advantage of rejecting a sample (i.e., not assigning it to a class), instead of
running the risk of misclassifying it. In practice, this advantage can only be eval-
uated by taking into account the requirements of the specific application domain.
In fact, there are applications for which the cost of a misclassification is very high,
so that a high reject rate is acceptable provided that the misclassification rate is
kept as low as possible; a typical example could be the classification of medical
images in the framework of a prescreening for early cancer detection. In other
applications it may be desirable to assign every sample to a class even at the risk
of a high misclassification rate; let us consider, for instance, the case of an optical
character recognition (OCR) system used in applications in which a text has to
be subjected to subsequent extensive editing by man. Between these extremes, a
number of applications can be characterized by intermediate requirements. A wise
choice of the reject rule thus allows the classifier behavior to be tuned to the given
application.

Classification reliability also plays a crucial role in the realization of multi-
classifier systems [10, 11]. It has been shown that suitably combining the results
of a set of recognition systems according to a rule can give a better performance
than that of any single system: it is claimed that the consensus of a set of sys-
tems based on different description and classification schemes may compensate
for the weakness of the single system, while each single system preserves its own

164 Luigi P. Cordelia et al

strength. The knowledge of classification reliability can be profitably used to de-
fine the combining criteria.

The main aspects of some of the most commonly used description and classi-
fication methods will be summarized in Section II. Neural networks and their use
for classification will be discussed in Section III, while classification reliability in
its different meanings will be reviewed in Section IV. Section V will be devoted to
the problem of evaluating the classification reliability of neural classifiers; evalu-
ation criteria for different neural network architectures will be proposed. Section
VI discusses the problem of introducing a reject option and illustrates a method
for selecting the reject threshold value in such a way as to obtain the best trade-off
between recognition rate and reject rate, taking into account the specific require-
ments of the considered application. Finally, two applications of the illustrated
techniques are discussed in Section VII: the first is in the field of automatic recog-
nition of isolated handprinted characters, and the second refers to the automatic
detection and identification of faults in electrical systems.

11. CLASSIFICATION PARADIGMS

One of the most widely followed approaches to classification, such that the
term pattern recognition virtually identified with it until the late 1970s, is the sta-
tistical one [2]. According to it, a sample to be classified is characterized by a set
of measures performed on it (feature vector) and then represented by a point in a
feature hyperspace. Examples of widely used image features are moments of var-
ious order, transforms and series expansions, and local and geometric properties
[12]. A potentially large set of easy-to-detect features can be initially extracted
and then subjected to discriminant analysis methods in order to select a subset of
features as much as possible uncorrelated.

According to the statistical approach, a training set made up of labeled sam-
ples is assumed to statistically represent the data set on which the classifier has to
work. During the training phase, suitable algorithms exploiting knowledge about
the training set make it possible to partition the feature hyperspace into regions
(decision regions) and to associate each region to a class. Alternatively, the train-
ing phase results in the identification of the class prototypes. The aim of training
algorithms is to perform the above tasks in such a way as to minimize the er-
rors over the training set, and the representativeness of the training set is thus a
necessary condition for the effectiveness of the method.

The problem can be formalized in the following terms: let Z = {jc;̂ }, k =
1 , . . . , r, be the feature vector representing a generic sample and N the number of
classes of interest. A canonical way of describing the functions of a classifier is as
follows: the training phase leads to the definition of a set of functions Ft (X), / =
1 , . . . , Â , such that F,(X) > Fj(X), ij = 1 , . . . , Â , / / ; , if X belongs to

Neural Network Classification Reliability 165

the /th class. In the feature space, the boundary between two classes C/ and Cj is
given by the hypersurface for which F(X) = Fi(X) — Fj(X) = 0. Apart from
the feature selection problem, the definition of the discriminating functions among
classes is not at all trivial. Indeed, the simplest case is when the classes are linearly
separable, i.e., the boundary surfaces between classes are hyperplanes of equation

r

F(X) = J2^kXk-}-ao = 0. (1)
k=i

Of course, it is possible to think of nonlinear classifiers where the discriminating
function does not linearly depend on X.

From the operative point of view, different approaches are available according
to the case in question. Assuming that X is a random vector, in order to assign
it to the /th class, the Bayesian approach to classification entails first evaluating
the a posteriori probability that, given the vector X, it belongs to the class C/,
i.e., P(Ci \X). Such a posteriori probabilities can be evaluated once the a priori
occurrence probability P(C/) of the class C/ has been given, together with the a
priori probability P(X\Ci) that the considered sample is X, after assuming that
it belongs to C/. X can be assigned to the class C/, according to the Maximum
Likelihood Decision Rule, if P(C/ \X) > P{Cj\X), /, y = 1 , . . . , Â , / 7̂ 7.

If P(X\Ci) is not known for the various classes, the parametric approach can
be used. This assumes a functional form for the a priori probability density func-
tions representing the distributions of the samples belonging to each class (e.g.,
the distributions may be Gaussian), and evaluates each P(X\Ci) by computing a
finite number of parameters characterizing the assumed distribution on the basis
of the samples of the training set. The parametric approach can use well-known
techniques of parameter estimation [2].

It may be desirable that, if the probability that a sample belongs to a certain
class is not sufficiently higher than the probability that it belongs to any other
class, the sample is rejected as not belonging to any of the defined classes. Note
that misclassifications are generally less acceptable than rejects and that, for a
properly defined reject rule, the curve representing the misclassification rate ver-
sus the reject rate for a given classifier is concave upward [13]. The problem of
finding the best trade-off between the reject rate and the misclassification rate, so
as to optimize the performance of the classifier, will be thoroughly discussed in
Section VI.

Unfortunately, in most real applications a parametric form cannot be assumed
for the probability density function, so that, in order to apply the likelihood rule,
a nonparametric approach to the problem is the only possible one. One of the
basic methods [14] estimates the unknown density by adding simple distributions
weighted by suitable coefficients. Another aspect of the nonparametric approach
is the design of a classifier without attempting to estimate the respective densities.

166 Luigi P. Cordelia et al

In this case the design of the classifier requires the definition of a function to
be used as the classification rule. A classical example is the A'-nearest neighbor
rule [9]: when a sample is to be classified, its K nearest neighbors in the reference
set are determined and the sample is assigned to the most frequent class among
those of the nearest neighbors. The ^-NN approach can be modified in order to
allow sample rejection so that if at least K^ (with K' < K) neighbors belong to
the same class, the sample X is assigned to it; otherwise, it is rejected [15].

An alternative way of determining a set of decision regions in the feature space
is to cluster the samples of the training set (whose identity, in this case, need not
necessarily be known) according to some of the available techniques [16]. In order
to achieve classification, the classes may have to be labeled after clustering.

Other available classification methods include the sequential method based on
decision trees [17], which under certain hypotheses can be both fast and effective.
According to this method, only a subset of the features chosen to characterize a
sample is actually used to arrive at a decision about the class of the sample. The
decision tree requires that the presence and/or value of a sequence of features is
checked in the given sample. The first feature to be checked is suitably fixed and
represents the root of the tree; the features to be considered in the subsequent
steps of the decision process depend on the result of the check made at each
previous step. The leaves of the tree may correspond to classes or rejects. The
classification process implies that a path is followed from the root to one of the
leaves. In the general case, more than one leaf may correspond to the same class.
Feature selection and decision tree design may be particularly complex and can
be carried out with either probabilistic or deterministic methods.

In the framework of image recognition, the structural approach to description
and classification has also been followed since the 1970s [3, 4]. This approach
attaches special importance to the feature selection problem: features represent-
ing image components that are meaningful from the geometric, morphological,
or perceptive points of view are considered more reliable in order to obtain ef-
fective descriptions. The classification problem, which is central to the statistical
approach, is here considered subordinate to the description problem; it is believed
that an adequate description allows simple classification techniques to be used.

The main assumption of the structural approach is that every complex structure
can be effectively subdivided into parts and described in terms of the component
parts and their relationships. To be effective, a decomposition has to be stable with
respect to the variations among samples belonging to the same class and such as
not to destroy information needed to discriminate among classes. Although this is
obviously not easy, the main reason why the approach is appealing is that, as the
features are parts of the considered pattern, they can be perceptively appraised.
This allows one to make some sort of a priori evaluation of the effectiveness of
the descriptions.

The very nature of structural features allows them to give rise to descriptions
outlining the structure of a pattern. Therefore, descriptions in terms of formal

Neural Network Classification Reliability 167

language sentences or attributed relational graphs can be conveniently employed.
Accordingly, language parsers and graph inexact matching methods [18] can be
used for classification. A more thorough discussion of the structural approach is
beyond the scope of this chapter but the approach has been mentioned because
some structural features will be used in one of the application cases illustrated in
Section VII.

III. NEURAL NETWORK CLASSIFIERS

Artificial neural networks are an attempt to emulate the processing capabil-
ity of biological neural systems. The basic idea is to realize systems capable of
performing complex processing tasks by interconnecting a high number of very
simple processing elements which may even work in parallel. The elements which
substantially characterize the different types of ANNs that have been proposed so
far are the network topology, the operation performed by the neurons, and the
training algorithm. Almost all the network architectures share the simpHcity of
the elementary operations performed, the relatively straightforward use, and the
short computation time in the operative phase, all of which make them particu-
larly appealing for a number of applications and especially for classification. In
this section we will assume that basic architectural and functional characteristics
of neural networks are known, and we will point out some problems related to
their use as classifiers.

The design of neural network classifiers implies a number of choices which
can significantly influence the results during both the training phase (also referred
to as learning phase) and the operative phase. According to the problem at hand,
the network architecture can be chosen among the several ones proposed in the
literature [19], and the network can be suitably sized by choosing the number of
component neurons and the way they have to be interconnected. The number of
neurons could be initially fixed and remain unchanged during the training phase
or could be dynamically modified through appropriate techniques [20, 21]. In the
former case, the most suitable number of neurons for the specific case has to
be estimated before the learning phase on the basis of criteria depending on the
sample distribution in the feature space [22]. In the latter case, the initial choice
is less critical, but the methods that have so far been available for modifying the
number of neurons cannot be considered generally applicable, since they have
only been tested for simple case studies.

As for the training phase, possible choices regard the algorithm and modality
of learning, selection of the training set, and determination of the optimal time to
stop the learning procedure. Not only are different learning algorithms available
for different network architectures, but initial conditions [5], training modality
(supervised, unsupervised, or graded), and learning strategy [23] can be selected
in a number of different ways. Criteria for selecting the optimal size of the training

168 Luigi P. Cordelia et al

set have been proposed [5], as have suitable learning strategies for the case in
which a slender number of samples is available for training [23]. Even the order
in which the samples are fed into the net during training has to be controlled in
order to avoid polarization effects which could lower performance in the operative
phase [24].

The number of learning cycles performed affects the generalization capability
of the network, i.e., its ability to correctly classify samples quite different from
those present in the training set. In fact, if the number of learning cycles is too
high, the network becomes too specialized on the training set, thus losing its gen-
eralization capability (overtraining phenomenon). A possible method to avoid the
overtraining of the classifier is the one proposed in [23]. An additional set, called
the training-test set and disjoined from the training set, is used to periodically
check the error rate. While the error rate on the training set monotonically de-
creases with the number of learning cycles, the error rate on the training-test set
first reaches a minimum and then increases. The minimum corresponds to the
optimal number of learning cycles in order to avoid overtraining. Also the way
the training set is chosen can influence the generalization capability of a neural
classifier [25, 26].

In the following, some of the most frequently used neural network architec-
tures will be illustrated, with reference to their use as classifiers and to the design
problems discussed above, by outlining differences and common aspects. The
considered neural network architectures (see Table I) are the multilayer percep-
tron (MLP) [27], the radial basis function network (RBF) [28], the learning vector
quantization network (LVQ) [29], the self-organizing map (SOM) [29], the adap-
tive resonance theory network (ART) [30], the probabilistic neural network (PNN)
[31], and the Hopfield network [32]. Networks can be subdivided into feedforward
networks (Fig. la) where data flow one way from input to output, and recurrent
networks for which the output values are fed back to input (Fig. lb). Some net-
works (Fig. Ic) allow connections between neurons in the same layer (lateral con-
nections). For feedforward networks a further subdivision can be made between
feature-based and prototype-based networks: the former try to learn the functional
mapping, normally nonlinear, existing between pairs of input-output vectors dur-
ing the training phase, while the latter abstract the prototypes from the training
set samples. Some relevant features of the classifiers which can be implemented
with the considered network architectures will be summarized in the following.

The most frequently used feedforward network is the MLP [27] belonging to
the feature-based category. In this case, learning can be seen as the process of
fitting a function to a given set of data or, equivalently, of finding the hyperplanes
separating the decision regions of the feature space.

The output layer is made of as many neurons as the number of classes. It would
be expected that if, during training, a sample belonging to the A:th class is pre-
sented to the network input, the kih output neuron will assume a value equal to

Neural Network Classification Reliability 169

Table I

Some of the Most Frequently Used Neural Classifiers

Architecture

MLP
RBF

LVQ

SOM
ART
PNN
Hopfield

Connection
scheme

Feedforward
Feedforward

Lateral connection

Lateral connection
Lateral connection
Feedforward
Recurrent

Training
modality

Supervised
Supervised

and unsupervised
Supervised

or unsupervised
Unsupervised
Unsupervised

—
Unsupervised

Learning rule

Error-correction
Error-correction

and competitive
Competitive

Competitive
Competitive

—
Error-correction

Learning
algorithms

Back-propagation
RBF learning

algorithm
LVQ1,RPCL,FSCL

Kohonen's SOM
ART1,ART2

—
Hebbian rule

1 while all the other outputs will assume a value equal to 0 (ideal output vector).
In practice, the status of the output vector is generally different from the ideal
one (i.e., the values of its elements may be numbers in the interval [0,1]), and
the input sample is attributed to a class according to some rule. The simplest rule
is winner-takes-all, according to which the input sample is attributed to the class
whose output neuron has the highest value.

As regards network sizing, the number of hidden layers and the number of
neurons per layer influence the form of the decision regions in the feature space
[22]. Too many neurons per layer may cause an overfitting of the data and the
network risks becoming too specialized on the training samples. On the contrary,

QOQ Q

(a) (b) (c)

Figure 1 Three neural networks with different types of connections: (a) a feedforward network,
(b) a network with lateral connections, and (c) a recurrent network.

170 Luigi P. Cordelia et al

with too few neurons, the network cannot reach a satisfactory recognition rate
even on the training set. Different algorithms for the automatic sizing of an MLP
net have been proposed [20, 33], in addition to methods for pruning oversized
nets [21].

The MLP training modaUty is normally supervised; the most common algo-
rithm is the back-propagation (BP), which is quite slow, but there are plenty of
proposals aiming to make it faster, and there are also faster alternative training
algorithms [34-36]. On the contrary, in the operative phase, the network is ex-
tremely fast. The presence of several local minima on the error surface may cause
the training to stop in a minimum that could be very different from the absolute
minimum. Suitable training algorithms are available to prevent the net getting
trapped in a local minimum [37]. The presence of flat spots [38], i.e., net config-
urations such that the weight variations computed by the BP algorithm are very
close to zero, implies that the training algorithm does not converge and is gen-
erally related to the problem of choosing the net initial conditions. In [5] some
general criteria for a correct initialization, basically depending on the size of the
input vector, are presented.

In the case of feature-based networks, the knowledge acquired during the train-
ing phase is completely spread over the net connection weights and therefore the
single prototypes of the classes cannot be identified.

The LVQ classifier belongs to the so-called prototype-based category: during
training it generates the prototypes of the classes by performing a clustering over
the input space. In the operative phase, an input sample is assigned to the class
characterized by the shortest distance from one of its prototypes. The Euclidean
distance is commonly used. The set of weights associated with the connections
between the neurons of the input layer and each of the output neurons represents
a prototype generated by the network on the basis of the samples included in the
training set. The learning algorithms can be either supervised or unsupervised and
belong to the competitive learning category [23], i.e., they have the property that
a competition among some or all of the neurons of the net always takes place
before each learning step. At each step, the neuron winning the competition is
allowed to modify its weight in a different way from that of the nonwinning units.
In the supervised case, each output neuron is associated with one class before
the training starts. In the unsupervised case, the output neurons must be labeled
after training in order to allow classification; this can be done only after the whole
training set has been examined, by associating a neuron to the class for which it
obtained the highest winning frequency.

In both cases, identifying the prototypes gives rise to a Voronoi tessellation of
the feature space. Each region of this partition is associated with a prototype and
all the samples belonging to one region are attributed to the class of that proto-
type. One of the problems typical of this architecture is neuron underutilization:
for particular configurations of the points representing the samples in the feature
space, some neurons cannot modify their weights during training and remain un-

Neural Network Classification Reliability 171

used. Algorithms substantially based on a modified distance calculation, which
takes into account the number of times each neuron wins the competition, make
it possible to overcome this problem [39-41].

Training is somewhat faster than for the MLP network and the overtraining
problem is not nearly as important [23]. In order to guarantee the convergence of
the training algorithm [29], the learning rate value has to be a decreasing function
of the number of learning cycles (for instance, by varying the learning rate on
the basis of the Robbiiis-Monro stochastic approximation [42]). This makes it
possible to avoid the problem of choosing when the training has to be stopped.
However, the results obtainable during training are significantly dependent on the
initial value of the learning rate [43].

The SOM is another example of a prototype-based net. It works like the LVQ
net, but since its training algorithm is unsupervised, its output neurons must even-
tually be labeled. In comparison with the LVQ net, the SOM has a bidimensional
structure which makes it more suitable if it should be desirable to map the features
of the input samples onto a bidimensional space. Moreover, its training algorithm
makes it possible to update more than one neuron each time, in order to prevent
the problem of neuron underutilization.

Another prototype-based architecture is the one founded on the adaptive reso-
nance theory. This network has a complex training algorithm which tries to solve
the so-called plasticity-stability dilemma [30], i.e., it aims to find a trade-off be-
tween the network ability to learn new samples (plasticity) and its ability to cor-
rectly classify the already seen samples (stabihty). The training algorithm gener-
ates new prototypes only when an input sample is sufficiently different from all
the already generated prototypes. This eliminates the need to repeat the training
if there are new samples to be learned. In contrast, if the MLP net is trained on a
new set of samples, it forgets the previously learned set [24].

The RBF network represents a hybrid solution between feature-based and
prototype-based architectures. In fact, it is made up of a hidden layer whose neu-
rons are trained through competitive unsupervised algorithms and whose weight
vectors represent the prototypes. These neurons are connected to an output layer
of perceptrons. To work as a classifier, even in this case, the output layer has to be
made up of as many neurons as there are recognition classes. The main difference
between the RBF and the MLP nets is that the hidden neurons of the RBF have
a Gaussian activation function instead of the sigmoidal function normally used
for the MLP. The number of neurons of the hidden layer needed to solve a given
problem may be significantly larger for the RBF than for the MLP. Vice versa,
the duration of the training phase is significantly lower for the RBF than for the
MLP, even if the latter is not trained with the BP algorithm [26]. Algorithms for
optimally sizing the hidden layer have also been proposed for the RBF [41].

The basis for the PNN classifier is a probabilistic model. According to a non-
parametric approach based on the Parzen method [14], the probability density
functions of the samples of the training set are estimated and the a posteriori

172 Luigi P. Cordelia et al

probabilities that a sample belongs to a given class are then computed. The input
sample is assigned to the class with the highest a posteriori probability. Unlike
the previous ones, this type of network does not have an explicit training phase,
because it has as many neurons as the vectors of the training set. The main prob-
lems are the amount of memory needed and the amount of time necessary for
classification. Methods for decreasing classification time by using a subset of the
whole training set are proposed in [44,45].

Finally, the Hopfield network is an example of a recurrent network classifier.
During the training phase, the input samples are stored by associating them with
the same number of stable states, i.e., states for which a suitable energy function
associated with the net has reached a minimum. In the operative phase, an input
sample is associated with the nearest stable state so that the net can work as a
classifier once every possible state has been labeled. Nevertheless, the network
may reach a stable state different from those reached in the training phase (spu-
rious state); in this case, it is impossible to classify the sample. Moreover, unlike
the other mentioned architectures, this net does not provide any output vector.
The only output information, in the operative phase, is given by the stable state
reached by the net.

IV. CLASSIFICATION RELIABILITY

In the field of classification, the term reliability can be (and sometimes has
been) used with at least two different meanings. According to the first, classifica-
tion reliability gives an estimate of the probability that the classifier assignment
of an input sample to a class is correct. In this sense, it could be represented by a
parameter associated with each decision taken by the classifier. The second mean-
ing refers to a more global measure of the classifier performance in the specific
task considered. In this case, a parameter associated with the classifier could mea-
sure its "effectiveness" in the context in which it is used. In the following, we will
use the term classification reliability in the former meaning, whereas for the lat-
ter case we will use the term classifier effectiveness. A third way in which the
term reliability might be used, with reference to the performance of a network
when some of its internal connections are disabled, or more generally to the fault
tolerance of the system, will not be considered in this chapter. The quantitative
evaluation of both classification reliability and classifier effectiveness is of great
practical importance, as will be shown below.

In the general frameworks of pattern recognition and statistical decision the-
ory, the reliability problem has been tackled from various points of view. The
Dempster-Shafer theory [46] and the fuzzy set theory [47] relate the problem of
evaluating the reliability of a performed classification to that of the uncertainty
measure. In the former case, a number in the range [0, 1] indicates belief in a

Neural Network Classification Reliahility 173

hypothesis on the basis of a certain amount of evidence. In the fuzzy set theory,
class membership is not binary, but is represented by the value of a function in the
interval [0, 1].

In [10, 48], a reliability parameter, defined as the ratio of recognition rate to
the sum of recognition rate and error rate, is used to measure the overall reliability
of the considered classifier. The term reUability is used with a meaning similar to
what we have here called classifier effectiveness, but the defined parameter does
not take into account the peculiarities of the particular application domain.

Other approaches [15, 49] do not directly measure the reliability of a classifi-
cation, but introduce costs to measure the risk of performing a classification and,
using a probabilistic model, take the decision to classify or to reject on the basis
of a minimum risk principle.

The reliability problem, in each of its possible meanings, has not often been
considered in the literature regarding neural network classifiers. When it has been
tackled, particular cases or specific frameworks have been considered. For in-
stance, some authors have proposed criteria to improve classification reliability,
intended as the ability of the classifier to reject significantly distorted samples
[50, 51], but without giving a precise definition of classification reliability nor
providing a method for measuring it. In [50], it is suggested using a neuron acti-
vation function different from the sigmoidal one with MLP classifiers, in order to
obtain decision regions that are more strictly representative of the samples present
in the training set and more sharply separated from each other. In this way, sam-
ples whose representative points fall outside these regions can be rejected and
reUability can thus be improved. In [51], a system made up of two neural net-
works is illustrated: the first net works as a normal neural classifier, while the
second is essentially devoted to detecting the errors made by the first one. This
second network is trained with a training set containing the samples misclassified
by the first network. Reliability is improved because some errors can be detected
and the samples causing them rejected.

Other papers propose techniques to evaluate what we have called classification
reliability, but they are based on criteria strictly depending on the architecture
taken into account and cannot be immediately extended to other architectures. In
[52], a new training algorithm for the MADALINE network architecture [24] is
presented. A suitable function of the state of the output neurons is defined and a
decision of the classifier is considered acceptable if the value of the function is
higher than an upper reject threshold, unacceptable if it is below a lower thresh-
old. Otherwise there are no elements for taking a decision. The thresholds are
evaluated on the basis of the Dempster-Shafer theory [46], but without taking
into account the requirements of the considered application domain. Moreover,
the method is strictly dependent on the adopted network architecture and consid-
ers only nets with binary output vector. The system proposed in [53] integrates the
fuzzy logic with a classic MLP network. Some fuzzy functions are used to iden-

174 Luigi P. Cordelia et al

tify unreliable classifications, but general criteria to define them are not given, the
test data do not refer to a real problem, and the obtained results do not seem to be
applicable outside the considered case.

The approach to the reliability problem presented below aims to be more gen-
eral. A neural classifier is considered at a first level as a black box, accepting the
description of a sample (e.g., a feature vector) as the input and supplying a vec-
tor of real numbers as the output. Nothing needs to be known about the network
architecture nor about the way the learning process is carried out. After a formal
definition of the parameters assumed to measure classification reliability and clas-
sifier effectiveness, a method for quantitatively evaluating them is illustrated. The
situations in the feature space which can give rise to unreliable classifications are
characterized and put in correspondence to the state of the classifier output vector.
Therefore, the operative definition of the parameters allowing such situations to
be recognized and enabUng classification reliability to be quantified will depend
on the considered neural architecture. In Section V, we will define the parameter
measuring classification reUability for each of the different classifiers introduced
in Section III. In the following sections, the parameter will be used in the con-
text of a method implementing a reject option which can be regarded as optimal
with respect to the considered application domain, and the results of the method
applied in two complex classification problems will be presented.

V. EVALUATING NEURAL NETWORK
CLASSIFICATION RELIABILITY

The low reliability of a classification is generally due to one of the following
situations: (a) the considered sample is significantly different from those present
in the training set, i.e., its representative point is located in a region of the feature
space far from those occupied by the samples of the training set and associated
to the various classes; (b) the point which represents the considered sample in the
feature space lies where the regions pertaining to two or more classes overlap, i.e.,
where training set samples belonging to more than one class are present.

It may be convenient to distinguish between classifications which are unre-
liable because a sample is of type (a) or (b). To this end, let us define two pa-
rameters, say ^a and i/r̂ , whose values vary in the interval [0, 1] and quantify the
reliability of a classification from the two different points of view. Values near to 1
will characterize very reUable classifications, while low parameter values will be
associated with classifications unreliable because the considered sample is of type
(a) or (b). Note that in practice it is almost impossible to define two parameters
such that each one identifies all and only the samples of one of the two types.

In the following the parameters -^a and T/̂ ^ will be referred to as reliability pa-
rameters. With reference to neural classifiers, two parameters will be needed for

Neural Network Classification Reliability 175

each network architecture and each parameter shall be a function of the classifier
output vector. A parameter xjr providing a comprehensive measure of the reliabil-
ity of a classification can result from the combination of the values of i/ra and i/r̂ .
A recent review of the several combination operators considered in the literature
has been presented in [54]. For x/r we have chosen the form

xl/ =min{\l/a,irb}. (2)

This is certainly a conservative choice because it implies that, for a classification
to be unreliable, just one reliability parameter needs to take a low value, regardless
of the value assumed by the other one. By definition, the ideal reliability parameter
should assume a value equal to 1 for all the correctly classified samples and a
value equal to 0 for all the misclassified samples. However, this will almost never
happen in real cases. Let us suppose, for instance, that in the test set there is a
sample belonging to the /th class, whose description is identical to that of some
samples of the training set belonging to the jth class; this sample will certainly
be misclassified, but the classifier will reach its decision with high reliability as
it has no elements to judge it unreliable. An a posteriori evaluation of how good
a reliability parameter actually is can be made by computing both the average of
the parameter values associated with correct classifications and the average of the
values associated with misclassifications. The nearer these values are to 1 and 0,
respectively, the better the parameter works.

The operative definition of x/r requires the classifier to provide an output con-
sisting of a vector the values of whose elements make it possible to estabUsh the
class a sample belongs to. Therefore a reliability parameter cannot be defined for
the Hopfield network which, as it behaves like an associative memory, provides
as output the stable state reached after minimizing its energy function, and thus
only the information about the class attributed to the input sample.

The remaining neural classifiers can be grouped into three categories according
to the meaning of their output vector. The MLP and RBF networks can be grouped
together because for both of them the cardinality of the output vector is equal to
the number of classes and, in the ideal case, only one vector element at a time can
have a value equal to 1, while the remaining elements must have a value equal to
0. A second group can include the networks LVQ, SOM, and ART. Their output
neurons provide a measure of the distance between the input sample and each of
the class prototypes: the classification is performed by assigning the input sample
to the class that has the shortest distance from it. The third group is made up of
the PNN network only, whose output vector provides the probabilities that the
input sample belongs to each class; the input sample is assigned to the class that
maximizes this probability.

In the following, the reliability parameters will be defined for each of the above
three groups of neural classifiers.

176 Luigi P. Cordelia et al

As for the classifiers of the first group, we saw that, in real cases, the output
vector is generally different from the ideal one and an input sample is attributed to
the class associated with the winner output neuron, i.e., the one having the highest
output value. In practice, these networks use the value of the connection weights
to obtain the hyperplanes defining the decision regions [22]. During the training
phase, the network dynamically modifies the decision region boundaries in such
a way as to provide, for each sample, an output vector as close as possible to
the ideal one. Consequently, samples of type (a) may fall outside every decision
region as they are very different from those which contributed to determining the
hyperplanes separating the decision regions; in this case, all the output neurons
should provide values near to 0. Therefore, an effective definition of the reliability
parameter x/ra can be the following:

i^a = ^win, (3)

where Owin is the output of the winner neuron. In this way, the nearer to 0 the
value of Owin» the more unreliable the classification is considered.

Samples of type (b), lying where two or more decision regions overlap, typ-
ically generate output vectors with two or more elements having similar values.
Therefore, the classification reliability is higher when the difference between Owin
and the output of the neuron having the highest value after the winner (02win) is
greater. In this case a suitable reliability parameter is

i^b = ^win - ^2win. (4)

Let us note that, since the values of the elements of the output vector are real
numbers in the interval [0,1], the reliability parameters ^a and x/fb also assume
values in the same interval, as required by their definition.

In conclusion, the classification reliability of classifiers from the first group
can be measured by

\l/ = min{\lra, ^b) = min{Owin, Owin - 02win} = <^win - ^2win = i^b- (5)

For classifiers of the second group, the values of the elements of the output
vector give the distances of an input sample X from each of the prototypes W/,
/ = 1 , . . . , M, with M generally greater than the number Â of classes. Therefore,
the winner neuron is the one having the minimum output value:

Owin = min{0/} = mm{d(Wi, X)}. (6)

During successive learning cycles, as long as the samples of the training set are
taken into account, some starting prototypes are updated and the feature space
is partitioned in such a way that the final prototypes defined by the net are the
centroids of the regions into which the feature space is partitioned. Obviously,
since samples that are significantly different from those present in the training set

Neural Network Classification Reliability 177

have not contributed to generating the prototypes, their distance from the proto-
type associated to the winner neuron will be greater than that of the samples of
the training set. Therefore, the reliability parameter V̂^ can be defined as

, . ^win ._.
V â = 1 - , (7)

^max

where Omax is the highest value of Owin among those relative to all the samples
of the training set. In this way, since it has to be expected that the value of Owin
is high for samples of type (a), these will be classified with a low reliability (low
values ofV^^).

According to the above definition, the value of ij/a ranges from 0 to 1 only for
the samples belonging to the training set as the relation Owin £ ^max is certainly
valid only for such samples. Therefore, to make the definition applicable when
the classifier is in the operative phase, the previous expression has to become

^a =

0, Otherwise.

On the other hand, samples of type (b) have comparable distances from at least
two prototypes. Consequently, the reliability parameter T/̂ ^ must be a function of
both Owin and 02win (in this case the second winner neuron is the one having the
second lowest distance from the input sample):

^b = ^- . (9)
^>'2win

On the basis of this definition, T/T̂ takes values ranging from 0 to 1, and the larger
the difference 02win — Owin is, the higher the values of -^b are.

The classification reliability for the classifiers of the second group is given by

V̂ = min{V^ ,̂i/r/,} = mini max] 1 - 77^^, 0 [, 1 - 7 7 ^ ^ [• (10)
I I Omax J 02winJ

Finally, let us consider the case of the PNN classifier. In the classifier operative
phase, the distances between the input sample X and every sample belonging to
the training set are computed and consequently the probabilities Pi that X belongs
to the /th class, for / = 1 , . . . , N, are evaluated. The input sample is assigned to
the class associated to the winner neuron, for which the following relation holds:

Owin = max{/i/ •// • P/}, (11)

where hi is the a priori occurrence probability of the /th class and // is the "loss"
caused by a wrong assignment to the /th class. As the value of Pi depends on the
whole training set, it is evident that samples of type (a), i.e., quite different from

178 Luigi P. Cordelia et ah

those of the training set, have a low probabiUty of being attributed to any class.
Therefore the parameter X/TQ can be defined as

/ ^ w i ^ / ION

i^a = , (12)
^ m a x

where Omax is the highest value of Owin on the samples belonging to the training
set. Again, V̂^ < 1 only for the samples belonging to the training set since the re-
lation Owin S Omax is Certainly valid only in this case, and the previous equation
must become

fa - \
o^ if Owin < On , XX ̂ w m _ *^max5 ('\X\

1, Otherwise.

This definition ensures that ij/a assumes low values in the case of samples to be
classified with a low reUability.

Samples of type (b) have similar probabilities of belonging to different classes
so that -(l/b can be defined as

fb = l - ——. (14)
^ w i n

According to this definition, 0 < V̂^ < 1 and the higher the probability is that the
input sample belongs to the winner class rather than to the second winner class,
the more reliable the classification will be.

The classification rehabiUty for the PNN classifier is

/ f / I ^ • f f ^win J . 02v^
yr = mmlV^ ,̂ y/b} = nun]nunj ——, 1}, 1 ^ ^ m a x J ^ w i

= m i n { - — , 1 - - ^ — . (15)
^ m a x <^wm J

VI. FINDING A REJECT RULE

A. METHOD

When the reliability of a classification is low, the question is: does one accept
the decision of the classifier running the risk of an error, or reject it and consider
the sample at hand as unrecognizable by the given classification system? In the
former case, the risk of the decision being wrong increases as the classification
reliability decreases. In the latter case, the sample has to be examined again with
alternative techniques, generally by man. In both cases the choice implies a cost
that has to be paid.

Neural Network Classification Reliability 179

Finding a reject rule which achieves the best trade-off between error rate and
reject rate is undoubtedly of practical interest in real applications. Nevertheless,
very few results of general applicability are available in the literature. A signifi-
cant contribution to the problem has been given by Chow in [13, 49, 55]. These
papers describe an optimal reject rule and then derive a general relation between
the error and reject rates. The basic assumption of the method is the knowledge, or
the possibility of making a hypothesis, about the a priori probability distributions
of the samples in the parametric space. In most recognition tasks, however, the un-
derlying probability distributions are not known, nor can suitable hypotheses on
their form be made, thus making Chow's approach not generally applicable [56].

The approach we propose is more general than the one mentioned above: an
optimal reject rule is defined for a given classifier by taking into account only the
value of the classification reliability i// computed using information about the out-
put vector of the 0-reject classifier, i.e., the classifier with no reject option. If the
reliability is greater than a threshold a, determined through a suitable algorithm,
the classification is considered acceptable; otherwise, the input sample is rejected
(Fig. 2). In this way, no a priori knowledge about the probability distributions is
needed, and the classifier can be regarded up to a certain level as a black box,
regardless of its architecture. It can be shown that our approach achieves, as its
upper bound, the results that Chow's approach makes possible if the distributions
are exactly known.

The introduction of a reject option gives rise to two opposite effects: on the one
hand, the misclassified samples having a value of xj/ less than a are rejected, and
this effect is undoubtedly desirable since the cost of a misclassification is always
higher than the cost of a reject. On the other hand, also the correctly classified
samples with values of x// less than a are rejected, and this is an undesirable side
effect since it contributes to decrease the classification rate. This reduction partly
reabsorbs the advantage obtained by introducing the reject option.

0 - reject
Classifier

Output
Vector O

REJECT OPTION UNIT

Va= ^a(O)
Reliability
Parameter

Computation

¥b= N/b(0)

^ Evaluation
of \|/

Reject
Decision

Classified Rejected

Figure 2 A block diagram of the proposed method: the reject option operates on the basis of the
classification reliability xf/ which is a function of the output vector of the neural classifier, a* is the
optimal value of the reject threshold, established through a suitable algorithm.

180 Luigi P. Cordelia et at.

In order to evaluate the real advantage of using the reject option and establish
a criterion for fixing the reject threshold in such a way as to find the best trade-
off between misclassifications and rejects, we introduce a function V that aims to
quantify the classifier effectiveness in the considered appHcation domain, while
taking into account the two previous effects.

Let us call Re the percentage of correctly classified samples (also referred to
as recognition rate). Re the misclassification rate (also called error rate), and Rr
the reject rate. Since the effectiveness of a classifier depends on the results it
produces, we can certainly write

V = V(Rc,Re,Rr)^ (16)

For V to actually measure the classifier effectiveness, it must satisfy at least two
constraints:

(i) it must have a monotonic trend, increasing with respect to Re and
decreasing with Rr and Re, that is:

dRc

(ii) it must be such that

<o, and <0 ,

dV
<

We

(17)

(18)

since it is expected that a misclassification negatively affects V more than
a reject.

In principle, no further hypotheses are necessary on the form of V.
Since we need a function measuring the actual effectiveness improvement

when the reject option is adopted, independently of the absolute performance of
the 0-reject classifier, it may be convenient to define the following function:

P = V{Rc,Re,Rr)-V'' (19)

where V^ — V{R^, R^, 0) is the value of the function V when the classifier is
used at 0-reject (i.e., when Rr = 0), and R^ and R^ are respectively the recogni-
tion rate and the error rate in the same case.

The functional dependence of P on the considered application can be ex-
pressed by attributing a cost to each error and to each rejection and a gain to each
correct classification. For notation uniformity, let us denote these three quantities
Ce, Cr, and Q , respectively. Although such costs are, in general, functions of
Re, Re, and Rr, for most of the applications they can be considered constant.
In fact, the cost of a misclassification is generally attributed by considering the
burden of locating and possibly correcting the error or, if this is impossible, by
evaluating the consequent damage; the cost of a reject is that of a new classifi-
cation using a different technique. It is reasonable to presume, although this may

Neural Network Classification Reliability 181

not be true in certain specific cases, that such a burden is generally independent of
the relative number of correctly classified, misclassified, or rejected samples, i.e.,
Cc,Cr, and Ce are constant. Moreover, in the following, the function P will be as-
sumed to be linearly dependent on Re, Re, and Rr since this is the most frequently
occurring case and it simplifies the illustration of our method for determining the
optimal reject threshold value for a given application. In [57], it is shown how the
method can be extended to the case of a function P of generic form.

Taking all the above considerations into account, the function P can be written
in the form

P = Cc{Rc - R^c) - Ce{Re - RV> - CrRr. (20)

It can be noted that Eq. (20) satisfies the constraints of Eq. (17), and, as Q > C^,
also the constraint of Eq. (18).

Since Re, Rr, and Re depend on the value of the reject threshold a, P is also a
function of or. To highlight the dependence of P on a, let us consider the occur-
rence density curves of correctly classified and misclassified samples as a function
of the value of x/r. Let us call them De{'^) and Deiir), respectively. The trend of
the curves (see Fig. 3) should be such that the majority of correctly classified sam-

Dc(¥)

R(. - Rp + R̂

De(v)

f^e ~ f^r •*• ^e

Figure 3 Qualitative trends of the curves Dc (if) and Dg (V)̂. The percentages of correctly classified
and misclassified samples which are rejected after the introduction of a reject threshold cr (denoted R^
and Rf respectively) are given by the gray areas. Re (Re) represents the percentage of samples which
are correctly classified (misclassified) after the introduction of the reject option.

182 Luigi P. Cordelia et al

pies is found for high values of V̂ , while misclassified samples are more frequent
for low values of V̂ .

For our purposes it is convenient to normalize the occurrence density curves
so that their integrals extended to the interval [1̂ 1,1/̂ 2] respectively provide the
percentage of correctly classified and misclassified samples having values of ̂
ranging from xj/i to 1/̂ 2- From this definition it follows that

Jo

Jo

Wdxir, (21)

eWd^lf. (22)

The occurrence density curves Dci^r) and DeOr) allow us to easily compute the
reject rate Rr in case that a reject threshold a is set on the value of ij/. In fact,
Rr is a function of a and is given by the sum of two terms: the percentage of
correctly classified samples with a reliabiUty i// less than a and the percentage of
misclassified samples with a reliability xj/ less than cr. With reference to Fig. 3,
the two terms, denoted R^ and Rf., are given by the values of the gray areas in the
two plots. Analytically,

Rr(a) = R'^(a)-}-R'^(a) = f Dcmdir-\-f Demd^. (23)
Jo Jo

Analogously, when the reject option is activated, the percentages of correctly clas-
sified and misclassified samples are given by

Rc(a) = J Dcmdx/f, (24)

Re(cr) = f DeWdf. (25)

Substituting Eqs. (21)-(25) into Eq. (20), it follows that

P{o) = Cc(f Dc{ir)df- j Dciir)df\

-Ce(f Deif)dxlf- j De{ir)df\

-Cr(rDc{f)dir+rDeiir)df\ (26)

and hence,

P(a) = (Ce - Cr) r Deirj,) dxjf - (Cr + Q) / ' ' Dcif) df. (27)
Jo JO

Neural Network Classification Reliability 183

From Eq. (27), it is evident that, since the two integral functions are monotonically
increasing and Ce > Cr, an increase of a impHes that the first term contributes to
increasing P, while the second decreases it.

The function P makes it possible to determine the optimal value a* of the
reject threshold a:

a*: P(a*) > P(cr), Va e [0, 1]. (28)

In other words, a* is the threshold value for which the function P gets its max-
imum value. Once the cost coefficients have been fixed, the maximum value as-
sumed by P obviously depends on the adopted reliability parameter.

In order to determine a*, let us assume we have a classifier operating at 0-
reject, and a set S of labeled samples which are different from the training set.
Under the hypothesis that the set S is adequately representative of the target do-
main, and once the cost coefficients characterizing the given application have been
fixed, the optimal reject threshold value is obtained by finding the value of a that
satisfies Eq. (28) on the set S. For this purpose, let us calculate the derivative of
Eq. (27) with respect to a and make it equal to 0. We obtain

CnDe(cf)-Dc(cr)=0 on 5, (29)

where

Henceforth, C„ will be referred to as the normalized cost.
In practice, the functions Ddif) and Dei^r) are not available in their analytical

form and therefore, in order to evaluate the solutions of Eq. (29), they should be
experimentally determined in tabular form.

The process for determining a* is performed on the set S, once the cost coef-
ficients for the given application domain have been fixed, and is described by the
following algorithm:

1. The set S is submitted to the 0-reject classifier and then spUt into the
subsets Se of misclassified samples and Sc of correctly classified samples.

2. For each sample of the set Sc, the classification reUability value V̂ is
computed. The set of values of T/T obtained for Sc makes it possible to
numerically determine the occurrence density function Ddil/). In the same
way, by using the set Se, the function Ddir) can be determined.

3. The values of a satisfying Eq. (29) can be determined with a numerical
algorithm.

4. The value a* that corresponds to the absolute maximum of P is selected
from the values computed at the previous step. It may happen that several
values satisfy Eq. (29), because the density curves do not necessarily have

184 Luigi P. Cordelia et at.

a monotonic trend. Thus, to be sure of obtaining the value a* that
corresponds to the absolute maximum of P, it is necessary to determine
first the values corresponding to all the relative maxima and then to select
the value corresponding to the absolute maximum among them.

B. DISCUSSION

The ideal behavior of a classifier with reject option should be such that the
rejected samples are all and only those which, if not rejected, would be misclas-
sified. In this case, no correctly classified samples would be rejected, the recogni-
tion rate would not decrease, and P would get its absolute maximum. For this to
be possible, the nature and quality of the data in addition to the adopted reliability
parameter should be such as to give rise to distributions such as those shown in
Fig. 4. In this way, in fact, it will be possible to find two values for ij/, say \jf\ and
V̂ 2, such that

and

with V̂ i < V̂2- (31)

The ideal value of P, indicated with Pjd, that is the maximum allowed improve-
ment of the classifier effectiveness, would therefore be obtained by choosing a

Dc(v)

RQ ~ RQ

a v|/2

De(v|/)

R g - Rr

0 Vl C7 1

Figure 4 A case of distributions in which Pjd can be achieved.

Neural Network Classification Reliability 185

threshold value aid in the range [xj/i, 1/̂ 2]. In this case, Eq. (27) becomes

Pid = (Ce - Cr) r Deiir) d^/f = (C, - C,)/?^. (32)

As it is impossible to modify the data, the way of getting close to the ideal situ-
ation is to find a reliability parameter that, for the considered network architecture,
makes it possible to influence the distributions Ddx/r) and Dedr) in such a way
as to satisfy the constraints of Eq. (31). This aspect of the problem will not be
further discussed here. However, in order to evaluate the degree of approximation
to the ideal case achieved in a specific application, it is convenient to introduce
the parameter

P
Pn = — X 100. (33)

Pid

In fact, Pn gives a measure of the percentage improvement of classifier effective-
ness related to the maximum attainable improvement Pid. Moreover, the trend of
Pn as a function of C„ can give useful information about the advantage achieved
by introducing the reject option in a classification system as the requirements of
the considered application domain vary.

One further consideration can be made on the basis of Eq. (29) which implies
a relation between the optimal threshold value a* and the normalized cost C„. In
particular, it can be verified that all the triplets of cost coefficients (Q — k, Cr +
k, Ce -\- k), obtained as k varies, provide the same value of C„, and thus the
same solution of Eq. (29). Moreover, approximate solutions of Eq. (29) can be
obtained by neglecting Q with respect to the other cost coefficients. Under this
hypothesis, verified in many real applications, the normalized cost C„ assumes
the form C„ = Ce/Cr — 1, and consequently the optimal reject threshold value
depends on the ratio Ce/Cr.

In any case, when C„ is low (i.e., the difference Ce — Cr is low), the advan-
tage of introducing the reject option becomes negligible. In fact, from Eq. (27) it
is evident that the percentage of samples turned from misclassified into rejected
contributes to the increase of P proportionally to the difference Ce — Cr. Conse-
quently, for Ce = Cr, the increment of P can become comparable to the decre-
ment of P produced by the decrease of the classification rate.

VII. EXPERIMENTAL RESULTS

The performance of the method described in the previous section will be
now illustrated with reference to two different applications: recognition of un-
constrained handwritten characters and fault detection in electrical systems. The
experimental results obtained in both cases will be discussed. The applications
have been chosen because they represent critical recognition problems: both are

186 Luigi P. Cordelia et al.

characterized by a high variabiHty among the samples belonging to a same class
and by partial overiaps between the regions pertaining to different classes. In these
conditions it is difficult to get high recognition rates and the availability of a reject
option is particularly useful. Let us note that the emphasis here is not placed so
much on the absolute performance of the description and classification techniques
used, as on the improvement of classifier effectiveness achievable by introducing
a reject option according to our method.

A. CASE 1: HANDWRITTEN CHARACTER RECOGNITION

Optical character recognition is one of the oldest application problems consid-
ered in pattern recognition. For its solution, a large number of statistical, struc-
tural, and hybrid methods have been proposed (reviews can be found in [58-60]).
Although many OCR systems, suitable in a variety of applications, are today com-
mercially available, the problem of recognizing unconstrained handprinted char-
acters still remains unsolved and can be considered as a significant test bed for
our method.

Recognition is made difficult by both a high degree of overlapping among
classes and a high variability within each class; this is due partly to the quality of
the original data, which comes from different writers with greatly varying draw-
ing styles, and partly to the preprocessing and feature extraction phases, which can
lose meaningful details of the character to be recognized. When significant char-
acter distortions occur, the uncertainty of the whole recognition process makes it
essential to establish whether or not the decision of the classifier is acceptable or
not, and therefore to estimate the classification reliability.

The characters used for the test are 7000 digits extracted from the ETL-1 char-
acter data base [61], containing 141,319 segmented characters produced by 1445
writers and belonging to 99 classes (digits plus latin, special, and katakana char-
acters). In Fig. 5, some examples of digits are shown.

Characters are preliminarily submitted to a process that will represent them in
terms of structural features [62]. The main steps of the process are briefly sum-
marized in the following. Since the thickness of character strokes is generally
not a significant feature for recognition purposes, character bit maps (Fig. 6a) are
first thinned (Fig. 6b). Unfortunately, skeletonizing algorithms typically give rise
to distorted representations of character shapes: the most significant shape distor-
tions occur at joins and crossings of strokes. In order to better preserve the original
shape information, a skeleton correction technique [63] is used; after this correc-
tion a character is represented by a set of polygonal lines (Fig. 6c). A further step
consists of approximating pieces of polygonal lines with circular arcs (Fig. 6d)
according to a method illustrated in [64].

Neural Network Classification Reliability 187

\ \ / I / / I / / i i f / I

5 3 - 5 3 3 3 3 3 3 ^ 3 ^ ^ - ?

Figure 5 An example of the digits belonging to the ETL-1 data base.

ltZA^67Vt,
/ 1

}) /jU.., /rj Q^^
(b)

Figure 6 (a) The bit maps of some characters; (b) characters after thinning; (c) polygonal approxi-
mations after correcting shape distorsions; (d) representation in terms of circular arcs.

188 Luigi P. Cordelia et al

The aim of the above processing is to try to absorb as far as possible the large
shape variability among different samples of the same class, singling out the most
characteristic and invariant features for a recognition class. On this kind of char-
acter representation, the central moments up to the seventh order are evaluated.
Moments of zero and the first order have been used to make the remaining mo-
ments invariant with respect to scale and translation, thus obtaining a feature vec-
tor made up of 33 components. Every component value is normalized so as to
range between 0 and 1. For further details see [65].

The adopted classification system is an MLP made up of three fully connected
layers, with 50 hidden neurons and a sigmoidal activation function. The standard
BP algorithm was used for training with a constant learning rate equal to 0.5 and
10,000 learning cycles. A training set of 1000 samples and a test set of 5000
samples were used. The remaining 1000 samples were used for computing the
reject threshold.

As regards the cost coefficients, we assumed Q = 1, while the values for Ce
and Cr were selected within the sets {6, 9, 12,15, 18} and {3,4, 5}, respectively;
under this assumption the normalized cost C„ ranges from 0.17 to 3.75. This
choice seems adequate to include a bunch of real cases and makes it possible to
verify the behavior of the method for taking up the reject option for a wide range
of situations, from those for which Ce = Cr (and thus C„ = 0) to those for which
Ce ^ Cr (and thus Cn is higher than 1). The former case refers to situations in
which the occurrence of an error is not so detrimental as to induce to accept, in
order to avoid it, a high reject rate which could imply a significant reduction of the
classification rate. In the latter case, vice versa, the main requirement is to avoid
as many errors as possible, even if classification rate significantly reduces.

Table II summarizes the results obtained with the 0-reject classifier and with
the classifier with the reject option, showing, for each combination of the cost co-
efficients, the optimal threshold value a*, and the values of the parameters char-
acterizing performance and effectiveness of the classifier. Another column lists
the classifier effectiveness values in the ideal case (Pid). In order to properly in-
terpret the data, it should remembered that by definition P represents the variation
of classifier effectiveness with respect to V^.

The trend of the reject threshold a* as a function of C„ is plotted in Fig. 7.
In Fig. 8, Re, Re, and Rr are shown as a function of Cn. It is easy to verify that

the trend of these curves is in agreement with the theoretical considerations made
in Section VI. In particular, if the cost of a misclassification is low, the cost of a re-
ject must be even lower and C„ is close to 0. In this situation, it is more convenient
to accept a low reject rate so as to keep the recognition rate high, even at the risk
of some misclassifications. The results are similar to those obtained at 0-reject.
On the contrary, when the value of C„ increases, it is more convenient to reject
an unreliably classified sample rather than run the risk of misclassifying it, even

Neural Network Classification Reliability 189

Table II
Results at 0-Reject and with the Reject Option

Cn

0.17
0.40
0.67
0.75
1.00
1.17
1.50
1.60
1.67
2.17
2.20
2.25
2.80
3.00
3.75

Ce

6
6
9
6
9

12
9

12
15
18
15
12
18
15
18

Cr

5
4
5
3
4
5
3
4
5
5
4
3
4
3
3

0-reject
classifier^

-pO

0.68
0.68
0.54
0.68
0.54
0.40
0.54
0.40
0.26
0.13
0.26
0.40
0.13
0.26
0.13

Ideal
case

Pid

0.05
0.09
0.18
0.14
0.23
0.32
0.28
0.37
0.46
0.60
0.51
0.41
0.64
0.55
0.69

Classifier with the reject option

a*

0.00
0.00
0.01
0.01
0.09
0.09
0.09
0.09
0.15
0.32
0.32
0.32
0.56
0.56
0.56

Re

95.40
95.40
95.09
95.09
93.91
93.91
93.91
93.91
93.10
91.52
91.52
91.52
89.53
89.53
89.53

Re

4.60
4.60
3.91
3.91
2.70
2.70
2.70
2.70
2.52
1.89
1.89
1.89
1.59
1.59
1.59

Rr

0.00
0.00
1.00
1.00
3.39
3.39
3.39
3.39
4.38
6.59
6.59
6.59
8.88
8.88
8.88

P

0.00
0.00
0.01
0.01
0.02
0.04
0.05
0.08
0.08
0.11
0.11
0.09
0.12
0.13
0.21

Pn

0.00
0.00
5.43
6.52
8.70

13.35
19.57
20.92
15.65
19.57
20.16
21.01
19.41
22.46
31.01

^The recognition rate at 0-reject is 95.4%.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 7 The trend of cr* versus Cn for the test case 1.

190 Luigi P. Cordelia et al.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 8 The trend of Re, Re, and Rr versus Cn when the reject option is used.

though this implies that some correctly classified samples could be rejected. Con-
sequently, the value of the reject threshold rises with an overall decrease in both
misclassified and correctly classified samples. Specifically, we observe a decre-
ment of the recognition rate from 95.4%, for Cn < 0.5, to 89.5%, for C„ = 3.75,
while the misclassification rate decreases from 4.6% to 1.6%, and the reject rate
increases from 0.0% to 8.9%. The advantage attainable by exploiting the reject
option can be made more evident by considering the relative variation of classifi-
cation and misclassification rates, with respect to the 0-reject case, as a function
of Cn (Fig. 9). It can be seen that, for high values of C„, about 65% of the sam-
ples previously misclassified are now rejected, while the corresponding amount
of correctly classified samples which are rejected is less than 6%.

As already said, a global evaluation of the advantage achieved when using the
reject option can be obtained by considering the trend of Pn with respect to C^.
From the experimental results relative to this case (Fig. 10), it is evident that for
high values of C„, P„ reaches a maximum of more than 30%, demonstrating the
convenience of using the reject option.

In conclusion, it is important to recall that the overall improvement of the clas-
sifier effectiveness is closely Unked to the shape of the distributions Dc and D^,

Neural Network Classification Reliability

70%

191

60%-

50%^

40%-

30%-

20%-

10%-

0%-—•—

0.0

Figure 9 Percentage decrement of misclassification rate (A/?e) and recognition rate {ARe) versus
Cn obtained by using the reject option. The decrements are computed with respect to the correspond-
ing rates at 0-reject.

which, in turn, depend not only on the data but also on the definition of V̂ . In real
situations, such as the one considered here, Dc and De are far from the ideal case
since they overlap extensively (Figs. 11 and 12). This makes them not separable
and thus the attainable improvement in classifier effectiveness, although valuable,
is lower than in the ideal case.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 10 The trend of P„ versus Cn for the test case 1.

192 Luigi P. Cordelia et al.

25

20

15

10

5

DcMxIO"^

H \ \ \ ^ \ f - — \ 1 \ \ h -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)

00

80

60

40

20

0

^ Dc(y)
25]

20

15

10

5

0

Dc(v)x10''

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.90 0.92 0.94 0.96 1.00

(b) (C)

Figure 11 The distributions of correctly classified samples at 0-reject versus xj/. Since the values of
Dc range over many orders of magnitude, the plots (b) and (c) show two parts of the plot (a) using
different scales for the y axis.

B. CASE 2: FAULT DETECTION AND ISOLATION

The second case deals with the detection and localization of faults in complex
systems. This is a very crucial problem for the correct management of industrial
plants, electrical networks and equipment, and many other systems.

Generally, a system S is monitored by means of a set of instruments (the mea-
surement station) which measure the relevant parameters of S. The outputs of the
instruments are fed to a fault detection and isolation unit (FDI) which, on the ba-

Neural Network Classification Reliability 193

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12 The distribution of misclassified samples at O-reject versus ^.

sis of the measurement values, should detect and localize the faults on the various
components of S. Faults on the instruments should also be taken into account as
atypical measurement values may indicate either a fault on S or a fault on the in-
struments. Consequently, to be effective, an FDI system should be able to classify
an event as associated either to the presence of a fault on S or on some instrument,
or to the absence of faults (Fig. 13).

To this end, many FDI techniques and architectures [66, 67] have been pro-
posed in the literature; in particular, schemes based on "hardware redundancy"
[68, 69] or analytical models of the expected measurement values [70, 71] have
been widely investigated. Whatever approach is adopted, a primary issue to be
considered is the evaluation of the classification reliability attainable with the FDI
system. In other words, the matter in hand is to recognize whether a sample (de-

S Y S T E M
U N D E R

T E S T (S)

^
^
p

__,, p

MEASUREMENT
STATION

— •

^

FDI
UNIT

Absence of Faults
^

^
• Faults on Instr ^ F

Fault on S
^ w

Quantities
to be Measured

Measures

Figure 13 Block diagram of a generic FDI system.

194 Luigi P. Cordelia et al.

scribed by a vector of measurements in this case) denotes the presence of a fault
and, if one is indeed present, the nature of the fault. For this application, the sam-
ple description problem is relatively trivial, whereas classification is critical as
serious consequences may occur if a fault remains undetected because of a recog-
nition error. In these cases it is more advisable to reject the uncertain decision and
ask for human intervention.

Neural network classifiers turn out to be particularly profitable [72] for this
application because of their speed, which allows real-time fault locaUzation, and
because of the increased system effectiveness achievable by introducing the reject
option. Moreover, the generalization capability of the neural classifier contributes,
to some extent, to ensuring correct monitoring even when the system works out-
side its operating range, i.e., when the values of the parameters are different from
the allowed ones, without causing yet a system malfunction. This property is re-
ferred to as the diagnostic robustness of the FDI system.

The neural-based FDI approach we considered has been applied to an auto-
matic measurement station for induction motor testing (Fig. 14). The data ac-
quisition board measured three phase voltages (V1, V2, VS), three line currents
(/I , 72, 73), the motor angular speed {(o) and torque {T) and three phase powers
(PI , P2, P3). A reference voltage (VR) was used to verify the correct operation
of the data acquisition board. The mean values of the 12 instrument output sig-
nals, computed over 30 measurements, and the corresponding standard deviations
have been assumed as input data for the neural network.

MOTOR
UNDER
TEST

V1

V2

V3

11 ^

12 .

13 ^
(0

T

P1

P2 .

PS ^

VR

MEASUREMENT
STATION

SIGNAL #1
w

SIGNAL #2
w

SIGNAL #3
w

SIGNAL #12
•

NEURAL
CLASSIFIER

Output *
\lc\r^^'^' ^
vec LUI

r

REJECT

OPTION

/ 1
Classified Rejected

Figure 14 Block diagram of the realized neural FDI system.

Neural Network Classification Reliability 195

As for the classifier architecture, two implementations of the MLP have been
tested: the first with 12 input neurons, corresponding to the signal mean values,
the second with 24 input neurons, 12 for the mean values and 12 for the standard
deviations. After a preliminary test, the number of hidden layer neurons was fixed
to 30 for both classifiers.

Besides one "unfaulty" class and one class for motor faults, 28 classes for
instrument faults have been considered: 12 classes for short circuits on the data
acquisition input channels, 12 classes for interruptions on the system wiring, and
4 classes for faults relative to the devices used to reduce the input currents to the
transducers needed to measure the phase powers.

The training set was made up of 240 samples obtained from tests carried out
by varying the motor current up to 110% of its maximum nominal value.

Both the set used for computing the reject threshold and the test set were made
up of 72 samples, corresponding to 10 unfaulty conditions, 56 instrument faults
(two cases for each considered fault) and 6 motor faults; these samples were ob-
tained from tests carried out in operating conditions different from those of the
training set. In order to evaluate the diagnostic robustness of the FDI system, a
further test was conducted with 32 faults occurring outside the system operating
range. Both the classifiers were trained using the standard BP algorithm, for 6000
learning cycles, with a learning rate of 0.5. The values of Cc, Cr, and Ce were
chosen equal to 1, 2, and 6, respectively; therefore the reject threshold a* turned
out to be equal to 0.29 for the 12-input classifier and to 0.44 for the 24-input
classifier.

Table III shows the results obtained with the two networks on both training and
test sets. The 24-input classifier performs well on the training set but gets signif-
icantly worse on the test set; this may be due to the excessive variability of the

Table III

Diagnostic Performance of the Neural FDI System^

O-reject classifier Classifier with the reject option

12 Input, TR
12 Input, TS
24 Input, TR
24 Input, TS
12 Input, TSl

R'c

95.49
94.44
97.95
ll.lS
93.75

R'e

4.51
5.56
2.05

22.22
6.25

Re

95.08
94.44
97.95
75.00
90.63

Re

1.64
1.39
0.00

11.11
3.12

Rr

3.28
4.17
2.05

13.89
6.25

Pn

56.82
75.00

100.00
40.62
12.64

^TR and TS mark results obtained on the training set and on the test set,
respectively. TSl refers to a case in which the motor current is external to
the system operating range.

196 Luigi P. Cordelia et al.

standard deviation values, showing that sample description using these features is
not adequate. On the contrary, the performance of the 12-input classifier is quite
good. In both cases it is evident that the introduction of the reject option makes
it possible to reject a significant percentage of misclassified samples with a small
reduction in the recognition rate.

However, the case of practical interest regards the 12-input classifier which
achieves an effectiveness equal to 75% of the ideal one on the training set. The di-
agnostic robustness of this latter configuration was then evaluated. The last row of
Table III shows the results obtained on a set of samples for a motor current equal
to 120% of its nominal value and thus outside the system operating range: the
recognition rate, although worse than that obtained within the nominal operating
range, is still more than acceptable. Again, there is a significant decrease (about
50%) in the misclassification rate after the introduction of the reject option.

VIII. SUMMARY

In this chapter, the problem of assessing classification reliability, with special
reference to the case of neural classifiers, has been addressed. After a review of the
specific problem and the related topics, a method for using the information about
classification reliability in order to find the best trade-off between reject rate and
error rate has been illustrated. The method takes the following considerations as a
starting point. When the reliability of a classification is low, the question is: does
one accept the decision of the classifier running the risk of an error, or reject it
and consider the sample at hand as not recognizable by the given classification
system? In the former case, the risk of the decision being wrong increases as
the classification reliability decreases. In the latter case, the sample has to be
examined again with alternative techniques, generally by man. In both cases the
choice implies a cost that has to be paid.

In practice, the definition of a parameter measuring classification reliabiUty
reflects the characteristics of the considered classifier; criteria for evaluating the
classification reliabiUty for a wide set of neural network classifiers have been pro-
posed. They allow one to detect low reUable classifications in the case that the
considered sample is either significantly different from those present in the train-
ing set, or similar to training set samples belonging to different classes. However,
reliability alone is not sufficient to take a decision about the advantage of reject-
ing a sample instead of running the risk to misclassify it. This advantage can only
be evaluated by taking into account the requirements of the specific application
domain. In fact, for some applications the cost of a misclassification may be so
high that a high reject rate becomes acceptable provided that the misclassification
rate is kept as low as possible, while for other applications it may be desirable
to assign every sample to a class even at the risk of a high misclassification rate.

Neural Network Classification Reliability 197

Under hypotheses generally satisfied for a wide range of applications, these re-
quirements can be expressed by attributing a cost to each misclassification, reject,
and correct classification.

The method which is proposed computes the reject threshold value in such a
way as to maximize the value of a function, which we have called "classifier ef-
fectiveness," taking into account the occurrence density distributions of correctly
classified and misclassified samples, computed over a representative data set, as
a function of classification reliability, together with the requirements of the appli-
cation domain considered. The method does not require any a priori knowledge
about the probability density distributions of the samples to be classified. Under
these assumptions, the optimal reject threshold is the one for which the classifier
effectiveness reaches its maximum value.

Assuming that in an ideal case it is possible to reject all and only those samples
which, if not rejected, would be misclassified, it seemed convenient to compare
the improvement P of the classifier effectiveness achieved when using the reject
option with that achievable in the ideal case Pid.

The results of testing the method in two real applications, recognition of hand-
written characters and fault detection and isolation in electrical systems, showed
that the ratio P/Pid can be maintained relatively high even in recognition prob-
lems characterized by high variability among the samples of a same class and by
partial overlap between the regions pertaining to different classes, so demonstrat-
ing the effectiveness of the approach.

REFERENCES

[1] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.
[2] K. Fukunaga. Introduction to Statistical Pattern Recognition, 2nd ed. Academic, New York,

1990.
[3] K. S. Fu. Syntactic Methods in Pattern Recognition. Academic, New York, 1974.
[4] T. Pavlidis. Structural Pattern Recognition. Springer-Verlag, Berlin, 1977.
[5] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Co.,

New York, 1994.
[6] J. A. Anderson and E. Rosenfeld, Eds. Neurocomputing: Foundations of Research. MIT Press,

Cambridge, MA, 1988.
[7] R. A. Wilkinson, J. Geist, S. Janet, P Grother, C. Bruges, R. Creecy, B. Hammond, J. Hull,

N. Larsen, T. Vogl, and C. Wilson. The first census optical recognition system conference. Tech-
nical Report NISTIR 4912, National Institute of Standards and Technology, Gaithersburg, 1992.

[8] M. D. Garris and R. A Wilkinson. NIST Special Database 3. Handwritten Segmented Characters.
National Institute of Standards and Technology, Gaithersburg.

[9] T. M. Cover and P E. Hart. IEEE Trans. Inform. Theory 13:21-27, 1967.
[10] L. Xu, A. Kryzak, and C. Y. Suen. IEEE Trans. Systems Man Cybernet. 22:418-435, 1992.
[11] R. Battiti and A. M. Colla. Neural Networks 7:691-707, 1994.
[12] A. Rosenfeld and A. C. Kak. Digital Picture Processing, Vol. II. Academic, Orlando, FL, 1982.
[13] C. K. Chow. IEEE Trans. Inform. Theory 16:41^6, 1970.

198 Luigi P. Cordelia et al

[14] E. Parzen. Ann. Math. Statist. 36:1065-1076, 1962.
[15] M. E. Hellman. IEEE Trans. Systems Sci. Cybernet. 6:179-185, 1970.
[16] M. R. Anderberg. Cluster Analysis for Applications. Academic, New Yorlc, 1973.
[17] J. R. Quinlan. Mach. Learn. 1:81-106, 1986.
[18] L. G. Shapiro and R. M. Haraliclc. IEEE Trans. Pattern Anal. Mach. Intell. 3:505-519, 1981.
[19] A. K. Jain, J. Mao, and K. M. Mohiuddin. Computer 29:31-44, 1996.
[20] Y. Hirose, K. Yamashita, and Y Hijiya. Neural Networks 4:61-66, 1991.
[21] R. Reed. IEEE Trans. Neural Networks 4:740-747, 1993.
[22] R. R Lippman. IEEE ASSP Mag. 4:4-22, 1987.
[23] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, MA, 1990.
[24] A. Freeman and D. M. Skapura. Neural Networks: Algorithms, Applications and Programming

Techniques. Addison-Wesley, Reading, MA, 1992.
[25] J. de Villiers and E. Barnard. IEEE Trans. Neural Networks 4:136-141, 1993.
[26] M. T. Musavi, K. H. Chan, D. H. Hummels, and K. Kalantri. IEEE Trans. Pattern Anal. Mach.

Intell. 16:659-663, 1994.
[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. In Parallel Distributed Processing

(D. E. Rumelhart and J. L. McClelland, Eds.), pp. 318-362. MIT Press, Cambridge, MA, 1986.
[28] D. S. Broomhead and D. Lowe. Complex Syst. 2:321-355, 1988.
[29] T. Kohonen. Proc. / E ^ : ^ 78:1464-1480, 1990.
[30] S. Grossberg. Cognitive Sci. 11:23-63, 1987.
[31] D. F. Specht. Neural Networks 3:109-118, 1990.
[32] J. J. Hopfield. Proc. Nat. Acad. Sci. USA 79:2554-2558, 1982.
[33] T. Ash. Dynamic node creation in backpropagation networks. ICS Report 8901, Cognitive Sci-

ence Dept., University of California, San Diego, 1989.
[34] R. R Brent. IEEE Trans. Neural Networks 2:346-354, 1991.
[35] A. G. Parlos, B. Fernandez, A. F. Atiya, J. Muthusami, and W. K. Tsai. IEEE Trans. Neural

Networks 5:493-497, 1994.
[36] S. Ergezinger and E. Thomsen. IEEE Trans. Neural Networks 6:31^2, 1995.
[37] T. R Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon. Biolog. Cybernet. 59:257-

263, 1988.
[38] G. E. Hinton. Connectionist learning procedures. Technical Report CMU-CS-87-115, Computer

Science Dept., Carnegie-Mellon University, Pittsburgh, 1987.
[39] D. DeSieno. Proc. 2nd Annual IEEE Int. Conf. Neural Networks 1:1117-1124, 1988.
[40] S. C. Ahalt, A. K. Krishnamurthy, R Chen, and D. E. Melton. Neural Networks 3:277-290, 1990.
[41] L. Xu, A. Krzyzak, and E. Oja. IEEE Trans. Neural Networks 4:636-649, 1993.
[42] H. Robbins and S. Monro. Ann. Math. Statist. 22:400-407, 1951.
[43] C. De Stefano, C. Sansone, and M. Vento. In Proceedings IEEE International Conference on

Systems, Man and Cybernetics, San Antonio, TX, pp. 759-764, 1994.
[44] P. Burrascano. IEEE Trans. Neural Networks 2:458^61, 1991.
[45] D. F Specht. IEEE Trans. Neural Networks 1:111-121, 1990.
[46] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, New Jersey, 1976.
[47] L. H. Zadeh. Inform. Contr. 8:338-353, 1965.
[48] C. Y Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Proc. IEEE 80:1162-1180, 1992.
[49] C. K. Chow. IRE Trans. Electron. Computers 6:247-254, 1957.
[50] G. C. Vasconcelos, M. C. Fakhust, and D. L. Bisset. Pattern Recog. Lett. 16:207-212, 1995.
[51] K. Kim and E. B. Bartlett. Neural Comput. 7:799-808, 1995.
[52] C. Tumuluri and P K. Varsheny. IEEE Trans. Neural Networks 6:880-892, 1995.
[53] K. Archer and S. Wang. IEEE Trans. Systems Man Cybernet. 21:735-742, 1991.
[54] I. Bloch. IEEE Trans. Systems Man Cybernet.—Part A: Systems and Humans 26:52-67, 1996.
[55] C. K. Chow. In Proceedings of the 3rd Annual Symposium on Document Analysis and Informa-

tion Retrieval, Las Vegas, pp. 1-8, 1994.

Neural Network Classification Reliability 199

[56] K. Fukunaga and L. K. Kessel. IEEE Trans. Inform. Theory 18:814-817, 1972.
[57] L. P. Cordelia, C. De Stefano, F. Tortorella, and M. Vento. IEEE Trans. Neural Networks 6:1140-

1147, 1995.
[58] G. Nagy. In Handbook of Statistics II (L. Kanal and P. R. Krisnaiah, Eds.), pp. 621-649. North-

Holland, Amsterdam, 1982.
[59] V. K. Govindan and A. P Shivaprasad. Pattern Recog. 23:671-683, 1990.
[60] S. Mori, C. Y. Suen, and K. Yamamoto. Proc. IEEE 80:1029-1058, 1992.
[61] ETL-1 Character Data Base, collected by the Technical Committee for OCR at the Japan Elec-

tronic Industry Development Association and distributed by the Electrotechnical Laboratory.
[62] A. Chianese, L. P. Cordelia, M. De Santo, A. Marcelli, and M. Vento. In Recent Issues in Pattern

Analysis and Recognition (V. Cantoni, R. Oreutzburg, S. Levialdi, and G. Wolf, Eds.), Lecture
Notes in Computer Science, Vol. 399, pp. 289-302. Springer-Verlag, New York, 1989.

[63] G. Boccignone, A. Chianese, L. P. Cordelia, and A. MarceUi. In Progress in Image Analysis and
Processing (V. Cantoni, L. P Cordelia, S. Levialdi, and G. Sanniti di Baja, Eds.), pp. 275-282.
World Scientific, Singapore, 1990.

[64] A. Chianese, L. P. Cordelia, M. De Santo, and M. Vento. In Proceedings of the 6th Scandinavian
Conference on Image Analysis, Oulu, pp. 416-423, 1989.

[65] P. Foggia, C. Sansone, F. Tortorella, and M. Vento. Character recognition by geometrical mo-
ments on structural decompositions. Technical Report DIS-AV-96-12, Dipartimento di Informa-
tica e Sistemistica, Universita degli Studi di Napoli "Federico II," 1996.

[66] A. S.WiWsky. Automatica 12:601-611, 1976.
[67] R. Patton, P. Frank, and R. Clark, Eds. Fault Diagnosis in Dynamic Systems—Theory and Appli-

cation. Prentice-Hall International, Englewood Cliffs, NJ, 1989.
[68] R. N. Clark, D. C. Fosth, and V. M. Walton. IEEE Trans. Aerosp. Electron. Syst. 11:465-473,

1975.
[69] R. Isermann. In Conference Record oflMEKO TC-10 Symposium, Dresden, pp. 14-45, 1993.
[70] E. Y Chow and A. S. Willsky. IEEE Trans. Automat. Contr 29:603-614, 1984.
[71] P M. Frank. Automatica 26:459-474, 1990.
[72] A. Bemieri, G. Betta, A. Pietrosanto, and C. Sansone. IEEE Trans. Instrument. Measur. 44:747-

750, 1995.

This Page Intentionally Left Blank

Parallel Analog Image
Processing: Solving
Regularization Problems
with Architecture Inspired
by the Vertebrate
Retinal Circuit

Tetsuya Yagi
Kyushu Institute of
Technology
680-4 Kawazu, lizuka-shi
Fukuoka Prefecture,
820 Japan

Haruo Kobayashi
Department of Electronic
Engineering
Gumma University
1-5-1 Tenjin-cho
Kiryu, 376 Japan

Takashi Matsumoto
Department of Electrical,
Electronics and Computer
Engineering
Waseda University
Tokyo 169, Japan

I. INTRODUCTION

Almost all digital image processors employ the same architecture for the sen-
sor interface and data processing. A camera reads out the sensed image in a raster
scan-out of pixels, and the pixels are serially digitized and stored in a frame buffer.
The digital processor then reads the buffer serially or as blocks to smooth the
noise in the acquired image, enhance the edges, and perhaps normalize it in other
ways for pattern matching and object recognition. There have been several at-
tempts in recent years to implement these functions in the analog domain, to
attain low-power dissipation and compact hardware, or simply to construct an
electrical model of these functions as they are found in biological systems. For
analog implementations, we must evaluate their performance in comparison with

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 201

202 T. Yagi et al

their digital counterparts and establish systematic techniques for their design and
implementation. These considerations guided the work described here.

Single-chip analog image processor chips consist primarily of resistors and
transistors in an array, and sometimes memory elements. A two-dimensional im-
age is sensed by embedded photosensors at nodes in the array and converted to
voltages or currents which drive the array. Computations are performed by physi-
cal laws underlying circuit behavior. These laws may be categorized as follows:

• Kirchhoff's laws together with Ohm's law imposed on resistor or transistor
characteristics define the desired linear combination of signals. This
contrasts with digital signal processors in which linear combinations are
computed with multiply or add operations on binary words.

• The desired filtering is defined by a circuit (equilibrium) operating point.
When subject to a stimulus, the circuit attains the operating point through
dynamics defined by the parasitic capacitors. A clock is employed for
memoryless filtering, and the circuit attains its equilibrium in real time.

This chapter describes how a class of parallel analog image processing algo-
rithms is derived and how such algorithms can be implemented as parallel analog
chips. The architectures for the chips described in this chapter are inspired by
several physiological findings in lower vertebrates.

Section II explains several findings in lower vertebrate retinas in a manner
which is accessible by engineers, while Section III describes algorithms, architec-
tures, circuitry, and chip implementations. Section IV presents the circuit stability
issues motivated by one of our vision chip implementations.

Until the early 1990s there had been only a small number of vision chips.
Today, however, there are numerous vision chips (see the references). While some
of the chip architecture are inspired by physiological facts, many others are based
purely on engineering disciplines.

11. PHYSIOLOGICAL BACKGROUND

The retina is a part of the central nervous system in the vertebrate and plays
important roles in early stages of visual information processing. The retina com-
putes the image with a completely different algorithm or architecture from the one
which most engineers are familiar with. Using this algorithm or architecture, the
retina can perform real-time image processing with very low power dissipation.
Inspired by such excellent performance and underlying network structure, vision
chips have been designed using analog CMOS very large scale integrated circuit
(VLSI) technology [1-8].

The retinas of lower verterbrates provide suggestive insights into designing
the vision chips, since their visual functions are somewhat more sophisticated

Parallel Analog Image Processing 203

than those of mammal retinas. Therefore, the contents of this chapter are mainly
inferred from physiological observations of the lower vertebrates. Most of these
observations, however, are applicable to higher species including humans.

A. STRUCTURE OF THE RETINA

The vertebrate retina is one of the few tissues of the nervous system in which
electrical properties and structural organization of neurons are well correlated.
Six principal cell types of neurons have been identified in the retina (see for re-
view [9]). Figure 1 is a schematic illustration showing the gross structure of the
vertebrate retina. Although the retina is transparent, the figure is colored for obvi-
ous reasons. Each of these principal cell types is classified into several subtypes,
which are not shown in the figure to avoid complexities. In Fig. 1, the bottom side
corresponds to the frontal surface of the retina from which the fight comes through
the optical apparatus of the eye. The light passes through the transparent retina to
reach the photoreceptor array (gray), on which an image is projected. The light-
sensitive pigment catches photons and a chemical reaction cascade tranduces it
to a voltage response in the photoreceptor. The voltage signal is transmitted to
the second-order neurons, which are the horizontal cell (blue) and the bipolar cell
(red). The photoreceptors, horizontal cells, and bipolar cells interact with each
other in the outer plexiform layer (OPL), which is a morphologically identifiable
lamina seen in the cross section of the retina (indicated by arrow 1 in Fig. lb).
In this chapter, we refer to the neuronal circuit consisting of these three types of
neurons as the outer retinal circuit.

The bipolar cell transmits the output of the outer retinal circuit to the amacrine
cell (white) and the ganglion cell (yellow). The bipolar cells, amacrine cells, and
ganglion cells interact in the inner plexiform layer (IPL), which is another mor-
phologically identifiable lamina seen in the cross section of the retina (indicated
by arrow 2 in Fig. lb). The neuronal circuit consisting of these three types of
neurons is referred to as the inner retinal circuit in this chapter. There are two
distinguishable information channels in the inner retinal circuit. One channel is
sensitive to static stimuli, and the other, to moving stimuli. The interplexiform
cell (light green) is a unique neuron which provides a feedback pathway from the
IPL to the OPL. The function of the interplexiform cell (IP cell) will be discussed
in Section II.D. The outer retinal circuit and the inner retinal circuit are important
portions to study how visual information is processed in the retinal circuit.

The retina consists of several layers of neuronal networks. The neurons be-
longing to the same types are arranged in two-dimensional arrays to aggregate
in separate layers. The photoreceptors are arranged in a two-dimensional array.
The photoreceptor mosaic is relevant to visual resolution under optimal viewing
conditions. Other types of neurons are also arranged in two-dimensional arrays.

=1 § I

II
•I I

>-. en

C3
0

0

-J
l̂i

o

o

O

-2
o

C
3

O

1
1

o

a

o
 "̂

(U
 It II

III!
ills

III!

4 I

Parallel Analog Image Processing 205

The layered structure is conserved in all vertebrate retinas, from fish to mam-
mals. The visual information is processed in successive stages, from one layer
to the next layer, with convergences and divergences of the wiring in the retina.
The interaction between these layers includes feedback connections from prox-
imal layers to distal layers as well as feedforward connections. It is noteworthy
that these interconnections are made only between nearby neurons. This effective
wiring is achieved because of the layered architecture. Since the voltage signal is
transmitted only to neighboring neurons, the signal distortions are minimal and
the calculation in the circuit is carried out with analog voltage signals (except in
the ganglion cells). The ganglion cells give rise to action potentials to send the
outputs to the brain.

B. CIRCUIT ELEMENTS

1. Chemical Synapse

The interaction between the neurons takes place with two types of mecha-
nisms, the chemical synapse and the electrical synapse. At the chemical synapse,
the signal is transmitted by a chemical substance, the neurotransmitter. Figure 2a
illustrates the signal transmission at the chemical synapse. When the voltage sig-
nal reaches the nerve terminal of the presynaptic neuron, which sends the signal
to another neuron, the transmitter is secreted from the terminal. The transmitter
reaches the receptor molecule of the membrane of the postsynaptic neuron, which
receives the signal from the presynaptic neuron and opens channels of specific
ions. As a consequence, the currents carried by the ions change the membrane

v^ pre

T

4> t^i pos

(a) (b)
Figure 2 Chemical synapse, (a) The terminal of the presynaptic neuron (left) secretes neurotransmit-
ters. The neurotransmitters open ionic channels in the membrane of the postsynaptic neuron (right),
(b) The signal transmission at the chemical synapse is modeled by the voltage-controlled current
source. The postsynaptic currents are generated by the neurotransmitters which are controlled by the
membrane voltage of the presynaptic terminal, Vpre-

206 T. Yagi et al

potential, which is the voltage inside the cell in reference to the outside space.
In other words, the membrane current of the postsynaptic neuron is controlled by
the voltage of the presynaptic neuron at the chemical synapse. When the signal is
weak and the change of membrane conductance at the postsynaptic site is small
compared with the input conducatance of the postsynaptic neuron, the transmis-
sion at the chemical synapse is modeled by the voltage-controlled current source
as shown in Fig. 2b. Because the signal transmission takes place through several
intermediate processes, there exists an inherent time delay in the transmission at
the chemical synapse.

Several neurotransmitter molecules have been identified in the retina. The
membrane potential of the postsynaptic neuron shifts in either positive (depo-
larization) or negative direction (hyperpolarization) depending on the neurotrans-
mitter molecules. Glutamic acid is one of the major excitatory neurotransmitters
which depolarize the membrane potential, y-aminobutyric acid (GABA) is one
of the major inhibitory neurotransmitters which hyperpolarize the membrane po-
tential. A particular transmitter activates corresponding receptor molecules and
generates currents carried by specific ions. Therefore, the temporal properties of
signal transmission depend on transmitter molecules.

2. Electrical Synapse

The currents spread directly into neighboring neurons through the electrical
synapse. Gap-junctions are a typical electrical synapse occasionally found in the
retina (Fig. 3a). The gap-junctions provide a low-resistance pathway between
neighboring neurons. The currents flowing through the gap-junctions are ordinar-
ily bidirectional, and therefore the gap-junctions are modeled by resistors. The
voltage signals pass to neighboring cells without time delay through the gap-
junctions. The electrical synapse plays important roles in visual information pro-
cessing in the retina, especially in the outer retina as shown later. As was explained
in Section II.A, homogeneous types of neurons are arranged in two-dimensional
arrays. When neighboring neurons of a homogeneous type are connected by elec-
trical synapse over the lamina, the neurons constitute an electrically continual
network. This network is called a neuronal syncytium, and the voltage signals
conducting in such a syncytium are described by the analog network model as
shown in Fig. 3b [10, 11]. In this figure, the arrangement of neurons is treated as
one-dimensional. We treat the two-dimensional arrangement of neurons as a one-
dimensional array in this section, for simplicity. The one-dimensional model can
be directly applied to analyze the responses to illuminations which induce homo-
geneous voltage change in one direction. For example, a long sUt of light induces
the voltage change which is homogeneous along the long axis, and the current
spreads only perpendicular to the slit [12, 13]. Although the applications of this
one-dimensional model are limited to such stimuU, it is still useful to gain qualita-
tive insights for the properties of voltage responses generated two-dimensionally.

Parallel Analog Image Processing 207

^PKA
ATP CAMP

DA

(a)

777777

Figure 3 Electrical synapse, (a) The gap-junction provides a low-resistance pathway between cells
and thus is described by a resistor. In some cases, the gap-junction is controlled by intracellular mes-
senger machineries (see Section ILD). (b) Neuronal syncytium. Neighboring neurons are connected
by gap-junctions and neurons constitute an electrically continual network.

Each neuron is represented by a parallel RC circuit in Fig. 3b. Rm and Cm cor-
repond to the total membrane resistance and capacitance of a single neuron. The
resistance of the electrical synapse connecting neighboring neurons is represented
by Rs. The spatio-temporal properties of the voltage signal can be described by
analytical solutions derived from the model. The solutions are obtained in the fre-
quency domain, so the time course of voltage responses is calculated with the aid
of the inverse fast fourier transform.

Let Vk{o)j), j = V^, be the membrane voltage and Uk((oj) be the synap-
tic current generated in the A:th neuron of the syncytium. We assume that the
distribution of the current is symmetrical, that is, Uk((oj) = u-k{coj). Applying
Kirchhoff's current law in the frequency domain at each node, we obtain

{Vkicoj) - Vk-\{0)j)) (Vk(0)j) - Vk-{-l((OJ)) Vk(0)j)

Rs Rs Zm(C0J)

k = 1, . . . , A2.

208 T. Yagi et al

Here,

Zmi(OJ) =
Rm

l-\-RmCmCOJ

is the membrane impedance of each neuron. When the current uoicoj) is generated
only at the neuron numbered 0, the voltage response of the A:th neuron becomes
[14,15]

v,(coj) = R.^^M=p(coj)\ (1)
^/c^icoj) - 4

where

-C(C0J) - y/c((0j)^ - 4
P(^J) = 2 •

c(a)j) is a function of membrane impedance and coupling resistance expressed as

V Zm{o)j))'

Equation (1) is the line spreading function, expressed in the frequency domain,
of the spatio-temporal properties of the voltage response in the single-layer syn-
cytium. Specifically, the spatial distribution of an arbitrary frequency component
of the voltage response is described by p{coj). The modulus of p{coj) gives the
rate of response decay while the voltage conducts to the neighboring cell. The
argument of p(o)j) gives a phase shift of the response during the conduction.

When the retina is illuminated with image which induces currents, Ii(coj), I =
1 , . . . , n, in the /th cell, the voltage response of the /:th cell is expressed by the
convolution of Eq. (1) with the light-induced current, i.e.,

R ^
Vkicoj) = . ' Tp((ojf-^^Ii(coj),

y/c^ia)j)-4f^^

The response waveform can be obtained by transforming the above equation into
the time domain with the aid of the inverse fast fourier transform (FFT) algorithm.

In some cases, the resistance of the electrical synapse is modulated through
intracellular chemical reactions. An example of such modulation found in the
horizontal cell is shown in Fig. 3a. A modulatory signal transmitted by dopamine
activates the receptor on the horizontal cell membrane [16]. The activated receptor
increases the concentration of cyclic AMP (cAMP). cAMP is one of the potent
intracellular messenger substances influencing a wide variety of neuronal func-
tions, and in this case cAMP closes the gap-junctions to increase the resistance
connecting the horizontal cells [17]. This modulation is considered to be relevant

Parallel Analog Image Processing 209

to the adaptive control of the spatial filtering properties of the outer retinal cir-
cuit [2, 15]. The architecture of adaptive silicon retina discussed in Section III is
inspired by this modulatory mechanism.

3. Properties of a Single Cell

The retinal network filters the input image with its dynamics. Since a single
neuron is a basic component of the circuit, the filtering properties of the retinal
circuit are highly relevant to the electrical properties of a single cell. The con-
ductance of a single cell can be directly measured by electrophysiological exper-
iments [18]. To measure the conductance, the single cell has to be isolated from
the retinal tissue to curtail interactions with other neurons. Such isolation is ob-
tained by treating the retina with an enzyme, e.g., papain [19]. Figure 4a shows
the membrane current of a single bipolar cell induced by steps of voltage. The
membrane voltage was clamped at —30 mV, where the membrane current was
almost 0 pA, and then stepped to different levels. The physiological range of the
membrane voltage of outer retinal neurons is between —60 mV and —10 mV. The
current is as small as several picoamperes and almost Hnear (but in a biological
sense) in the physiological voltage range (Fig. 4b). When the step of voltage de-
viates from the range, prominent nonlinear responses are seen. It is noteworthy
that the conductance of the membrane increases significantly out of the physio-
logical range. The increment of conductance prevents the membrane voltage from
abnormal excursions by the shunting effect. The current responses to the voltage

V[mV]

(a) (b)
Figure 4 Electrical properties of a bipolar cell, (a) The current responses to voltage steps of different
levels are superimposed (upper trace). The lower trace illustrates the voltage steps, (b) The current-to-
voltage relation replotted from (a). The amplitudes of current responses are measured at 0.5 sec (x)
and 3 sec (o) after the onset of voltage steps. (Hayashida and Yagi, unpublished data.)

210 T. Yagi et al

pulses are usually less than 50 pA in the physiological range in the outer retinal
neurons. These observations indicate that the retinal nuerons compute the visual
information with extremely small voltages and currents.

C. OUTER RETINAL CIRCUIT

Most neurons have a membrane potential of about —70 mV at rest and re-
spond to stimuH with action potentials. In contrast, the outer retinal neurons have
a membrane potential of about —30 mV in the dark, indicating that they are in
an excited state when the stimuli are absent. These neurons respond to light with
slow voltage changes which are referred to as the graded voltage response. The
slow time course of the response is mainly due to the chemical reaction cascade
of the phototransduction process in photoreceptors.

1. Photoreceptors

There are two types of photoreceptors, the rod and the cone. The rod has a
high sensitivity to light and operates at night. The cone is much less sensitive to
light and operates in the daytime. The cone is classified into three subtypes cor-
responding to different spectral sensitivities to light wavelenghts. These subtypes
are the red cone, green cone, and blue cone. Figure 5a shows a set of light-induced
responses of a cone obtained with intracellular recordings [20]. In this figure, re-
sponses to different intensities of flash are superimposed. The flash duration is
10 msec. The membrane voltage of the cone is about —30 mV in the dark. The
flashes of light generate hyperpolarizing voltage responses. The amplitude of re-
sponse increases as the illumination becomes brighter. The response amplitude of
the cone reaches its peak 50 to 100 msec after the onset of the flash, depending
on the light-adaptation. The chemical reaction of the phototransduction process is
much slower than operation of CMOS transistors. However, the cascade of chem-
ical reactions can achieve an extremely high amplification of the signal.

The graded potential also has an advantage in integrating and averaging the
photon signal over time. The time course of rods is much slower than that of
cones. It takes several hundreds of milliseconds for the rod response to reach its
peak amplitude. The high sensitivity and the slow time course of rod response are
suitable for detecting a small number of photons.

Figure 5b shows the maximum amplitudes of the responses to different inten-
sities of light plotted as a function of log light intensity (intensity response plot)
[21]. The left curve is the intensity response plot for rods, and the right one is that
for cones. In each case, the response amplitude increases with a shallow gradient
when the intensity of light is low. The gradient of the response increase becomes
the highest near half of the saturation amplitude where the resolution of the light

Parallel Analog Image Processing

-4.2

(mV)

211

sec
(a)

photon/cm^flash

(b)
Figure 5 Voltage response of photoreceptors, (a) Responses of the cone to flash of different inten-
sities. Responses are superimposed. From Baylor and Fuortes (1979), reprinted with permission, (b)
The intensity response plot of cone (right) and rod (left) responses. Reprinted with permission from
G. L. Fain and J. E. Dowling, Science 180:1178-1181, 1973 (Copyright 1973 American Association
for the Advancement of Science).

intensity is highest. Around this intensity region, the ampUtude of the voltage re-
sponse is proportional to the log light intensity. The response amplitude reaches
its saturation voltage with a shallow gradient. As shown in the figure, each of
the photoreceptors detects the intensity difference in 3 log units. Therefore, the
rod and cone together cover the light intensity of 4 to 5 log units. The relation
between the maximum amplitude (V) and light intensity (/) is described by the
MichaeUs-Menten equation [20]:

V = Vr,
• (T ^)

212 r. Yagi et al

Here Vmax is the amplitude at saturation, a is the intensity which gives a response
of Vmax/2 and relates to the degree of light sensitivity.

Neighboring photoreceptors are coupled electrically by gap-junctions to con-
stitute a syncytium [23, 24], even though the coupling is not as tight as the hori-
zontal cell (see Section II.C.2). The significance of electrical coupling is thought
to be the reduction of noise occurring in the retinal neuronal circuit. When cells
are electrically coupled, the current generated in a single cell spreads into neigh-
boring cells. Since the intrinsic noise in each cell is not correlated, the signal-
to-noise ratio can be improved when the image has an appropriate size [10, 25].
It is also likely that the electrical coupling masks random variations of electrical
properties of each cell. The electrical coupling, however, blurs the image. Thus,
the coupling strength between neighboring cells is a critical parameter to be de-
termined by the trade-off between these conflicting factors. The analog CMOS
VLSI encounters a similar problem, i.e., random variations of transistor offsets.

2. Horizontal Cell

The horizontal cells also give rise to graded potential responses. It is well
known that the horizontal cells exhibit large receptive fields which sometimes
cover almost the entire retina [26, 27]. This is because neighboring horizontal
cells are tightly coupled electrically by gap-junctions. The electrical coupling be-
tween neighboring cells is found in the photoreceptors as well as bipolar cells
[26], but the coupling is not as intensive as in the horizontal cells.

Figure 6 shows a piece of evidence demonstrating the electrical coupling be-
tween horizontal cells. The schematic drawing in the figure explains the record-
ing method. The response of a horizontal cell to a brief flash of light is recorded
with a microelectrode (indicated by the thin triangle) connected to the operational
amplifier (a). In this experiment, a narrow brief flash was first placed above the
recorded horizontal cell (A), then displaced by 0.2-nmi steps from the recorded
cell (B and C). The experimentally recorded responses are shown in (b). The re-
sponses to the flash placed at A, B, and C are superimposed in the figure. The
response was clearly observed for the flashes B and C, in which the distance from
the recorded cell far exceeds the dimension of the horizontal cell. This indicates
that the response to the flash in the recorded cell is propagated through the elec-
trical synapse.

3. Bipolar Cell

The bipolar cell is the first neuron which exhibits a V^G-like receptive field
in the vertebrate visual system [29]. In the bipolar cell, the response to an illumi-
nation placed above the center region of the receptive field antagonizes the one
placed above the surrounded region. Figure 7a presents the response of a bipolar

Parallel Analog Image Processing 213

1 mV

100 msoc
(b)

Figure 6 Spatial properties of horizontal cell response, (a) Schematic illustration of the experimental
procedure. Intracellular voltages are recorded with a microelectrode (thin triangle) connected to an
amphfier. The retina is illuminated by a narrow slit of flash as it is displaced at A, B, and C. (b) Voltage
responses to the flash. The responses to the slit at A, B, and C are superimposed. Upper trace indicates
the timing of flash.

cell showing the antagonistic receptive field (Sakakibara and Yagi, unpublished
data). In this experiment, the responses of a bipolar cell to spots of light with
different diameters were recorded. As the diameter of the spot of light centered
above the recorded bipolar cell increased up to 0.3 mm, the response amplitude
increased. However, the response amplitude decreased and finally the polarity of
the response reversed when the diameter was further increased. This indicates that
there exists a receptive field surround which antagonizes the receptive field center.

214 T. Yagi et ah

0.05 0.09 0.2 0.3 0.6 0.8 1.2 1.9 (mm)

Jl n_Jl iL_il_Jl_JL_/L

^ / ^ S bipolar cell

horizontal cell

(b)
Figure 7 Receptive field of the bipolar cell, (a) A spot of light was centered on the recorded bipolar
cell and voltage responses were obtained as its diameter was increased. The voltage responses are
shown in lower trace, (b) The interaction among the photoreceptors, horizontal cells, and bipolar cells.
The chemical synapses are indicated by arrows. The electrical synapses are indicated by resistors.
(Sakakibara and Yagi, unpublished data.)

It is widely believed that the center response is mediated by the direct input
from the photoreceptor and the antagonistic surround response is mediated by the
horizontal cell. The neuronal circuit which generates the bipolar cell receptive
field is illustrated in Fig. 7b. The bipolar cell receives inputs from the photorecep-
tor and the horizontal cell. These two inputs antagonize to produce the V^G-like
receptive field. The narrow center reflects the input from the photoreceptor and
the wide surround reflects that of the horizontal cell.

Parallel Analog Image Processing 215

D. NEURONAL ADAPTATION

The V^G-like receptive field has two effects on image processing. It smooths
a noisy image and enhances the image contrast [28]. Since these two require-
ments, i.e., smoothing and contrast-enhancement, contradict each other, the re-
ceptive field size of the bipolar cell should be adjusted depending on the signal-
to-noise ratio of the input image. Several pieces of evidence indicate that the outer
retinal circuit adaptively modulates spatial filtering properties under a different vi-
sual environment. Previous physiological experiments revealed that the receptive
field of the horizontal cell is controlled by the IP cell. The IP cell (light green in
Fig. 1) is believed to be a centrifugal neuron innervating to the horizontal cell. Its
cell body is located near the IPL (arrow 2 in Fig. lb) with ascending axons to hor-
izontal cells [16]. It was found that a physiologically active substance, dopamine,
is released from the IP cell and reduces the receptive field size of the horizontal
cell by decreasing the conductance of electrical synapses connecting neighboring
cells [17]. Since the receptive field surround of the bipolar cell is mediated by the
horizontal cell, it is natural that the receptive field of the bipolar cell is controlled
by the IP cell. More recently, it was demonstrated that the effect of dopamine on
the horizontal cell is mimicked by exposing the retina in the light-adapted state
[31]. These observations indicate that the receptive field size of the horizontal cell
is reduced in the light-adapted state, and consequently the receptive field of the
bipolar cell is sharpened.

We hypothesize that the IP cell adaptively controls the receptive field size of
the horizontal cell according to the signal-to-noise ratio. If we assume that the in-
trinsic noise is constant regardless of the adaptation level of the retina, the relative
magnitude of noise to signal is small in the daytime since the light intensity of
the signal image is high. In that situation, the bipolar cell receptive field is to be
sharpened to gain spatial resolution. The spatial filtering properties of the outer
retinal circuit are described in terms of this adaptive hypothesis in the following
section.

E. ANALOG NETWORK MODEL OF OUTER RETINA

Based on the physiological bakcground described previously, the outer retinal
circuit is expressed by the analog network model (Fig. 8). Each photoreceptor
is represented by a membrane impedance Zm\{(joj) and each horizontal cell by
Zm2((^j)' The resistance Rsi represents the electrical coupHng between photore-
ceptors. The resistance Rs2 represents the electrical coupling between horizon-
tal cells. The resistance connecting neighboring horizontal cells, Rs2, is variable,
since it is modulated by the IP cell. In this model, the coupling between bipolar
cells is neglected for simplicity. We denote the light-induced current of cones with

216 T. Yagi et al.

Figure 8 Analog network model of outer retina. See text for the detail.

u and the light-induced voltage responses of cone, horizontal cell, and bipolar cell
with v^ v^, and x, respectively, i.e.,

u =

/ m{(oj) \
U\{(OJ)

\un{0)j))

(^o(^J)\

' ^ ' ^

(v\icoj)\

v\icoj)

Wnio^J)/
/xi(coj)\^

V =

liQrQ,Uk(coj) (k — ! , . . . , «) is the light-induced current of the A:th cone expressed
in the frequency domain, vl (coj) and vl(coj) are the voltage responses of the A;th
cone and horizontal cell. Xk((oj) is the /:th bipolar cell response. The strength of
the synaptic input from the photoreceptor to the horizontal cell is expressed by
ti (coj) (Siemens). The strength of the feedback synaptic input from the horizontal
cell to the photoreceptor is expressed by t2{coj) (Siemens). The synaptic inputs
to the bipolar cell from the photoreceptor and horizontal cell are expressed by

Parallel Analog Image Processing 217

t-i{coj) and tn{coj), respectively. These synaptic strengths are defined by the ratio
of postsynaptic current induced by neurotransmitters to the presynaptic vohage.
The synaptic strengths are also expressed in the frequency domain.

Applying Kirchhoff's current law at each node representing the cones and hor-
izontal cells, we obtain a set of matrix equations for cone and horizontal cell
responses:

Civ' + t2{(oj)Rsiv^ = -RsMcoj),

Here Ci and C2 are

/ c i 2

1 ci

Ci =
0 1 ci

0 . . .
\ 0 0

/C2 2

1 C2

C2 =
0 1 C2

1

0

0

1

0

0

0
1

1 ci + lj

0 0

0 . . .

\0 0

1

0

C2

0

0
1

and

ci

C2

- (

- (

1 C 2 + I 7

'Z.mlicoj),

On combining Eqs. (2) and (3), we find matrix equations,

{C2C\-tit2Rs\Rs2my^ = -RsxCiu,

(C1C2 - ht2Rs\Rs2^)y^ = tiRsiRsin.

Here, E is the identity matrix.

(2)

(3)

(4)

(5)

218 T.Yagietal

When only the cone numbered 0 is stimulated and the current uo(coj) is in-
duced, the solutions of Eqs. (4) and (5) become [15]

vlicoj) = Ai{o)j)pi{a)jf + A2{oyj)p2{(ojf, (6)

vlicoj) = Bx{(oj)px{(Djf + B2((oj)p2((oj)K (7)

Here,

Pi(coj) = -a(coj) - yjot{(oj)'^ - 1,

P2{(oj) = -Picoj) - ^Jpicoj)^ - 1,

and

ct{coj) = ^i^^^'^^^^^^-^) + \yj{ci{a)j) - C2{coj))^ +4ti{coj)t2(coj)RsiRs2,

Picoj) = ^^(^'^^+^^^^'^^ _ y(ci(coj) - C2(coj))^ -^4ti(coj)t2(coj)RsiRs2-

Ai(coj), A2(coj), Bi(a)j), and B2{coj) are found from the boundary conditions.
Solutions (6) and (7) indicate that the ampUtude of an arbitrary frequency compo-
nent of voltage response decays with two coefficients, pi (coj) and P2(coj)' When
the retina is illuminated with an arbitrary image and the current Uk (coj) is induced,
the voltage responses of the cone and horizontal cell are obtained by convolution
of Eqs. (6) and (7) with Ukicuj), respectively.

The voltage distribution of the bipolar cell response, x, is expressed simply by
the difference between the cone response and the horizontal cell response [30],
i.e.,

X = Zm3t3y^ + Z^3^4V^ (8)

Here Zm3 is the membrane impedance of the bipolar cell.
If we focus on the spatial distribution of the bipolar cell response in the steady

state (equilibrium point), the spatial filtering properties of the bipolar cell are
found to be characterized in terms of the standard regularization theory, with
which some early vision problems are solved as minimization of quadratic cost
functions [33]. We demonstrate how the outer retinal circuit naturally solves reg-
ularization problems with the cost function derived from the model. Since we
consider the voltage distribution of the RC circuit at equilibrium, the membrane
can be replaced by pure resistors instead of impedances. Combining Eqs. (4), (5),
and (8), we obtain the equation for the voltage distribution of the bipolar cell
response:

(C1C2 - tit2RslRs2^)^ = -t3Rm3RslC2U + tit4Rm3RslRs2n. (9)

Parallel Analog Image Processing 219

If we ignore the boundary effect, which is often feasible when the network is
stable (see Section IV), and substitute Ci and C2 of Eq. (9) by (L - Rsi/Rmi^)
and (L - Rs2/Rm2^), using

L =

/ - 2 1 0
1 - 2 1
0 1 - 2

0 \

\o 0 1 - 2 /

then we find that the response of the bipolar cell is described by an equation
similar to the Euler equation ([2], see also Section III for details). Specifically,

X - d - AiLx + A2L^x = 0. (10)

Here

and

where

Ai =
Rml/Rsl-\-Rm2/Rs2

1 - htiRmlRml
A2

Rm\Rm2/{Rs\Rsl)

1 - t\t2Rm\Rm2

d = vRoM — RoLvi,

Ro =
RmlRm2Rm3t3

{\ - ht2Rm\Rm2)Rs2' ""'ii Rm2 t3) '

As was defined, u is the light-induced current of cones. RQ has the dimension
of resistance (ohm) and v is a dimensionless constant. Therefore, VRQU desig-
nates the spatial voltage distribution proportional to the input image, provided
that the light-induced current is proportional to the illumination intensity. Simi-
larly, RQLXX designates the spatial voltage distribution which is proportional to the
second-order difference of the input image. Note that the second-order difference
operation enhances the contrast of image as well as noise. As will be shown in
Section III, Eq. (10) gives the solution which minimizes the cost function.

/(x) = (X - d)^(x - d) -I- Ai(Dx)^(Dx) + A2(Lx)^(Lx). (11)

In other words, the bipolar cell responses distribute themselves so as to minimize
the function (11). The first term of the cost function (11) decreases as x becomes
closer to d, which is composed of the raw input image, vR^^n, and the contrast-
enhanced image, RQ\M. The second and the third terms of the cost function (11)
decrease as x is smooth. Thus, the distribution of the bipolar cell response is deter-
mined by the trade-off between contrast-enhancement and smoothing operations.
It is interesting to study how the resistance of gap-junctions between horizontal

220 T. Yagi et al

cells, Rs2, affects the spatial filtering properties of bipolar cells. The effect of Rs2
is unambiguously predicted from the cost function (11). When Rs2 decreases,
RQ increases and the contrast-enhanced image is emphasized. The weight on the
raw image, v/?o» does not change since Rs2 is canceled. This is an important
feature since the response to the background illumination is not modulated even
though Rs2 changes. X\ and X2 also increase as Rs2 decreases, and thus the fil-
tered image becomes smoother. In the following, these effects are demonstrated
by simulations.

-150 -100 -50 0 50

cell number
(a)

100 150

- 6 0 0 - 4 0 0 - 2 0 0

(b)

200 400 600
cell number

200 400 600
cell number

(c)
Figure 9 Simulation of neuronal adaptation, (a) The receptive field of the bipolar cell calculated
with different values of R^i- (b) Noisy input image, (c) The spatial distribution of bipolar cell response
calculated with high Rs2 (thin fine) and with low Rs2 (thick fine).

Parallel Analog Image Processing 111

The receptive field of the bipolar cell was calculated from the model with dif-
ferent values of Rsi (Fig- 9a). In this calculation, v was taken to be zero for sim-
plicity. Figure 9c illustrates the spatial distribution of the bipolar cell response
to a noisy input image. The noisy input image is composed of a square object
spreading from cell number —150 to 150 and random noise (Fig. 9b). As shown in
Fig. 9c, the image filtered with the high Rs2 is still noisy, and the contrast enhance-
ment seen as the "Mach Band"-like phenomenon is hardly distinguished from the
noise (thin line). The high Rsi enhanced the amplitude of noise as well as the
contrast of the image. However, it is easier to specify the contrast-enhancement
effect when Rs2 is low (thick line). It is also evident that the gain of the bipolar
cell response increases as Rsi decreases. Note that the response to background
illumination does not change even though Rsi changes.

The vision chip with light-adaptive architecture inspired by these physiological
and computational backgrounds is explained in the next section.

III. REGULARIZATION VISION CHIPS

A. INTRODUCTION

This section first explains how regularization problems which naturally arise
in early vision problems can be solved in a completely parallel manner using
layered analog resistive networks. The second part of this section presents com-
plete details of the smoothing contrast-enhancement (SCE) vision chip which has
a double-layer architecture inspired by the physiological results discussed in the
previous section. The chip solves first-order and second-order regularization prob-
lems simultaneously and outputs their difference. Since the chip is equipped with
a photosensor array and an analog processing array, the execution is extremely
fast, typically several microseconds. Implementation of the chip requires no spe-
cial technology; it uses a standard 2 /xm CMOS process. The third part of this
section described light-adaptive architecture and its CMOS circuitry. This adap-
tation mechnism enables automatic adjustement of the SCE filter scale in accor-
dance with the intensity of input images. This is inspired by the horizontal cell
adaptation mechanism explained in the previous section.

B. TiKHONOv R E G U L A R I Z A T I O N

When a solution to an operator equation (not necessarily linear)

Av = d, veX, deY, (12)

loses existence or uniqueness or continuity in d, Eq. (12) is called ill-posed. 111-
posedness typically arises when "data" d is noisy while the solution v sought

222 T. Yagi et al

should be reasonably smooth. It can also result from the nature of A. The
Tikhonov regularization [34-36] converts Eq. (12) into a family of minimization
problems:

G{v, d, X) = \\Av - df + XQ(v), (13)

where || • || denotes a norm (on Y), Q: X ^^ IZis continuous and strictly convex,
X > 0. If Av* = J*, then under reasonable conditions, Eq. (13) regularizes
Eq. (12) in the sense that for any 6-neighborhood N^(v*) of v* (with respect to
an appropriate topology), there is a ^-neighborhood Nsid*) ofd* such that if ^ G
Nsid*), 2ind if X(8) > 0 is appropriate, then there is a unique i;(J, A(5)) e N^iv"^)
which minimizes Eq. (13). It should be noted, however, than when d is noisy,
choosing the best X is another interesting as well as difficult problem because one
needs to take into account the statistics of d [37-39], and its is outside the scope
of this paper.

Now a typical "stabilizer" ^{v) in Eq. (13) is of the form

where Cr{x) > 0 and D = [a, b] is the domain of the problem. If Eq. (13) with
Eq. (14) can be written as

dx"-'
(15)

G(v, d,X) = I F(vix), v^^\x),..., v^^\x), x, d(x), X) dx, v^'' =
JD

where F is "well-behaved," then the variational principle gives the Euler equation

^ dx^ dv^^^
r=0

with natural boundary conditions

d' d
^ dx^ dv^^~^~^>
r=0

atx=a,b for ^ = 0 , 1 , . . . , P. (17)

It should be observed that because of the particular form of Eq. (14), the Euler
equation Eq. (16) necessarily contains terms of the form

r = l , . . . , P . (18) (S)<-

Parallel Analog Image Processing 223

Namely, if the stabilizer Eq. (14) contains the rth-order derivative, one needs
to implement the 2rth-order derivative operation for solving the regularization
problem.

For the sake of simplicity, the independent variable x has been one-dimen-
sional. Two-dimensional problems will be discussed in the next subsection.

In the following, we will formulate the regularization problem as a minimiza-
tion problem on a finite-dimensional space instead of approximating the Euler
equation because

(a) in a chip implementation the space variable x takes finite discrete values,
(b) the formulation naturally leads to our layered architecture,
(c) discrete approximation of the Euler equation Eq. (16) together with the

natural boundary condition Eq. (17) in a consistent manner is not
straightforward. Boundary conditions are important since inadequate
boundary conditions even lead to instability [40,41]. Our discrete
formulation given below naturally incorporates Eqs. (16) and (17),

(d) most of the vision chips fabricated/proposed so far, including the filter
described in Section III.D, are on a hexagonal grid instead of a square
grid (see Section III.C for reasons). A rigorous approximation result on a
hexagonal grid will be rather involved.

Thus let V = (u i , . . . , VnV ^ '^"- Then the derivatives in Eq. (14) should be
replaced by the differences, e.g..

(S* l(x) -^ Vk -Vk-\, |(x) -> Vk-\ +Vk+\ -2vk.

These operations are conveniently expressed by

where

D =

Note that ahhough D is not symmetric, D^D is symmetric and

D^D = - L ,

(19)

(20)

1 0 0 . . .
- 1 1 0 . . .
0 - 1 1 . . .

0 0 0 . . .]
0 0 0 . . . -

0
0
0

I 0
1 1

L =

- 2 1 0 ..
1 - 2 1 . .
0 1 - 2 ..

0 0 0 . .
0 0 0 . .

. 0

. 0

. 0

- 2 1
1 - 2

(21)

(22)

224 T. Yagi et al

where T denotes transpose of a matrix. Therefore, the regularization problem for
the finite-dimensional space case calls for minimizing

EkCr(k)(U/h)l

where d = (du...,dnV ^ W, Cr{k) > 0, and (L''/^v)jt [respectively
(DL('"-^^/^v)fc] is the A:th component of L''/^v [respectively DL^'-^^/^v]. Differ-
entiating Eq. (23) with respect to v and setting it to zero, one has

1 dG
- — = pJ{Ay - d) + Y,^-\Y^rVy = 0,
2 d\

r=l

where

(24)

are called the hyperparameters.
Consider, for instance, F = 2, A2 7̂ 0, Xi = 0 , which amounts to

Note that

\} =

- 2 1 0 0

1 - 2 1 0

0 1 - 2 1

V - d + k2\/\ = 0.

0

0

0

(25)

0 0 0

0 0 0

* - 4 1 0

- 4 6 - 4 1

1 - 4 6 - 4

1 - 2 1

0 1 - 2

- 2 1

1 - 2

0 1

0 0

0 0

0 0

1 0

- 2 1

0 .

0 .

. . 0 1

. . 0

. . 0

1 - 2 1

0 1 - 2 _

0 0 0

0 0 0

0

0

0

- 4 6 - 4

1 - 4 *

(26)

Parallel Analog Image Processing 225

where * = 5 due to the "boundary effect." One sees that the kih component of
Eq. (25) in the "interior" reads

Vk-dk-\-)^2[^Vk - 4(vk-i + Vk-\-i) + Vk-2 + Vk-\-2] = 0. (27)

A direct implementation of Eq. (27) is given by Fig. 10 where

go, 81 > 0, g2 < 0, ^1 =4 |g2 l ,

because the Kirchhoff current law (KCL) gives

(28)

-(go + 2gl + 2g2)Vk + gl(Vk-l + Vk-\-l) + g2(Vk-2 + Vk-\-2) + Mjfc = 0. (29)

Therefore, X2 = ^o/l^2l» dk = A2Mjt. This is what has been done in [40-42]. For
a general r, matrix U is of the form

ao ai a2 . ar 0 0 . . 0
ai ao ai a2 . ar 0 . . 0
a2 ai ao cii 0
. a2 ai ao 0 0

ar ar 0
0 ar ar
0 0 ao ai a2 .

a\ ao a\ a2
0 . . ^ ar . a2 a\ ao a\
0 . . 0 0 ar . a2 ai ao

U = (30)

where the boundary effects are not explicitly shown in order to save the space.
Equation (30) shows that direct implementation requires connections between
every pair of the A:th nearest nodes for all A; < r with possibly negative con-
ductance. As will be shown in Section III.F, r = 2 is already very difficult to
implement due to wiring complexity.

The architecture given below solves the Pth-order regularization prblem with
only wiring between nearest nodes and without negative conductance. The fol-
lowing fact shows that the network given by Fig. 11 (in one-dimension) solves
the Pth-order regularization problem for all P, 1 < P < Â , simultaneously,
where A = 1 and Cr (k) is independent of k. Proof is found in [2].

Fact 1. Consider the network given by Fig. 11a (in one-dimension) where
the symbol given in Fig. l i b stands for a voltage-controlled current source, and
Smt, gsi > 0,i = I,..., N. Gain 7) is assumed to be constant unlike in Section II
where 7} can depend on co.

(i) The network is temporally stable in the sense that for any symmetric
positive definite (not necessarily diagonal) parasitic capacitance matrix.

226 T. Yagi et al

Figure 10 Architecture of a second-order regularization chip. Reprinted with permission from
T. Matsumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural Networks 3:540-569,1992 (©1992
IEEE).

the temporal dynamics converges to a unique stable equilibrium for any
DC input,

(ii) At an equilibrium, the voltage distribution of the Pth layer, I < P < N,
simultaneously solves the Pth-order regularization with

Ap =
^̂ 1 • • • gsp

(31)
8mi ' ' ' 8mp

^P-1 = (gsi ' ' ' gsp-igmp -^ gsi'" gsp-2gmp-igsp H

•^gmxgs2 ' "gsp)/{gmi ' "gmp). (32)

^ P - 2 = {gs\ ' ' ' gsp-2gmp-\gmp -^ gsi" ' gsp-^gmp-igmp-igsp H

+ gmigm2gs2, ' • ' gsp)/igmi ' ' ' gmp), (33)

-^1 = igmi ' ' ' gmp-igsp + gmi ' * * gmp-2gsp-\gmp + * * *

-^gsxgm2 "'gmp)/{gmx " ' gmp). (34)

dk = Uk.
gmi'" g

(35)
mp

(iii) The voltage distributions of all the layers are spatially stable in the sense
of [40,41,45].

Parallel Analog Image Processing 227

(a)

Figure 11 (a) The layered architecture, (b) Voltage-controlled current source. Reprinted from Neu-
ral Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing
Regularization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

C. TWO-DlMENSIONAL PROBLEMS

Although the basic idea of our layered architecture derived in the previous
subsection is naturally carried over to two-dimensional problems, there are three
issues which call for explanations. First, when there are two independent space
variables, say x and y, there is more than one choice of the stabilizer Eq. (14).
With P = 2, for instance, the stabilizer can be

• / / ' " '
+ Vyy) dxy (36)

228 T.Yagietal

or

or other forms, where

^ / / "̂"̂^ ^ "̂"̂ ^ ^ ""̂ "̂ "̂ ""̂ ^̂ '̂ ^

a^i; a^u a^i;
. . . = ^ ' ^^. = a ^ ' -yy = ^ - (^8)

Second, natural boundary conditions get more involved. For instance, if P = 2,
and A,i = 0, then the first variation of

G(v,d,X)= / / F(v(x,y),Vxx,Vxy,Vyy,x,y,d(x,y),X)dxdy (39)

on the boundary dD gives rise to

f \^ { ^^ I dF \ 3 / 8F I dF \
JdD L ""K^^xx 2 dvxyj dx \dvxx 2 dvxy J

^ f \ I (^^ i 1IL\ _ ^ / ^ ^ ^ aF \
JdD I ^\^^yy ^^VxyJ dy\dvyy 2 dVxy J

dy

dx, (40)

where v(x,y) is perturbed io v(x,y) + '\l/(x,y). When one performs integration
by parts on dD, one obtains, for instance, for Eq. (37),

-(vyy + Vxx) + {vxxx^ + 2i;;c3;̂ TJr + Vyyy^) = 0, (41)

— (f^^ + l̂ jcjc) + :^{vxxXnXr + f.>;(^n}'T + ^r>^n) + l^>'>'Jn}'r) = 0, (42)

on 9D where Xn, yn and JCT, yr are the direction cosines of the outward normal
and the tangent vectors, respectively. Approximation consistent with Eqs. (41)
and (42) together with Euler equation

dF d^ dF d^ dF d^ dF
1 - + T T ^ + T ^ i + ^ T ^ = ^ (43)
dv 9x^ dVxx dxdy dVxy dy^ dVyy

will not be easy to justify rigorously.
Third, many of the vision chips implemented or proposed so far, including

ours, are on a hexagonal grid because

(i) a network on a hexagonal grid has much better circular symmetry than on
a square grid [3,42, 43],

(ii) a hexagonal grid affords the greatest spatial sampling efficiency in the
sense that the least number of nodes will attain a desired of the
image [44].

Parallel Analog Image Processing 229

We will handle the problem as a minimization problem on a finite-dimensional
space as was in Eq. (23). It should be noted that in our arguments below, every-
thing is rigorous insofar as the minimization is concerned.

On a hexagonal grid there are two labeling conventions: standard grid
(Fig. 12a) and alternate grid (Fig. 12b). We will use the standard grid. Let

V := (Viu 1̂ 12, . • . , V\n, V2U 1̂ 22, • • • , Vln, VnU Vn2, • • • , Vnn) ^ 7^"' '", (44)

and let d be similarly defined.

(i) P = I. The most reasonable function to minimize is

G(v, d, Ai) = ||v - df + AidlDivll^ + ||D2V||2 + IIDsvf), (45)

where the (/, 7)th components of Div, D2V, and D3V are, respectively, given by

Vii - Vi-•/-17' (Div),7

(D2\)ij = Vij -Vij-i,

(D3\)ij = Vij - i ; / _ iy+ i .

(46)

(47)

(48)

Appropriate modifications must be made on the boundary. Differentiation of Eq.
(45) with respect to v gives

v - d - A i L v = : 0 , (49)

where

L := - (D [D I + Df D2 + D [D 3) . (50)

(a) (b)
Figure 12 Labeling conventions for hexagonal grid, (a) Standard, (b) Alternative. Reprinted from
Neural Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing
Regularization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

230 T. Yagi et al

The (/, j)th component of Lv in the interior reads

Vi-ij + Vi-^ij + Vij-i + Vij-^i + Vi-ij^i + Vi-^ij-i - 6vij, (51)

which is a reasonable approximation of the Laplacian on a hexagonal grid. One
can easily show that Eq. (49) corresponds to the KCL of the network given in
Fig. 12 with P = 1.

(ii) P = 2. As was remarked earUer, there is more than one reasonable choice
ofG.

(iia)

G(v, d, Al, X2) = ||v-d||2-f Ai(||Div||2+||D2v||2+||D3V||2)+A2||Lv||2, (52)

where L is defined by Eq. (50). The solution to this problem is given by

V - d - AiLv + A2L^v = 0, (53)

which, again, is of the form Eq. (23). The (/, 7)th component of L^v in the interior
reads

Vi-2j + Vi-^2j + Vij-2 + Vij^2 + Vi-2j+2 + Vi-^2j-2

+ 2(i;/_iy_i + U/+l;+l + Vi-ij-^2 + Vi+lj-2 + Vi-2j+l + Vi-\-2j-l)

- I0(vi-ij + Vi-^ij + Vij-i + Vij^i + Vi-ij-^1 + i^/+i;-i) + 42i;/y, (54)

which is a reasonable approximation of the biharmonic operator on a hexagonal
grid. Note that the third term X2 l|Lv|p in Eq. (53) corresponds to a solution with
Eq. (36) which is called the square Laplacian (Grimson 1981). The question as
to what would be a good approximation of the quadratic variation Eq. (37) [47]
on a hexagonal grid may not be easy to answer. We will not pursue this subject
since it is not our purpose in the present paper. Grimson [47] observed a difference
between solutions to a particular visual reconstruction problem (not regularization
problem) with contraint Eq. (36) and constraint Eq. (37). We have, so far, observed
no strange behavior to the solution to Eq. (52) on a hexagonal grid,

(iib) Another choice of G for P = 2 is

G(v,d,M,A2) = | | v - d f + Ai (| |D ivf+ ||D2v||2 + ||D3vf)

+ A2(| |Livf+ | |L2v f+ ||L3V||2), (55)

where

Li := -DfDi , L2 := -DJD2, L3 := -D^Dg. (56)

The solution is given by

V - d - AiLv + A2(Lf Li + L J L 2 + L [L 3) V = 0. (57)

Parallel Analog Image Processing 231

Note that the last term (Lf Li + L2 L2 + L3^L3)v in Eq. (57) is not Lv and it reads
[compare with Eq. (54)]

Vi-2j + Vi^2j + Vij-2 H- Vij-^2 + ^i-2j-\-2 + Vi+lj-2

-A{vi-\j-\ + Vi^ij + u/y+i + Vijj^i + i;/-i;+i + i ; /+i ;- i) + l^Vij, (58)

which is a rather crude approximation of \?y. The network given in Fig. 10 and
hence v in Fig. 12 minimizes Eq. (55) with Ai = 0, A2 > 0.

(iii) P = 3. A possible choice of G will be

G(v, d, Xi, A2, ^3) = l|v - d f + Ai(||Div||2 + ||D2V||2 + ||D3V||2) + X2| |Lvf

+ A3(||DiLv||2 + l|D2Lv||2 + IIDsLvll^). (59)

Note that the third term corresponds to one of the penalty terms considered in [46]
for the continuous two-dimensional problem. The solution is given by

V - d - AiLv + A2L^v - XBL^V = 0. (60)

We will stop here and formalize the argument in the following.

Fact 2. Consider the minimization problem on a hexagonal array:

G (v , d , X i , . . . X p) = | | v - d f

^•^vll"', r: even,

(61)

v-fA,||L'-/:

where L, Di , D2, and D3 are defined by Eqs. (50), (46), (47), and (48), respec-
tively. Then the statements of Fact 1 are valid.

D. THE S C E FILTER

1. Theory

The following fact provides a theory for our smoothing contrast-enhancement
(SCE) filter.

Fact 3. Consider the double-layer network given in Fig. 13. Let

73 1 , 74 2

gm3 gm3

i.e., Xk is a linear combination of vl and v^.

232 T. Yagi et at.

Figure 13 A double-layer network. Reprinted from Neural Networks 6:327-350, H. Kobayashi,
T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on Layered Archi-
tecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boulevard, Langford
Lane, Kidlington OX5 1GB, UK.

(i) Then x := (jci,. . . , x„) minimizes

G(x, u, Ai, A.2) := ^ {xk - Ro(-Uk-i - Uk-\-i + 2uk) - vRoUk)
k

+ Xi Y^{xk - Xk-\f + ^2 Y^{xk-\ + Xk+\ - 2xkf,

where

Ro =
gsl T3

Al =

gmlgml 8m3

gmlgs2-\-gm2gsl

gmlgml

gs2 V T3 J

A2 =
gslgs2

gmlgm2

(ii) Consider the uniform input Uk = u for all k. If

gm2-\-^Ti = 0 ,
T3

(62)

Parallel Analog Image Processing

then

Xk =0 for all k.

233

(63)

Remarks, (i) This filter naturally has an impulse response similar to the one
shown in Fig. 9a. Consider, that the input given by Fig. 14a, which is a rectangular

C«rr«M(

1.

1

«••««

n 41 (1

(a)

^

(b)
Figure 14 Responses to noisy input, (a) Noiseless input where

4 M ,
0,

24<k< 38,
elsewhere.

(b) Responses to (a), (c) Input is corrupted by a white Gaussian noise with 3a = 1 /xA. (d) Re-
sponse vl and v^. (e) Response xj^. (f) Responses Xk when all the circuit parameters are perturbed by
Gaussian around the nominal values with 3a = 20%. Reprinted from Neural Networks 6:327-350,
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington OX5 1GB, UK.

234 T. Yagi et al.

I.MH««

• M A
r'̂ V \

f\f^ 1 ^

A^ ^
l

J I
r
i^h A • r\ K\

rvyv

(c)

i-m^ .

•.S«M«

• I I 1 "

/
j^

\ v i

W \ \

V

^ •*> 1 j ^ J

(d)

wwy

ItMV

^^ / -v

\

\

(e)
Figure 14 (Continued)

Parallel Analog Image Processing 235

HBSI

\SSil

(f)
Figure 14 (Continued)

"imager

Uk
4 M ,
0,

24 <)̂ < 38,
elsewhere,

is corrupted by a Gaussian noise Uk with 3cr = I /JLA, i.e.,

M1 = Uk -¥nk.

(64)

(65)

Figure 14b gives the filter response when T^/gm?> = 1» T^lgm^ = — 1.
(ii) In engineering terms, this network can be regarded as a noncausal^ IIR

(infinite impulse response) implementation of a V^G-like filter and it enhances
contrast after smoothing. Speaking roughly, our filter output x is (L~^ — L~'^)u
where L is as defined by Eq. (5). We are avoiding the term "edge detection"
simply because a zero-crossing of V^G is not necessarily an edge [49]. Note,
however, that in the particular situation given in Fig. 14f, our SCE filter correctly
identifies the two edges against noise and parameter variations, if one checks the
zero-crossings.

(iii) Statement (i) in Fact 3 is straightforward. In order to prove statement (ii)
on Fact 3, note that the input being uniform implies that no current flow through
g^p and hence vl = ulgmx- Similarly, v\ = {J\lgm\gmi)u which yields Xk =
ij^lgmi)v\ + {TA/gm^H = (w/(^mlgm3))(73 + TiTA/gml) = 0. ThuS Eq. (62)
impHes Eq. (63). This means that if Eq. (62) holds, then Xk does not respond
to the "Dc component," namely, Xk responds only to intensity differences and is

^Noncausal is referred to the fact that the voltage at a particular node depends on the node voltages
"to the right" as well as on those "to the left."

236 T. Yagi et al

insensitive to absolute values. This is important from the information processing
viewpoint.

(iv) That the voltage-controlled current source TifMs a unilateral element is
important. Namely, while the first-layer voltage v^ does affect the second layer
via T\v^, the second-layer voltage v^ has no effect on the first layer. Thus, if T\ vl
were replaced with a passive resistor (a bilateral element), then v\ > v^ always
and hence Eq. (63) could never be satisfied. It is also clear that there would be no
antagonistic surround.

2. Circuit Design

As this formation of the second-order regularization network requires only
nearest neighbor connections, its principal virtue is the ease of implementation
on an integrated circuit. Compared to an earlier implementation of a network
with a Gaussian impulse response [42, 43], no resistor connections are required
to second-nearest neighbors, nor are negative impedance converters necessary at
every node. However, two independent resistor networks must now coexist on the
same IC, so the compact design and layout of the unit cell at each node remains a
most important consideration.

The quality of signal processing from all-analog parallel image processors has
usually been inferior to that from digital implementations. The dynamic range is
limited at the input transducer, and offsets, noise, and transistor mismatches often
corrupt circuit action so profoundly that only a vague semblance remains between
the experimentally obtained output and that predicted by theory or simulation. We
used this filter as a means to access the potential of image processing with parallel
analog circuits by designing individual circuits so that the well-known sources of
imperfection are suppressed within reasonable bounds. Some key considerations
were:

(i) To bias all FETs well above threshold, so that local random mismatches
in threshold voltage or large-scale gradients across the chip do not introduce or
distortion in the output reconstructed image. The bias values were constrained by
the requirement of a 1-V signal swing, and operation with a single 5-V power
supply.

(ii) To keep the chip power dissipation to a minimum, so that the chip surface
is almost at constant temperature. Too large a temperature gradient across the
chip will produce a nonuniform profile in dark currents in the photosensor, and
warp the input image. This requirement is reconciled with (i) above by use of
the smallest possible FET W/L ratio. Compactness in layout further requires that
both W and L should be small, so almost all FETs were of the minimum channel
length.

(iii) To place the photosensors on a hexagonal grid, so that no spatial distortion
arises in sampling the input image. Although all unit cells and their associated

Parallel Analog Image Processing 237

wiring lie on a Manhattan geometry, the aspect ratio of the abutted rectangular
cells was chosen so that their centers come to rest on a hexagonal grid.

a. Photoreceptor

The network was driven by the voltage output of the photoreceptor, in a
Thevenin equivalent of the circuit of Fig. 15. An advantage over current drive
is that when the network is uniformly illuminated, no current flows in the network
resistors, so they dissipate zero power. A minimum differential pair with unity
feedback buffers the photoreceptor from the network resistors.

b. Network Resistors

To keep power dissipation small, the network uses large-value resistors. Nomi-
nal values are l/gm\ = 600 k^, l/gsi = 400 k^, l/gs2 = 20k^-200k^. These
are most compactly implemented with FETs, rather than as diffused resistors. In
this way, the variable resistor which must use FETs will track the fixed resistors
over process and temperature.

The network uses a variant of a well-known circuit [3, 50] to cancel the
quadratic nonlinearity between two FET resistors (Fig. 16a). FET sizes are
3 X 10 /xm^ for l/gm\, and 3 x 7 /xm^ for l/gsi- The circuit affords an acceptable

Light

Vout

Unity Gain Buffer

Figure 15 Photosensor circuit. Photocurrent is converted to voltage by diode-connected MOS FETs.

\ V

y

\ [

•
\

•
\

» * \
Ik

*
%

'\

•*
*

\

^
'i*A

"
^

J

1

*iV

1

\

o

d
 d
 CN4

o

o

>

> 0
)

D
>

<0

O

>

u

1/3

1 S

§
A

 a
C

/3

3

SP

o

2

^
o

I I
im

cN

cci<
o

2̂

y

^
^

H
C

T'̂
 £

H
C

 ro|0

H

o
id

1

fa
S

C
^C

D

o G

O

•8

^ •2

•U

5 53D <̂
 239

240 r. Yagi et al

linearity (Fig. 16b) over the maximum 1-V swing. The variable resistance ^^2 is
set by the gate voltage of a single FET in parallel with the two main resistor FETs
(Fig. 16a).

c. Unit Cell

The network is assembled from these and other subsidiary components in each
unit cell (Fig. 17). Using once again the Thevenin equivalent of the network pro-
totype, the output voltage from the first mesh is buffered and applied as a voltage
input to the second mesh. The output voltages from the two networks are sub-
tracted in a differential pair. The pair NMOS FETs are biased at a Vgs - Vt of
1 V and use a PMOS FET load to obtain an almost Hnear voltage input-output re-
lation. Either the network input (the log compressed sampled light signal) or the
output may be multiplexed on to a single line through addresable PMOS switches.
Addressing is arranged to scan out one column at a time.

d. Layout

The unit cell size of 138 x 160 /^m^ following l-^im CMOS two-layer design
rules is dominated by wiring (Fig. 18a). Centers of rectangles with this aspect
ratio of 2 : v^ , when assembled in a checkerboard pattern, will coincide with
the centers on a hexagonal grid (Fig. 18b). An array of 52 x 53 unit cells fits on
a 7.9 X 9.2-mm^ die (Fig. 19); this was thought to be the smallest sized array
required to sense images of simple objects with a useful resolution.

(a)

Figure 18 (a) Two-layer wiring pattern over unit cell layout. Cell size is dominated by wiring, (b) Ar-
rangement of unit cell centers on a hexagonal grid by appropriate choice of cell aspect ratio.

)!^^
>~f~

i^

'
!«5<<

ffi
»

V
^

f^
^*'

'^
•'>

'w
^

"jsC
*^
r.^^u«^.j«^;^u««pu»fc^K

^^

;5 So

,!ii^
îJ<

Â̂

^u
A

-
->^<

tA
j>

-iiji
tA

i.
tfev.

242
T. Yagi et al

3. Experimental Results

a. Measurement Method

P u t l * ! r Z J """"" " T " r * ' "'̂ ^"^"^ ™^S '̂ ̂ d P^«duces a 2D out-put the smoothed image with enhanced contrast, it does not obtain any data re-

o C t (Ffg.^O;' ^ ' ^ ' ""^ ^""^^^^ ' ^"^ ^^^"^^^ «̂ - ^ - ^ - « Us

h n ^ . ' J ^ ' T r ' P " ' ' ^'•°'" ^^ '^"'""^^ "^ ^^^^ digitized to 12 bits off-chip
^ l l T t T '"''"•' P''̂ '̂ '̂ ^ '̂̂ ™^S^ '' reconstructed after a computer ha^
addressed all the rows on the chip. The images shown in the next section were
captured from the computer display, and were not subject to any subrequenrnT
mencal smoothing or enhancement. ^ subsequent nu-

h. Test Results

frn^r w " ' ' ' ' f ' i ? " " ' ' P""'"^"'^ ̂ ° " pin-grid-array, and dissipated 300 mW

ou n?t H 1 ^ f ° " ^ ^ . ' P' '""'^' ^'^ ^ ' * ^ pinhole in the middle. The measu^d
output clearly shows the axis undershoot surrounding the peak and good^ru
lar symmetry. It closely matches a 2D simulated impulse respl^CFig 2 1) T ;

Figure 20 Optical input to chip is 2D; elaborate interface
chip output. required to acquire and reconstruct 2D

„»•»»••**«

244 T. Yagi et al

small ripple on the baseline away from the peak relative to the height of the peak
is a measure of the useful network dynamic range, in this case about 100:1.

Images of simple objects were also focused on the chip. The input image as
sampled by the photoreceptor array is compared with the network output after im-
age smoothing and contrast-enhancement. The image of a disk of light (Fig. 22a)
appears at the output as a disk surrounded by a halo (Fig. 22b). This halo en-
hances the contrast at the edge of the disk. Most dramatic is the network action
on a styrofoam coffee cup imaged on the chip (Fig. 23).

A halo surrounds the cup, enhancing the contrast of its outline, but more inter-
estingly, streaks of light on the curved surface of the cup which were not notice-
able on the incident images appear prominently after enhancement (Fig. 23). In
all cases, the sensed and filtered images are remarkably clear, in fact the best ob-
tained in our knowledge from a signal sensor and analog processor of this genre.
Note that for edge detection, one locates the zero-crossings of the V^G-filtered
image, which is not necessarily "better" to human eyes.

The filter scale, as determined by the width at half maximum of the impulse
response, is experimentally seen to be variable by almost 2:1. A new image will
be smoothed by the network in the time interval required for every node to relax
to its final equilibrium, set by the RC time constant of the network resistors and
the associated capacitance of the FETs and interconnect wires.

More details are found in [51, 52].

E. LIGHT-ADAPTIVE ARCHITECTURE

1. Theory

In all the vision chip architectures implemented/proposed so far that we know
of, the hyperparameters Xr are fixed. Our architecture proposed below makes Xr
variable so that adaptation can be incorporated. Most generally, kr can depend
on V, d, and k. The dependency of kr on v makes Eq. (23) nonquadratic and the
general analytical form corresponding to Eq. (24) can be nonlinear, which we
do not pursue at least in the present paper. Although the dependency of kr on k
does not alter the quadratic nature of the problem, the generalization in this di-
rection does not, so far, find interesting enough applications. Therefore, we will
consider the minimization of Eq. (23) where kr is now kr(d). Although this re-
quires only a straightforward modification in Eq. (24), i.e., kr should be replaced
with kr (d), it leads to rather interesting adaptation networks. Among many possi-
ble adaptive networks, the SCE (smoothing contrast-enhancement) filter network
[1,2, 5,6] has probably one of the most interesting structures suited for this adap-
tation.

The following fact is a straightforward consequence of Fact 3 and the argument
preceding it.

Parallel Analog Image Processing 245

(a) (b)
Figure 22 In response to input image of a disk (a), the network produces at the output (b) the disk
surrounded by a halo.

(a) (b)
Figure 23 Network accurately acquires (a) images of a styrofoam cup, and produces at its output
(b) the filtered image, with major features enhanced.

246 T. Yagi et al

Fact 4. Consider the double-layer network given in Fig. 13, where the
second-layer horizontal conductance ^^2 has an adaptation mechanism described
by

g,2(u):=-^ , G > 0 , (66)

where G is a constant and Uk is a photocurrent induced at node k. Then
(i) the second-layer voltage distribution v^ solves the second-order regulariza-

tion problem with

, . X Ss\ , gs2W , . . gslgs2(^)
Ai(u) = \ , A2(U) = ,

gml gml gmlgml

SO that the weight ratio is given by

^2(u) \ . Tx

^ l (u) gm\lgs\ + gm2G{2^k ^k) gmlgml

Statements (ii) and (ii) of Fact 3 are still valid.

Remarks, (i) When the total input current ^ ^ Uk gets larger, which amounts
to the fact that the environment is light, the second-layer horizontal conductance
gs2 dereases. Although the decrease of ^^2 changes both Ai(u) and A2(u), the
ratio A.2(u)/Xi (u) decreases [Eq. (67)]. This means that when J2k ^k is large, the
emphasis of the network on the second-order derivative decreases. This adaptation
mechanism has rather interesting implications. Suppose that uk = u^-\- Xk, where
u^ is the noiseless image while Xk stands for noise. Suppose also that the mean of
the noise has been absorbed into u^ so that Xk has zero mean. If JCmin < Xk < Xmax
where ;cmin and JCmax are independent of u^, then J^k ^k large means that effect of
noise is less significant than when ^j^ Uk is smaller. Thus when Y^j^ Uk is smaller,
noise is more significant and the network puts more emphasis on the second-
order derivative penalty. This architecture is endowed with the capability shown
in Fig. 9.

Figure 24 shows the effect of the adaptation mechanism. The input image is
the sum of a (one-dimensional) restangular "image"

1 M , 61 < ^ < 141,
0, otherwise,

and the Gaussian white noise with mean 300 pA, 3a = 600 pA. Figure 24a shows
the network response Xk, where

l/gs2 = 5 M ^ , l/gsl = 3 0 M ^ , I/gml = l/gm2 = 1 G ^ ,

Ti = 10~^ Siemens. (68)

Parallel Analog Image Processing 247

(a)

Veltafl«

Figure 24 Responses of the network in Fig. 13. (a) Adaptation is not incorporated (1/^52 = 5 Mfi).
(b) Adaptation of Eq. (66) is incorporated with G = 1.0 x 10^^. Reprinted from Neural Networks
8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive Architectures for
Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

248 T. Yagi et al

A dramatic effect is discernible when the g52-adaptation Eq. (66) is incorporated
where

G = 1.0x 10^1

It is known that the V^G filter identifies edges of an object by its zero-crossings
even though not every zero-crossing corresponds to an edge [49]. Observe that
while Fig. 24a gives no information about the edges of the original object,
Fig. 24b, which is the network response with the g^2-adaptation given by Eq. (66),
correctly identifies the edge of the original image by its zero-crossings.

(ii) In [5, 6] the gsi values are changed manually.
(iii) Since the photocurrent Uk is always positive, one does not have to square it

or one does not have to take the absolute value. In fact, v\ and v^ are also positive.
The output Xk = vl. — v^., however, can be negative.

2. CMOS Circuits for Light Adaptation

Figure 25 shows a possible configuration and note that the input circuit in
Fig. 17 is the Thevenin equivalent of the current source in Fig. 11. Let us denote
this equivalent voltage by

vl := gm\Uk'

In Fig. 25, this voltage v^ is first converted into current h by the V-I converter so
that Ik is proportional to v^. The summation of all these currents can be obtained
for free by simply connecting the wires together because of the Kirchhoff current
law, and the summed current / is given by

k k

The current / is fed into the bias voltage generator which produces a bias voltage
Vc so that the ^^2 value is inversely proportional to / . Figure 26 shows a circuit de-
sign example of the V-I converter, gs2, and the bias generator. The V-I converter
is designed with a differential pair and gs2 is implemented with two parallel MOS
FETs [50] whose value becomes larger as Vc increases. In the bias generator, the
summed current / is subtracted from a bias current lb and the resultant current
lb — I flows into a resistor R and a diode-connected NMOS which generate a
bias voltage Vc. Thus as / becomes smaller, Vc (and then ^^2) increases. Figure 27
shows SPICE simulation results of ^^2 characteristics at several different values
of Y,k ^k ^^^ ^^ ^^^ ^̂ ^̂ ^̂ ^k ^k t>ecomes larger, ^^2 decreases. It should be
noted that perfect linearity is not necessary at all.

I :=
 II +

12 +
 +

 In

.2 3 S

> X

W
)̂

>
IX

>u

+

a +

B

.2

O

'^

00
C

do

S

^
^

^ .̂

.2 3

^
1

5
•§-

5
OQ

^
O

<u
^

W
)

u
i

^ C/l ?J
3

Kn

^a
T

3

!2 q>

.J

o

2 So i
 1

I
 ^

W

g

jo;B
j9U

9f)
dSB

îO
A

sc|9

Parallel Analog Image Processing

I(uA) X 10"^

251

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

-0.00

-50.00

-100.00

-150.00

-200.00

^ ^ - ' - - " " "
, ,,-''''

' " ' . ' . . • • • • ; ^

'' '''/

/ /

//' ^,''

/
/

y

^^'

^ . ' ' '

level 1

level 2

level 3

level 4

V(V)
2.00 2.50 3.00 3.50 4.00

Figure 27 Simulation results of Figs. 25 and 26. V-l characteristics of ^^2 ^^ shown at several
different values of ^ ^ v^. The "higher the level," the greater the value of ^^ v^. Reprinted from
Neural Networks 8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive
Architectures for Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

3. Other Adaptations

a. Local Adaptation

The adaptation Eq. (66) is global in that the ^^2 value changes according to the
global information Ylk ^k- If

gs2ik,k-{-l) ' =
^(^1 + ^1+1)'

L > 0 , (69)

where L is a constant, then the second-layer horizontal conductance value
gs2{k,k-^i) between node k and node ^ + 1 is inversely proportional to the sum of

252 T. Yagi et al

Current
0.250000 nA

0.050000 nA

I
- 1 0 1 -

(a)

local adaptation

Rs2 = 500 k ohm

201 node

Figure 28 Response of the locally adaptive network, (a) A rectangular input image with 81 pixel
width, (b) Responses of the networks with l/gs2 = 5 MQ (no adaptation), l/gs2 = 500 kQ (no adap-
tation), and l/gs2(k,k-\-l) = 2 x 10^(u^ + v^i) (local adaptation). Reprinted from Neural Networks
8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive Architectures for
Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier Science Ltd, The
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

Parallel Analog Image Processing 253

the first-layer voltages û and vl_^^. Figure 28a is a simple rectangular input while
Fig. 28b compares the response incorporating the local adaptation Eq. (69) where
L = 2 X 10^ with those responses without adaptations where 1/̂ 52 = 5 M ^ and
l/gs2 = 500 k^, respectively. Even though the effect of the local adaptation is not
as dramatic as in Fig. 24, where the global adaptation is incorporated, one can see
that where the input intensity is high, the response with Eq. (69) is closer to that
with l/gs2 = 5 M^. On the other hand, where the intensity is low, the adapted
response behaves in a manner similar to the one with 1/̂ 52 = 500 k^. Therefore
with Eq. (69) contrast is even more enhanced where interesting difference exists.

Figure 29 shows a possible circuit block diagram for the local adaptation and
Fig. 30 shows a circuit design of locally adaptive conductances gs2 and bias gen-
erators in Fig. 29. The bias voltage generator at node k outputs v^ inversely pro-
portional to the first-layer node voltage f̂ , and gs2(k,k-\-i) is implemented with
two parallel MOS FETs whose value is roughly proportional to v^ + i;ĵ _̂ p and
then this approximates Eq. (69). Figure 31 shows SPICE simulation results of
gs2ik,k-\-i) characteristics at several different values of vl + vl_^^. One sees that as
^l + ^l^i becomes larger, gs2(k,k-\-i) decreases.

b. Maximum Value Adaptation

Consider

< '= xr-^^V^' ^ > 0, (70)

which is implemented by the network in Fig. 32 where it senses the maximum
input voltage and changes the gain of PGAs (progranunable gain amplifiers) uni-
formly to as high a value as possible without overloading the network. Since there
are all kinds of noises in a chip, one obtains a better signal-to-noise ratio if the
input signal is amplified as much as possible without overloading the network.
A similar method is widely used in A/D converters, where one can obtain a good
signal-to-noise ratio if the converter is preceded by a PGA which amplifies small
input signals so that the input signal stays within the full input range of the A/D
converter.

Remarks, (i) When looked at as a regularization filter, the local adaptation
mechanism Eq. (69) changes Xi and A2 according to vl and its local values so
that they are described as Ai (v^, k) and A,2(v ,̂ k) which are nonlinear.

(ii) Equation (70) corresponds to a different, though still linear, regularization
problem. Namely, the function minimized is of the form

G(v, d*(d)) = ||v - d*(d)||2 + Ai ||Dv||2 + A2||Lv||2,

where d*(d) indicates Eq. (70).

,Q

O
N

o

U
 I «

•Z3
O

1
^

2

p̂
 2 J

C
3

7
3

rti

P
5

ĉ«

5
s

(31)

O
D

s
>

B

o
g

l

i 2

3

H
J

^
§

C

O
H

in

W
D

o

E2

•5
s

c
c3

o

-
"

^
•

&

(U

. C
^

>
>H

1̂

•S

S

ti
8

|

.1.̂:

^
Q

.U

K

^

u
ffi

;̂=^̂

-! ^
2 7
.Is
fa

00

h

o

*>

b

W

S

o

<£
I (A 73

•
^

•5

w-T

as
ô

^ bO

•c >>

u

255

256 T. Yagi et al.

I(uA) X 10-6

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

-50.00

-100.00

-150.00

-200.00

-250.00

-300.00

-350.00

-400.00

-450.00

-500.00

-550.00

^
"̂̂

/
'

^

-^'
y* /

,/ //
/ / /

/ /

^*^

'" yf

A>'' ,'

jp'** -^'

J^'^^

y^,.
y /•'

A'' y
(/' ^y

**' ,•''
.^ ' '

..••
^, '

' '
^-•

level 1

level 2

level 3

level 4

V(V)
0.60 0.80 1.00 1.20 1.40

Figure 31 Simulation results of Figs. 29 and 30. V-l characteristics of gsl{k,k-\-\) ^ ^ shown at
several different values of v\ + v^^y The "higher the level," the greater the value of v^ + vL p
Reprinted from Neural Networks 8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka,
"Light-Adaptive Architectures for Regularization Vision Chips," Copyright 1995, with kind permis-
sion from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

R WIRING COMPLEXITY

Wiring complexity is repeatedly emphasized in ([3, pp. 7, 116, 276-277]) as
the single most important issue. It is indeed critical for implementing vision
chips because, although each computing unit has relatively simple circuitry, there
are thousands of computing units placed regularly so that the routing can be ex-
tremely difficult when the network architecture demands complicated intercon-
nections among computing units.

Figure 10 shows a unit cell wiring for (an approximated) second-order regular-
ization filter [42,43], while Fig. 33 shows the actual implementation where every

V

d

^ ^

.2

Q ^\

I S

s S

•i^
4-|,J^A

V
V

M
-f+

^^g^^A
A

A
A

J-f

4^g^A
A

A
A

|-J+

i|
^ .2
S

 -I

O

^

I 0̂

-a

I ; u

5
: PQ

s
2

11 =3
O

C

O
i

C

1=J
P

O

PQ

W
)

' I
W

D

'

258 T. Yagi et al.

Figure 33 Actual implementation of the circuit in Fig. 10 demands connections with every second-
nearest neighbor in addition to the immediate-neighbor connections. Reprinted from Neural Networks
6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd,
The Boulevard, Langford Lane, KidUngton OX5 1GB, UK.

node must be connected with its second-nearest neighbors in addition to the near-
est neighbors. Complexity of wiring was a serious problem in the layout phase of
[42, 43] and yet this is a crude approximation to the second-order regularization
filter.

If one wants to implement Eq. (53), the wiring gets even more serious. Let
us look at, for instance. Fig. 34 which implments Eq. (53) (go and input are not
shown) provided that

^ i : ^ 2 : g 2 = 1 0 + ^ : - 2 : - l , (71)
A2

because the KCL reads

-(^0 + 6gi + 6g2 + 6g2)vij + gi(vi-ij + Vi-^ij + Vij-i + Vij+i + T;/-I;+I

+ Vi+lj-l) + 82iVi-2j + Vi^2j + Vij-2 + %+2 + Vi-2j+2 + Vi^2j-2)

-^gli^i-lj-l + Vi+lj-^-l + ^i-lj-^2 + Vi+ij-2 + Vi-2j-\-l + Vi-\-lj-\)

+ wo=0, (72)

where uij is the input current source. Thus the network of Fig. 10 corresponds to
g2 = 0 in Fig. 35.

Parallel Analog Image Processing 259

Figure 34 A network implementing L^. gQ and input are not shown. Reprinted from Neural Net-
works 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shinmii, "Image Processing Regular-
ization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

Since Fact 1 claims that the layered network of Fig. 11 with only immediate
neighbor connections, there must be a significant reduction of wiring complexity.
This section tries to quantify the wiring complexity.

Let us first note that there are basically three categories in vision chip wiring:

Class 1: conductance interconnections between unit cells
Class 2: power supply lines and bias voltage lines
Class 3: data lines and address lines for data readout

Even though these are not completely independent of each other, we will pay
particular attention to Class 1 because it is the dominant one and is critically
dependent on the architecture of the signal processing part. Class 2 depends much
more heavily on circuit design than the architecture. Class 3 essentially depends
on the data readout mechanism.

Since a precise technical definition of wiring complexity is not given in [3], we
will try to give a reasonable one here. Naturally we do not claim this is the best,
nor only definition. In order to quantify wiring complexity, several simplifications
are necessary. As far as wiring complexity is concerned, the following assumption
will be made.

Assumption. The lateral conductances are regarded as pure wires, while the
vertical conductances as well as the input circuit are regarded as a "unit cell."

Remark. Conductances gi and g2 in Fig. 10 will be regarded as pure wires
whereas go and the input circuit are regarded as a unit cell. Similarly, ^^i and

260 T. Yagi et at.

Figure 35 Wiring complexity of the layered network with P = 2 amounts to 6. A hexagon stands
for a umt cell. Reprinted from Neural Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi,
and T. Shimmi, "Image Processing Regularization Filters on Layered Architecture," Copyright 1993'
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5
1GB, UK.

gs2 in Fig. 13 are regarded as pure wires whereas gmu gmi, and the input circuit
consitute a unit cell.

A natural question arises. Does not the unit cell of a multilayered network
need more chip area than that of a single-layered network? Not necessarily. Let
us compare, for instance, Fig. 10 with Fig. 13. First note that in actual imple-
mentation, one-half of each lateral resistor l/gr or l/g^^ is realized in each unit
cell area. Second, since g2 in Fig. 10 is negative, it demands more transistors.
In [42, 43], g2 necessitates a transconductance ampHfier and six transistors per
node. In Fig. 13, the voltage-controlled current source is realized by a differential
amplifier together with gm2 and hence six transistors are enough per node. Thus
the unit cell area of a layered network would not be any larger. Hence the wiring
complexity of a chip is the complexity of wiring among unit cells. We assume,
therefore, that the unit cell area is normalized to 1 x 1.

DEFINITION. The wiring complexity of a vision chip is defined as the num-
ber of wires which cross a unit cell.

Remarks, (i) The unit cell defined above correponds to a pixel.
(ii) For the wiring complexity, one has to count not only the wires connecting

a particular unit with another unit but also those which pass through a unit cell
for the purpose of connecting other cells together.

Parallel Analog Image Processing 261

(iii) If the unit cell size is normalized to 1 x 1, our definition of wiring com-
plexity means the wire length. Observe that for a chip implementation, a wire
which comes into a unit cell area contributes to the same complexity whether or
not there is an electrical contact at the unit cell because one simply places a "via"
(hole) if there is an electrical contact.

Fact 5. Consider the layered network of Fig. 11 on a hexagonal grid. If the
number of layers is P, then

wiring complexity = 3P. (73)

Proof. Since each layer has only immediate neighbor connections, three
wires cross each unit cell represented by a hexagon. •

Figure 35 shows the case with P = 2. As for a single-layer network with gen-
eral P on a hexagonal grid, the wiring complexity formula itself gets complicated.
We will give formulas up to P = 3 which is enough for the present purpose.

Fact 6, (i) For the single-layer network which implements Eq. (49) (P = 1),

wiring complexity = 3. (74)

(ii) For the single-layer network of Fig. 34 which implements Eq. (53)
(P = 2),

wiring complexity = 1 5 . (75)

(iii) For the single-layer network of Fig. 34 with g2 = 0, which implements
Eq. (57) (P = 2),

wiring complexity = 9. (76)

(iv) For the single-layer network of Fig. 35 which implements Eq. (60)
(P = 3),

wiring complexity = 33. (77)

Proof. For P = 1, the single-layer network and the "multilayer network"
coincide. Consider the network of Fig. 34 which implements Eq. (53). There are
three classes of wires which cross a unit cell represented by a hexagon:

(a) The gi connections which give rise to three wires crossing a unit cell
(Fig. 36). The g2 connections demand six wires, not three, because, in addition
to the three wires which connect each unit cell with its second neighbors, there is
another set of three wires connecting between the neighboring nodes.

(b) In order to see the complexity of the g2 connections, let us look at Fig. 37.
In order to avoid an obvious technical difficulty in drawing the figure, four

different textures are used for wires. Where a circle is placed with a particular
texture, there is an electrical contact by a wire with that particular texture.

262 T. Yagi et al

Figure 36 Wiring complexity of the gj connections contributes 3. Reprinted from Neural Networks
6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd,
The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

Figure 37 Wiring complexity of the g2 connections is 6. Three wires connect a cell with its second-
nearest neighbor while another three wires pass through each cell. Reprinted from Neural Networks
6:327-350, H. Kobayashi, T Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd,
The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.

Parallel Analog Image Processing 263

(c) The g2 connections which also demand six wires. In order to demonstrate
this, let us look at Fig. 33. First, note that the wires drawn in this figure are not
present in Fig. 37. For instance, there are no "horizontal" connections in Fig. 38,
while "vertical" connections are present which are not present in Fig. 37. Thus, in
addition to the three wires which cross a unit cell "in the middle," there are another
six wires passing through the "boundary" of a unit cell represented by a hexagon.
Since a wire must pass through somewhere, by an appropriate "splitting," one sees
that the complexity contribution from these wires is 3.

Therefore, 3 + 6 + 6 = 15 wires contribute to the complexity which is Eq. (75).
If g2 = 0, then one has nine wires, which is Eq. (76). Using a similar argument,
one can show that the g^ connections and the gs connections of Fig. 37 demand
18 wires which must be added to 15 and hence the complexity is 33. •

Reduction of the wiring complexity by the layered architecture is significant.
Let us call the ratio between the wiring complexity of a layered network and the
wiring complexity of a single-layer network, the complexity ratio.

Figure 38 The g2 connections contribute another 6. Reprinted from Neural Networks 6:327-350,
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington 0X5 1GB, UK.

264 T. Yagi et al

Figure 39 A network solving the problem with P = 3. Reprinted from Neural Networks 6:327-350,
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington 0X5 1GB, UK.

Fact 7. (i) For the network of Fig. 34 {P = 2),

complexity ratio = | .

(ii) For the network of Fig. 39 (P = 3),

complexity ratio = ^ .

(78)

(79)

IV. SPATIO-TEMPORAL STABILITY
OF VISION CHIPS

A. INTRODUCTION

Vision chip architecture sometimes demands negative conductance values. For
instance, exact implementation of the second-order regularization

6vk - 4(i;;t_i + Vk-[-i) 4- {vk-\-2 + Vk-2)

necessitates negative conductance values [2]. Whenever negative conductance is
present, there are potential stability problems. This section has been motivated

Parallel Analog Image Processing 265

by the temporal versus spatial stability issues of an image smoothing vision chip
[42, 43]. The function of the chip is to smooth a two-dimensional image in an
extremely fast manner. It consists of the 45 x 40 hexagonal array of very simple
"cell" circuits, described in Fig. 10. An image is projected onto the chip through
a lens (Fig. 40), and the photosensor represented by the current source inputs the
signal to the processing circuit. The output (smoothed) image is represented as
the node voltage distribution of the array. With an appropriate choice of ^o > 0,
^1 > 0, and g2 < 0, the chip performs a regularization with second-order con-
straints and closely approximates the Gaussian convolver. Since the negative con-
ductance g2 < 0 is involved, two stability issues naturally arise:

(i) Because the chip is fabricated by a CMOS process, parasitic capacitors
induce the dynamics with respect to time. This raises the temporal
stability issue with respect to whether the network converges to a stable
equilibrium point,

(ii) Because a processed (smoothed) image is given as the node voltage
distribution of the array, the spatial stability issue also arises even if the
temporal dynamics does converge to a stable equiUbrium point. In other
words, the node voltage distribution may behave wildly, e.g., oscillate.

INPUT
IMAGE

LENSE

CHIP

OUTPUT

S'

Figure 40 A chematic diagram. Reprinted with permission from T. Matsumoto, H. Kobayashi, and
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE).

266 T. Yagi et al.

Figure 41 Spatial impulse responses with iV = 61, m = 2, 1/go = 200 k^, \/g\ = 5 k^,
M31 = 10 /xA, Mjt = 0 for î / 31. (a) \/g2 = - 2 0 kfi; stable, (b) \/g2 = - 18 k^; stable.
(c) 1/^2 = -17 kfi; unstable. Reprinted with permission from T. Matsumoto, H. Kobayashi, and
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE).

Parallel Analog Image Processing 267

50.0 TIME (AiS)

(a)

50.5

<
o
o >

50.0 50.5 TIME (iiS)

(b)
Figure 42 Temporal step responses of the center node v^i (0 with N = 6l,m = 2, l/gQ = 200 kfi,
\/gl = 5 k^, CO = 0.1 pF, Uk(t) =OfoTk ^ 31, and u^iit) = 0 when t < 50 /AS, 10 /xA when
t > 50 fis. (a) l/g2 = - 2 0 kfi; stable, (b) l/g2 = - 1 8 k^; stable, (c) l/g2 = - 1 7 k^; unstable.
Reprinted with permission from T. Matsumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural
Networks 3:540-569, 1992 (©1992 IEEE).

268

50.0

T. Yagi et al

TIME (AiS)

(c)
Figure 42 {Continued)

50.5

Our earlier numerical experiments investigating these issues were rather in-
triguing. The results suggested that the network is temporally stable "if and only
if" it is spatially stable. Figure 41 shows spatial impulse responses at different
sets of parameter values. The network has 61 nodes (linear array, for simplicity),
and the impulse is injected at the center node. Figure 42 shows the correspond-
ing temporal step responses of the center node. For simplicity, the only parasitic
capacitors taken into account are those from each node to ground. The responses
shown in Fig. 42a and b are temporally stable, while that in Fig. 42c is not. Fig-
ure 41c is spatially unstable because the response does not decay, which is highly
undesirable for image processing. (A precise definition of spatial stabiHty will be
given later.) All of our earlier numerical experiments suggested the equivalence
of the two stability conditions. However, there are no a priori reasons for them
to be equivalent. As will be shown rigorously, the two stability conditions are not
equivalent. The spatial stability condition is stronger than the temporal stability
condition. Nevertheless, the set of parameter values {go, g\, ^2) for which the two
stability conditions disagree turns out to be a (Lebesgue) measure zero subset,
which explains why our numerical experiments suggested equivalence between
the two conditions. (A measure zero subset is difficult to "hit.") Explicit analyti-
cal conditions will be given for the temporal as well as the spatial stabilities in a
general setting. Also given is an estimate of the speed of temporal responses of
the networks. Since our results are proved in a general setting, they can be applied
to other neural networks of a similar nature.

Parallel Analog Image Processing 269

Remark 1. Due to the space limitation, many of the proofs and technical de-
tails cannot be included. The reader is referred to [40] for complete proofs and
details. We note that the vision chip stability issues are descibed in [45,51, 52] in
a different problem setting and/or using different approaches.

B. STABILITY-REGULARITY

1. Formulation

Consider a neural network consisting of a linear array of Â nodes, where each
node is connected with its pth-nearest neighbor nodes, /? = 1, 2 , . . . , m < N, via
a (possibly negative) conductance gp and a capacitance Cp. Figure 43 shows the
case where m = 3. The network is described by

peM

dvi-

dt
= ^apVi-p-\-Ui, / = 1 ,2 , , . . . , Â , (80)

peM

CorUyo CorQyo CzHyo Co=nyo c.=yy

Figure 43 Network described by Eq. (80) when m = 3. Reprinted with permission from T. Mat-
sumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992
ffiEE).

270 T. Yagi et al

where vi and M/ are the voltage and the input current at the /th node, and

M = {p: integer \p\ < m}, (81)

«0 = - (g 0 + 2 ^ g p j , a±p = gp, l<p<m, (82)

m
^o = co + 2 ^ C p , b±p = -Cp, l<p<m. (83)

Equation (80) is obtained simply by writing down the Kirchhoff's current law
(KCL) at each node. Letting

V := (VQ, f i , . . . , VN-i)^ e TZ^ and u := (MQ, MI, . . . , UM-I)^ e TZ^

(T denoting transpose), one can recast Eq. (80) as

d
B—v = Av + u, (84)

at

where

A := {A(/, j)} e / ? ^ ^ ^ , /, 7 = 0 , 1 , . . . , TV - 1,

A(iJ):=\T ^ h e n / - y = ± ^ , ^ = 0 , . . . ,m ,
•̂ [0 , otherwise,

B := {B(i, j)} G / ? ^ ^ ^ , /, 7 = 0 , 1 , . . . , iV - 1,

5(,. .) . . ^ (^ ^ ^ w h e n / - 7 = ± / : , ^ = 0 , . . . ,m ,
^ "̂ ^ [0, otherwise. ^ ^

Note A as well as B is symmetric and has a uniform band structure. If B is non-
singular, an equlibrium point of Eq. (84) satisfies

- ^ apVi-p = Ui, (87)
peM

which is a difference equation instead of a differential equation. Assuming that
a^ / 0, one has

(88)

Parallel Analog Image Processing

Therefore, letting

F : =

271

0
0
0

0

1
0
0

0

0
1
0

0

0
0
1

0

0
0
0

1
-1 -am-l/Om —Om-l/am • - « o / « m • - « m - l / a n

en-2mx2m

(89)
with

T ^ ^2m ^k '= (Vk-m, Vk-m-^l, . . . , l̂ yt, . . . , Vk-\-m-l) ^ Ti'

yk := i0,...,0,~uk/amf en^"^,

one can rewrite Eq. (88) as

X)t+i = F x ^ + y ^ . (90)

Observe that subscript k in Eq. (90) is not time. Equation (90) represents the
spatial dynamics induced by the temporal dynamics Eq. (84). Note also that
dimv = N, the number of nodes, while dimx^ = 2m, the size of the neigh-
borhood, which is independent of Â .

In image processing, input is u while output is v(oo), the stable equilibrium
point of Eq. (84). Equation (90) describes how the coordinates of v(oo) are dis-
tributed with respect to k. There are several issues that need care.

(i) The temporal dynamics given by Eq. (84) consitute an initial value problem
while Eq. (87) or Eq. (90) is a boundary value problem. Namely, arbitrary v(0)
and u(.) completely determine the solution to Eq. (84) while for Eq. (87) or Eq.
(90), one cannot specify (for a given {ŷ }̂) an arbitrary {XQ} because a solution
{Xk} must be consistent with the KCLs at the end points. Therefore the temporal
dynamics (84) are causal while the spatial dynamics (90) are noncausal.

(ii) The stability of the spatial dynamics (90) must be carefully defined. That
"Eq. (90) is stable iff all the eigenvalues of F lie inside the unit circle" does not
work because F has a special structure [see Eq. (107)]:

if A is an eigenvalue, so is 1/A.

Therefore, "|A| < 1 for all A" is never satisfied. Since N = IK -\- \ \^ finite,
another standard definition of stability:

^ lly l̂l < 00 implies ^ \\xkf < oo (91)

272 T. Yagi et al

does not work either, because Eq. (91) is always satisfied. As was shown in
Fig. 41c, Xĵ can behave in a wild manner even if Â = 2 ^ + 1 is finite, which is
highly undesirable for image processing purposes.

2. Spatial Dynamics

Let ksi, kci, and A .̂ be the eigenvalues of F satisfying

\ks,\<h |AcJ = l, | X , J > 1 ,

respectively, and let E^, E^, and £"" be the (generalized) eigenspaces correspond-
ing to ksi, kci» and Xui, respectively. They are called stable, center, and unstable
eigenspaces, respectively. Let E = R^^. Then [53]

£ = £ ' e £ ^ e £ " , (92)

where 0 denotes a direct sum decomposition, and

F(£") = £:", a=s,c,u, (93)

i.e., E\E^, and £"" are invariant \xndLQr¥.
Our task here is to give an appropriate definition of spatial stability while main-

taining consistency with Eq. (91) when N ^^ oo.
First, we remark that the boudnary conditions are crucial for the spatial stability

as indicated by the following example.

EXAMPLE 1. Consider the simplest case, m = 1 in Eq. (90) with go = g^
gi=2g,g >0 (Fig. 44a). Then

F : =
0 I T

- 1 5 / 2 J

and F is hyperbolic because eigenvalues are pi = 1/2 and P2 = 2. Figure 45a
shows the impulse response when l/g = 50 k^, where the impulse is injected
at the center node. Let us now replace the rightmost go and the leftmost go with
gf = —g as in Fig. 44b. The impulse response is then given by Fig. 45b, which
"explodes" in the negative direction.

There is another story about spatial responses. Our simulation results indicate
that the spatial responses behave quite properly even if the gt value is varied by a
large amount. Namely, spatial impulse responses are very robust against variations
of gt from go. Thus, two fundamental questions concerning the spatial dynamics
must be answered for the spatial stabiUty definition:

(i) Why does a particular gt value give rise to explosion of impulse
responses even if the eigenvalues of F are off the unit circle?

Parallel Analog Image Processing 273

K-1 K

go;

1

«02

t

i ^AM—

L ^AAA

1

hi

1

»
(a)

K-1
f

—A/W—

AAA/
VV\r
8i

A

SoS

K

^

St

(b)
Figure 44 A network with m = 1. (a) Original network, (b) Modified boundary condition, where
the rightmost go is replaced by gt. Reprinted with permission from T. Matsumoto, H. Kobayashi, and
Y Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE).

(ii) Why do impulse responses behave properly over a wide range of gt
values?

DEFINITION 1. Consider Eq. (90) and let [yk] be nonzero only for 0 < ^ <
Then {Xjt}!^ is said to be SL free-boundary solution if

(94) Xk+i =Fxk, k<0,

d-\

k=Q

xjt+i = Fxjt, k>d.

(95)

(96)

Remark 2. If J = 1, then [yk) is an impulse. If one redefines the summation
term in Eq. (95) as a new yo, then Eqs. (94), (95), (96) can be replaced by

Xit+i = ¥xk. fc / 0,

xi = Fxo + yo.

(97)

(98)

274 T. Yagi et al

NODE

(a)

-0.500000 V

> -2.500000 V

NODE

(b)
Figure 45 Significance of boundary conditions, (a) Impulse response for Fig. 44a with gQ = g,
g\ = 2g, \/g = 50 k^, M31 = 0 . 1 /iA. (b) Impulse response for Fig. 44b with the same data except
for gf = - ^ , M31 = 0.1 /xA. Reprinted with permission from T. Matsumoto, H. Kobayashi, and
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE).

Parallel Analog Image Processing 275

Since no boundary conditions are imposed, {xA:}t^ is not unique.

DEFINITION 2 (Spatial stability). A neural network described by Eq. (90) is
said to be spatially stable if and only if there is a unique free-boundary solution
{Xjt}!^ satisfying

+00

X^ \\ikf< oo. (99)
k=—oo

PROPOSITION 1. (i) The network described in Eq. (90) is spatially stable if
and only if the F matrix of the spatial dynamics is hyperbolic.

(ii) The unique free-boundary solution {xjt}i^ satisfying Eq. (90) is deter-
mined by

XI € E\ xo G £", XI = F^xo + yo. (100)

DEFINITION 3 (Stable free-boundary solution). The unique {x^;}!^ given in
Proposition 1 is said to be the stable free-boundary solution.

Consider the spatial dynamics Eq. (87) and let r+ (resp. T-) be an m-
dimensional linear subspace which describes the boundary conditions at the right
(resp. left) end.

DEFINITION 4. Let [yk] be nonzero foxO <k < d. Then {xj^l^f is said to
be a solution for (r+, r_, A') if

Xit+i = Fx^, -K<k<K, k^O, (101)

xi = F^xo, (102)

x-K e r_, XK e r+. (103)

The following result thoroughly answers the second question that arose in con-
nection with spatial dynamics in a very general setting.

THEOREM 1. Let a neural network described in Eq. (90) be spatially stable,
i.e., F be hyperbolic. If the boundary conditions r+ and T- satisfy

r+ + £" = E, T--\-E' = E, (104)

then a solution {x}_^/or (7+, r_, K) converges to the stable free-boundary so-

lution {x}^j^ as K ^^ OQ:

lim T \\Xk-Xkf = 0. (105)

276 T. Yagi et al

3. Temporal Stability—Spatial Regularity

DEFINITION 5 (Spatial regularity). A neural network described by Eq. (90)
is said to be spatially regular if there is a nonsingular 2m x 2m matrix T such that

E = E' ^E' ^E"",
rF, 0 0 0 1

0 Fe G 0

0 0 Fc 0

0 0 0 F7I

j j r j - i _ (106)

where a blank indicates a zero matrix, and elements of G consist of + 1 or 0.

Remark 3. It can be easily shown that spatial stability implies spatial regular-
ity, but not conversely.

We consider the temporal stabiUty of the network for all Â instead of a fixed
Â ; if the temporal stability is defined for a fixed size of Â , a designer has to
recheck the stability when the network size is changed in response to certain de-
sign considerations. We also remark that for a fixed Â , while it is easy to say
that Eq. (84) is asymptotically stable iff B~^ A is negative definite, it is very hard
to derive analytical (a priori) iff conditions for negative definiteness even with
m = 2. One can derive, however, an interesting analytical condition if one looks
for negative definiteness of B~^ A for all N, which will be shown in Section IV.D.

DEFINITION 6 (Temporal stability). A neural network described by Eq. (84)
is said to be temporally stable if and only if it is asymptotically stable for all Â .

PROPOSITION 2. A neural network described by Eq. (84) is temporally sta-
ble ifB~^A is negative definite for all N.

The following standing assumptions are made throughout this chapter unless
stated otherwise.

Standing Assumption 1. (i) fl^o < 0, a^ / 0;
(ii) B is positive definite for all Â .

A must be negative definite (provided that B is positive definite), which is the
inequaUty in (i). If am = 0, then the neighborhood M is of a smaller size. No
restrictions will be imposed on the sign of ap, p ^0. In image processing vision
chips, Cp in Eq. (83) are parasitic capacitors of MOS processes, and positive def-
initeness of B is a mild condition. The following result establishes a fundamental
relationship between the temporal and spatial dynamics.

THEOREM 2. A neural network is temporally stable if and only if it is spa-
tially regular

Parallel Analog Image Processing 111

Proof. (^) Consider the characteristic polynomial of F:

P F W : = d e t (A l - F) = A'̂
am

rn

p=\

(107)

This implies that if Xs (resp. A)̂ is a stable (resp. unstable) eigenvalue, i.e.,
IA.5I < 1 (resp. \Xu\ > 1), then Xj^ (resp. k~^) is also an eigenvalue and un-
stable (resp. stable). F is nonsingular, therefore there are no zero eigenvalues. In
order to discuss FIE'^, let

co = X + X~^ or A, = ^(co±y/o)^ -4).

By a repeated use of the binomial formula, one sees that

m m

+ J2 ^(XP+X-P) = Y^apCoP := Q{co)

for real as. Since F has no zero eigenvalues,

P^(A) = 0 iff e (^) = 0 ,

am

(108)

(109)

(110)

where k and co are related via Eq. (108). Hence if Xc is real and \'kc\ = 1, then
Eq. (108) forces Xc to be a double eigenvalue {Ac, Ad or its multiple. It is easy to
show

dimker(Al-F) = 1 (111)

for any eigenvalue A, where "ker" denotes the kernel of a matrix. Thus, for each
eigenvalue A of F, there is only one elementary Jordan block [53]. Therefore, the
real canonical form of Fl^'^^, restriction of F to the eigenspace corresponding to
Ac, is given by

K
0

1
Xc
0

0
1

Xc
0

0

0
1

Xc

^2qx2q (112)

where 2q is the multiplicity. This is clearly of the form Eq. (106).
So far, no use has been made of the negative definiteness of B~^ A and yet we

are already close to Eq. (106), the regularity. The situation, however, is slightly
subtle when it comes to a nonreal Xc with |Ac| = 1, because A*, the complex
conjugate, is also an eigenvalue [see Eq. (107)]. This last is of no use since F is
a real matrix and A* also being an eigenvalue is automatic. We now assume that
B~^A is negative definite for all N, A is negative definite for all Â . It is known

278 T. Yagi et al

[54], then, that there are z^ e R, p = 0 , . . . , m, such that the elements of A
satisfy

m—p

~^p = ^ ZiZi+p, /7 = 0 , . . . , m , (113)

i.e., apS can be decomposed as in Eq. (113). Substitution of Eq. (113) into
Eq. (107) yields

PF(>^) = —
ZOZm

ZOZm

m m-p

^=0 p=\ i=0

' m \ / ^ \
(114)

Since 0 ^ am = —zoZm and since F has no zero eigenvalues, one sees that

PF(X)=0 iff R(X)R(l/X) = 0, (115)

where

i=0

(116)

Therefore, if X is a nonreal eignevalue with |A.c| = 1, Eq. (115) forces the eigen-
value configuration to be of the form [Xc, X*,Xc,X*] or its multiple. It follows
from Eq. (I l l) that the real canonical form of F on this eigenspaces is given by

Of -) S 1 0 0 . .
)g a 0 1 0 . .
0 0 a -) S 1 0 .
0 0)S a 0 1 . Qlq'y^lq' (117)

where

0̂ 2 + ^ 2 ^ 1 (118)

and 2q' is the multiplicity. This, again, is of the form Eq. (106).
(=>•) If a neural network is spatially regular, the real canonical form, of the spa-

tial dynamics F is equivalent to Eq. (106). The characteristic polynomial F, then,
admits a decomposition of the form given by Eq. (114). Comparing Eq. (114) with
Eq. (109), one sees that Eq. (113) holds. The condition is known [54] to be not

Parallel Analog Image Processing 279

only a necessary but also a sufficient condition for A to be negative definite for all
Â . Since B is positive definite and symmetric for all Â , it follows from [55] that

V Av
max. eigenvalue of B~ A = max ^^ < 0 (119)

for any N which impies temporal stability. •

Remark 4. (i) Consider Eq. (80) and let

N

W \=^ViUi,

which is the power injected into the network. It follows from Eq. (80) that

W = - ^ ^ v i a p V i - p -^Y^Y.""^^P"^
i P i P

T 'T dy
= -v^Av + v^B— := WR + Wc.

at

Thus the first term

WR := —v^Av = power dissipated by the resistive part of the network.

Therefore, a neural network is temporally stable iff its resistive part is strictly
passive, i.e.,

W/? > 0, V # 0 for all N.

It follows from the previous remark that spatial stability demands more than strict
passivity of the resistive part.

(ii) Observe that v^Bv/2 = energy stored in the capacitors. Therefore Eq.
(119) says that

^ ̂ _ 1 / —power dissipated by resistors \
max. eigenvalues of B A = max I *

= —nun

2 X energy stored in capacitors/

/ power dissipated by resistors \

\ 2 X energy stored in capacitors/

Since the temporal stability condition is equivalent to spatial stability, we will
say, hereafter, that the stability-regularity condition is satisfied if a network is
temporally stable or spatially regular. Recall Q{co) defined by Eq. (109).

280 T. Yagi et al

PROPOSITION 3. The following are equivalent:

(i) Stability-Regularity.
(ii) Every nonreal eigenvalue pc of¥ with \pc\ = 1 has an even multiplicity.

(iii) Every real zero COR of Q with \(OR\ < 2 has an even multiplicity.

For the sake of completeness, we will state the following.

PROPOSITION 4. The following are equivalent:

(i) Spatial stability.
(ii) Eigenvalues ofF are off the unit circle.

(iii) Q has no real zero on [—2, 2].

C. EXPLICIT STABILITY CRITERIA

Recall Q defined by Eq. (109). The following functions will be called the sta-
bility indicator functions:

a+(flo,«i,...,^m) := max amQ(o)),
(oe[-2,2]

a-(ao,ai, ...,am) := min amQ(co). (120)
a)e[-2,2]

PROPOSITION 5. The network described in Eqs. (84) and (90) is stability-
regular if and only if

a^(ao, au ..., am) < 0. (121)

PROPOSITION 6. The network described in Eq. (90) is spatially stable if and
only if

cr-^(ao,ai,...,am) < 0. (122)

The following fact gives upper and lower bounds for eigenvalues of the temporal
dynamics A.

PROPOSITION 7. (i) Any eigenvalue JJL of the temporal dynamics A for any
N satisfies the following bounds:

a-(ao, a i , . . . , a^) < /i < a+(ao, ^ i , • • •, <3m)- (123)

(ii) The bounds (123) are optimal in the sense that ifcr^ (respectively a^) is
any number which satisfies

a^ < G-(ao,ai,...,a^) \respectivelyG-(ao,a\,...,am) < cr^],

Parallel Analog Image Processing 281

then there is an eigenvalue /JL of Afar some N such that

a^ < fjL (respectively JJL < a^).

We would like to emphasize the if and only //"nature of Propositions 5 and 6 and
the optimality of Proposition 7 which indicate that a+ and a_ are crucial to the
stability issues of our interest.

PROPOSITION 8. When m = 2, the stability indicator functions are given by

I
-go - 2gi + 2\gi\, when g2>0or {g2 < 0

and\gi/g2\ >4},
-^0 - 2gi - 4g2 - ^?/(4g2), when g2 < 0

and\gi/g2\ <4 ,
r -go - 2gi - 2\gi\, when g2 <0 {or g2 > 0

cr-igo. gu82) - 1 , ^ , _ 2g, - 4g2 - gi/(4g2), when g2 > 0
and\gi/g2\ >4},
len g2 > 0
and\gi/g2\ < 4 .

(124)

EXAMPLE 2. For a Gaussian-like convolver [42,43],

^ i > 0 , g 2 < 0 , gi=4\g2l (125)

Propositions 5 and 8 tell us that the stability-regularity is equivalent to

cr-\-(gO, gugl) = -go < 0, (126)

i.e., passivity of go- Furthermore, Proposition 6 says that the network is spatially
stable iff

cr-i-igo, gu gl) = -go < 0,

i.e., iff go is strictly passive. Thus go can be safely varied over any range as long
as it is positive.

Remark 5. (i) Even when gi as well as g2 is negative, a network can satisfy
the stability-regularity or/and the spatial stability condition provided that go is
"sufficiently" passive because

/ . _ f-<^o + 4|gi|, when |gi/g2l > 4,
cr^^go, gu g2) - [_^o _ 2gi - 4g2 - gj/(4g2), when \gi/g2\ < 4.

(ii)Ifg2 >0,then

cr-{-(go.gug2) = I _
-go, when gi > 0,

go+4 |g i | , whengi < 0.

282 T. Yagi et al

(iii) Since Q is quadratic, conditions (ii) and (iii) of Proposition 3 are sharp-
ened, respectively, to the following:

(ii)' F has no simple nonreal eigenvalue on the unit circle,
(iii)' Q has no real zero on (—2, 2).

It follows Proposition 5 (resp. Proposition 7) that the set of parameter values
(^0, gi^gi) for which stability-regularity and the spatial stability hold are given,
respectively, by

SR := {(go, gu g2)\cr+(go, gu gi) < 0, go + 2gi -h 2g2 > 0}, (127)

SS := {(go, gu g2)W+(go, gugi) < 0, go + 2gi + 2g2 > 0}. (128)

We will now give a fact which, as its by-product, explains why our numerical
experiments suggested SR = SS, which is untrue. Let

G := {(go.gi,g2)\g2 < 0},

on which our numerical experiments were performed.

PROPOSITION 9. (i) meas[5'5' n G] > 0.

(ii) meas[(5'/? — SS) fl G] = 0, where meas[.] denotes the Lebesgue measure
onR^.

This proposition explains why our experiments suggested SR = SS for a
Lebesgue measure zero subset is "hard to hit."

Conjecture 1. Proposition 9 will be true for a general m.

Neural networks with m = I aiQ used in an extensive manner [3]. Although
those networks contain only positive conductances (go, gi > 0), it would be
worth clarifying the temporal as well as the spatial stability issues when gi < 0
or go < 0.

PROPOSITION 10. When m = I, the stability indicator functions are given
by

cr+(go,gl) = - g o - 2 g i + 2 | g i | ,

o^-(^0,^l) = -go-2gi-2\gi\.

EXAMPLE 3. When go > 0 but gi < 0, the network is temporally (resp.
spatially) stable iff

-^0 + Mgi I < 0 (resp. - go + 1̂ 11 < 0).

Remark 6. The reader is referred to [40] for the proofs and explicit formula
form = 3.

Parallel Analog Image Processing 283

D. TRANSIENTS

This section gives an estimate of the "processing speed" of vision chips.

COROLLARY 1. Consider the temporal dynamics Eq. (84) with v(0) = 0. If
Eq. (121) is satisfied and B is positive definite, then the solution y{t) ofEq. (84)
satisfies the following bounds:

^ [e x p (^ r - l)] | | B - i u | | < ||v(r)|| < ^ [e x p (^ . - l)] l | B - i u | | . (129)

Remark 7. (i) The above corollary is obtained by the analysis of the capaci-
tance matrix B in Eq. (83) using the method used for analyzing A.

(ii) The result tells us how fast/slow a step response of Eq. (84) grows.
Although there is no precise concept of the time constant RC for Eq. (84)
(dim V ^ 1) , Eq. (129) can be interpreted as

ri- rjA.
- - ^ < "time constant" < - - ^ . (130)

CT- a-^

(iii) Let us compute the upper bound in Eq. (130) for m = 2. It is not difficult
to show that

r]^(co,c\,C2) =
Co + 2ci + 2\ci\, whenC2 < 0orC2 > 0

and \ci/c2\ > 4,
Co + 2ci + 4c2 + Cj/4c2, when C2 > 0 and \ci/c2\ < 4.

If ^0, gi, CO, ci,C2 > 0, then it follows from Eq. (124) and

(co + 4ci)/go, when \ci/c2\ > 4,
^+/a+ - rj^/go - I (CQ + 2ci + 4c2 + cf/4c2)/^o, when \ci/c2\ < 4.

Since it is difficult to estimate parasitic capacitances accurately, this is as much as
one can tell from the corollary.

REFERENCES

[1] K. A. Boahen and A. G. Andreou. Adv. Neural Inform. Process. Syst. 4:764-772, 1992.
[2] H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi. Neural Networks 6:327-350, 1993.
[3] C. Mead and M. Mahowald. Neural Networks 1:91-97, 1988.
[4] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.
[5] T. Shimmi, H. Kobayashi, T. Yagi, T. Sawaji, T. Matsumoto, and A. A. Abidi. In Proceedings of

European Solid-State Circuits Conference, pp. 163-166, 1992.
[6] T. Matsumoto, T. Shimmi, H. Kobayashi, A. A. Abidi, T. Yagi, and T. Sawaji. In Proceedings of

IJCNN92, Beijing, Vol. 3, pp. 188-197, 1992.
[7] C. Koch and H. Li (Eds.) Vision Chips: Implementing Vision Algorithms with Analog VLSI Cir-

cuits, IEEE Computer Soc. Press, Los Alamitos, CA, 1995.

284 T. Yagi et al

[8] C. D. Nilson, R. B. Darling, and R. B. Pinter. IEEE J. Solid-State Circuits 29:1291-1296, 1994.
[9] J. E. Dowling. The Retina: An Approachable Part of the Brain, Belknap Press, Cambridge, MA,

1987.
[10] T. D. Lamb and E. J. Simon. 7. Physiol 263:256-286, 1976.
[11] V. Torre and W. G. Owen. Biophys. J. 41:305-324, 1983.
[12] T. D. Lamb. J. Physiol 263:239-255, 1976.
[13] R B. Detwiler and A. L. Hodgkin. J. Physiol 291:75-100, 1979.
[14] T. Yagi, F. Ariki, and Y. Funahashi. In Proceedings of International Joint Conference on Neural

Networks, Vol. 1, pp. 7S1-1S9, 1989.
[15] S. Ohshima, T. Yagi, and Y. Funahashi. Vision Res. 35:149-160, 1995.
[16] J. E. Dowling and B. Ehinger. Proc. R. Soc. London B 201:7-26, 1978.
[17] T. Teranishi, K. Negishi, and S. Kato. Nature 301:234-246, 1983.
[18] O. R Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. Pflugers Arch. 391:85-100,

1981.
[19] M. Tachibana. J. Physiol 345:329-351, 1983.
[20] D. A. Baylor and M. G. F. Fuortes. J. Physiol 207:77-92, 1970.
[21] G. Fain and J. E. Dowling. Science 180:1178-1181, 1973.
[22] D. A. Baylor, A. L. Hodgkin, and T. D. Lamb. J. Physiol 242:685-727, 1974.
[23] D. A. Baylor, M. G. F Fuortes, and R M. O'Bryan. J. Physiol 214:256-294, 1971.
[24] E. A. Schwartz. J. Physiol 257:379^06, 1976.
[25] M. Tessier-Lavigne and D. Attwell. Proc. R. Soc. London B 234:171-197, 1988.
[26] K. L Naka and W. A. H. Rushton. J. Physiol 192:437^61, 1967.
[27] T. Yagi. J. Physiol 375:121-135, 1986.
[28] T. Kujiraoka and T. Saito. Proc. Nat. Acad. Scl USA 83:4063^066, 1986.
[29] A. Kaneko. J. Physiol 207:623-633, 1970.
[30] D. Man- and E. Hildreth. Proc. Roy Soc. London B 207:187-217, 1980.
[31] T. Shigematsu andM. Yamada. Neuro. Res. Suppl 8:s69-s80, 1988.
[32] T. Yagi, S. Ohshima, and Y Funahashi. Biol Cybem., to appear.
[33] T. Poggio and C. Koch. Proc. Royal Soc. London B 226:303-323, 1985.
[34] A. N. Tikhonov. Sov. Math. Dokl 4:1035-1038, 1963.
[35] A. N. Tikhonov. Sov. Math. Dokl 4:1624-1627, 1963.
[36] A. N. Tikhonov. Sov. Math. Dokl 6:559-562, 1965.
[37] G. Whaba. In Inverse and Ill-Posed Problems (H. W. Engl and C. W. Groetsch, Eds.). Academic,

New York, 1987.
[38] D. J. C. MacKay. Bayesian methods for adaptive models. Ph.D. Thesis, California Institute of

Technology, 1991.
[39] Takeuchi, D. J. C. MacKay, and T. Matsumoto. In Proceedings of 1994 International Symposium

on Artificial Neural Networks, Taiwan, pp. 419^28, 1994.
[40] T. Matsumoto, H. Kobayashi, and Y. Togawa. IEEE Trans. Neural Networks 3:540-569, 1992.
[41] T. Matsumoto, H. Kobayashi, and Y Togawa. In Proceedings IJCNN91, Seattle, Vol. 2, pp. 283-

295, 1991.
[42] H. Kobayashi, J. L. White, and A. A. Abidi. IEEE J. Solid-State Circuits 26:738-748, 1991.
[43] H. Kobayashi, J. L. White, and A. A. Abidi. ISSCC Dig. Tech. Pap. pp. 216-217, 1990.
[44] J. Harris. In IEEE Conference on Neural Information Processing Systems—Natural and Syn-

thetic, 1988.
[45] H. Kobayashi, T. Matsumoto, and J. Sanekata. IEEE Trans. Neural Networks 6:1148-1164,1995.
[46] D. Dudgeon and R. Mersereau. Multidimensional Signal Processing. Prentice-Hall, Englewood

Cliffs, NJ, 1984.
[47] W. E. L. Grimson. From Images to Surfaces. MIT Press, Cambridge, MA, 1986.

Parallel Analog Image Processing 285

[48] T. Poggio, H. Voorhees, and A. Yuille. Artificial Intelligence Laboratory, Memo 833, Mas-
sachusetts Institute of Technology, 1985.

[49] J. Clark. IEEE Trans. Pattern Anal. Machine Intell. 11:43-57, 1989.
[50] M. Banu and Y. Tsividis. Electron. Lett. 18:678-679, 1982.
[51] D. L. Standley and J. L. Wyatt Jr. IEEE Trans. Circuits Syst. 36:675-681, 1989.
[52] J. L. White and A. N. Wilson Jr. IEEE Trans. Circuits Syst. 39: 734-743, 1992.
[53] M. W Hirsh and S. Smale. Differential Equations, Dynamical Systems and Linear Algebra.

Academic, New York, 1974.
[54] E. L. AUgower. Numen Math. 16:157-162, 1970.
[55] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1960.

This Page Intentionally Left Blank

Algorithmic Techniques
and Their Applications

Rudy Setiono
Department of Information Systems and Computer Science
National University of Singapore
Kent Ridge, Singapore 119260, Republic of Singapore

L INTRODUCTION

Pattern recognition is an area where neural networks have been widely applied
with much success. The network of choice for pattern recognition is a multilay-
ered feedforward network trained by a variant of the gradient descent method
known as the back-propagation learning algorithm. As more applications of these
networks are found, the shortcomings of the back-propagation network become
apparent. Two drawbacks often mentioned are the need to determine the archi-
tecture of a network before training can begin and the inefficiency of the back-
propagation learning algorithm. Without proper guidelines on how to select an
appropriate network for a particular problem, the architecture of the network is
usually determined by trial-and-error adjustments of the number of hidden layers
and/or hidden units. The back-propagation algorithm involves two parameters: the
learning rate and the momentum rate. The values of these parameters have signif-
icant effect on the efficiency of the learning process. However, there have been no
clear guidelines for selecting their optimal values. Regardless of the values of the
parameters, the back-propagation method is generally slow to converge and prone
to get trapped at a local minimum of the error function.

When designing a neural network system, the choice of a learning algorithm
for training the network is very crucial. As problems become more complex,
larger networks are needed and the speed of training becomes critical. Instead
of the gradient descent method, more sophisticated methods with faster conver-
gence rate can be used to speed up network training. In Section II of this chapter.

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 2 8 7

288 Rudy Setiono

we describe a variant of the quasi-Newton method that we have used to reduce
the network training time significantly.

Another important aspect of the feedforward neural network learning is the se-
lection of a suitable network architecture for solving the problem in hand. There
is no doubt that the performance of a neural network system can be greatly af-
fected by the network architecture. When building a neural network system, there
are several components of the network that need to be determined:

1. the number of input and output units,
2. the number of hidden layers,
3. the number of hidden units in each layer, and
4. the connectivity patterns among the units in the network.

Most of the remaining sections of this chapter are devoted to the issues of
finding the optimal number of units in each layer of a feedforward network and of
finding the relevant connectivity patterns among these units. In order to achieve
optimal performance, network systems designed for different problem domains
require different network architectures. We describe some algorithms that have
been developed to automatically construct a suitable network architecture. These
algorithms have been shown to be very successful in finding appropriate network
architectures for a wide variety of problems.

We shall consider only a particular network architecture, namely, layered feed-
forward networks. Layered feedforward networks are among the most commonly
used network architectures at present. We also restrict the number of hidden lay-
ers to one and hence we consider feedforward networks with only three layers of
units. Theoretically, it has been proved that a network with a single hidden layer
is capable of forming arbitrary decision boundaries if there are a sufficient num-
ber of units in the hidden layer [1,2]. Experimental studies have also shown that
there is no advantage to using four-layered networks over three-layered networks
[3]. Section III discusses the selection of the right number of output units in a net-
work. Neural network construction algorithms which dynamically add units in the
hidden layer are described in Section IV. By making use of the cross-entropy error
measure, we show how the addition of a hidden unit to the network is guaranteed
to decrease the error function. We also present the results of applying a neural
network construction algorithm on the well-known spiral problem [4]. Section V
presents an algorithm that we have developed to determine the required number of
input units by pruning. Section VI presents an algorithm that removes redundant
or irrelevant connections from a fully connected network. Section VII discusses
the potential applications of the techniques for constructing a neural network sys-
tem discussed in this chapter to data mining. Data mining is a multidisciplinary
field which in recent years has been attracting a great deal of attention from re-
searchers in data base, machine learning, and statistics. It is concerned with dis-
covering interesting patterns that are hidden in data bases. In this section, we

Algorithmic Techniques and Their Applications 289

discuss how a neural network system can be used as a tool to extract rules that
distinguish between benign and malignant samples in a breast cancer data set.
Finally, a summary is given in Section VIII.

We briefly describe now our notation. For a vector x in the n-dimensional real
space W, the norm \\x\\ denotes the Euclidean distance of x from the origin, that
is, ||x|| = (Y4=i ^f)^'^' Fo^ a i^atrix A e R'"''", A^ will denote the transpose
of A. The superscript T is also used to denote the scalar product of two vectors
in R", that is, x^y = Yl^^i ^tyi- ^^^ ^ twice-differentiable function f(x), the
gradient of f(x) is denoted by V/(jc), while its Hessian matrix is denoted by

vV(^).

11. QUASI-NEWTON METHODS
FOR NEURAL NETWORK TRAINING

The problem of training a feedforward neural network can be cast as an un-
constrained optimization problem. Consider the three-layered network with one
output unit depicted in Fig. 1. The optimization problem that is usually solved
when training this network is the minimization of the squared-error function [5]:

/(u;, ^ V, r) := V or ya((xYwJ - ^^W - r - rM , (1)

where

h = integer number of hidden units,
k = fixed integer number of given samples jc' G R",
r̂ = Oor 1 target value for xS / = 1, 2 , . . . ,^ ,
r = real number threshold of output unit,

yj = real number weights of outgoing arcs from hidden units,
7 = l ,2 , . . . , / z ,

^j = real number thresholds of hidden units, 7 = 1, 2 , . . . , /i,
w^ = Ai-vector weights of incoming arcs to hidden units, j = 1, 2 . . . , /z,
x^ = given n-dimensional vectors samples, / = 1, 2 , . . . , /:,

or(§) = 1/(1 + ^~^) is the sigmoid activation function.

If we let z = (if, ^, i;, r) , then given an initial approximation z^, each epoch
of the back-propagation method can be viewed as an attempt to minimize an ap-
proximation of the function f{w) by the linear function

fk{z) = f{z') + Vf{z'Y{z-z%

290 Rudy Setiono

Output Layer

Hidden Layer

Input Layer

Input: X

Figure 1 A three layer feedforward neural network.

subject to the constraint ||z — z^ || < 1. The solution of this auxiliary problem is

^-z* = -V/(zV|V/(z*)|.

The steepest descent algorithm proceeds by performing a line search along the
descent direction — V/(z^)/| |V/(z^)| | , or equivalently along the direction of
the negative of the gradient a.tz^,d^ = —^fiz^)- The algorithm thus generates
the sequence

where k^ is a solution of the line search problem

min fiz^+Xd^), (2)

The step length 7^ is commonly referred to as the learning rate and the simplest
variant of the steepest descent method holds the value of this step length constant,
i.e., }} = k, Wk for some small positive value of X.

A momentum term can be added when updating z to include contribution from
the previous iteration. With a momentum parameter a e (0, 1), the new weight
^^+1 is computed as

^^+1 =^^+X^j^+c^(^^ ^/:+l - ^k _L. \k^k _^^(^k _^k-\\

Newton's method is obtained when a quadratic approximation instead of a lin-
ear approximation of the function f{z) is used. For Newton's method, the next

Algorithmic Techniques and Their Applications 291

approximate solution is obtained as a point that minimizes the quadratic function

fkii) = f{z') + V/(z*)^(z -z') + \{z- z'Yv^f{z'){z - z%

Hence, we obtain the sequence

The step length X^ can also be incorporated in the method to generate the damped
Newton sequence

z'^+'=z'->}[V^f{z')]-'vf{z%

where X^ is a solution of the line search problem (2) with the search direction
d^ = -[V^/(z^)]~^ V/(z^). The main advantage of the Newton's method is that
it has a quadratic convergence rate, while the steepest descent method has a much
slower, linear convergence rate. However, each step of the Newton's method re-
quires a large amount of computation. Assuming that the dimensionality of the
problem is n, then an 0{n^) floating point operation is needed to compute the
search direction d^.

A method that uses an approximate Hessian matrix in computing the search
direction is the quasi-Newton method. Let B^ be an n x n symmetric matrix that
approximates the Hessian matrix V^/(^^); then the search direction for the quasi-
Newton method is obtained by minimizing the quadratic function

fkiz) = f{z') + Vfiz'Yiz - z') + i(2 - z'fB>^{z - z%

If B^ is invertible, then a descent direction can be obtained from the solution of
the above quadratic program:

d^:=z-z^ = -{B^)~^Vf{z^). (3)

Since we would like to have the matrix B^ to approximate the Hessian of the
function f(z) at z^, it needs to be updated from iteration to iteration by incorpo-
rating the most recent gradient information. One of the most widely used quasi-
Newton methods is the BFGS method, where the matrix B^ is updated according
to the following equation:

j,M r,k B'^SHs'fB'^ yHy'f ...

where

292 Rudy Setiono

This updating formula was independently proposed by Broyden, Retcher, Gold-
farb, and Shanno [6-9].

The BFGS method is an example of a rank-2 method, since the matrix B^^^
differs from the matrix B^ by a symmetric matrix of rank at most 2. A quasi-
Newton method that updates the matrix B^ by adding only a rank-1 matrix is the
SRI (symmetric rank-1) method. It updates the matrix B^ as follows:

. .+1 _r,k_ (y'-B'8')(y'-B'8'f

(yk_Bk8^)T8f' ' ^^^

It can be shown that the matrix B^^^ defined by either the BFGS update (4) or

the SRI update (5) satisfies the quasi-Newton condition

A minor modification to the BFGS update (4) was proposed by Biggs [10].
A scalar variable t^ is introduced into the update formula as follows:

where f * is defined by

2
r* =

(^Sk^Tyk
[3/(z*) - 3/(z*+i) + (5*)^(v/(z*) + 2V/(2*+l))] . (7)

It was shown that for some functions, this update resulted in faster convergence
than the original BFGS update where t^ = \.

The search direction d^ given by Eq. (3) can be obtained by either

1. computing the inverse of the matrix B^ and then multiplying the inverse by
the negative of the gradient, or

2. finding the Cholesky factorization of B^, that is, computing the lower
triangular matrix L such that LL^ = B^ and then computing the direction
d' via backward and forward substitutions.

For a function with n variables, either one of these two approaches requires an
0(n^) floating point operation.

This cost of computing d^ can be reduced to 0(n^) if, instead of B^, the in-
verse of the matrix is kept. Suppose, at iteration k, we have a matrix H^ that is
equal to (B^)~^; then the search direction d^ is equal to

J^ = -H^Vfiz^). (8)

Algorithmic Techniques and Their Applications 293

For the SRI method, it can be easily verified that if we define

then //^+^ = (B^+i)-^ where 5^+^ is the update defined by Eq. (5). Similarly,
we can show that the inverse of the matrix B^~^^ for the BFGS update given by
Eq. (6) is

~\ (5^)^yV V (8'^Vy^J '^ t^(8f^)Ty^' ^ ^

Given a search direction d^, an iterative one-dimensional optimization method
can be applied to find a step length X that solves the line search problem (2). How-
ever, this procedure may require an excessive number of function and/or gradient
evaluations. In fact, it is well known [11, 12] that often inexact line searches are
preferable to exact line search (2). A step length Â > 0 is considered acceptable
if it satisfies the following two conditions:

fiz'+X'd'^) < f{z')+ciX'^{d'fvf{z'), (11)

(d'Yvfiz' + X>^d') > C2{d'fvf{z% (12)

where ci and C2 are two constants such that 0 < ci < C2 < 1 and ci < 0.5. The
condition (11) is to ensure that the step length k^ produces a sufficient decrease in
the value of the function f(z) at the new point z^~^^, while the second condition
is to ensure that the step length is not too small. The values of ci and C2 that have
been suggested are 0.0001 and 0.9, respectively [13]. An iterative algorithm for
finding a step length k^ that satisfies both conditions (11) and (12) is given in [13].

A quasi-Newton method that allows a choice between a rank-1 update and a
rank-2 update at each iteration is the SRl/BFGS algorithm [14]. This method is
shown to be faster than the standard BFGS method for a wide range of nonlinear
optimization problems. The SRl/BFGS quasi-Newton method with inexact line
search can be summarized as follows.

SRl/BFGS algorithm for minimizing / (z)

Step 0. Initialization.
Choose any ẑ as a starting point. Let H^ = I,SQtk = I. Let € > 0
be a small terminating scalar.

Step 1. Iterative Step.

• Check for convergence:
If IIV/(z^)|| < € max{l, Ijẑ jl} then Stop.

294 Rudy Setiono

Otherwise

1. Compute the search direction

2. Calculate a step length k^ such that both conditions (11) and
(12) are satisfied and let

3. Compute the value of t^ by Eq. (7).

ifr^ < 0.5 then set f̂ = 0.5,

else if t^ > 100 then set t^ = 100.

4. If (5^ - H^y^fy^ > 0, then compute H^+i using Eq. (9),

else compute H^^^ using Eq. (10).

5. Set A: = A: + 1 and repeat Step 1.

If the matrix H^ is positive definite and (8^ - H^y^)^y^ > 0, then the matrix
//^"^^ computed using the SRI update (9) will also be positive definite. If the
matrix H^ is updated using the BFGS update (10) and if the condition

t\6^fy^ > 0

holds, then H^^^ will also be positive definite. The line search condition (12) and
t^ in [0.5, 100] guarantee that t^{6^)^y^ > 0 holds at every iteration. It is im-
portant to have positive definite matrix H^ to ensure that direction d^ is a descent
direction.

An iterative line search procedure may require more than one function and gra-
dient evaluation before a step length X̂ that satisfies conditions (11) and (12) can
be found. Hence, in general the total number of function and gradient evaluations
required by the SRl/BFGS algorithm to find a minimum of the error function
is more than the total number of iterations. While the total number of iterations
reflects the total number of times that the weights of the network are updated,
the total number of function/gradient evaluations is a more accurate indication of
the cost of training the network. Since the gradient of the function is always com-
puted when the function value is computed and vice versa, the number of function
evaluations is equal to the number of gradient evaluations.

We note that for the steepest descent method with a fixed step length, only two
n-dimensional vectors need to be stored: the current estimate of the minimum z^
and the gradient of the function at this point, Vf{z^). When a line search pro-
cedure is implemented in conjunction with this method, two more n-dimensional

Algorithmic Techniques and Their Applications 295

vectors are needed by the procedure to store the new estimate of the minimum:
z^ — kVf(z^) for some A, > 0 and the gradient at this new estimate.

In addition to these four n-dimensional vectors, the quasi-Newton method re-
quires extra storage for holding the vector H^y^ and the matrix H^. Since this
matrix is symmetric, an additional n(n + l) /2 real words of storage will be
sufficient. Hence, the total storage requirement for the quasi-Newton method is
n(n + l l) / 2 plus several scalar variables for storing the various constants and
scalar products. Although this 0(n^) storage requirement and the O(n^) floating
point operations needed at each iteration to update the matrix H^ may seem to be
major drawbacks of the quasi-Newton method, our experience with this method
indicates that the number of iterations and the number of function and gradient
evaluations required by this method are much fewer than those of the steepest de-
scent method. The conjugate gradient method, which has also been used for neural
network training [15] requires an 0(n) storage space. If the storage space is lim-
ited, this approach is suitable for a network with many units. However, in general,
quasi-Newton methods converge faster than the conjugate gradient method [12].
The fast convergence of the quasi-Newton method should make it the method of
choice for training a neural network when the storage space is not a restricting
factor.

III. SELECTING THE NUMBER OF OUTPUT UNITS

The necessary number of output units in a network is usually the easiest to
determine. For a pattern classification problem to distinguish between patterns
from two classes, a single output unit would suffice. Each pattern that belongs
to one class can be assigned a target of 1, while a pattern that belongs to the
other class can be assigned a target of 0. If the classification involves patterns
from N > 2 classes, a commonly used approach is to have Â output units. Each
pattern is labeled by an A^-dimensional binary vector, where Â — 1 bits are set to
zero and exactly one bit is set to 1. The position of the 1-bit indicates the class to
which the pattern belongs. When N is large, instead of having an A^-dimensional
target output for each pattern, we could use a binary encoding to represent class
membership. Using binary encoding, only flog Â l output units would be needed.
With the smaller number of output units, however, more hidden units may be
needed to represent the mapping of the input patterns and their binary encoded
class labels.

The number of output units is generally much fewer than the number of in-
put or hidden units. For applications other than pattern classification, however, a
large number of output units may be needed. One such applications is image com-
pression. Image compression using neural networks with one hidden layer can be
considered as a learning problem where the target to be learned is actually the

296 Rudy Setiono

same as the input. Typically, an image is divided up into small patches of 4 x 4
or 8 X 8 pixels [16-18]. A patch of 8 x 8 pixels would require 64 input units
and the same number of outputs. The connections between the input units and the
hidden units act as an encoder which compresses the image, while the connec-
tions between the hidden units and the output units act as a decoder which will
be needed to recover the original image. The activation values of the hidden units
thus represent the coded image. These activation values, which are real numbers
in the interval [0,1] or [— 1,1] depending on the activation function used, are dis-
cretized into a small number of bits. If the number of bits is n, then the number
of distinct activation values in a hidden unit can be up to 2". A small number
of hidden units and a small number of bits used to represent the discretized hid-
den unit activation values result in a high compression ratio. For example, if four
hidden units are present in the network and four bits are used to represent the
activation values of an 8 x 8 input patch at each hidden unit, a compression ratio
of (8 X 8)/(4 X 4) = 4 is achieved. Hence, it is desirable to have a network with
a small number of hidden units and a small number of distinct discretized hid-
den unit activation values to achieve a high degree of compression. The goal of
achieving a high compression ratio, however, must be balanced against the quality
of the decoded image.

IV. DETERMINING THE NUMBER
OF HIDDEN UNITS

While it is known that a network having a single hidden layer is capable of
approximating any decision boundary, in general, it is not known how many units
in the hidden layer are needed. The problem of selecting an appropriate number of
hidden units in a network is a very challenging one. If the network has too many
hidden units, it may overfit the data and result in poor generalization. On the other
hand, a network with too few hidden units may not be able to achieve the required
accuracy rate.

Two different approaches have been described in the literature to address the
difficulty of finding the right number of hidden units of a network. The first ap-
proach begins with an oversized network and then prunes redundant units [19-22].
The second approach begins with a small network with one or two hidden units
and adds more units only when they are needed to improve the learning capability
of the network.

Algorithms which automatically build neural networks have been proposed by
many researchers. These methods include the cascade correlation algorithm [23],
the tiling algorithm [24], the self-organizing neural network [25], and the up-
start algorithm [26]. For a given problem, these algorithms will generally build
networks with many layers. The dynamic node creation method proposed by

Algorithmic Techniques and Their Applications 297

Ash [27] is an algorithm which constructs neural networks with a single hidden
layer. The method creates feedforward neural networks by sequentially adding
hidden units to the hidden layer.

The neural network construction algorithm FNCAA [28] is similar to Ash's
dynamic node creation algorithm. It starts with a single hidden layer network
consisting of a single hidden unit and finds a set of optimal weights for this net-
work. If the network with these weights does not achieve the required accuracy
rate, then one hidden unit is added to the network and the network is retrained.
The process is repeated until a network that correctly classifies all the input pat-
terns or meets some other prespecified stopping criteria has been constructed. The
outline of the algorithm is as follows:

Feedforward neural network construction algorithm (FNNCA)

1. Let h be the initial number of hidden units in the network. Set all the initial
weights in the network randomly.

2. Find a point that minimizes the error function (1).
3. If this solution results in a network that meets the stopping condition, then

stop.
4. Add one unit to the hidden layer and select initial weights for the arcs

connecting this new node with the input units and the output unit. Set
h = h -\- 1 and go to Step 2.

The difference between the dynamic node creation algorithm and FNNCA
lies in the training of the growing network. In the dynamic node creation algo-
rithm, the network is trained using the standard back-propagation method, while
in FNNCA the growing network is trained by the SRl/BFGS method described
in the previous section.

Interesting results were obtained when FNNCA was applied to solve the Â -
bit parity problem. This problem is a well-known difficult problem that has often
been used for testing the performance of a neural network training algorithm. The
input set consists of 2̂^ patterns in «-dimensional space and each pattern is an
n-bit binary vector. The target value t^ is equal to 1 if the number of one's in the
pattern is odd and it is 0 otherwise. To solve this problem by a feedforward neural
network, the number of hidden units is usually set to Â , the same as the number of
input units. The initial number of hidden units in FNNCA was set to two. For the
4-bit parity problem, FNNCA terminated after 105 iterations and 132 function/
gradient evaluations. The final number of hidden units was three. The algorithm
required 168 iterations with 222 function/gradient evaluations to construct a net-
work having four hidden units that correctly classified all 32 inputs of the 5-bit
parity problem. A network with five hidden units was also found by the algo-
rithm for the 7-bit parity problem after 943 iterations and 1532 function/gradient
evaluations. Using the dynamic node creation algorithm, the 4-bit parity problem

298 Rudy Setiono

required more than 4000 iterations and the final network constructed had four
hidden units.

Instead of the sum of the squared-error function (1), any function that attains
its minimum or maximum when the output value from the network for each input
pattern is equal to its target value can be used to compute these weights. The
maximum likelihood neural network construction algorithm (MLNNCA) [29] is
similar to FNNCA except that it trains the growing network by minimizing the
cross-entropy error function

TmnF^(y,z) :=-T\ogS^ - V l o g (l - S'), (13)

where

S^ = the predicted output for input jcS a(5]]/=i V^((x^)^u;^)i;-^),
ir{r]) = the hyperbolic activation function, {e^ — e~^)/(e^ + e~^),

1= {i\t' = i].

The superscript h on the function F has been added to emphasize that the
function corresponds to a network with h hidden units. The components of the
gradient of the function F^{w, v) are as follows:

dF^(w,v)

'< -i
= - ^ [(1 - S') X i;'" X (1 - ir{x^w'^f) x x^]

4- J2 [^' X i;'" X (1 - xlr{x'w'^f) x x^]
iix

k

=1

dF^(w,v)
= - ^ [(1 - S^) X ir{x'w'^)] + J2[S^ X xlf{x'w"')]

ieX iiX
k

for all m = 1, 2 , . . . , /i and £ = 1, 2 , . . . , n, with the error e^ = S^ - t\
Let (uJ, iJ) € IR('^+1)X^ be a point such that VF^(w, v) = 0 and suppose that

the network with h hidden units corresponding to this set of weights does not meet
the stopping condition of the network construction algorithm. Let w^"^^ G R" be a
randomly generated vector; it is clear that F^'^^ (W, w^'^^, U, 0) = F^(w, v). We
wish to find v eR such that the value of the cross-entropy error function for the
network with an additional hidden unit is less than that of the original network;

Algorithmic Techniques and Their Applications 299

that is,

The variable v represents the weight of the connection from the new hidden unit
to the output unit. For simpHcity of derivations, we hold w^'^^ constant and define
a new function of a single variable

= -J2^og[a{A'+S^v)] - ^ l o g [l -a(A^' +5^1;)],
ieX i^X

where
h

A^ = y^\l/{x^wJ)vJ,
7 = 1

It follows that the first and second derivatives of this function are

ieX i^X

k

i=l

Hence we have that the derivative of this function at zero is

ieX i^X

k

i=l

and that the second derivative is bounded above as follows:

\T\V)\ <k/4, Vv eR.

By definition of the function ^ , we have that

F^^^w^w^-^^v.Xv) =J='(kv).

From the second-order Taylor expansion of this function, we have

J=-(Xv) = jr(0) + XJ^\0)v + ^(kvfj^\pkv), 0 < p < 1.

300 Rudy Setiono

By letting v = —^(0), we obtain

The inequality above is obtained from the fact that the second derivative T" (V) is
bounded by k/4. Now let us set X = 4/A:; we have

= HO) -

= F^{w,v)

Y,e'f{x'w^^^)
/=i

Y,e'ylr{x'w^^^)
i = i

For a randomly generated w^^^, it is very unlikely that the sum Y^i^i e^ x
ylrix'w^""^) will be zero. Thus, even before the new expanded network is re-
trained, if we pick w^'^^ randomly and set v^^^ = - 4 (^ f ^ i e^\l/(x^w^^^))/k,
there is already a decrease in the function value.

If the sum of the squared-error function (1) is used for training the network in-
stead of the cross-entropy error function (13), then the function !F{v) will become

i \ 2
^(i;) = ^ (a (A ^ + 5 ^ ' i ;) - ^ 0

The derivative of this function at zero is

k

^ (0) = 2J2[^' X ^ (^ 0 X (1 - CT(A^)) X 8'].

(14)

(15)
i=l

Due to rounding error, the product e^ a (A^) (1 —a (A^)) is often zero. This happens
when each of the network outputs 5̂ is either very close to zero or very close
to 1. When the training of a network with h hidden units converges to a point
(uJ, v) such that e^ is equal to 0, or 1, or —1 for all / = 1,2, . . . ,^, then the
derivative (15) will be zero and the point (w, w^^^, U, 0) with any w^^^ e W is
in fact a local minimum of the function f{w,v) for a new expanded network with
h-\-\ hidden units. Since there is no decrease in the function value, the addition
of a new hidden unit will be futile and the recognition rate of the network will
not improve. It has also been observed that neural network training with a fixed

Algorithmic Techniques and Their Applications 301

number of hidden units requires less iterations if one substitutes the cross-entropy
error function (13) for the sum of the squared-error function [4, 30].

MLNNCA was run 50 times using 50 different random starting points to solve
the A -̂bit parity problems for Â ranging from four to eight. The minimum number
of hidden units in the constructed networks was N /2-\-\ for even A/̂ , and (A^+l)/2
for odd N. Not all runs ended with the minimal network. However, regardless of
the starting random weights, the algorithm was always successful in constructing
a network that correctly classified all the input patterns.

The algorithm was also tested on the spiral problem [4]. The problem of dis-
tinguishing two intertwined spirals is a nontrivial one. The two spirals shown in
Fig. 2 consist of a total of 970 patterns. Solutions to the spiral problem have been
obtained by feedforward networks with several hidden layers having connections
connecting every layer to all succeeding layers [4], by networks where there are
connections among hidden units such as those generated by the cascade corre-
lation algorithm [23], or by networks with connections among hidden units and

Figure 2 The spiral patterns. Reprinted with permission from Carfax PubUshing Limited.

302 Rudy Setiono

shortcut connections from the input units to the output units [31], Solutions from
the standard single hidden layer networks have been reported only for a substan-
tially reduced problem [32].

FNCAA was run 10 times to solve the spiral problems. It constructed networks
with a final number of hidden units ranging from 28 to 38. A two-dimensional
classification graph of one of the networks is shown in Fig. 3. The graph shows
the classification of the network at different growing stages. In each square, black

(c) (d)
Figure 3 Evolution of a network with 34 hidden units. Classification graphs of a network with (a)
4 hidden units (b) 12 hidden units (c) 22 hidden units (d) 34 hidden units. Reprinted with permission
from Carfax Publishing Limited.

Algorithmic Techniques and Their Applications 303

represents an activation value of 0, white represents 1, and grey represents inter-
mediate values between 0 and 1. The final number of hidden units for this partic-
ular run is 34. The classification graph of the network with 34 hidden units shows
that most of the points in the square enclosing the training data are classified as
Oorl .

V. SELECTING THE NUMBER OF INPUT UNITS

Finding the optimal number of input units is equivalent to selecting the set
of attributes of the patterns that are useful for classification. While a great dea
of research has been focused on algorithms that optimize the number of hidden
units, there has not been much work that addresses the issue of optimal number
of input units of a neural network classifier.

It is quite common that data sets collected contain many attributes that are
redundant and/or irrelevant. By excluding these attributes from the classification
process, a classifier with higher generaUzation capability, i.e., better predictive
accuracy on new/unseen patterns, can often be found. The dimensionality of pat-
terns with attributes that are highly correlated may be reduced with little or no
loss of information. Hence, by collecting only values of the relevant attributes,
the cost of future data collection may also be reduced.

Feature selection aims at selecting a subset of the attributes that are relevant
for classification. Similar to selecting an optimal number of hidden units, there are
two approaches that have been applied in feature selection. One can begin with
no feature and start adding the relevant features one at a time, or one can begin
with the entire feature set and remove those irrelevant features one by one.

Setiono and Liu [33] propose an algorithm for determining the relevant subset
of attributes for classification using neural networks. A network is trained with the
complete set of attributes as input. For each attribute At in the network, the ac-
curacy of the network with all the weights of the connections associated with this
attribute set to zero is computed. The attribute that gives the smallest decrease in
the network accuracy is removed. The network is then retrained and the process is
repeated. To facilitate the process of identifying the irrelevant attributes, the net-
work is trained to minimize an augmented error function. The augmented error
function consists of two components. The first component is a measure of net-
work accuracy and the second component is a measure of the network complexity.
The accuracy of the network is measured using the cross-entropy error function,
while the complexity of the network is measured by a penalty term. A network
weight with a small magnitude incurs almost no penalty, while a weight that falls
in a certain allowable range incurs an almost constant penalty. The penalty of a

304 Rudy Setiono

large weight that falls outside this interval increases as a quadratic function of its
magnitude.

Relevant and irrelevant inputs are distinguished by the strength of their con-
nections from the input layer to the hidden layer in the network. The network
is trained such that the connections from the irrelevant inputs to the hidden layer
have small magnitude. These connections can be removed from the network with-
out affecting the network accuracy. Since we are interested in finding the smallest
subset of the attributes that still preserves the characteristics of the patterns, it
is important that the network be trained such that only those connections from
the necessary inputs have large magnitude. To achieve this goal, a penalty term
P(w) is added for each connection from the input layer to the hidden layer of the
network. It is defined as follows:

pw=MEi: p{<) J\2

l\2 ;^;^ i+;8K)
+̂2 EE(-iy (16)

61 > €2 > 0 are penalty parameters and ^ is a positive constant.
There are two components of the penalty function P{w)\ the first component

is to discourage the use of unnecessary connections and the second component is
to prevent the weights of these connections from taking very large values. These
two components have been used individually in conjunction with many pruning
algorithms proposed in the past few years [34].

U . i ^

0.12

0.1

0.08

0.06

0.04

n no

\ 1 1 1
\ . w*w/(l

-

1
1 1 1

1 1 1

-h 10*w*w) + 0.0001*w*w-T-

1
1 1 1

-

-

-

-

-

-20 -15 -10 -5 0 5 10 15 20

Figure 4 Plot of the function f{w) with 6i = lO"!, €2 = lO"'*, and /8 = 10.

Algorithmic Techniques and Their Applications 305

A weight with small magnitude is encouraged to converge to zero as reflected
by the steep drop in the function value near zero (Fig. 4). On the other hand,
the weights of the network are prevented from taking values that are too large
as reflected by the quadratic component of the penalty function which becomes
dominant for large values of w.

Combining the cross-entropy error function and the penalty function, we min-
imize the following function during network training:

\i=ip=i I

where C is the number of output units in the network, and 5 ,̂ and f^ are the
network output and the target output for pattern x^ at output unit p, respectively.

Features are selected for removal based on their saliency. Several saliency mea-
sures are reported by Belue and Bauer [35]. These measures of saliency of an at-
tribute involve the derivative of the network error function, or the weights of the
network, or both. In order to obtain a confidence interval for the mean value of
the saliency of the attributes, the network needs to be retrained repeatedly starting
from different random weights. It is suggested that the network be trained at least
30 times in order to find a reliable mean and standard deviation of the saliency
measure. As network training can be very slow, the requirement that the network
be trained many times makes their proposed scheme computationally unappeal-
ing. Instead of using a saliency measure that is a function of the network weights,
we use a very simple criterion to determine which attribute is to be excluded from
the network. This criterion is the network accuracy on the training data set. Given
a trained network with the set of attributes A = {Ai, ^42,. . . , AN] as its input,
we compute the accuracy of the networks having one less attribute, i.e., the set
-4 — {Ak}, for each k = 1,2,,.., N,is an input attribute set. The accuracy rates
are computed by simply setting the connection weights from input attribute Ak of
the trained network to zero. The accuracy rates of these networks are then ranked.
Starting with the network having the highest accuracy, the set of attributes to be
retained is searched. The steps of the algorithm are outlined below.

Neural network feature selection algorithm

1. Let A = {Ai, . 42 , . . . , ^A^} be the set of all input attributes. Separate the
patterns into two sets: the training set Si and the cross-validation set 52.
Let AT?, be the allowable maximum decrease in accuracy rate on the set ^2
and let €i (k) and €2(k) be the penalty parameters [cf. Eq. (16)] for the
connections from input Ak to the hidden layer, for all A: = 1,2,..., N.

306 Rudy Setiono

2. Train network J\f to minimize the augmented error function 0{w,v) with
the set A as input such that it achieves a minimum required accuracy rate
on the set Si. Let TZ^ be the accuracy of the network on the set 52.

3. For all fe = 1, 2 , . . . , N, let A/it he the network whose weights are set as
follows:

(a) From all inputs except for Ak, set the weights of A4 equal to the
weights of A/̂ .

(b) Set the weights from input Ak to zero.

Compute TZl and TZl, the accuracy rates of network Afk on the sets 5i and
«S2, respectively.

4. Rank the networks A4 according to their accuracy rates:
^j^y Let TZl^^ be the average of these rates.

(a) SetA:=L
(b) Retrain the network A/̂ (it).
(c) Let5 = (7^2-7^^(^p/7^2.
(d) lf8< ATI, then

• Update the penalty parameters for all attributes j ^r{k):

- For each input attribute Aj with network accuracy rate
n] > n\,,. set 6i0-) := 1.161(7) and62(;) := 1.1620').

- For each input attribute Aj with network accuracy rate
n) < nl,,, set 610') := 6i0-)/l . l and 62(7) := ^2(7)/l.l.

• Reset the input attribute set to ^ — {Ar(k)}, and setN:=N — l.
• Set n^ := max{7e^, 7e^(^)}.

Go to step 3.

(e) If ^ < AT, set A: := A: + 1 and go to Step 4(b).
Else stop.

The available patterns for training are divided into two sets, Si and 52. The
set Si consists of patterns that are actually used to obtain the weights of the neu-
ral networks. The set 52 consists of patterns that are used for cross-validation.
By checking the accuracy of the networks on the set 52, the algorithm decides
whether to continue or to stop removing more attributes. The best accuracy rate
TZ^ of the networks on this set is kept by the algorithm. If there is still an attribute
that can be removed such that the relative accuracy rate on 52 does not drop by
more than ATZ, then this attribute will be removed. If no such attribute can be
found among the inputs, the algorithm terminates.

At the start of the algorithm, the values of the penalty parameters €i{k) and
62(fc) are set equal for all attributes Ak, since it is not yet known which are the
relevant attributes and which are not. In our experiments, we have set the ini-
tial values for €i(k) and 62(A;) to 0.1 and 10""*, respectively. After the network

Algorithmic Techniques and Their Applications 307

is trained, the relative importance of each attribute can be inferred from the ac-
curacy rates of all the networks Afk having one less attribute. A high accuracy
rate of Afk suggests that the attribute Ak can be removed from the attribute set.
Step 4(d) of the algorithm updates the values of the penalty parameters for all
the remaining attributes based on the accuracy of the networks. If the accuracy
rate of network A4 is higher than the average, then the penalty parameters for the
network connections from input attribute Ak are multipUed by a factor 1.1. It is
expected that with larger penalty parameters, the connections from this input at-
tribute will have smaller magnitudes after the network is retrained, and therefore
the attribute can be removed in the next round of the algorithm. On the other hand,
a below-average accuracy rate of the network J\fk indicates that the attribute Ak
is important for classification. For all such attributes, the penalty parameters are
divided by a factor of 1.1,

Among the problems on which the neural network feature selection algorithm
was tested are the monks problems [36]. There are three monks problems in which
robots are described by six different attributes (Table I). The learning tasks of the
three monks problems are of binary classification; each of them is given by the
following logical description of a class:

• Problem Monks 1: (head_shape = body_shape) or (jacket_color = red).
From 432 possible samples, 112 were randomly selected for the training
set, 12 for cross-validation, and all 432 for testing.

• Problem Monks 2: Exactly two of the six attributes have their first value.
From 432 samples, 152 were selected randomly for the training set, 17 for
cross-validation, and all 432 for testing.

• Problem Monks 3: (Jacket_color is green and holding a sword) or
(jacket_color is not blue and body_shape is not octagon). From 432
samples, 122 were selected randomly for training and among them there
was 5% misclassification, i.e., noise in the training set. Twenty samples
were selected for cross-validation, and all 432 samples formed the
testing set.

Table I

Attributes of the Three Monks Problems

Ai:
A2:
Ay.
A4:
A5:
Ae:

head_shape
body_shape
is_smiling
holding
jacket_color
has_tie

€

€

e
e
e
G

round, square, octagon;
round, square, octagon;
yes, no;
sword, balloon, flag;
red, yellow, green, blue;
yes, no.

308 Rudy Setiono

In order to demonstrate the effectiveness of the feature selection algorithm,
each possible value of the six attributes is treated as a single new attribute. For ex-
ample, the attribute head_shape, which can be either round, square, or octagon, is
represented by three new attributes. The three attributes are head_shape = round,
head_shape = square and head_shape = octagon. Exactly two of the three at-
tributes have values 0, while the third attribute has value 1. This representation of
the original six attributes enables us not only to select the relevant attributes, but
also to discover which particular values of these attributes are useful for classifi-
cation.

For each problem, thirty neural networks with 12 hidden units and 17 input
units were trained starting from different initial random weights. The results of
the experiments are summarized in Table II. In this table, the average accuracy
rates of the networks on the training and testing data sets with and without feature
selection are given. Standard deviations are given in parentheses. The average
function evaluation reflects the cost of selecting the relevant features. It is the
average number of times that the value and the gradient of the augmented er-

Table II
Results for the Monks Problems

Monks 1 With all features^ With selected features^

Ave. no. of features 17 (0.00) 5.07(0.37)
Ave. ace. on training set (%) 100.00 (0.00) 100.00 (0.00)
Ave. ace. on testing set (%) 99.71 (0.67) 100.00 (0.00)
Ave. function evaluations 360.37 (114.76)
P-value (testing set ace.) 0.09

Monks 2 With all features'̂ With selected features'̂

Ave. no. of features 17 (0.00) 6.23(0.43)
Ave. ace. on training set (%) 100.00 (0.00) 100.00 (0.00)
Ave. ace. on testing set (%) 98.78 (2.34) 99.54 (0.99)
Ave. function evaluations 538.63 (117.02)
P-value (testing set ace.) 0.05

Monks 3 With all features^ With selected features^

Ave. no. of features 17 (0.00) 3.87(1.78)
Ave. ace. on training set (%) 100.00 (0.00) 94.23 (0.79)
Ave. ace. on testing set (%) 93.55 (1.41) 98.41 (1.66)
Ave. function evaluations 826.70 (212.86)
P-value (testing set ace.) < 10~^

'^Standard deviation for the averages are given in parentheses.

Algorithmic Techniques and Their Applications 309

ror function (17) are computed by the minimization algorithm SRl/BFGS. The
P-value is computed to check if there is any significant increase in the accuracy
of the networks with selected input features compared to the networks with the
whole set of attributes as input. A smaller P-value indicates a more significant
increase. Since the largest among the P-values obtained from the three sets of
experiments is 0.09, we can reject at 10% level of significance the null hypothesis
that there is no increase in the predictive accuracy of the networks after pruning.

The figures in Table II show that feature selection not only removes the ir-
relevant features, it also improves significantly the predictive accuracy of the net-
works. For the Monks 1 problem, all 30 networks with selected input attributes are
capable of classifying all testing patterns correctly. Twenty-nine networks have
the minimum five input attributes and the remaining one has seven input attributes.
For the Monks 2 problem, 23 networks have the minimum six attributes and the
remaining seven networks have seven attributes.

For the Monks 3 problem, most networks have either two or five input at-
tributes. The maximum number of attributes a network has is nine. All twelve
networks with five input attributes achieve 100% accuracy rate on the testing data
set. All eleven networks with two input attributes have accuracy rates of 93.44%
and 97.22% on the training data set and the testing data set, respectively. The
97.22% accuracy rate is the same as that reported by Thrun et al. [36]. It is worth
noting that, despite the presence of six mislabeled training patterns, 14 of the 30
networks with selected attributes have a perfect 100% accuracy rate on the test-
ing data set. None of the 30 networks with all input attributes has such accuracy.
The results from running the neural network feature selection algorithm on many
real-world data sets are reported in Setiono and Liu [33]. The results show that
neural network classification using only selected input attributes is generally more
accurate than using all the attributes in the data.

VI. DETERIVIINING THE NETWORK
CONNECTIONS BY PRUNING

Instead of removing all the connections from an input unit to all the units in the
hidden layer as described in the previous section, a finer pruning process which
removes an individual weight or connection in the network may also increase
the generalization capabihty of a neural network [37-40]. Methods for removing
individual weights from a network also usually augment a penalty term to the net-
work error function [34]. By adding a penalty term to the error function, the rel-
evant and irrelevant network connections can be distinguished by the magnitudes
of their weights or by other measures of saliency when the training process has
been completed. The saliency measure of a connection gives an indication of the
expected increase in the error function after that connection is eliminated from

310 Rudy Setiono

the network. In the pruning methods Optimal Brain Damage [39] and Optimal
Brain Surgeon [37], the saliency of each connection is computed using a second-
order approximation of the error function near a local minimum. If the saliency
of a connection is below a certain threshold, then the connection is removed from
the network. If the increase in the error function is larger than a predetermined
acceptable error increase, the network must be retrained.

The algorithm N2P2F for neural network pruning outlined below was re-
cently developed by Setiono [41]. Neural network pruning with penalty function
(N2P2F) first trains a fully connected network by applying the SRl/BFGS method
to find a set of weights that minimizes the augmented error function:

§(w, v) = Jj2J2^'plogS'p^{l- ri,)log(l - 4) J + Q(w, V), (18)
\ /=i p=i /

where

+^2i:(i:wy+EKf). (i9)

The difference between the penalty functions (16) and (19) is that the latter
also contains a penalty term for the connections between the hidden units and the
output units. The reason why we also add a penalty term for each of the connec-
tions from a hidden unit and an output unit is linked to the criteria for weight
removal (20) and (21) in the algorithm below.

Algorithm N2P2F: Neural network pruning with penalty function

1. Let r]\ and r]2 be positive scalars such that r]\^-r]2< 0.5 (r]\ is the error
tolerance, r]2 is a threshold that determines if a weight can be removed).

2. Pick a fully connected network, and train this network to minimize the
error function (18) such that a prespecified accuracy level is met and the
condition

I4l = l4-rj,|<r;i

holds for all correctly classified input patterns. Let (lu, v) be the weights of
this network.

Algorithmic Techniques and Their Applications 311

3. For each connection from input unit I to hidden unit m, w^ in the
network, if

max|i;^w;^| < 4 /̂2, (20)

then remove w^ from the network.
4. For each connection from hidden unit m to output unit p, v^ in the

network, if

^ " | < 4 r ; 2 , (21)

then remove v^ from the network.
5. If no weight satisfies condition (20) or condition (21), then for each w'^ in

the network, compute

(o^ = max \VpW^ |.

Remove wf with the smallest cof.
6. Retrain the network. If the classification rate of the network falls below the

specified level, then stop and use the previous setting of network weights.
Otherwise, go to Step 3.

In steps 3 and 4, N2P2F removes all the connections of the network whose
magnitudes satisfy the conditions (20) or (21). In Setiono [41], we show that re-
moval of such connections from the network does not affect the network accuracy.
In step 5, we remove a network connection from an input unit to a hidden unit w^
based on the values of its products with the weight of the connections from hidden
unit m to all output units /? = 1 ,2 , . . . ,C. The connection with the smallest max-
imum product is selected for removal. After removal of one or more connections,
the network is retrained in step 6. Removed connections have their weight values
fixed at 0.

The algorithm has been successfully applied to prune networks that have been
trained for classification of many artificial and real-world data sets. Generally,
for the problem domains tested, pruned networks have higher predictive accuracy
than the fully connected networks. Among the problems tested and reported by
Setiono [42] are the monks problems introduced in the previous section. For these
problems, the algorithm N2P2F is able to obtain networks with fewer connections
and better accuracy than those obtained by other pruning algorithms reported in
the Hterature. Two pruned networks obtained for the Monks 1 and Monks 3 prob-
lems are shown in Figs. 5 and 6. The network in Fig. 5 correctly classifies all the
patterns in the training and testing data sets of the Monks 1 problem. The network
in Fig. 6 correctly identifies the six mislabeled patterns in the training data set and
obtains a 100% accuracy rate on the testing patterns.

312 Rudy Setiono

» Positive weight

•^" Negative weight

Figure 5 A pruned network that solves the Monks 1 problem.

^^ Positive weight

•»• Negative weiglit

TTT ITT TT TTt TtTT TT
J shape body shape is smiling holding jacl(et color has tie

f § I I
'g W O)

Figure 6 A pruned network that solves the Monks 3 problem.

Algorithmic Techniques and Their Applications 313

VII. APPLICATIONS OF NEURAL NETWORKS
TO DATA MINING

After pruning, the network contains only those connections that are relevant
to class labels of the patterns. It is only natural for one to ask whether it is pos-
sible to express the relationship between the inputs and outputs of the network
in a meaningful way. Since symbolic rules are easier to understand and verify
than a collection of network weights, many attempts have been made to develop
algorithms that extract symbolic rules from trained neural networks. One such al-
gorithm is NeuroRule [43, 44]. By analyzing the activation values of the hidden
units, NeuroRule generates symbolic rules that explain a network classification in
terms of its input attributes.

We illustrate how NeuroRule works using the Wisconsin Breast Cancer data
base [45]. The data set is available publicly via anonymous ftp from the Univer-
sity of California Irvine repository [46]. The data have been used as the test data
for several studies on pattern classification methods using linear programming
techniques [45, 47,48] and statistical techniques [49].

Each pattern in the data set has nine attributes. The nine measurements taken
from fine-needle aspirates from human breast tissues correspond to cytological
characteristics of a benign or of a malignant sample. These are Ai. clump thick-
ness, A2' uniformity of cell size, A3, uniformity of cell shape, A4. marginal ad-
hesion, A5. single epithelial cell size, Ae- bare nuclei, Aj. bland chromatin, A^.
normal nucleoli, and Ag. mitosis. Each of these nine attributes was graded 1 to
10 at the time of sample collection, with 1 being the closest to benign and 10
the most anaplastic. Since the attributes are integer-valued ranging from 1 to 10,
we created 10 input units for each attribute. With an additional input for the bias
weight at the hidden units, we have a total of 91 input units. Let us denote these
inputs as Xi, 22, • • •, ^91- For / = 0, 1 , . . . , 8, the following coding schemes for
the input data are used:

^lOxi-^j = 1 <^=^ A+1 > 11 - 7, 7 = 1, 2 , . . . , 10,

Iioxi+j =0 ^^=^ Ai+i < 10 - J, 7 = 1,2, . . . , 9,

X91 = 1.

With this coding, Iioxj is 1 for all 7 = 1, 2 , . . . , 9 for all patterns with valid
attribute values in {1, 2 , . . . , 10}.

There are a total of 699 samples in the data base, of which 458 are benign
samples and 241 are malignant samples. The patterns in the data set are divided
randomly into a training set consisting of 350 samples and a testing set consisting
of the remaining 349 samples. The target value for a benign sample is 0, while for
a mahgnant sample the target value is 1. Figure 7 depicts a pruned network that

314 Rudy Setiono

^^ Positive weight

^^ Negative weight

-26 1-52 1-71 1-80

Figure 7 A pruned network for the Wisconsin Breast Cancer diagnosis problem.

has been trained to distinguish benign samples from mahgnant ones. Its accuracy
rates on the training set and testing set are 96.57% and 93.12%, respectively.

Since the hyperbolic activation function is used at the hidden units, the activa-
tion value of a pattern can be anywhere in the interval [— 1, 1]. In order to simplify
the analysis, the continuous activation values of the patterns are discretized by
clustering. A simple clustering algorithm that performs greedy clustering is given
below.

A greedy clustering algorithm (GCA)

1. Find the smallest positive integer d such that if all the network hidden unit
activation values are rounded to 6?-decimal-place, the network still retains
its accuracy rate.

2. Represent each activation value a by the integer nearest to a x 10^. Let
T-li = {hi^i, /i/,2, • • •, hi^k) be the set of these representations at hidden unit
/ for patterns x ^ x^ , . . . , x^ and let H = {Hi, W2, • • •, HH) be the set of
the hidden representations of all patterns by all H hidden units.

3. Let P be an ordering sequence such that P(i) ^ P(j) iff / ^ j for all
i, j = 1 ,2 , . . . , / / . Initialize ^ = 1.

4. SQti = P(k).
5. Sort the set H such that the values of Hi are in increasing order.

Algorithmic Techniques and Their Applications 315

6. Find a pair of distinct adjacent values htj and /i/,;+i in the sorted set Hi
such that if /i/,y+i is replaced by htj, no conflicting data will be generated.

7. If such a pair of values exists, replace all occurrences of /i/,;+i by hij and
repeat Step 6. Otherwise, setk = k -\- l.lfk < H, go to Step 4, else Stop.

Steps 1 and 2 of the GCA find integer representations of all hidden unit acti-
vation values. A small value for d in step 1 indicates that relatively few distinct
values for the hidden unit activations are sufficient for the network to maintain its
accuracy. For example, when d = 2, the distinct values are —1.00, —0.99,...,
-0 .01 , 0.00, 0 .01 , . . . , 0.99, 1.00. In general, there could be up to 2 x 10^ + 1 dis-
tinct values. Experimental results, however, show that usually there are far fewer
distinct values.

The array P contains the sequence in which the hidden units of the network
is to be considered. Different ordering sequences usually result in different clus-
ters of activation values. Once a hidden unit is selected, its discretized activation
values are sorted. The values are clustered based on their distance. Step 6 of the
algorithm is implemented by first finding a pair of adjacent distinct values with
the shortest distance, that is, by finding a pair of distinct values hij and /i/,;-f-i
such that hij-^i — htj is minimum. If htj^i can be replaced by htj without
causing two or more patterns from different classes to have identical discretized
values, they will be merged. Otherwise, a pair with the second-shortest distance
will be considered. This process is repeated until there are no more pairs of values
that can be merged. The next hidden unit as determined by the array P will then
be considered.

Since the network in Fig. 7 has two hidden units, the clustering can be done
in two possible sequences: hidden unit 1 followed by hidden unit 2 or hidden
unit 2 followed by hidden unit 1. For this network, the results of applying the
two clustering sequences are the same. The range of activation values at hidden
unit 1 is the interval [0, 0.78], while at hidden unit 2 it is [-0.93, 0.52]. GCA
finds two clusters each in hidden unit 1 and hidden unit 2. The clustered values at
hidden unit 1 are 0 and 0.46, that is, all continuous activation values in the interval
[0, 0.46) can be replaced by 0, and those values in the interval [0.46, 0.78] can be
replaced by 0.46 without affecting the accuracy rate of the network on the training
data set. At hidden unit 2, the clustered values are —0.93 and 0.52.

We only cluster the activation values of patterns in the training data set that
have been correctly classified by the pruned network. There are 338 such patterns.
After clustering, each of the 338 patterns is represented by one of the possible four
combinations of hidden unit clusters. The classification of the samples based on
the clustered activation values can be summarized as in Table III.

From Table III, we observe that a sample is classified as benign only if its
activation value at hidden unit 1 is in the interval [0, 0.46) and the one at hidden
unit 2 is 0.52. The first hidden unit has two input connections, 226 and J52. Only
the inputs 226 = ^52 = 0 result in an activation value in the first interval. The

316 Rudy Setiono

Table HI

The Clustered Activation Values of the Network in Fig. 7 and
Their Predicted Output

Hidden unit 1 Hidden unit 2 Predicted output Number of samples

0.00 -0.93 Malignant 2
0.00 0.52 Benign 225
0.46 -0.93 MaUgnant 28
0.46 0.52 Malignant 83

second hidden unit also has two input connections, but since the value of input Xgo
is always 1, the activation value at the second hidden unit is practically determined
by the input Ij i alone. Since the weight of the connection from input J71 to hidden
unit 2 is negative, the activation value of a sample will be 0.52 if only if 271 = 0.
The rule that can be extracted from the network is then

If X26 = ^52 = I71 = 0, then predict benign.
Otherwise predict malignant.

In terms of the original input attributes and their values, the above rule is equiva-
lent to

If ^3 < 4 and .46 < 8 and A^ < 9, then predict benign.
Otherwise predict malignant.

The accuracy rates of the rule on the training and testing data sets are the same
as those of the pruned network from which they are extracted, i.e., 96.57% and
93.12%, respectively. Several other sets of rules that have been extracted from this
data base are reported in [42].

VIII. SUMMARY

In this chapter, we have discussed the various aspects that are important in the
construction of an effective neural network system. We presented a variant of the
quasi-Newton method for fast neural network training. A fast training algorithm
is crucial to the successful construction of an effective neural network system.
The algorithms for finding an optimal network architecture that we have devel-
oped require retraining of the network after units are added or removed from the
network.

Algorithmic Techniques and Their Applications 317

We described how the number of hidden units required in a network can be
determined by adding hidden units one at a time as they are needed to the hidden
layer. We showed that adding a hidden unit to the hidden layer will decrease the
cross-entropy error function. We described how the relevant network inputs and
network connections can be detected during training. By having a positive penalty
for each weight in the network, only the relevant network connections will have
large weights. Irrelevant and redundant connections can be distinguished by their
small weights and they can be removed from the network without affecting the
network accuracy on the training data set. Since networks with too many weights
tend to overfit the training data, removal of redundant input units and connections
usually results in a higher predictive accuracy rate. The removal of unnecessary
inputs and connections from a network not only increases its predictive accuracy,
it also facilitates the process of rule extraction. As symbolic rules are a form of
knowledge that can be verified and expanded by human experts, having symbolic
rules that explain the network predictions could make the neural network system
even more attractive to users.

REFERENCES

[1] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with gaussian hidden
units as universal function approximation. Neural Computat. 2:210-215, 1990.

[2] K. Homik. Approximation capabilities of multilayer feedforward networks. Neural Networks
4:251-257, 1991.

[3] J. de Villiers and E. Barnard. Backpropagation neural nets with one and two hidden layers. IEEE
Trans. Neural Networks 4:136-141, 1992.

[4] K. J. Lang and M. J. Witbrock. Learning to tell two spirals apart. In Proceedings of the 1988
Connectionist Model Summer School (D. Touretzky, G. Hinton, and T. Sejnowski, Eds.), pp. 52-
59. Morgan Kaufmann, San Mateo, CA, 1988.

[5] O. L. Mangasarian. Mathematical programming in neural networks. ORSA J. Comput. 5:349-
360, 1993.

[6] C. G. Broyden. The convergence of a class of double rank minimization, algorithm 2, the new
algorithm. /. Inst. Math. Appl 6:222-231, 1970.

[7] R. Fletcher. A new approach to variable metric algorithms. Computer J. 13:317-322, 1970.
[8] D. Goldfarb. A family of variable metric algorithms derived by variational means. Math. Com-

putat. 24:23-26, 1970.
[9] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Compu-

tat. 24:647-656, 1970.
[10] M. C. Biggs. A note on minimization algorithms which make use of non-quadratic properties of

the objective function. J. Inst. Math. Appl. 12:337-338, 1973.
[11] L. E. Scales. Introduction to Nonlinear Optimization. Macmillan Ltd., London, 1985.
[12] D. F. Shanno. Conjugate gradient with inexact searches. Math. Operat. Res. 3:224—256, 1978.
[13] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

318 Rudy Setiono

[14] K. H. Phua and R. Setiono. Combined quasi-Newton updates for unconstrained optimization.
Technical Report TR41/92, Department of Information Systems and Computer Science, National
University of Singapore, 1992.

[15] J. A. Kinsella. Comparison and evaluation of variants of the conjugate gradient method for effi-
cient learning in feed-forward neural networks with backward error propagation. Network 3:27-
35, 1992.

[16] G. W. Cotrell, R Munro, and D. Zipser. Learning internal representations from gray-scale images:
An example of extensional programming. In Proceedings of the 9th Annual Conference of the
Cognitive Science Society, pp. A6\-A12i, 1987.

[17] G. L. Sicuranza and G. Ramponi. Artificial neural network for image compression. Electron.
Lett. 26:477-479, 1990.

[18] R. Setiono and G. Lu. A neural network construction algorithm with application to image com-
pression. Neural Comput. Appl. 2:61-68, 1994.

[19] F. L. Chung and L. Lee. A node pruning algorithm for backpropagation network. Int. J. Neural
Syst. 3:301-314, 1992.

[20] M. Hagiwara. A simple and effective method for removal of hidden units and weights. Neuro-
comput. 6:207-218, 1994.

[21] S. J. Hanson and L. Y. Pratt. Comparing biases for minimal network construction with back-
propagation. In Neural Information Processing Systems (D. Touretzlcy, Ed.), pp. 177-185. Mor-
gan Kaufmann, San Mateo, CA, 1989.

[22] M. C. Mozer and P. Smolenslcy. Skeletonization: A technique for trimming the fat from a net-
work via relevance assestment. In Neural Information Processing Systems (D. Touretzky, Ed.),
pp. 107-115. Morgan Kaufmann, San Mateo, CA, 1989.

[23] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In Neural Informa-
tion Processing Systems (D. Touretzky, Ed.), pp. 524-532. Morgan Kaufmann, San Mateo, CA,
1990.

[24] M. Mezard and J. P. Nadal. Learning in feedforward layered networks: The tiling algorithm.
J. Phys. A 22:2191-2203, 1989.

[25] M. F. Tenorio and W. Lee. Self-organizing network for optimum supervised learning. IEEE
Trans. Neural Networks 1:100-110, 1990.

[26] M. Frean. The upstart algorithm: A method for constructing and training feedforward neural
networks. Neural Computat. 2:198-209, 1990.

[27] T. Ash. Dynamic node creation in backpropagation networks. Connect. Sci. 1:365-375, 1989.
[28] R. Setiono and L. C. K. Hui. Use of quasi-Newton method in a feedforward neural network

construction algorithm. IEEE Trans. Neural Networks 6:273-277, 1995.
[29] R. Setiono. A neural network construction algorithm which maximizes the likelihood function.

Connect. Sci. 7:147-166, 1995.
[30] A. van Ooyen and B. Nienhuis. Improving the convergence of the backpropagation algorithm.

Neural Networks 5'.A65-Arlh 1992.
[31] Y. Shang and B. W. Wah. Global optimization for neural network training. Computer March:45-

54, 1996.
[32] G. E. Robbins, M. D. Plumbey, J. C. Hughes, F. Fallside, and R. Prager. Generation and adapta-

tion of neural networks by evolutionary techniques (GANNET). Neural Comput. Appl. 1:23-31,
1993.

[33] R. Setiono and H. Liu. Neural-network feature selector. IEEE Trans. Neural Networks 8:654-
662, 1997.

[34] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Ccomputation.
Addison-Wesley, Redwood City, CA, 1991.

[35] L. M. Belue and K. W. Bauer. Determining input features for multilayer perceptron. Neurocom-
puting 1:111-122, 1995.

Algorithmic Techniques and Their Applications 319

[36] S. B. Thrun et ah The MONK's problems—A performance comparison of different learning
algorithm. Preprint CMU-CS-91-197, Carnegie Mellon University, Pittsburgh, PA, 1991.

[37] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
\n Advances in Neural Information Processing Systems, Vol. 5, pp. 164-171. Morgan Kaufmann,
San Mateo, CA, 1993.

[38] E. D. Kamin. A simple procedure for pruning back-propagation trained neural networks. IEEE
Trans. Neural Networks 1:239-242, 1990.

[39] Y. Le Cun, J. S. Denker, and S. A. SoUa. Optimal brain damage. In Advances in Neural Informa-
tion Processing Systems, Vol. 2, pp. 598-605. Morgan Kaufmann, San Mateo, CA, 1990.

[40] H. H. Thodberg. Improving generalization of neural networks through pruning. Int. J. Neural
Syst. 1:317-326, 1991.

[41] R. Setiono. A penalty function approach for pruning feedforward neural networks. Neural Com-
putat. 9:301-320, 1997.

[42] R. Setiono. Extracting rules from pruned neural network for breast cancer diagnosis. Artif Intell.
Medicine 8:37-51, 1996.

[43] R. Setiono and H. Liu. Symbolic representation of neural networks. Computer March:71-77,
1996.

[44] H. Lu, R. Setiono, and H. Liu. NeuroRule: A connectionist approach to data mining. In Proceed-
ings of 21st International Conference on Very Large Data Bases, Zurich, Switzerland, pp. 478-
489, 1995.

[45] O. L. Mangasarian, R. Setiono, and W. H. Wolberg. Pattern recognition via linear progranmiing:
Theory and application to medical diagnosis. In Large-scale Numerical Optimization (T. F. Cole-
man and Y. Li, Eds.), pp. 22-30. SIAM, Philadelphia, PA, 1990.

[46] P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Machine-readable
data repository. Department of Information and Computer Science, University of California at
Irvine, 1992.

[47] K. P. Bennett and O. L. Mangasarian. Neural network training via linear programming. In Ad-
vances in Optimization and Parallel Computing (P. M. Pardalos, Ed.), pp. 56-67. Elsevier Sci-
ence PubHshers B.V, Amsterdam, 1990.

[48] W. H. Wolberg and O. L. Mangasarian. Multisurface method of pattern separation for medical
diagnosis applied to breast cytology. Proc. Nat. Acad. Sci. 87:9193-9196, 1990.

[49] W. H. Wolberg, M. A. Tanner, and W. Y. Loh. Diagnostic schemes for fine needle aspirates of
breast masses, Anal. Quantitat. Cytol. Histol. 10:225-228, 1988.

This Page Intentionally Left Blank

Learning Algorithms and
Applications of Principal
Component Analysis

Liang-Hwa Chen Shyang Chang
Applied Research Laboratory Department of Electrical Engineering
Telecommunication Laboratories National Tsing Hua University
Chunghwa Telecom Co., Ltd. Hsin Chu, Taiwan, Republic of China
12, Lane 551, Min-Tsu Road, Sec. 3, Yang-Mei
Taoyuan, Taiwan, Republic of China

I. INTRODUCTION

Recently, inspired by the structure of human brain, artificial neural networks
have been widely applied to many fields such as pattern recognition, optimization,
coding, control, etc., due to their capability of solving cumbersome or intractable
problems by learning directly from data. An artificial neural network usually con-
sists of a large amount of simple processing units, i.e., neurons, via mutual in-
terconnection. It learns to solve problems by adequately adjusting the strength of
the interconnections according to input data. Moreover, it can be easily adapted to
new environments by learning. At the same time, it can deal with information that
is noisy, inconsistent, vague, or probabilistic. These features motivate extensive
researches and developments in artificial neural networks.

The main features of artificial neural networks are their massively parallel pro-
cessing architectures and the capabilities of learning from the presented inputs.
They can be utilized to perform a specific task only by means of adequately ad-
justing the connection weights, i.e., by training them with the presented data. For
each type of artificial neural network, there exists a corresponding learning algo-
rithm by which we can train the network in an iterative updating manner. Gener-

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 3 2 1

322 Liang-Hwa Chen and Shyang Chang

ally, the learning algorithms can be classified into two main categories: supervised
learning and unsupervised learning.

For supervised learning, not only the input data but also the corresponding tar-
get answers are presented to the network. Learning is done in accordance with the
direct comparison of the actual output of the network with known correct answers.
It is also referred to as learning with a teacher. A special case called reinforce-
ment learning is included, where the only feedback information is whether each
output is right or wrong, not what the correct answer is.

On the contrary, only input data without the corresponding target answers are
presented to the network for unsupervised learning. In fact, the learning goal is not
defined at all in terms of specific correct examples. The available information is
in the correlations of the input data. The network is expected to create categories
from these correlations, and to produce output signals corresponding to the input
category.

In the following, several typical artificial neural networks are briefly intro-
duced. The first one is the Hopfield network [1]. It is a single-layer network in
which neurons are mutually interconnected. The output of each neuron is fed
back to all the other neurons. An energy function is associated with the network.
Whenever a neuron changes state, the energy function always decreases. Training
is performed by directly setting the connection weights according to the train-
ing patterns. It is essentially supervised but not iterated. The Hopfield network
has been utilized as an associative memory or to solve optimization problems
(e.g., [2-5]).

The back-propagation network (e.g., [6, 7]) is another typical artificial neural
network. It is a multilayer network in which neurons are usually connected only
to the ones belonging to the preceding and the succeeding layers. The network is
trained in an error back-propagation manner: For each input, a signal propagates
feedforward to the output layer. Then, the output is compared with the desired
target and the error propagates backward to update the connection weights. This
learning is obviously supervised and iterated. The back-propagation network es-
sentially performs the function approximation. It has been applied to control, pat-
tern recognition, image compression, etc. (e.g., [8-11]).

Different from the above supervised learning networks, a competitive learn-
ing network (e.g., [12-14]) is an unsupervised learning network. It consists of a
single layer of competitive neurons. These neurons compete with one another for
becoming the unique winner to fire. The learning is based on the winner-take-all
rule. That is, only the weights of the winner will be updated. The aim of this type
of network is essentially to cluster the input data. The weights, after learning, will
be distributed, in data space, approximately in proportion to the data pattern den-
sity. Due to such characteristics, the competitive learning network can be applied
to vector quantization (VQ) [15, 16] and probability density function (PDF) esti-

Learning Algorithms of Principal Component Analysis 323

mation [17] that are very useful in data compression, coding, pattern recognition,
etc. (e.g., [18-23]).

The principal component analysis (PCA) learning network (e.g., [24]) is an-
other type of unsupervised learning network. It is also a single-layer network but
the neurons are linear. Figure 1 shows the schematic diagram. The learning is
essentially based on the Hebb rule [25]. It is utilized to perform PCA (see, e.g.,
[26, 27]), i.e., to find thQ principal components embedded in the input data. PCA
is one of the feature extraction methods. It extracts information by finding the di-
rections in input space in which the inputs exhibit most variation. It then projects
the inputs onto the subspace to perform a dimensionality reduction. The desired
directions are in fact along those eigenvectors associated with the m largest eigen-
values of the input covariance matrix [28] if the dimension of data is expected to
be reduced from n to m. In the PCA learning network, the weights will converge
to the principal component vectors after learning. The PCA learning network has
been appUed to feature extraction, data compression, image coding, and texture
segmentation (e.g., [24, 29-31]).

For the PCA learning network, a variety of neural network learning algorithms
have been proposed [24, 30-36, etc.]. Most of them are based on the early work
of Oja's one-unit algorithm [37]. Among these algorithms, Sanger's Generalized
Hebbian algorithm (GHA) [24], which combines Gram-Schmidt orthonormaliza-
tion and Oja's one-unit algorithm, is usually more useful in practical applications.
This is because it can extract the principal components individually in order. In
addition, it can give a reproducible result on a given data set. However, the success
of the GHA is dependent on the values of the learning rate parameters. If the pa-
rameter values are too big, the learning process will diverge. On the contrary, the
learning process will converge very slowly if the parameter values are too small.
The appropriate values of the learning rate parameters are in fact data dependent.

^ l /

^1

^'^""^^'^ \ / ^-/^ • • • ^̂ """̂

^2

Figure 1 PCA learning network.

\ mn

X
n

324 Liang-Hwa Chen and Shyang Chang

In order to ensure that the learning be successful when the above neural net-
works are applied in practical applications, we would like to develop adaptive
learning algorithms that can automatically and adaptively select the appropriate
parameter values according to input data. Hence, in this chapter an adaptive PCA
learning algorithm is proposed. The learning rate parameters are adaptively ad-
justed according to the eigenvalues of the data covariance matrix that are esti-
mated during the learning process. All weights can quickly converge to the prin-
cipal component vectors in the small-eigenvalue case as well as the big-eigenvalue
case. It has been appUed to data compression and image coding. Excellent results
have been obtained.

11. ADAPTIVE LEARNING ALGORITHM*

In this section, an adaptive learning algorithm (ALA) for PCA will be proposed
(see also [38, 39]). The learning rate parameters can be selected automatically
and adaptively according to the eigenvalues of the input covariance matrix that
are estimated during the learning process. We will show that the m weight vectors
in the network can converge quickly to the first m principal component vectors
with almost the same rates. Simulation results will demonstrate that the ALA can
converge quickly to the desired targets while Sanger's GHA diverges in the large-
eigenvalue case and converges very slowly in the small-eigenvalue case. Finally,
the ALA will be applied to image coding problems and excellent results can be
obtained.

This section is organized as follows. First, some basic mathematical back-
ground and Sanger's GHA are introduced. The parameter selection problem of
the GHA is then presented. Finally, our ALA is proposed and analyzed. Proposi-
tions concerning its properties are also presented in this section.

Let X denote the n-dimensional input data vector with probability distribu-
tion P(x). The aim of PCA is to find a set of m orthonormal vectors in an n-
dimensional data space such that they will account for as much as possible of the
variance of the data. It was shown in [26] that the aforementioned orthonormal
vectors were actually the m eigenvectors associated with the m largest eigenval-
ues of the data covariance matrix T = E{(x — Tax){x — mxY), where t denotes
the transpose operator and nijc = E{x]. If the eigenvalues of T are sorted in de-
scending order, i.e., ki > X2 > -- - > K with ki = Amax, then the A:th principal
component direction will be along the A:th eigenvector. In general, the mean values
of data can be subtracted from the data. Hence, in the following, we will discuss
zero-mean data exclusively. In case of zero-mean data, the covariance matrix T
will be reduced to the correlation matrix C = E{x\^}.

* Portions of the following two sections are reprinted with permission from IEEE Trans. Neural
Networks 6(5) 1255-1263, Sept. 1995 (© 1995 IEEE).

Learning Algorithms of Principal Component Analysis 325

In order to find the first principal component direction vector for zero-mean
data, i.e., the first eigenvector of C, by learning directly from data, Oja [37] pro-
posed a one-unit learning rule:

Aw(0 = r](t)V(t)(xit) - y(Ow(0), (1)

where rj(t) is the learning rate parameter. This rule is used to train a linear neu-
ron whose output V(t) is equal to the product of weight vector w(0 and input
pattern x(t) at time t, i.e., V(t) = W(t)w{t). Here, we assume that x(r)s are in-
dependent and identically distributed with the same distribution P(x) as before.
Under the assumption that ri(t) is sufficiently small, Oja approximated Eq. (1) by
a corresponding ODE

dw/dt = Cw - (w^Cw)w

via the stochastic approximation theory (see, e.g., [40]). He then proved that the
weight vector w(t) will asymptotically converge to the first normaUzed eigenvec-
tor of C, i.e., ibvi.

By combining Oja's rule and the Gram-Schmidt orthonormalization process,
Sanger [24] proposed the so-called GHA:

Aw/(0 = r]it)Vi(t)lx(t) -J2Vjit)wj(t)Y / = 1,2, . . . , m , (2)

where Vt (t) = w\(t)x(t). It is used to train a one-layer m-unit network (referring
to Fig. 1) consisting of m linear neurons so as to find the first m principal com-
ponents. Using the same approximation technique, the GHA was able to make
Wi(t),i = 1, 2 , . . . , m, converge to the first m principal component directions, in
sequential order: w/(0 -^ i v / , where v/ is a normalized eigenvector associated
with the ith largest eigenvalue A/ of the correlation matrix C. In fact, Eq. (2) can
be rewritten as

x(0 - ^ Vj{t)yvj(t)\ - Viit)^Vi{t)

/ = 1,2, . . . , m . (3)

A^Vi(t) = rJ(t)Vi(t)

Hence, Eq. (3) can be treated as Eq. (1) with the corresponding modified input
x/(0 = x(0 - I] ;= \ ^ ; (0w; (0 , for neuron /, where / = 1, 2 , . . . , m. If wy(r),
j = 1, 2 , . . . , / — 1, have converged to v^, j = 1, 2 , . . . , i — 1, respectively,
it can be easily shown [24] that the maximal eigenvalue X\ and the associated
normalized eigenvector v̂ of the correlation matrix of x/, i.e., C/ = £'{x/xj},
are exactly the /th eigenvalue A/ and the ith normalized eigenvector V/ of the
correlation matrix of x, i.e., C, respectively. Hence, neuron / can find the /th
normahzed eigenvector of C, i.e., div/. In other words, the m neurons trained by

326 Liang-Hwa Chen and Shyang Chang

Eq. (2) can be considered to be trained by Eq. (1) with their respective modified
inputs x/, / = 1, 2 , . . . , m.

In the following, we will show that the selection of r}(t) should depend on
the eigenvalues A/s of the correlation matrix C. If r]{t) is bigger than 1/Ai, the
learning process cannot converge^ as expected. In addition, the learning rate will
become very slow if the product value of r/(r)Ai is very small. First, let us take the
conditional expectation of Eq. (1) over the input distribution P(x) given weight
vector w(0, i.e.,

£{Aw(0|w(0} = E{ri(t)Vit)(x(t)-V(t)yv(t))Mt)}

= rj(t)[E[x(t)x\t)}yv(t)-W(t)E{x(t)x\t)}w(t)yv(t)]

= rjmC\v(t) ~ W(t)C^v(t)^v(t)l (4)

where we have used the following facts for derivation: E{x(t)x^(t)w(t)\w(t)} =
E{x(t)x^(t)}w(t) = Cw(0, and £{w^(0x(0x^(0w(0w(0|w(0} = w'(0 x
E{x{t)x^(t)}w(t)w(t), where x(t) and w(0 are independent.

PROPOSITION 1. For learning rule Eq. (1), if r]{t) selected is not smaller
than 1/A.i, then weight vector w(0 will not converge to divi even if it is initially
close to the target.

For the proof, see the Appendix.
From Proposition 1, we know that r]{t) should be smaller than l/Ai to get the

expected convergence. Under this condition, the learning rate can be estimated by
the value of y/CO î-

PROPOSITION 2. When rj(t)'k\ < 0.5, the smaller the value ofr}{t)X\ is, the
slower the convergence rate of the expectation ofw(t) is.

For the proof, see the Appendix.
According to these two propositions, for each neuron / in Eq. (2), the learning

rate parameter rj(t) has to satisfy r](t)Xi < 1 in order to converge. In the mean
time, it cannot be too small in order to have a decent learning rate. However,
the values of Xi s are usually unknown a priori. Therefore, to select properly the
value of r](t) becomes a problem when one tries to apply the GHA in practical
applications. For example, if one of the eigenvalues Xi = 10^, the r]{t) must
be smaller than 10~^ for W/(0 to converge. However, in the GHA, the identical
value setting of rj(t) for all neurons will slow down the learning rate of Wj(t) if
for Ay < 10"̂ for 7 >i.

In order to overcome the aforementioned problem, an adaptive learning algo-
rithm (ALA) for PCA will be proposed in the following. In the algorithm, the
learning rate parameter for each w/ (0 can be selected adaptively.

^The convergence here is in the mean-square sense.

Learning Algorithms of Principal Component Analysis 327

For n-dimensional zero-mean input pattern vector x with probability distribu-
tion P(x), the ALA that will find the first m principal component vectors can be
described as follows:

Step 1: Set weight vectors w, (0) e W such that || w/ (0) |p «: 1/2^ and
estimate of eigenvalues Xi (0) = 5 (a small positive number) > 0 for
/ = 1, 2 , . . . ,m.

Step 2: Draw a new pattern x(t) at time ̂ ^ > 1, and present it to the
network as input.

Step 3: Calculate the output V/s:

V,(0=w[(r)x(0, / = l ,2 , . . . ,m.

Step 4: Estimate the eigenvalues A|S:

ii(t) = iiit - 1) + y(0[(w;(Ox/(0/llwKOII)^ - hit - l)],

/ = 1, 2, . . .,m, (5)

where x/(0 = x(t) - Yl'j^i Vj(t)yvj(t), The value of y(t) is set to
be smaller than 1 and decreased to zero as t approaches oo.

Step 5: Modify the weights w/s:

i

VViit + 1) = W,(0 + rjiitWim^it) ~ J2 7̂ WWy(0],
7 = 1

/ = l ,2, . . . ,m, (6)

where rjt (t) = fii (t)/ki (t). The value of fit (t) is set to be smaller
than 2(\/2 — 1) and decreased to zero as t approaches cx).

Step 6: Check the length of w/ s:

fyi72(wKr + i)/l|wK^ + l)ll),

w / (^+ l)= ! if||w/(r + l) f > ^ . \ , , - ^ l , (7)

I w/(f + 1), otherwise.

Step 7: Increase the time t by 1 and go back to step 2 for the next input
pattern until all of the w/s are mutually orthonormal.

Remarks.

(i) The procedure of eigenvalue estimation in step 4 is the Grossberg
learning rule [41]. When the value of y (r) is set smaller than 1 and
decreased to zero with time, A., (t), i.e., X\ (f), can converge to the mean
of (wjx//||w/11)^ in the mean-square sense.

Îlyll denotes in this chapter the length of a vector y, i.e., ||y|| = (y^y)^/^.

328 Liang-Hwa Chen and Shyang Chang

(ii) Due to the fact that the estimates of A/ s may be inaccurate during the
initial period of the learning process, the normalization process in step 6
is required. The details will be described in Section III.

(iii) The reason for using the upper bound of fit (t) in step 5 will be given in
Proposition 3.

Notice that in the ALA, its learning rate parameters r]i (t) are no longer the
same for all neurons. They are adaptively selected according to the corresponding
eigenvalues A/s that are estimated by Eq. (5). We will contend in the following
that w/ (t) can quickly converge to ±v/ for all / and that they will converge with
nearly the same rate.

First, let us consider the convergence of w^O to ±v/ for all /. Recall that
Eq. (6) can be written as

w/ a + 1) = w/ (0 + rji (0 Vi (t) {xi (t) - Vi (t)^Vi (t)), (8)

where x/(0 = x{t) — Xl;=\ ^ ; (0w;(0 for all /. It can be considered just as
the learning rule Eq. (1) applied to every neuron / with x/ as its corresponding
modified input. Hence, in the following, it suffices to consider Eq. (8), where
rji(t) = Pi(t)/X\(t), for only one neuron / and show that it can converge to the
first normalized eigenvector of its corresponding input correlation matrix C/.

The proof will be decomposed into several parts. It will be shown first that the
mean of w/(r) will approach v̂ .̂ That is, its length will approach 1 and its angle
from \\ will approach zero. We will then analyze the variance and show that it
will decrease to zero. Notice that in the following discussion, w/ (t) is no longer
assumed to be close v̂^ to initially as in Proposition 1.

PROPOSITION 3. In the ALA, the mean ofwiit) will approach the unit hy-
persphere in R" space.

Proof, Let Wi{t) stand for a reahzation of w/(0 at time t. An orthonormal
basis of R", {Up U2, . . . , ujj}, such that u'̂ is the unit vector along the direction of
Wi (t) can be constructed. Hence, wt (t) is represented as

n

where k'^(t) is equal to the length of io,(r), i.e., ||u),(')ll. and e' (0 = 0 for
j — 2,3,.. .,n. Similar to Eq. (4), we can obtain, from Eq. (8),

E{Awiit)\wi{t)} = r,i(t)[CiWi{t) - wl{t)CiWi(t)Wi{t)], (9)

Learning Algorithms of Principal Component Analysis 329

where E{*\wi(t)} stands for £{«|wKO = ^iiO)- Project Eq. (9) onto, u^, j =
1,2, . . . , n ; we get

{u^,yE{Awi(t)\Wi(t)} i^Aklit))

= (u\)^r;KO[Q/:i(Oui - 4 (0 ' (U \) ' Q U \ U \]

= ^7/(04(0((ui)^Qu\)(l - kl(tf), for y = 1, (10a)

and

{u)yE{A^Vi(t)\wi(t)} i^Asljit))

= ^ , (0 / : i (OK) 'Qu \ , for 7 = 2, 3 , . . . , n. (10b)

The A/:y(0 defined in Eq. (10a) is the component of £'{Aw/(0|u;/(0} along the
direction of û .̂ It is referred to as the "radial weight change." The Ae^At) de-
fined in Eq. (1 Ob) is the component of £" {A w/ (01 u;/ (0} along the direction of u y,
7 > 1. It is referred to as the "tangential weight change." Figure 2 is a demon-
stration of the case n = l.li is clear that from Wi(t) to E{yfi(t + \)\Wi{t)}, the
change in length is caused by Ak\^{t). On the other hand, the change in direction
is caused by Ae^- (t).

In order for E{yvi (t-\-l)\Wi(t)}io be closer to the unit hypersphere than wi (t),
the value of /̂ (̂O + Ak^^it) has to be closer to 1 than k^^it). From Eq. (10a), we
obtain

4 (0 + Aklit) = [1 + ry/(0(u\)^C/u\(l - kl(tf)]kl(t). (11)

E{AyVi{t)\Wi{t)]

unit hypersphere

A8i/0

Figure 2 Illustration of radial and tangential weight changes. Reprinted with permission from
L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995 IEEE).

330 Liang-Hwa Chen and Shyang Chang

Taking the square of both sides of Eq. (11) and letting AJj = (u^) C/u^, we get

(klit) + Akliof = [1 + m(tK(^ - kl(tf)fkl(t)\ (12)

Equation (12) takes the form of

z(r + l) = [l + a (l - z (0) f z (0 , (13)

where z(t + 1) = (k^it) + Aklit))^, z(t) = k\^{t)^, and a = y;K04- It can be
easily checked that for Eq. (13), the relation

k(r + l) - l | / | z (0 - l | < l (14)

holds if a G (0, 2(V5 - 1)) and z{t) e (0,1 + 2/a). Now, since X\ is equal
to maxu(u^CiU) where u is any unit vector, thus ^ /̂(O^u - ^/(O^i- In addition,
the value of Y]i{t) is selected such that rji(t)X\ = Pi(t) < 2 (v^ — 1). Hence,
rji(t)K < 2(V2 - 1). Moreover, kl(0)^{= ||ii;/(0)||^) is set to be smaller than
1 in step 1 and Wi(t) will be bounded by ||ii;/(OlP < 1/2 + l/Pi(t) = 1/2 +
l/(r//(OA.\) < 1+2/(^7/(04) according to step 6 ofthe ALA. Thus, both (A:jj(0 +
A/:i(0)^ and/:i(0^ satisfy Eq. (14), i.e., I (/:i(0 + A/:i(0)^ - 1 |/|/:i(0^ -11 < 1.
That is, E{w/ (r +1) | lU/ (r)} will be closer to the unit hypersphere than wt (t). Since
this is true for all realizations Wi(t), so E[wi(t + l)|w/(r)} will be closer to the
unit hypersphere than w/(r). Hence, £:{w/(r + 1)} = E{E{Wiit + l)|w/(0}} will
be closer to the unit hypersphere than E{wi(t)]. We conclude that the length of
the mean of w/ (t) will approach 1 as r goes to oo. •

Next, we will show that the direction of w/ (t) will approach that of v^.

PROPOSITION 4. The angle between the mean ofWi(t) and \\ in the ALA
will approach zero.

Proof. First, express wi (t) in the following form:

n

Wi(t) = k\tWi(t) + Si(t) = k\t)y\ ^^s)(t)y), (15)
j=2

where k^(t) is the magnitude of Wi(t) along eigenvector v̂^ and s/(r) =
Yl'j=2^)(^'^^) ^^^ component of Wi(t) perpendicular to v^. Notice that s^j(t) is
the magnitude of wt (t) along v^. For a given Wi (t), its average new location after
one iteration of learning will be E{wi (r + 1) | w/ (0} = Wi (t) + E{Awi (t) \ wi (t)}.
Thus,

{\\yE{wi(t + l)\Wi(t)} (̂ k\t + D) = k^it) + (y\yE{Awi(t)\Wi(t)}

Learning Algorithms of Principal Component Analysis 331

and

(v'i)'£{w,(f + l)|M;/(0} (s £}(? + !))

= s'jit) + iv))'E{Ayfi{t)\wiit)], for j=2,3,...,n.

According to Eq. (9) and Eq. (15), (v^)'£'{Aw/(0|u),(0}, j = 1, 2 , . . . , n, can
be written as

{y\)'E{Ay/i{t)\Wi(t)} = /?KO(M -<(t})k '{t) (16a)

and

iVj)'E{AyVi(t)\wi{t)} = niiOi^'j - (ri(t)}s'jit), ; = 2, 3 , . . . , n, (16b)

where a[{t) = u;,UOC,Wi(0 = k\k'(t)^ + "£"=2 ^Y^itf. Then, we get

k\t + \) = [\ + r^i{t){k\-al{tm{t)

and

s){t + 1) = [1 + ni{t){k) - a{{ms){t).

Let us denote the angle between w, and Vj by Ang(w,). Then,

tan^(Ang(u;/)) =
ik^)^ (t)^

To prove that Ang(E{wi(t + l)\wi(t)}) will be smaller than Ang(u;/(r)), it
suffices to show that tan^(Ang(£'{w/(r + l)|ii;/(0})) will be smaller than
tan^(Ang(u;/(0)). That is,

s)(t + 1)2 _ [1 + rjim^)-cyl(t))]^ e){tf 8){t)

ki{t + 1)2 [1 + ni{t){X\ - al{t))f ki{t)^ kKt)^ '

for; = 2 , 3 , . . . , n . (17)

It can be easily checked that if

then

<(.)<xl| |»,«f<^^

332 Liang-Hwa Chen and Shyang Chang

and then

[l-^rjimk)-alit))]^

[l + r;K0(M-^ji(0)]2
< 1, for7 = 2, 3 , . . . , « .

That is, Eq. (17) can hold. Since Wi(t) is, by Eq. (7), bounded such that
\\Wi(t)f < 1/2 + l/Pi(t) = 1/2 + 1/(^,(0^) ' the condition Eq. (18) will be
satisfied. Thus, Ang(£'{w/(r + l)|u;/(r)}) will be smaller than Ang(ii;/(0). Since
this is true for all realizations Wi(t), so E{wi(t + l)|w/(0} will have a smaller
angle from \\ than w/(r). Hence, E{wi(t + 1)} = £{£{w/(r + l)|wKO}} will
have a smaller angle from v̂ than E{wi (t)}. That is, the angle between the mean
of Wi (t) and v̂^ will approach zero. •

In the following, we will analyze the variance of Aw/ (0, i.e., Var(Aw/ (t)).

PROPOSITION 5. Given that x is normally distributed and || w/ {t) \\ < 1, then
Var(Aw/(0) is bounded above by 3(n — l)(r]i(t)X\)^, where n is the dimension
of the input pattern.

Proof. Recall that

Var(Aw/(0) = E{\\A^Vi(t)f} - ||£{Aw/(0}||^ < E{\\Ayvi(t)f}.

According to Eq. (8), we get

E{\\A^Vi(t)f\Wi(t)} = rif(t)E{V,Ht)\\Mt) - Vi(t)Wi(t)f\Wi(t)}

= rjf(t)E{V^(t){\\Xi(t)f -2V^(t)

-^V^{t)\\Wi(t)f)\Wi(t)}.

lf\\Wi(t)\\<hthcn

E{\\A^Vi(t)f\Wi(t)} < rjf(t)E{V^(t){\\Xi(t)f -V^{t))\Wi(t)}
n

<Y^TiJit)E{{(v'0'Mt)f{iu))'xi(t)f},

where u', 7 = 1, 2 , . . . , n, have been defined in Proposition 3. Notice that

£{((u',)'x,(0f((u})'x,(0)^}<3£{((u'i)'x,(0)^}£{((u;.)'x,(0)^},

Learning Algorithms of Principal Component Analysis 333

if Xf is normally distributed. In addition, £{(u^x/)^} = u^E{Xix\}n = u^Qu <
(y\yCi\\ = X\, where u is any unit vector. Thus,

n

j=2

= 3(n - mm(t)^\)\ for||M;,(r)||<l.

Since it is true for all realizations Wi(t) with ||ic,(OII < 1. so

£{£{||Aw,(Of |w,(0}ll|w,(OII < 1} = £{||Aw,(OI|2|||w,(OI| < 1}

<3(n-l){r,dt)X\f.

Thus, Var(Aw, (f)) for ||w,(OII < 1 will be bounded above by

3(n-l)(;j,(0M)^- • (19)

The variance Var(Aw, (f)) can be decomposed into the sum of the variances
along u's, i.e., Var(Aw,- (r)) = 5Z'|=i Var((u')'Aw, (0). Here, the radial variance
of Aw, (f), i.e., the variance along the direction of w,(f), is

Var((u'i)'Aw,(0|i«,(f)) = £{((u'i) 'Aw,a))>,(0} - {AK(t))\ (20a)

and the tangential variances of Aw,(0, i.e., the variances along the directions
perpendicular to u>,(0, are

Var((u;.)'Aw,(OI«',(0) = £{((u^)'Aw,(0)^|u.,(r)} - (Ae^(r))^

j = 2,3,...,n. (20b)

According to Eq. (8), we get

£{((u',)'Aw,(r))V,(0}

= m(t)Xitf{l - kl(tffE{{iu',)'Mt)^iitW^f}, (21a)

£{((u^.)'Aw,(0)V,(r)}

= rii(tfklitfE{{iu'j)'xi(t)K'i(tWif}, j = 2,3,...,n. (21b)

Substituting the square of Eq. (10) and Eq. (21) into Eq. (20), we get

Var((u',)'Aw,(f)|«),(0) = ///(O^^W^d - 4(0^)^[£{((u'i)'x,(f)x;(0u'i)^}

- ((u'i)'C,u'i)% (22a)

Var((u^)'Aw,•(0|u>,•(r)) = 7?,•(02fci(f)^[£{((u^)'x,•(OxJ(Ou'̂)^}

- ((ui,.)'C,u'if], j = 2,3,...,n. (22b)

334 Liang-Hwa Chen and Shyang Chang

It is obvious that the tangential variances Var((u^ Y Awt (t) \ wt (0) increase as the
length of Wi{t), i.e., ||iu/(0ll or k\^{t), increases. On the other hand, the radial
variance Var((u ĵ)̂ Aw/(0|u;/(0) vanishes as the length of Wi{t) approaches 1. It
leads to the following propositions.

PROPOSITION 6. When w/ (0 reaches the stable fixed point \\, it will fluctu-
ate around y\ only in direction but not in length. In addition, the range Of can be
estimated by Of < tan~^ (V3(n — l)rji (t)X\).

Proof. Take w/ (t) = \\. Then, k!^J^(t) = 1 and u^ = v^. As a result, the radial
variance Var((Uj)^Aw/(01Vj) [referringtoEq. (22a)] vanishes because/:Jj(0 = 1.
That is, there is no radial fluctuation of ŵ (0 to influence its length. On the other
hand, the tangential variance Var((Uy)^AwKO|v\) [referring to Eq. (22b)] still
exists. That is, there exists tangential fluctuation of w/ (0- Hence, w/ (t) fluctuates
only in direction not in length. According to Proposition 5, the range Of of such
fluctuation in direction can be estimated as follows:

_i VVar(AwKr))
tan

llwKOII

_^^3(n-l)r]i{t)k\
< tan

yfi(t)=y\

= tm-^(^3(n-l)rji(t))J^). • (23)

In accordance with the above propositions, it can be seen that the learning rate
of w/(0 and its variance can be estimated by the value of r}i(t)X\. For instance,
from Eq. (19) and Eq. (22), one can see that the size of the variance Var(Aw/ (t))
can be estimated by the value of (r]i(t)X\)^. It decreases to zero as (r]i(t)X\)^
decreases to zero. Since the value of Pi(t) [= r]i(t)X\] is monotone decreasing,
W/ (0 will then converge to \\ in the mean-square sense due to the decreasing
variance. On the other hand, the learning rate of the length of w/ (0 depends, from
Eq. (12), on the value of r]i (O^u- It increases as r]i {t)X\^ increases. Since X\^ < X\,
we can then use rji (t)X\ to estimate the rate. Similarly, from Eq. (17), the learning
rate of the direction of w/(0 depends on the values of r}i(t)X^.s. It increases as
rii(t)X^jS increase for a given data set. Since X\ is the largest eigenvalue, it is
then reasonable to estimate the rate by using the value of T]i(t)X\. Therefore, for
different neurons corresponding to different eigenvalues, i.e., X\, the same level
of learning rate can be obtained by choosing rji (t) such that the values of rji (t)X\ s
are the same. Hence, the following proposition can be obtained.

PROPOSITION 7. The learning rates of all w/(r) in the ALA are nearly the
same if Pi (t) is the same for all i.

Proof. Since fit (t) is the same for all /, the value of rji (t)X\ will be the same
for all /. Hence, the learning rates of all w/ (t) in the ALA will be nearly the same
due to previous discussion. •

Learning Algorithms of Principal Component Analysis 335

According to Proposition 7, the learning rate of w/ (0 will not decrease as that
of the GHA when A/ decreases. Hence, the learning of the ALA can be faster than
that of the GHA. Simulation results in the next section will confirm the effective-
ness of the ALA.

III. SIMULATION RESULTS

First, let us demonstrate that the ALA can converge quickly to the desired
target in the small-eigenvalue case as well as the large-eigenvalue case while the
GHA fails to do so. Two sets of three-dimensional randomly generated zero-mean
data are adopted as input. The maximal eigenvalue Xi of the covariance matrices
of the two data sets is 0.0086 and 25.40, respectively. One neuron, i.e., m = 1, is
considered for the moment. The weight vector wi (t) is initially set to be nearly
perpendicular to its target vi with length about 0.2. Such initial setting is adopted
in all of the following experiments. The GHA (it is reduced to Oja's rule here
since m = 1) is first used to train the network. The value of r]{t) is set to be expo-
nentially decreased with time from 0.1 to the final value 0.008. Its time function is
set as max(0.1(0.01/0.1)^/^^^^, 0.008). Figure 3a and b shows the time histories
of learning corresponding to the two data sets, respectively. From Fig. 3a, one
can see that the convergence of the learning process is very slow. The angle Oi (t)
between wi (t) and vi is still near 90° and the length of wi (0, i.e., || wi (t) \\ is still
much smaller than 1. The reason is that the value of Xi (0.0086) is so small such
that rj{t))Xi is even smaller and the convergence rate for the learning process is
very slow. On the other hand, if the same value of r](t) is used for the other data
set with Xi = 25.40, the learning process will fail because it is too big for this set
of data. As shown in Fig. 3b, || wi (t) \\ grows to infinity and Oi (t) cannot decrease
to zero.

On the contrary, the ALA can succeed in both cases with the parameters Piit)
set as the r] (t) of the GHA mentioned above and y (t) set as a constant value 0.01.
First, let us discuss the procedure of eigenvalue estimation. In our experiments,
wi(0 is initially set far from vi purposely; then the Xi estimated by Eq. (5) is
much smaller than its true value during the initial period of the learning process.
As a result, rji(t) [= Pi(t)/Xi{t)] becomes much bigger than the desired value
P\{t)/X\. That is, r]\{t)X\ becomes much bigger than P\{t), the value we set,
or even the upper bound 2(V2 — 1). According to Eq. (11), the length of wi(0
will diverge. However, this minor problem can be remedied by the normalization
procedure in step 6 of the ALA. In step 6, once ||wi {t) \\ > y/\/fi\{t) + 1/2, it is
normalized to \/o!5. Otherwise, no normalization is required. From Eq. (18), one
can see that the directional convergence of wi(f) will then hold. Moreover, the
convergence rate will, from Eq. (17), be faster with the bigger value of r]\(t)X\.
Hence, wi(0 will be close to vi in direction and the mean of(w',x/||wi||)2will

336 Liang-Hwa Chen and Shyang Chang

Figure 3 Simulation results of the GHA for (a) Xi = 0.0086, (b) Ai = 25.40. Reprinted with
permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995
ffiEE).

then approach the desired value ^ i . As a result, A,i (t) will converge very quickly.
Figures 4a and 5a clearly illustrate this point for these two data sets. With the
accurate estimate of eigenvalue, wi (t) will converge to vi in the mean-square
sense as indicated by Propositions 3-6. It is illustrated in Figs. 4b and 5b. It can
be seen from the figures that the length of wi (t) and angle Oi (t) between wi (t)
and vi converge quickly to 1 and 0, respectively, for both data sets. From the k^ (t)

Learning Algorithms of Principal Component Analysis 337

(b)
Figure 4 Simulation results of the ALA for >.i = 0.0086. (a) Time histories of Xi (top figure) and
(fil /A-i)>-i (bottom figure for two different time scales). The dashed line and curve denote the values of
ki and fii (t), respectively, (b) Time histories of ||wi || and Oi as functions of iterations, (c) Trajectory
of wj on the k^ versus ||si || plane. Parts (a) and (b) reprinted with permission from L. H. Chen and
S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 ((c)1995 IEEE).

versus ||si (t) || plots in Figs. 4c and 5c, one can see that each wi (0 approaches the
unit hypersphere (the dotted curve) quickly and then reaches its target vi which
is located at the coordinate (1, 0) of the plot. To sum up, the learning process of
ALA is successful for both data sets.

338 Liang-Hwa Chen and Shyang Chang

\H

0.5 h

0.4 [

0.3

O.2I

0.1

f\

'»'

\

11W
/ I /'l

<5' i

*̂

r

0.2 0.4 0.6 0.8

(c)
Figure 4 (Continued)

In the following, simulations will be used to demonstrate that the ALA can
make all of the m weight vectors Wi(0» i = 1, 2 , . . . , m, converge quickly to
the desired targets independent of the eigenvalues and eigenvalue spread. Three
data sets are used here: Sandpapers, IRIS [42], and X08. The set of Sandpa-
pers contains 96 four-dimensional patterns describing the texture measurements
of the images of four kinds of sand. The IRIS data contains 150 four-dimensional
patterns of three classes of flowers. Finally, the set of X08 contains 45 eight-
dimensional patterns describing the characters "X," "O," and "8." The ALA can
still handle such non-zero-mean data, well as zero-mean data by estimating the
data mean and subtracting it from the patterns. We estimate the data mean with
the equation mjc(̂ + l) = m;c(OH-(x(0-injc(0)/(^ + l)-Notice that the patterns
in the data set are drawn randomly and repeatedly as the inputs presented to the
network. In addition, the number of output, m, is set to n now. The parameters
Pi(t), for / = 1, 2 , . . . , m, are all set to the same value as Pi(t) in the previous
experiments except time delay and the final value denoted by fif. For the time
delay, the learning time of neuron / starts later than that of neuron / — 1 with a
time delay tp which is set to 500. The goal is to make all w^ (0 come close to
V; for j < i when neuron / begins to learn. Moreover, in order to make the final
angle error between w/ (t) and v/ be smaller than 1.5°, the final value fif of ^t (t)
is set, according to Eq. (23), to 0.008 for Sandpapers and IRIS, and 0.005 for
higher-dimensional X08, respectively. The results for Sandpapers and IRIS are
shown in Figs. 6 and 7, respectively. It is clear from the time histories of ||w, (t) ||s
and Oi(t)s that all of w/(Os can converge quickly to their corresponding v/s re-

Learning Algorithms of Principal Component Analysis 339

Figure 5 Simulation results of the ALA for Xj = 25.40. (a) Time histories of Xi (top figure) and
(^l /M)^l (bottom figure for two different time scales). The dashed line and curve denote the values of
Xi and ^i (r), respectively, (b) Time histories of ||wi || and 6i as functions of iterations, (c) Trajectory
of wj on the fc^ versus ||si || plane. Parts (a) and (b) reprinted with permission from L. H. Chen and
S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995 IEEE).

spectively even in the Sandpapers case where the second and third eigenvalues
are very close. Moreover, one should notice that, although the differences among
the eigenvalues are great, the learning rates of neurons are all nearly the same af-
ter they start learning. The eigenvalue spread A.i/A.„ reaches about 200. However,
the learning rate of neuron / in the ALA will not be slowed down as i increases.

340 Liang-Hwa Chen and Shyang Chang

¥i

(c)
Figure 5 (Continued)

Table I

Final Values for Sandpapers Using ALA

Neuron /

1
2
3
4

Oi

0.5831
0.8085
0.4997
0.5086

llwHI

1.0002
0.9985
0.9931
0.9921

^1

0.0266
0.0011
0.0009
0.0001

^1

0.0265
0.0011
0.0008
0.0001

Reprinted with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks
6:1255-1263, 1995 (©1995 IEEE).

Table II

Final Values for IRIS Using ALA

Neuron i

1
2
3
4

Oi

0.3112
0.8727
0.9051
0.8935

llwHI

1.0003
0.9982
0.9951
0.9886

h
4.1045
0.2358
0.0729
0.0233

^1

4.2001
0.2411
0.0777
0.0237

Reprinted with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks
6:1255-1263, 1995 (©1995 IEEE).

Learning Algorithms of Principal Component Analysis 341

1500

time

1000 1500

time

(a)

500 1000 1500 2000 2500 3000 3500

(b)
Figure 6 Simulation results of the ALA for Sandpapers data, (a)-(d) Learning times histories of wi,
W2, W3, and W4, respectively. The vertical dotted lines denote the starting time of learning. Reprinted
with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995
(©1995 IEEE).

Tables I and II list the final values of ||w, (t) ||s and Ot {t)s as well as the eigenvalue
estimates Xi(t)s at the end of the learning process. It is obvious that the results
are quite accurate compared with the theoretical values. Table III is the simula-
tion result for the data set X08. It demonstrates that the ALA also works well for
higher-dimensional data.

342 Liang-Hwa Chen and Shyang Chang

63 60

40

iW-W^^Vws .
500 1000 1500 2000 2500 3000 3500

(c)

fŵ l

1000 1500 2000

time

2500 3000

1000

Figure 6

1500

time

(d)
(Continued)

2000 2500 3000

From these experiments, it is clear that the ALA can properly and automati-
cally select the learning rate parameters such that w/ (t) can converge to v/ with
almost the same rate for each / no matter what values the eigenvalues Xts are.
Hence, the ALA is a very effective way to execute PCA.

Learning Algorithms of Principal Component Analysis 343

Figure 7 Simulation results of the ALA for IRIS data, (a)-(d) Learning times histories of wi, W2,
W3, and W4, respectively. The vertical dotted lines denote the starting time of learning.

IV. APPLICATIONS

Due to the aforementioned effective computing capability for PCA, the ALA
can then be applied to data compression. By not removing the data mean, the
PCA is equivalent to the Karhunen-Loeve transform (KLT) [43, 44], by which
higher-dimensional data can be transformed to lower-dimensional data. From

344 Liang-Hwa Chen and Shyang Chang

%

'

Vv^__^.^>.^ , ,^ _ , —
0 500 1000 1500 2000 2500 3000

time

(d)
Figure 7 (Continued)

these lower-dimensional data, we can reconstruct the higher-dimensional data
with minimal mean-square error. That is, data are compressed via dimensionality
reduction. The ALA can exactly be utilized to quickly perform such a task.

The ALA can also be applied to image coding, texture segmentation, and de-
velopment of receptive fields due to its effective executing capability of the KLT.
These applications can be found in [24]. The following are two examples of im-
age coding. Figure 8a is the original "pepper" image with 256 x 256 pixels and
256 graylevels. A PCA learning network with 64 inputs and 8 outputs is adopted

Learning Algorithms of Principal Component Analysis 345

Table III

Final Values for X08 Using ALA

Neuron i

1
2
3
4
5
6
7
8

Oi

1.2992
1.5005
1.1511
1.6035
1.7126
1.5847
0.6891
0.6647

llw/ll

1.0029
0.9996
0.9994
1.0001
0.9966
0.9909
0.9935
0.9884

M

15.822
9.9920
6.9473
4.8364
3.7637
2.2885
1.2062
0.6284

1̂

15.842
10.145
7.0847
5.0343
3.9537
2.3659
1.1999
0.6376

here. That is, the number of neurons, m, is equal to 8 now. The image is first di-
vided into nonoverlapped 8 x 8 blocks. These 8 x 8 blocks are then presented in
a random order to the network as training samples. The parameter y is set here as
0.005 while Pi is set to be exponentially decreased with time from 0.1 to 0.002.
It decays to 0.01 as t comes to 500. The final value of Pi, i.e., 0.002, is still set
according to Eq. (23) to make the final angle error between the 64-dimensional
weight vector w/ and its target v/ to be smaller than 1.5°. In addition, the time
delay tp is set to 50.

The eight outputs are then used to represent the input 8 x 8 image block. This is
the image coding. To reconstruct the image, each 8 x 8 block is approximated by
adding together the weight vectors multipHed by the corresponding outputs. The
performance of coding is evaluated by calculating the normalized mean-square
error (NMSE) [11]:

NMSE = ^^^^^'" T ^^-"^'^ (24)

where In,m is the pixel value at position n,m of the original image and In,m is the
corresponding pixel value in the reconstructed image.

Figure 8b shows the reconstructed pepper image, and in the top part of Fig. 8c
are the learned eight weight vectors, each of which is arranged as an 8 x 8 mask.
The bottom part of Fig. 8c is the plot of the time history of the NMSE. It decays
very quickly. At t = 798, the NMSE has been decreased to lower than 0.01!
The final value reaches only 0.006. On the contrary, the similar experiment by
the GHA can only obtain a NMSE higher than 0.02 even if the iterations have
been over 2000 [24]. In addition, observing from the estimated eigenvalues listed
in Table IV, the first eigenvalue extends 10^ and is almost 900 times the eighth
one. It needs the learning rate parameters smaller than 10~^ in order to make
the learning process converge! Moreover, these parameters should be increased

346 Liang-Hwa Chen and Shyang Chang

Figure 8 Experimental results of the ALA for image coding, (a) Original "pepper" image, (b) Re-
constructed image, (c) Learned eight weight vectors and the NMSE learning curve.

Learning Algorithms of Principal Component Analysis 347

1500 2000 2500 3000
Time

(c)
Figure 8 (Continued)

as the index of neuron increases such that the last one becomes 900 times the
first one in order to keep the learning speed from decaying as the index increases.
All of these requirements are automatically and adaptively achieved by our ALA.
The learning process then not only converges but also converges very quickly
as indicated by the NMSE learning curve. Figure 9 and Table V are results for
another similar experiment for the "Wha" image. All of these experimental results
obviously demonstrate again the power of the ALA.

Table IV

Estimated Eigenvalues of the "Pepper" Image

Neuron i ^i

1.2 e6
2.1 e4
1.5 e4
5.7 e3
4.0 e3
2.3 e3
1.6 e3
1.4 e3

348 Liang-Hwa Chen and Shyang Chang

Figure 9 Experimental results of the ALA for image coding, (a) Original "Wha" image, (b) Recon-
structed image, (c) Learned eight weight vectors and the NMSE learning curve.

Learning Algorithms of Principal Component Analysis 349

1500
Time

(c)
Figure 9 (Continued)

3000

V. CONCLUSION

For PCA learning networks, we have proposed an adaptive learning algorithm
(ALA). By adaptively selecting the learning rate parameters according to the
eigenvalues of the input covariance matrix, it has been shown that the ALA can

Table V

Estimated Eigenvalues of the "Wha" Image

Neuron / A./

1.2 e6
1.7 e4
1.3 e4
6.7 e3
3.4 e3
2.6 e3
1.9 e3
1.0 e3

350 Liang-Hwa Chen and Shyang Chang

make the m weight vectors in the network converge quickly to the first m princi-
pal component vectors with almost the same learning rates. From the simulation
results, it has been confirmed that the ALA can converge very quickly to the de-
sired target in the large-eigenvalue case as well as in the small-eigenvalue case. On
the other hand, the conventional GHA diverges in the former case and converges
very slowly in the latter case. In addition, from the simulation results of the three
real data sets—Sandpapers, IRIS, and X08—one can see that the ALA has been
able to find quickly all principal component vectors even if the eigenvalue spread
is quite big. The ALA is thus a very effective way to execute the PCA. Based on
such capability, the ALA has been applied to data compression and image coding.
Excellent experimental results have been obtained.

In the future, it is expected to implement the above adaptive learning algo-
rithms in VLSI architectures in order to facilitate practical applications.

VI. APPENDIX

Proof of Proposition 1. Take w{t) to be close to vi, i.e., w(0 = vi + e(r),
where Cvi = A-ivi, ||vi|| = 1, and ||e(OI| < 1. Thus, E[Awit)\vf(t)] =
£{Ae(0|e(0},andwegetbyEq.(4) E[Ae{t)\e{t)] = /?(f){C(vi+e(0)-[(v'i +
e'(0)C(vi +e(0)](vi +e(0)} = »?(?)[Ce(0 -2Xi -e'COviVi -Xie (0 + 0(^^)1
where O(e^) denotes the higher-order terms of e(t). Ignoring the O(e^) terms,
it becomes £:{Ae(0|e(0} = r](t)[Ce(t) - 2A.ien0vivi - Xiei(t)]. Recall that
the normalized eigenvectors associated with distinct eigenvalues of symmetric
matrix C are orthonormal. They can form a basis spanning the R" space. As a
result, we can represent yv(t), t(t), E[Ae(t)], etc., by their components along
the directions of the normalized eigenvectors of C. Thus, along the direction
of\j,j = 1, 2 , . . . , n, the component of E{Ae(t)\e(t)} is \^jE{Ae{t)\eit)} =
-2ri(t)Xiy[e(t), if j = 1; -^ (0(^1 - Ay)v^ .̂e(0, if; ^ 1. Therefore,

Y)E{e(t + l)\e(t)} = y)eit)^y)E{Ae{t)\e(t)}

{l-2r]it)ki)x[e(t), ifj = h . _ .
[1 - rj(t)(Xi - kj)Wje{t), if 7 ^ 1, ^^^^

where e(t) stands for the realization of e(t) at time t. It can be seen that if r](t) <
l /Xi , then| l -2^(0A.i | < 1 and |1 - r/(0(^i - A,y)| < I fo r j = 1, 2 , . . . ,n. As
a result, from Eq. (25), \\^jE{eit -f- 1)|^(0}| will be smaller than \\^je{t)\ along
all directions \j, j = 1, 2 , . . . , n. Since this is true for all realizations e(t), the
expectation of error will thus decrease. It implies that the expectation of w(0 will
approach vi. Hence, if ^ (0 > 1 /-^i»then the expectation of w(0 cannot approach
vi and therefore w(0 cannot converge to vi. This completes the proof. •

Learning Algorithms of Principal Component Analysis 351

Proof of Proposition 2. When ri(t)ki < 0.5, the values of 11 — 2r}(t)Xi \ and
|1 — T](t)(Xi — Xj)\, j = 2,3,... ,n, will be closer to 1 if the value of ^(0^1 is
closer to zero. As a result, from Eq. (25), the expectation of error will decrease
much more slowly. •

REFERENCES

[1] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Pwc. Nat. Acad. ScL USA 79:2554-2558, 1982.

[2] W. C. Wu, R. M. Chen, and S. Chang. An analog architecture on parameter estimation of ARMA
models. IEEE Trans. Signal Process. 41:2846-2953, 1993.

[3] A. D. Culhane, M. C. Peckerar, and C. R. K. Marrian. A neural net approach to discrete Hartly
and Fourier transforms. IEEE Trans. Circuits Syst. 36:695-703, 1989.

[4] A. Tabatabai and T. R Troudet. A neural net based architecture for the segmentation of mixed
gray-level and binary pictures. IEEE Trans. Circuits Syst. 38:66-77, 1991.

[5] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh. The capacity of the Hopfield
associative memory. IEEE Trans. Inform. Theory 33:461^82, 1987.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. WiUiams. Learning representations by back-propagating
errors. Nature 323:533-536, 1986.

[7] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, 2 vols. MIT Press, Cambridge, MA, 1986.

[8] D. A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, (D. S. Touretzky, Ed.), pp. 305-313. Morgan Kaufmann,
San Mateo, CA, 1989.

[9] R. P. Gorman and T. J. Sejnowski. Learned classification of sonar targets using a massively-
parallel network. IEEE Trans. Acoust. Speech Signal Process. 36:1135-1140, 1988.

[10] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation appUed to handwritten Zip code recognition. Neural Computat. 1:541-551,
1989.

[11] G. W. Cottrell, P. Munro, and D. Zipser. Learning internal representations from gray-scale im-
ages: An example of extensional programming. In Ninth Annual Conference of the Cognitive
Science Society, pp. 462-473. Seattle, WA, 1987.

[12] F. Rosenblatt. Principles ofNeurodynamics. Spartan, New York, 1962.
[13] Ch. von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Ky-

bemetika 14:85-100, 1973.
[14] D. E. Rumelhart and D. Zipser. Feature discovery by competetive learning. Cognitive Sci. 9:75-

112,1985.
[15] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation.

Addison-Wesley, Redwood City, CA, 1991.
[16] B. Kosko. Stochastic competitive learning. IEEE Trans. Neural Networks 2:522-529, 1991.
[17] R. Hecht-Nielsen. Neuroncomputing, Addison-Wesley, Reading, MA, 1989.
[18] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding. Proc. IEEE73:155\-

1588, 1985.
[19] R. Pieraccini and R. Bilh. Experimental comparison among data compression techniques in

isolated word recognition. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 1025-1028. Boston, MA, 1983.

[20] M. O. Dunham and R. M. Gray. An algorithm for design of labeled-transition finite-state vector
quantizers. IEEE Trans. Commun. COM-33:83-89, 1985.

352 Liang-Hwa Chen and Shyang Chang

[21] N. M. Nasrabadi and R. A. King. Image coding using vector quantization: A review. IEEE Trans.
Commun. 36:957-971, 1988.

[22] N. R. Dixon and T. B. Martin, Eds. Automatic Speech and Speaker Recognition. IEEE Press,
New York, 1979.

[23] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, New
York, 1986.

[24] T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network.
Neural Networks 2:459-473, 1989.

[25] D. Hebb. The Organization of Behavior. Wiley, New York, 1949.
[26] I. T. JoUiffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
[27] R Common and G. H. Golub. Tracking a few extreme singular values and vectors in signal

processing. Proc. /^Ef 78:1327-1343, 1990.
[28] K. Homik and C.-M. Kuan. Convergence analysis of local feature extraction algorithms. Neural

Networks 5:229-240, 1992.
[29] R. Linsker. Self-organization in a perceptual network. Computer March:\05-lll, 1988.
[30] R. H. White. Competitive Hebbian learning: Algorithm and demonstrations. Neural Networks

5:261-275, 1992.
[31] A. L. Yuille, D. M. Kanunen, and D. S. Cohen. Quadrature and the development of orientation

selective cortical cells by Hebb rules. Biolog. Cybernet. 61:183-194, 1989.
[32] R Baldi and K. Homik. Neural networks and principal component analysis: Learning from ex-

amples without local minima. Neural Networks 2:53-58, 1989.
[33] E. Oja. Neural networks, principal components, and subspaces. Intemat. J. Neural Syst. 1:61-68,

1989.
[34] P. Foldiak. Adaptive network for optimal Unear feature extraction. In Proceedings of the Inter-

national Joint Conference on Neural Networks, Vol. I, pp. 401-405. San Diego, CA, 1989.
[35] J. Rubner and P. Tavan. A self-organizing network for principal component analysis. Europhys.

Lett. 10: 693-698, 1989.
[36] R. Lenz and M. Osterberg. Computing the Karhunen-Loeve expansion with a parallel, unsuper-

vised mter system. Neural Computat. 4:382-392, 1992.
[37] E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biol. 15:267-273,

1982.
[38] L. H. Chen and S. Chang. An improved learning algorithm for principal component analysis. In

International Conference on Signal Processing Applications & Technology, ICSPAT '93, Vol. II,
pp. 1049-1057. Santa Clara, California, 1993.

[39] L. H. Chen and S. Chang. An adaptive learning algorithm for principal component analysis.
IEEE Trans. Neural Networks 6:1255-1263, 1995.

[40] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and Uncon-
strained Systems. Springer-Verlag, New York, 1978.

[41] D. M. Clark and K. Ravishankar. A convergence theorem for Grossberg learning. Neural Net-
works 3:87-92, 1990.

[42] R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugen. 7:179-188,
1936.

[43] H. Karhunen. Uber hneare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn,
Ser. A. I., Vol. 37, Helsinki, 1947.

[44] M. Loeve. Fonctions aleatoires de seconde ordre. In Processus Stochastiques et Mouvement
Brownien (P. Levy, Ed.). Hermann, Paris, 1948.

[45] E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the
expectation of a random matrix. J. Math. Anal. Appl. 106:69-84, 1985.

Learning Evaluation
and Pruning Techniques

Leda Villalobos Francis L. Merat
Engineering School Electrical Engineering Department
University of Texas at El Paso Case Western Reserve University
El Paso, Texas 79968-0521 Cleveland, Ohio 44106-7221

I. INTRODUCTION

The fundamental goal of supervised learning is to synthesize functions which
capture the underlying relationships between input patterns and outputs of some
particular task of interest. For learning to be truly satisfactory, these functions
must provide good estimates of the outputs corresponding to input patterns not
used during training. This ability is normally referred to as generalization.

Clearly, the architecture of a neural network—its layers, connectivity, and es-
pecially hidden neurons—defines the number of adjustable parameters available
to synthesize the functions. Large networks have more parameters than small ones
and, therefore, do better at fitting the training patterns. Too small networks may
not even be able to bring the training error below some desired minimum value.
However, if the number of parameters is far larger than needed, the network will
actually learn the idiosyncrasies of the data, an effect known as tuning to the noise
or overfitting, and will exhibit rather poor generalization.

It is widely accepted that good generalization results when the number of hid-
den neurons is close to the minimum required to learn representative training pat-
terns with a small quadratic error. Hence, it is desirable to assess learning ability
with respect to the training samples, and find a reduced architecture which ensures
proper generalization.

Several strategies have been proposed to estimate upper and/or lower bounds
on the number of hidden neurons required to learn specific tasks within the de-
sired generalization accuracy. Many of these approaches are based on the seminal
learning theory paper by Valiant [1], or apply the theory of large deviations in

Image Processing and Pattern Recognition
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 3 5 3

354 Leda Villalobos and Francis L. Merat

its uniform version by Vapnik and Chervonenkis. Not surprisingly, it has been
usually found that a high generalization error is expected when the number of
samples is small compared with the system's complexity.

Blumer et al [2], for instance, relate the size of the learning system to the
number of training samples. Along the same line of thought, Baum and Haus-
sler [3] give theoretical upper and lower bounds to relate the number of training
patterns to weights so that valid generalization can be expected. After making a
few simplifying assumptions—such as considering neurons with linear threshold
activation functions or Boolean valued—^their derivations suggest the number of
training samples should be roughly the number of weights divided by some ac-
curacy parameter, s. Hence, if e = 0.1 (for a 90% generalization accuracy), the
number of weights should be approximately 0.1 times the number of patterns.
A similar rule of thumb had been previously suggested and proven to be effec-
tive [4].

Other methods are tailored to specific architectures, usually with only one hid-
den layer [5], or with particular conditions on the input data and the activation
functions [6]. Igelnik and Pao [7] derived a lower bound for the size of the single
hidden layer in the random functional-link net, a higher-order network [8]. This
bound guarantees the training error will be smaller than some prescribed level.
Sometimes, the practical usefulness of these methods is rather marginal. Arai [9],
for example, found that a binary-valued network with a single hidden layer needs
a maximum of (P — 1) neurons to learn P patterns.

In any case, upper and lower bounds can only serve as initial guidelines in
the construction of an effective network. Arriving at an optimal or near-optimal
architecture usually requires sound heuristics and an iterative building process
during training.

A. SIMPLIFYING ARCHITECTURE COMPLEXITY

Techniques which iteratively build networks with good generalization prop-
erties and reduced architectures fall under two categories: network growing and
network pruning.

In network growing, we start with an architecture which is smaller than needed
to learn the task at hand. This architecture is then progressively increased dur-
ing training, adding more neurons until the learning error falls below a specified
threshold. Hirose et al [10] start with a network that has only one hidden neuron.
Then back-propagation (BP) is applied until the learning error does not decrease
significantly any longer. At this point, a new hidden neuron is added to the ar-
chitecture, and the cycle repeated. Eventually, there will be enough neurons to
synthesize appropriate classification rules so that the error falls below a desired
value. Subsequently, a reduction phase is initiated which consists in pruning one

Learning Evaluation and Pruning Techniques 355

neuron at a time. After pruning a neuron, the network is retrained until it con-
verges. If it does not, the algorithm stops and the last converging network is used.
Other variations on the same theme include Zhang's SEL and SELF architectures
[11], Fahlman and Lebiere's cascade correlation [12], Lee et al.'s [13] structure-
level adaptation, and Lee et al's [14] separating hyperplanes incremental model.

In network pruning, we start with an architecture which is larger than the min-
imum needed for learning. Such architecture is then progressively reduced by
pruning or weakening neurons and synaptic weights. Network pruning techniques
and their application constitute the main focus of this chapter.

B. APPLICATIONS

Architecture reduction paradigms have multiple applications. As will become
apparent in future sections, some paradigms are better suited for certain applica-
tions than others. Consequently, algorithm selection should be the result of evalu-
ating the problem at hand, as well as any hardware or computational limitations.
In general, the following Ust comprises the most important applications of net-
work pruning.

• Improve generalization. This is the primary aim of all pruning techniques
and, as previously indicated, is an essential characteristic of any successfully pre-
pared network.

• Speed up on-line operation. Obviously, smaller networks with few connec-
tions and neurons need less time to generate an output value after the input pattern
is presented. This application is particularly important when the trained network
becomes part of a real-time estimation or control system.

• Reduce hardware requirements. In commercial applications where the net-
works might have to be realized in hardware, product costs can be cut down by
identifying reduced architectures.

• Understand behavior in terms of rules. In networks with reduced connec-
tivity, it is easier to identify those features exerting the most effect on the output
functions. Generally, those features propagate their effects to the output neurons
through large weights. Consequently, it is rather easy to derive gross rules relating
process features and outputs.

• Evaluate and improve feature space. Several pruning strategies, particu-
larly constraint optimization and iterative pruning, can be readily applied to the
assessment of feature spaces. This way, features deemed irrelevant or carrying
limited information are eliminated, while features with higher information content
are added. Improving feature space quality has an unmeasurable value: a pattern
recognition problem cannot be solved without good feature representation.

• Speed up learning. At first glance, talking about learning time could appear
to be irrelevant once a reduced architecture has been found. However, small net-

356 Leda Villalobos and Francis L. Merat

works usually show a strong dependency with the initial weights values during
training. For this reason, sometimes it is necessary to retrain a reduced network.
Clearly, smaller networks train faster than larger ones.

C. OUTLINE

Many network pruning schemes have been proposed since the late 1980s.
Based on the principles and heuristics they exploit, we have broadly grouped them
into the following six categories.

• Complexity Regularization. The first type of pruning algorithms reported,
complexity regularization, attempts to embed architecture simplification within
the gradient descent training rule. The primary assumption is that complexity and
weight magnitude are equivalent. Hence, the training rules are modified so that
large weights are penalized. After training, connections with very small values
can be pruned altogether, rendering a smaller network.

• Sensitivity Estimation. Magnitude is not always a good indicator of a
weight's importance. Frequently, small weights provide highly desirable resis-
tance to static noise by smoothing output functions. For this reason, their preven-
tion could actually deteriorate performance. A more effective pruning approach
consists in eliminating weights that show little effect on the synthesized outputs.
Through heuristics and other simplifying assumptions, sensitivity methods esti-
mate the relevance of a weight or neuron on the network's output, and deactivate
elements with low relevance.

• Optimization Through Constraint Satisfaction. There are similarities be-
tween a supervised learning task and a resource allocation problem. The archi-
tecture's complexity can be treated as a limited resource, while the learning re-
quirements set forth by the training patterns can be treated as constraints. Within
this framework, performance depends on the network's ability to satisfy the con-
straints with its available resources. Constraint satisfaction techniques set up the
resource allocation problem in ways which are appropriate for optimal pruning.

• Bottlenecks. It has been observed that generalization improves when
a bottleneck—a hidden layer with significantly fewer neurons than previous
layers—is imposed in the architecture. In these paradigms, bottlenecks are cre-
ated during gradient descent training by compressing the dimensionality of the
spaces spanned by the hidden layer's weights.

• Interactive Pruning. In trained networks, it is sometimes possible to iden-
tify neurons whose behavior duplicates other neurons, or which have limited dis-
crimination ability. Interactive pruning techniques identify these neurons through
heuristics, and eliminate them.

• Other Methods.

Learning Evaluation and Pruning Techniques 357

In the remaining sections, we discuss the fundamental principles behind each
one of these categories. Similarly, we describe relevant algorithms appearing in
the open literature. Our interest is not to give an exhaustive review of all available
techniques, but rather to present in sufficient detail the most important ones under
each category, as well as comment on their potential and Hmitations.

II. COMPLEXITY REGULARIZATION

As mentioned before, to improve generaHzation it is important to reduce the
size or complexity of a network, so that the synthesized output function captures
the essence of the training data rather than its idiosyncrasies. Since the purpose of
the training session is to construct a nonlinear model of the phenomena originating
the data, it is convenient and simple to include as part of the training criteria some
measure of complexity. This way, pattern learning and complexity reduction can
be accomplished simultaneously as part of the same process.

Complexity regularization was one of the first proposed paradigms aimed at
reducing size. In its general form, it consists of adding to the usual quadratic error
function, Eo, an extra penalty term Ei that measures complexity. The result is a
total error function £, which penalizes both training data misfit and complexity.
Hence, the learning rule is obtained by applying gradient descent to

E(w) = Eo(yv) + XEi(yv), (1)

where X is the regularization parameter dictating the relative importance of Eo
with respect to Ei. A large A favors solutions with reduced complexity, while a
small one gives more importance to accurate training pattern learning. It should
be mentioned that k can be modified as needed during training.

The procedures described in this section differ between each other by their
penalty term(s), the selection or modification of the regularization parameter,
and the training stopping criteria. However, all of them share a—sometimes
unintended—association of complexity with weight magnitudes. As a conse-
quence, they tend to reduce the weights' absolute values rather than the actual
number of connections in the network's architecture.

A. WEIGHT DECAY

Weight decay (WD) [15, 16], the simplest complexity regularization method,
directly equates network complexity to weight magnitude. The idea is to reduce
connections by adding to the standard BP quadratic error function a term which

358 Leda Villalobos and Francis L. Merat

penalizes large weights, so that

E = J2^tp-Opf + xJ2^f, (2)
peT ieC

where tp and Op denote the desired and actual output for training pattern p, T
and C represent the sets of all training patterns and all weights, and wt is the /th
weight.

Since the derivative of the complexity term is proportional to u;/, each weight
will have a tendency to decay toward zero at a rate proportional to its magnitude.
Such decay is only prevented by the reinforcement introduced through the gra-
dient of the quadratic error term. Thus, the learning rule not only causes pattern
learning but also favors weight magnitude reduction. Once training has finished,
the weights can be grouped into two sets: one with relatively large values and in-
fluence on the network's performance, and another with small values. This latter
set contains the so-called excess weights, which can be removed to avoid overfit-
ting and improve generalization [15].

Krogh and Hertz [17] provide analytical arguments to explain why WD im-
proves generalization. They conclude that improvement occurs for two reasons:
(1) WD chooses the smallest vector which learns the training patterns, and (2) if
properly selected, it can reduce some of the effects of static noise. However, ap-
propriate dynamic modification of X during training is of critical importance. It
has been found that a poorly selected or constant k could preclude learning and
generalization altogether [18], while an adaptive one renders better results [19].
Also, it has been argued that a |M;| regularizer is more appropriate than w^ [20].

B. WEIGHT ELIMINATION

A disadvantage of the penalty term included in Eq. (2) is that all weights are
subjected to the same decaying criteria. Better performance can be obtained if bi-
ases are designed so that only weights within particular range values are affected
[21]. Weight elimination (WE), proposed by Weigend et al [22, 23], is a proce-
dure which selectively biases weights. In WE the modified error function is given
by

2

where Wo is a preassigned weight-decay parameter. Thus, the importance of
a weight depends on the magnitude of its value relative to Wo. As shown in
Fig. 1, the complexity term approaches zero when \wi\ <^ Wo, and unity when
\wi\^ WQ. Hence, the BP training will promote the appearance of small weights,

Learning Evaluation and Pruning Techniques 359

1

0.5

0

-0.5

- 1 t

-4

Fi{ jure 1

~ ^ ^ ^ - ^ " - ' " '

• - - ^ \ \ /

Bias term

Derivative

- 2 0 2 4

Bias complexity term in weight elimination and its derivative.

and penalize large ones. Note that WD is then a special case of WE: for large Wo,
Eq. (3) reduces to Eq. (2), except for a scaling factor.

Just as with WD, here too performance is particularly sensitive to the selection
of A. A small A lets the network exploit all of its weights and pay more atten-
tion to learning the training patterns; a large X assigns more importance to the
reduction of weight magnitude in an attempt to improve generalization. For this
reason, a few heuristics have been derived to dynamically adjust X after every
epoch depending on the current value of the error over the training set, Eo. These
adjustments are of three types: small increments, small decrements, and cut down.

Suppose En denotes the error after the n\h epoch. Initially, training starts with
A = 0. To modify X after every epoch. En is compared against three quantities:
(1) the quadratic error in the previous epoch, En-\\ (2) an exponentially weighted
value of the error.

An = yAn-l + (1 -y)En, 1; (4)

and (3) a desired minimum error, D.
If En < D and/or En < £"^-1, it can be inferred that training is going well.

Consequently, we proceed to increment J\. by a small amount AA,, on the order
10"^. If En > En-i A En < An A En > D, the error is increasing but still im-
proving with respect to the long-term average. Hence, we decrement k by Ak. If
the new A is negative, then A = 0. Finally, if En > En-i A En > An A En > D,
the error is definitely deteriorating; in an attempt to prevent weight elimination
from permanently damaging the net, A is now set to 0.9A.

Weigend et al [23] have used WE to predict yearly sunspot averages, and cur-
rency exchange rates. For sunspot series prediction the procedure rendered not
only a smaller network (just three hidden neurons), but also one with half the out-
of-sample error of the benchmark model by Tong [24]. Similarly, out-of-sample

360 Leda Villalobos and Francis L. Merat

exchange rate predictions were much better than chance. In both cases, the resuh-
ing networks successfully ignored irrelevant information.

C. SMOOTHNESS CONSTRAINT GENERALIZATION

A broad class of ill-posed inverse problems describing physical phenomena—
including early vision—^have been regularized through smoothness constraints. In
those cases, generalization is reduced to finding a solution function that smoothly
interpolates between the training patterns. In a neural network, the output func-
tion is smooth when the weights are relatively small, but it can exhibit abrupt
transitions if the weights are large. This is so due to the dependency between a
sigmoidal neuron's response and its input weights.

Inspired by the good performance of smoothness constraints, Ji et al. [25] pro-
pose a complexity reduction algorithm which consists of modifying the quadratic
error function with two heuristic terms, one to reduce the number of hidden neu-
rons and the other to minimize the weights' magnitudes. The first term eliminates
spurious local extrema in the output function, while the second one avoids unnec-
essary transitions.

The procedure is introduced in the context of a network with one linear input,
one hidden layer of N sigmoidal neurons, and one linear output. Due to the ar-
chitecture's simplicity, the input and output weights of the /th hidden neuron are
denoted as M/ and vt, respectively. A hidden neuron is assumed to be significant
only when connected to the input and output through weights of large magnitude.
Hence, the significance of the /th neuron could be quantified as

Si =G{ui) -aivi), (5)

where or(w;,y)̂ = M;?-^/(1 + w;?-̂).
To procure solutions with few significant neurons, the term

Â i-\

Ex{yf) = kY,Y.^iSj (6)

is added to the quadratic learning error, EQ. Note how this modification only af-
fects connection weights—it does not affect biases. After applying the gradient
decent algorithm, the learning rule for weights then becomes

dEo SEi
mjk = Wijk - T] (w, b) - X (w), (7)

dwijk owijk

with w, b denoting the vectors of weights and biases, respectively.

Learning Evaluation and Pruning Techniques 361

Both gradients in Eq. (7) could be in conflict and thus originate spurious
equihbria. To avoid this undesirable situation, it is convenient to have a dy-
namic A which increases in value as the error Eo decreases. Ji et al [25] use
k = Xo cxp(—KEo), where K specifies the EQ value below which the neuron elim-
ination term kicks in, and ko is on the order of lO"" .̂

To reduce weight magnitudes, a small amount is subtracted from both weights
and thresholds in every epoch, thus resembling weight decay. The amount sub-
tracted is iJit3nh(wijk), with, /x = /lol^Eol, (JLO on the order of 10~^. This term
seems to reduce the larger weights more effectively than other methods [25], and
its effects diminish as convergence occurs.

Neuron pruning works as follows. Once an acceptable learning error EQ is
reached, weights with small magnitudes are periodically eliminated as training
progresses. After all weights connected to a particular neuron have been elimi-
nated, the neuron itself is removed.

Simulation results showed this algorithm produces smoother response func-
tions than standard BP, and architectures with fewer hidden neurons. This behav-
ior is nevertheless obtained at the expense of a slower convergence rate.

D. CONSTRAINED BACK-PROPAGATION

The regularization methods described so far operate by expanding the error
function with terms which directly penalize weight magnitude. On a more ambi-
tious path, Chauvin [26-28] has proposed and tested a variety of penalty terms
to reduce as well the magnitude of the hidden neurons' outputs over the training
set. The underlying assumption is that a neuron's "energy"—^how much its output
changes across the training set—indicates relevance. Naturally, neurons carrying
significant information have large energy values, while less important ones have
little internal energy.

Constrained back-propagation (CBP), perhaps the most elaborate method ex-
plored by Chauvin [27], adds two terms to the usual error function. The first term
reduces large weights just as WE, while the second term reduces the outputs of
the hidden layers across the training set. The combined error function becomes

2 2

peT ieC ^i '^^ k p ^kp + ^

Obviously, the second and third terms effectively introduce a selective
parameter-decay force into the learning rule. For example, the gradient of the
weight-dependent term approximates 2Xu)Wi for small weights. Hence, when a
parameter's magnitude—either weight or output—is much smaller than unity, the

362 Leda Villalobos and Francis L. Merat

learning dynamics will tend to decrease that parameter even more. The final re-
sult is not only a network with smaller weights but also one with possibly several
inactive hidden neurons. These neurons can be identified and pruned as training
progresses.

Chauvin extensively tested CBP in the difficult task of phonemic classification
from spectrograms [28]. His results indicated that:

• Overfitting depends on both the size of the network and the number of
training cycles. CBP basically eliminates overtraining despite long training
times. Regardless of the original network size, the generalization
performance remained approximately constant during the entire training
session.

• With CBP the hidden neurons' energy rapidly decreases to a low level at
the start of training. On the other hand, with BP the energy continues
increasing, though slightly, throughout training.

• The learning error decreases more slowly in CBP than in the regular BP.

III. SENSITIVITY CALCULATION

According to several researchers including Mozer and Smolensky [29], and
Hanson and Pratt [21], the penalty parameters in regularization methods are dif-
ficult to adjust, and it is often impossible to avoid local minima. Historically, this
drawback motivated work into alternative pruning algorithms based on sensitivity
analyses. The idea is that a neuron or a weight to which the output of a trained
network is insensitive can be eliminated without much detriment to generaliza-
tion performance. On the other hand, if the output's sensitivity is high, then this
is an indication that the weight has captured important information contained in
the training patterns. As a result, the weight or neuron should remain as part of
the core—the skeleton—of the network.

In principle, calculating the sensitivity with respect to a weight is simple: just
make that weight equal to zero, and then find the resulting increment in the error
function E. If the increment is small, the weight can be pruned, and the architec-
ture's complexity reduced. However, the problem with this brute force approach is
the computational time required. In serial computers, a forward propagation of an
input pattern takes O {W) time, where W is the number of weights. Hence, assum-
ing we have P training patterns and one single output, the time needed to make
one pruning pass is 0{PW^). Furthermore, since a weight's elimination affects
other sensitivities, a more conservative algorithm would prune only one weight
after each pruning pass. This would increase the time to 0{PW^). Clearly, such
an exhaustive approach is infeasible for all but the smaller networks.

The pruning methods presented in this section try to approximate sensitivity
through more efficient means. They differ among each other in the way the ap-

Learning Evaluation and Pruning Techniques 363

proximation is formulated. Nevertheless, most of them share the following char-
acteristics:

• They attempt to prune weights or neurons, rather than reducing their
magnitudes. This represents a significant departure from the objective of
regularization.

• Sensitivity is approximated from information which is available as training
progresses.

• Actual pruning only takes place after some training, usually—but not
always—until convergence. Thus, the error function is at a near local
minimum with respect to the weights of the trained architecture.

• Some retraining or other weight modification is needed after pruning.
• Pruning can be repeated several times, until further architecture reduction

starts deteriorating learning performance.

A. NEURON RELEVANCE

The idea of pruning neurons rather than individual connections was first in-
troduced by Mozer and Smolensky [29]. The underlying idea in their strategy
is rather simple: iteratively train the network to a certain performance criterion,
compute some meaningful functionality or relevance metric to quantify how im-
portant each neuron is, and then eliminate those neurons which are less relevant.
The process can be repeated after a number of epochs, so the net is trimmed little
by little.

Suppose we measure performance by calculating the quadratic error E over
the training set. Conceptually the relevance pik of the /th neuron in the kih
layer is the increment in error experienced as a result of eliminating that neuron.
This is,

Pik = ^without neuron ~ ^with neuron- (9)

Since calculating E requires a complete pass on the training set, the cost of com-
puting all relevances will be 0(NP), where N and P represent the number of
neurons and training patterns, respectively. A more efficient solution can be ob-
tained by finding an estimate ptk. To this end, the gating coefficient atk was intro-
duced and a neuron's output expressed as

Oj{k-^\) = / (X I ^iJk^ikOikl (10)

where / denotes the sigmoidal squashing function. By taking the derivative of the

364 Leda Villalohos and Francis L. Merat

error function with respect to atk, and through some rather crude approximations,
it can be shown that [29]

SE
Pik"^--—

datk
(11)

Thus, when ptk falls below a certain small threshold, its corresponding neuron
can be pruned. Since the error derivative fluctuates significantly in time, the ex-
ponentially decaying average

Pikit + 1) = O.Spikit) + 0.2^E(t) (12)

is used instead. Also, even though the typical sum of squared errors is applied
during training, the error function that measures relevance is the sum of absolute
values of the errors. Hence, two separate error functions must be computed; this
could be considered a disadvantage.

Segee and Carter [30] tested the fault tolerance of pruned networks trained to
produce the sine value of inputs on the interval [—n, TT]. Pruning consisted of
computing relevances every 500 epochs, and eliminating the neuron with the low-
est relevance. Training was stopped when the error reached a specified threshold.
After training, fault tolerance was measured by calculating the increment in the
RMS error over the training set which resulted from zeroing weights and neurons
one at a time.

Three revealing results were found from this study. First, the algorithm basi-
cally eliminates neurons with small weights; the pruned networks did not have
weights with small values. Second, not surprisingly the larger the magnitude of
a weight, the higher its relevance. There is also a strong correlation between the
relevance of a neuron and the magnitude of its largest weight. Finally, it was con-
cluded that the pruned networks were not less fault tolerant than the unpruned
ones.

B. WEIGHT SENSITIVITY

As mentioned before, it is a disadvantage to have network training and rele-
vance evaluation as separate processes. To eliminate this drawback, Kamin [31]
proposed an improved version for pruning weights which does not require compu-
tation of two error functions. This way, both training and sensitivity (relevance)
estimation take place simultaneously without interfering with one another. The
algorithm is derived as follows.

Learning Evaluation and Pruning Techniques 365

Suppose that after training, the weight Wijk was eliminated. The sensitivity of
the error function to this pruning can be expressed as

E(wf) - E(0) f

where w^ represents the collection of all synapses after training.
When training starts, synapses are initialized to some random, usually small

value. Suppose the initial value of wtjk is fairly small and given by w]-^.. Then the
sensitivity can be approximated by

^ E(wf) - E(W) f
Sijk = f wijj^, (14)

Kk - "^ijk

in which ŵ represents the weights after training, but with wtjk = if ••̂ . This
approximation is advantageous because the difference in the numerator corre-
sponds to the variation the error function experiences during training as a result
of updating wijk, assuming all other synapses remain fixed at their final values.
Consequently, the difference can be expressed as

E(^f) - E(W) = f ^ ^ ^ dwijk, (15)

where I and F are the initial and final points in weight space. This integral can,
in turn, be approximated by a summation along the learning trajectory in weight
space throughout the total number of epochs, R. Hence,

S , , = - | ; | ^ A . , , (.) ^ ^ ^ . (16)

For implementation purposes, a general expression for the partial derivative
of the error function with respect to the synapse should be found in terms of the
training parameters (such as the gain factor r], or momentum P), and the synapse
modifications. For example, if training takes place using the basic BP without
momentum, the sensitivities would then be calculated with

^-1 ^ /

Sijk = J2^Awijk(n)f ''^ . . (17)

Note how all the data needed to compute Sijk according to Eq. (16) would be
available during training.

366 Leda Villalobos and Francis L. Merat

C. OPTIMAL BRAIN DAMAGE

Since the previous two pruning algorithms are based on the simpHstic approx-
imation of Eq. (11), they favor pruning small weights (or neurons with small
weights.) As has been found by several researchers, this elimination criterion
sometimes actually leads to sensible increments in the error function. As pointed
out by Le Cun et al [32], a more effective approach is to construct a local model
of E to analytically predict the effects of eliminating weights.

Applying Taylor series, it is easy to show that a small perturbation (5w in the
weights will produce a variation 8E in the error function, with

8E=l—I 8w+-8w^ 'H'8w-hO(\\8wf), (18)
\ 9 w / 2

where H = d^E/dw^ is the Hessian matrix with all second-order derivatives.
If the network has been trained to some local minimum, then the first term in

Eq. (18) vanishes. By ignoring the third- and higher-order terms in the expansion,
we get the simplified expression

8E = ^8yv^ . H . (5w. (19)

To reduce the computational cost, Le Cun et al, [32] approximate the Hessian
by its diagonal [33]. This approximation assumes the 8E produced by changing
several weights is equal to the sum of the ^^s produced by changing each weight
individually. Hence, the saliency of weight wijk can be computed as

8Eijk = Sijk = -wfjk-^. (20)

The resulting iterative pruning algorithm, normally referred to as Optimal
Brain Damage (OBD), is as follows:

Step 1. Select a network with a reasonable architecture.
Step 2. Train the network to a local minimum or a satisfactory solution.
Step 3. Compute the saliencies according to Eq. (20).
Step 4. If weights with low saliencies are identified, prune them. Otherwise,

stop.
Step 5. Iterate to step 2.

OBD has been used successfully in real-world applications not only to reduce
network size but also to interactively find better architectures [32, 34].

Learning Evaluation and Pruning Techniques 367

D. OPTIMAL BRAIN SURGEON

OBD presents two drawbacks. First, after deleting a few weights, the network
has to be retrained, increasing training time significantly. Second, and perhaps
most importantly, using the Hessian's diagonal rather than the Hessian seems to
cause incorrect pruning. Hassibi et al [35,36] have reported better generalization
and size reduction with a variation of OBD called Optimal Brain Surgeon (OBS).

In OBD, retraining is required after pruning because the error E is no longer
at a local minimum. OBS takes care of this inconvenience by providing a method
to analytically determine the modifications 5w needed to bring E back to a min-
imum. Suppose a single weight in a trained network is to be selected for elimi-
nation. The objective of this selection will be to find that weight whose pruning
minimizes the increment 8E in Eq. (19). If this weight is represented by wijk,
then pruning (setting it to zero) can be expressed as the constraint

e,.^.^.5w + w;,7^=0, (21)

where ê yĵ is the unit vector in weight space which corresponds to wtjk. Hence,
we have a constraint optimization problem, solvable with the Lagrangian

S = ^5w^ . H . 5w + A(e,.ŷ . (5w + wtjk). (22)

where k is the Lagrangian multiplier.
After taking the derivative of S with respect to 5w, applying Eq. (21), and some

algebra, we find the optimum change in the weight vector is

while the saliency of wtjk becomes

-̂ = -[iF^(«"--).

4.
^Ln Ujkjjk

In general, the Hessian produced by BP is always nonsingular but almost rank-
deficient. Nevertheless, Hassibi et al. [35] also present an elegant way to compute
the inverse for a fully trained network, independently of training method. How-
ever, it should be pointed out that the computation requirements in OBS are more
significant than in OBD.

Summarizing, the sequence of steps in the OBS pruning algorithm is as fol-
lows:

Step 1. Select a network with a reasonably large architecture.
Step 2. Train the network to a local minimum.
Step 3. Compute H - ^

368 Leda Villalohos and Francis L. Merat

Step 4. Find and delete the weight with smallest saliency by using Eq. (24).
Otherwise, stop.

Step 5. Update all weights using Eq. (23).
Step 6. Iterate to step 3.

IV. OPTIMIZATION THROUGH
CONSTRAINT SATISFACTION

There are similarities between a supervised learning task and a resource allo-
cation problem. A network's architecture—^number of layers, neurons, and acti-
vation function characteristics—can be treated as interrelated, limited resources
which must satisfy the constraints set forth by the training patterns. Within this
framework, performance depends on the network's ability to satisfy the con-
straints, and it can be readily measured through mathematical programming.
Work on this area was first introduced during the 1960s, with the idea of decid-
ing whether the pattern classes a perceptron had to learn were linearly separable
[37, 38]. More recently, constraint optimization has been exploited to solve more
challenging problems, such as network pruning and feature space optimization
[39,40].

Learning performance is usually assessed with the quadratic error E: training
is normally considered successful if E falls below a small, nonzero value. This im-
plicit discrepancy tolerance acts as an inequality constraint, and can be exploited
to find optimal architectures and feature spaces.

To show the effect the tolerance has on the training process, consider a particu-
lar training pattern with K features {fi\ / = 1, 2 , . . . , A'), and one desired output
tp. Assume the allowed discrepancy tolerance is specified by an upper bound 5+
and a lower bound 8-. In such a case, the network would have learned the pat-
tern if its actual output falls in the range [tp — 5_, r̂ -f- 5+]. Hence, the pattern is
learned if the constraints O > (tp — 8-) and O < (tp -\- 5+) are satisfied. Since
it is possible to specify tolerance levels for every pattern, this procedure can be
extended to include all patterns used to train the network. Consequently, learning
can be posed as an inequality constraint satisfaction problem.

A. CONSTRAINTS IN HIGHER-ORDER NETWORKS

For simplicity, we concentrate our work on the class of higher-order networks
shown in Fig. 2, which are universal approximators [41] that have been used in
pattern recognition [42], character recognition [43], and system identification and
control [44] applications. Although focused on higher-order networks, our analy-
sis can be extended to other architectures.

Learning Evaluation and Pruning Techniques 369

Higher-order
expansions

Figure 2 Architecture of a higher-order network. The original feature vector has N components.
Through nonlinear transformations, higher-order terms are added to the original feature vector, effec-
tively expanding it.

The mapping learned by the architecture is given by

Om = g{ncim),
N K-N

(25)

where Om is the mth output, Wtm is the weight from the ith feature to the mth
output neuron, ̂ (0 is the output neuron's activation function, 0 is the output neu-
ron's bias, Fj is the jth element of the original N — D feature vector F', and /i/ (•)
is the ith higher-order feature expansion function.

To simplify the analysis, we concatenate the original feature vector F' with the
higher-order feature expansions and create the ^ — D vector F. Thus, the mth
output can be expressed as

Om=glj2^J^^J-^^"'] (26)

Suppose there are P training patterns of K features (including the higher-order
expansions), and one output. Their information can be captured indiPxK matrix
(F) with the feature vectors, and 3LP — D vector T with the desired outputs. These
data can be learned with the desired accuracy if there exists at least one K — D

370 Leda Villalohos and Francis L. Merat

vector W, and a scalar 0 which satisfy

where _̂j_ and 5_ are P — D vectors with the upper and lower bound tolerances,
and g~^ (•) is the inverse of the activation function. According to Eq. (27), success-
ful learning occurs when the set of solutions of the linear inequality constraints is
nonempty.

B. LINEAR PROGRAMMING FORMULATIONS

Linear inequality constraints like those of Eq. (27) are solved with linear pro-
gramming (LP) algorithms such as the Simplex method [45]. Simplex operates in
two stages. First, it finds out whether the constraints have a nonempty set of feasi-
ble solutions; then, if there is at least one feasible solution, the algorithm searches
the space of feasible solutions guided by an objective function.

LP algorithms require the variables in the inequaUties to take only nonnega-
tive values. Hence, a variable without sign restrictions must be expressed as the
difference of two nonnegative variables [46]. For this reason, the formulation of
Eq. (27) has to be rewritten as

1] rw^-w^i^r<^-'(i+^+)
i j L OA-OB J L>^"HT-5_)

(28)

where W^ and W^ are A' — D vectors of nonnegative variables and W^ — W^ =
W. Similarly, OA and OB are nonnegative variables such that OA—OB=0.

The solution of Eq. (28) indicates whether the patterns can be learned with the
desired accuracy. Should learning be possible, feasible solutions will be identi-
fiable which correspond to connectivities satisfying all the accuracy constraints.
Otherwise, the set of feasible solutions will be empty, prompting Simplex to stop
after its first phase.

If not all patterns can be learned with the desired accuracy, the formulation
would not be appropriate for identifying any of the nonleamable patterns. To ad-
dress this problem, we modify the constraints such that they have a default feasible
solution. With this modification, we can define an objective function such that the
optimum feasible solution indicates which patterns are nonleamable.

Introducing a default feasible solution We guarantee the existence of a de-
fault feasible solution by introducing "pad variables," one for every pattern, into
the LP formulation.

Let Si be the pad variable associated with the /th pattern. St is allowed to
take any real number and so we express it as the difference of the nonnegative

Learning Evaluation and Pruning Techniques 371

variables SAI and SBI . We introduce the pad variables in the formulation as shown
inEq.(29):

::]
^A-
QA-

SA-

-m
-OB

-SB
L>^"ni-^-)J' (29)

with I the P X P identity matrix. Clearly, the default feasible solution consists of
making W and 0 equal to zero, and assigning each pad variable a value which falls
in the range of satisfactory learning. Should one or more of the feasible solutions
have all pad variables equal to zero, the learning task would be feasible. If none
of the feasible solutions has all pad variables equal to zero, satisfactory learning
would not be possible.

Specifying an optimization criterion Among all the feasible solutions for
Eq. (29), one is particularly informative: the feasible solution with the largest
number of zeroed pad variables. Let this solution be C* = [W*^*S*]. Then, the
patterns whose associated pad variables appear zeroed in C* form the largest set
of patterns the structure can learn with the desired accuracy. For this statement
to hold true, every leamable pattern must have its pad variable zeroed in C*, and
every nonleamable pattern must have its pad variable different from zero. From
here, it follows that our optimization criterion should be the minimization of the
sum of nonzero pad variables. After some work [40], the complete LP formulation
can be expressed as

Objective Function = Min T J Hi,
/=i

subject to

F 1 I 0 0
F 1 I 0 0
0 0 0 I - L

WA-WB
OA-OB

^A ~^B
^A + 5 B

H

—
'<g'

>g'
< 0

-1(1 + 5+)
-i(T-S_) (30)

where Li is a sufficiently large upper bound for \Si\, and Hi is an integer 0/1
variable used to test whether Si is different from zero.

Remarks. The solution of Eq. (30) provides us with the following informa-
tion:

• It indicates whether the network can effectively learn the training patterns
with the desired level of accuracy.

372 Leda Villalobos and Francis L. Merat

If the structure is appropriate for learning the training patterns, the solution
gives a connectivity which corresponds to satisfactory learning.
If the network is not capable of learning all the patterns, one or more of the
integer variables will remain nonzero. The patterns whose associated pad
variables are nonzero form the smallest set of nonleamable patterns.

C. OPTIMIZING FEATURE SPACE

If we have confirmed that a particular structure is appropriate for learning the
information contained in the training patterns, the next step would be to identify
those features, if any, which can be eliminated from the feature space without
diminishing performance.

To explain our feature space pruning technique, let us assume the jth feature
in the feature space can be eliminated. This implies the jth connection weight Wj
can be made equal to zero in a feasible solution, which means that

\WJ\ = WAJ-\-WBJ=0. (31)

It is possible to test whether Wj can be made equal to zero following a proce-
dure similar to the one used to test pad variables [40]. The only difference is that
the objective function should now be the minimization of the number of connec-
tion weights different from zero in the optimum solution. If the integer variable
Qj is used for testing Wj, our LP formulation becomes

subject to

Objective Function = Min Y^ Qj,

F 1 0 0
F 1 0 0
0 0 I - L

0A-0B

Q

<g'HT + s+)'
>g
<o

- 1 (1-U (32)

where Q and L are ^
spectively.

D vectors of integer variables and constant values, re-

V. LOCAL AND DISTRIBUTED BOTTLENECKS

Researchers report generalization improvement when a bottleneck—a hidden
layer with significantly fewer neurons than previous layers—is imposed on the ar-
chitecture of a network. Some methods actually introduce locahzed bottlenecks,

Learning Evaluation and Pruning Techniques 373

either through weight or neuron deactivation. Kruschke [47, 48] has argued that
this hardware minimization presents some disadvantages in terms of noise and
damage resistance. As an alternative, he proposes a dupHcation of the bottle-
neck's functional properties—particularly complexity and weight-space dimen-
sion compression—without the actual hardware reduction.

Consider the two consecutive layers k — I and k, with B and A neurons, re-
spectively. The weights connecting layer k — \io layer k can be arranged in the
5 X A matrix W^, of rank R.lf R < A, layer k forms a bottleneck. Additionally,
if B = R,thQ bottleneck is local, while if B > /?, it is distributed. Hence, to im-
prove generalization we want to decrease the functional dimensionality of R, and
decrease the number of neurons B in layer k. This corresponds to compressing
the weight space, and clustering the weights within that space. Shepard [49] de-
scribed an algorithm to accomplish both objectives. It is based on increasing the
variance of the distances between weights by further stretching large distances
and reducing small ones.

Suppose Wjk = [u)ijkW2jk • • • ^Ajk] is the vector with the weights connecting
layer k — Ito node j in layer k. The Euclidean distance between vectors Wjk and
Wik is dijk = \\wjk — WikW, which has a mean value dk. We can define a cost
function proportional to the variance of the distances, say

B B

D = -\Y,Y.^dijk-dkf. (33)

which produces the gradient descent

D

^yfik = = A 2_^(dijk - dk) '—. (34)

Thus, after every standard BP epoch, the weights have to be modified according
to Eq. (34).

Although promising, this procedure requires nonlocal computations. An easy
way to improve it consists in redefining the distance so that now

^ijk = ~ ^ net/^p • netjkp, (35)
peT

where net/^p represents the net input to neuron / for pattern p [50]. Recall that
nciik = {wik, Ok-\). Using this distance in Eq. (33), and applying gradient de-
cent, we get

B

j=l peT

374 Leda Villalobos and Francis L. Merat

Substantial simplification occurs when we make dk = 0, for example by in-
cluding the magnitude of the weight vectors as part of the error function in BP
[50]. As a side effect, this also prevents the variance of the weights from growing
too large. Just as in some previously discussed procedures [22, 25], selection of
the parameter X is critical. With a very large A, all weight vectors will collapse into
two antiparallel directions, effectively acting like one neuron. A solution is to dy-
namically modify k. When learning is going well, A can be increased; otherwise,
it is decreased and even reversed in sign.

VI. INTERACTIVE PRUNING

Interactive pruning strategies work by training a somewhat oversized network
up to a local minimum, and then heuristically identifying and pruning redundant
hidden neurons. Once pruning takes place, the skeletonized network is trained
again to a local minimum.

A. NEURON REDUNDANCY

Sietsma and Dow [51, 52] have proposed an interactive off-line pruning pro-
cedure to eliminate hidden neurons in trained networks. It is based on heuristics
carried out in two steps. The first phase identifies and prunes redundant neurons
whose outputs remain nearly constant across the training set, or mimic the out-
puts of other neurons. To some extent, this resembles one of the objectives of
bottlenecks [48], namely, to group together neurons whose weights are parallel or
antiparallel. The main difference resides in that grouping here takes place inter-
actively and after training.

Suppose the hidden output Oi{k-\) falls within the range {o ± 8o) across the
training set, where 6o is fairly small. Then, its respective neuron can be elimi-
nated, and its effects compensated for, by modifying the biases of the neurons on
the ^th layer according to

bjk = bjk + WijkO. (37)

Similarly, if the hidden output oa^k-i) is approximately the same as Om(k-i) across
the training patterns, then one of the two neurons can be eliminated. When the
pruned output is Om{k-\), then all weights wtjk originating from O/(A:-I) have to
be modified so that

y^ijk = Wijk + Wmjk' (38)

It is also possible to find oi^k-i) ^ 1 — Om(k-i)' In this case, the elimination of
Om(k-i) is done by modifying the biases and weights of all neurons fed by Om(k-i)

Learning Evaluation and Pruning Techniques 375

andoi(k-i)''

bjk = bjk + Wmjk. (39)

yoijk = mjk - Wmjk' (40)

The second pruning phase is aimed at identifying and removing neurons which,
at the level of their respective hidden layer, do not contribute to the separation of
pattern classes. These neurons are considered as transmitting unnecessary infor-
mation to the next layer [52]. Such a form of pruning could lead to the outputs
of the trimmed layer being linearly inseparable with respect to the classes of the
following layer. To deal with this problem, a technique for adding more layers has
been proposed. It consists in training a small network to receive the outputs of the
trimmed layer as inputs and produce the outputs of the following layer, and then
inserting it into the original network. As a result, the pruned networks are narrow
and have many layers.

Sietsma and Dow conducted several tests to evaluate the hypothesis that nar-
row, many-layered networks generalize better than broad, shallow ones [53]. Net-
works were first trained with patterns contaminated with different levels of noise,
and then pruned. These tests showed that [51]:

• Better generalization and more hidden neuron utilization occur when the
training patterns are noisy. This happens because the noise smears the basins of
attraction, making overfitting more difficult.

• Generalization deteriorates when the networks are trinmied to the smallest
possible size during the second pruning phase. This observation indicates there
are circumstances when minimum size is not a guarantee of better performance.
However, it is important to keep in mind that there was no extra training after the
rather crude neuron elimination. Consequently, this result cannot be extrapolated
to other pruning procedures.

• The long and narrow networks performed poorly. However, there is no rea-
son to believe this result will apply to other algorithms.

B. INFORMATION MEASURE

Information measure (IM), an indicator of how well a feature discriminates
between members of different classes [54], has been used in several decision tree
induction schemes. Basically, it measures the entropy reduction attained by know-
ing the value of a given feature attached to the classes. In a particular pattern
recognition problem, the idea is to select features with high IMs, because they
define a good discriminant. Consider for instance the case illustrated in Fig. 3,
where two features (/i and /2) help define two linear discriminant functions. The
function obtained with /2 separates the classes very well, far better than the func-

376 Leda Villalobos and Francis L. Merat

fi IM(f2)=0.98

IM(f]h0.45

fl

Figure 3 Feature discriminating power and information measure (IM). A feature's IM is related to
the quality of the class discriminants it generates; good discriminants receive high IMs, while poor
ones receive low IMs. Because of the Uttle information they convey, features with low IMs can be
eliminated.

tion obtained with f\. Consequently, IMifi) takes a large value, while IM(fi)
takes a fairly small one. Of course, / i could be eliminated from the feature set
used to describe the classes.

Ramachandran and Pratt [55] have proposed a technique to prune already
trained networks by estimating the hidden neurons' IMs. These estimates are cal-
culated by first thresholding the output of each neuron for every training pattern.
If the actual output is above 0.5, the neuron is assumed to have a 1.0 output. Oth-
erwise, the output is assumed to be 0.0. This thresholding makes it possible to
easily estimate IMs [54]. It is also possible to make a multivalue thresholding,
thus producing a more accurate estimate of a neuron's true significance.

After thresholding, the hidden neurons are treated as discrete-valued features,
and the idea is to figure out whether one or more of them are either redundant
or have Umited discrimination ability. Neurons with little discrimination power
have small IMs and can be eliminated without inflicting significant damage to the
architecture's classification potential. On the other hand, important neurons have
large IMs and should remain as part of the skeleton. Of course, after pruning, the
resulting network has to be retrained.

VII. OTHER PRUNING IVIETHODS

Even though the paradigms described so far are probably the most important
ones, many others have been reported in the open literature. Some of them use, for
example, Boltzmann methods [56], sequential function estimation [57], switch-
ing theory [58], and class entropy [59]. In this section, we consider techniques
grounded on genetic algorithms and evolutionary programming.

Learning Evaluation and Pruning Techniques 377

A. GENETIC ALGORITHMS

The main idea in this case consists in defining a parent network whose
complexity is sufficient to learn the task of interest, and then applying genetic
algorithms so as to generate smaller offspring which can still learn the required
information. It should be pointed out that the goal is not necessarily to ob-
tain a particular pruned network—called a phenotype, but rather an architecture
prototype—the genotype [60]. This is important because the actual performance
of a phenotype is initial-weight dependent, while the performance of a genotype
is not.

Miller et al. [61] present a very simple approach in which an untrained network
functions as parent, and the genetic operators swap functional substructures dur-
ing recombination. The crossover operator swaps all the links leading into some
node. The offspring is then trained for a fixed number of cycles, and its genetic
quality is measured by the final training error. The offspring with the lowest error
would be the final pruned network.

Obviously, two drawbacks plague this method. First, although it performs very
well with small problems, the computational time in more complex ones becomes
truly significant. Lacking a mechanism to favor the generation of some networks
over others, the genetic algorithm has to evaluate all possible offspring. With a
parent that has 50 connections, for example, retraining could be needed for per-
haps 2000 different networks, or more [62]. Second, there is no effective reward
assigned to smaller networks; each offspring is trained the same number of cycles.
The result is that larger networks have more opportunity to get lower training er-
rors, which reduces pruning potential.

Witley and Bogart [62] propose a more refined approach which takes care of
these two issues. In their method, the parent is an already trained network and its
weights are assigned to each offspring. Consequently, offspring retraining is much
faster. Also, the number of allowed training cycles increases linearly with the
number of pruned weights. This operates as a reward given to the smaller, leaner
offspring. Additionally, instead of generating all possible pruned versions of a
parent, more reproductive trials are assigned to the networks which got smaller
training errors. This increases the probability of generating very good offspring
early in the process.

B. EVOLUTIONARY PROGRAMMING

Evolutionary programming is a global optimization paradigm through system-
atically stochastic search. Applied to neural architecture, the search can be applied
for various purposes: to reduce the number of weights and/or neurons, find appro-

378 Leda Villalobos and Francis L. Merat

priate weight values, or guide architecture enhancement by adding extra neurons
during network growing [12,13].

Within the scope of pruning, McDonnell and Waagen [63] present three strate-
gies in which stochastic search simultaneously finds the weights and the number
of hidden neurons. Weights are stochastically modified through Gaussian muta-
tions proportional to the learning error, while the architecture is modified using the
standard deviation of the neurons' activation over all the training patterns. Their
results suggest that smaller networks can be obtained by artificially constraining
the search.

VIII. CONCLUDING REJVIARKS

By eliminating the chance of pattern overfitting, pruning techniques are of fun-
damental importance to improving the generalization capabilities of neural net-
works. In this chapter, we have described the principles underlying a variety of
pruning paradigms such as complexity regularization, sensitivity analysis, con-
straint optimization, iterative pruning, and others.

As we have explained, no one paradigm or algorithm gives optimal results
for all learning tasks and applications. For example, if the main concern is to
obtain efficient compact networks for hardware implementation or real-time es-
timation, then architecture optimizing algorithms are probably most appropriate
despite their stronger training computation requirements. On the other hand, if
derivation of rules relating features and outputs is more important, then com-
plexity regularization methods could be better suited. Similarly, if the goal is to
identify irrelevant input features to improve feature space, then optimization or
iterative pruning are more effective. In summary, algorithm selection must be tai-
lored to the application being considered.

REFERENCES

[1] L. G. Valiant. A theory of the leamable. Commun. ACM 21:1134-1142, 1984.
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Leamability and the Vapnik-

Chervonenkis dimension. /. Assoc. Comput. Machinery 36:929-965, 1989.
[3] E. B. Baum and D. Haussler. What size net gives valid generalization?. Neural Computat. 1:151-

160, 1989.
[4] B. Widrow. ADALINE and MADALINE—1963. In Proceedings of the IEEE First International

Conference on Neural Networks, Vol. I, pp. 143-158. San Diego, CA, 1987.
[5] T. Onoda. Neural network information criterion for the optimal number of hidden units. In IEEE

International Conference on Neural Networks, Vol. 1, pp. 275-280. Perth, AustraUa, 1995.

Learning Evaluation and Pruning Techniques 379

[6] B. Amirikian and H. Nishimura. What size network is good for generalization of a specific task
of interest?. Neural Networks 7:321-329, 1994.

[7] B. Igelnik and Y.-H. Pao. Estimation of size of hidden layer on basis of bound of generaliza-
tion error. In IEEE International Conference on Neural Networks, Vol. 4, pp. 1923-1927. Perth,
Australia, 1995.

[8] Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA,
1989.

[9] M. Arai. Bounds on the number of hidden units in binary-valued three-layer neural networks.
Neural Networks 6:S55-S60, 1993.

[10] Y. Hirose, K. Yamashita, and S. Hijiya. Back-propagation algorithm which varies the number of
hidden units. Neural Networks 4:61-66, 1991.

[11] B.-T. Zhang. An incremental learning algorithm that optimizes network size and sample size in
one trial. In Proceedigns of the IEEE International Conference on Neural Networks, Vol. I, pp.
215-220. Oriando, FL, 1994.

[12] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In Advances in
Neural Information Processing II (D. S. Touretzky, Ed.), pp. 524-532. Morgan Kaufmann, San
Mateo, CA, 1990.

[13] T.-C. Lee, A. M. Peterson, and J.-C. Tsai. A multi-layer feed-forward neural network with dy-
namically adjustable structures. In IEEE International Conference on System, Man, and Cyber-
netics, pp. 367-369. Los Angeles, 1990.

[14] J. C. Lee, Y H. Kim, W. D. Lee, and S. H. Lee. A method to find the structure and weights
of layered neural networks. In Proceedings of the International World Conference on Neural
Networks, Vol. 3, pp. 552-555. Portland, OR, 1993.

[15] D. C. Plant, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back propagation.
Technical Report CMU-CS-86-126, Carnegie-Mellon University, 1986.

[16] G. E. Hinton. Connectionist learning procedures. Artif Intell 40:185-234, 1989.
[17] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In Advances in

Neural Information Processing IV (J. Moody, S. J. Hanson, and R. P. Lippmann, Eds.), pp. 951-
957. Morgan Kaufmann, San Mateo, CA, 1992.

[18] F. Hergert, W. Finnoff, and H. G. Zimmermann. A comparison of weight elimination methods for
reducing complexity in neural networks. In Proceedings of the International Joint Conference
on Neural Networks, Vol. 3, pp. 980-987. San Diego, CA, 1992.

[19] L. K. Hansen and C. E. Rasmussen. Pruning from adaptive regularization. Neural Computat.
6:1223-1232, 1994.

[20] P. Williams. Bayesian regularization and pruning using a laplace prior. Neural Computat. 7:117-
143,1995.

[21] S. J. Hanson and L. Y Pratt. Comparing biases for minimal networks construction with back-
propagation. In Advances in Neural Information Processing I (D. S. Touretzky, Ed.), pp. 177-
185. Morgan Kaufmann, San Mateo, CA, 1989.

[22] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-elimination ap-
plied to currency exchange rate prediction. In Proceedings of the International Joint Conference
on Neural Networks, Vol. I, pp. 837-841. Seattle, WA, 1991.

[23] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-elimination
with application to forecasting. In Advances in Neural Information Processing III (R. P. Lipp-
mann, J. Moody, and D. S. Touretzky, Eds.), pp. 875-882. Morgan Kaufmann, San Mateo, CA,
1991.

[24] H. Tong. Non-linear Time Series: A Dynamical System Approach. Oxford University Press, New
York/London, 1990.

[25] C. Ji, R. R. Snapp, and D. Psaltis. Generalization smoothness constraints from discrete samples.
Neural Computat. 2:188-197, 1990.

380 Leda Villalobos and Francis L. Merat

[26] Y. Chauvin. A back-propagation algorithm with optimal use of hidden units. In Advances in
Neural Information Processing / (D. S. Touretzky, Ed.), pp. 519-526. Morgan Kaufmann, San
Mateo, CA, 1989.

[27] Y. Chauvin. Dynamic behavior of constrained back-propagation networks. In Advances in
Neural Information Processing II (D. S. Touretzky, Ed.), pp. 642-649. Morgan Kaufmann,
San Mateo, CA, 1990.

[28] Y Chauvin. Generalization performance of overtrained back-propagation networks. In Neural
Networks, Proceedings of the EUROSIP Workshop (L. B. Ahneida and C. J. Wellekens, Eds.),
pp. 46-55. Springer-Verlag, Beriin/New York, 1990.

[29] M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a network
via relevance assessment. In Advances in Neural Information Processing / (D. S. Touretzky, Ed.),
pp. 107-115. Morgan Kaufmann, San Mateo, CA, 1989.

[30] B. E. Segee and M. J. Carter. Fault tolerance of pruned multilayer networks. In Proceedings of
the International Joint Conference on Neural Networks, Vol. II, pp. 447^52. Seattle, WA, 1991.

[31] E. D. Kamin. A simple procedure for pruning back-propagation trained neural networks. IEEE
Trans. Neural Networks 1:239-242, 1990.

[32] Y Le Cun, J. Denker, and S. A. SoUa. Optimal Brain Damage. In Advances in Neural Information
Processing II (D. S. Touretzky, Ed.), pp. 598-605. Morgan Kaufmann, San Mateo, CA, 1990.

[33] Y Le Cun. GeneraUzation and network design strategies. In Connectionism in Perspective
(R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, Eds.). Elsevier, Zurich, 1989.

[34] Y Le Cun, B. Boser, J. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Back-propagation applied to handwritten zip code recognition. Neural Computat. 1:541-551,
1989.

[35] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal Brain
Surgeon. In Advances in Neural Information Processing V (S. J. Hanson, J. D. Cowan, and
C. L. Giles, Eds.), pp. 164-171. Morgan Kaufmann, San Mateo, CA, 1993.

[36] B. Hassibi, D. G. Stork, and G. Wolff. Optimal Brain Surgeon: Extensions and performance
comparisons. \n Advances in Neural Information Processing V7(D. S. Touretzky, Ed.), pp. 263-
270. Morgan Kaufmann, San Mateo, CA, 1994.

[37] F. W. Smith. Pattern classifier design by linear progranmiing. IEEE Trans. Computers C-17:367-
372, 1968.

[38] O. L. Mangasarian. Linear and nonhnear separation of patterns by hnear programming. Open
Res. 444-^52, 1965.

[39] P. Rujan. A fast method for calculating the perceptron with maximal stability. J. Phys. 13:277-
290, 1993.

[40] L. Villalobos and F. L. Merat. Learning capabiUty assessment and feature space optimization for
higher-order neural networks. IEEE Trans. Neural Networks 6:267-272, 1995.

[41] K. Homik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-
proximators. Neural Networks 2:359-366, 1989.

[42] Y H. Pao and D. J. Sobajic. Combined use of unsupervised and supervised learning for dynamic
security assessment. IEEE Trans. Power Syst. 1:S1S, 1992.

[43] S. J. Perantonis and P. J. G. Lisboa. Translation, rotation, and scale invariant pattern recognition
by high-order neural networks and moment classifiers. IEEE Trans. Neural Networks 3:241-251,
1992.

[44] D. J. Sobajic, Y H. Pao, and D. T. Lee. Autonomous adaptive synchronous machine control.
Internal J. Elec. Power Energy 14:166, 1992.

[45] S. I. Gass. Linear Programming: Methods and Applications. McGraw-Hill, New York, 1985.
[46] K. G. Murty. Linear Programming. John Wiley, New York, 1983.
[47] J. K. Kruschke. Improving generalization in back-propagation networks with distributed bottle-

necks. In Proceedings of the Joint International Conference on Neural Networks, Vol. 1, pp.
443-447. Washington, DC, 1989.

Learning Evaluation and Pruning Techniques 381

[48] J. K. Kruschke. Creating local and distributed bottlenecks in hidden layers of back-propagation
networks. In Proceedings of the 1988 Connectionist Models Summer School (D. Touretzky, G.
Hinton, and T. Sejnowski, Eds.), pp. 120-126, 1988.

[49] R. N. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance
function, I and II. Psychometrika 27:125-140, 219-246, 1962.

[50] J. K. Kruschke. Improving generaUzation in back-propagation networks with distributed bottie-
necks. In Proceedings of the International Joint Conference on Neural Networks, Vol. II, pp.
163-168. Seattie, WA, 1991.

[51] J. Sietsma and R. J. F. Dow. Creating artificial neural networks that generalize. Neural Networks
4:67-79, 1991.

[52] J. Sietsma and R. J. F. Dow. Neural net pruning—^Why and how?. In Proceedings of the IEEE
International Conference on Neural Networks, Vol. 1, pp. 325-332. San Diego, CA, 1988.

[53] D. E. Rumelhart. Parallel distributed processing. Plenary Session, IEEE International Confer-
ence on Neural Networks, San Diego, CA, 1988.

[54] J. R. Quinlan. Induction of decision trees. Mach. Learn. 1:81-106, 1986.
[55] S. Ramachandran and L. Y. Pratt. Information measure based skeletonization. In Advances on

Neural Information Processing IV (J. Moody, S. J. Hanson, and R. P. Lippmann, Eds.), pp. 1080-
1087. Morgan Kaufmann, San Mateo, CA, 1992.

[56] O. M. Omidvar and C. L. Wilson. Optimization of neural network topology and information con-
tent using Boltzmann methods. In Proceedings of the International Joint Conference on Neural
Networks, Vol. IV, pp. 594-599. Baltimore, MD, 1992.

[57] C. MoHna and M. Niranjan. Pruning with replacement on limited resource allocating networks
by F-projections. Neural Computat. 8:855-868, 1996.

[58] K.-H. Lee, H.-Y. Hwang, and D.-S. Cho. Determining the optimal number of hidden nodes and
their corresponding input and output patterns in threshold logic network. In Proceedings of the
World Conference on Neural Networks, Vol. 3, pp. 484-487. Portland, OR, 1993.

[59] S. Ridella, G. Speroni, P. Trebino, and R. Zunino. Pruning and rule extraction using class entropy.
In Proceedings of the IEEE International Conference on Neural Networks, Vol. 1, pp. 250-256.
San Francisco, CA, 1993.

[60] N. Dodd. Optimisation of network structure using genetic techniques. In Proceedings of the
International Joint Conference on Neural Networks, Vol. 3, pp. 965-970. San Diego, CA, 1990.

[61] G. Miller, P. Todd, and S. Hedge. Designing neural networks using genetic algorithms. In Pro-
ceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA, 1989.

[62] D. Witiey and C. Bogart. The evolution of connectivity: Pruning neural networks using genetic
algorithms. In Proceedings of the International Joint Conference on Neural Networks, Vol. 1,
pp. 134-137. Washington, DC, 1990.

[63] J. R. McDonnell and D. Waagen. Determining neural network hidden layer size using evolu-
tionary programming. In Proceedings of the World Conference on Neural Networks, Vol. 3, pp.
564-567. Portland, OR, 1993.

This Page Intentionally Left Blank

Index

Analog image processing, 201
Analog network model of outer retina, 216
Architecture for self adaptive classifier, HI
Artificial intelligence, 1
Artificial neural networks in pattern recogni-

tion, 1
Artificial perception, 1
Auto-associative neural networks in unsu-

pervised learning, 13
Automated recognition techniques, 1
Automatic analysis

of images, 1
of signals, 1

B
Backpropagation artificial neural networks

for arteriogram segmentation, a super-
vised approach, 101-107

Backpropagation learning, 14
Block diagram of generic fault detection and

isolation (FDI) system, 193

Character recognition, 4, 61
Chemical synapse in neuron, 205
Circuit elements in retinal circuit image pro-

cessors, 205
Class-conditional likelihoods, 62
Classification and reliability techniques in

signal and image analysis, 161-164
Classification of data, 61
Classification paradigms in pattern recogni-

tion, 164-167

Classification reliability of neural networks
in pattern recognition, 172-174

Clustering approach, 13
Comparison of statistical and neural classi-

fiers, 61
Complexity reduction of neural networks by

pruning techniques and other tech-
niques, 354-378

Currency mask processing for the neural
network, construction, 136

Currency recognition by the basic ideas of
the mask technique, 134

D
Data acquisition and preprocessing

in optical character recognition, 64
in speech recognition, 65

Data clustering and compression by the self-
organizing map, 17-20

Data collection in pattern recognition, 4
Data reduction

for dealing with the curse of dimensional-
ity, 7

through feature extraction, 7
Data storage in automated pattern recogni-

tion system, 4
Diagnostic performance of a neural fault

detection and isolation (FDI) system,
195

Dichotomies in the design of statistical pat-
tern recognition, 21

Difference between network outputs and re-
quired outputs, 62

383

384 Index

Different input patterns and different cur-
rency slab values, 135

Different input patterns and same currency
slab values, 135

Digital image processors, 201
Document analysis and recognition, 3
Document processing, 1

E
Electrical models of image processors, 201
Electrical synapses in neuron, 206
Error-corrective feature extraction, 10
Error-corrective neural training, 10
Evaluation of neural network systems tech-

niques in classification reliability,
174-178

Experiments of neural network scale reduc-
tion in currency reduction using masks,
142-143

Experimental results in pattern classifica-
tion, 185-196

Fault detection and isolation in industrial
plants, electrical networks, and other
complex industrial systems, experimen-
tal results, 192-196

Feasible design approach, 2
Feature extraction

approach, 12, 15
in data classification, 11
in data reduction in image analysis, 11
in data reduction in pattern recognition,

11
phase for data classification, 7
problem, 11

Feedback from postprocessing to classifica-
tion, 9

Five-layer network, 14
Flowchart of the genetic algorithm in cur-

rency recognition, 150

Generalization of the linear principal com-
ponent analysis by multilayer percep-
tron networks, 13

General pattern recognition system, 3
Generic pattern recognition system, 4

H
Handwriting character recognition experi-

mental results, 186-191
Handwritten character recognition, 63
Hidden units, determining number, 296-303
Human communication, 61

I
Image analysis, 4
Image compression with lower error than

principal component analysis by means
of five-layer multilayer network, 15

Image processing
architecture inspired by the vertebrate

retinal circuit, 201
by principal component analysis, 324-334

Image processors, 201
Image recognition, 62

Learning algorithms and principle compo-
nent analysis and simulation results for
image analysis, 335-350

Learning evaluation techniques, 353-354
Light-adaptive architecture, 244

M
Machine learning approaches in pattern

recognition, 2
Mask determination for currency identifica-

tion using the genetic neural network
algorithm, 143-152

Medical images, 3
Medical imaging

history, 90
in neural networks, 89
modalities or media, 90-94
techniques, 90

Model fitting, 2
Model for diagnostic systems using medical

images, 95
Multilayer perceptron neural networks for

optical career recognition and speech
recognition, 62

Multilayer perceptron neural networks in
speech and optical character recogni-
tion, 78

Index 385

N

Network reduction by pruning techniques,
309-312

Neural classifiers in optical character recog-
nition and speech recognition, 74-79

building, 75
Neural network applications in pattern

recognition, 38-52
Neural network classifiers in pattern recog-

nition, 167-172
Neural networks

in medical imaging, 89, 95-99, 124-127
in pattern recognition, 2

Neuronal adaptation, 215
Neuro-recognition techniques in currency

recognition, 152-155
Nonlinear feature compression, 15
Nonlinear feature extraction, 15
Nonlinear neural activation function, 14
Nonlinear principal component analysis, 16
Nonparametric estimation approaches in op-

tical character and speech recognition,
62

Nonparametric methods in classifiers, 66
Normalization of characters in pattern

recognition, 7
Normalization requirement in pattern recog-

nition, 6

Parametric methods in statistical classifiers,
66

Pattern recognition, 1, 61
applications, 1
basic setting, 3
classification, 8
problem, 3
system with loop back routes, 9
two distinct parts, 161-164

Perceptron neural networks in speech and
optical character recognition, 77

Performance evaluation of the self-adaptive
classifier, 117

Person-machine communication, 61
Person-to-person communication, 61
Photoreceptors in retinal circuit image pro-

cessors, 203
Physiological background of retinal circuit

image processors, 202
Postprocessing

in classification, 9
in pattern recognition, 8

Preprocessing of input data, 5
Principal component analysis, 321-350

in neural feature extraction, 12
in data compression methods, 12

Printed character recognition, 63

O
Off-line handwritten character recognition,

63
On-line handwritten character recognition,

63
Optical character recognition, 5, 6, 61, 62

literature survey, 79, 80
Optimal number of input units for pattern

classification, 303-309
Outer retinal circuits, 210

Paper currency recognition by means of neu-
ral networks, 133

Parameter determination by a classifier, 62
Parametric estimation approaches in speech

and optical character recognition, 62

Quasi-Newton methods for neural network
training, 289

Radial basis function neural network ap-
proaches in optical character recogni-
tion and speech recognition, 62, 78

Realized neural fault detection and isolation
(FDD block diagram, 194

Registration of data
in model fitting, 5
in speech recognition, 5

Regression analysis on data representation, 2
Regularization vision chips, 221
Rejection techniques for unreliable pattern

recognition, 178-185
Remote sensing, 2
Review of artificial neural network applica-

tions in medical imaging, 95-101

386 Index

Segmentation of arteriograms, 99-101, 121
Self-adaptive artificial neural networks for

arteriogram segmentation, an unsuper-
vised approach, 107

Self-organizing map (SOM) network, 18
Semiparametric estimation approaches in

optical character and speech recogni-
tion, 62

Semiparametric methods in statistical classi-
fiers, 66

Separate normalization step required in pat-
tern recognition, 6

Simple perceptron neural networks in optical
character recognition and speech recog-
nition, 62

Simulation results in optical character and
speech recognition, 81-85

Small size neuro-recognition in currency us-
ing masks, 134

Speaker recognition, 3
Speech classification, 61, 62
Speech recognition, 3, 6, 7, 61, 62

Hterature survey, 80-81
Splitting preprocessing data into subparts, 6
Splitting registered data into subparts, 6
Statistical and neural classification methods,

20-38

Statistical classifiers in optical character and
speech recognition, 65-74

building, 75
Supervised learning network, 11
Supervised versus unsupervised artificial

neural network for arteriogram segmen-
tation, 127

Three layered feedforward network, 290-295
Time series classification system, 62
Trainable parts in pattern recognition, 10
Two tasks of character recognition, 63
Two tasks of speech recognition, 63

U
Understanding speech and handwriting, 1
Unification of the three core or basic tech-

niques for currency identification,
156-158

Unsupervised learning algorithms, 12
Unsupervised neural networks in clustering

and data compression, 13

W
Winner-take-all (WTA) layer in a self-

organizing map (SOM), 18

	Front Cover
	Image Processing and Pattern Recognition
	Copyright Page
	Contents
	Contributors
	Preface
	Chapter 1. Pattern Recognition
	I. Introduction
	II. Pattern Recognition Problem
	III. Neural Networks in Feature Extraction
	IV. Classification Methods: Statistical and Neural
	V. Neural Network Applications in Pattern Recognition
	VI. Summary
	References

	Chapter 2. Comparison of Statistical and Neural Classifiers and Their Applications to Optical Character Recognition and Speech Classification
	I. Introduction
	II. Applications
	III. Data Acquisition and Preprocessing
	IV. Statistical Classifiers
	V. Neural Classifiers
	VI. Literature Survey
	VII. Simulation Results
	VIII. Conclusions
	References

	Chapter 3. Medical Imaging
	I. Introduction
	II. Review of Artificial Neural Network Applications in Medical Imaging
	III. Segmentation of Arteriograms
	IV. Back-Propagation Artificial Neural Network for Arteriogram Segmentation: A Supervised Approach
	V. Self-Adaptive Artificial Neural Network for Arteriogram Segmentation: An Unsupervised Approach
	VI. Conclusions
	References

	Chapter 4. Paper Currency Recognition
	I. Introduction
	II. Small-Size Neuro-Recognition Technique Using the Masks
	III. Mask Determination Using the Genetic Algorithm
	IV. Development of the Neuro-Recognition Board Using the Digital Signal Processor
	V. Unification of Three Core Techniques
	VI. Conclusions
	References

	Chapter 5. Neural Network Classification Reliability: Problems and Applications
	I. Introduction
	II. Classification Paradigms
	III. Neural Network Classifiers
	IV. Classification Reliability
	V. Evaluating Neural Network Classification Reliability
	VI. Finding a Reject Rule
	VII. Experimental Results
	VIII. Summary
	References

	Chapter 6. Parallel Analog Image Processing: Solving Regularization Problems with Architecture Inspired by the Vertebrate Retinal Circuit
	I. Introduction
	II. Physiological Background
	III. Regularization Vision Chips
	IV. Spatio-Temporal Stability of Vision Chips
	References

	Chapter 7. Algorithmic Techniques and Their Applications
	I. Introduction
	II. Quasi-Newton Methods for Neural Network Training
	III. Selecting the Number of Output Units
	IV. Determining the Number of Hidden Units
	V. Selecting the Number of Input Units
	VI. Determining the Network Connections by Pruning
	VII. Applications of Neural Networks to Data Mining
	VIII. Summary
	References

	Chapter 8. Learning Algorithms and Applications of Principal Component Analysis
	I. Introduction
	II. Adaptive Learning Algorithm
	III. Simulation Results
	IV. Applications
	V. Conclusion
	VI. Appendix
	References

	Chapter 9. Learning Evaluation and Pruning Techniques
	I. Introduction
	II. Complexity Regularization
	III. Sensitivity Calculation
	IV. Optimization through Constraint Satisfaction
	V. Local and Distributed Bottlenecks
	VI. Interactive Pruning
	VII. Other Pruning Methods
	VIII. Concluding Remarks
	References

	Index

