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Preface 

Inspired by the structure of the human brain, artificial neural networks 
have been widely applied to fields such as pattern recognition, optimiza-
tion, coding, control, etc., because of their ability to solve cumbersome or 
intractable problems by learning directly from data. An artificial neural 
network usually consists of a large number of simple processing units, i.e., 
neurons, via mutual interconnection. It learns to solve problems by ade-
quately adjusting the strength of the interconnections according to input 
data. Moreover, the neural network adapts easily to new environments by 
learning, and can deal with information that is noisy, inconsistent, vague, 
or probabilistic. These features have motivated extensive research and 
developments in artificial neural networks. This volume is probably the 
first rather comprehensive treatment devoted to the broad areas of algo-
rithms and architectures for the realization of neural network systems. 
Techniques and diverse methods in numerous areas of this broad subject 
are presented. In addition, various major neural network structures for 
achieving effective systems are presented and illustrated by examples in all 
cases. Numerous other techniques and subjects related to this broadly 
significant area are treated. 

The remarkable breadth and depth of the advances in neural network 
systems with their many substantive applications, both realized and yet to 
be realized, make it quite evident that adequate treatment of this broad 
area requires a number of distinctly titled but well-integrated volumes. 
This is the fifth of seven volumes on the subject of neural network systems 
and it is entitled Image Processing and Pattern Recognition. The entire set 
of seven volumes contains 

Volume 1 
Volume 2 
Volume 3 
Volume 4 
Volume 5 
Volume 6 
Volume 7 

Algorithms and Architectures 
Optimization Techniques 
Implementation Techniques 
Industrial and Manufacturing Systems 
Image Processing and Pattern Recognition 
Fuzzy Logic and Expert Systems Applications 
Control and Dynamic Systems 

XV 
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The first contribution to this volume is "Pattern Recognition," by Jouko 
Lampinen, Jorma Laaksonen, and Erkki Oja. Pattern recognition (PR) is 
the science and art of giving names to the natural objects in the real world. 
It is often considered part of artificial intelligence. However, the problem 
here is even more challenging because the observations are not in symbolic 
form and often contain much variability and noise. Another term for PR is 
artificial perception. Typical inputs to a PR system are images or sound 
signals, out of which the relevant objects have to be found and identified. 
The PR solution involves many stages such as making the measurements, 
preprocessing and segmentation, finding a suitable numerical representa-
tion for the objects we are interested in, and finally classifying them based 
on these representations. Presently, there are a growing number of appli-
cations for pattern recognition. A leading motive from the very start of the 
field has been to develop user-friendly and flexible user interfaces that 
understand speech and handwriting. Only recently have these goals be-
come possible with the highly increased computing power of workstations. 
Document processing is emerging as a major application. In industrial 
problems as well as in biomedicine, automatic analysis of images and 
signals can be achieved with PR techniques. Remote sensing is routinely 
using automated recognition techniques, too. This contribution is a rather 
comprehensive presentation of the techniques and methods of neural 
network systems in pattern recognition. Several substantive examples are 
included. It is also worth noting as a valuable feature of this contribution 
that almost 200 references, which have been selectively culled from the 
literature, are included in the reference list. 

The next contribution is "Comparison of Statistical and Neural Classi-
fiers and Their Applications to Optical Character Recognition and Speech 
Classification," by Ethem Alpaydm and Fikret Giirgen. Improving 
person-machine communication leads to wider use of advanced informa-
tion technologies. Toward this aim, character recognition and speech 
recognition are two applications whose automatization allows easier inter-
action with a computer. As they are the basic means of person-to-person 
communication, they are known by everyone and require no special 
training. Speech in particular is the most natural form of human communi-
cation and writing is the tool by which humanity has stored and transferred 
its knowledge for millennia. In a typical pattern recognition system, the 
first step is the acquisition of data. These raw data are preprocessed to 
suppress noise and normalize input. Features are those parts of the signal 
that carry information salient to its identity, and their extraction is an 
abstraction operation where the important information is extracted and 
the irrelevant is discarded. Classification is assignment of the input as an 
element of one of a set of predefined classes. The rules for classification 
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are generally not known exactly and thus are estimated. A classifier is 
written as a parametric model whose parameters are computed using a 
given training sample to optimize particular error criterion. Approaches 
for classification differ in their assumptions about the model, in the way 
parameters are computed, or in the error criterion they optimize. This 
contribution treats what are probably the two principle approaches to 
classifiers as embodied by neural and statistical classifiers, and applies 
them to the major areas of optical character recognition and speech 
recognition. Illustrative examples are included as well as the literature for 
the two application categories. 

The next contribution is "Medical Imaging," by Ying Sun and Reza 
Nekovei. The history of medical imaging began a century ago. The land-
mark discovery of X-rays by Wilhelm Conrad Rontgen in 1895 ushered in 
the development of noninvasive methods for visualization of internal 
organs. The birth of the digital computer in 1946 brought medical imaging 
into a new era of computer-assisted imagery. During the second half of the 
20th century, medical imaging technologies have diversified and advanced 
at an accelerating rate. Today, clinical diagnostics rely heavily on the 
various medical imaging systems. In addition to conventional X-ray radiog-
raphy, computer-assisted tomography and magnetic resonance imaging 
produce two-dimensional cross sections and three-dimensional imagery of 
the internal organs that drastically improve our capability to diagnose 
various diseases. X-ray angiography used in cardiac catheterization labora-
tories allows us to detect stenoses in the coronary arteries and guide 
treatment procedures such as balloon angioplasty and cardiac ablation. 
Ultrasonography has become a routine procedure for fetal examination. 
Two-fetal dimensional echocardiography combined with color Doppler 
flow imaging has emerged as a powerful and convenient tool for diagnos-
ing heart valve abnormahties and for assessing cardiac functions. In the 
area of nuclear medicine, the scintillation gamma camera provides two-
dimensional images of pharmaceuticals labeled by radioactive isotopes. 
Single photon emission computed tomography and positron emission to-
mography further allow for three-dimensional imaging of radioactive trac-
ers. This contribution is a rather in-depth treatment of the important role 
neural network system techniques can play in the greatly significant area 
of medical imaging systems. Two major application areas are treated, i.e., 
detection of blood vessels in angiograms and image segmentation. 

The next contribution is "Paper Currency Recognition," by Fumiaki 
Takeda and Sigeru Omatu. Three core techniques are presented. The first 
is the small size neurorecognition technique using masks. The second is 
the mask determination technique using the genetic algorithm. The third is 
the neurorecognition board technique using the digital signal processor. 
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Unification of these three techniques demonstrates that reaUzation of 
neurorecognition machines capable of transacting various kinds of paper 
currency is feasible. The neurosystem technique enables acceleration in 
the commercialization of a new type of banking machine in a short period 
and in a few trials. Furthermore, this technique will be effective for various 
kinds of recognition applications owing to its high recognition abiUty, high 
speed transaction, short developing period, and reasonable cost. It can be 
presumed that it is so effective that it applies not only to paper currency 
and coins, but also to handwritten symbols such as electron systems or 
questionnaires. 

The next contribution is "Neural Network Classification Reliability: 
Problems and Applications," by Luigi P. Cordelia, Carlo Sansone, Fran-
cesco Tortorella, and Claudio De Stefano. Classification is a process 
according to which an entity is attributed to one of a finite set of classes 
or, in other words, it is recognized as belonging to a set of equal or similar 
entities, possibly identified by a name. In the framework of signal and 
image analysis, this process is generally considered part of a more complex 
process referred to as pattern recognition. In its simplest and still most 
commonly followed approach, a pattern recognition system is made of two 
distinct parts: 

1. A description unit, whose input is the entity to be recognized, 
represented in a form depending on its nature, and whose output 
is generally a structured set of quantities, called features, which 
constitutes a description characterizing the input sample. A 
description unit implements a description scheme. 

2. A classification unit, whose input is the output of the description 
unit and whose output is the assignment to a recognition class. 

This contribution is a rather comprehensive treatment of pattern recogni-
tion in the classification problem by means of neural network systems. The 
techniques presented are illustrated by their application to two problem 
areas of major significance, i.e., handwritten character recognition and 
fault detection and isolation. 

The next contribution is "Parallel Analog Image Processing: Solving 
Regularization Problems with Architecture Inspired by the Vertebrate 
Retinal Circuit," by Tetsuya Yagi, Haruo Kobayashi, and Takashi Mat-
sumoto. Almost all digital image processors employ the same architecture 
for the sensor interface and data processing. A camera reads out the 
sensed image in a raster scan-out of pixels, and the pixels are serially 
digitized and stored in a frame buffer. The digital processor then reads the 
buffer serially or as blocks to smooth the noise in the acquired image, 
enhance the edges, and perhaps normalize it in other ways for pattern 
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matching and object recognition. There have been several attempts in 
recent years to implement these functions in the analog domain, to attain 
low-power dissipation and compact hardware, or simply to construct an 
electrical model of these functions as they are found in biological systems. 
Analog implementations must have their performance evaluated in com-
parison with their digital counterparts, and systematic techniques for their 
design and implementation are evaluated therefrom. This contribution 
presents methods for the development of image processing parallel analog 
chips based on a class of parallel image processing algorithms. The 
architecture for these chips is motivated by physiological findings in lower 
vertebrates. The various aspects involved in this process are presented in 
an in-depth treatment, and illustrative examples are presented which 
clearly manifest the substantive effectiveness of the techniques presented. 

The next contribution is "Algorithmic Techniques and Their Applica-
tions," by Rudy Setiono. Pattern recognition is an area where neural 
networks have been widely applied with much success. The network of 
choice for pattern recognition is a multilayered feedforward network 
trained by a variant of the gradient descent method known as the back-
propagation learning algorithm. As more applications of these networks 
are found, the shortcomings of the backpropagation network become 
apparent. Two drawbacks often mentioned are the need to determine the 
architecture of a network before training can begin and the inefficiency of 
the backpropagation learning algorithm. Without proper guidelines on 
how to select an appropriate network for a particular problem, the archi-
tecture of the network is usually determined by trial-and-error adjustments 
of the number of hidden layers and/or hidden units. The backpropagation 
algorithm involves two parameters: the learning rate and the momentum 
rate. The values of these parameters have a significant effect on the 
efficiency of the learning process. However, there have been no clear 
guidelines for selecting their optimal values. Regardless of the values of 
the parameters, the backpropagation method is generally slow to converge 
and prone to get trapped at a local minimum of the error function. When 
designing a neural network system, the choice of a learning algorithm for 
training the network is crucial. As problems become more complex, larger 
networks are needed and the speed of training becomes critical. Instead of 
the gradient descent method, more sophisticated methods with faster 
convergence rate can be used to speed up network training. This contribu-
tion describes a variant of the quasi-Newtonian that can be used to reduce 
the network training time significantly. The substantively effective tech-
niques presented in this contribution can be applied to a diverse array of 
significant problems, and several examples are included here. These are 
applications to the well-known spiral problem (described in this contribu-
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tion), the multidisciplinary field of data mining in which it is desired to 
discover important patterns of interest that are hidden in databases, and 
the utiUzation of a neural network system as a means of distinguishing 
between benign and malignant samples in a breast cancer data set. 

The next contribution is "Learning Algorithms and Applications of 
Principal Component Analysis," by Liang-Hwa Chen and Shyang Chang. 
The principal component analysis (PCA) learning network is one of a 
number of types of unsupervised learning networks. It is also a single layer 
neural network but the neurons are linear as described in this contribu-
tion. The learning is essentially based on the Hebb rule. It is utilized to 
perform PCA, i.e., to find the principle components embedded in the input 
data. PCA is one of the feature extraction methods, of which this contribu-
tion is a rather comprehensive treatment. Illustrative examples are in-
cluded which demonstrate the substantive effectiveness of PCA (coupled 
with adaptive learning algorithms) to such problems as data compression, 
image coding, texture segmentation, and other significant applications. 

The final contribution to this volume is "Learning Evaluation and 
Pruning Techniques," by Leda Villalobos and Francis L. Merat. In neural 
network system pruning, the process is initiated with a neural network 
system architecture that is larger than the minimum needed for learning. 
Such a neural network system architecture is then progressively reduced by 
pruning or weakening neurons and synaptic weights. This contribution is a 
rather comprehensive treatment of neural network system pruning tech-
niques and their many significant applications. Not the least of the many 
applications noted in this contribution is that of evaluation and improve-
ment of feature space in pattern recognition problems. Improving feature 
space quality has an unmeasurable value: a pattern recognition problem 
cannot be solved without good feature representation. 

This volume on neural network systems techniques in image processing 
and pattern recognition systems clearly reveals the effectiveness and 
essential significance of the techniques available and, with further develop-
ment, the essential role they will play in the future. The authors are all to 
be highly commended for their splendid contributions to this volume which 
will provide a significant and unique reference source for students, re-
search workers, practitioners, computer scientists, and others on the inter-
national scene for years to come. 

Cornelius T. Leondes 
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I. INTRODUCTION 

Pattern recognition (PR) is the science and art of giving names to the natu-
ral objects in the real world. It is often considered part of artificial intelligence. 
However, the problem here is even more challenging because the observations 
are not in symbolic form and often contain much variability and noise: another 
term for PR is artificial perception. Typical inputs to a PR system are images or 
sound signals, out of which the relevant objects have to be found and identified. 
The PR solution involves many stages such as making the measurements, pre-
processing and segmentation, finding a suitable numerical representation for the 
objects we are interested in, and finally classifying them based on these represen-
tations. 

Presently, there are a growing number of applications for pattern recognition. 
A leading motif from the very start of the field has been to develop user-friendly 
and flexible user interfaces, that would understand speech and handwriting. Only 
recently these goals have become possible with the highly increased computing 
power of workstations. Document processing is emerging as a major application. 
In industrial problems as well as in biomedicine, automatic analysis of images and 

Image Processing and Pattern Recognition 
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1 



2 Jouko Lampinen et al. 

signals can be achieved with PR techniques. Remote sensing is routinely using 
automated recognition techniques, too. 

A central characteristic of the PR problem is that the number of different targets 
or objects that the system has to cope with is at least in principle unUmited, due 
to the variations caused, e.g., by viewing angles and illumination. Thus the prob-
lem cannot be solved by straightforward matching or data base searches. Still, the 
number of classes is finite and often relatively small. Each object has to be clas-
sified to one of the classes. The system is designed based on a sample of typical 
objects representing the different classes, and after this it must be able to classify 
also new, unknown objects with minimum error. This is often called generaliza-
tion. A feasible design approach is to use some kind of model fitting or tuning 
based on the design set; traditionally, this has been called learning. Various adap-
tive and machine learning approaches have been popular in the PR system design 
problem. 

Artificial neural networks (ANNs) are a class of flexible semiparametric mod-
els for which efficient learning algorithms have been developed over the years. 
They have been extensively used on PR problems. Even though realistic sys-
tems for such hard PR problems such as computer vision are hybrids of many 
methodologies including signal processing, classification, and relational match-
ing, it seems that neural networks can be used to an advantage in certain subprob-
lems, especially in feature extraction and classification. These are also problems 
amenable to statistical techniques, because the data representations are real vec-
tors of measurements or feature values, and it is possible to collect training sam-
ples on which regression analysis or density estimation become feasible. Thus, in 
many cases neural techniques and statistical techniques are seen as alternatives. 
This approach has led on one hand to a fruitful analysis of existing neural net-
works, and on the other hand brought new viewpoints to current statistical meth-
ods, and sometimes produced a useful synthesis of the two fields. Recently, many 
benchmark and comparison studies have been published on neural and statistical 
classifiers [1-6]. One of the most extensive was the Statlog project [5] in which 
statistical methods, machine learning, and neural networks were compared using 
a large number of different data sets. 

The purpose of the present review study is to discuss the ways in which neu-
ral networks can enter the PR problem and how they might be useful compared 
to other approaches. Comparisons are made both from an analytical and a prac-
tical point of view. Some illuminating examples are covered in detail. The con-
tents of the subsequent sections are as follows: In Section II, we introduce the 
PR problem and show the general solution as a sequence of consequent, mutually 
optimized stages. The two stages in which neural networks seem to be the most 
useful are feature extraction and classification, and these will be covered in Sec-
tions III and IV. Then in Section V, applications will be explained, and Section VI 
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presents some conclusions. An extensive publication list is given at the end of this 
chapter. 

11. PATTERN RECOGNITION PROBLEM 

This section presents an introduction to divergent aspects of pattern recogni-
tion. The operation of a pattern recognition system is presented as a series of con-
secutive processing stages. The functions of all these stages are elaborated, even 
though only few of them may actually be neural. The term pattern recognition 
can be defined in many ways, including the following [7]. Pattern recognition is 
an information-reduction process: the assignment of visual or logical patterns to 
classes based on the features of these patterns and their relationships. 

The basic setting of pattern recognition is as follows. There is one unknown 
object presented as a set of signals or measurements in the input of a black box 
called a pattern recognition system. At the output of the system, there is a set of 
predefined classes. The purpose of the system is to assign the object to one of the 
classes. In a more general setting, there is more than one object to be recognized. 
In that case, the classification of the subsequent or nearby objects may or may not 
be interdependent. The list of classes may also contain a special reject class for 
the objects the system is unable to classify. 

Depending on the measurements and the classes we are led to divergent ar-
eas of pattern recognition, including recognition of speech or speaker, detection 
of clinical malformations in medical images or time-signals, document analysis 
and recognition, etc. All these disciplines call for expertise in both the subject 
matter and the general theory and practice of pattern recognition. There exists an 
extensive amount of literature on both overall and specific questions of pattern 
recognition systems and applications. The classical textbook sources include, in 
the order of appearance, [8-17], some of which are actually revised versions of 
earlier editions. Recent developments—such as use of neural methods—are con-
tained in such books as [18-23]. During the past thirty years, many valuable arti-
cle collections have been edited in the field, including [24-28]. 

Technical systems are often considered as being comprised of consecutive 
blocks each performing its precisely defined task in the processing. The whole 
system can then be modeled in a bottom-up fashion as a block diagram. In the 
simplest case the flow of the data stream is one-directionally from left to right 
as shown in Fig. 1, presenting a general pattern recognition system. The diagram 
shown is naturally only one intuition of how to depict a view, and alternative 
structures can be seen, e.g., in [15,17, 20, 29]. 

The following subsections shortly describe each of the stages with examples 
emanating principally from optical character recognition and speech recognition. 
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Data Collection h ^ Registration [—*i Preprocessing \-*\ Segmentation 

Normalization r-*i Feature Extraction f—H Classification Postprocessing 

Figure 1 A block diagram of a generic pattern recognition system. 

Some of the described stages may thus be obsolete or obscure in other types of 
pattern recognition systems. 

A. DATA COLLECTION 

The first stage in any pattern recognition system is data collection. Before a 
pattern vector is made up of a set of measurements, these measurements need to 
be performed using some technical equipment and converted to numerical form. 
In the case of image analysis or character recognition, such equipment includes 
video cameras and scanners; in the case of speech recognition, microphones, etc. 
The input data, whatever its form is, is sampled at fixed intervals in time or image 
metric domain and digitized to be presented with a preset number of bits per 
measurement. In any case, the data collection devices should record the objects 
with the highest fidelity available. Any additional noise will be disadvantageous 
to successful operation of the system. The data collection phase should also be 
designed in such a manner that the system will be robust to variations in operation 
of individual signal measurement devices. 

The data collection stage possibly includes auxiliary storage for the collected 
data. The use of temporary storage is inevitable, if the recognition phase cannot be 
performed simultaneously with the data acquisition. More permanent data storage 
is needed for training material while a pattern recognition system is being con-
structed or tested. In some occasions, the amount of data storage needed may turn 
out to be a prohibitive factor in the development or use of an automated pattern 
recognition system. This discrepancy can be somewhat eased by compressing the 
stored data, but in the worst case, the fidelity of the data has to be sacrificed for 
the sake of storage shortage. This sacrifice is most often performed by reduc-
ing the spatial or temporal resolution of the data sampling or by presenting the 
measurements with a degraded accuracy using fewer bits per sample. Similar 
problems and solutions arise if the channel used in transferring the data is a bot-
tleneck for the requirements of on-line processing. 
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B. REGISTRATION 

In the registration of data, rudimentary model fitting is performed. The internal 
coordinates of the recognition system are somehow fixed to the actual data ac-
quired. At least some a priori knowledge about the world surrounding the system 
is utilized in designing the registration stage. This external information mainly 
answers questions such as: How has the data been produced? Where or when 
does the sensible input begin and end? The registration process thus defines the 
framework in which the system operates so that it knows what to expect as valid 
input. 

In speech recognition, the registration phase consists of ignoring epochs during 
which input is comprised of pure noise only and locating the beginnings and ends 
of utterances. In optical character recognition, the system must locate in the input 
image the area of interest. In the case of fill-in forms the area may be registered 
with some special printed marks, but in document analysis the system has to locate 
it automatically, based upon the overall layout of the page image. 

C. PREPROCESSING 

Real-world input data always contains some amount of noise and certain pre-
processing is needed to reduce its effect. The term noise is to be understood 
broadly: anything that hinders a pattern recognition system in fulfilling its com-
mission may be regarded as noise no matter how inherent this "noise" is in the 
nature of the data. Some desirable properties of the data may also be enhanced 
with preprocessing before the data is fed further in the recognition system. 

Preprocessing is normally accomplished by some simple filtering method on 
the data. In the case of speech recognition, this may mean linear high-pass filtering 
aimed to remove the base frequency and to enhance the higher frequencies. In im-
age recognition, the image may be median filtered to remove spurious point noise 
which might hamper the segmentation process. An advantageous preprocessing 
step for color images is decorrelation of the color components. Such a process 
transfers an image originally in the RGB (red-green-blue) coordinates linearly to 
the YIQ (luminosity-inphase-quadrature) system. 

D . SEGMENTATION 

The registered and preprocessed input data has to be spUt in subparts which 
make meaningful entities for classification. This stage of processing is called seg-
mentation. It may either be a clearly separate process or tightly interwoven with 
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previous or following processes. In either case, after the pattern recognition sys-
tem has completed the processing of a totality of data, the resulting segmentation 
of the data to its subparts can be revealed. Depending on how the application has 
been realized, the segmentation block may either add the information regarding 
the segment boundaries to the data flow, or alternatively, copy all the segments in 
separate buffers and hand them over to the following stage one by one. 

In speech recognition, a meaningful entity is most likely a single phoneme or a 
syllable containing a small but varying number of phonemes. In optical character 
recognition, the basic units for classification are single characters or some of the 
few composite glyphs such as fi and fl. 

Some pattern recognition applications would be described better if, in Fig. 1, 
segmentation were placed after the classification stage. In such systems, the input 
data is partitioned with fixed-sized windows at fixed spatial or temporal intervals. 
The actual segmentation can take place only after the subparts have been labeled 
in the classification stage. 

E. NORMALIZATION 

A profound conmion characteristic of the environments where automated pat-
tern recognition systems are used is the inherent variance of the objects to be 
recognized. Without this variance the pattern recognition problem would not ex-
ist at all. Instead, we would be concerned with deterministic algorithms such as 
those for sorting, searching, computer language compiling, Fourier transform, etc. 
The central question in pattern recognition, therefore, is how these variances can 
be accounted for. One possibility is to use feature extraction or classification algo-
rithms which are invariant to variations in the outcomes of objects. For example, 
image features that are invariant to rotation are easy to define, but some types 
of natural variance will inevitably always evade the invariant feature extraction. 
Therefore, a separate normalization step is called for in almost all pattern recog-
nition systems. 

NormaUzation always causes as a side effect loss of degrees of freedom. 
This is reflected as dimension reduction in the intrinsic dimensionality of the 
data. If the normalization could be done ideally, only the dimensionality increase 
caused by the noise would be canceled out. This is unfortunately not true, but 
as will be explained in the following section, the dimensionality of the data has 
to be anyhow reduced. Insignificant loss in intrinsic dimensionaUty of the data 
during the otherwise beneficial normalization process is therefore not a serious 
problem. 

For example, depending on individual habits, our handwriting is not straight 
upwards but somewhat slanted to left or right. Normahzed characters can be 
achieved by estimating the slant and reverting it. In speech recognition, the loud-
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ness of speech can be normalized to a constant level by calculating the energy of 
an utterance and then scaling the waveform accordingly. 

R FEATURE EXTRACTION 

The meaning of the feature extraction phase is most conveniently defined re-
ferring to the purpose it serves [14]: feature extraction problem . . . is that of ex-
tracting from the raw data the information which is most relevant for classification 
purposes, in the sense of minimizing the within-class pattern variability while en-
hancing the between-class pattern variability. 

During the feature extraction process the dimensionality of data is reduced. 
This is almost always necessary, due to the technical limits in memory and com-
putation time. A good feature extraction scheme should maintain and enhance 
those features of the input data which make distinct pattern classes separate from 
each other. At the same time, the system should be immune to variations produced 
both by the humans using it and the technical devices used in the data acquisition 
stage. 

Besides savings in memory and time consumptions, there exists another impor-
tant reason for proper dimensionality reduction in the feature extraction phase. It 
is due to the phenomenon known as the curse of dimensionality [30], that in-
creasing the dimensionality of the feature space first enhances the classification 
accuracy but rapidly leads to sparseness of the training data and poor represen-
tation of the vector densities, thereby decreasing classification performance. This 
happens even though the amount of information present in data is enriched while 
its dimensionality is increased. The curse thus forces the system designer to bal-
ance between the amount of information preserved as the dimensionality of the 
data, and the amount of density information available as the number of training 
samples per unit cube in the feature vector space. A classical rule of thumb says 
that the number of training samples per class should be at least 5-10 times the 
dimensionality [31]. 

An issue connected to feature extraction is the choice of metric. The variances 
of individual features may vary orders of magnitude, which inevitably impairs the 
classifier. The situation can be eased by applying a suitable linear transform to the 
components of the feature vector. 

In speech recognition, the features are most often based on first assuming mo-
mentary stability of the waveform. In that case spectral, cepstral, or linear predic-
tion coefficients can be used as descriptive features. The diverse possibilities for 
feature extraction in recognition of handwritten characters include features cal-
culated from the outline of the character, the distribution of mass and direction 
in the character area, etc. Neural networks provide some ways for dimensional-
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ity reduction and feature extraction. The connection of neural networks to feature 
extraction will be covered in depth in Section III. 

G. CLASSIFICATION AND CLUSTERING 

In addition to feature extraction, the most crucial step in the process of pat-
tern recognition is classification. All the preceding stages should be designed and 
tuned aiming at success in the classification phase. The operation of the classifi-
cation step can be simplified as being that of a transform of quantitative input data 
to qualitative output information. The output of the classifier may either be a dis-
crete selection of one of the predefined classes, or a real-valued vector expressing 
the likelihood values for the assumptions that the pattern was originated from the 
corresponding class. 

The primary division of the various classification algorithms used is that be-
tween syntactic and statistical methods. The statistical methods and neural net-
works are related in the sense that the same features can be used with both. Due 
to the centrality of classification methods to this text, they are not covered in this 
introductory section but analyzed in full depth in Section IV. 

A topic closely related to classification is clustering. In clustering, either the 
existence of predefined pattern classes is not assumed, the actual number of 
classes is unknown, or the class memberships of the vectors are generally un-
known. The task of the clustering process is therefore to group the feature vectors 
to clusters in which the resemblance of the patterns is stronger than between the 
clusters [32]. The processing blocks surrounding the classification stage in Fig. 1 
are generally also applicable to clustering problems. 

H. POSTPROCESSING 

In most pattern recognition systems, some data processing is performed also 
after the classification stage. These postprocessing subroutines, like the normal-
ization processes, bring some a priori information about the surrounding world 
into the system. This additional expertise can be utilized in improving the overall 
classification accuracy. A complete postprocessing block may itself be a hybrid of 
successive or cooperative entities. In the context of this representation it however 
suffices to regard the postprocessor as an atomic operator. 

The postprocessing phase is generally possible if the individual objects or seg-
ments make up meaningful entities such as bank account numbers, words, or sen-
tences. The soundness or existence of these higher-level objects can be examined 
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and if an error is indicated, further steps can be taken to correct the misclassifica-
tion. The postprocessing phase thus resolves interdependencies between individ-
ual classifications. This is possible either by the operation of the postprocessing 
stage alone, or in cooperation with the segmentation and classification blocks as 
will be explained in the following section. 

I. LOOP-BACKS BETWEEN STAGES 

In Fig. 1, a block diagram of an idealized pattern recognition application was 
depicted. Such systems, in which the data flows exclusively from left to right, can 
hardly ever be optimal in the sense of recognition accuracy. By making the suc-
cessive blocks interact, the overall performance of the system can be considerably 
enhanced. The system, of course, becomes much more complicated, but generally 
there is no other way to increase the classification accuracy. 

Three possible routes for the backward links are drawn in Fig. 2 with dashed 
arrows and labeled (a), (b), and (c). The motivations behind these three configu-
rations are: 

(a) Information is fed back from postprocessing to classification. When the 
postprocessor detects an impossible or highly improbable combination of outputs 
from the classifier, it notifies the classifier. Either the postprocessor itself is able 
to correct the fault, or it asks the classifier for a new trial. In either case, the 
classifier ought to be able to revise its behavior and to not produce similar errors 
in the future. The classifier may also mediate this feedback information back to 
the segmentation block as will be explained below. 

—H Data Collection Registration Preprocessing Segmentation 

b) 

• -^ Normalization Feature Extraction 

c) 
a ) L 

Classification Postprocessing 

Figure 2 A block diagram of a pattern recognition system with some possible loop-back routes 
added. 



10 Jouko Lampinen et ah 

(b) The classifier revises the segmentation phase. In this case, the classifier or 
the postprocessor has detected one or more successive patterns that are hard to 
classify. This might be an indication of malformed segmentation which should be 
located and corrected. This scheme can also be viewed as a segmentation algo-
rithm probing the succeeding stages with tentative segments. It is then left for the 
classifier to select the most probable combination. 

This view can also acconmiodate the possibihty that segmentation is performed 
after classification. In this scheme, the data flows unmodified in its first pass 
through the segmentation block. When classification has taken place, the data 
is fed back to the segmenter and the actual segmentation is performed. 

(c) The correctness of the classifications is used to revise the feature extrac-
tor. This kind of operation is mostly possible only during the training phase and 
generally necessitates the redesign of the classifier. This kind of scheme may be 
called error-corrective feature extraction [33]. 

J. TRAINABLE PARTS IN A SYSTEM 

All the stages of a pattern recognition system contain parameters or variables 
which need to be given appropriate values. Some of these parameters are so del-
icate that they have to be selected by an expert of the application area and kept 
constant thereafter. Others may be tunable by trial and error or cross-vahdation 
processes in cooperation with an expert observing the overall performance of the 
system top-down. Profoundly more interesting are, however, parameters which 
the system is able to learn by itself from training with available data. Neural net-
works provide a whole new family of divergent formalisms for adaptive systems. 
Error-corrective neural training can be used in various parts of a pattern recogni-
tion system to improve the overall performance. 

In most cases, the adaptive nature of the neural networks is only utilized 
during the training phase and the values of the free parameters are fixed at the 
end of it. A long-term goal, however, is to develop neural systems which retain 
their abihty to adapt to slowly evolving changes in their operation environments. 
In such automata, the learning of the system would continue automatically and 
by itself endlessly. Evidently, the stability of such systems is more or less in 
doubt. 

In many systems claimed to be neural, just a traditional classifier has been re-
placed by a neural solution. This is of course reasonable if it makes the system 
perform better. However, a more principled shift to bottom-up neural solution 
might be possible and called for. At least the normalization and feature extraction 
stages, together with classification, could be replaced with neural counterparts in 
many systems. Only then, the full potentiaHty of neural systems would be ful-
filled. 
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III. NEURAL NETWORKS 
IN FEATURE EXTRACTION 

A. FEATURE EXTRACTION PROBLEM 

In real-world pattern recognition problems such as image analysis, the input 
dimensionality can be very high (of the order of hundreds) and the discriminant 
functions to be approximated are very nonUnear and complex. A classifier based 
on the measured objects (e.g., images) directly would require a large number of 
parameters in order to approximate and generalize well all over the input domain. 
Such a "black box" modeling approach is shown in Fig. 3. The central block could 
be a supervised learning network, such as the multilayer perceptron network, the 
radial basis function network, or the LVQ network. Together with their powerful 
training algorithms such as the error back-propagation, these networks provide 
highly efficient model-free methods to design nonlinear mappings or discrimi-
nant functions between inputs and outputs using a data base of training samples. 
Prominent examples are pattern recognition, optical character readers, industrial 
diagnostics, condition monitoring, modeUng complex black box systems for con-
trol, and time series analysis and forecasting. 

However, it is well known [34] that even neural networks cannot escape the pa-
rameter estimation problem, which means that the amount of training data must 
grow in proportion to the number of free parameters. Consequently, very large 
amounts of training data and training time are needed in highly complex and 
large-dimensional problems to form the input-output mappings [35]. Collecting 
the training samples would eventually be very expensive if not impossible. This 
seems to be a major limitation of the supervised learning paradigm. In conven-
tional pattern recognition (see Section II), the answer is to divide the task in two 
parts: feature extraction which maps the original input patterns or images to a 
feature space of reduced dimensions and complexity, followed by classification 
in this space. This approach is shown in Fig. 4. 

There is no well-developed theory for feature extraction; mostly features are 
very application oriented and often found by heuristic methods and interactive 
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Figure 3 Black box modeling approach. 
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Figure 4 Feature extraction approach. 

data analysis. It is not possible to give an overview of such interactive feature ex-
traction methods; in any specific problem such as, e.g., character or speech recog-
nition, there is an accumulated knowledge of the most feasible ways to extract the 
relevant information, and the reader is advised to look up review articles on the 
given application fields. Instead, some generic principles of neural-network-based 
feature extraction are reviewed here. 

An important basic principle is that the feature extraction method should not 
depend on the class memberships of the objects, because by definition at the fea-
ture extraction stage these are not yet known. The same features are extracted 
from all the inputs, regardless of the target classes. It follows that if any learning 
methods are used for developing the feature extractors, they can be unsupervised 
in the sense that the target class for each object does not have to be known. 

B. Two CLASSES OF UNSUPERVISED 
NEURAL LEARNING 

Unsupervised learning algorithms are an important subclass of neural learning. 
The characteristic feature of unsupervised neural learning is that the training set 
only contains input samples. No desired outputs or target outputs are available 
at all. Basically, these algorithms fall into one of two categories [36]: first, ex-
tensions of the linear transform coding methods of statistics, especially principal 
component analysis, and second, learning vector coding methods that are based 
on competitive learning. 

The first class of neural feature extraction and compression methods are moti-
vated by standard statistical methods such as principal component analysis (PCA) 
or factor analysis (see, e.g., [37]), which give a reduced subset of linear combina-
tions of the original input variables. Many of the neural models are based on the 
PCA neuron model introduced by one of the authors [38]. The additional advan-
tage given by neural learning is that neural networks are nonlinear, and thus pow-
erful nonlinear generalizations to linear compression can be obtained. Typically, 
the compressed representation thus obtained would be input to another neural net-
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Figure 5 Clustering approach. 

work working in the supervised mode, as shown in Fig. 4. These techniques will 
be covered in Sections III.C and III.D. 

The second class of methods apply to cases when the entire problem to be 
solved is of the unsupervised nature: there are no target labels or values available 
at all. The results of the unsupervised neural network are used as such, as shown 
in Fig. 5. A typical application is clustering and data compression. It is of interest 
to find out what kind of typical clusters there are among the input measurement 
vectors. A competitive learning neural network gives an efficient solution to this 
problem. Section III.E reviews the best-known competitive learning network, the 
self-organizing map (SOM) introduced by Kohonen [39], and its use in massive 
data clustering. 

This chapter is a review of the essential principles and theory underlying the 
two models of unsupervised learning, with some central references cited. It is not 
possible here to give even a rudimentary list of applications of these techniques. 
Instead, two large collections of references available on the Internet are cited: 
[40] and [41]. Together they give well over two thousand references to the use of 
unsupervised learning and feature extraction in neural networks. 

C. UNSUPERVISED BACK-PROPAGATION 

In this section, it is shown that a powerful generalization of the linear prin-
cipal component analysis method is given by a multilayer perceptron network 
that works in the auto-associative mode. To show this analogy, let us define 
some notation first. The overall input-output mapping formed by the network 
is / : R^ -^ W^, the input vector is x e R^, the output vector is y e R^, and 
there is a training sample ( x i , . . . , x^) of inputs available. Let us require that the 
output is X, too, i.e., y = / (x) = x for all x. This mode of operation is called auto-
associative, since the network is associating the inputs with themselves. Note that 
in back-propagation learning, the same training samples x/ are then used both as 
inputs and as desired outputs. Therefore, this is unsupervised learning. 
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Figure 6 A five-layer network with linear output layer and three nonlinear hidden layers. The boxes 
denote layers; the number of units in each layer is given above the box, and the output vector of the 
layer is given under the box. The arrows give the transformations between the layers. The Wi are the 
weight matrices including the offsets, and S is the nonlinear neuron activation function. 

To avoid the trivial solution, let us impose a constraint: the network has three 
or more layers, with the input and output layers having d units but one of the inter-
mediate or hidden layers having a smaller number p < d units [42-44]. This con-
straint means that the network has a bottleneck layer, giving the network the hour-
glass shape shown by the five-layer network in Fig. 6. Denoting the output vector 
of the bottleneck hidden layer by h G R^, the total mapping / from x to y breaks 
down to two parts: h = /i(x) = S{W2S{Wxx)), y = /2(h) = WASiW^h)). S is 
here a nonlinear scalar function, eventually a sigmoidal activation function. The 
expression S(W^x) is to be understood as a vector that is obtained from W^x by 
applying the function S to each element of this vector separately. 

In this network, the equality / (x) = x cannot hold for all x. Instead, we require 
that / must minimize the squared training set error 

Js(f) = J2\\Xi-f(Xi)\\\ (1) 
i=l 

This is the standard cost function of MLPs and is minimized by back-propagation 
learning. It is a finite-sample estimate of 

Je(f)^E[\\x-f{x)f}. 

Substituting the forms of the functions from Fig. 6 gives 

Je(f) = E{\\x-W4S{W3S{W2SiWix)))f}. 

(2) 

(3) 
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It is now possible to interpret the function / i from the input vector x to the 
central hidden layer output vector h as iht feature extraction function: the outputs 
h of the hidden layer can be interpreted as features. The data compression rate 
is adjusted by choosing the dimensions of x and h, respectively d and p, and the 
faithfulness of the representation is measured by how well the original input x 
can be retrieved from the feature vector h, i.e., by the criterion (1) or (3). If the 
criterion gets a low value, then obviously the network has been able to capture 
the information in x in a nonlinear function of reduced dimensionality. In theory, 
if such a compression is possible, then the multilayer nonlinear net of Fig. 6 can 
approximate it to an arbitrary accuracy, because of the well-known approximation 
properties of MLPs [45,46]. The extra hidden layers of Â  units each are essential, 
because actually the two functions f\ and fi must be represented and both require 
a hidden layer. 

To operate this network after learning, a new input x is transformed to the com-
pressed representation h, which is then input to another postprocessing network 
according to Fig. 4. So, in most cases the last hidden layer and the output layer of 
the five-layer network are only used in learning and then discarded. A notable ex-
ception is data compression: then the first part of the net is used for compression 
and the second part is needed for decompression. 

The network will now be shown to be a nonlinear generalization of principal 
components. The problem of PC A is to find a linear mapping W from the input 
vector X G R^ to the lower-dimensional feature vector h € M^ such that the 
information loss is minimal. The linear mapping can be represented by a matrix 
W: h = W^x. There are several equivalent criteria for PC A [47], one of them 
being to minimize 

JvCAiW) = E[\\x - Whf] = E{\\x - WW^xf}. (4) 

This means that a good approximation of x is obtained by applying the same 
matrix W to h. The solution of Eq. (4) is that W will have orthonormal columns 
that span the same subspace as the p dominant eigenvectors of the data covariance 
matrix. 

Comparing Eqs. (3) and (4) shows that the five-layer MLP network is indeed 
a nonlinear extension in the sense that the feature vector h = W^x of PCA is 
replaced by h = S{W2S{Wix)) in the MLP, and the reconstruction of x, Wh, is 
replaced by y = W45'(W3h). 

This is potentially a very powerful technique of nonlinear feature extraction 
and compression. Some demonstrations of the feature extraction ability of the 
five-layer MLP were given by [42] where a helix was faithfully mapped by the 
network, and by [48] who showed that image compression with lower error than 
PCA is possible using a large five-layer MLP network. 
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D. NONLINEAR PRINCIPAL COMPONENT ANALYSIS 

A problem in using the five-layer perceptron network is that it can be very large 
in practical applications. For example, when the inputs are 8 x 8 digital image 
windows and the hidden layers have moderate numbers of elements, the number 
of free weights will be in the thousands. Even for a 64-16-8-16-64 architecture, 
the number of weights is 2408. The training set size must be comparable, and the 
training times are very long. 

A relevant question is whether similar improvements over the Hnear PCA tech-
nique could be obtained with a smaller network. A key property of a neural net-
work is then its nonlinearity: a least-mean-square criterion involving nonlinear 
functions of input x means a deviation from the second-order statistics to higher 
orders which may have much more power in representing the relevant informa-
tion. In general statistics, there is presently a strong trend to explore nonlinear 
methods, and neural networks are an ideal tool. 

Starting from a simple linear neuron model proposed by the author in [38], 
that was able to learn the first principal component of the inputs using a con-
strained Hebbian learning rule, several linear and nonlinear extensions have been 
suggested over the years; for overviews, see [49] and [50]. The simplest extension 
of the linear PCA criterion (4) to a nonlinear one is 

JnonliW) = E{\\x~WS{W^x)f}, (5) 

where S is again a nonlinear scalar function, eventually a sigmoidal activation 
function. 

It was first shown in [51] that an associated learning rule minimizing Eq. (5) 
is 

WM = Wk + yk[xkS{xlWk) - WkS{wlxk)S{xlWk)l (6) 

In learning, a set of training vectors {xĵ } are input to the algorithm and Wk is up-
dated at each step. The parameter yk is the usual learning rate of neural learning 
algorithms. After several epochs with the training set, the weight matrix Wk will 
converge to a "nonlinear PCA" weight matrix. 

It has been shown recently by [52] and [53] that the nonlinear network is able 
to learn the separate components of inputs in the case when the input is an un-
known weighted sum of independent source signals, a task that is not possible 
for the linear PCA technique. The neurons develop into feature detectors of the 
individual input components. However, to achieve this with the learning rule, a 
preliminary preprocessing is necessary that whitens or spheres the input vectors 
x^ in such a way that after sphering E{xkxl} = / . In signal processing, terms 
such as independent component analysis (ICA) or blind source separation (BSS) 
are used for this technique; some classical references are [54-56]. 
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The algorithm (6) has an implementation in a one-layer network of nonlinear 
neurons with activation function S, that are learning by the constrained Hebbian 
learning principle. The first term in the update expression (6), XkS(x[Wk), when 
taken element by element, is the product of the input to a neuron and the output of 
that neuron. The second term is a constraint term, forcing the weights to remain 
bounded. Preceded by a linear PCA neural layer that takes care of the input vector 
sphering, a two-layer ICA network is obtained [53]. Several applications of the 
ICA network in feature extraction have been reported in [57]. 

E. DATA CLUSTERING AND COMPRESSION 
BY THE S E L F - O R G A N I Z I N G IVIAP 

One of the best-known neural networks in the unsupervised category is the 
self-organizing map (SOM) introduced by Kohonen [39]. It belongs to the class 
of vector coding algorithms. In vector coding, the problem is to place a fixed 
number of vectors, called codewords, into the input space which is usually a 
high-dimensional real space R^. The input space is represented by a training set 
( x i , . . . , x„) € R^. For example, the inputs can be grayscale windows from a 
digital image, measurements from a machine or a chemical process, or financial 
data describing a company or a customer. The dimension d is determined by the 
problem and can be large. 

Each codeword will correspond to and represent a part of the input space: the 
set of those points in the space which are closer in distance to that codeword 
than to any other codeword. Each such set is convex and its boundary consists of 
intersecting hyperplanes. This produces a so-called Voronoi tessellation into the 
space. The overall criterion in vector coding is to place the codewords in such a 
way that the average distances from the codewords to those input points belonging 
to their own Voronoi set are minimized. This is achieved by learning algorithms 
that are entirely data-driven and unsupervised. 

Coding facilitates data compression and makes possible postprocessing using 
the discrete signal codes. Typically, the codewords are found to correspond to rel-
evant clusters among the input training data, e.g., typical clusters of microfeatures 
in an image [35], and they can be efficiently used to cluster new inputs. 

One way to understand the SOM [39, 58, 59] is to consider it as a neural 
network implementation of this basic idea: each codeword is the weight vector 
of a neural unit. However, there is an essential extra feature in the SOM. The 
neurons are arranged to a one-, two-, or multidimensional lattice such that each 
neuron has a set of neighbors; see Fig. 7. The goal of learning is not only to find 
the most representative code vectors for the input training set in the mean-square 
sense, but at the same time to realize a topological mapping from the input space 
to the grid of neurons. Mathematically, this can be defined as follows. 
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Inputs 
Winner-take-all 
(WTA) layer 

Output: 
index of 
the best-matching 
neuron 

Figure 7 The SOM network. Each neuron in the map layer receives the same inputs. The best match-
ing neuron (BMU) can be found by a Winner-take-all (WTA) layer which outputs its index. In learning, 
the BMU and its neighbors receive a learning signal from the WTA (only the signal to the BMU is 
shown by the thick arrow), telling them to update their weights. 

For any data point x in the input space, one or several of the codewords are 
closest to it. Assume that m^ is the closest among all I codewords: 

X — Ttii = m m X — m ,• j = h...,L (7) 

To make the correspondence unique, assume that the codeword with the small-
est index is chosen if several codewords happen to be at exactly the minimum 
distance from x. The unit / having the weight vector m/ is then called the best-
matching unit (BMU) for vector x, and index / = / (x) can be considered as the 
output of the map. Note that for fixed x, Eq. (7) defines the index / of the BMU, 
and for fixed /, it defines the Voronoi set of unit / as the set of points x that satisfy 
Eq. (7). By the above relation, the input space is mapped to the discrete set of 
neurons. 

By a topological mapping the following property is meant: if an arbitrary point 
x is mapped to unit /, then all points in neighborhoods of x are mapped either 
to / itself or to one of the units in the neighborhood of / in the lattice. This im-
plies that if / and j are two neighboring units on the lattice, then their Voronoi 
sets in the input space have a conmion boundary. Whether the topological prop-
erty can hold for all units, however, depends on the dimensionalities of the input 
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space and the neuron lattice: because no topological maps between two spaces of 
different dimensions can exist in the strict mathematical sense, a two-dimensional 
neural layer can only follow locally two dimensions of the multidimensional input 
space. Usually the input space has a much higher dimension, but the data cloud 
( x i , . . . , x„) used in training may be roughly concentrated on a lower-dimensional 
manifold that the map is able to follow at least approximately [60]. 

The fact that the mapping has a topological property has the advantage that 
it is more error-tolerant: a perturbation of the input x may cause the output i (x) 
(the index of the BMU) to jump from the original unit to one of its neighbors, 
but usually not to an arbitrary position on the lattice, as would be the case if no 
neighborhood relation existed among the neurons. In a layered neural system in 
which the next layer "reads" the feature map but does not know the original inputs, 
such a property is essential to guarantee stable behavior. 

The SOM network is shown as a feedforward network in Fig. 7. The role of 
the output "winner-take-all" layer is to compare the outputs from the map layer 
(equivalently, the distances ||x — m/1|) and give out the index of the BMU. The 
SOM can be described without specifying the activation functions of the neu-
rons; an equivalent network is obtained if the activation function is a radial basis 
function, hence the output of a neuron is a monotonically decreasing function of 
| | x -m/ | | . 

The well-known Kohonen algorithm for self-organization of the code vectors 
is as follows [58]: 

1. Choose initial values randomly for the weight vectors m/ of the units /. 
2. Repeat Steps 3, 4 until the algorithm has converged. 
3. Draw a sample x from the probability distribution of the input samples and 

find the best-matching unit / according to Eq. (7). 
4. Adjust the weight vectors of all units by 

m̂ - := 111;- + yhrix - mj), (8) 

where y is a gain factor and hr is a function of the distance r = \\i — j \\ of 
units / and j measured along the lattice. 

(In the original version [39], the neighborhood function hr was equal to 1 for a 
certain neighborhood of /, and 0 elsewhere. The neighborhood and the gain y 
should slowly decrease in time.) 

The convergence and the mathematical properties of this algorithm have been 
considered by several authors, e.g., [59] and [61]. 

The role of the SOM in feature extraction is to construct optimal codewords 
in abstract feature spaces. Individual feature values can then be replaced by these 
codes, which results in data compression. Furthermore, hierarchical systems can 
be built in which the outputs from the maps are again used as inputs to subsequent 
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layers. The topological property of the feature maps is then essential for low-error 
performance [62]. 

In data clustering, the weight vectors of the SOM neurons develop into code 
vectors under unsupervised learning in which a representative training set of input 
vectors are used. The learning is slow, but it is an "off-line" operation. After the 
map has been formed, it can be used as such to code input vectors having similar 
statistical properties with the training vectors. Note that due to the unsupervised 
learning, the algorithm cannot give any semantic meanings to each unit, but this 
must be done by the user. The two-dimensional map is also a powerful tool for 
data visualization: e.g., a color code can be used in which each unit has its own 
characteristic color. 

The unsupervised feature extraction scheme is especially suitable for general 
scene analysis in computer vision, since it is fairly inexpensive to collect large 
amounts of image data to be used in unsupervised training, as long as the images 
need no manual analysis and classification. One example is cloud classification 
from satellite images [63] in which even human experts have difficulties in giving 
class labels to cloud patches as seen by a weather satelUte. The map can be used 
to cluster the patches, and after learning a human expert can go over the map and 
interpret what each unit is detecting. 

A data base of well over two thousand applications of SOM is given by [40]. 
A recent review of the use of the SOM for various engineering tasks, including 
pattern recognition and robotics, is given by [64]. 

IV. CLASSIFICATION IMETHODS: 
STATISTICAL AND NEURAL 

Numerous taxonomies for classification methods in pattern recognition have 
been presented. None has been so clearly more advantageous than the others 
that it would have gained uncontested status. The most profound dichotomy, 
however, is quite undisputed and goes between statistical and syntactic classi-
fiers. The domain of this text is limited to the former, whereas the latter—also 
known as linguistic or structural approaches—is treated in many textbooks in-
cluding [12, 15, 21]. 

The statistical alias decision-theoretic methods can further be divided in many 
ways depending on the properties one wants to emphasize. Opposing parametric 
and nonparametric methods is one often-used dichotomy. In parametric methods, 
a specific functional form is assumed for the feature vector densities, whereas 
nonparametric methods refer directly to the available exemplary data. Somewhere 
between these extremes, there are semiparametric methods which try to achieve 
the best of both worlds using a restricted number of adaptable parameters depend-
ing on the inherent complexity of the data [22]. 
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One commonly stated (e.g., [20]) division goes between neural and classical 
statistical methods. It is useful only if one wants to regard these two approaches as 
totally disjoint competing alternatives. On the opposite extreme, neural methods 
have been seen only as iterative ways to arrive at the classical results of the tra-
ditional statistical methods (e.g., [23]). Better off, both methods can be described 
using common terms as was done by [65] and summarized in this text. 

Neural methods may additionally be characterized by their learning process: 
supervised learning algorithms require all the exemplary data to be classified be-
fore the training phase begins, whereas unsupervised algorithms may utilize un-
labeled data as well. Due to the general nature of classification, primarily only 
supervised methods are applicable to it. For clustering, data mining, and neural 
feature extraction, the unsupervised methods can be beneficial as well; see Sec-
tion III. 

If the pattern recognition problem is examined not from the viewpoint of math-
ematical theory but from the perspective of a user of a hypothetical system, a 
totally different series of dichotomies is obtained. Figure 8 represents one such 
taxonomy [66]. 

In the following sections, a set of classification algorithms are described and a 
taxonomy presented according to the structure of Table I. The methods are thus 
primarily grouped by belonging to either density estimators, regression methods, 
or others. The parametric or nonparametric nature of each method is discussed 
in the text. In Section IV.F, the neural characteristics of the various classification 
methods are addressed. In Table I, the algorithms regarded as neural are printed 
in itaUcs. 

"Optimal" Plug-in Density fc-NN 
Rules Rules Est imat ion Rules 

No. of Pa t t e rn 
Classes Unknown 

Mixture Cluster Analysis 
Resolving 

Figure 8 Dichotomies in the design of a statistical pattern recognition system, adapted from [66]. 
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Table I 

Taxonomy of Classification Algorithms Reviewed in the Text 

Density estimators Regression methods Others 

Parametric QDA LDA RDA 
Semiparametric RKDA MLPRBF CLAFIC ALSM 
Nonparametric KDA PNN MARS LLR k-NN LVQ L-k-NN 

A. MATHEMATICAL PRELIMINARIES 

In order to place the neural network classifiers in the context of statistical de-
cision estimation, and to describe their functionality, we have to first define some 
mathematical concepts. A central mathematical notation in the theory of clas-
sifiers is the classification function g: R^ i-^ { 1 , . . . , c}. For each real-valued 
^-dimensional input feature vector x to be classified, the value of g(x) is thus 
an integer in the range 1 , . . . , c, c being the number of classes. The classes are 
indexed with j when appropriate. The training set used in designing a classifier 
consists of n vectors x/, / = 1,.. ,,n, of which nj vectors x/y, / = 1 , . . . , nj, 
belong to class j . 

The ordered pair (x, j) is stochastically speaking one realization of (X, / ) , an 
ordered pair of a random vector variable X and a discrete-valued random vari-
able / . By assuming the realizations (x/, jt) to be stochastically independent and 
identically distributed, many considerations are simplified notably, although tak-
ing advantage of context-dependent information might certainly be beneficial in 
many applications. 

The a priori probability of class j is denoted by Pj, its probability density 
function by //(x), and that of the pooled data with all the classes combined 
by / (x) = Yfj=i ^jfj(^y Naturally, the priors have to meet the condition 
Yfj=i Pj = 1- Using this notation, the Bayes classifier that minimizes the non-
weighted misclassification error [14] is defined by 

gBAYES (x) = argmax Pj fj (x). (9) 

We may alternatively consider the a posteriori probability qj(x) = P(J = j \ 
X = x) of class j given x and use the rule 

gBAYEs(x) = argmax ̂ y(x). (10) 
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The rules of Eqs. (9) and (10) are equivalent since 

qj(x) = p{j = j \ x = x) = ^4rv-' (11) 
However, in practice the classifiers Eq. (9) and Eq. (10) have to be estimated 
from training data (xi, 71) , . . . , (x„, j^) of pattern vectors with known classes, 
and then two distinct approaches emerge. The use of rule Eq. (9) requires explicit 
estimation of the class-conditional probability density functions fj. For Eq. (10), 
some regression technique can be used to estimate the posterior probabilities qj 
directly without separate consideration of the class-conditional densities. 

The probability of a vector x to be misclassified is notated 6(x). Using the 
Bayes rule it is ^BAYES(X) = 1 — maxy=i,...,c ^; (x). The overall misclassification 
rate {€) of the Bayes classifier is thus 

^BAYES = 1 - / /gBAYEs(x)(x)^-^. (12) 

B. DENSITY ESTIMATION METHODS 

In the density estimation approach one needs estimates for both the prior prob-
abilities Pj and the class-conditional densities fj in Eq. (9). The former esti-
mation task is quite straightforward and the difficult and underdetermined part 
is to estimate the class-conditional densities. A classical parametric approach is 
to model the class-conditional densities as multivariate Gaussians. Depending on 
whether unequal or equal class covariances are assumed, the logarithm of Pj fj (x) 
is then either a quadratic or linear function of x, giving rise to quadratic discrim-
inant analysis (QDA) and linear discriminant analysis (LDA). A recent devel-
opment is regularized discriminant analysis (RDA) which interpolates between 
LDA and QDA. 

The success of these methods heavily depends on the validity of the normal-
ity assumption. If the class-conditional densities truly are normal, near-Bayesian 
classification error level can be achieved. On the other hand, if the densities are 
neither unimodal nor continuous, disastrous performance may follow. However, 
the critical areas for the classification accuracy are those where the distributions 
of the classes overlap. If the normality assumption holds there, the classification 
accuracy may be good even though the overall performance of the density estima-
tion would be poor. 

In nonparametric density estimation no fixed parametrically defined form for 
the estimated density is assumed. Kernel or Parzen estimates as well as A:-nearest 
neighbor methods with large k are examples of popular nonparametric density 
estimation methods. They give rise to kernel discriminant analysis (KDA) and 
/c-nearest neighbor (A:-NN) classification rules (see Section IV.D.l). 
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In another approach the densities are estimated as finite mixtures of some stan-
dard probability densities by using the expectation-maximization (EM) algorithm 
or some other method [67-71]. Such an approach can be viewed as an econo-
mized KDA or an instance of the radial basis function (RBF) approach [22]. The 
self-organizing reduced kernel density estimator estimates densities in the spirit 
of radial basis functions, and the corresponding classification method is here re-
ferred to as reduced kernel discriminant analysis (RKDA). 

1. Discriminant Analysis Methods 

Quadratic discriminant analysis (QDA) [72] is based on the assumption that 
pattern vectors from class j are normally distributed with mean vector ^ij and 
covariance matrix Zy. Following the density estimation approach then leads to 
the rule 

gQDA(x) = argmax[log Pj - \ logdet X̂ - -\{x- Jijfl.j\x - Jij)]. (13) 
;=l,...,c 

Here jEty and Xy denote the sample mean and the sample covariance estimates of 
the corresponding theoretical quantities. 

If one assumes that the classes are normally distributed with different mean 
vectors but with a common covariance matrix T,, then the previous formula sim-
plifies to the linear discriminant analysis (LDA) [72] rule 

gLDA(x) = argmaxpog Pj + / t J X ' ^ x - ^jJ^)], (14) 
j=l,...,c 

where a natural estimate for E is the pooled covariance matrix estimate 

c 

Regularized discriminant analysis (RDA) [73] is a compromise between LDA 
and QDA. The decision rule is otherwise the same as Eq. (13) but instead of T,j 
one uses regularized covariance estimates Jlj (k,y) with two regularizing param-
eters. Parameter X controls the shrinkage of the class-conditional covariance esti-
mates toward the pooled estimate and y controls the shrinkage toward a multiple 
of the identity matrix. Let us denote by Ky the matrix 

^ ( x , ; - ^j)(Xij - ^jf, and let K = ^ K;. 
/=1 ; = 1 
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Then 

Xy(A, y) = (1 - X)tj{k) + Ux{tj{X))L (15) 

where 

( 1 - A ) K / + A K 
X/CA) = -̂  ^—^— . (16) 

One obtains QDA when A = 0, y = 0, and LDA when A = 1, y = 0, provided 
one uses the estimates Hj = Kj/nj and P^ = ^y/w. 

2. Kernel Discriminant Analysis 
and Probabilistic Neural Network 

In kernel discriminant analysis (KDA) [74, 75] one forms kernel estimates / / 
of the class-conditional densities and then applies rule Eq. (9). The estimate of 
the class-conditional density of class j is 

1 ""' 
fj(x) = — ^ Khj (x - Xij), 

•' 1=1 

l , . . . , c , (17) 

where, given a fixed probability density function K(') called the kernel, hj > 
0 is the smoothing parameter of class 7, and Kh denotes the scaled kernel 
Kh(x) = h-^K(x/h). This scaling ensures that Kh and hence also each fj 
is a probability density. A popular choice is the symmetric Gaussian kernel 
K(x) = (27r)~^/^ exp(- ||x|p/2). The choice of suitable values for the smoothing 
parameters is crucial and several approaches have been proposed in the literature; 
see, e.g., [72,76-78]. 

The selection of the smoothing parameters can be based on cross-validated 
error count. In the first method, KDAl, all the smoothing parameters hj are fixed 
to be equal to a parameter h. Optimal value for h is then selected using cross-
validation (see Section IV.G) as the value which minimizes the cross-validated 
error count. In the second method, KDA2, the smoothing parameters are allowed 
to vary separately starting from a common value selected in KDAl. 

In the second method the nonsmoothness of the object function is trouble-
some. Instead of minimizing the error count directly, it is advantageous to min-
imize a smoothed version of it. In a smoothing method described in [79], the 
class-conditional posterior probabihty estimates qj (x) corresponding to the cur-
rent smoothing parameters are used to define the functions Uj 

c 

Uj(x) = &xip{yqj{x)) ̂  ^txp{yqk(x)), (18) 
k=i 
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where y > 0 is a parameter. Then the smoothed error count is given by n — 
X!"=i ^ji (x/). As y ^- oo, this converges towards the true error count. Since the 
smoothed error count is a differentiable function of the smoothing parameters, 
one can use a gradient-based minimization method for the optimization. 

The probabilistic neural network (PNN) [80] is the neural network counterpart 
of KDA. Basically, all training vectors are stored and used as a set of Gaussian 
densities. In practice, only a subset of the kernels are actually evaluated when the 
probability values are calculated. 

3. Reduced Kernel Density Analysis and Radial 
Basis Functions 

The standard kernel density estimate suffers from the curse of dimensionality: 
as the dimension d of data increases, the size of a sample x i , . . . , x„ required for 
an accurate estimate of an unknown density / grows quickly. On the other hand, 
even if there are enough data for accurate density estimation, the application at 
hand may limit the complexity of the classifier one can use in practice. A kernel 
estimate with a large number of terms may be computationally too expensive to 
use. One solution is to reduce the estimate, that is, to use fewer kernels but to place 
them at optimal locations. One can also introduce kernel-dependent weights and 
smoothing parameters. Various reduction approaches have been described in [81-
85]. Some of these methods are essentially the same as the radial basis function 
(RBF) [22] approach of classification. 

The self-organizing reduced kernel density estimate [86] has the form 

I 

f(x) = J2^kKh,(x-mk), (19) 
k=i 

where m i , . . . , m ^ are the reference vectors of a self-organizing map [59], 
wi,,.. ,Wi are nonnegative weights with J2k=i ^k = ^, and hk is a smooth-
ing parameter associated with the ^th kernel. In order to achieve substantial re-
duction one takes t <^ n. The kernel locations mjt are obtained by training the 
self-organizing map using the whole available sample x i , . . . , x„ from / . The 
weights Wk are computed iteratively and they reflect the number of training data 
in the Voronoi regions of the corresponding reference vectors. The smoothing pa-
rameters are optimized via stochastic gradient descent that attempts to minimize 
a Monte Carlo estimate of the integrated squared error / ( / — / ) ^ . Simulations 
have shown that when the underlying density / is multimodal, the use of the 
feature map algorithm gives better density estimates than /:-means clustering, the 
approach proposed in [87]. Reduced kernel discriminant analysis (RKDA) con-
stitutes using estimates Eq. (19) for the class-conditional densities in the classifier 
Eq. (9). A drawback of RKDA in pattern classification applications is that the 
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smoothing parameters of the class-conditional density estimates used in the ap-
proximate Bayes classifier are optimized from the point of view of integrated 
squared error and not discrimination performance which is the true focus of 
interest. 

C. REGRESSION METHODS 

In the second approach to classification the class posterior probabilities qj = 
P(7 = 7 I X = x) are directly estimated using some regression technique. 
Parametric methods include linear and logistic regression. Examples of nonpara-
metric methodologies are projection pursuit [88, 89], additive models [90], mul-
tivariate adaptive regression splines (MARS), local linear regression (LLR), and 
the Nadaraya-Watson kernel regression estimator [78, 91], which is also called 
the general regression neural network [92]. Neural network approaches include 
multilayer perceptrons and radial basis function (RBF) expansions [22, 36]. 

One can use "one-of-c" coding to define the response y/ to pattern x/ to be the 
unit vector [ 0 , . . . , 0, 1, 0 , . . . , 0]^ G W with 1 in the y'/th place. In the least-
squares approach one then tries to minimize 

n ^ ^ ^ ^ ' ren 
1=1 j=l 

over a family IZ of E^-valued functions r, where we denote the 7 th component of 
a vector z by z^J\ The corresponding mathematical expectation is minimized by 
the vector of class posterior probabilities, q = [^1 , . . . , qcV. Of course, this ideal 
solution may or may not belong to the family 7Z, and besides, sampling variation 
will anyhow prevent us from estimating q exactly even when it does belong to IZ 
[93,94]. 

The least-squares fitting criterion Eq. (20) can be thought to rise from using the 
maximum likelihood principle to estimate a regression model where errors are dis-
tributed normally. The logistic approach [72, Chap. 8] uses binomially distributed 
error, clearly the statistically correct model. One natural multivariate logistic re-
gression approach is to model the posterior probabilities as the softmax [95] of 
the components of r, 

PiJ = j\X = x) = qj(x) = ^ r ^ ^ ^ ' ^ c f w , , - (21) 
E)t=i exp(r(^Hx)) 

Note that this also satisfies the natural condition Ylk=\ Â: = 1- A suitable fitting 
criterion is to maximize the conditional log-likelihood of y i , . . . , y„ given that 
Xi = x i , . . . , X„ = x„. In the case of two classes this approach is equivalent to 
the use of the cross-entropy fitting criterion [22]. 
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A very natural approach would be a regression technique that uses the error 
rate as the fitting criterion to be minimized [96]. Classification and regression 
trees (CART) are an example of a nonparametric technique that estimates the 
posterior probabilities directly but uses neither the least-squares nor the logistic 
regression approach [97]. 

1. Multilayer Perceptron 

In the standard multilayer perceptron (MLP), there are d inputs, i hidden units, 
and c output units, all the feedforward connections between adjacent layers are 
included, and the logistic activation function is used in the hidden and output 
layers [22, 36]. Such a network has {d + \)i + (€ + l)c adaptable weights, which 
are determined by minimizing the sum of squared errors criterion Eq. (20). 

Using the notation of Section IV.C, one can use the vector y/ = 0.1 + 0.8y/ 
as the desired output for input x ,̂ i.e., the vectors y/ are scaled to better fit within 
the range of the logistic function. Then the scaled outputs \.25{Y^^\X) — 0.1) of 
the optimized network can be regarded as estimating the posterior probabilities 
P(y = 7 | X = x).A good heuristic is to start the local optimizations from many 
random initial points and to keep the weights yielding the minimum value for the 
sum of squared errors to prevent the network from converging to a shallow local 
minimum. It is advisable to scale the random initial weights so that the inputs to 
the logistic activation functions are of the order unity [22, Chap. 7.4]. 

In weight decay regularization [22, Chap. 9.2], one introduces a penalty for 
weights having a large absolute value in order to encourage smooth network map-
pings. When training MLPs with weight decay (MLP+WD), one minimizes the 
criterion 

^^(yO-)_rO-)(x,,w)f+Aj: 
/ = 1 7 = 1 weW 

M? (22) 

Here w comprises all the weights and biases of the network, W is the set of 
weights between adjacent layers excluding the biases, and A is the weight de-
cay parameter. The network inputs and the outputs of the hidden units should 
be roughly comparable before the weight decay penalty in the form given above 
makes sense. It may be necessary to rescale the inputs in order to achieve this. 

2. Local Linear Regression 

Local linear regression (LLR) [78, 98] is a nonparametric regression method 
which has its roots in classical methods proposed for the smoothing of time se-
ries data; see [99]. Such estimators have received more attention recently; see, 
e.g., [100]. The particular version described below is also called LOESS [98,99]. 
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Local linear regression models the regression function in the neighborhood of 
each point x by means of a linear function z h^ a + B(z — x). Given training data 
(xi, y i ) , . . . , (x„, y„), the fit at point x is calculated as follows. First one solves 
the weighted linear least-squares problem 

n 

J2 lly/ - a - B(x/ - x)fw{\\xi - x\\/h(x)) = min! (23) 

and then the fit at x is given by the coefficient a. A reasonable choice for the 
function w is the tricube weight function [98], w(u) = max((l — |Mp)^, 0). The 
local bandwidth h(x) is controlled by a neighborhood size parameter 0 < a < 1: 
one takes k equal to an rounded to the nearest integer and then takes h(x) equal to 
the distance to the ^th closest neighbor of x among the vectors x i , . . . , x„. If the 
components of x are measured in different scales, then it is advisable to select the 
metric for the nearest neighbor calculation carefully. At a given x, the weighted 
linear least-squares problem can be reduced to inverting Si{d-\-l)x(d-\-l) matrix, 
where d is the dimensionality of x; see, e.g., [78, Chap. 5]. 

3. Tree Classifier, Multivariate Adaptive Regression Splines, 
and Flexible Discriminant Analysis 

The introduction of tree-based models in statistics dates back to [101] although 
their current popularity is largely due to the seminal book [97]. For EucUdean pat-
tern vectors x = [jci,.. . , xj]^, a classification tree is a binary tree where at each 
node the decision to branch either to left or right is based on a test of the form 
JCi > A. The cutoff values k are chosen to optimize a suitable fitting criterion. 
The tree growing algorithm recursively splits the pattern space R^ into hyperrect-
angles while trying to form maximally pure nodes, that is, subdivision rectangles 
that ideally contain training vectors from one class only. Stopping criteria are used 
to keep the trees reasonably sized, although the commonly employed strategy is to 
first grow a large tree that overfits the data and then use a separate pruning stage 
to improve its generalization performance. A terminal node is labeled according 
to the class with the largest number of training vectors in the associated hyper-
rectangle. The tree classifier therefore uses the Bayes rule with the class posterior 
probabilities estimated by locally constant functions. The particular tree classi-
fier described here is available as a part of the S-Plus statistical software package 
[102-104]. This implementation uses a likelihood function to select the optimal 
splits [105]. Pruning is performed by the minimal cost-complexity method. The 
cost of a subtree T is taken to be 

R^(T) = e(T)-\-a'Size(T), (24) 
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where e ( r ) is an estimate of the classification error of T, size of T is measured 
by the number of its terminal nodes, and a > 0 is a cost parameter. An overfitted 
tree is pruned by giving a increasingly large values and selecting nested subtrees 
that minimize/?«. 

MARS [106] is a regression method that shares features with tree-based mod-
eling. MARS estimates an unknown function r using an expansion 

M 

f(x) = ao-\-J2''kBk(x), (25) 

where the functions Bk are multivariate splines. The algorithm is a two-stage pro-
cedure, beginning with a forward stepwise phase which adds basis functions to the 
model in a deliberate attempt to overfit the data. The second stage of the algorithm 
is standard linear regression backward subset selection. The maximum order of 
variable interactions (products of variables) allowed in the functions Bk, as well 
as the maximum value of M allowed in the forward stage, are parameters that 
need to be tuned experimentally. Backward model selection uses the generalized 
cross-validation criterion introduced in [107]. 

The original MARS algorithm fits only scalar-valued functions and is there-
fore not well suited to discrimination tasks with more than two classes. A recent 
proposal called flexible discriminant analysis (FDA) [108] with its publicly avail-
able S-Plus implementation in the StatLib program library contains vector-valued 
MARS as one of its ingredients. However, FDA is not limited to just MARS as 
it allows the use of other regression techniques as its building blocks as well. In 
FDA, one can first train c separate MARS models r̂ -̂ ^ with equal basis function 
sets but different coefficients ak to map training vectors x/ to the corresponding 
unit vectors yt. Then a linear map A is constructed to map the regression function 
output space R^ onto a lower-dimensional feature space R^ in a manner that op-
timally facilitates prototype classification based on the transformed class means 
A{r(iij)) and a weighted Euclidean distance function. 

D. PROTOTYPE CLASSIFIERS 

One distinct branch of classifiers appearing under the title others in Table I are 
prototype classifiers LVQ, ^-NN, and L-^-NN. They share in common the prin-
ciple that they keep copies of training samples in memory, and the classification 
decision ^(x) is based on the distances between the memorized prototypes and 
the input vector x. Either the training vectors are retained as such or some sort of 
a training phase is utilized to extract properties of a multitude of training vectors 
to each of the memorized prototypes. In either case, the prototype classifiers are 
typical representatives of the nonparametric classification methods. 
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1. /^-Nearest Neighbor Classifiers 

In a k-nearest neighbor (A:-NN) classifier each class is represented by a set 
of prototype vectors [27]. The k closest neighbors of an input pattern vector are 
found among all the prototypes and the class label is decided by the majority vot-
ing rule. A possible tie of two or more classes can be broken, e.g., by decreasing 
k by one and revoting. 

In classical pattern recognition, the nonparametric /:-NN classification method 
has been very popular since the first publication by Fix and Hodges [109] and 
an important limiting accuracy proof by Cover and Hart [110]. The A:-NN rule 
should even now be regarded as a sort of a baseline classifier, against which other 
statistical and neural classifiers should be compared [111]. Its advantage is that no 
time is needed in training the classifier, and the corresponding disadvantage is that 
huge amounts of memory and time are needed during the classification phase. An 
important improvement in memory consumption—while still keeping the classi-
fication accuracy moderate—may be achieved using some editing method [112]. 
An algorithm known as multiedit [14] removes spurious vectors from the training 
set. Another algorithm known as condensing [113] adds new vectors to the clas-
sifier when it is unable to classify the pattern correctly. In both methods, a vector 
set originally used as a A:-NN classifier is converted to a smaller edited set to be 
used as a 1-NN classifier. 

2. Learning Vector Quantization 

The learning vector quantizer (LVQ) algorithm [59] produces a set of proto-
type or codebook pattern vectors m/ that can be used in a 1-NN classifier. Train-
ing consists of moving a fixed number i of codebook vectors iteratively toward 
or away from the training samples x/. The variations of the LVQ algorithm differ 
in the way the codebook vectors are updated. The LVQ learning process can be 
interpreted either as an iterative movement of the decision boundaries between 
neighboring classes, or as a way to generate a set of codebook vectors whose 
density reflects the shape of the function s defined as 

s(x) = Pjfj(x) - max Pkfk(x), (26) 

where j = gBAYEs(x). Note that the zero set of s consists of the Bayes optimal 
decision boundaries. 

3. Learning *:-NN Classifier 

Besides editing rules, iterative learning algorithms can be applied to A:-NN clas-
sifiers [114]. The learning rules of the learning k-NN (L-k-NN) resemble those of 
LVQ but at the same time the classifier still utilizes the improved classification 
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accuracy provided by the majority voting rule. The performance of the standard 
A:-NN classifier depends on the quality and size of the training set, and the per-
formance of the classifier decreases if the available computing resources limit the 
number of training vectors one can use. In such a case, the learning A:-NN rule is 
better able to utilize the available data by using the whole training set to optimize 
the classification based on a smaller set of prototype vectors. 

For the training of the A;-NN classifier, three slightly different training schemes 
have been presented. As in the LVQ, the learning A:-NN rules use a fixed number 
of code vectors mtj with predetermined class labels j for classification. Once the 
code vectors have been tuned by moving them to such positions in the input space 
that give a minimal error rate, the decision rule for an unknown input vector is 
based on the majority label among its k closest code vectors. 

The objective of all the learning rules is to make the correct classification of the 
training samples more probable. This goal is achieved by incrementally moving 
some of the vectors in the neighborhood of a training input vector toward the 
training sample and some away from it. For all the rules, the modifications to the 
code vectors m/ are made according to the LVQ rule: 

uiiit -f 1) = unit) ± a{t){x(t) - m,(0), (27) 

where x(t) is the training sample at the step t. With a positive sign of a(t), the 
movement of the code vector is directed toward the training sample, and with 
negative sign away from it. The learning rate a(t) should decrease slowly in order 
to make the algorithm convergent; in practice it may be sufficient to use a small 
constant value. 

E. SuBSPACE C L A S S I F I E R S 

The motivation for the subspace classifiers originates from compression and 
optimal reconstruction of multidimensional data. The use of linear subspaces as 
class models is based on the assumption that the data within each class approx-
imately lie on a lower-dimensional subspace of the pattern space K^. A vector 
from an unknown class can then be classified according to its shortest distance 
from the class subspaces. 

The sample mean ^ of the whole training set is first subtracted from the pat-
tern vectors. For each class j , the correlation matrix R^ is estimated and its first 
few eigenvectors u iy , . . . , u^jj are used as columns of a basis matrix U^. The 
classification rule of the class-featuring information compression (CLAFIC) al-
gorithm [115] can then be expressed as 

ĈLAFIC (x) = argmax||uyx|| . (28) 
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The averaged learning subspace method (ALSM) introduced by one of the 
current authors [47] is an iterative learning version of CLAFIC, in which the un-
normahzed sample class correlation matrices 8^(0) = ^i^x ^U^fj ^^ sUghtly 
modified according to the correctness of the classifications, 

Sj(k + 1) = S;(̂ ) +aJ2 x/xf -PJ2 ^i^f' (^^) 
ieAj ieBj 

Here x iy , . . . , Xnjj is the training sample from class j , oc and P are small positive 
constants, Aj is the set of indices / for which x/ comes from class j but is classi-
fied erroneously to a different class, and Bj consists of those indices for which x/ 
is classified to j although it actually originates from a different class. The basis 
matrices Uy are recalculated after each training epoch as the dominant eigenvec-
tors of the modified S;. The subspace dimensions ij need to be somehow fixed. 
One effective iterative search algorithm and a novel weighting solution have been 
recently presented [116]. 

R SPECIAL PROPERTIES OF NEURAL IVIETHODS 

In the previous discussion we characterized some popular classification tech-
niques in terms of the mathematical principles they are based on. In this general 
view many neural networks can be seen as representatives of certain larger fami-
lies of statistical techniques. However, this abstract point of view fails to identify 
some key features of neural networks that characterize them as a distinct method-
ology. 

From the very beginning of neural network research [117-119] the goal was 
to demonstrate problem-solving without explicit programming. The neurons and 
networks were supposed to learn from examples and store this knowledge in a 
distributed way among the connection weights. 

The original methodology was exactly opposite to the goal-driven or top-down 
design of statistical classifiers in terms of explicit error functions. In neural net-
works, the approach has been bottom-up: starting from a very simple linear neuron 
that computes a weighted sum of its inputs, adding a saturating smooth nonlinear-
ity, and constructing layers of similar parallel units, it turned out that "intelligent" 
behavior such as speech synthesis [120] emerged by simple learning rules. The 
computational aspect has always been central. At least in principle, everything 
that the neural network does should be accomplished by a large number of simple 
local computations using the available input and output signals, as in real neu-
rons, but unlike heavy numerical algorithms involving such operations as matrix 
inversions. Perhaps the best example of a clean-cut neural network classifier is 
the LeNet system [4, 121] for handwritten digit recognition (see Section V.B.I). 
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Such a computational model supports well the implementation in regular VLSI 
circuits. 

In the current neural network research, these original views are clearly becom-
ing vague as some of the most fundamental neural networks such as the one-
hidden-layer MLP or RBF networks have been shown to have very close connec-
tions to statistical techniques. The goal remains, however, of building much more 
complex artificial neural systems for demanding tasks such as speech recogni-
tion [122] or computer vision [35], in which it is difficult or eventually impossible 
to state the exact optimization criteria for all the consequent processing stages. 

Figure 9 is an attempt to assess the neural characteristics of some of the clas-
sification methods discussed earlier. The horizontal axis measures the flexibility 
of a classifier architecture in the sense of the richness of the discriminant func-
tion family encompassed by a particular method. High flexibility of architecture 
is a property often associated with neural networks. In some cases (MLP, RBF, 
CART, MARS) the flexibility can also include algorithmic model selection during 
learning. 

In the vertical dimension, the various classifiers are categorized on the basis of 
how they are designed from a training sample. Training is considered nonneural 

neural 
training 

inflexible 

ALSM 

L-ik-NN 
MLP© LVQ 
RKDA RBF 

CART MARS 

flexible 
architecture architecture 

LDA 
% 

QDA 

RDA CLAFIC KDA LLR 

fc-NN 

nonneural 
training 

Figure 9 Neural characteristics of some classifiers according to [65]. 
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if the training vectors are used as such in classification (e.g., A:-NN, KDA), or if 
some statistics are first estimated in batch mode and the discriminant functions 
are computed from them (e.g., QDA, CLAFIC). Neural learning is characterized 
by simple local computations in a number of real or virtual processing elements. 
Neural learning algorithms are typically of the error correction type; for some 
such algorithms, not even an explicit cost function exists. Typically, the train-
ing set is used several times (epochs) in an on-line mode. Note, however, that 
for some neural networks (MLP, RBF) the current implementations in fact often 
employ sophisticated optimization techniques which would justify moving them 
downwards in our map to the lower half plane. 

In this schematic representation, the classical LDA and QDA methods are seen 
as least neural with the RDA and CLAFIC possessing at least some degree of flex-
ibility in their architecture. The architecture of KDA, A:-NN, and LLR is extremely 
flexible. Compared to CLAFIC, the ALSM method allows for both incremental 
learning and flexibility of architecture in the form of subspace dimensions that 
can change during learning. In this view, neural classifiers are well exemplified 
in particular by such methods as MLP, RBF, RKDA, LVQ, and learning /:-NN 
(L-/:-NN), but also to some degree by ALSM, CART, and MARS. 

G. CROSS-VALIDATION IN CLASSIFIER DESIGN 

In order to get reliable estimates of classifier performance, the available data 
should first be divided into two separate parts: the training sample and the testing 
sample. The whole process of classifier design should then be based strictly on 
the training sample only. In addition to parameter estimation, the design of some 
classifiers involves the choice of various tuning parameters and model or archi-
tecture selection. To utilize the training sample efficiently, cross-validation [123] 
(or "rotation," cf. [14, Chap. 10.6.4]) can be used. In i;-fold cross-validation, the 
training sample is first divided into v disjoint subsets. One subset at a time is then 
put aside; a classifier is designed based on the union of the remaining i; — 1 subsets 
and then tested for the subset left out. Cross-validation approximates the design 
of a classifier using all the training data and then testing it on an independent set 
of data, which enables defining a reasonable object function to be optimized in 
classifier design. For example, for a fixed classifier, the dimension of the pattern 
vector can be selected so that it minimizes the cross-validated error count. Af-
ter optimization, one can obtain an unbiased estimate of the performance of the 
optimized classifier by means of the separate testing sample. Notice that the per-
formance estimates might become biased if the testing sample were in any way 
used during the training of the classifier. 
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H. REJECTION 

Other criteria than minimum classification error can be important in practice, 
including use of class-dependent misclassification costs and Neyman-Pearson-
style classification [11, 124]. The use of a reject class can help reduce the mis-
classification rate e in tasks where exceptional handling (e.g., by a human expert) 
of particularly ambiguous cases is feasible. The decision to reject a pattern x and 
to handle it separately can be based on its probability to be misclassified, which 
for the Bayes rule is 6(x) = 1 — maxj=i,...,c^;(x). The highest misclassifica-
tion probability occurs when the posterior probabilities qj{x) are equal and then 
€(x) = 1 — 1/c. One can therefore select a rejection threshold 0 < ^ < l - l / c 
and reject x if 

€{x)>e. (30) 

The notation ^(x) used for the classification function can be extended to in-
clude the rejection case by denoting with ^(x) = 0 all the rejected vectors x. 
When the overall rejection rate of a classifier is denoted by p, the rejection-error 
balance can be depicted as a curve in the p€ plane, parameterized with the 0 value. 
In recognition of handwritten digits, the rejection-error curve is found to be gen-
erally linear in the p log € plane [125]. This phenomenon can also be observed in 
Fig. 18. 

I. COMMITTEES 

In practice, one is usually able to classify a pattern using more than one 
classifier. It is then quite possible that combining the opinions of several paral-
lel systems results in improved classification performance. Such hybrid classi-
fiers, classifier ensembles, or committees, have been studied intensively in recent 
years [126]. 

Besides improved classification performance, there are other reasons to use a 
committee classifier. The pattern vectors may be composed of components that 
originate from very diverse domains. Some may be statistical quantities such as 
moments and others discrete structural descriptors such as numbers of endpoints, 
loops, and so on. There may not be an obvious way to concatenate the various 
components into a single pattern vector suitable for any single classifier type. 
In some other situations, the computational burden can be reduced either during 
training or in the recognition phase if the classification is performed in several 
stages. 

Various methods exist for forming a conmiittee of classifiers even when their 
output information is of different types. In the simplest case, a classifier only out-
puts its decision about the class of an input pattern, but sometimes some measure 
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of the certainty of the decision is also provided. The classifier may propose a set 
of classes in the order of decreasing certainty, or a measure of decision certainty 
may be given for all the classes. Various ways to combine classifiers with such 
types of output information are analyzed in [127-130]. 

The simplest decision rule is to use a majority rule among the classifiers in 
the committee, possibly ignoring the opinion of some of the classifiers [131]. 
Two or more classifiers using different sets of features may be combined to 
implement rejection of ambiguous patterns [132-135]. A genetic algorithm 
can be applied in searching for optimal weights to combine the classifier out-
puts [136]. Theoretically more advanced methods may be derived from the 
EM algorithm [128, 129, 137-139] or from the Dempster-Shafer theory of evi-
dence [127, 140]. 

The outputs of several regression-type classifiers may be combined lin-
early [141] or nonlinearly [142] to reduce the variance of the posterior proba-
bility estimates. A more general case is the reduction of variance in continuous 
function estimation: a set of MLPs can be combined into a committee classi-
fier with reduced output variance and thus smaller expected classification er-
ror [143-146]. A separate confidence function may also be incorporated in each 
of the MLPs [147]. 

Given a fixed feature extraction method, one can either use a conmion training 
set to design a number of different types of classifiers [148] or, alternatively, use 
different training sets to design several versions of one type of classifier [149-
153]. 

J. O N C O M P A R I N G CLASSIFIERS 

Some classification accuracies attained using the classification algorithms de-
scribed in the previous sections will be presented later in this text in Section V.B.4. 
Such comparisons need, however, to be considered with utmost caution. 

During the last years, a large number of papers have been published in which 
various neural and other classification algorithms have been described and ana-
lyzed. The results of such experiments cannot generally be compared due to the 
use of different raw data material, preprocessing, and testing poUcies. In [154] the 
methods employed in experimental evaluations concerning neural algorithms in 
two major neural networks journals in 1993 and 1994 were analyzed. The bare 
conclusion was that the quality of the quantitative results—if presented at all— 
was poor. For example, the famous NETtalk experiments [120] were in [155] 
repHcated and compared to the performance of a A:-NN classifier. The conclusion 
was that the original results were hard to reproduce and the regenerated MLP 
results were outperformed by the A:-NN classifier. 
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Some larger evaluations or benchmarking studies have also been published in 
which a set of classification algorithms have been tried to be assessed in a fair and 
impartial setting. Some of the latest in this category include [2,5,6,156,157]. The 
profound philosophical questions involved in comparisons are addressed in [158]. 
In [159] the distribution-free bounds for the difference between the achieved and 
achievable error levels are calculated for a set of classification algorithms in the 
cases of both finite and infinite training sets. 

V. NEURAL NETWORK APPLICATIONS 
IN PATTERN RECOGNITION 

A. APPLICATION AREAS OF NEURAL NETWORKS 

Neural computing has proved to be a useful solution technique in many appli-
cation areas that are difficult to tackle using conventional computing. In a recent 
ESPRIT research project Siena [160], a large number of commercial neural net-
work applications developed in Europe were reviewed. Figure 10 shows the dis-
tribution of the cases by application type. About 9% of the cases in the study were 
clear pattern recognition applications. To solve some part of the whole task, pat-
tern recognition was applied in a much larger number of the applications; many 
prediction and identification problems contain similar recognition and classifica-
tion stages as used in pattern recognition applications. 

Forecasting, 
Prediction 

34% 

Other 
11% 

Pattern 
Recognition, 

Detection 
9% 

Control, Monitoring, 
Modeling 

46% 

Figure 10 Distribution of categories of commercial neural network applications [160]. 
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As neural networks provide rather general techniques for modeling and recog-
nition, they have found applications in many diverse engineering fields. Table II 
presents some neural network application areas together with some typical ap-
plications compiled from case Hsting in [160]. Note that pattern recognition is 
needed in three of the five categories in the table: recognition, classification, and 
visual processing. 

Table II 
Neural Network Application Areas and Case Applications [160] 

Application type Case applications 

Recognition and identification 

Assessment and classification 

Monitoring and control 

Forecasting and prediction 

Sensory and visual 

Oil exploration 
Fiber optic image transmission 
Automated data entry 
Number plate recognition 
Fingerprint analysis 

Credit risk management 
Medical diagnosis 
Bridge construction analysis 
Fruit grading 
TV picture quality control 
Industrial nondestructive testing 
Tyre quality control 
Improving hospital treatment and reducing expenses 
Property valuation 
Product pricing sensitivity analysis 
Route scheduling optimization 
Quality control in livestock carcasses 

Machine health monitoring 
Dynamic process modeling 
Chemical synthesis 
Chemical manufacture 
Bioprocess control 

Stock market prediction 
Classifying psychiatric care 
Holiday preference prediction 
Traffic jam reduction 
Survey analysis 
TV audience prediction 
Future business demand forecasting 

Automated industrial inspection 
Railway track visual maintenance inspection 
Mail sorting 
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In the early days of neural computing, the first applications were in pattern 
recognition, but since then neural computing has spread to many other fields 
of computing. Consequently, large engineering fields, modeling and control, to-
gether with prediction and forecasting, made up two-thirds of the cases in the 
study. 

Still, the relative impact of neural network techniques is perhaps largest in the 
area of pattern recognition. In some application types, such as optical character 
recognition, neural networks have already become a standard choice in commer-
cial products. The main reasons for the success of neural network methods in 
such problems are outlined in the previous chapters—^by carefully designed pre-
processing and feature extraction the main difficulties in the applications are in 

Table III 

Examples of Neural Pattern Recognition Applications 

Application Neural network solution 

Problem Domain 
Identification and verification 

Face recognition 

Face identification 
Paper currency recognition 
Signature verification 

Ultrasonic weld testing 
Wood defect recognition 

Medical applications 
Blood vessel detection 
Contour finding in MRI 

Aerial imaging and reconnaissance 
Radar target classification 
Automatic target recognition 

Character recognition 
Numeric handprint recognition 

Handwritten form processing 
On-line recognition 

Speech processing 
"Phonetic typewriter" 
Speech recognition 

Classification of small images by MLP tree [161] 
Dynamic link matching, Gabor-jet features [162] 
ZN-Face^^ system [163], based on [162] 
Geometric features, MLP classifier [164] 
Wavelet decomposition, MLP classifier [165] 
Fisher's discriminant analysis enhanced with NN^^ [166] 
Manually selected features, MLP classifier^^ [167] 
Self-organizing features^\ see Section V.B.3 

Convolution filter bank, MLP classifier [168] 
MLP detection of contour pixels [169] 

Spectral features, MLP classifier [170] 
Biological vision modeling [171] 
See [172] for survey on ATR 

LeNet architecture^^ [121], see Section V.B.I 
Zemike moment features, MLP classifier [173] 
Geometric and moment features, MLP classifier [174] 
Selected features, MLP classifier^ ̂  [167] 
Dynamic stroke features, RBF classification [175] 

Cepstral feature classification by SOM [122] 
Phoneme classification by time delay neural network [176] 

1) Conmiercial products are marked by ^̂  in the table. 
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determining the nonlinear class boundaries, which is a very suitable problem for 
neural network classifiers. 

In Table III we have collected recent neural network applications in pattern 
recognition. Typical architecture of neural pattern recognition algorithms follows 
that shown in Fig.l. In most of the applications listed in Table III, conventional 
features, such as moment invariants or spectral features, are computed from the 
segmented objects and neural networks are used for the final classification. 

Then the value of using neural networks in the application depends on the 
goodness of the classifier. Although any classifier cannot solve the actual recogni-
tion problem if the selected features do not separate the target classes adequately, 
the choice of the most efficient classifier can give the few extra percent in recog-
nition rate to make the solution sufficient in practice. The advantages of neural 
classifiers compared to other statistical methods were reviewed in Section IV.F. 

In the next section we review some more integral neural network pattern rec-
ognition systems, in which the feature extraction is integrated to the learning 
procedure. 

B. EXAMPLES OF NEURAL PATTERN 
RECOGNITION SYSTEMS 

In this section we review some pattern recognition systems, in which neural 
network techniques have a central role in the solution, including the lower levels 
of the system. As the vast majority of neural network solutions in pattern recogni-
tion are based on carefully engineered preprocessing and feature extraction, and 
neural network classifier, the most difficult parts of the recognition problem, such 
as invariances, are thus solved by hand before they ever reach the network. 

Moreover, the handcrafted feature presentations cannot produce similar invari-
ances and tolerance to varying conditions that are observed in biological visual 
systems. A possible direction to develop more capable pattern recognition sys-
tems might be to include the feature extraction stage as part of the adaptive trained 
system. 

In the pattern recognition systems considered here also a considerable amount 
of the lower parts of the recognition problem are solved by neural networks. In 
Table III, examples of such systems are, e.g., [121, 163, 171]. 

1. System Solution with Constrained MLP 
Architecture—LeNet 

The basic elements of virtually all pattern recognition systems are preprocess-
ing, feature extraction, and classification, as elaborated in previous sections. The 
methods and practices to design the feature extraction stage to be efficient with 
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neural network classifiers were reviewed in Section III. A, including methods such 
as manual selection, and data reduction by, e.g., principal component analysis. 

In theory it is possible to integrate the feature extraction and classification in 
one processing block and to use supervised learning to train the whole system. 
However, the dimensionality of the input patterns causes a serious challenge in 
this approach. In a typical visual pattern recognition application the input to the 
feature extraction stage is an image comprising thousands or even hundreds of 
thousands of pixels, and in the feature extraction stage this very high-dimensional 
space is mapped to the feature space of much reduced dimensionality. A system 
with the original (sub)image as the input would have far too many free parameters 
to generalize correctly, with any practical number of training samples. 

LeNet Architecture 

The solution proposed by LeCun etal. [121,177] is based on constraining the 
network structure with prior knowledge about the recognition problem. The net-
work architecture, named LeNet, is rather similar to the Neocognitron architecture 
(see Section V.B.2): the feature extraction is carried out by scanning the input im-
age with neurons that have local receptive fields to produce convolutional feature 
maps (corresponding to S layers in the Neocognitron), followed by subsampling 
layer to reduce the dimensionality of the feature space and to bring in distor-
tion tolerance to the recognition (corresponding to the C layers in the Neocogni-
tron). Figure 11 shows the basic architecture of a LeNet with two layers of feature 
detectors. 

In the Neocognitron the feature extracting neurons are trained with unsuper-
vised competitive learning, while in the LeNet network back-propagation is used 
to train the whole network in a supervised manner. This has the considerable 
advantage that the features are matched to separate the target classes, while in 
unsupervised feature extraction the features are independent of the target classes. 
The trade-off is that a rather large number of training samples are needed and the 
training procedure may be computationally expensive. 

Example of the LeNet Network 

The following example of the architecture of the LeNet network was reported 
in [177]. The task was to recognize handwritten digits, that were segmented and 
transformed to fit in 16 x 16 pixel images in preprocessing. The network had four 
feature construction layers (named HI, H2, H3, and H4) and an output layer with 
ten units. Layers HI and H3 corresponded to the feature map layers in Fig. 11, 
and H2 and H4 to the resolution reduction layers, respectively. 
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Feature maps Feature maps Resolution Classification 
reduction 

Figure 11 Schematic diagram illustrating the basic structure of many successful neural pattern 
recognition systems, such as the Neocognitron and LeNet. The main differences in the networks are in 
the training algorithm, the number of feature map layers, and the connection pattern of the classifier. 

• The layer HI contained four different feature detectors with 5 x 5 pixel 
receptive fields. Thus the output of the HI layer contained four maps produced by 
scanning the input image with each of the feature detector neurons. 

• The following layer H2 performed averaging and subsampling of the HI fea-
ture maps: in the layer H2 there was a neuron connected with equal fixed weights 
to each nonoverlapping 2 x 2 area in the HI feature map. 

• Layer H3 constructed higher-order features from combinations of the pri-
mary features in H2 maps. The layer had 12 different feature detecting neurons, 
each neuron connected to one or two of the H2 maps by 5 x 5 receptive fields. In 
an earlier version of the system the H3 neurons were connected to all H2 maps, 
resulting in a large number of free parameters in this stage [121]. The reduced 
connection patterns were determined by pruning the network with the optimal 
brain damage technique [178]. 

• The layer H4 was identical to layer H2, averaging and subsampling the H3 
feature maps. The output layer was fully connected to layer H4. 

The network was trained on a large data base of manually labeled digits, and 
was able to produce state-of-the-art level recognition [177]. The example shows 
that it is possible to use back-propagation-based supervised learning techniques 
to solve large parts of the pattern recognition problem, by carefully constraining 
the network structure and weights according to prior knowledge about the task 

A comparison of this architecture, including several variations in the number 
of feature maps, and other learning algorithms for handwritten digit recognition is 
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presented in [179]. The report concentrates on methods where there is no separate 
handcrafted feature extraction stage, but the feature extraction is combined with 
classification and trained together. 

2. Invariant Recognition with Neocognitron 

One of the first pattern recognition systems based solely on neural network 
techniques was the Neocognitron paradigm, developed by Fukushima et al [180]. 
The architecture of the network was originally inspired by Hubel and Wiesel's 
hierarchy model of the visual cortex [181]. According to the model, cells at the 
higher layers in the visual cortex have a tendency to respond selectively to more 
complicated features of the stimulus patterns and, at the same time, have larger 
receptive fields. 

The basic structure of the Neocognitron is shown in Fig. 11. It consists of 
alternating feature detector and resolution reduction layers, called S and C lay-
ers, respectively. Each S layer contains several feature detector arrays called cell 
planes, shown as the small squares inside the layers in Fig. 11. All neurons in 
a cell plane have similar synaptic connections, so that functionally a cell plane 
corresponds to a spatial convolution, since the neurons are linear in weights. The 
S layers are trained by competitive learning, so that each plane will learn to be 
sensitive to a different pattern. 

The C layers are essential to the distortion tolerance of the network. Each cell 
plane in the S layer is connected by fixed weights to a similar but smaller cell 
plane in the successive C layer. The weights of the C cells are chosen so that one 
active S layer cell in its receptive field will turn the C cell on. The purpose of the 
C layers is to allow positional variation to the features detected by the preceding 
S layer. The successive S layer is of the same size as the previous C layer, and 
the S cells are connected to all the C planes. Thus the next-level cell planes can 
detect any combinations of the previous level features. Finally the sizes of the cell 
planes decrease so that the last C plane contains only one cell, with receptive field 
covering the whole input plane. 

In Fig. 12 the tolerance to small distortions is elucidated; the dashed circles 
show the areas where the key features distinguishing "A" must be found. The 
features may appear in any place inside the circles. 

In the later versions of the Neocognitron [182] a selective attention mechanism 
is implemented to allow segmentation and recognition of overlapping patterns, as 
in cursive handwriting. 

3. Self-Organizing Feature Construction System 

In this section we review a neural pattern recognition system based on self-
organizing feature construction. The system is described in more detail in [35, 
183, 184]. 
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Figure 12 Illustration of the principle for recognizing deformed patterns by the Neocognitron. 

The basic principle in the system is to define a set of generic local primary 
features, which are assumed to contain pertinent information of the objects, and 
then to use unsupervised learning techniques for building higher-order features 
from the primary features and reducing the number of degrees of freedom in the 
data. Then the final supervised classifiers can have a comparably small number of 
free parameters and thus require a small amount of preclassified training samples. 

The feature extraction-classification system is composed of a pipelined block 
structure, where the number of neurons and connections decrease and the connec-
tions become more adaptive in higher layers. The major elements of the system 
are the following. 

Primary features'. The primary features should detect local, generic shape-
related information from the image. A self-similar family of Gabor filters (see, 
e.g., [185]) is used for this task, since the Gabor filters have optimal combined 
resolution in spatial and frequency domains. 

Self-organized features'. To form complex features the Gabor filter outputs are 
clustered to natural, possibly nonconvex clusters by a multilayer self-organizing 
map. 

Classifier: Only the classifier is trained in a supervised manner in the highly 
reduced feature space. 

Figure 13 shows the principle of the self-organizing feature construction in 
face recognition [35]. At the lowest levels, two banks of eight Gabor filters were 
used. The two filter banks had different spatial resolution and eight orientations, 
as shown in Fig. 13. The primary feature was thus comprised of the two eight-
dimensional vectors of the filter outputs. 

The complex features were then produced by a two-layer self-organizing map. 
The first-level map contained 10 x 10 units, so that the eight-dimensional fea-
ture vectors of both resolutions were separately mapped through the 10 x 10 
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Feature Clustering 
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Feature value 

Figure 13 Schematic drawing of the feature extraction system. Left part: eight-dimensional Gabor 
vectors at two resolutions are extracted from every pixel location in the 128 x 128 digital image. Right 
part: the two-layer SOM produces a feature value c{p) for each pixel location p. 

map, to produce two two-dimensional vectors. These were stacked to form a 
four-dimensional input vector for the second-layer map, that had 100 units in a 
one-dimensional lattice. Thus the feature extraction stage maps a neighborhood 
of a pixel to a feature value, such that similar details are mapped to nearby fea-
tures. A special virtue of the multilayer SOM is that the cluster shapes can be 
also nonconvex [186]. Figure 14 shows an example of feature mapping, where a 
face image is scanned with the feature detector and the resulting feature values 
are shown as gray scales. 

It was shown in [186] and [35] that such feature images can be classified with 
very simple classifiers. Often it is sufficient to take feature histograms of the object 
regions, to form translation-invariant classification features. 

The role of the classifier is more important in this feature construction system 
than with manually selected features, since the features are not directly related to 
the object classes. For any given class, many of the filters, and features, are irrele-
vant, and the classifier must be able to pick up the combination of the relevant fea-
tures. Thus the pure Euclidean distance of the feature histograms cannot be used 
as the basis of the classification. The most suitable classifiers are then methods 
that are based on hyperplanes, such as subspace classifiers and multilayer percep-
tron, while the distance-based methods, such as nearest neighbor classifiers and 
radial basis function networks, might be less effective. 
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Figure 14 Upper part: an example image and the feature image. The image was a part of a 128 x 128 
image. The 100 feature values are represented by gray levels in the feature image. The circle gives 
the approximate face area to be used in computing the feature histogram. Lower part: the Gaussian 
weighted feature histogram. The Gaussian weight function had width R = 50 and was centered as 
shown by the circle of radius R in the feature image. 

Practical Example: Recognition of Wood Surface Defects 

The proposed self-organizing feature construction method has been applied in 
some industrial pattern recognition problems, as described in [184] in detail. Here 
we give a short review on the recognition of wood surface defects. 

As a natural material, wood has significant variation both within and between 
species, making it a difficult material for automatic grading. In principle, the in-
spection and quality classification of wood is straightforward: the quality class of 
each board depends on its defects and their distribution, as dictated by the qual-
ity standard. However, the definitions of the defects are based on their biological 
origin, appearance, or cause, so that the visual appearance of defects in the same 
class has substantial variation. The Finnish standards alone define 30 different de-
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Figure 15 Examples of various knot types in spruce boards. 

feet elasses, sueh as sound, dry, eneased, and decayed knots, resin pockets, splits, 
bark, wane, mould, etc., each with various degrees of seriousness. 

Knots are the most common defect category and have a crucial role in sorting 
lumber. Figure 15 shows the most important knot classes on spruce boards. 

Figure 16 shows a schematic of a wood surface defect recognition system, 
where the shape-related information is encoded by a self-organizing feature con-
struction system into a "shape histogram," and the color histogram is collected 
by another multilayer SOM as an additional classification feature. A third type 
of information used as a classification feature, in addition to the shape and color 
feature histograms, was the energy of each Gabor filter over the whole image. 
It corresponds to a logarithmically sampled frequency spectrum of the image, and 
yields about 2% better recognition rates. 

The image set used in the knot identification tests consisted of 438 spruce 
samples. The imaging was done at 0.5 mm x 0.5 mm resolution by a 3-CCD 
matrix camera with 8 bits/pixel quantization. Half of the samples (219) were used 
for training the classifier and the other half for evaluating the results. 

Table IV shows the confusion matrix in the knot classification [184]. The 
recognition rate was about 85%, yielding about 90% correctness in the final grad-
ing of the boards, which is clearly better than the sustained performance of manual 
grading (about 70-80%). Based on these results, an industrial machine-vision-
based system for automatic wood surface inspection has been developed, and is 
reported in [187]. The system is implemented on signal processors, so that it can 
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Figure 16 A schematic of the classification system combining shape-based and color-based infor-
mation. 

process more than one 2 x 2-m veneer sheet in a second, with imaging resolution 
of 1 mm, with about 20 defects on an average sheet. 

4. Classification of Handwritten Digits 

This section summarizes the results of a large comparison between various 
neural and classical statistical classification methods [157]. The data used in 
the experiments consisted of handwritten digits. Eight hundred ninety-four fill-

Table IV 

Classification Results of Wood Surface Defects 

Dry 
Encased 
Decayed 
Leaf 
Edge 
Horn 
Sound 

N 
From other cl. % 

Dry 

26 
1 
5 
0 
0 
0 
4 

36 
28 

Encased 

1 
10 
0 
0 
0 
0 
0 

11 
9 

Decayed 

0 
0 
1 
1 
0 
0 
0 

2 
50 

Leaf 

1 
0 
0 

24 
0 
0 
0 

25 
4 

Edge 

0 
0 
0 
0 
34 
6 
0 

40 
15 

Horn 

0 
0 
0 
0 
2 

10 
0 

12 
17 

Sound 

4 
2 
3 
3 
0 
0 

81 

93 
13 

N 

32 
13 
9 

28 
36 
16 
85 

219 

To other cl. % 

19 
23 
89 
14 
6 

37 
4 

15 
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in forms were digitized using an automatically fed flat binary scanner with the 
resolution of 300 x 300 dots per inch. The form was designed to allow simple 
segmentation of digits: each digit was written in a separate box so that for most 
cases there was no connecting, touching, or overlapping of the numerals. The size 
of each digit was normalized retaining the original aspect ratio to fit to a 32 x 32-
pixel box. In the direction of the smaller size, the image was centered, and then 
the slant of writing was eliminated. The resulting image was finally concatenated 
to form a 1024-dimensional pattern vector having component values of ±1 repre-
senting black and white pixels, respectively. The whole handwritten digit corpus 
of 17880 vectors was divided equally to form separate training and testing sets. 
The former was used in computing the Karhunen-Loeve transform which was ap-
plied to both sets. The feature vectors so created were 64-dimensional, but each 
classification algorithm was allowed to select a smaller input vector dimensional-
ity using training set cross-validation. 

Figure 17 displays a sample of the digit images in the leftmost column. In the 
remaining columns, images reconstructed from an increasing number of features 
are shown. For the clarity of the visualization, the mean of the training set has been 
first subtracted from the digit images and then added back after the reconstruction. 

0 1 2 4 8 16 32 
Figure 17 Some handwritten digits on the left and their reconstruction from varying number of 
features. The number of features used is shown below the images. 
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It can be noted how rapidly the reconstruction fidehty is increased due to the 
optimal information-preserving property of the Karhunen-Loeve transform. 

In the experiments, the maximum feature vector dimension was thus 64. Due 
to the effects of the curse of dimensionaUty, cross-vaHdation indicated smaller 
input dimensionality to be optimal for some classifiers. Each classifier algorithm 
had its own set of cross-validated parameters. The cross-validation procedure was 
ten-fold: 8046 vectors were used in training a classifier and the remaining 894 
vectors of the training set were used to evaluate the classification accuracy. This 
procedure was then repeated nine times until all the vectors in the training set 
had been used exactly nine times in training and once in evaluation. The cross-
validated classification accuracy for the given set of parameter values was then 
calculated as the mean of the ten evaluations. By varying the parameter values, 
an optimal combination was found and it was used in creating the actual classi-
fier using the whole training set. The final classification accuracy was calculated 
with that classifier and the original testing set. The classification error percentages 
are collected in Table V. Shown are testing set classification errors and, in paren-
theses, estimated standard deviation in ten independent trials for certain stochas-

Table V 

Classification Accuracies for Handwritten Digit Data 

Classifier 

LDA 
QDA 
RDA 
KDAl 
KDA2 
RKDA 

MLP 
MLP+WD 
LLR 
Tree classifier 
FDA^ARS 

1-NN 
3-NN 
L-3-NN 
LVQ 

CLAFIC 
ALSM 

Committee 

Error % 

9.8 
3.7 
3.4 
3.7 
3.5 
5.2 

5.4 
3.5 
2.8 

16.8 
6.3 

4.2 
3.8 
3.6 
4.0 

4.3 
3.1 

2.5 

(.1) 

(.3) 
(.1) 

(.1) 
(.1) 

Cross-validated parameters 

d = 64 
d = 47 
d = 6l, y =0.25, A = 0 
d = 32, h = 3.0 
d — 36, hi,... ,hiQ 
d = 32, £ = 35 

d = 36, e=40 
[d = 36, € = 40], X = 0.05 
J = 36, Of = 0.1 
d = 16, 849 terminal nodes 
d = 32, 195 terms, second order 

^ = 64 
d = 3S 
[d = 38, a = 0.1], e = 5750, ^epochs = 7 
[d = 38, aiO) = 0.2, w = 0.5, 10 epochs LVQl], 
i = 8000, 1 epoch LVQ2 

[d = 64], D = 29 
[d = 64, D = 29], a = ^ = 3.1, Epochs = 9 

[LLR, ALSM, L-3-NN] 
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Figure 18 Error-reject curve for the LLR classifier. The rejection percentages are shown on the 
horizontal axis whereas the logarithmic vertical axis displays the remaining error percentages. The 
threshold parameter 6 is given at selected points. The diamonds indicate the results obtained with the 
committee classifier using different voting strategies. 

tic classifiers. The cross-validated parameters are given and parameters selected 
without cross-validation are shown in brackets. 

Some evident conclusions can be drawn from the classification accuracies of 
Table V. First, the discriminant analysis methods, e.g., QDA, LDA, KDA, per-
form surprisingly well. This can be interpreted as an indirect indication that the 
distribution of the data closely resembles Gaussian in the Bayesian class border 
areas. Second, MLP performs surprisingly badly without the weight decay regu-
larization modification. The tree classifier and MARS also disappoint. Third, the 
learning or adaptive algorithms such as ALSM and LVQ perform better than their 
nonadaptive counterparts such as CLAFIC and k-NH. 

The committee classifier, the results of which are shown in the last line of Ta-
ble V, was formed utilizing the majority voting principle from the LLR, ALSM, 
and L-3-NN classifiers. It can be seen that the committee quite clearly outper-
forms all the individual classifiers. Rejection option was also implemented. By 
using the LLR classifier and varying the rejection threshold 0 of Eq. (30), the 
reject-error curve shown in Fig. 18 was obtained. The three diamonds in the figure 
display reject-error trade-off points obtained using the above described committee 
classifier with voting strategies allowing for rejection. 

VI. SUMMARY 

This chapter gave a review of neural network systems, techniques, and applica-
tions in pattern recognition (PR). Our point of view throughout the chapter is that, 
at the present state of the art, neural techniques are closely related with more con-



Pattern Recognition 53 

ventional feature extraction and classification algorithms, which emanate from 
general statistical principles such as data compression, Bayesian classification, 
and regression. This helps in understanding the advantages and shortcomings 
of neural network models in pattern recognition tasks. Yet, we argue that neu-
ral networks have indeed brought new and valuable additions and insights to the 
PR theories, especially in their large flexible architectures and their emphasis on 
data-driven learning algorithms for massive training sets. It is no accident that 
the popularity of neural networks has coincided with the growing accessibility of 
computing power provided by the modem workstations. 

We started the chapter by giving an overview of the problem and by introduc-
ing the general PR system, consisting of several consequent processing stages, 
neural or nonneural. We then concentrated on the two most important stages, fea-
ture extraction and classification. These are also the system components in which 
neural network techniques have been used most widely and to their best advan-
tage. The most popular neural network approaches to these problems were given 
and contrasted with other existing solution methods. 

Several concrete applications of neural networks on PR problems were then 
outlined partly as a literature survey, partly by summarizing the authors' own ex-
periences in the field. Our original applications deal with face recognition, wood 
surface defect recognition, and handwritten digit recognition, in all of which neu-
ral networks have provided flexible and powerful PR methods. We hope that these 
case studies indicate that neural networks really work, but also that their use is not 
simple. As with any other engineering methodology, neural networks have 
to be carefully integrated into the total PR system in order to get out maximal 
performance. 
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I. INTRODUCTION 

Improving person-machine communication leads to a wider use of advanced 
information technologies. Toward this aim, character recognition and speech 
recognition are two applications whose automatization allows easier interaction 
with a computer. As they are the basic means of person-to-person communication, 
they are known by everyone and require no special training. Speech in particular 
is the most natural form of human communication and writing is the tool by which 
humanity has stored and transferred its knowledge for many millennia. 

In a typical pattern recognition system (Fig. 1), the first step is the acquisition 
of data. This raw data is preprocessed to suppress noise and normalize input. 
Features are those parts of the signal that carry information salient to its identity 
and their extraction is an abstraction operation where the important is extracted 
and the irrelevant is discarded. Classification is the assignment of the input as an 
element of one of a set of predefined classes. 

Image Processing and Pattern Recognition 
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Figure 1 A pattern recognition system where input is an image, as in optical character recognition, 
or a time series, as in speech classification. 

The rules for classification are generally not known exactly and thus are esti-
mated. A classifier is written as a parametric model whose parameters are com-
puted using a given training sample to optimize a given error criterion. Different 
approaches for classification differ in their assumptions about the model, in the 
way parameters are computed, or in the error criterion they optimize. 

Statistical classifiers model the class-conditional densities and base their deci-
sions on the posteriors which are computed using the class-conditional likelihoods 
and the priors. Likelihoods are assumed to either come from a given probability 
density family, e.g., normal, come from a mixture of such densities, or be writ-
ten in a completely nonparametric way. Bayes decision theory then allows us to 
choose the class that minimizes the decision risk. The parameters of the densities 
are estimated to maximize the likelihood of the given sample for that class. 

This contrasts with approaches where the discriminants are directly estimated. 
Neural networks are such approaches and their outputs can be converted directly 
to posteriors, eliminating the need of assuming a statistical model. From a statisti-
cal perspective, a multilayer network is a linear sum of nonlinear basis functions. 
In the neural network terminology, the nonlinear basis functions are called hid-
den units and the parameters are called connection weights. In a training process, 
given a training sample, the weights that minimize the difference between net-
work outputs and required outputs are computed. 

This chapter has the aim of comparing these two approaches and extends a 
previous study [1]. In Section II, we define the two applications that we are con-
cerned with in this study, namely, optical character recognition and speech recog-
nition. We show that these two applications have many common subproblems 
and quite similar approaches have been used in the past to implement them, both 
statistical and neural. Section III details how, in the two applications, data are ac-
quired and preprocessed before they can be fed to the classifier. In Section IV, 
we define formally the problem from a statistical point of view and explain the 
three approaches of parametric, nonparametric, and semiparametric estimation. 
In Section V, we discuss the neural approaches such as simple and multilayer 
perceptrons and radial basis function networks. A literature survey for the two 
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applications is given in Section VI. In Section VII, we give simulation results on 
two data sets. We conclude in Section VIII. 

11. APPLICATIONS 

Character recognition is of two forms. In printed character recognition, any 
character image is one of a predefined number of styles which are calltd fonts. 
Printed character recognition systems generally work by storing templates of 
character images for all fonts and matching the given image against these stored 
images to choose the best match. This contrasts with handwritten character recog-
nition where there are practically infinite ways of writing a character. It is this 
latter that we are interested in. In handwritten character recognition, the medium 
may be two sorts. In optical character recognition, the writer writes generally on 
paper by using a marker of different brightness. The contrast is acquired optically 
through a scanner or camera and a two-dimensional image is formed. Because 
recognition is done generally long after the writing is done, it is named off-line. 
In pen-based character recognition, the writing is done on a touch-sensitive pad 
using a special pen. While it is moved over the pad, the coordinates of the pen-
tip are returned at each sampHng, leading to a sequence of pen-tip positions for 
each written character. Recognition is done while writing takes place and is called 
on-line. A special journal issue on different approaches to character recognition, 
edited by Pavlidis and Mori [2], recently appeared. 

In speech recognition, there is no analogy to printed character recognition as 
the sound to be recognized is natural, never synthetic. Speech is captured using a 
microphone and is digitized to get a set of samples in time from the sound wave-
form. The sound spectrogram is a three-dimensional representation of the speech 
intensity, in different frequency bands, over time. Another way of representing 
speech is by modeling the human vocal tract as a tube whose resonances produce 
speech; they are cailQd formants and they represent the frequencies that pass the 
most acoustic energy; typically there are three. For a more detailed analysis, refer 
to the book by Rabiner and Juang [3]. 

The two tasks of character recognition and speech recognition have a num-
ber of conmion problems. One is the segmentation of characters or phonemes 
from a stream of text image or speech. This is especially a problem when cursive 
handwriting or continuous phrases is the case; the system, before recognizing in-
dividual characters or phonemes, should determine the boundaries. To facilitate 
recognition, some systems require that inputs be isolated before recognition, by 
providing separate boxes for different characters or slow, careful articulation of 
words. 

Another problem is that of being independent from writer or speaker; a recog-
nizer that can recognize inputs from a small set of people is rarely useful. But the 
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recognizer should also have the ability to adapt to a particular user if required so 
as to be able to recognize that user's handwriting/speech with higher accuracy. 

Recognition is also dependent on the domain. If only postal codes are to be 
optically recognized, then in most countries only digits are valid classes; a voice-
controlled system may have a small set of commands to be recognized. To min-
imize errors and rejects, more complicated tasks require also the integration of a 
vocabulary so as to be able to use lexical information to aid in recognition. This 
creates the problems of storing a lexicon and accessing it efficiently. 

The best existing systems perform well only on artificially constrained tasks. 
Performance is better if samples are provided for all speakers/writers, when words 
are spoken/letters are written in isolation, when the vocabulary size is small, and 
when restricted language models are used to constrain allowable sequences [2,4]. 

III. DATA ACQUISITION AND PREPROCESSING 

A. OPTICAL CHARACTER RECOGNITION 

In optical character recognition, preprocessing should be done before individ-
ual character images can be fed to the classifier. 

Depending on how small the characters are, a suitable resolution should be 
chosen first for scanning. Typically a resolution of 300 dpi (dots per inch) is used. 
With smaller resolutions and smaller character images, dots and accents may be 
lost or images may get connected. 

In most applications, characters are written in special places on preprinted 
forms [2, 5]. So the first step after scanning is registration, which is the deter-
mination of how the original form is translated and rotated to get the final image. 
This is done by matching a number of points in the input form to the original 
blank form. Then given the coordinates of the input fields, their coordinates in the 
input form can be computed and the input field images extracted. The characters 
in a field are then segmented and individual character images are obtained. These 
are then size-normalized to scale all characters to the same height and width and 
slant-normalized to reduce the slant variations in order to be left only with shape 
differences. 

The so-formed bitmap can be fed as input to the classifier, or features may 
be extracted from the image to get invariances and/or reduce dimensionality. One 
common approach is low-pass filtering the image, which gives invariance to small 
translations. Easy-to-extract features in character images are the ratio of width to 
height, number of on pixels, number of line crossings along certain horizontal 
and vertical directions, etc. A more expensive preprocessing is to have small local 
kernels with which all parts of the image are convolved, to detect line segments, 
comers, etc. 



Comparison of Statistical and Neural Classifiers 65 

B. SPEECH RECOGNITION 

Digitized speech samples are obtained by an antialiasing filter and an analog-
to-digital converter (A/D) [3,6]. A low-pass antialiasing filter should be set below 
the Nyquist frequency (half of the sample rate) so that the Fourier transform of the 
signal will be bandlimited. An A/D converter commonly consists of a sampling 
circuit and a hold circuit. A 10-12-kHz sampling frequency usually includes the 
first five formants for most talkers, but may not capture all the unvoiced energy 
such as the /s/ phoneme. An 8-kHz sampling frequency can be selected to be used 
in a 4-kHz telephone channel. 

Once the speech signal has been digitized, the discrete-time representation is 
usually analyzed within short-time intervals. Depending on the application, an 
analysis window of 5-25 ms is chosen in which it is assumed that the speech 
signal is time-invariant or quasi-stationary. Time-invariant analysis is essential 
since parameter estimation in a time-varying (nonstationary) system is a much 
more difficult problem. 

The utterances of speakers are recorded in a soundproof room or in certain 
environmental conditions such as no-noise with a microphone at a certain band-
width. The required segments of each utterance are manually, or by use of an 
accurate segmentation algorithm, endpointed and processed into frames. 

A linear predictive coding (LPC)-based analysis procedure [3, 6, 7] can be 
used to obtain desired features such as cepstrum coefficients or fast Fourier trans-
form (FFT) coefficients. Recent feature extraction methods concentrate also on 
auditory modeling and time-frequency representation of speech signals. 

IV. STATISTICAL CLASSIFIERS 

In pattern recognition, we are asked to assign a multidimensional input x edi^ 
to one of a set of classes Cj, 7 = 1 , . . . , m [8,9]. Sometimes the additional action 
of reject is added to choose when no class or more than one class is probable. 
A classifier is then a mapping from di^ to {Ci,..., Cm, Crej}-

In statistical decision theory, actions have costs and the decision having the 
minimum cost is made [10]. Assuming that correct decisions have no cost, all 
incorrect decisions have equal cost, and no rejects, for minimum expected cost 
(or risk), the so-called Bayes' decision rule states that a given input should be 
assigned to the class with the hi^tsi posterior probability [8-10]: 

c = argmaxP(Cy|jc). (1) 
j 

The posteriors are almost never exactly known and thus are estimated. We are 
given a sample X = {x/, yt}, i = I,... ,n and y e {Ci , . . . , C^}. In statistical 
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b POSTERIORS 

P(Cjlx) 

Figure 2 Building a statistical classifier. 

pattern recognition theory (Fig. 2), Bayes rule factors the posterior into a prior 
class probabiUty PiCj) and a class-conditional density or likelihood p(x\Cjy. 

PiCj\x) = 
p(x\Cj)P(Cj) p{x\Cj)PiCj) 

P(x) EkPWCk)P{Cky 
(2) 

The estimate of the prior is just the fraction of samples belonging to that class. 
If Hj is the number of samples belonging to class j , ^j tij = n, then 

P(Cj) = nj/n. (3) 

The real problem is that of estimating the class-conditional likelihood densities 
p(x\Cj). There are three approaches: 

1. Parametric Methods. These assume that class-conditional densities have a 
certain parametric form, e.g., normal, whose sufficient statistics are estimated 
from the data [8, 9]. These methods generally reduce to distance-based meth-
ods where, depending on assumptions made on the data, the good distance metric 
is chosen. 

2. Nonparametric Methods. When no such assumptions can be made, the den-
sities need to be estimated directly from the data. These are also known as kernel-
based estimators [8,11,12]. 

3. Semiparametric Methods. The densities are written as a mixture model 
whose parameters are estimated [8, 13-16]. In the case of normal mixtures, this 
approach is equivalent to cluster-based classification strategies such as LVQ of 
Kohonen [17] and is similar to Gaussian radial basis function networks [18]. 

A decision rule as given in Eq. (1) has the effect of dividing the input space 
into mutually exclusive regions called the decision regions where each region is 
assigned to one of the m classes. Bounding these decision regions are the decision 
boundaries or discriminants that separate the examples of one class from others. 
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Pattern classification may equally well be thought of as defining appropriate dis-
criminant functions, gj (x), and we assign feature vector x to class c if 

gc{x) = mdix gj{x). (4) 

An immediate discriminant function is the posterior probability, or its variants. 
The following are all equivalent: 

gj{x) = P{Cj\x). 

g'jix) = p(x\Cj)P(Cj), (5) 

g](x) = log/7(JC|C,)+log P(C;). 

A. PARAMETRIC BAYES CLASSIFIERS 

The shape of decision regions defined by a Bayes classifier depends on the 
assumed form for p(x\Cj) [8, 9]. Most frequently, it is taken to be multivariate 
normal which assumes that examples from a class are noisy versions of an ideal 
class member. The ideal class prototype is given by the class mean fij, and the 
characteristics of the noise appear as the covariance matrix Ey. When p(x\Cj) ^ 
Af(fij, Sy), it is written as 

P^^^Cj) = ( 2 ^ ) J | ^ . , i / 2 exp[-(l/2)(x - ^jf^jHx - M;)]. (6) 

This leads to the following discriminant function [ignoring the common term of 
-(J /2) log2;r] : 

gj(x) = - (1/2) log IE,-1 - (l/2)(jc - njfj:j\x - fij) + logP(Cj). (7) 

When X is ^-dimensional, the free parameters are d for the mean vector and 
d(d -\- l ) /2 for the (symmetric) covariance matrix. This latter is 0(d^) which is 
disturbing if d is large. A large number of free parameters both makes the system 
more complex and requires larger training samples for their reliable estimation. 
Thus assumptions are made to keep the number of parameters small, which has 
the effect of regularization. 

1. Independent Features of Equal Variances 

When the dimensions of the feature vector x are independent, i.e., Cov(jCjt, JC/) 
= 0, A: 7̂  /, V/:, / = 1 , . . . , J, and have equal variances Var(x^) = a^, VA: = 
1 , . . . , J, then Ey = E = o^I. Because the covariance matrices are equal, the 
first term of Eq. (7) can be ignored. E~^ = (1/a^)/ and we obtain 

gj{x) = -{l/2a^)\\x - fijf + logP(Cj). (8) 
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Figure 3 Example two-class problem with equal variances and zero covariances and the linear dis-
criminant. 

Assuming equal priors, this reduces to assigning input to the class with the 
nearest mean. If the priors are not equal, the discriminant is moved toward the 
less likely mean. Geometrically speaking, class densities are hyperspherical with 
[ij as the center and a^ defining the radius (Fig. 3). It can easily be shown that 
the discriminants {x\gi(x) = gj(x), i / j] are linear. The number of parameters 
for m classes ism - d for the means and 1 for a^. 

2. Independent Features of Unequal Variances 

If features are independent and the variances along different dimensions vary: 
Y3i(xk) = or̂ , VA: = 1 , . . . , J, but are equal for all classes, we obtain 

;̂W = - E 
k=l 

2al 
+ \ogP{Cj), (9) 

This also assigns the input to the class of the nearest mean but now Eu-
clidean distance is generalized to Mahalanobis distance taking also differences 
in variances into account. Class densities now are axis-aligned hyperellipsoids 
and the discriminants they lead to are linear (Fig. 4). The number of parameters 
\sm ' d -\-d. 
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Figure 4 Example two-class problem with different variances and zero covariances and the linear 
discriminant. 

3. Arbitrary Covariances 

We are not interested in estimating full covariance matrices as 0(d^) parame-
ters require quite large training samples for accurate estimation. It is known that 
when classes have arbitrary but equal covariances, the discriminants are linear, 
and we will be considering linear discriminants in more detail in Section V. A. 

When classes have different and full covariances, discriminants can be 
quadratic. The total number of parameters to be estimated is m(d + d(d -f- l)/2) 
and this can only be feasible with quite small d and/or a very large number of sam-
ples as otherwise we may have ill-conditioned covariance matrices. It may thus 
be preferable to use a linear discriminant, e.g., Fisher's Hnear discriminant, when 
we do not have enough data even if we know that the two covariance matrices are 
different and the discriminant is quadratic. When a common covariance matrix is 
assumed, this introduces an effect of regularization. Friedman's regularized dis-
criminant analysis writes the covariance matrix of a class as a weighted sum of 
the estimated covariance matrix of that class and the covariance matrix common 
to all classes, the relative weight of two being estimated using cross-validation. 
The common covariance matrix can even be forced to be diagonal if there is even 
less data available, providing further regularization [9]. 

There are also techniques to decrease the dimensionality. One is subset selec-
tion which means choosing the most important p dimensions from d, ignoring 
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the d — p dimensions. Principal component analysis (PCA) chooses the most 
important p linear combinations of the d dimensions. 

B. NONPARAMETRIC K E R N E L - B A S E D 

DENSITY ESTIMATORS 

In parametric estimation, we assume the knowledge of a certain form of density 
family for the likelihood whose parameters are estimated from the data. In the 
nonparametric case, we directly estimate the entire density function. Then we 
need a large sample for our estimate not to be biased by the particular sample we 
use. The kernel estimator is given as 

P^'iC» = ^t'^{^). (.0, 

h is the window width or the smoothing parameter. Depending on the shape of K, 
one can have various estimators [11]. 

One disadvantage of kernel estimators is the requirement of storing the whole 
sample. One possibility is to selectively discard patterns that do not convey much 
information [19]. Another is to cluster data and keep reference vectors that rep-
resent clusters of patterns instead of the patterns themselves. The semiparametric 
mixture models discussed in Section IV.C correspond to this idea. 

1. A:-Nearest Neighbor (A:-NN) 

Let us denote the A:th nearest sample to x as x^^^ and let V^(x) be the volume 
of the ^-dimensional sphere of radius r^ = ||jc — JĈ ^̂ H; thus V^(x) = r^Cd, 
where Cd is the volume of the unit sphere in d dimensions, e.g., ci = 2, C2 = TT, 
C3 = 47r/3, etc. If out of the k neighbors, ^ of them are labelled coj, then the 
fc-nearest neighbor estimate is (Fig. 5) 

Picoj\x)=kJ/k. (11) 

2. Parzen Windows 

For p to be a legitimate density function, K should be nonnegative and inte-
grate to 1. For a smooth approximation, K is generally taken to be the normal 
density: 
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Figure 5 Example two-class problem with sample points and the arbitrary discriminant found by 
one nearest neighbor. The dotted hnes show the Voronoi tesselation. 

Here the kernel estimator is a sum of "bumps" placed at the observations. K de-
termines the shape of the bumps while h determines their widths. When spheric 
bumps with equal h in all dimensions are used, this corresponds to using Eu-
clidean distance. If this assumption of equal variances (and independent dimen-
sions) is not valid, then different variances (and covariances) can be estimated and 
Mahalanobis distance can be used instead. This also applies to A:-NN. 

3. Choosing h or k 

In kernel-based estimation, the correct choice of the spread parameter (k or h) 
is critical. If it is large, then even distant neighbors affect the density at x leading 
to a very smooth estimate. If it is small, p is the superposition of n sharp pulses 
centered at the samples and is a "noisy" estimate. 

With Parzen windows, when h is small with a small sample, it is possible that 
no samples fall in the kernel, leading to a zero estimate; A:-NN guarantees that k 
samples fall in the kernel. Small or large h leads to a decrease in success. When h 
is small, there are few samples, and when it is large, there are too many. The good 
h value is to be found using cross-validation on a separate set. 



72 Ethem Alpaydin and Fikret Gurgen 

For the /^-nearest neighbor, it has been shown [8] that the performance of the 
1-nearest neighbor in classification is never worse than twice the Bayesian risk 
where complete knowledge of the distributions is assumed. It can thus be said 
that at least half of this knowledge is provided by the nearest neighbor. The per-
formance can be improved by increasing the number of neighbors considered, in 
which case the error asymptotically converges to the Bayes risk. 

When the samples are noisy, we expect fc-NN with small k not to perform 
well. Large k takes into account the effect of very distant samples and thus is 
not good either. When h (or k) is decreased to decrease bias, variance increases 
and vice versa. This can intuitively be explained as follows [20]. When h (or 
k) is large, p is the weighted average of many samples and thus does not change 
much from one sample set to another. The variance contribution is small; however, 
response is biased toward the population response. (In the extreme case, when 
h -> oo, p is the sample average and is independent of the input x.) On the 
other extreme, when h is small, there is small bias but the response is dependent 
on the particular sample used; therefore, the variance contribution is high. The 
same argument holds with k-NN, with k in place of h. Choosing h ork implies a 
trade-off between bias (systematic error) and variance (random error). 

C. SEMIPARAMETRIC MIXTURE MODELS 

The parametric approach assumes that examples of a class are corrupted ver-
sions of an ideal class prototype. This ideal prototype is estimated by the mean 
of the examples and examples are classified depending on how similar they are to 
these prototypes. In certain cases, for a class, it is not possible to choose one sin-
gle prototype; instead there may be several. For example, in character recognition, 
while writing "7" one prototype may be a seven with a horizontal middle bar (Eu-
ropean version) and one without (American version). A mixture density defines 
the class-conditional density as a sum of a small number of densities [8, 9,15]: 

p(x\Cj) = J2p(x\^Jh, <^j)P(cojh), (13) 
h=l 

where the conditional densities p(x\cojh, ^j) are called the component densities 
and the prior probabilities P(cojh) are called the mixing parameters. Note that 
here we have one mixture model for each class leading to an overall mixture of 
mixtures [16]. 

We want to estimate the parameters Oy, that include the sufficient statistics of 
the component densities, and the mixing proportions, that maximize the likelihood 
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of a given iid sample Af/ of class j : 

= J2^ogJ2P{xi\cojh, <^j)Pi(Ojh). (14) 
/ h 

This does not have an analytical solution but an iterative procedure exists based 
on the expectation-maximization (EM) algorithm [13, 21]. In the expectation (E) 
step of the algorithm, using the current set of parameters, we compute the proba-
bility that the sample x/ is generated by component h of class j : 

P(0)jhXi, Oy) = ^ . ; ' , _ ; , = Tjhi. (15) 

Assuming Gaussian components, i.e., p(x\cojh, ^j) "̂  J^ifJijh, ^jh), we have 

P(cojh)\'^jhr^/^cxp[-(l/2)(Xi - fijhfJlJj^iXi - ^jh)] 
'Cihi = —1 • (16) 

E / P{coji)\Y,ji\-y^txv[-{\/2){xi - ,iji)Tj:-\xi - ^ji)] 
In the M step, we update the component parameters Oy based on the probabil-

ities computed in the E step: 

P(cojh) = (l/nj)^rjhi. 

i 

fljh = -^ , (1/) 

E / T^jhiiXi - fljhXXi - fljh)'^ 
E / ̂ jhi 

As in the parametric approaches, simplifying assumptions can be made on the 
covariance matrices for regularization. Assuming equal hyperspheric densities, 
one uses (squared) Euclidean distance in computing the posteriors. If we merely 
compute the Euclidean distance || JC/ — fijh |P, find the nearest mean fijc nearest to 
X, and set its r to 1 and all others to zero, and only update fijc for that example, 
we get the A:-means procedure. The on-line version of the same algorithm updates 
the mean after each pattern. For each pattern x e Cj, we find fijc such that 

\\x -tijcW =mm\\x -fijhW, (18) 
h 

and then do the update immediately: 

Afijc = r](x - fijc), (19) 
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Class A /Discriminant 

Class B 

Figure 6 Example two-class problem with two reference vectors per class and the arbitrary discrim-
inant found by LVQ. The dotted lines show the Voronoi tesselation. 

where r; is a learning factor that is gradually decreased toward zero for conver-
gence. The rationale of this method is that by moving the mean closer to the 
sample we increase the likelihood of seeing that sample. 

1. Learning Vector Quantization 

Kohonen [17] proposed learning vector quantization which also moves means 
of wrong classes away. For a given input x, we find the closest mean fijc among 
all classes (Fig. 6): 

ll^-i^;cll =mm\\x-fikhh 
k,h 

and then we move the mean toward the input if the classes of the mean and the 
input agree and we move the mean away from the input if they disagree: 

Afijc = 
_ I -\-rj(x - fijc), 

\ -T](X - fljc), 

if X € Cj, 
otherwise. 

(20) 

V. NEURAL CLASSIFIERS 

An artificial neural network is a network of simple processing units that are 
interconnected through weighted connections [17, 22, 23]. The interconnection 
topology between the units and the weights of the connections define the operation 
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of the network. We are generally interested in feedforward networks where a set 
of units are designated as the input units through which input features are fed to 
the network. There is then a layer of hidden units that extract features from the 
input. This is followed by the layer of output units where in classification each 
output corresponds to one class. 

There are a number of advantages to using neural network-type classifiers for 
pattern recognition [24]: 

1. They can learn, i.e., given a sufficiently large labelled training set, the 
parameters can be computed to optimize a given error criterion. 

2. They can generate any kind of nonlinear function of the input. 
3. Because they are capable of incorporating multiple constraints and finding 

optimal combinations of constraints for classification, features do not need 
to be treated as independent. More generally, there is no need for strong 
assumptions about the statistical distributions of the input features (as is 
usually required in Bayes classifiers). 

4. Artificial neural networks are highly parallel and regular structures which 
makes them especially amenable to high-performance parallel 
architectures and hardware implementations. 

Statistical pattern recognition assumes a certain model for the densities and, 
using Bayes decision rule, we see what type of discriminant functions they lead 
to. The neural approach is to assume a certain model for the discriminants (poste-
riors) directly, as defined by the network operation (Fig. 7). For simplicity gj{x) 
can be assumed to be linear in x: 

k=\ 

(21) 

where JcMs (jt, 1)^, augmented to include also an intercept (or bias) term. This 
is a neural network called a perceptron where units in the input layer take the 

ASSUMPTIONS 
REGARDING 
DISCRIMINANT FORMS 

SOFTMAX 

TRAINING 
ALGORITHM 
(Cross Entropy) 

NETWORK OUTPUTS 

8i 

h POSTERIORS 
hj=P(Cjlx) 

Figure 7 Building a neural classifier. 
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1 Xj X2 x^ 

Figure 8 A linear classifier realized as a perceptron neural network. 

value X and units in the output layer take gj(x). The weights of the connections 
between are W (Fig. 8). 

Discriminants in real life are rarely linear so one way to approximate nonlinear 
functions is by estimating them as a linear sum of a number of nonlinear basis 
functions (Fig. 9): 

H 

^7W = I ] ^ ; / ^ ^ ^ W + ^ ; 0 . (22) 
h=l 

In neural network terminology, the basis functions, (ph (•), are called the hidden 
units, and if the basis function is Gaussian this approach is called a radial basis 
function network; it is called a multilayer perceptron if it is a sigmoid. The well-
known statistical technique of projection pursuit regression has the difference that 
basis functions need not be fixed identical but are estimated in a nonparametric 
manner. 

In classification, we know that outputs are probabilities and that they sum up 
to 1. This can be enforced using the softmax model [23]: 

Ejfcexpgfc 
(23) 

and the error measure to be minimized is the cross-entropy between the two dis-
tributions [9,23]: 

E = -Y^^rijloghjixi), (24) 



Comparison of Statistical and Neural Classifiers 

xj X2 

77 

1 Xj X2 x^ 

Figure 9 A multilayer neural network. 

where nj = 1 if jc, e Cj and 0 otherwise. Wj, j = 1, 
using gradient descent: 

AWjh = -T] 
dE 

, m, can be optimized 

(25) 

Internal parameters of the basis functions, i.e., weights from the input layer 
to the hidden layer, can also be trained similarly if 0 ( ) is differentiable. This 
technique is called back-propagation of errors [22]. 

Note that because of the dependence introduced through softmax, a given pat-
tern is used to train the discriminants of all classes. This contrasts with the statis-
tical approach where a pattern affects the likelihood of one class only. 

A. SIMPLE PERCEPTRONS 

A perceptron as defined in Eq. (21) defines a linear discriminant and works if 
samples from a class can be separated linearly from samples of all other classes 
where Wj defines the position and orientation of the separating hyperplane. This 
model is attractive due to a number of reasons. It is optimal when classes are nor-
mal and share a common covariance matrix. It has a small number of parameters 
and thus does not require large amounts of memory, and it is simple to implement. 
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B. MULTILAYER PERCEPTRONS 

In a multilayer perceptron as defined in Eq. (22), there is also a hidden layer 
whose units correspond to the basis functions, 0/i(). They extract nonlinear in-
put combinations to be able to define nonlinear discriminants [22]. Usually, the 
hidden units implement perceptrons passed through the sigmoid function: 

*,i., = ,(r^.')= . (26) 
1 

+ expT-r/xn 
Connection weights of both layers, T and W, are trained in a supervised man-

ner by gradient descent over a cost function like the cross-entropy. 
It has been shown [25, 26] that this type of a neural network is a universal ap-

proximator, i.e., can approximate any continuous function with desired accuracy. 
It has also been shown [27] that in the large sample case, multilayer perceptrons 
estimate posterior probabilities, thus building a link between multilayer networks 
and statistical classifiers. These theorems do not tell how many hidden units are 
necessary, so one should test several alternatives on a cross-validation set and 
choose the best. 

C. RADIAL BASIS FUNCTIONS 

A radial basis function (RBF) network [18,28] is another type of feedforward, 
multilayer network where the basis function is a Gaussian: 

Mx) = 0(117), - jcll) = expl"-"^^^"^-^" 1. (27) 

Sometimes 0 (•) are normalized to sum up to 1. RBF is also a universal approx-
imator. Unlike Parzen windows where we have one Gaussian for each sample, in 
RBF networks we have less. Means of Gaussians may be seen as reference vectors 
in vector quantization or components in mixture models, the difference being that 
in the latter cases, a reference vector or a component belongs to one class only 
whereas here, class discriminants are defined as a linear combination of them. 

Training can be done in one of two ways. In the uncoupled version, originally 
proposed by Moody and Darken [18], the Gaussian centers are trained in an un-
supervised manner, e.g., using A:-means. a, the spread of Gaussians, is computed 
as a factor of the average of intercenter distances. The second layer of W is a 
single-layer perceptron and is trained using gradient-descent rule in a supervised 
manner. In the coupled version, all parameters are trained in a supervised manner 
together, using back-propagation. 

Because units have local responses, only a small number of Gaussians are ac-
tive for each input, thus one generally needs many more Gaussians than sigmoids. 
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but learning is faster when only a few units need to be updated for an input. The 
generalization ability of REF can be extended by having the weight of each hidden 
unit, Wjh, not a scalar but a linear function of the input [29]. This corresponds to 
a piecewise linear approximation of the discriminant instead of a piecewise con-
stant approximation. 

VI. LITERATURE SURVEY 

A. OPTICAL CHARACTER RECOGNITION 

Optical character recognition is one of the most popular pattern recognition 
applications and many systems have been proposed in the past toward this aim; 
see the special journal issue edited by Pavlidis and Mori for a review [2]. This is 
because it is a significant application of evident economic utility and also because 
it is a test bed before more complicated visual pattern recognition applications are 
attempted. 

One of the earliest neural network-based systems for handwritten character 
recognition is the Neocognitron of Fukushima [30]. A significant amount of work 
on optical recognition of postal ZIP codes was done by a group at AT&T Bell Labs 
by Le Cun and others [31,32]. The system uses a multilayered network with local 
connections and weight sharing trained with back-propagation for classification. 
This implements a hierarchical cone where simpler local features are extracted in 
parallel which combine to form higher-level, less local features and which finally 
define the digits. An extensive study of back-propagation for optical recognition 
of both handwritten letters and digits is given by Martin and Pittman [33]. 

Keeler, Martin, and others at MCC worked on combining segmentation and 
recognition in one integrated system [34, 35]. This is necessary if characters are 
touching in such a way that they cannot be segmented by a straightforward seg-
mentation procedure. 

Several comparative studies have also been done, either by fixing the data set 
and varying the methods or by also using a number of data sets. Guy on et al [36] 
is an early reference where simple and multilayer perceptrons are compared with 
statistical distance-based classifiers such as A:-NN in recognizing handwritten dig-
its for automatic reading of postal codes. A comparison of /c-NN, multilayer per-
ceptron, and radial basis functions in recognizing handwritten digits is given by 
Lee [37]. A review of the task and several neural and conventional approaches is 
given by Senior [38]. Comparison of distance-based classifiers, single and multi-
layer perceptrons, and radial basis function networks is given in [39]. 

For the task of optical handwritten character recognition, a significant step 
was the production of a CDROM (Special Database 3) by the National Institute 
of Standards and Technology (NIST) [5] which includes a large set of digitized 
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character images and computer subroutines that process them. This allowed many 
researchers a conmion test bed of significant size and quality on which to com-
pare their approaches. Many of the above-mentioned works use this data set or 
its predecessor. It is available by writing to NIST. A comparison of four statis-
tical and three neural network classifiers is given by Blue et al. [40] for optical 
character recognition and a similar task, fingerprint recognition (for which a sim-
ilar CDROM was also made available by NIST). Researchers from NIST made 
several studies using this data set and technical reports can be accessed over the 
Internet. 

Recently with the reduction of cost of computing power and memory, it has 
been possible to have multiple systems for the same task which are then combined 
to improve accuracy [41, 42]. One approach is to have parallel models and then 
take a vote. Another approach is to have models cascaded where simpler models 
are used to classify simpler images and complex methods are used to classify 
images of poorer quality. 

B. SPEECH RECOGNITION 

In speech recognition, the input is dynamic, i.e., changes in time. Classifiers 
we have considered up to now are static, i.e., assume that the whole input feature 
vector is available for classification. To use a static classifier for a dynamic task, a 
time delay approach is used [43]. This uses an input layer with tapped delay lines 
and can be used if the input buffer is large enough to accommodate the longest 
possible sequence or if a resampling is done to normalize length. This basically is 
mapping time into space by having multiple copies of the input units. 

If the classifier is to accept input vectors sequentially, the classifier should have 
some kind of internal state that is a function of the current input and the previ-
ous internal state. In the neural network terminology, these are named recurrent 
networks which contrast with feedforward networks by having also connections 
between units in the same layer or connections to units of a preceding layer [22]. 
For short sequences, a recurrent network can be converted into an equivalent feed-
forward network by unfolding it over time. This is another way of mapping time 
into space, the difference being that now copies of the whole network are done. 
In some recurrent architectures, a separate set of units are designated di^ feedback 
units containing the hidden or output values generated by the preceding input. In 
theory, the current state of the whole network will nonlinearly depend on a com-
bination of the previous network state and the current input [24]. A comparison 
of different recurrent architectures and learning rules is given in [44]. 

Furui [45] discusses various methods for speech recognition. Lippmann [4] 
and Waibel and Hampshire [46] give two reviews on using neural networks for 
speech recognition. Early work used recurrent neural networks for representation 
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of temporal context but after the introduction of time delay neural networks by 
Waibel et al. [43], feedforward networks were also used for phoneme recogni-
tion. Lee and Lippmann [47] and Ng and Lippmann [48] for the same two ar-
tificial and two speech tasks compare a large number of conventional and neural 
pattern classifiers. Comparison of distance-based classifiers, single and multilayer 
perceptrons, and radial basis function networks for phoneme recognition is given 
in [49]. The recent book by Bourlard and Morgan [24] discusses in more detail 
neural approaches to speech classification. Currently the most efficient approach 
for speech recognition is accepted to be hidden Markov models (HMMs) [24]. 
An HMM models speech as a sequence of discrete stationary states with instanta-
neous transition between states. At any state, there is a stochastic output process 
that describes the probability of occurrence of some feature vectors and a stochas-
tic state-transition matrix conditioned on the input. It is called "hidden" because 
the sequence of states is not directly observable but is apparent only from the ob-
served sequence of events. Generally there is one HMM for every word and states 
correspond to phonemes, syllables, or demi-syllables. HMMs are also used to rec-
ognize individual phonemes where states correspond to substructures. Bourlard 
and Morgan [24] give a detailed discussion of HMM models and their use in 
speech recognition. They also show [7] how HMMs and multilayer networks can 
be combined for continuous speech recognition where the network estimates the 
emission probabilities for HMMs. A recent reference on current speech recogni-
tion methodologies is [50]. 

VII. SIMULATION RESULTS 

For optical character recognition (OCR) experiments, we used the set of pro-
grams recently made available by NIST [5] to generate a data base on which 
to test the algorithms we discuss. Forty-four people have filled in forms which 
are scanned and processed to get 32 x 32 matrices of handwritten digits. These 
matrices are then low-pass filtered and undersampled to 8 x 8 to decrease dimen-
sionality. Each element is in the range 0-16. These 44 forms are divided into two 
clusters randomly as 30 forms in one side and 14 forms in the other. From the 
first 30, we generated three sets: training set, cross-validation set, and the writer-
dependent test set. The training set has 1934 digits. The cross-validation set con-
tains 946 digits and is used to choose the best set of parameters during training, 
e.g., number of basis functions, point to stop training, neighborhood size, etc. The 
writer-dependent test set is used for testing after training and has 943 digits. The 
remaining 14 forms have no relationship with those used in training and they con-
stitute the writer-independent test set containing 1797 digits. We make sure that 
all sets contain approximately equal numbers of examples from each class. 
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OCR 
SR 

Number 
of 

features 

64 
112 

Input 
data 
type 

int:0..16 
real: 0..1 

Table I 

Properties of the Data Sets Used 

Number 
of 

classes 

10 
6 

Number of 
training 

examples 

1934 
600 

Number of 
cross-validation 

examples 

946 
300 

Number of 
test 

examples 

943 
300 

Number of 
indep. test 
examples 

1797 
683 

For /b,d,g,ni,n,N/ speech phoneme recognition (SR) experiments, the data base 
contains 5240 Japanese isolated words and phrases. Two hundred samples for 
each class are taken from the even-numbered and odd-numbered words. Six hun-
dred samples are used for training, 300 for cross-validation, and 300 for testing. 
A further 683 phrases are used only for testing after having trained on isolated 
words. As is known, the speaking style and speed of phrases differ from the iso-
lated words. Phonemes are extracted from hand-labelled discrete word utterances 
and phrase utterances which have a sampling frequency of 12 KHz. Seven speech 
frames (each 10 ms) are used as input. For each 10-ms frame, 16 Mel-scaled FFT 
coefficients are computed as feature values. The final input fed to the classifier 
has 112 dimensions. Properties of the data sets are summarized in Table I. 

Results with various algorithms on the two sets are given in Table II. For each 
data set, the first column contains results on the test set that is generated in an 

Table II 

Results on the Two Applications 

Method 

Bayes 
A:-NN 
Parzen 
LVQ 
SP 
MLP 
RBF 

( 
Test 

90.77 
97.56 
97.99 
96.48, 0.34 
96.06, 0.44 
97.51,0.41 
98.11,0.17 

OCR« 

Independent test 

89.43 
97.61 
97.44 
96.42, 0.32 
93.85, 0.32 
94.78, 0.41 
95.41,0.31 

Test 

63.33 (82.00) 
87.67 (96.33) 
90.00 (95.67) 

SR' 

83.43,1.83 (92.73,2.10) 
92.10, 0.75 
93.83, 0.82 
91.90, 1.51 

2,b 

Phrases 

36.75 (58.86) 
62.52 (72.91) 
67.50 (72.91) 

61.93, 2.71 (67.57, 2.88) 
56.41, 2.59 
64.86, 2.44 

57.13,5.54 (60.38,5.59) 

Values reported are average and standard deviations of ten independent runs (when applicable). 
Values in parentheses for SR are improved results by allowing different variances for different fea-
tures. 
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identical manner with the training set, i.e., the same writers or the same artic-
ulation. The second column contains data that are taken from different writers 
or continuous-speech phrases and thus are more natural than the first, and it is 
actually the success in these columns that matters. 

A visual analysis of the results is possible through Figs. 10 and 11. The two 
axes are accuracy on the independent test set and phrases for OCR and SR re-
spectively and memory requirement. We assumed each real-valued parameter to 
require 32 bits of storage. Input features require 4 bits for OCR (a value in the 
range 0 . . . 16) and 16 bits for SR (32,768 discrete levels). The number of training 
epochs is also marked for each technique. 

100 

98 

96 h 

o 
< 

92 

90 

88 

OCR 

+K-NN(1) 

:+Lvq(12) ': 

': +Rbf(31); 

+Mlp(17) 

••+sp(i'6)"i ; 

+Bayes(2) 

2 3 
Memory (bits) x 1 0 

Figure 10 Results on the optical digit recognition data set. Accuracy is percent correct classification 
on writer-independent test set and memory is the number of bits required to store the free parameters 
of the system. Each pattern value (in the range 0 . . . 16) requires four bits and connection weights are 
assumed to require 32 bits. Values in parentheses are the number of epochs required for calculating 
the parameters. 
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SR 
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70 
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g65 
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60 

55 

+Uvq (50) 

•+MIPC29):; 

.:..+RbU3p) 

+Bayes (2). 

+Sp (24) 

+K-NN(1) 

4 6 
Memory (bits) 

10 

x10^ 

Figure 11 Results on phoneme recognition data set. Accuracy is percent correct classification on 
phrase set and memory is the number of bits required to store the free parameters of the system. Each 
pattern value is assumed to require 16 bits and connection weights are assumed to require 32 bits. 
Values in parentheses are the number of epochs required for calculating the parameters. 

In SR, using different variances for different features leads to a big improve-
ment, whereas in OCR it does not. This information is also used in k-NN, Parzen 
windows, and LVQ, where it improves accuracy; note the large difference in ac-
curacy between the two percentages in the fourth column of Table II. Knowing 
that variances differ with RBF, we allowed Gaussians to have different spreads 
along different dimensions. A similar method that can be used with any classifier, 
and not only distance-based ones, is z-normalization where each feature value 
is normalized to have zero mean and unit variance. Note that this assumes that 
all samples for a feature are drawn from one unimodal normal distribution and 
thus may fail if this assumption does not hold. For example, with the multilayer 
perceptron on SR, though success on the test set increases after z-normalization. 
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success on phrases decreases; this shows that feature values for phrases obey a 
different distribution. 

In both appHcations, ^-NN (or Parzen windows) has the highest accuracy. It 
is also the most expensive technique in terms of computation and memory. This 
however is no longer a serious drawback as the cost of storage and computation is 
getting cheaper. LVQ uses less storage by clustering data but has lower accuracy. 
RBF requires less storage than LVQ by sharing clusters between classes. A mul-
tilayer perceptron (MLP) generalizes better than a single-layer perceptron (SP), 
indicating that discriminants are not linear. Parametric Bayes classifiers that as-
sume independent features do not perform well, indicating that the input features 
are highly correlated. 

VIII. CONCLUSIONS 

The similarity between statistical and neural techniques is greater than gen-
erally agreed. Many of the neural techniques are either identical or bear much 
resemblance to previously proposed statistical techniques. For a good discussion 
of neural networks from statisticians' point of view and vice versa, see the collec-
tion of articles in [51]. The recent interest in neural networks did much to revive 
interest in the old field of statistical pattern recognition [23]. 

Omohundro [52] discusses how nonparametric kernel estimators can be im-
plemented as neural networks (by representing each sample with a Gaussian cen-
tered at the sample) and also discusses efficient data structures for the purpose. 
One example is the probabilistic neural network of Specht [12] which is a neu-
ral network implementation of Parzen windows. This approach is also known as 
memory-based as it can be seen as interpolating from a table of stored samples, 
and is called lazy in machine-learning literature as there is no learning process but 
the computation is deferred up until recognition is done. 

Neural networks based on mixture models have also been proposed. Nowlan 
[15] considers them as "soft" variants of competitive approaches when used for 
vector quantization. Traven [14] proposes to use a mixture of Gaussians and calls 
this a "neural network approach" and uses EM to optimize parameters without 
saying so. 

Statistics can also be used to improve the performance of neural techniques. 
Analysis of variances and use of a preprocessing such as z-normalization or prin-
cipal component analysis improve accuracy considerably in practice. The quality 
of the training sample is perhaps the most important factor, as with an unrepre-
sentative sample any statistic would be wrong. 

Known statistical techniques such as /:-NN also provide a benchmark against 
which more complex approaches such as multilayer perceptrons can be compared. 
Simple methods such as A:-NN generally perform quite well and much of the func-
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tionality of neural networks such as parallel distributed processing can be obtained 
from such distance-based methods without requiring compUcated computation, 
precise weights, and lengthy error-minimization techniques. 

We have also reached the conclusion that generally there is not one method 
that is significantly superior to all others in all respects of generahzation accu-
racy, learning time, memory requirements, and implementation complexity. The 
relative importances of these four factors differ from one application to another 
and thus in choosing one method, all of these should be taken into account, and 
not only generalization accuracy as has frequently been done in the past. 
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I. INTRODUCTION 

The purpose of this chapter is twofold. First, we report the findings of a Ht-
erature search for appHcations of artificial neural networks (ANNs) in medical 
imaging. Based on the literature search we review the current status of ANN tech-
niques in the medical imaging area. Second, using an example of detecting blood 
vessels in angiograms we show the formulation and performance of a feedfor-
ward back-propagation (BP) network as well as a self-adaptive (SA) network for 
image segmentation. The example illustrates the use of both supervised and un-
supervised ANN classifiers for feature extraction at the lower (pixel) level of pro-
cessing medical images. We also compare the ANNs with the more conventional 
classifiers in terms of their classification performance. 

The chapter is organized into six sections. In Section I, we introduce the vari-
ous modalities of medical imaging used in modem hospitals nowadays. This sec-
tion is intended to review the basic physics of the medical imaging. In Section II, 
we review the recent research efforts of ANN applications in medical imaging. 
The intention here is to give a general, collective view of the past and ongoing 
researches on the relevant topics. In Section III, we state our own research prob-
lem, i.e., the identification of blood vessels in X-ray angiograms. In Section IV, 
we present the result of applying a feedforward back-propagation network to the 
blood-vessel segmentation problem. With this problem, we demonstrate the use 
of ANN for supervised feature extraction and discuss the important issues re-
lated to the network configuration and training parameters. In Section V, using 
the same segmentation problem we show the formulation and performance of a 
self-adaptive network, which represents an unsupervised ANN approach to this 
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problem. In Section VI, we draw conclusions based on our experimental results 
and discuss the implications of our study for the general applications of neural 
networks in medical imaging. 

A. MEDICAL IMAGING 

The history of medical imaging began a century ago. The landmark discovery 
of X-rays by Wilhelm Conrad Rontgen in 1895 ushered in the development of 
noninvasive methods for visualization of internal organs. The birth of the digital 
computer in 1946 brought medical imaging into a new era of computer-assisted 
imagery. During the second half of the twentieth century the medical imaging 
technologies have diversified and advanced at an accelerating rate. 

Today, cUnical diagnostics rely heavily on the various medical imaging sys-
tems. In addition to the conventional X-ray radiography, computer-assisted to-
mography (CAT) and magnetic resonance imaging (MRI) produce two-dimen-
sional (2D) cross sections and three-dimensional (3D) imagery of the internal 
organs, drastically improving our capabihty to diagnose various diseases. X-ray 
angiography used in the cardiac catheterization laboratory allows us to detect 
stenoses in the coronary arteries and guide the treatment procedures such as bal-
loon angioplasty and cardiac ablation. Ultrasonography has become a routine pro-
cedure for fetus examination. Two-dimensional echocardiography combined with 
color Doppler flow imaging has emerged as a powerful and convenient tool for di-
agnosing heart valve abnormalities and for assessing cardiac functions. In the area 
of nuclear medicine, the scintillation gamma camera provides 2D images of phar-
maceuticals labeled by radioactive isotopes. Single photon emission computed 
tomography (SPECT) and positron emission tomography (PET) further allow for 
3D imaging of radioactive tracers. 

Whereas a detailed study of medical imaging is beyond the scope of this chap-
ter, introducing some background knowledge of the routinely used medical imag-
ing systems should help us better understand the nature of the problems under 
investigation. We approach this by first studying the different media used in med-
ical imaging. Then, we summarize the physics involved in the various imaging 
modalities. For a detailed treatment of this subject the readers are referred to the 
book by Webb [1]. 

B. MEDIA USED FOR MEDICAL IMAGING 

1. X-Rays 

X-rays are electromagnetic waves generated by the X-ray tube. The wave-
length of the X-rays is between 0.1 and 100 angstroms (A), where lA = 10~^^ m. 
The wavelength of X-rays is much shorter than that of visible light, which is be-
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tween 3800 A (violet) and 7600 A (red). The energy of the X-ray photons is 
on the order of 0.1 to 100 KeV. Energy, frequency, and wavelength are related 
by Einstein's photon formula: E = hv = (hc)/X, where E is photon energy, 
V is frequency, X is wavelength, h is the Planck constant (6.626 x 10"̂ "̂  J • s or 
4.1375 X 10""̂ ^ eV • s), and c is the speed of light (3 x 10^ m/s). By substituting the 
constants into the equation, E (eV) and X (m) are related by £ = 1.24 x 10~^/A. 
A shorter wavelength corresponds to a higher photon energy and a higher degree 
of penetration through the human tissue. 

Figure la shows the arrangement of X-ray source. X-ray detector, and subject 
under examination in an X-ray imaging system. The X-ray image is a 2D pro-
jection of the spatial distribution of the X-ray absorption coefficient within the 
subject. The parameters in an X-ray imaging system are adjusted such that a suit-
able trade-off between image contrast and X-ray dose is made. To minimize the 
X-ray dose given to the patient, the X-ray exposure should be set at a minimal 
level but enough to produce a sufficient image contrast for the intended diagnos-
tic purpose. The energy range for diagnostic X-rays is between 10 and 150 KeV. 
Within this range the human tissue appears to be semitransparent to the X-rays. 
X-rays with energy below this range are mostly absorbed by the tissue and X-rays 
with energy beyond this range mostly penetrate through the tissue; neither would 
produce an adequate contrast in the X-ray image. 

A. X-ray Imaging 

x-ray 
Source 

D 

Subject Detector 

B. Radionuclide Imaging 

Detector 

Radionuclide 
Tracer 

C. Magnetic Resonance Imaging D. Ultrasound Imaging 

RF Transmitter 

' RF Receiver 

Magnetic 
field 

Ultrasound 
Transducer cm 

Figure 1 Schematic diagrams depicting four frequently used modalities of medical imaging. 



92 Ying Sun and Reza Nekovei 

In conventional X-ray radiography, the 3D function of absorption coefficient 
is projected onto the 2D image plane. In computer-assisted tomography (CAT), 
X-ray projections are acquired around the subject. Then, the 2D cross-sectional 
slices of the subject are reconstructed from the projection data. The mathematical 
relationship between the projections and the reconstructed slice was first stud-
ied by Johann Radon in 1907 [2]. The modem methods for tomographic recon-
struction include the filtered-backprojection, which is based on the inverse Radon 
transform, and the algebraic reconstruction technique, which is an iterative nu-
merical approach. 

2. y-Rays 

Radioactive isotopes emitting /-rays can be combined with appropriate phar-
maceuticals and used as tracers for radionuclide imaging. Because the radioactive 
tracer is injected into the human body, as shown by the sketch in Fig. lb, it is 
preferable to have a somewhat higher photon energy allowing for better pene-
tration of the radiations from inside the body. However, photons with too high 
an energy can penetrate the components of the imaging system as well, resulting 
in a low detection efficiency. The most frequently used radionuclide for medi-
cal imaging is the Technitium in the metastable state (^^Tc'̂ ) which has a decay 
half-life of 6.02 hours and emits y-rays with a photon energy of 140 KeV. At this 
energy photons penetrate well through the tissue and can still be effectively de-
tected. Detection of y-rays is typically accomplished by the sodium iodide (Nal) 
crystals in the scintillation gamma camera, which produces 2D images of the ra-
dioactive tracer. For single photon emission computed tomography (SPECT), the 
gamma camera is mounted on a rotational gantry and used as an area detector. 
The acquired data are tomographically reconstructed to produce 2D slices. The 
3D imagery can also be rendered from the 2D slices. 

The radionuclides used in positron emission tomography (PET) emit positrons 
instead of y-rays. A positron has the same rest mass as an electron (9.11 x 10~^^ 
Kg), but carries a positive charge. A positron does not travel far in the tissue 
before it encounters and annihilates with an electron. The annihilation creates 
two photons traveling in opposite directions. The energy of each photon can be 
computed from the ubiquitous Einstein's equation: E = mc^. By substituting the 
mass of the positron and the speed of light into the above equation and applying 
the conversion factor of 1 eV = 1.6 x 10""̂ ^ J, the photon energy is determined 
to be 511 KeV. Detection of the 511-KeV photons cannot be effectively achieved 
by the standard gamma camera because of the high photon energy. It is typically 
accomplished with a ring-shaped array of bismuth germanate (BGO) crystals [3] 
or two xenon-filled multiwire chambers positioned at the opposite sides of the 
subject. 
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Positron-emitting radionuclides are proton-rich isotopes prepared by bombard-
ing specimens with accelerated protons in a cyclotron. Gallium 68 is a frequently 
used tracer for PET scan, and has a half-life of 68 minutes. The short half-life of 
^^Ga requires that the PET system be installed in the vicinity of a cyclotron such 
that the radionuclides can be prepared and applied to patients within a sufficiently 
short period of time. 

3. Magnetic Resonance 

The principle of nuclear magnetic resonance was discovered in 1946 and 
has been successfully applied to identifying chemical compounds and molecular 
structures since then. The development of the commercial systems for magnetic 
resonance imaging (MRI) began in the late 1970s. For the past two decades MRI 
has rapidly emerged as an important diagnostic tool in many areas of medicine 
such as neurology, oncology, and sports medicine. 

Although in principle MRI is capable of imaging the distribution of different 
types of molecules in the tissue, clinical MRI systems nowadays are designed to 
image the distribution of the H2O molecules which constitute over 80% of the 
total body weight. The H2O molecules are randomly oriented in the tissue. Under 
the influence of a strong magnetic field all the H2O molecules orient themselves 
in the direction of the magnetic field and spin at a specific angular frequency. This 
angular frequency, called Larmor angular frequency, is directly proportional to the 
strength of the magnetic field. The magnetic field strength required for diagnostic 
MRI is around 1 Tesla, which is on the order of 10,000 times stronger than the 
earth's magnetic field. The corresponding resonance frequency is in the megahertz 
range. 

The basic concept of MRI can be represented by Fig. Ic, although the ac-
tual MRI system is far more sophisticated. Once the water molecules are aligned 
by the magnetic field, additional energy can be introduced by using a radio-
frequency (RF) transmitter. The electromagnetic wave generated by the RF trans-
mitter is polarized and tuned to the resonance frequencies of the molecules. 
A short burst of the RF electromagnetic wave (pulse) is sent and pushes the 
water molecules off their original axis. As the water molecules return to their 
original orientation, energy is released also in the form of an RF signal. The 
magnitude of the received RF signal is proportional to the amount of the wa-
ter molecules. The time constant for the molecules to recover their orientation 
is the T\ time constant, which can be extracted by use of special pulse se-
quences. The received RF signal shows an exponential decay. The decay time 
constant, called the T2 time constant, is related to the dephasing. As the water 
molecules gradually recover their orientation, they release the RF energy and spin 
out of phase, resulting in signal cancellation at the receiver. The T2 decay is re-
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lated to the inhomogeneity of the water molecules in their surrounding environ-
ment. 

The spatial information in MRI is encoded by applying a small magnetic field 
gradient across the imaging plane. Each point on the imaging plane has a unique 
magnetic field strength corresponding to a unique resonance frequency. Thus, the 
MR images can be reconstructed from the Fourier transform of the received RF 
signals. 

4. Ultrasound 

Sound wave is transmitted by propagating the vibration from molecules to 
molecules. The velocity of sound in tissue is on average 1540 m/s, varying over 
a range of ±6% for the different types of tissue. At the interface of two different 
types of tissue a portion of the wave energy is reflected back. Medical ultrasonog-
raphy nowadays predominantly exploits the reflected echoes. The appropriate fre-
quency for diagnostic sound wave is in the megahertz range, beyond the human 
audible range (20 Hz to 20 KHz). 

As shown in Fig. Id, an ultrasound probe is used for both transmitting and 
receiving the ultrasound waves. The probe usually consists of an array of piezo-
electric transducers. The beam-forming technique can be used to steel the ultra-
sound wave and scan the beam over a fan-shaped sector. This is accomplished by 
transmitting and receiving phase-shifted signals across the array. For each angle a 
burst of ultrasound is transmitted. Then, its echoes are recorded over a time period 
and converted to image intensity along the scan line. 

Two-dimensional echocardiography provides dynamic imaging of the cardio-
vascular system. The velocity of blood flow contributes to a frequency shift in the 
returned echoes, i.e., the well-known Doppler effect. The frequency shift can be 
used to estimate the velocity of blood flow in the direction of the incident wave. 
The Doppler flow information is often coded with pseudocolors and overlapped 
with the 2D echocardiogram shown in grayscale. 

5. Other Media 

Visible fight and infrared light have been used for medical imaging. However, 
their applications are fimited because of the low degree of penetration through 
the tissue. For electrical impedance tomography low-level electrical currents can 
be injected into the body via multiple electrodes to measure the distribution of 
impedance. The formidable problem in electrical impedance tomography is re-
lated to the fact that the electrical current follows the least-resistance path, not 
necessarily a straight line. 
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11. REVIEW OF ARTIFICIAL NEURAL NETWORK 
APPLICATIONS IN MEDICAL IMAGING 

A. MODEL FOR MEDICAL IMAGE PROCESSING 

Detecting/classifying patterns is one area where ANNs have made significant 
contributions. For medical diagnostics, detecting abnormalities and associating 
them with the possible causes are the two fundamental tasks. From this point 
of view, the diagnostic problems in medicine lend themselves to neural network 
computing. Medical diagnostics rely mainly on: 

1. input data—^patient history, symptoms, and test results; 
2. knowledge—cumulative experiences in medical diagnostics; and 
3. analysis—medical expert's interpretation of data based on his/her 

knowledge. 

To apply an ANN to a medical diagnostic problem, the relevant diagnostic knowl-
edge can be used in training. The trained ANN takes the patient's data as input 
and generates diagnostic output, which can be compared to the medical expert's 
diagnostics for the purpose of verification. 

The interpretation of diagnostic medical images, however, is usually quite so-
phisticated and involves multiple levels of processing. To provide a common plat-
form for studying the various problems of medical-imaging-based diagnostics, 
we employ a three-level model as shown in Fig. 2. At the lowest level, images are 
formed. Some imaging modalities, such as the conventional X-rays, do not require 
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Figure 2 Model for diagnostic system using medical images. 
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any computation, whereas others, such as CAT scan, require extensive computa-
tion for reconstructing images from projections. Image processing is separated 
into two levels: the lower-level processing and the higher-level processing. The 
lower-level processing takes image pixels as input and performs tasks such as im-
age enhancement, feature extraction, and image segmentation. The higher-level 
processing takes the output from the lower-level processing as input and gener-
ates output related to medical diagnostics. Tasks accomplished in the higher-level 
processing include classification of features, detection of specific lesions, and di-
agnosis for various abnormalities. 

B. REVIEW OF RECENT LITERATURE 

Based on the three-level model discussed previously we now review the recent 
research works involving neural network applications in medical imaging. Ob-
viously, not every research in this area can be properly pigeonholed into one of 
the three levels in our model, i.e., image formation, lower-level processing, and 
higher-level processing. Nevertheless, we will attempt to categorize these works 
so that the review can be conducted in a more coherent manner and with a fo-
cus on the neural network system techniques. The scope of the Uterature search 
is limited to published journal articles in the past five years, between 1992 and 
1996. The search is by no means exhaustive but should reflect the current state 
of ANN applications in the medical imaging area. The review is focused on the 
problems intended and the techniques applied. We do not include the results 
from the individual studies because a simplified presentation of the data with-
out detailed discussion may sometimes be misleading. The interested readers are 
referred to the original articles. For related research works prior to 1992 the read-
ers are referred to the paper by Miller et al [4] who conducted a comprehen-
sive review of ANN applications in medical imaging as well as medical signal 
processing. 

1. Image Formation 

In the SPECT system, the tomograms are reconstructed from the planar data 
which are acquired by use of a gamma camera rotating around the subject. Kerr 
and Bartlett [5] showed that this tomographic reconstruction problem can be 
solved by using a standard back-propagation (BP) ANN trained on either a set 
of simulated images or a series of rudimentary geometric SPECT scans; the per-
formance can be further improved by employing a statistically tailored BP ANN. 
Munley et al. [6] used a supervised ANN to perform the SPECT reconstruc-
tion and to simultaneously compensate for coUimator, attenuation, and scatter 
effects. 
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For MRI, the design of the various pulse sequences and the processing of MR 
signals remain important research areas. Cagnoni et al [7] trained an ANN to 
synthesize a spin echo multiecho sequence for each slice of a multislice sequence 
for improved signal-to-noise ratio. Yan and Mao [8] used a BP ANN to reduce the 
artifact caused by the truncation of high-frequency MR signals; their method was 
improved upon by Hui and Smith [9]. 

For electrical impedance tomography, Adler and Guardo [10] showed that the 
reconstruction can be conducted on a finite element model using an ANN trained 
by the Widrow-Hoff learning rule. 

2. Lower-Level Processing 

The MRI is particularly capable of differentiating soft tissues such as gray mat-
ter, white matter, and cerebrospinal fluid in the brain. Computer algorithms for au-
tomated segmentation and labeling of MRI brain scans are useful for quantifying 
tissue volumes. Raff et al [11] employed an ANN to determine the appropriate 
threshold between the gray matter and the white matter; the BP ANN was trained 
by the bimodal histogram of the remaining image with the cerebrospinal-fluid 
regions removed. Li et al [12] developed an automated system for segmenta-
tion and labeling of the MRI brain scan based on two Boolean neural networks 
which have binary inputs, binary outputs, and integer weights. Ozkan et al [13] 
approached this segmentation problem by applying a supervised ANN to multi-
modal images including Ti-weighted, 72-weighted, and proton-density-weighted 
MRI brain scans and CT scans. Unsupervised ANNs were also employed: Cheng 
et al [14] and Lin et al [15] approached the problem of medical image seg-
mentation by using a Hopfield neural network with a winner-takes-all learning 
mechanism. 

Three-dimensional imagery of internal anatomical structures can be generated 
from 2D MRI or CT scans by a 3D rendering algorithm. Coppini et al [16] devel-
oped an ANN-based system for automated segmentation and recognition of 3D 
structures from a set of 2D slices; they employed two supervised ANNs trained 
by back-propagation. 

Radionuclide imaging with a gamma camera has Hmited accuracy in quanti-
tative applications due to the scatter effect and the loss of photons that penetrate 
through the detector. Qian et al [17] studied the restoration of gamma-camera 
images by combining an order statistic filter and an unsupervised Hopfield neural 
network. 

In the area of chest radiography Lo et al [18] applied a 2D convolution BP 
ANN to lung nodule detection. 

In the area of X-ray angiography Nekovei and Sun [19] applied a BP ANN to 
segmentation of vascular structures in coronary arteriograms and systematically 
studied the effects of various ANN parameters on training and generalization. 
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3. Higher-Level Processing 

Cerebral perfusion has been routinely studied with brain SPECT scans by using 
appropriate radiopharmaceuticals, such as ^^Tc'^-HMPAO, that can pass through 
the blood-brain barrier. Chan et al [20] trained a BP ANN to discriminate normal 
from abnormal perfusion patterns with inputs from 120 standard cortical regions. 
DeFigueiredo et al. [21] used a supervised ANN to discriminate elderly normal, 
Alzheimer disease, and vascular dementia subjects based on intensities averaged 
over various regions defined by suitable masks. Page et al [22] used the theoreti-
cal profiling technique to extract cortical perfusion patterns which were then input 
to an ANN for diagnosing Alzheimer disease. 

Myocardial perfusion has been routinely studied with cardiac SPECT scans by 
using appropriate radiopharmaceuticals such as ^^^Tl-chloride. Fujita et al. [23] 
employed a BP ANN to diagnose coronary artery disease with 256 inputs rep-
resenting the perfusion patterns in SPECT. Hamilton et al. [24] trained an ANN 
to predict lesion presence without the need to compare the SPECT data with a 
normal data base. 

Ventilation-perfusion lung scans are simultaneous radionucUde images of 
lung ventilation distribution and pulmonary blood perfusion. Scott et al. [25] 
trained an ANN to diagnose pulmonary embolism with 28 inputs representing the 
ventilation-perfusion findings; training was based on 100 consecutive ventilation-
perfusion scans with angiographic correlation. Tourassi et al. [26] employed 
a supervised ANN to predict pulmonary embolism by using both ventilation-
perfusion scans £ind chest radiographs as inputs. Fisher et al. [27] found that brief 
training (50-100 iterations) was suitable for an ANN that predicted pulmonary 
embolism from ventilation-perfusion features; further training diminished net-
work performance. 

MRI scans have also been studied by employing ANNs for higher-level pro-
cessing. Kischell et al. [28] extracted a comprehensive feature vector from MRI 
brain scans which was used as input to an ANN for classifying brain compart-
ments and head injury lesions; they studied two ANNs involving supervised 
training (back-propagation and counter-propagation) as well as two unsupervised 
ANNs (Kohonen learning vector quantifier and analog adaptive resonance the-
ory). Azhari et al. [29] studied myocardial motions by using tagged MRI in dogs; 
a supervised ANN was used to map acute ischemic regions with features obtained 
from 24 cuboids from the 3D MRI images of the left ventricle. 

In the area of coronary angiography Suzuki et al. [30] employed a BP ANN 
to estimate the percent diameter stenosis with inputs from a vessel tracking algo-
rithm. 

In the area of X-ray mammography Zheng et al [31] detected microcalcifica-
tions by employing an ANN trained by back-propagation with Kalman filtering; 
inputs to their neural network were spatial and spectral features extracted with a 
preprocessing stage. Sahiner et al [32] used a convolution ANN classifier to clas-
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sify regions of interest on mammograms as either mass or normal tissue. Baker 
et al. [33] used standardized mammographic descriptors and patient histories as 
inputs to an ANN for predicting the outcome of breast biopsy. 

Ultrasonography has also been used to diagnose breast tumors. Goldberg et al. 
[34] used an ANN to improve the specificity of detecting malignant breast lesions 
based on selected texture features from the ultrasonograms. 

III. SEGMENTATION OF ARTERIOGRAIVIS 

A. BACKGROUND 

An angiogram is a time sequence of X-ray images of blood vessels or car-
diac chambers infused with an X-ray contrast agent. Angiography is used during 
cardiac catheterization for various diagnostic purposes [35] and for guiding treat-
ment procedures such as coronary angioplasty [36]. An angiogram of the arteries 
is termed an arteriogram. The arteriogram can be used to study the artery's lumen 
geometry, dimensions, and blood flow; however, extracting such information is 
not a trivial task because of the following problems. First, the signal-to-noise ra-
tio of the arteriogram is generally low due to the need for minimizing the X-ray 
dose and the dosage of the X-ray contrast agent given to the patient. Second, the 
complex imaging chain of the angiographic system contributes to the presence 
of various types of noise in the images [37]. Third, segmentation of the vascular 
structures is complicated by the overlapping of vessel branches and the interfer-
ence from irrelevant anatomical structures. Fourth, analysis of the arteriogram is 
further complicated by the dynamics from motions of the heart, blood flows, and 
infusion of the X-ray contrast agent. 

Segmentation of arteriograms can be accomplished by use of a vessel tracking 
algorithm such as the recursive tracking algorithm that we developed previously 
[38, 39]. This algorithm begins with a user-defined root node, tracks one vessel 
segment at a time, and identifies the entire vascular tree structures in a recursive 
fashion. Figure 3 shows two examples of coronary arteriograms and the results 
of the vessel tracking algorithm. The tracking approach produces a segment-by-
segment description of the vascular network which is useful for applications such 
as 3D reconstruction of coronary arteries from biplane angiograms [40]. However, 
the tracking approach may not be suitable for some other applications because 
of the following drawbacks. User intervention such as specifying the root node, 
although minimal, is nonetheless required. The tracking approach is based on 
sequential search that does not take advantage of distributive parallel processing. 

The tracking algorithm is also susceptible to noise and background variations. 
For example, in Fig. 3 the segmentation of the bottom image is better than that 
of the top image. The top image is a digitized cineangiogram (DCA) originally 
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a. Digitized cineangiogram of left coronary artery and tracking result 

b. Digital substration angiogram of right coronary artery and tracking result 

Figure 3 Two arteriograms and segmentations by vessel tracking. 

recorded on 35-mm film, whereas the bottom image is a digital subtraction an-
giogram (DSA) with improved signal-to-noise ratio. DSA [41] is obtained by 
digitally subtracting two frames: one during and one before the injection of the 
X-ray contrast agent. The two frames correspond to the same point of the cardiac 
cycle by synchronization with respect to the R wave of the electrocardiogram. In 
addition to DCA and DSA, a third type of angiograms used in this study is the 
direct video angiogram (DVA). The DVA is digitized on-line via a video camera 
focused on the X-ray image intensifier. In our study, the DCA contains the high-
est level of noise due to the involvement of the complex imaging chain. The DSA 
has the highest signal-to-noise ratio (SNR) but may contain subtraction artifacts 
caused by miss-registration between the two frames during subtraction. The DVA 
has an intermediate image quality, between those of DCA and DSA. 
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In another previous research [42], we studied the problem of arteriogram seg-
mentation by an approach based on the pixel grayscale. We developed an itera-
tive ternary classification (ITC) algorithm which used two grayscale thresholds to 
classify each pixel to one of three classes, i.e., artery, background, and undecided. 
By iterating on the undecided class the two thresholds are brought closer together 
and the output converges to a two-class segmentation. The result from the ITC 
algorithm will be compared with the ANN result as demonstrated later. 

B. PROBLEM STATEMENT 

In this study, the problem we attempt to solve is the segmentation of arte-
riograms. The arteriogram is to be segmented into two classes, i.e., vessel and 
background, with the ANN approach. The ANN-based segmentation is conducted 
at the lower-level processing. Image pixel values are used as direct input to the 
ANN. Because we are particularly interested in ANN's capability of extracting 
features from the raw image data, we do not consider the possibiUty of using a 
separate non-ANN stage for preprocessing. However, a postprocessing stage may 
be employed if necessary. 

The purpose of this study is twofold: (1) to develop practical ANN-based clas-
sifiers for the segmentation of arteriograms, and (2) using the arteriogram seg-
mentation problem as an example, to study the neural network system techniques 
in terms of network topology, training parameters, generalization capability, su-
pervised versus unsupervised trade-off, and mechanisms for self-organization. In 
the following two sections, we discuss two ANN classifiers. In Section IV, we 
review a BP ANN classifier developed in a previous study [19]. In Section V, we 
derive and evaluate an unsupervised ANN classifier that employs a self-adaptive 
mechanism for grayscale thresholding on a pixel-by-pixel basis. 

IV. BACK-PROPAGATION ARTIFICIAL NEURAL 
NETWORK FOR ARTERIOGRAM 
SEGMENTATION: A SUPERVISED APPROACH 

A. OVERVIEW OF THE FEEDFORWARD 
BACK-PROPAGATION NEURAL NETWORK 

Multilayer perceptron with back-propagation learning [43] is perhaps the most 
common paradigm for supervised neural network computing to date. This has 
been observed in the medical imaging area (see Section II) as well as many other 
pattern recognition areas. In a multilayer feedforward network the neurons are 
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Figure 4 Neuron model with sigmoid activation function. 

fully connected in the sense that a neuron on a layer other than the input layer 
receives signals from all neurons on the previous layer, but from no other. Figure 4 
shows the standard neuron model, representing the A:th neuron on the /th layer of 
a feedforward network. The summation operator produces the linear combination 
of the weighted outputs from all neurons on the previous (/ — l)th layer: 

y'k 
all; 

jk^j (1) 

where WĴ  is the weight associated with the Unk that connects the yth neuron on 
the (/ — l)th layer to the fcth neuron on the /th layer. The nonlinearity associated 
with each neuron is an important element, without which the multilayer structure 
would collapse down to a single-layer linear perceptron [44]. In order to propagate 
the learning information backward and through the nonlinearity, the nonlinear 
function needs to be differentiable. The sigmoidal function has frequently been 
used for this purpose. The output from the nonlinearity is given by 

X ^ ny) = 
1 

1 + ^(-j+^)/^o • 
(2) 

J^iy) is between 0 and 1; 0 is the activation point where T(0) = (1/2). The 
nonlinearity parameter ^o controls the slope of the transition. A lower ^o results 
in a steeper transition. The sigmoidal function approaches to the hard-limiter as 
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OQ approaches to zero. This function has an advantage that its derivative can be 
easily computed: 

The sigmoid function and its derivative are shown in Fig. 4. 
The back-propagation learning employs a gradient descent method to train the 

network weights such that the mean squared error between the actual network 
output vectors and the desired output vectors is minimized. The back-propagation 
learning algorithm, often referred to as the generalized delta rule, was elegantly 
derived by Rumelhart et al [43]. The amount of weight adjustment at each itera-
tion is proportional to the input and the associated 5 which can be computed in a 
back-propagation fashion. Let p be the iteration number. At the p\h iteration the 
weight adjustment is according to 

^W)j,{p + 1) ^ W)j,{p + 1) - W)j^{p) = p . 4( /7) . xy^ + ct. AWJ^(/7), (4) 

where p is an empirical parameter controlling the rate of learning. The second 
term on the right-hand side is the momentum term which improves stability and 
accuracy by slowing the learning process near convergence. The 5 function is 
updated for each neuron at each iteration according to 

^i _ \ ^'{y'kWk - 4 ) ' for output layer, 
^ ' ( y i ) E „ e ^ ^ L ^ ^ otherwise, 

where dk is the labeled output for the A:th neuron on the output layer. Because the 
5 s on the /th layer can be determined only when the 5 s on the (/ + l)th layer are 
known, the learning must be carried out in the backward direction, i.e., from the 
output layer toward the input layer. 

The weights are typically initialized to small random values before the back-
propagation learning commences. For a training set consisting of Â  pairs of input 
and labeled output and for an output layer containing M neurons, we define the 
system error {E) as 

^ M N 

k=l n=l 

The training process iterates on computing the 8s and updating the weights. The 
process terminates upon the satisfaction of a stopping criterion, e.g., when the 
system error is below an acceptable threshold or when the number of iterations 
exceeds a predetermined threshold. 
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B. BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK 
CLASSIFIER FOR ARTERIOGRAM SEGMENTATION 

We developed a classifier based on the standard feedforward back-propagation 
ANN to segment the arteriograms. The structure of this supervised classifier is 
shown in Fig. 5. The neural network takes image grayscale values as direct in-
puts. The grayscale values are taken from a window centered about the pixel to be 
classified. The output layer contains two neurons—one represents vessel and the 
other represents background—and whichever outputs the larger value prevails. 
The feedforward network classifies one pixel at a time. Segmentation of the vas-
cular structures is accomplished by scanning the window over the entire image. 

In contrast to the elegant derivation of the back-propagation learning, the the-
ories for configuring the neural networks and selecting training parameters are 
relatively weak. We therefore conducted a systematic study on the various config-
urations and training parameters for this problem. We attempted to answer ques-
tions such as: 

• Given a fixed complexity in terms of the total number of weights in the 
network, what is the most suitable network topology for our segmentation 
problem? What is the optimal number of hidden layers? How should the 
neurons be distributed among the input and hidden layers? Do the deep, 
shallow, and bottleneck network topologies [45] perform differently? 

• How should the training set be defined? How many test samples should be 
included? Should the test samples be hand-picked or randomly selected? 

• Does the initial random weight pattern affect the result of learning? 

Figure 5 Back-propagation ANN classifier for arteriogram segmentation. 
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• What values should be used for the learning rate (P) and the momentum 
rate (a)l 

• How many iterations of the learning process should be allowed to run? 
Does overlearning have a negative effect on generalization? 

The study addressing these questions has recently been published [19] and is not 
repeated here. The interested readers are referred to the original publication for 
the details. In the following we summarize the important findings from that study 
which are relevant to the present discussion. 

We implemented the BP ANN classifiers in the C language for the VAX 
11/780 or compatible machines (Digital Equipment Corporation, Maynard, Mas-
sachusetts). The training for each network took between 2 and 10 CPU hours, 
depending on the number of iterations required to reach the specified system er-
ror. A systematic study was conducted on the various combinations of network 
configurations and parameters. The combined computational time for the entire 
study was on the order of 5000 CPU hours using several networked VAX sys-
tems. A topology that yielded the optimal performance was identified, as shown 
in Fig. 6. This feedforward network consisted of 121 neurons on the input layer to 
receive grayscale values from an 11 x 11 window, 17 neurons in the hidden layer, 
and 2 neurons on the output layer. The total number of weights for the neural net-
work was 2091 (121 X 17 + 17 X 2). This classifier is referred to as "121-17-2" 
in the following discussion. 

The selection of the training samples had a significant effect on the perfor-
mance of the classifier. Random selection of samples over the entire image re-
sulted in a training set containing many more background pixels than vessel pix-
els. A training set consisting of carefully chosen pixels at various parts of the 
background, edges, and centers of the vessels gave the best performance. The 
coronary arteriogram shown in Fig. 6 was used to provide the training data. This 
image contained 256 x 256 pixels with 8-bit grayscale. The arteriogram was seg-
mented by a human operator to produce a target image. The 75 samples marked 
by crosses in the arteriogram defined the training set for this study. The BP ANN 
classifier was repetitively training over these 75 samples until either the system 
error was less than 0.15 or the total number of iterations reached 3500. 

The 121-17-2 classifier was considered converged after 764 iterations during 
training; it correctly classified 65 samples, i.e., 87% of the 75 training samples 
corresponding to a system error of 0.13. It generalized quite well. For the re-
maining 60,441 pixels of the test angiogram—excluding the 75 training samples 
and the 5-pixel-wide borders that cannot be reached by the center of the 11 x 11 
window—the classification accuracy was 92%. The generalization performance 
was even better than the training performance because the training set was chosen 
to represent iht problematic cases. The 121-17-2 classifier also generalized well 
for other arteriograms including the DC A, DVA, and DSA types. These results 
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Figure 6 Training data and weight patterns for 121-17-2 back-propagation classifier. 
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will be presented and compared with the results from an unsupervised classifier 
in the next section. 

To gain an insight into the classification mechanisms of the 121-17-2 classi-
fier, in Fig. 6 the weight patterns between input and hidden layer are displayed 
as image templates, and the weight patterns between hidden and output layer are 
plotted in a bar graph. The ANN classifier first acts as a matched filter—the 17 
weight templates are convolved over the image to search for specific vessel pat-
terns. Templates 1-6 and templates 12-17 show well-structured patterns and there 
seems to be a complement relationship between the two sets of templates. Notice 
that, because the vessels may appear in any orientation, these patterns are more 
or less radially symmetric. The 17 hidden neurons are activated when the corre-
sponding patterns are sufficiently matched. The weights connecting to the vessel 
output neuron vary systematically from positive to negative, indicating some form 
of spatial differentiation. As expected, the weights connecting to the background 
output neuron show exactly the complement of those connecting to the vessel neu-
ron. Thus, we conclude that the trained BP ANN classifier behaves as a matched 
filter followed by a nonlinear decision tree. 

V. SELF-ADAPTIVE ARTIFICIAL NEURAL NETWORK 
FOR ARTERIOGRAM SEGMENTATION: 
AN UNSUPERVISED APPROACH 

A. ADAPTIVE SYSTEMS AND GRADIENT 
SEARCH METHOD 

An adaptive system is a system capable of altering its internal structure to 
improve its performance by means of an iterative learning algorithm. It is typically 
a nonlinear system which produces the desirable output by manipulating the input 
signals through a set of adjustable variables (weights). The weight adjustment is 
accomplished through an optimization procedure based on a certain performance 
criterion. 

The adaptive system approach is attractive for classification tasks due to its 
self-organizing, generalizable, and fault-tolerant characteristics. However, the 
adaptive system is generally difficult to analyze and to control because of its com-
plex implicit mechanisms for decision making. The nonlinear elements in the sys-
tem also make it difficult to back-track the cause when an erroneous decision is 
made by the system. 

The adaptive systems can be classified in terms of open-loop adaptation and 
closed-loop adaptation [46]. The open-loop adaptive system adjusts its weights 
solely based on its input, whereas the closed-loop adaptation is based on both in-
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put and feedback from the output. The closed-loop adaptive system has proven to 
be by far the more powerful model, especially for nonhnear, time-varying, and/or 
nonstationary processes. 

During adaptation the weights are adjusted in such a way that the output is 
brought closer to the desired response. In contrast to the supervised neural net-
work, the adaptive system does not rely on user-defined training data. The desired 
response is guided by an internal mechanism designed to solve the specific classi-
fication problem. The adaptation process is accomplished by means of minimiz-
ing an error signal (§), which is usually based on a distance measure between the 
desired response and the actual response. For a given set of input, the error sig-
nal forms a performance surface in the multivariate space defined by the weights. 
An adaptation algorithm (or learning algorithm) adjusts the weights to move the 
operating point down the performance surface until the minimum is reached. For 
most practical applications it is impossible to derive an analytical expression of 
the performance surface, nor is it possible to conduct an exhaustive search for the 
global minimum over the multivariate space due to the large number of weights 
in the system. The adaptation algorithm must be designed to find an optimal or 
near-optimal solution via a step-by-step search based solely on the local behavior 
of the performance surface. 

The estimate of the local gradient can be used to guide the search toward the 
minimum on the performance surface. A widely used gradient search method is 
the steepest descent method since it has fewer restrictions on data and system 
characteristics than other adaptation algorithms. Steepest descent search is an it-
erative method in which all the system weights are modified in the direction of 
the negative gradient. The search begins with an initial weight vector, usually ar-
bitrarily selected. At the A:th iteration the new weight vector is determined from 
the present weight vector Wjt and the gradient Vjt according to 

W;t+i=Wit + ^ ( -V^) , (7) 

where fi is the learning rate that controls the stability and the rate of convergence. 
The gradient defined by 

(8) 
W=Wit 

needs to be estimated at each step of the iteration. The search terminates when 
the gradient is a null vector, or WA;+I = Wjt, indicating a minimum on the per-
formance surface is reached. 

For a linear system the performance surface based on the mean squared er-
ror is shaped like a bowl (a hyperparaboloid for more than two weights) and has 
only a single minimum. Therefore, it is guaranteed to converge to the optimal 
solution. Although the linear adaptive classifier has proven to be a statistically 
optimal classifier [47-49], it is only applicable to the Unearly separable problems 
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such as detecting a signal in the presence of white Gaussian noise. For more com-
phcated problems, such as arteriogram segmentation with the presence of back-
ground variation and other types of noise, it is necessary to consider a nonlinear 
adaptive classifier. 

For a nonlinear system, however, the performance surface may embody a com-
bination of steep and flat regions [50]. Hence, it is possible that the search is 
guided to a local minimum and terminates prematurely before the global min-
imum is reached. The search may also become unstable at a steep part of the 
surface especially when the learning rate (^) is not sufficiently small. These prob-
lems arise as the consequence of forcing the search always in the downhill di-
rection on an ill-conditioned performance surface. Fortunately, it has been shown 
that in a variety of practical applications the system is quasi-linear [43]. The per-
formance surface for a quasi-linear system is differentiable and nondecreasing in 
all directions away from the global minimum. Thus, if the system is quasi-Unear, 
the performance surface does not contain local minima to trap a gradient-based 
search. 

B. DERIVATION OF THE SELF-ADAPTIVE CLASSIFIER 

1. Architecture 

An intuitive approach to the arteriogram segmentation problem is to apply a 
grayscale threshold on the arteriogram—assume that the pixel values of the vessel 
are generally higher than the pixel values of the background over the entire im-
age. If the histogram of the arteriogram is bimodal showing a peak for vessel and 
a peak for background, the appropriate value for the threshold can be either man-
ually selected or statistically determined [51]. The single-threshold approach may 
work for a digital subtraction angiogram with the background properly removed. 
Unfortunately, the histogram of an unprocessed arteriogram is almost never bi-
modal. Due to the large background variation, segmentation based on a single 
threshold usually performs poorly. To improve the segmentation a variable thresh-
old can be used. The idea of variable thresholding is demonstrated with the inten-
sity profile of a scan line across an arteriogram as shown in Fig. 7. Notice that the 
background intensity is significantly increased on the right side. The threshold is 
adapted for each pixel based on statistics extracted from the neighborhood of the 
pixel. 

In the following, we derive a self-adaptive (SA) classifier for arteriogram seg-
mentation. The SA classifier employs a variable threshold in conjunction with an 
adaptation algorithm to segment an arteriogram into the vessel class and the back-
ground class. The classification is achieved through an iterative process in which 
the expected input is estimated from the system output and compared to the actual 
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Figure 7 Graphic illustration of fixed versus variable thresholding for intensity profile of scan line 
across arteriogram. Arrows indicate locations of vessels. 

input. The comparison produces an error signal which controls the thresholding 
parameters. 

The variable threshold (local threshold) for each pixel (/, j) in the image is 
determined according to 

Tij =fiij-\-Wijaij. (9) 

Wij is the weight that controls the threshold for pixel (/, j). iitj is the mean in a 
neighborhood of CL>O X COO pixels centered about (/, j): 

(coo-l)/2 

^^^ = i E 
((oo-l)/2 

(10) 
^0 m=(l-coo)/2 n=(l-coo)/2 

where x is the pixel grayscale value, atj is a measure of scatter about the mean 
(standard deviation) in the neighborhood: 

1 

co'-l 

(a)o-l)/2 icoo-l)/2 

m=(l-(oo)/2 n=il-o)o)/2 

1/2 

(11) 

Once the local thresholds are computed, the entire image is segmented to create a 
binary image: 

ytj = 
0, if Xij < Tij, Xij e background, 
1, if Xij > Tij, Xij e vessel. (12) 

In selecting the window size <wo, there exists a trade-off between rejecting noise 
and retaining threshold locality. As the window size increases, local thresholding 
acts more like global thresholding. As the window size decreases, statistics esti-
mated from the neighborhood become less reliable. Although local thresholding 
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favors a small window size in general, the low signal-to-noise ratio in the arteri-
ogram requires a sufficiently large window size to provide reliable statistics for 
estimating the local threshold. To circumvent the difficulty of the window-size 
trade-off, we use a one-layer self-adaptive network to control the weight (Wij) 
applied to the standard deviation for each pixel. The SA classifier performs vari-
able thresholding for each pixel with a threshold computed from the estimates of 
the neighborhood's mean plus the weighted standard deviation. 

In most adaptive systems the error signal is the difference between the desired 
output and the actual output. In our case, however, we do not have the desired 
output because the information about the vessel location is not available a priori 
in the unsupervised situation. Thus, instead of comparing the outputs, we com-
pare the inputs. The adaptive system presented here obtains its error signal from 
the distance between the actual input Xfj and the estimated input xtj. Figure 8 
demonstrates the overall architecture for the SA classifier. 

Another important feature of the present system is that, instead of using Eq. 
(12) to perform thresholding, the hard-limiter can be replaced by a soft-limiter. 
When the soft-Hmiter is used, the system output (yf.) comes from the sigmoid 
function: 

yij = ^{^ij-f^ij-^ij^ij)^ (13) 

Iterative /Adaptation 

^ v _ Xij-Mij-WijOij f;g^;] Yij 

Figure 8 Architecture for self-adaptive classifier. 
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where the sigmoid function J^ is defined by Eq. (2). The sigmoid function is 
continuous and varies monotonically from 0 to 1. The output yf- is not exactly 
binary; it can be considered as the probabiHty that pixel (/, j) belongs to the vessel 
class. The derivative of the sigmoid function exists, as defined by Eq. (3), allowing 
us to carry the adaptation process through the nonlinearity as discussed in the 
following. 

2. Estimation of the Error Signal 

At the A:th iteration the error signal (^^) is defined as the distance between the 
actual input (xtj) and an estimated input (x^) from the present output within an 
(o X (o window: 

uk II ^ k II 

where a is a normahzing constant; the notation ^ ^ denotes the summation over 
the 0) X CO pixels centered about pixel (/, j). Notice that this window size co is 
not necessarily the same as the window size COQ which was used in the previous 
section for obtaining the means and standard deviations from the input image. To 
simplify the derivation of the algorithm, we choose the error measure (s^) as the 
sum of squared errors: 

CO 

The estimate of the input signal is based on the mean value of each class (vessel 
or background) in the moving window. At each iteration, the estimated input for 
a vessel (background) pixel is set to the mean value of all detected vessel (back-
ground) pixels within the co x co window. 

First, let us assume that the system's nonlinearity function is the hard-limiter. 
In this case, the system output is a binary image consisting of ones and zeros. The 
input estimate is given by 

xfj=(i'yfj+iiHi-yfj), (16) 

where fi^ and jl^ are the means for the vessel class and the background class, 
respectively. That is. 

(17) 
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The mean of each class can be estimated by 

/̂  

M 

Eco^' mnymn (18) 

(19) 

Our adaptation algorithm described in the next section requires differentiability 
along the signal path. The adaptation process would be blocked by the hard-
limiter because its derivative does not exit. Substituting the hard-limiter by the 
soft-limiter for the above input estimator will introduce some error. This error, 
however, should be negligibly small, especially for a soft-limiter that has a low 
^0 corresponding to an abrupt transition between 0 and 1. Notice that as Go ap-
proaches to zero, the soft-limiter approaches to the hard-limiter. The error also 
diminishes as the output pixel values converge to either 0 or 1. 

By substituting Eqs. (18) and (19) into Eq. (16), the input estimate is given by 

E k 
co^mnymn k 

T y^ '^ + 
rCl-yL) 

L EJi ymn) 
(1 • yfj) ] (20) 

3. Adaptation Algorithm 

The adaptation algorithm developed in this section is analogous to the steepest 
descent method in the sense that the operating point descends on the performance 
surface toward the minimum. The weights are initialized to small random val-
ues. At the ^th iteration the weights are adjusted in the direction opposed to the 
gradient of the error signal e: 

w: 
^+1 wt^-fi 

ds'' 
dWu 

(21) 
w^, 

where P is the adaptation coefficient or learning rate that regulates the speed and 
stability of the system. The partial derivative ds^/d Wtj can be evaluated using the 
chain-rule: 

\dxU\dWijJ' 

Substituting Eq. (15) into the first term on the right-hand side, we have 

dx^. =« E (^\^mn ^mn^ 

{m,n)ea) 
ox.j 

(22) 

(23) 
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The only nonzero term in the summation is at (m, n) = (/, y), thus 

(24) 

To solve for the second term on the right-hand side of Eq. (22), we apply the 
chain-rule again: 

94 _/^4v%\ (25) 

The second term on the right-hand side can be determined based on the fact that 
yfj = J^ixij — ixij — Wf-Oij), where ^ ( 0 is the sigmoidal function with its deriva-
tive defined by Eq. (3). We have 

dWi eo 
dixij - fiij - Wj^atj) 

dWi 

= -^^50-4K- (26) 

Substituting xfj given by Eq. (16) into the first term of Eq. (25), we obtain 

dxfj 9[/ i*y*+M*(l-4)] 

= [|.̂ ..̂ ].[|a-4)-/^^] 
we define 

(27) 

(28) 

(29) 

(30) 

and 

"'~ dyfj 

9/i* Xij Y,Jl - y*„) - Y.0,Xmnil - J L ) 

Cc.a-yL)]' 
(31) 
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Therefore, 

!4 v^j'f,.+A*-v*(l-3'f,•)-/i*• (32) 

Finally, by combining Eqs. (24), (26), and (32), the weight update Eq. (21) can be 
solved according to 

W.^+l (i,j)e(o = Kmco-^[-H^ij-^u)] ̂M'-yijh ijrij 

= Kneco - P^iji^ij - 4 ) 4 ( 1 - yfj) 

x[(A'+44)-(/^' + (i-4)4)]' 

(33) 

(34) 

where p = Ifia/Oo. 
Due to the complexity of the above expression the mechanisms of the adap-

tation are not self-evident. In the following, we isolate and study the individual 
terms in Eq. (34) with the intention to obtain a better insight into the weight up-
date mechanisms. In Fig. 9, we plot the term yij(l — ytj) versus ytj. This term, 
affecting the rate of weight adjustment, has the maximum at yij = 1/2, decreases 
on both sides, and reaches 0 at yij = 0 and yij = 1. This term contributes to 
the reduction of the learning rate when the output converges to either 0 or 1, and 
thereby improves accuracy and stability. Thus, it has a similar effect as the mo-
mentum term used in supervised BP learning discussed in Section IV. 

The amount of weight adjustment is proportional to (xfj — xf-), which is self-
explanatory. The remaining term can be rewritten in the following form: 

{f,^-fi^) + [vf.yf.-vf.(l-yf.)]. (35) 

y( i -y) 

0 i 1 

Figure 9 Weight update rate, j ( l — y), plotted versus output, y. 
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Furthermore, vf- and vf- can be rearranged as 

Vf; = IJ \^ yk 
CO ymn 2-^co ymn 2^co ymn 2^(o yn 

^ ^{xij - fi''), (36) 
K 

v' 
1 

Z^co^ ymn^ 

1 ' -M 

^ij Z-̂ aj(̂  ymn) _ Z^co^fnnK^ ymn) 

2^co^ ~ ymn) 2^co^^ ~ ymn) 

^T.{xij--iX% (37) 

where k and li are the pixel counts for the vessel class and the background class, 
respectively. Now the term can be presented as 

(A'-Ai*) j(.,7-A*K-k-.7-M*)(l-4)]- (38) 

The first part of this term is the difference between the mean vessel intensity and 
the mean background intensity within the a> x o) window. The second part repre-
sents a consistency measure for the present classification of pixel (/, j) within the 
CO y. CO window. For example, if the present classification is vessel (yij = 1), this 
part is reduced to (l/k)(xij — fi^) which is the difference between the pixel in-
tensity and the mean vessel intensity normalized by the vessel pixel count within 
the CO y. 0) window. 

4. Postprocessing 

Some background variations have features similar to those of vessels. These 
background variations are incorrectly classified as vessel and result in speckled 
artifacts scattered over the background area in the segmented arteriogram. For-
tunately, these speckled artifacts are easily detectable due to their appearance as 
isolated small clusters and can be removed by a postprocessing stage. The various 
filtering techniques based on mathematical morphology [52] seem to be particu-
larly suitable for this purpose. 

The following describes one feasible algorithm for postprocessing based on a 
simple median filter. 

Step 1. Make a binary image by assigning all output pixels which have not 
reached vessel class to the background class. In other words, all the 
unclassified pixels are absorbed by the background: 
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Step 2. Remove the speckled artifacts by applying a moving median filter 
over the binary image. Within a local window the center pixel value ytj is 
replaced by the median of all pixel values within the window. For a binary 
image the median filter can be implemented simply by assigning the 
dominant class within the window to the center pixel. 

The median filter is useful here because it reduces single-pixel noise while 
it preserves edges in the image. The simple median filter can be generalized to 
ann X n median filter which can correctly remove a noise pixel as long as the 
total number of noise pixels with the window is less than (n^ + l)/2. We have 
found that a 5 x 5 median filter provides a satisfactory performance for the post-
processing. 

C. PERFORMANCE EVALUATION 
OF THE S E L F - A D A P T I V E CLASSIFIER 

We implemented the SA classifier on a conventional computer to evaluate its 
properties and classification performance. First, we conducted a systematic study 
on the effects of various system parameters including input window size COQ, adap-
tation window size co, nonlinearity parameter ^o. and learning rate fi. We should 
emphasize that it is very important to study the sensitivity of these empirical pa-
rameters. Should the performance be very sensitive to certain parameters, the sys-
tem would not generalize well and the adaptation scheme associated with those 
parameters should be reevaluated. Next, after the system parameters were prop-
erly selected, we applied the SA classifier to arteriograms including the DCA, 
DVA, and DSA types described in Section IIL The segmentation results by the 
SA classifier were also compared with those by the BP classifier discussed in 
Section IV. 

1. Convergence 

As with any adaptive system, a primary concern with the SA classifier is its 
convergence. In our experiments, the SA classifier converged in practically ev-
ery case within 10 iterations. The rapid convergence of the system was observed 
from the weight matrix values, Wtj, through the iterations. The weight matrix was 
initiahzed with random values. As the iteration commenced, it rapidly organized 
itself to provide the appropriate local thresholds for the vessel pixels in the arteri-
ogram. As expected, when the weight matrix was shown as an image, it resembled 
the vascular structure in the input image. In Fig. 10 we demonstrate the conver-
gence of weight matrix by displaying it as an image at the first, third, and tenth 
iterations (left to right). The weights were mapped into 8-bit grayscale and the 
resulting image was histogram-equalized to improve visualization. 
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10th Iteration 

Weight Patterns 

Figure 10 Weights (Wij) in SA classifier shown as images through iterations. 

2. Window Effects 

The SA classifier employs two moving windows. The input window with size 
coo is used to estimate the mean and variance around each pixel from the arteri-
ogram. The adaptation window with size co is used to assess the error signal. The 
input window is applied only once before the iteration begins, whereas the adap-
tation window is used at each step of the iteration. The experimental results show 
that the two moving window sizes have direct but relatively minor effects on the 
performance of the SA classifier. Figure 11 shows the effects of COQ and co on the 
segmentation of an arteriogram. 

The input window size (COQ) controls the smoothness of the segmented im-
age. A small input window produces less reliable statistics and results in a rela-
tively noisy segmentation. In contrast, a large input window produces a relatively 
smooth segmentation but has a smearing effect on edges and anatomical details. 

The adaptation window size (co) shows a somewhat greater effect on the per-
formance than the input window size does. The adaptation window size affects the 
segmentation quality and, to a lesser extent, the convergence rate. A small adapta-
tion window slows the adaptation and can cause premature convergence at a local 
minimum. An adaptation window significantly larger than the vessel width makes 
the system behave like a global-thresholding method and reduces the classifica-
tion accuracy. The best performance is associated with an adaptation window size 
slightly larger than the average width of the vessels under investigation. 

3. Rate Parameters 

Referring to Eq. (34), the learning process is affected by three parameters: 
learning rate fi, nonlinearity parameter OQ, and normalization factor a. The nor-
malization factor is a constant calculated according to the size of the adaptation 
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Figure 11 Effects of input window size COQ and adaptation window size co on system output through 
iterations. 

window. This is why the adaptation window size affects the rate of convergence 
as discussed above. Once the adaptation window size is determined, the learning 
rate and the nonhnearity parameter are the only two parameters that can control 
the rate of convergence. 

How learning rate should be controlled to achieve the best performance is a 
common problem to all the steepest-descent-type algorithms. Learning rate con-
trols not only the rate of convergence but also the stability of the system. A high 
learning rate can result in an unstable system producing noisy and inaccurate out-
puts. A low learning rate can result in slow convergence or premature conver-
gence to a local minimum. Figure 12 illustrates the effects of learning rate on the 
test image. The best performance was achieved by choosing ^ between 0.01 and 
0.09. 
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10th iteration 

Figure 12 Effects of learning rate fi on system output through iterations. 

The nonlinear transition of the sigmoid function is affected by ^o- A small ^o 
results in an abrupt transition and a large ^o results in a gradual transition. The ad-
justment of ^0 has two effects on the system. Referring to parameter p in Eq. (34), 
^0 is combined with fi to control the rate of weight update, ̂ o also directly controls 
the quantization of the system output and affects the amount of information be-
ing fed back from output to weight adaptation. A large ^o slows the convergence, 
increases the likelihood of local-minimum convergence, but provides more infor-
mation (less quantization) for better adaptation. A small ^o makes the sigmoid 
function closer to a hard-limiter. In the extreme case of hard-limiter (̂ o = 0) the 
adaptation mechanism stops functioning completely because the derivative of the 
nonlinearity required by Eq. (26) no longer exists. Figure 13 shows the effects of 
^0 on the segmentation of the test image. According to the experimental results 
the appropriate range for ^o is between 0.1 and 1.0. 



Medical Imaging 111 

1st iteration 3rd iteration 10th iteration 

Figure 13 Effects of nonlinearity parameter ô on system output through iterations. Smaller ô cor-
responds to more abrupt transition in sigmoid function. 

4. Segmentation of Arteriograms 

We evaluated the performance of the SA classifier with a set of arteriograms 
representing a broad range of image quaUty. The supervised BP classifier de-
veloped in Section IV was also applied to the same set of arteriograms so that 
the performance between the unsupervised and supervised classifier can be com-
pared. Figure 14 shows the results for the original arteriogram, which was used 
by the BP classifier for training and by the SA classifier for parameter optimiza-
tion. This image is a digitized cineangiogram (DCA) of the left coronary artery. In 
Fig. 14 the four images are arteriogram (upper-left), segmentation by the BP clas-
sifier (upper-right), output of the SA classifier before postprocessing (lower-left), 
and segmentation after postprocessing (lower-right). In the same format. Fig. 15 
shows the results for a different DCA frame that belongs to the same sequence 
of the original arteriogram shown in Fig. 14. Figure 16 shows the results for a 
direct video angiogram (DVA) of the right iUac arteries. Finally, Fig. 17 shows 
the results for a digital subtraction angiogram (DSA) of the right coronary artery. 

The results presented above have provided a qualitative comparison between 
the supervised BP classifier and the unsupervised SA classifier. Generally speak-
ing, the two classifiers are comparable in performing the task of arteriogram seg-
mentation. The SA classifier shows a high sensitivity for detecting smaller vessels, 
as seen in Figs. 16 and 17. The SA classifier also produces a cleaner background; 
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Figure 14 Digitized cineangiogram of left coronary artery (original test image) and segmentation 
results by BP classifier, SA classifier before postprocessing, and SA classifier after postprocessing. 

however, much of that should be attributed to the postprocessing stage. In Fig. 15, 
a large dark background area can be observed on the left side of the arteriogram. 
The S A classifier incorrectly extracts the edge of this area as part of the vascular 
structure. In contrast, the BP classifier correctly ignores this edge. The SA clas-
sifier does not contain a mechanism to take advantage of the fact that a vessel 
segment has two parallel borders. The BP classifier, on the other hand, seems to 
be well trained to handle this situation. 

To further provide a quantitative evaluation of the two classifiers, we use the 
original DCA image and the target image shown in Fig. 6. The target image de-
fined by a human operator is used as the gold standard. In this comparison, we also 
include two other classifiers: the iterative ternary classifier (ITC) developed in a 
previous study [42] and a maximum likelihood estimator (MLE) that computes 
a global threshold based on the classic Bayesian approach [19]. Figure 18 shows 
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Figure 15 Digitized cineangiogram of left coronary artery and segmentation results by BP classifier, 
SA classifier before postprocessing, and SA classifier after postprocessing. 

the segmentation results from these four classifiers: SA, BP, ITC, and MLE. The 
performance indexes including classification accuracy, learning time, and classi-
fication time are summarized in Table I. The SA classifier showed the best per-
formance with 94% accuracy, closely followed by the BP classifier's 92%. The 

Table I 

Performance Comparison of Four Classifiers 

Algorithm Accuracy 
Learning 
time (s) 

Classification 
time (s) 

Self-adaptive ANN classifier 
Back-propagation ANN classifier 
Iterative ternary classifier 
Maximum likelihood estimator 

94% 
92% 
83% 
68% 

0 
7,150 

0 
60 

360 
540 
170 
350 



124 Ying Sun and Reza Nekovei 

Figure 16 Direct video angiogram of iliac arteries and segmentation results by BP classifier, SA 
classifier before postprocessing, and SA classifier after postprocessing. 

parameters for the SA classifier were: COQ = II, co = 11, ^o = 0.1, and fi = 0.03. 
The parameters for the BP classifier were: topology = 121-17-2, a = 0.5, and fi = 
0.05. The two ANN-based classifiers generally performed better than the other 
two methods. This may be attributed to the ability of ANN to form highly nonlin-
ear decision boundaries and to classify patterns with non-Gaussian distributions. 

VI. CONCLUSIONS 

A. NEURAL NETWORK APPLICATIONS 
IN M E D I C A L I M A G I N G 

The literature review in Section II—although it was neither exhaustive nor in-
depth—should provide a perspective for the trend of ANN applications in the 
medical imaging area. While technique-oriented researches have been conducted 
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Figure 17 Digital subtraction angiogram of right coronary artery and segmentation results by BP 
classifier, SA classifier before postprocessing, and SA classifier after postprocessing. 

by using ANNs for lower-level processing of medical images, clinical applications 
have been predominantly for higher-level processing whereby features are first ex-
tracted in a preprocessing stage by using more conventional pattern recognition 
methods. The use of ANNs for higher-level processing is attractive for several 
reasons. First, the lower-level processing involves a large amount of data from 
image pixels and usually requires customized software. Second, by incorporat-
ing a preprocessing stage for data reduction, it is much easier to adopt a general 
commercial neural network software for the specific diagnostic problem. Third, 
medical experts are accustomed to the use of image features extracted by conven-
tional pattern recognition techniques and information from patient history, which 
are more suitable as inputs to an ANN at the higher processing level. Fourth, the 
inputs to the higher-level processing are usually more meaningful and bear clini-
cal significance; therefore, it is easier to back-track the problem when the output 
of the ANN is erroneous. 
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Figure 18 Arteriogram segmentation by self-adaptive classifier, back-propagation classifier, iterative 
ternary classifier, and maximum likelihood estimator. 

If the ANN classifiers can be considered separable from the conventional clas-
sification methods, it must be due to the distributive parallel processing nature of 
neural network computing. Thus, a neural network classifier using a small set of 
extracted features as input may not fully exploit the power of distributive paral-
lel processing. When a preprocessing stage is used, the higher-level ANN is at 
the mercy of the lower-level preprocessing stage. A crucial portion of the feature 
information may have been inadvertently excluded by the preprocessing even be-
fore it reaches the ANN classifier. To mimic the human perception of diagnostic 
medical images, it is important to apply the ANN to extracting features directly 
from the raw image data. Thus, the use of ANN for lower-level medical image 
processing should be a fruitful area that merits continuing research. 

Another observation regarding ANN applications in medical imaging is that 
supervised learning has been the more dominant approach. The popularity of the 
feedforward back-propagation network may have contributed to this dominance. 
A supervised ANN classifier can also be trained on a continuing basis, hoping to 
improve upon the mistakes that the ANN has made on a retrospective basis. In 
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contrast, the unsupervised neural network classifiers rely on their internal adap-
tation mechanisms to perform certain classification tasks. Although it is possible 
to improve their classification performance by optimizing the system parameters, 
such optimization is less intuitive and usually much more difficult to control. 

B. SUPERVISED VERSUS UNSUPERVISED 
ARTIFICIAL NEURAL NETWORK 
FOR A R T E R I O G R A M S E G M E N T A T I O N 

In this study, we used the arteriogram segmentation problem as an example 
for lower-level processing of medical images. We developed a supervised ANN 
(the BP classifier) as well as an unsupervised ANN (the SA classifier) to classify 
pixels in arteriograms into either the vessel class or the background class. It was 
shown that both classifiers performed satisfactorily for arteriograms over a broad 
range of image quality. They also outperformed two other classifiers based on 
some more conventional approaches. 

Although we ought to be prudent in generaUzing our findings, the comparison 
of the supervised versus unsupervised classifier for this problem should provide 
a useful guideline for developing medical image processing systems. In Table II, 
we summarize the important features for the SA and BP classifiers. The main dif-
ficulty associated with the supervised BP classifier was the choice of its topology. 
The appropriate topology for our BP classifier was identified via a brute-force 

Table II 

Comparison between the SA and BP Classifiers 

Learning 

Classification 

Mechanisms 
Preprocessing 
Postprocessing 

Empirical parameters 

SA classifier 

Unsupervised 

Iterative 
Converged fast 

Implemented internally 
No 
Yes 

Input window size 
Adaptation window size 
Learning rate 
Nonlinearity parameter 

BP classifier 

Supervised 

One-pass 
Feedforward 

Learned from training 
No 
No 

Network topology 
Training set 
Learning rate 
Momentum rate 
Training period 
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search. We experienced some very poor performance from BP neural networks 
with slightly different configurations. The performance of the BP classifier was 
also very sensitive to the choice of the training set, the learning rate, the momen-
tum rate, and the training period. For clinical applications it is conceivable that a 
supervised ANN may not respond in a positive way to continuing training with 
new data; its performance may also degrade by overtraining. 

On the other hand, the performance of the SA classifier was less sensitive to its 
parameters. There were also fewer parameters to be identified. For the arteriogram 
segmentation problem under investigation, the S A classifier stood out as the best 
performer when all things were considered. A drawback of the S A classifier is that 
the classification mechanisms must be studiously implemented into the adaptation 
algorithm, making it more difficult to generalize to other problems. The need for 
postprocessing is another minor drawback associated with the SA classifier. 

C. FUTURE DIRECTIONS 

Based on the results from this study, we attempt to identify some potentially 
fruitful directions for future research in applying ANNs to medical imaging. First, 
much can be learned about the distributive parallel processing of medical-image-
based diagnostics by applying ANN models to lower-level processing tasks such 
as image enhancement, feature extraction, and segmentation. Second, the adapta-
tion mechanisms in unsupervised ANNs should merit further studies for extract-
ing various features in medical images such as malignant mass in mammogram, 
underperfused area in cardiac or brain SPECT, and lesion in brain MRI or CT. 
Third, general software tools especially for unsupervised classification and low-
level processing should be developed to reduce the effort of adopting an ANN 
model for a specific clinical application in medical imaging. 

Finally, in Fig. 19, we propose a generalized model for neural-network-based 
processing of medical images. Image features are extracted from pixel data and 
represented by designated hidden nodes in the network. Multimodality images can 
also be fused at an early stage of the neural network computing. Both unsuper-
vised learning and supervised learning take place in the same system and interact 
with each other. The unsupervised learning is guided by adaptation schemes de-
signed to extract specific features from the images. The supervised learning is 
based on retrospective data of known diagnostic outcomes. The system represents 
a unification among multimodality images, between lower-level processing and 
higher-level processing, and between supervised neural network computing and 
unsupervised neural network computing. 
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Figure 19 Proposed unified model for diagnostic system using medical images. 
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I. INTRODUCTION 

Up to now, we have proposed paper currency recognition methods by a neural 
network (NN) to aim at development for the new type of paper currency recog-
nition machines [1-5]. Especially, we have proposed three core techniques using 
the NN. The first is the small-size neuro-recognition technique using masks [1-6]. 
The second is the mask determination technique using a genetic algorithm (GA) 
[7-12]. The third is the neuro-engine technique using a digital signal processor 
(DSP) [13-15]. In the first technique, we regard the sum of input pixels as a char-
acteristic value. This is based on a slab-like architecture in Widrow's algorithm 
[6] which is invariant to various fluctuations of the input image. 

Especially, in the neuro-paper currency recognition technique, we have 
adopted random masks in a preprocessor [1-5], which have masked some parts 
of the input image. The sum of nonmasked pixels by the mask is described as a 
slab value. This is the characteristic value of the input image. We input not pixel 
values but slab values to the NN. This technique enables us to realize a small-size 
neuro-recognition. However, in this technique, we must decide a masked area by 
the random numbers. So we cannot always get effective masks which reflect the 
difference between the patterns of input image to the slab values. We must opti-
mize the masks and systematize their determination. 

In the second technique, in order to determine the excellent masks which can 
generate the characteristic values of the input image effectively, we have adopted 

Image Processing and Pattern Recognition 
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the GA [10-12] to the mask determination. This is a unique technique which is 
a searching procedure based on the mechanism of natural selection and natural 
genetics [11, 12]. The second technique on the mask determination can generate 
effective masks which satisfy the purposive generalization of the NN owing to the 
GA mechanism being like the evolutional process of a life [11, 12]. In this tech-
nique, we regard the position of a masked part as a gene. We operate "coding," 
"sampling," "crossover," "mutation," and "selection" for some genes. By repeat-
ing a series of these operations, we can get effective masks automatically. 

In the third technique, we have developed a high-speed neuro-recognition 
board to realize the neuro-recognition machines [13-15]. In this neuro-recogni-
tion board, we have used a DSP, which has been widely used for image process-
ing. The adopted DSP has the exponential function which is used in the sigmoid 
function [f{x) = 1/(1 + exp(—x))] as a library. Furthermore, the DSP can exe-
cute various calculations of the floating-point variables. This matter enables us to 
implement the neuro-software, which is made on the EWS or the large computer, 
to this neuro-recognition board easily. Its computational speed is ten times faster 
compared with the current recognition machines. 

In this chapter, we unify these three techniques for the paper currency recog-
nition and describe this neuro-system technique. Then the possibility and effec-
tiveness of this system technique in the experimental systems constructed by the 
various current banking machines are shown. The physical meaning of the unified 
system [14, 15] is made clear. 

11. SIVIALL-SIZE NEURO-RECOGNITION 
TECHNIQUE USING THE JVIASKS 

Here, we discuss the first technique. First of all, we describe its basic idea 
which comes from Widrow's algorithm [6]. Then we show the effectiveness for 
reduction of NN's scale with various experiments. 

A. BASIC IDEA OF THE IVIASK TECHNIQUE 

We define a sum of input pixels as a characteristic value of the input image, 
which is described as a slab value [1-6]. We can get 31 as the slab value of pattern 
A in Fig. la. We can get 25 as the slab value of pattern B in Fig. lb. In this 
case, the slab value is useful to the input of the NN. However, the slab value 
corresponding to pattern C in Fig. 2a is 23, while the slab value corresponding 
to pattern D in Fig. 2b is also 23. In this case, we cannot use the slab value as 
an input of the NN. We must reflect the difference of the input image to the slab 
value. This problem can be solved by adopting a mask [1-5] which covers some 
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Figure 1 Different input patterns and different slab values. 

parts of the input image in Fig. 3c. The slab value becomes 13 when the pattern 
C in Fig. 2a is covered by the mask. Otherwise, the slab value becomes 23 when 
the pattern D in Fig. 2b is covered by the mask. In this way, we can use the 
slab value as an input to the NN using the mask. Thus, the mask enables us to 
measure a two-dimensional image from various viewpoints as if we measured a 
three-dimensional object from various viewpoints. Furthermore, we use various 
masks and make some slab values from one input image since the probability to 
obtain effective slab values for pattern recognition becomes high [2, 3, 5]. 
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As shown in Fig. 4, we show the construction of the mask processing for the 
NN. Some parts of the input image are covered with various masks in preprocess-
ing. The sum of input pixels which are not covered becomes one slab value which 
is taken as an input of the NN. 

various masks dJen layer 

part of mask 
processing 

Figure 4 Construction of the mask processing for the NN. 
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B. STUDY OF THE MASK PARAMETERS 

137 

We make some experiments for the mask parameters in order to standardize 
the mask technique. In the mask technique, we discuss mask number and its area 
with 12 alphabetical letters which are from "A" to "L" [2-5] and they are binary 
data written on an 8 x 8 matrix as shown in Fig. 5. We adopt the back propagation 
method with oscillation term [1-5] and this equation is given by 

rk-lkr ^kJc-\ 
^'7 J '-

AW: k-\k 
ij 

dj = {oJ-yj)f(iJ), 

d) = (EW^f+^jf+V'OJ)' 

(t-l)-\-pAWlf^it-2), 

for output layer, 

for hidden layer. 

(1) 

where Wij(t) is the weight from unit / to j , AWij(t) is the change of weight 
Wij (0, d is the generalized error, o is the output unit value, t is the sample, / is 
the input unit value, y is the supervised value for the output unit, k is the layer 
number, s is the positive learning coefficient, a is the proportional coefficient of 
inertia term, and fi is the proportional coefficient of oscillation term. Especially, 
the P term has the role of escaping from a local minimum [1-5]. 

The neuro-weights are modified at the presentation of each alphabetical letter. 
We regard that convergence is completed when the summation of the squared 
error between the output unit value and the desired one for each pattern becomes 

I 
1=1 n=o 

i I 

11 ^P^ 111 11 f^pi 111 11 PI ffl 11 11 ff rpi 11 
Figure 5 Alphabetical letters in 8 x 8 matrix. 
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less than a threshold value or its iteration number reaches a maximum number. 
This summation of the squared error is given by 

N N 

p=i j=\ 

(2) 

where Â  is pattern number. Here iteration number is defined as 1 in case of pre-
senting from "A" to "L." 

1. Mask Number 

We discuss an effect of the mask number. First, we generate masks of the mask 
technique in the following way. We generate 64 (= 8 x 8) random values among 
[—1,1] using random numbers and they are equal to the input pixels. We mask 
the pixels which correspond to minus values. 

The mask numbers that we discuss are 2, 4, 8, 16, 24, and 32. Figure 6 shows 
the learning status for the six patterns of mask numbers until the iteration number 
reaches 30,000. The horizontal axis shows the iteration number and the verti-
cal one shows the summation of the squared error which we have already de-
scribed. From this figure, it is impossible to make the pattern recognition for the 
NN when mask numbers are 2 and 4. The learning can converge using more than 
eight masks. When we recognize alphabetical letters from "A" to "L" using these 
weights, we show every output unit value as shown in Fig. 7. From this figure, 
we can find that the recognition ability is almost the same when the mask number 
is more than 8. This matter shows that we can get enough output unit values for 
pattern recognition. Furthermore, we also recognize inputs with noise as shown in 

( m a s k N o . = 2 ) 
, ( m a s k N o . = 4 ) 

( m a s k N o . = 8 ) 

m a s k No . = 3 2 ) 
m a s k N o . = 2 4 ) 

s k N o . = 1 6 ) 

"VuiJ 

Figure 

t e r a t l o n number 

6 Relationship between the learning convergence and mask number. 
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Figure 7 Output unit values for the various mask numbers. 

Fig. 8 [4, 5]; its result is shown in Fig. 9. Here, "*" denotes the noise-added point 
where we change a 1 to a 0 or vice versa. From this result, the recognition ability 
depends on mask numbers. Thus, we select mask number 8 which is sufficient to 
get correct recognition from a series of experiments with the alphabetical letters 
[2-5]. 

2. Mask Area 

We discuss a mask area in this section. First, we adjust a mask area with the 
alteration width of random numbers. Namely, the width of generating random 
numbers is [—1, 1] as abasis. We change the width of generating random numbers 
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Figure 8 Various noises. 



140 Fumiaki Takeda and Sigeru Omatu 
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Figure 9 Result of robustness for the noisy input using the various mask numbers. 

as [—2,1], [—3,1], or [—4, 1] according to increasing the mask area. Otherwise, 
[—1, 2], [—1, 3], or [—1,4] is selected according to decreasing the mask area. 
Figure 10 shows the learning status until the iteration number reaches 30,000 
when we alter the width of generating random numbers. From this figure, we 
can find that the learning convergence does not depend on the mask area. Still 
more, we show every output unit value as shown in Fig. 11. We can find that 

( w i d t h = [ - 2 , 1] ) 

; w i d t h = [ - 1, 4 ] ) 
[ w i d t h s [ - 4 , 1] ) 

• (wI d t h = [ - 1, 1 
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1, 
- 3 , 
- 1 , 

' t e r a t I on number 

Figure 10 Relationship between the learning convergence and mask area. 
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the recognition ability does not depend on the mask area from this result. We 
also recognize noisy inputs as in the discussion of the mask numbers [4, 5]. Its 
experimental result is shown in Fig. 12. From this result, the recognition ability 
does not depend on the mask area [4, 5]. 

[-1, 4][-l, 3][-l. 2][-l. lH-2, ll[-3, l][-4, 11 
Mask area (-^increased direction) 

Figure 12 Result of robustness for the noisy input using the various mask areas. 
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C. EXPERIMENTS OF THE NEURAL NETWORK 
SCALE REDUCTION USING THE MASKS 

Here, we make some experiments to show the effectiveness of the scale reduc-
tion by the mask technique. The first is the case using the alphabetical letters and 
the second is the one using the paper currency. 

1. Experiment Using the Alphabetical Letters 

For comparison of the proposed technique with the conventional one, we con-
sider the ordinary technique [1, 3-5] for the alphabetical letters. Figure 13 shows 
the NN constructions of both techniques for the alphabetical letters. In this or-

p - part of generating 
slab values 

(b) 
Figure 13 NN constructions of the ordinary technique and the proposed one for the alphabetical 
letters: (a) ordinary technique; (b) proposed technique. 
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dinary technique, we give directly the pixels to the input layer of the NN. How-
ever, this construction is three layers and the input unit number is 64 (= 8 x 8). 
This is equal to pixel number. The hidden unit number is 32 and the output unit 
number is 12 which is equal to recognition patterns. Here, we have decided the 
hidden unit number of the ordinary technique through various experiments con-
sidering the recognition ability [1-3, 5]. The squared errors by the proposed tech-
nique and the ordinary one converged within 0.01. In both cases, recognition ra-
tios are 100% by using the unknown data. Here, we regard the NN scale as the 
weight number which is (input unit number) x (hidden unit number) + (hidden 
unit number) x (output unit number) [1-3, 5]. The weight number for each tech-
nique is the following: 

• the number for the proposed technique i s 8 x 8 - h 8 x l 2 = 1 6 0 , 
• the number for the ordinary technique is 64 x 32 + 32 x 12 = 2432. 

In this way, we find that the NN scale can be reduced without spoiling recognition 
ability. 

2. Experiment Using the Paper Currency 

Here we use the Japanese paper currency data which are partly sensed to com-
pare the scale of the proposed technique with that of the ordinary one [1-3,5]. Fig-
ure 14 shows the NN constructions of both techniques for the paper currency. We 
directly input these sensed pixels to the NN. When we input the pixels to this ordi-
nary technique, the input unit number is 128 (= 32 sample x 4 sensor) and this is 
equal to pixel number. The hidden unit number is 64. The output unit number is 12 
and this is equal to the recognition pattern. Using another Japanese paper currency 
data which includes worn-out and defective ones, both of these recognition ratios 
are 100%. Still more, the weight number for each technique is the following: 

• the proposed technique is 16x16-1-16x12 = 448, 
• the ordinary technique is 128 x 64 + 64 x 12 = 8960. 

Therefore, we find that the proposed technique is also effective for the paper 
currency data and does not spoil recognition ability. 

III. MASK DETERMINATION USING 
THE GENETIC ALGORITHM 

Here, we discuss the mask determination using the GA [11, 12]. First, we de-
scribe a few conventional mask determination methods and show the problem of 
each method on optimizing and systematizing the mask determination. Second, 
we show the basic idea of adopting the GA operations to the mask determination. 
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Figure 14 NN constructions of the ordinary technique and the proposed one for the paper currency: 

(a) ordinary technique; (b) proposed technique. 

A. CONVENTIONAL MASK DETERMINATION 

1. Mask Determination by the Random Numbers 

Initially, we determine the masks by the random numbers [1-5]. As shown in 
Fig. 15, we divide the paper currency by the least masked area (column) equally 
and each masked area is ordered. Here, the number of them is 16. We generate 16 
random numbers among [—1,1] and they are equal to the column numbers. We 
mask the column whose number is equal to the ordered number of the random one 
which has a minus value. We repeat this procedure from the first random number 
to the sixteenth random one. So we can obtain one kind of mask. Second, we 
change the initial value which generates random numbers and repeat this proce-
dure several times. Finally, we can obtain a series of plural nonduplicated masks. 
In the experiment, we decide 16 as the number of masks from the various kinds of 
simulation [4,5]. Both the numbers of input units and the hidden ones are 16. The 
kinds of paper currency are US $1, $5, $10, $20, $50, and $100. Thus, the number 
of output units which corresponds to the kinds of paper currency becomes six. 
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Here, the NN needs plural masks and these are one treatment unit in the mask 
technique. After all, we describe these plural masks as a mask set and discriminate 
it from a mask. In the following, we decide 30 random mask sets and investigate 
their ability (generalization of the NN) using the unknown US dollars which in-
clude damaged paper currency and fluctuation error by conveyance. 

In the experiment, we construct the experimental system using the current 
banking machine. It can sample image data such as 216 x 30 pixels which are 
represented by one byte gray level. Its conveyed speed is more than ten pieces per 
second. We adopt the back propagation method with oscillation term for learning 
[1-5]. We use ten pieces of paper currency for each kind as learning data. We 
define one iteration as learning from $1 to $100. We continue learning until the 
iteration number reaches 5000 times. To evaluate the method, 30 other pieces of 
paper currency for each kind are used. 

From experimental results, the recognition abilities of the NN obtained by the 
30 random mask sets are from 59% to 99% as shown in Fig. 16 [8-10]. In this 
way, generalization of the NN is largely influenced by mask sets. Furthermore, we 
cannot always have gotten the excellent mask sets by using the random numbers. 

2. Every Mask Combination 

It is supposed that we take a method to investigate every mask set [7-10]. 
Then every combination constructed by the least masked area can be considered 
as the mask. The inputs of every mask set can be generated. Learning should be 
executed by using each input. We have to investigate the ability with every mask 
set by using unknown data. In this case, we could choose the mask set which 
generates the input that shows the highest ability as the optimized one. 

However, this method could be calculated in the case of a small number of 
mask set combinations. If the number of mask set combinations were to be in-
creased, this method would no longer be effective and reasonable to determine 
the mask sets because the number of masks could be calculated as 2^ , where M 
denotes the number of the least masked area, and that is 16 in these experiments. 

cz 
o 
• — 
+-» 

.^ 
cr 
O) 
o 
o 

^ 

>> 
- M 

.^ 
• • 

.— 
CD-jQ 

Q^ <a 

70 

• • • 

• • • • • 
• I l l T 1 11 iTi i#l 

1 5 10 15 20 25 

Trial mask set number 
Figure 16 Abilities of the various random mask sets. 
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B. B A S I C O P E R A T I O N S 

OF THE G E N E T I C A L G O R I T H M 

Under this background, we adopt the GA [11, 12] to the mask determination 
as shown in some figures. The basic operations are stated as follows. 

Coding 

First, we prepare some random mask sets which are candidates of the 
crossover. We represent the masked part as " 1 " and the nonmasked part as "0" 
in the mask as shown in Fig. 17a. This coding is easily understood and satisfies 
completeness, soundness, and nonredundancy, which are proposed as an evalua-
tion standard of coding [12]. 

Sampling 

Second, we regard the ability of the mask set as an evaluation value of the GA. 
We sample the mask sets which have the higher evaluation values as the parental 
mask sets [10, 14, 15]. As shown in Fig. 17b, this sampling method is similar to 
the roulette system which has the area in proportion to the evaluation value of the 
mask set [10, 12, 14, 15]. Furthermore, we scale the ability of the mask set to 
emphasize the superiority of the mask set [10, 12, 14, 15], which is given by 

evaluation value = (AbiUty of the mask set)^. (3) 

Crossover 

We crossover the half parts of genes in the two parental mask sets as shown in 
Fig. 17c. The crossover satisfies character preservation, which is proposed as an 
evaluation standard of crossover [12]. 

Mutation 

Furthermore, as shown in Fig. 18a, to provide variety to the crossovered mask 
set, mutation, which reverses some bits of the genes in the mask, is randomly oper-
ated during the determination of the new mask. Learning is executed by using the 
inputs obtained by the mask sets. After that, using unknown data we investigate 
the generalization of the NN with mask sets, which means ability of the mask sets. 

Selection 

If we select only the descendant mask sets which satisfy purposive ability, there 
is some risk such that descendant mask sets will disappear in a few generations. 
We must maintain the number of descendant mask sets which are sampled for 
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r e v e r s e b i t s 
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type of mask 

mask set A 

mask set A' 

abil ity selection 

90%|| X 

98%4| O 

replacement 

A'-^A 

1 ability is improved 

( a ) m u t a t i on ( b ) s e I e c t i on 

Figure 18 Mutation and selection of the basic GA operations: (a) mutation; (b) selection. 

crossover in the next generation. As shown in Fig. 18b, we replace the parental 
mask set by the crossovered one when the ability of the crossovered mask set is 
better than that of the parental one [7-10,14,15]. Thus, the number of descendant 
mask sets is maintained. Finally, we show the flowchart of the GA operations in 
Fig. 19. By repeating a series of the GA operations, we can get excellent mask 
sets in a few number of generations. These mask sets enable us to shorten the 
learning time and to improve the generalization of the NN. 

C. EXPERIMENTS USING U.S. DOLLARS 

The experimental condition is the same as in Section III.A.l. The number of 
mask sets is ten. We continue the GA operations until the purposive mask set 
whose ability is more than 95% is obtained. Figure 20a shows the transition of 
the ability of the mask set by the GA operations. We can obtain the purposive 
mask set (mask set 5) in the fifth generation. Furthermore, we change the initial 
mask sets and make an experiment one more time. Its result is shown in Fig. 20b. 
The purposive mask set (mask set 9) was obtained in the sixth generation. Its 
improvement rate is 20.3% [from 80.8% (initial) to 97.2% (final)]. For each ex-
periment, the average ability of every ten mask sets (one point dotted line in the 
figure) is increased gradually. 

From both experiments, we can obtain excellent mask sets in a few number of 
generations and automatically by the proposed GA operations. The possibility that 
the optimized mask set by the GA covers the area which have the picture similar to 
a watermark is supposed to decrease [10, 15]. We analyze the result of this mask 
determination of the experiment 2 in Fig. 20b. Figure 21 shows the changed genes 
of the initial mask set. In this result, the second, tenth, thirteenth, and fourteenth 
columns (arrow marks in the figure) have different pictures from each other for 
every kind of US dollars [14, 15]. Here, we regard a column as an important 
one when there are more than three bits which have "1 . " When the columns have 
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Figure 19 Flowchart of the GA operations. 
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Figure 20 Transition for the ability of the mask sets by the GA: (a) experiment 1; (b) experiment 2. 
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Figure 21 Analysis of the determined mask set by the GA. 
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a similar figure for every kind of US dollars, we have conventionally checked 
those columns and avoided them for the mask area manually [14, 15]. From this 
result, we suppose that the mask set is automatically optimized in some degree by 
the GA. 

Thus, the proposed GA technique is effective to systematize the determina-
tion of the mask set. If the kind of paper currency is changed from US dollars to 
another kind, the better mask set to the paper currency can be easily and automat-
ically determined in a short period by the proposed GA technique [14, 15]. 

IV. DEVELOPMENT OF THE NEURO-RECOGNITION 
BOARD USING THE DIGITAL SIGNAL PROCESSOR 

A. DESIGN ISSUE USING THE CONVENTIONAL DEVICES 

We show the neuro-experimental systems which are developed using a single-
board computer. Figure 22a is the original type and Fig. 22b is its portable one 
[5, 7, 13]. These experimental systems can recognize eight pieces of the paper 
currency per second. However, their recognition speed is not enough for real-time 
systems such as the banking machines, since we have to recognize one piece of 
the paper currency for several tens of seconds, which is the recognition interval of 
the paper currency. If we use the ordinary low-cost CPU (central processing unit) 
such as Intel's 180 series which is used in the current recognition machines, its 
calculation speed for the neuro-transaction is not enough to recognize the paper 
currency in real time [13]. 

Meanwhile, it has been reported that there are various neuro-devices such as a 
super parallel computer, a neuro-accelerator, and a special neuro-chip such as In-
tel's 80170NX as shown in Fig. 23 [13,16-20]. Their calculation speeds are quite 
enough for the current banking machines. However, they are very expensive and 
are just on the way to development. Thus, we cannot adopt these neuro-devices 
to the design of the banking machines. We need another neuro-device which has 
low cost and whose calculation speed is enough for the real-time computation. 

B. BASIC ARCHITECTURE OF THE 
NEURO-RECOGNITION BOARD 

To realize the neuro-paper currency recognition in the commercial products, 
we have developed a high-speed neuro-recognition board using the DSP as shown 
in Fig. 24 [7-10,13-15]. Figure 24a shows the first type and Fig. 24b shows the 
second one. In Fig. 24a, the left side is the DSP circuit and the right side is the 
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(a) 

Figure 22 Initial neuro-experimental systems: (a) original type; (b) portable type. 

interface circuit for the sensors. This DSP (TMS320C31) is produced by Texas 
Instruments. It runs under 33 MHz machine clock and its performance is 33.3 
MFLOPS (miUion floating-point instructions per second) as shown in Fig. 23. 
Figure 25 shows the block diagram of the neuro-recognition board. The neuro-
program boots up from EPROM (electrical programmable read only memory). 
The neuron's weights are saved in flash memory and they can be renewed by the 
connected extra-computer easily. Furthermore, the adopted DSP has the exponen-
tial function which is used in the sigmoid function [f(x) = 1/(1 + exp(—x))] 
as a library. This enables easy implementation of the neuro-algorithm from EWS 
(engineering work station) or another large computer to the real-time systems. Its 
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Figure 25 Block diagram of the neuro-recognition board. 

computational speed is ten times faster compared with the current recognition ma-

chines [13-15]. Figure 26 shows the construction of the neuro-software modules. 

Core parts of this neuro-recognition algorithm are written in Assembly language 

and other parts are written in C language. 

m a I n ( ) ( 

r e a d _ I m a g e ( ) ; 

s r c h c n t r ( ) 

n o r m a z e ( ) ; 

m k s 1 a b ( ) ; 

c a 1 _ m o u t ( 

c a 1 _ n o u t ( ) ; 

read image data 
^ of the paper currency 

detect edge and search 
center of the paper currency 

normalize image 

-^ make slab values 
f o r N N 

-̂  calculate output values 
of hidden layer 

-^ calculate output values 
of output layer 

Figure 26 Construction of the neuro-software modules. 
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V. UNIFICATION OF THREE CORE TECHNIQUES 

We unify the small-size neuro-recognition technique using masks, the mask 
determination technique by the GA, and the high-speed neuro-recognition board 
technique to realize the development of the worldwide paper currency recog-
nition machine [14]. We have developed several business prototypes using the 
neuro-system technique as shown in Fig. 27. We have realized the neuro-banking 
machine which can transact the Japanese yen, the US dollar, the German mark, 

(b) (c) 
Figure 27 Business prototypes for currency recognition using the neuro-technique: (a) prototype 1; 
(b) prototype 2; (c) prototype 3. 
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the Belgian franc, the Korean won, the AustraHan dollar, and the British pound 
by only changing the neuro-weights and mask set. In these experiments, we use 
about 50 to 100 pieces of paper currency for each kind as learning data and eval-
uate more than about 20,000 pieces for each country's paper currency. Especially, 
we test the abilities for Japanese yen and US dollar using about 100,000 pieces 
of the paper currency which are sampled in the commercial market and involve 
worn-out, defective, and new paper currency. For every testing, recognition ability 
is more than 97%. There is no error recognition. Here, in these experiments, we 
regard a pattern according to the output unit which has the highest response value 
as a neuro-judged pattern. In order to increase the reliability of recognition, we 
check the highest value by a threshold level and check the difference between the 
highest response value and the second highest by another threshold level. Even if 
the neuro-judged pattern is correct because its unit has the highest response value, 
the paper currency will be rejected unless the above two checks are satisfied. 

Furthermore, connecting the extra-computer to the neuro-recognition board, 
image data of the paper currency is transported to the extra-computer and learn-
ing is executed on it. After learning, the neuro-weights are easily downloaded to 
the flash memory. In this way, we can easily develop the paper currency recog-
nition machines [14, 15]. Therefore, each development period for each country's 
paper currency needs less than one-fifth the work compared with the conventional 
developing style and its recognition method. We suppose that all calculation for 
recognition on one piece of the paper currency is 100; it needs 28, 35, and 37 for 
the detecting currency edge from the image frame, mask transaction, and neuro-
calculation, respectively. 

We illustrate the first construction of the NN for the US dollars as shown in 
Fig. 28. In this case, we use the random numbers to decide the mask sets. Since 
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Figure 28 Initial construction of the NN for US dollars. 
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Figure 29 Universal construction of the NN using the optimized mask set by the GA. 

all US dollars have similar patterns to each other and their basic color is green, 
recognition of US dollars is the most difficult problem [4, 9, 10]. In this figure, 
we use two NNs to recognize one piece of the paper currency. Namely, we sample 
the head and tail images [4, 5] of the paper currency at the same time using two 
sensors, up side one and down side one. One of the NNs obtains the tail images 
(landscape images). Then we decide the paper currency's kind by only that one 
NN which transacts the tail images, because the head images (figure images) of 
the paper currency are too similar to each other to recognize the currency's kind, 
while the tail images (landscape images) are not so similar to each other. 

However, we optimize the mask set for US dollars using the proposed GA 
technique. Then we can also recognize kinds of US dollars by using the head 
images (figure images). We show the second construction of the NN for US dollars 
in Fig. 29. In this case, we need only one sensor's data to recognize the kind of US 
dollars owing to the excellent mask set [14, 15]. This construction can become a 
universal one for every kind of paper currency by changing the mask set and 
weights. 

VI. CONCLUSIONS 

We have proposed a paper currency recognition method using a NN. Espe-
cially, we have proposed three core techniques. The first is the small-size neuro-
recognition technique using masks. The second is the mask determination tech-
nique using the GA. The third is the neuro-recognition board technique using the 
DSP. By unification of these three techniques, we confirmed realization of neuro-
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recognition machines which can transact various kinds of paper currency. The 
neuro-system technique enables us to accelerate the commercialization of a new 
type of banking machine in a short period and in a few trials. 

Furthermore, this technique will be effective for various kinds of recognition 
applications owing to its high ability for recognition, high-speed transaction, short 
developing period, and reasonable cost. We suppose that it is effective enough to 
apply to not only paper currency and coins but also handwritten symbols such as 
election systems or questionnaires. 
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L INTRODUCTION 

Classification is a process according to which an entity is attributed to one of 
a finite set of classes or, in other words, it is recognized as belonging to a set 
of equal or similar entities, possibly identified by a name. In the framework of 
signal and image analysis, this process is generally considered part of a more 
complex process referred to as pattern recognition [1]. In its simplest and still 
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most commonly followed approach, a pattern recognition system is made of two 
distinct parts: 

1. a description unit, whose input is the entity to be recognized, represented 
in a form depending on its nature, and whose output is a generally 
structured set of quantities, called features, which constitutes a description 
characterizing the input sample. A description unit implements a 
description scheme. 

2. a classification unit, whose input is the output of the description unit and 
whose output is the assignment to a recognition class. 

These two parts should not be considered perfectly decoupled, although this 
assumption is generally made for the sake of simplicity. In the following the term 
pattern recognition will be used in general to refer to the whole process culminat-
ing in classification, even if no hypotheses are made on the nature of the entities to 
be recognized. In fact, it is obvious that, in order to be classified, a sample entity 
has to be represented in terms that are suitable for the classifier. However, without 
affecting the generality of the treatment, examples will usually be taken from the 
field of image recognition. 

Selecting the features to be used in the description phase is one of the most del-
icate aspects of the whole system design since general criteria for quantitatively 
evaluating the effects of the performed choices are not available. In the case of im-
ages, for instance, the main goal of the description phase is to transform a pictorial 
representation of the input sample, often obtained after a preliminary processing 
of the initial raw data, into an abstract representation made up of a structured set 
of numbers and/or symbols. Ideally, the whole process leading up to description 
should be able to select the most salient characteristics shared by all the samples 
of a same class so as to have identical descriptions for all of them, while keep-
ing the descriptions of samples belonging to different classes quite separate. In 
practice, in application domains characterized by high variability among samples, 
it is extremely difficult to obtain descriptions near to the ideal ones. The aim of 
the classifier is to obtain the best possible results on the basis of the descriptions 
actually available. 

Without losing generality, it can be said that a classifier operates in two subse-
quent steps: 

(i) a training phase, during which it is provided with specific knowledge on 
the considered application domain, using information about a representative set of 
samples (training set) described according to the considered description scheme. 
If the samples of the training set are labeled, i.e., their identity is known, the 
training is said to be supervised; otherwise it is unsupervised. 

(ii) an operative phase in which the description of a sample to be recognized 
is fed to the classifier that assigns it to a class on the basis of the experience 
acquired in the training phase. Equivalently, classification can be described as the 
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matching between the description of a sample and a set of prototype descriptions 
generally defined during the training phase. 

Different approaches to classification have been proposed in the past, from the 
purely statistical ones to those based on syntactic and structural descriptions, to 
hybrid schemes [ 2 ^ ] . These will be briefly reviewed in Section 11. 

In recent years, artificial neural networks (ANN) [5] have come back into favor 
and their use for classification purposes has been widely explored [6]. In an in-
ternational competition held in 1992 [7], about 40 character recognition systems 
were compared on a common data base of presegmented handwritten characters 
(NIST) [8], and the top ten used either neural classifiers or nearest neighbor meth-
ods [9]. There has been experimental evidence that the performance of neural 
network classifiers can be considered comparable to that obtained by using con-
ventional statistical classifiers. Moreover, the ANN abiUty to learn automatically 
from examples makes them attractive and simple to use even in complex domains. 

Regardless of the classification paradigm adopted, a problem of great practical 
interest lies in the evaluation of the reliability of the decisions taken by a classifier. 
Classification reliability can be expressed by associating a reliability parameter to 
every decision taken by the classifier. This is especially important whenever the 
classifier deals with input samples whose descriptions vary so much with respect 
to the prototypal ones that the risk of misclassifying them becomes high. In the 
framework of a recognition system, the knowledge of classification reliabihty can 
be exploited in different ways in order to define its action strategy. One possibility 
is to use it to identify unreliable classifications and thus to take a decision about 
the advantage of rejecting a sample (i.e., not assigning it to a class), instead of 
running the risk of misclassifying it. In practice, this advantage can only be eval-
uated by taking into account the requirements of the specific application domain. 
In fact, there are applications for which the cost of a misclassification is very high, 
so that a high reject rate is acceptable provided that the misclassification rate is 
kept as low as possible; a typical example could be the classification of medical 
images in the framework of a prescreening for early cancer detection. In other 
applications it may be desirable to assign every sample to a class even at the risk 
of a high misclassification rate; let us consider, for instance, the case of an optical 
character recognition (OCR) system used in applications in which a text has to 
be subjected to subsequent extensive editing by man. Between these extremes, a 
number of applications can be characterized by intermediate requirements. A wise 
choice of the reject rule thus allows the classifier behavior to be tuned to the given 
application. 

Classification reliability also plays a crucial role in the realization of multi-
classifier systems [10, 11]. It has been shown that suitably combining the results 
of a set of recognition systems according to a rule can give a better performance 
than that of any single system: it is claimed that the consensus of a set of sys-
tems based on different description and classification schemes may compensate 
for the weakness of the single system, while each single system preserves its own 
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strength. The knowledge of classification reliability can be profitably used to de-
fine the combining criteria. 

The main aspects of some of the most commonly used description and classi-
fication methods will be summarized in Section II. Neural networks and their use 
for classification will be discussed in Section III, while classification reliability in 
its different meanings will be reviewed in Section IV. Section V will be devoted to 
the problem of evaluating the classification reliability of neural classifiers; evalu-
ation criteria for different neural network architectures will be proposed. Section 
VI discusses the problem of introducing a reject option and illustrates a method 
for selecting the reject threshold value in such a way as to obtain the best trade-off 
between recognition rate and reject rate, taking into account the specific require-
ments of the considered application. Finally, two applications of the illustrated 
techniques are discussed in Section VII: the first is in the field of automatic recog-
nition of isolated handprinted characters, and the second refers to the automatic 
detection and identification of faults in electrical systems. 

11. CLASSIFICATION PARADIGMS 

One of the most widely followed approaches to classification, such that the 
term pattern recognition virtually identified with it until the late 1970s, is the sta-
tistical one [2]. According to it, a sample to be classified is characterized by a set 
of measures performed on it (feature vector) and then represented by a point in a 
feature hyperspace. Examples of widely used image features are moments of var-
ious order, transforms and series expansions, and local and geometric properties 
[12]. A potentially large set of easy-to-detect features can be initially extracted 
and then subjected to discriminant analysis methods in order to select a subset of 
features as much as possible uncorrelated. 

According to the statistical approach, a training set made up of labeled sam-
ples is assumed to statistically represent the data set on which the classifier has to 
work. During the training phase, suitable algorithms exploiting knowledge about 
the training set make it possible to partition the feature hyperspace into regions 
(decision regions) and to associate each region to a class. Alternatively, the train-
ing phase results in the identification of the class prototypes. The aim of training 
algorithms is to perform the above tasks in such a way as to minimize the er-
rors over the training set, and the representativeness of the training set is thus a 
necessary condition for the effectiveness of the method. 

The problem can be formalized in the following terms: let Z = {jc;̂ }, k = 
1 , . . . , r, be the feature vector representing a generic sample and N the number of 
classes of interest. A canonical way of describing the functions of a classifier is as 
follows: the training phase leads to the definition of a set of functions Ft (X), / = 
1 , . . . , Â , such that F,(X) > Fj(X), ij = 1 , . . . , Â , / / ; , if X belongs to 



Neural Network Classification Reliability 165 

the /th class. In the feature space, the boundary between two classes C/ and Cj is 
given by the hypersurface for which F(X) = Fi(X) — Fj(X) = 0. Apart from 
the feature selection problem, the definition of the discriminating functions among 
classes is not at all trivial. Indeed, the simplest case is when the classes are linearly 
separable, i.e., the boundary surfaces between classes are hyperplanes of equation 

r 

F(X) = J2^kXk-}-ao = 0. (1) 
k=i 

Of course, it is possible to think of nonlinear classifiers where the discriminating 
function does not linearly depend on X. 

From the operative point of view, different approaches are available according 
to the case in question. Assuming that X is a random vector, in order to assign 
it to the /th class, the Bayesian approach to classification entails first evaluating 
the a posteriori probability that, given the vector X, it belongs to the class C/, 
i.e., P(Ci \X). Such a posteriori probabilities can be evaluated once the a priori 
occurrence probability P(C/) of the class C/ has been given, together with the a 
priori probability P(X\Ci) that the considered sample is X, after assuming that 
it belongs to C/. X can be assigned to the class C/, according to the Maximum 
Likelihood Decision Rule, if P(C/ \X) > P{Cj\X), /, y = 1 , . . . , Â , / 7̂  7. 

If P(X\Ci) is not known for the various classes, the parametric approach can 
be used. This assumes a functional form for the a priori probability density func-
tions representing the distributions of the samples belonging to each class (e.g., 
the distributions may be Gaussian), and evaluates each P(X\Ci) by computing a 
finite number of parameters characterizing the assumed distribution on the basis 
of the samples of the training set. The parametric approach can use well-known 
techniques of parameter estimation [2]. 

It may be desirable that, if the probability that a sample belongs to a certain 
class is not sufficiently higher than the probability that it belongs to any other 
class, the sample is rejected as not belonging to any of the defined classes. Note 
that misclassifications are generally less acceptable than rejects and that, for a 
properly defined reject rule, the curve representing the misclassification rate ver-
sus the reject rate for a given classifier is concave upward [13]. The problem of 
finding the best trade-off between the reject rate and the misclassification rate, so 
as to optimize the performance of the classifier, will be thoroughly discussed in 
Section VI. 

Unfortunately, in most real applications a parametric form cannot be assumed 
for the probability density function, so that, in order to apply the likelihood rule, 
a nonparametric approach to the problem is the only possible one. One of the 
basic methods [14] estimates the unknown density by adding simple distributions 
weighted by suitable coefficients. Another aspect of the nonparametric approach 
is the design of a classifier without attempting to estimate the respective densities. 
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In this case the design of the classifier requires the definition of a function to 
be used as the classification rule. A classical example is the A'-nearest neighbor 
rule [9]: when a sample is to be classified, its K nearest neighbors in the reference 
set are determined and the sample is assigned to the most frequent class among 
those of the nearest neighbors. The ^-NN approach can be modified in order to 
allow sample rejection so that if at least K^ (with K' < K) neighbors belong to 
the same class, the sample X is assigned to it; otherwise, it is rejected [15]. 

An alternative way of determining a set of decision regions in the feature space 
is to cluster the samples of the training set (whose identity, in this case, need not 
necessarily be known) according to some of the available techniques [16]. In order 
to achieve classification, the classes may have to be labeled after clustering. 

Other available classification methods include the sequential method based on 
decision trees [17], which under certain hypotheses can be both fast and effective. 
According to this method, only a subset of the features chosen to characterize a 
sample is actually used to arrive at a decision about the class of the sample. The 
decision tree requires that the presence and/or value of a sequence of features is 
checked in the given sample. The first feature to be checked is suitably fixed and 
represents the root of the tree; the features to be considered in the subsequent 
steps of the decision process depend on the result of the check made at each 
previous step. The leaves of the tree may correspond to classes or rejects. The 
classification process implies that a path is followed from the root to one of the 
leaves. In the general case, more than one leaf may correspond to the same class. 
Feature selection and decision tree design may be particularly complex and can 
be carried out with either probabilistic or deterministic methods. 

In the framework of image recognition, the structural approach to description 
and classification has also been followed since the 1970s [3, 4]. This approach 
attaches special importance to the feature selection problem: features represent-
ing image components that are meaningful from the geometric, morphological, 
or perceptive points of view are considered more reliable in order to obtain ef-
fective descriptions. The classification problem, which is central to the statistical 
approach, is here considered subordinate to the description problem; it is believed 
that an adequate description allows simple classification techniques to be used. 

The main assumption of the structural approach is that every complex structure 
can be effectively subdivided into parts and described in terms of the component 
parts and their relationships. To be effective, a decomposition has to be stable with 
respect to the variations among samples belonging to the same class and such as 
not to destroy information needed to discriminate among classes. Although this is 
obviously not easy, the main reason why the approach is appealing is that, as the 
features are parts of the considered pattern, they can be perceptively appraised. 
This allows one to make some sort of a priori evaluation of the effectiveness of 
the descriptions. 

The very nature of structural features allows them to give rise to descriptions 
outlining the structure of a pattern. Therefore, descriptions in terms of formal 
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language sentences or attributed relational graphs can be conveniently employed. 
Accordingly, language parsers and graph inexact matching methods [18] can be 
used for classification. A more thorough discussion of the structural approach is 
beyond the scope of this chapter but the approach has been mentioned because 
some structural features will be used in one of the application cases illustrated in 
Section VII. 

III. NEURAL NETWORK CLASSIFIERS 

Artificial neural networks are an attempt to emulate the processing capabil-
ity of biological neural systems. The basic idea is to realize systems capable of 
performing complex processing tasks by interconnecting a high number of very 
simple processing elements which may even work in parallel. The elements which 
substantially characterize the different types of ANNs that have been proposed so 
far are the network topology, the operation performed by the neurons, and the 
training algorithm. Almost all the network architectures share the simpHcity of 
the elementary operations performed, the relatively straightforward use, and the 
short computation time in the operative phase, all of which make them particu-
larly appealing for a number of applications and especially for classification. In 
this section we will assume that basic architectural and functional characteristics 
of neural networks are known, and we will point out some problems related to 
their use as classifiers. 

The design of neural network classifiers implies a number of choices which 
can significantly influence the results during both the training phase (also referred 
to as learning phase) and the operative phase. According to the problem at hand, 
the network architecture can be chosen among the several ones proposed in the 
literature [19], and the network can be suitably sized by choosing the number of 
component neurons and the way they have to be interconnected. The number of 
neurons could be initially fixed and remain unchanged during the training phase 
or could be dynamically modified through appropriate techniques [20, 21]. In the 
former case, the most suitable number of neurons for the specific case has to 
be estimated before the learning phase on the basis of criteria depending on the 
sample distribution in the feature space [22]. In the latter case, the initial choice 
is less critical, but the methods that have so far been available for modifying the 
number of neurons cannot be considered generally applicable, since they have 
only been tested for simple case studies. 

As for the training phase, possible choices regard the algorithm and modality 
of learning, selection of the training set, and determination of the optimal time to 
stop the learning procedure. Not only are different learning algorithms available 
for different network architectures, but initial conditions [5], training modality 
(supervised, unsupervised, or graded), and learning strategy [23] can be selected 
in a number of different ways. Criteria for selecting the optimal size of the training 
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set have been proposed [5], as have suitable learning strategies for the case in 
which a slender number of samples is available for training [23]. Even the order 
in which the samples are fed into the net during training has to be controlled in 
order to avoid polarization effects which could lower performance in the operative 
phase [24]. 

The number of learning cycles performed affects the generalization capability 
of the network, i.e., its ability to correctly classify samples quite different from 
those present in the training set. In fact, if the number of learning cycles is too 
high, the network becomes too specialized on the training set, thus losing its gen-
eralization capability (overtraining phenomenon). A possible method to avoid the 
overtraining of the classifier is the one proposed in [23]. An additional set, called 
the training-test set and disjoined from the training set, is used to periodically 
check the error rate. While the error rate on the training set monotonically de-
creases with the number of learning cycles, the error rate on the training-test set 
first reaches a minimum and then increases. The minimum corresponds to the 
optimal number of learning cycles in order to avoid overtraining. Also the way 
the training set is chosen can influence the generalization capability of a neural 
classifier [25, 26]. 

In the following, some of the most frequently used neural network architec-
tures will be illustrated, with reference to their use as classifiers and to the design 
problems discussed above, by outlining differences and common aspects. The 
considered neural network architectures (see Table I) are the multilayer percep-
tron (MLP) [27], the radial basis function network (RBF) [28], the learning vector 
quantization network (LVQ) [29], the self-organizing map (SOM) [29], the adap-
tive resonance theory network (ART) [30], the probabilistic neural network (PNN) 
[31], and the Hopfield network [32]. Networks can be subdivided into feedforward 
networks (Fig. la) where data flow one way from input to output, and recurrent 
networks for which the output values are fed back to input (Fig. lb). Some net-
works (Fig. Ic) allow connections between neurons in the same layer (lateral con-
nections). For feedforward networks a further subdivision can be made between 
feature-based and prototype-based networks: the former try to learn the functional 
mapping, normally nonlinear, existing between pairs of input-output vectors dur-
ing the training phase, while the latter abstract the prototypes from the training 
set samples. Some relevant features of the classifiers which can be implemented 
with the considered network architectures will be summarized in the following. 

The most frequently used feedforward network is the MLP [27] belonging to 
the feature-based category. In this case, learning can be seen as the process of 
fitting a function to a given set of data or, equivalently, of finding the hyperplanes 
separating the decision regions of the feature space. 

The output layer is made of as many neurons as the number of classes. It would 
be expected that if, during training, a sample belonging to the A:th class is pre-
sented to the network input, the kih output neuron will assume a value equal to 
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Table I 

Some of the Most Frequently Used Neural Classifiers 

Architecture 

MLP 
RBF 

LVQ 

SOM 
ART 
PNN 
Hopfield 

Connection 
scheme 

Feedforward 
Feedforward 

Lateral connection 

Lateral connection 
Lateral connection 
Feedforward 
Recurrent 

Training 
modality 

Supervised 
Supervised 

and unsupervised 
Supervised 

or unsupervised 
Unsupervised 
Unsupervised 

— 
Unsupervised 

Learning rule 

Error-correction 
Error-correction 

and competitive 
Competitive 

Competitive 
Competitive 

— 
Error-correction 

Learning 
algorithms 

Back-propagation 
RBF learning 

algorithm 
LVQ1,RPCL,FSCL 

Kohonen's SOM 
ART1,ART2 

— 
Hebbian rule 

1 while all the other outputs will assume a value equal to 0 (ideal output vector). 
In practice, the status of the output vector is generally different from the ideal 
one (i.e., the values of its elements may be numbers in the interval [0,1]), and 
the input sample is attributed to a class according to some rule. The simplest rule 
is winner-takes-all, according to which the input sample is attributed to the class 
whose output neuron has the highest value. 

As regards network sizing, the number of hidden layers and the number of 
neurons per layer influence the form of the decision regions in the feature space 
[22]. Too many neurons per layer may cause an overfitting of the data and the 
network risks becoming too specialized on the training samples. On the contrary, 

QOQ Q 

(a) (b) (c) 

Figure 1 Three neural networks with different types of connections: (a) a feedforward network, 
(b) a network with lateral connections, and (c) a recurrent network. 
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with too few neurons, the network cannot reach a satisfactory recognition rate 
even on the training set. Different algorithms for the automatic sizing of an MLP 
net have been proposed [20, 33], in addition to methods for pruning oversized 
nets [21]. 

The MLP training modaUty is normally supervised; the most common algo-
rithm is the back-propagation (BP), which is quite slow, but there are plenty of 
proposals aiming to make it faster, and there are also faster alternative training 
algorithms [34-36]. On the contrary, in the operative phase, the network is ex-
tremely fast. The presence of several local minima on the error surface may cause 
the training to stop in a minimum that could be very different from the absolute 
minimum. Suitable training algorithms are available to prevent the net getting 
trapped in a local minimum [37]. The presence of flat spots [38], i.e., net config-
urations such that the weight variations computed by the BP algorithm are very 
close to zero, implies that the training algorithm does not converge and is gen-
erally related to the problem of choosing the net initial conditions. In [5] some 
general criteria for a correct initialization, basically depending on the size of the 
input vector, are presented. 

In the case of feature-based networks, the knowledge acquired during the train-
ing phase is completely spread over the net connection weights and therefore the 
single prototypes of the classes cannot be identified. 

The LVQ classifier belongs to the so-called prototype-based category: during 
training it generates the prototypes of the classes by performing a clustering over 
the input space. In the operative phase, an input sample is assigned to the class 
characterized by the shortest distance from one of its prototypes. The Euclidean 
distance is commonly used. The set of weights associated with the connections 
between the neurons of the input layer and each of the output neurons represents 
a prototype generated by the network on the basis of the samples included in the 
training set. The learning algorithms can be either supervised or unsupervised and 
belong to the competitive learning category [23], i.e., they have the property that 
a competition among some or all of the neurons of the net always takes place 
before each learning step. At each step, the neuron winning the competition is 
allowed to modify its weight in a different way from that of the nonwinning units. 
In the supervised case, each output neuron is associated with one class before 
the training starts. In the unsupervised case, the output neurons must be labeled 
after training in order to allow classification; this can be done only after the whole 
training set has been examined, by associating a neuron to the class for which it 
obtained the highest winning frequency. 

In both cases, identifying the prototypes gives rise to a Voronoi tessellation of 
the feature space. Each region of this partition is associated with a prototype and 
all the samples belonging to one region are attributed to the class of that proto-
type. One of the problems typical of this architecture is neuron underutilization: 
for particular configurations of the points representing the samples in the feature 
space, some neurons cannot modify their weights during training and remain un-



Neural Network Classification Reliability 171 

used. Algorithms substantially based on a modified distance calculation, which 
takes into account the number of times each neuron wins the competition, make 
it possible to overcome this problem [39-41]. 

Training is somewhat faster than for the MLP network and the overtraining 
problem is not nearly as important [23]. In order to guarantee the convergence of 
the training algorithm [29], the learning rate value has to be a decreasing function 
of the number of learning cycles (for instance, by varying the learning rate on 
the basis of the Robbiiis-Monro stochastic approximation [42]). This makes it 
possible to avoid the problem of choosing when the training has to be stopped. 
However, the results obtainable during training are significantly dependent on the 
initial value of the learning rate [43]. 

The SOM is another example of a prototype-based net. It works like the LVQ 
net, but since its training algorithm is unsupervised, its output neurons must even-
tually be labeled. In comparison with the LVQ net, the SOM has a bidimensional 
structure which makes it more suitable if it should be desirable to map the features 
of the input samples onto a bidimensional space. Moreover, its training algorithm 
makes it possible to update more than one neuron each time, in order to prevent 
the problem of neuron underutilization. 

Another prototype-based architecture is the one founded on the adaptive reso-
nance theory. This network has a complex training algorithm which tries to solve 
the so-called plasticity-stability dilemma [30], i.e., it aims to find a trade-off be-
tween the network ability to learn new samples (plasticity) and its ability to cor-
rectly classify the already seen samples (stabihty). The training algorithm gener-
ates new prototypes only when an input sample is sufficiently different from all 
the already generated prototypes. This eliminates the need to repeat the training 
if there are new samples to be learned. In contrast, if the MLP net is trained on a 
new set of samples, it forgets the previously learned set [24]. 

The RBF network represents a hybrid solution between feature-based and 
prototype-based architectures. In fact, it is made up of a hidden layer whose neu-
rons are trained through competitive unsupervised algorithms and whose weight 
vectors represent the prototypes. These neurons are connected to an output layer 
of perceptrons. To work as a classifier, even in this case, the output layer has to be 
made up of as many neurons as there are recognition classes. The main difference 
between the RBF and the MLP nets is that the hidden neurons of the RBF have 
a Gaussian activation function instead of the sigmoidal function normally used 
for the MLP. The number of neurons of the hidden layer needed to solve a given 
problem may be significantly larger for the RBF than for the MLP. Vice versa, 
the duration of the training phase is significantly lower for the RBF than for the 
MLP, even if the latter is not trained with the BP algorithm [26]. Algorithms for 
optimally sizing the hidden layer have also been proposed for the RBF [41]. 

The basis for the PNN classifier is a probabilistic model. According to a non-
parametric approach based on the Parzen method [14], the probability density 
functions of the samples of the training set are estimated and the a posteriori 
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probabilities that a sample belongs to a given class are then computed. The input 
sample is assigned to the class with the highest a posteriori probability. Unlike 
the previous ones, this type of network does not have an explicit training phase, 
because it has as many neurons as the vectors of the training set. The main prob-
lems are the amount of memory needed and the amount of time necessary for 
classification. Methods for decreasing classification time by using a subset of the 
whole training set are proposed in [44,45]. 

Finally, the Hopfield network is an example of a recurrent network classifier. 
During the training phase, the input samples are stored by associating them with 
the same number of stable states, i.e., states for which a suitable energy function 
associated with the net has reached a minimum. In the operative phase, an input 
sample is associated with the nearest stable state so that the net can work as a 
classifier once every possible state has been labeled. Nevertheless, the network 
may reach a stable state different from those reached in the training phase (spu-
rious state); in this case, it is impossible to classify the sample. Moreover, unlike 
the other mentioned architectures, this net does not provide any output vector. 
The only output information, in the operative phase, is given by the stable state 
reached by the net. 

IV. CLASSIFICATION RELIABILITY 

In the field of classification, the term reliability can be (and sometimes has 
been) used with at least two different meanings. According to the first, classifica-
tion reliability gives an estimate of the probability that the classifier assignment 
of an input sample to a class is correct. In this sense, it could be represented by a 
parameter associated with each decision taken by the classifier. The second mean-
ing refers to a more global measure of the classifier performance in the specific 
task considered. In this case, a parameter associated with the classifier could mea-
sure its "effectiveness" in the context in which it is used. In the following, we will 
use the term classification reliability in the former meaning, whereas for the lat-
ter case we will use the term classifier effectiveness. A third way in which the 
term reliability might be used, with reference to the performance of a network 
when some of its internal connections are disabled, or more generally to the fault 
tolerance of the system, will not be considered in this chapter. The quantitative 
evaluation of both classification reliability and classifier effectiveness is of great 
practical importance, as will be shown below. 

In the general frameworks of pattern recognition and statistical decision the-
ory, the reliability problem has been tackled from various points of view. The 
Dempster-Shafer theory [46] and the fuzzy set theory [47] relate the problem of 
evaluating the reliability of a performed classification to that of the uncertainty 
measure. In the former case, a number in the range [0, 1] indicates belief in a 
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hypothesis on the basis of a certain amount of evidence. In the fuzzy set theory, 
class membership is not binary, but is represented by the value of a function in the 
interval [0, 1]. 

In [10, 48], a reliability parameter, defined as the ratio of recognition rate to 
the sum of recognition rate and error rate, is used to measure the overall reliability 
of the considered classifier. The term reUability is used with a meaning similar to 
what we have here called classifier effectiveness, but the defined parameter does 
not take into account the peculiarities of the particular application domain. 

Other approaches [15, 49] do not directly measure the reliability of a classifi-
cation, but introduce costs to measure the risk of performing a classification and, 
using a probabilistic model, take the decision to classify or to reject on the basis 
of a minimum risk principle. 

The reliability problem, in each of its possible meanings, has not often been 
considered in the literature regarding neural network classifiers. When it has been 
tackled, particular cases or specific frameworks have been considered. For in-
stance, some authors have proposed criteria to improve classification reliability, 
intended as the ability of the classifier to reject significantly distorted samples 
[50, 51], but without giving a precise definition of classification reliability nor 
providing a method for measuring it. In [50], it is suggested using a neuron acti-
vation function different from the sigmoidal one with MLP classifiers, in order to 
obtain decision regions that are more strictly representative of the samples present 
in the training set and more sharply separated from each other. In this way, sam-
ples whose representative points fall outside these regions can be rejected and 
reUability can thus be improved. In [51], a system made up of two neural net-
works is illustrated: the first net works as a normal neural classifier, while the 
second is essentially devoted to detecting the errors made by the first one. This 
second network is trained with a training set containing the samples misclassified 
by the first network. Reliability is improved because some errors can be detected 
and the samples causing them rejected. 

Other papers propose techniques to evaluate what we have called classification 
reliability, but they are based on criteria strictly depending on the architecture 
taken into account and cannot be immediately extended to other architectures. In 
[52], a new training algorithm for the MADALINE network architecture [24] is 
presented. A suitable function of the state of the output neurons is defined and a 
decision of the classifier is considered acceptable if the value of the function is 
higher than an upper reject threshold, unacceptable if it is below a lower thresh-
old. Otherwise there are no elements for taking a decision. The thresholds are 
evaluated on the basis of the Dempster-Shafer theory [46], but without taking 
into account the requirements of the considered application domain. Moreover, 
the method is strictly dependent on the adopted network architecture and consid-
ers only nets with binary output vector. The system proposed in [53] integrates the 
fuzzy logic with a classic MLP network. Some fuzzy functions are used to iden-
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tify unreliable classifications, but general criteria to define them are not given, the 
test data do not refer to a real problem, and the obtained results do not seem to be 
applicable outside the considered case. 

The approach to the reliability problem presented below aims to be more gen-
eral. A neural classifier is considered at a first level as a black box, accepting the 
description of a sample (e.g., a feature vector) as the input and supplying a vec-
tor of real numbers as the output. Nothing needs to be known about the network 
architecture nor about the way the learning process is carried out. After a formal 
definition of the parameters assumed to measure classification reliability and clas-
sifier effectiveness, a method for quantitatively evaluating them is illustrated. The 
situations in the feature space which can give rise to unreliable classifications are 
characterized and put in correspondence to the state of the classifier output vector. 
Therefore, the operative definition of the parameters allowing such situations to 
be recognized and enabUng classification reliability to be quantified will depend 
on the considered neural architecture. In Section V, we will define the parameter 
measuring classification reUability for each of the different classifiers introduced 
in Section III. In the following sections, the parameter will be used in the con-
text of a method implementing a reject option which can be regarded as optimal 
with respect to the considered application domain, and the results of the method 
applied in two complex classification problems will be presented. 

V. EVALUATING NEURAL NETWORK 
CLASSIFICATION RELIABILITY 

The low reliability of a classification is generally due to one of the following 
situations: (a) the considered sample is significantly different from those present 
in the training set, i.e., its representative point is located in a region of the feature 
space far from those occupied by the samples of the training set and associated 
to the various classes; (b) the point which represents the considered sample in the 
feature space lies where the regions pertaining to two or more classes overlap, i.e., 
where training set samples belonging to more than one class are present. 

It may be convenient to distinguish between classifications which are unre-
liable because a sample is of type (a) or (b). To this end, let us define two pa-
rameters, say ^a and i/r̂ , whose values vary in the interval [0, 1] and quantify the 
reliability of a classification from the two different points of view. Values near to 1 
will characterize very reUable classifications, while low parameter values will be 
associated with classifications unreliable because the considered sample is of type 
(a) or (b). Note that in practice it is almost impossible to define two parameters 
such that each one identifies all and only the samples of one of the two types. 

In the following the parameters -^a and T/̂ ^ will be referred to as reliability pa-
rameters. With reference to neural classifiers, two parameters will be needed for 
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each network architecture and each parameter shall be a function of the classifier 
output vector. A parameter xjr providing a comprehensive measure of the reliabil-
ity of a classification can result from the combination of the values of i/ra and i/r̂ . 
A recent review of the several combination operators considered in the literature 
has been presented in [54]. For x/r we have chosen the form 

xl/ =min{\l/a,irb}. (2) 

This is certainly a conservative choice because it implies that, for a classification 
to be unreliable, just one reliability parameter needs to take a low value, regardless 
of the value assumed by the other one. By definition, the ideal reliability parameter 
should assume a value equal to 1 for all the correctly classified samples and a 
value equal to 0 for all the misclassified samples. However, this will almost never 
happen in real cases. Let us suppose, for instance, that in the test set there is a 
sample belonging to the /th class, whose description is identical to that of some 
samples of the training set belonging to the jth class; this sample will certainly 
be misclassified, but the classifier will reach its decision with high reliability as 
it has no elements to judge it unreliable. An a posteriori evaluation of how good 
a reliability parameter actually is can be made by computing both the average of 
the parameter values associated with correct classifications and the average of the 
values associated with misclassifications. The nearer these values are to 1 and 0, 
respectively, the better the parameter works. 

The operative definition of x/r requires the classifier to provide an output con-
sisting of a vector the values of whose elements make it possible to estabUsh the 
class a sample belongs to. Therefore a reliability parameter cannot be defined for 
the Hopfield network which, as it behaves like an associative memory, provides 
as output the stable state reached after minimizing its energy function, and thus 
only the information about the class attributed to the input sample. 

The remaining neural classifiers can be grouped into three categories according 
to the meaning of their output vector. The MLP and RBF networks can be grouped 
together because for both of them the cardinality of the output vector is equal to 
the number of classes and, in the ideal case, only one vector element at a time can 
have a value equal to 1, while the remaining elements must have a value equal to 
0. A second group can include the networks LVQ, SOM, and ART. Their output 
neurons provide a measure of the distance between the input sample and each of 
the class prototypes: the classification is performed by assigning the input sample 
to the class that has the shortest distance from it. The third group is made up of 
the PNN network only, whose output vector provides the probabilities that the 
input sample belongs to each class; the input sample is assigned to the class that 
maximizes this probability. 

In the following, the reliability parameters will be defined for each of the above 
three groups of neural classifiers. 
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As for the classifiers of the first group, we saw that, in real cases, the output 
vector is generally different from the ideal one and an input sample is attributed to 
the class associated with the winner output neuron, i.e., the one having the highest 
output value. In practice, these networks use the value of the connection weights 
to obtain the hyperplanes defining the decision regions [22]. During the training 
phase, the network dynamically modifies the decision region boundaries in such 
a way as to provide, for each sample, an output vector as close as possible to 
the ideal one. Consequently, samples of type (a) may fall outside every decision 
region as they are very different from those which contributed to determining the 
hyperplanes separating the decision regions; in this case, all the output neurons 
should provide values near to 0. Therefore, an effective definition of the reliability 
parameter x/ra can be the following: 

i^a = ^win, (3) 

where Owin is the output of the winner neuron. In this way, the nearer to 0 the 
value of Owin» the more unreliable the classification is considered. 

Samples of type (b), lying where two or more decision regions overlap, typ-
ically generate output vectors with two or more elements having similar values. 
Therefore, the classification reliability is higher when the difference between Owin 
and the output of the neuron having the highest value after the winner (02win) is 
greater. In this case a suitable reliability parameter is 

i^b = ^win - ^2win. (4) 

Let us note that, since the values of the elements of the output vector are real 
numbers in the interval [0,1], the reliability parameters ^a and x/fb also assume 
values in the same interval, as required by their definition. 

In conclusion, the classification reliability of classifiers from the first group 
can be measured by 

\l/ = min{\lra, ^b) = min{Owin, Owin - 02win} = <^win - ^2win = i^b- (5) 

For classifiers of the second group, the values of the elements of the output 
vector give the distances of an input sample X from each of the prototypes W/, 
/ = 1 , . . . , M, with M generally greater than the number Â  of classes. Therefore, 
the winner neuron is the one having the minimum output value: 

Owin = min{0/} = mm{d(Wi, X)}. (6) 

During successive learning cycles, as long as the samples of the training set are 
taken into account, some starting prototypes are updated and the feature space 
is partitioned in such a way that the final prototypes defined by the net are the 
centroids of the regions into which the feature space is partitioned. Obviously, 
since samples that are significantly different from those present in the training set 
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have not contributed to generating the prototypes, their distance from the proto-
type associated to the winner neuron will be greater than that of the samples of 
the training set. Therefore, the reliability parameter V̂^ can be defined as 

, . ^win ._. 
V â = 1 - , (7 ) 

^max 

where Omax is the highest value of Owin among those relative to all the samples 
of the training set. In this way, since it has to be expected that the value of Owin 
is high for samples of type (a), these will be classified with a low reliability (low 
values ofV^^). 

According to the above definition, the value of ij/a ranges from 0 to 1 only for 
the samples belonging to the training set as the relation Owin £ ^max is certainly 
valid only for such samples. Therefore, to make the definition applicable when 
the classifier is in the operative phase, the previous expression has to become 

^a = 

0, Otherwise. 

On the other hand, samples of type (b) have comparable distances from at least 
two prototypes. Consequently, the reliability parameter T/̂ ^ must be a function of 
both Owin and 02win (in this case the second winner neuron is the one having the 
second lowest distance from the input sample): 

^b = ^- . (9) 
^>'2win 

On the basis of this definition, T/T̂  takes values ranging from 0 to 1, and the larger 
the difference 02win — Owin is, the higher the values of -^b are. 

The classification reliability for the classifiers of the second group is given by 

V̂  = min{V^ ,̂i/r/,} = mini max] 1 - 77^^, 0 [ , 1 - 7 7 ^ ^ [• (10) 
I I Omax J 02winJ 

Finally, let us consider the case of the PNN classifier. In the classifier operative 
phase, the distances between the input sample X and every sample belonging to 
the training set are computed and consequently the probabilities Pi that X belongs 
to the /th class, for / = 1 , . . . , N, are evaluated. The input sample is assigned to 
the class associated to the winner neuron, for which the following relation holds: 

Owin = max{/i/ •// • P/}, (11) 

where hi is the a priori occurrence probability of the /th class and // is the "loss" 
caused by a wrong assignment to the /th class. As the value of Pi depends on the 
whole training set, it is evident that samples of type (a), i.e., quite different from 
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those of the training set, have a low probabiUty of being attributed to any class. 
Therefore the parameter X/TQ can be defined as 

/ ^ w i ^ / ION 

i^a = , (12) 
^ m a x 

where Omax is the highest value of Owin on the samples belonging to the training 
set. Again, V̂^ < 1 only for the samples belonging to the training set since the re-
lation Owin S Omax is Certainly valid only in this case, and the previous equation 
must become 

fa - \ 
o^ if Owin < On , XX ̂ w m _ *^max5 ('\X\ 

1, Otherwise. 

This definition ensures that ij/a assumes low values in the case of samples to be 
classified with a low reUability. 

Samples of type (b) have similar probabilities of belonging to different classes 
so that -(l/b can be defined as 

fb = l - ——. (14) 
^ w i n 

According to this definition, 0 < V̂^ < 1 and the higher the probability is that the 
input sample belongs to the winner class rather than to the second winner class, 
the more reliable the classification will be. 

The classification rehabiUty for the PNN classifier is 

/ f / I ^ • f f ^win J . 02v^ 
yr = mmlV^ ,̂ y/b} = nun]nunj ——, 1}, 1 ^ ^ m a x J ^ w i 

= m i n { - — , 1 - - ^ — . (15) 
^ m a x <^wm J 

VI. FINDING A REJECT RULE 

A. METHOD 

When the reliability of a classification is low, the question is: does one accept 
the decision of the classifier running the risk of an error, or reject it and consider 
the sample at hand as unrecognizable by the given classification system? In the 
former case, the risk of the decision being wrong increases as the classification 
reliability decreases. In the latter case, the sample has to be examined again with 
alternative techniques, generally by man. In both cases the choice implies a cost 
that has to be paid. 
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Finding a reject rule which achieves the best trade-off between error rate and 
reject rate is undoubtedly of practical interest in real applications. Nevertheless, 
very few results of general applicability are available in the literature. A signifi-
cant contribution to the problem has been given by Chow in [13, 49, 55]. These 
papers describe an optimal reject rule and then derive a general relation between 
the error and reject rates. The basic assumption of the method is the knowledge, or 
the possibility of making a hypothesis, about the a priori probability distributions 
of the samples in the parametric space. In most recognition tasks, however, the un-
derlying probability distributions are not known, nor can suitable hypotheses on 
their form be made, thus making Chow's approach not generally applicable [56]. 

The approach we propose is more general than the one mentioned above: an 
optimal reject rule is defined for a given classifier by taking into account only the 
value of the classification reliability i// computed using information about the out-
put vector of the 0-reject classifier, i.e., the classifier with no reject option. If the 
reliability is greater than a threshold a, determined through a suitable algorithm, 
the classification is considered acceptable; otherwise, the input sample is rejected 
(Fig. 2). In this way, no a priori knowledge about the probability distributions is 
needed, and the classifier can be regarded up to a certain level as a black box, 
regardless of its architecture. It can be shown that our approach achieves, as its 
upper bound, the results that Chow's approach makes possible if the distributions 
are exactly known. 

The introduction of a reject option gives rise to two opposite effects: on the one 
hand, the misclassified samples having a value of xj/ less than a are rejected, and 
this effect is undoubtedly desirable since the cost of a misclassification is always 
higher than the cost of a reject. On the other hand, also the correctly classified 
samples with values of x// less than a are rejected, and this is an undesirable side 
effect since it contributes to decrease the classification rate. This reduction partly 
reabsorbs the advantage obtained by introducing the reject option. 

0 - reject 
Classifier 

Output 
Vector O 

REJECT OPTION UNIT 

Va= ^a(O) 
Reliability 
Parameter 

Computation 

¥b= N/b(0) 

^ Evaluation 
of \|/ 

Reject 
Decision 

Classified Rejected 

Figure 2 A block diagram of the proposed method: the reject option operates on the basis of the 
classification reliability xf/ which is a function of the output vector of the neural classifier, a* is the 
optimal value of the reject threshold, established through a suitable algorithm. 
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In order to evaluate the real advantage of using the reject option and establish 
a criterion for fixing the reject threshold in such a way as to find the best trade-
off between misclassifications and rejects, we introduce a function V that aims to 
quantify the classifier effectiveness in the considered appHcation domain, while 
taking into account the two previous effects. 

Let us call Re the percentage of correctly classified samples (also referred to 
as recognition rate). Re the misclassification rate (also called error rate), and Rr 
the reject rate. Since the effectiveness of a classifier depends on the results it 
produces, we can certainly write 

V = V(Rc,Re,Rr)^ (16) 

For V to actually measure the classifier effectiveness, it must satisfy at least two 
constraints: 

(i) it must have a monotonic trend, increasing with respect to Re and 
decreasing with Rr and Re, that is: 

dRc 

(ii) it must be such that 

<o, and <0 , 

dV 
< 

We 

(17) 

(18) 

since it is expected that a misclassification negatively affects V more than 
a reject. 

In principle, no further hypotheses are necessary on the form of V. 
Since we need a function measuring the actual effectiveness improvement 

when the reject option is adopted, independently of the absolute performance of 
the 0-reject classifier, it may be convenient to define the following function: 

P = V{Rc,Re,Rr)-V'' (19) 

where V^ — V{R^, R^, 0) is the value of the function V when the classifier is 
used at 0-reject (i.e., when Rr = 0), and R^ and R^ are respectively the recogni-
tion rate and the error rate in the same case. 

The functional dependence of P on the considered application can be ex-
pressed by attributing a cost to each error and to each rejection and a gain to each 
correct classification. For notation uniformity, let us denote these three quantities 
Ce, Cr, and Q , respectively. Although such costs are, in general, functions of 
Re, Re, and Rr, for most of the applications they can be considered constant. 
In fact, the cost of a misclassification is generally attributed by considering the 
burden of locating and possibly correcting the error or, if this is impossible, by 
evaluating the consequent damage; the cost of a reject is that of a new classifi-
cation using a different technique. It is reasonable to presume, although this may 
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not be true in certain specific cases, that such a burden is generally independent of 
the relative number of correctly classified, misclassified, or rejected samples, i.e., 
Cc,Cr, and Ce are constant. Moreover, in the following, the function P will be as-
sumed to be linearly dependent on Re, Re, and Rr since this is the most frequently 
occurring case and it simplifies the illustration of our method for determining the 
optimal reject threshold value for a given application. In [57], it is shown how the 
method can be extended to the case of a function P of generic form. 

Taking all the above considerations into account, the function P can be written 
in the form 

P = Cc{Rc - R^c) - Ce{Re - RV> - CrRr. (20) 

It can be noted that Eq. (20) satisfies the constraints of Eq. (17), and, as Q > C^, 
also the constraint of Eq. (18). 

Since Re, Rr, and Re depend on the value of the reject threshold a, P is also a 
function of or. To highlight the dependence of P on a, let us consider the occur-
rence density curves of correctly classified and misclassified samples as a function 
of the value of x/r. Let us call them De{'^) and Deiir), respectively. The trend of 
the curves (see Fig. 3) should be such that the majority of correctly classified sam-

Dc(¥) 

R(. - Rp + R̂  

De(v) 

f^e ~ f^r •*• ^e 

Figure 3 Qualitative trends of the curves Dc (if) and Dg (V )̂. The percentages of correctly classified 
and misclassified samples which are rejected after the introduction of a reject threshold cr (denoted R^ 
and Rf respectively) are given by the gray areas. Re (Re) represents the percentage of samples which 
are correctly classified (misclassified) after the introduction of the reject option. 
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pies is found for high values of V̂ , while misclassified samples are more frequent 
for low values of V̂ . 

For our purposes it is convenient to normalize the occurrence density curves 
so that their integrals extended to the interval [1̂ 1,1/̂ 2] respectively provide the 
percentage of correctly classified and misclassified samples having values of ̂  
ranging from xj/i to 1/̂ 2- From this definition it follows that 

Jo 

Jo 

Wdxir, (21) 

eWd^lf. (22) 

The occurrence density curves Dci^r) and DeOr) allow us to easily compute the 
reject rate Rr in case that a reject threshold a is set on the value of ij/. In fact, 
Rr is a function of a and is given by the sum of two terms: the percentage of 
correctly classified samples with a reliabiUty i// less than a and the percentage of 
misclassified samples with a reliability xj/ less than cr. With reference to Fig. 3, 
the two terms, denoted R^ and Rf., are given by the values of the gray areas in the 
two plots. Analytically, 

Rr(a) = R'^(a)-}-R'^(a) = f Dcmdir-\-f Demd^. (23) 
Jo Jo 

Analogously, when the reject option is activated, the percentages of correctly clas-
sified and misclassified samples are given by 

Rc(a) = J Dcmdx/f, (24) 

Re(cr) = f DeWdf. (25) 

Substituting Eqs. (21)-(25) into Eq. (20), it follows that 

P{o) = Cc(f Dc{ir)df- j Dciir)df\ 

-Ce(f Deif)dxlf- j De{ir)df\ 

-Cr(rDc{f)dir+rDeiir)df\ (26) 

and hence, 

P(a) = (Ce - Cr) r Deirj,) dxjf - (Cr + Q ) / ' ' Dcif) df. (27) 
Jo JO 
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From Eq. (27), it is evident that, since the two integral functions are monotonically 
increasing and Ce > Cr, an increase of a impHes that the first term contributes to 
increasing P, while the second decreases it. 

The function P makes it possible to determine the optimal value a* of the 
reject threshold a: 

a*: P(a*) > P(cr), Va e [0, 1]. (28) 

In other words, a* is the threshold value for which the function P gets its max-
imum value. Once the cost coefficients have been fixed, the maximum value as-
sumed by P obviously depends on the adopted reliability parameter. 

In order to determine a*, let us assume we have a classifier operating at 0-
reject, and a set S of labeled samples which are different from the training set. 
Under the hypothesis that the set S is adequately representative of the target do-
main, and once the cost coefficients characterizing the given application have been 
fixed, the optimal reject threshold value is obtained by finding the value of a that 
satisfies Eq. (28) on the set S. For this purpose, let us calculate the derivative of 
Eq. (27) with respect to a and make it equal to 0. We obtain 

CnDe(cf)-Dc(cr)=0 on 5, (29) 

where 

Henceforth, C„ will be referred to as the normalized cost. 
In practice, the functions Ddif) and Dei^r) are not available in their analytical 

form and therefore, in order to evaluate the solutions of Eq. (29), they should be 
experimentally determined in tabular form. 

The process for determining a* is performed on the set S, once the cost coef-
ficients for the given application domain have been fixed, and is described by the 
following algorithm: 

1. The set S is submitted to the 0-reject classifier and then spUt into the 
subsets Se of misclassified samples and Sc of correctly classified samples. 

2. For each sample of the set Sc, the classification reUability value V̂  is 
computed. The set of values of T/T obtained for Sc makes it possible to 
numerically determine the occurrence density function Ddil/). In the same 
way, by using the set Se, the function Ddir) can be determined. 

3. The values of a satisfying Eq. (29) can be determined with a numerical 
algorithm. 

4. The value a* that corresponds to the absolute maximum of P is selected 
from the values computed at the previous step. It may happen that several 
values satisfy Eq. (29), because the density curves do not necessarily have 
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a monotonic trend. Thus, to be sure of obtaining the value a* that 
corresponds to the absolute maximum of P, it is necessary to determine 
first the values corresponding to all the relative maxima and then to select 
the value corresponding to the absolute maximum among them. 

B. DISCUSSION 

The ideal behavior of a classifier with reject option should be such that the 
rejected samples are all and only those which, if not rejected, would be misclas-
sified. In this case, no correctly classified samples would be rejected, the recogni-
tion rate would not decrease, and P would get its absolute maximum. For this to 
be possible, the nature and quality of the data in addition to the adopted reliability 
parameter should be such as to give rise to distributions such as those shown in 
Fig. 4. In this way, in fact, it will be possible to find two values for ij/, say \jf\ and 
V̂ 2, such that 

and 

with V̂ i < V̂2- (31) 

The ideal value of P, indicated with Pjd, that is the maximum allowed improve-
ment of the classifier effectiveness, would therefore be obtained by choosing a 

Dc(v) 

RQ ~ RQ 

a v|/2 

De(v|/) 

R g - Rr 

0 Vl C7 1 

Figure 4 A case of distributions in which Pjd can be achieved. 
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threshold value aid in the range [xj/i, 1/̂ 2]. In this case, Eq. (27) becomes 

Pid = (Ce - Cr) r Deiir) d^/f = (C, - C,)/?^. (32) 

As it is impossible to modify the data, the way of getting close to the ideal situ-
ation is to find a reliability parameter that, for the considered network architecture, 
makes it possible to influence the distributions Ddx/r) and Dedr) in such a way 
as to satisfy the constraints of Eq. (31). This aspect of the problem will not be 
further discussed here. However, in order to evaluate the degree of approximation 
to the ideal case achieved in a specific application, it is convenient to introduce 
the parameter 

P 
Pn = — X 100. (33) 

Pid 

In fact, Pn gives a measure of the percentage improvement of classifier effective-
ness related to the maximum attainable improvement Pid. Moreover, the trend of 
Pn as a function of C„ can give useful information about the advantage achieved 
by introducing the reject option in a classification system as the requirements of 
the considered application domain vary. 

One further consideration can be made on the basis of Eq. (29) which implies 
a relation between the optimal threshold value a* and the normalized cost C„. In 
particular, it can be verified that all the triplets of cost coefficients ( Q — k, Cr + 
k, Ce -\- k), obtained as k varies, provide the same value of C„, and thus the 
same solution of Eq. (29). Moreover, approximate solutions of Eq. (29) can be 
obtained by neglecting Q with respect to the other cost coefficients. Under this 
hypothesis, verified in many real applications, the normalized cost C„ assumes 
the form C„ = Ce/Cr — 1, and consequently the optimal reject threshold value 
depends on the ratio Ce/Cr. 

In any case, when C„ is low (i.e., the difference Ce — Cr is low), the advan-
tage of introducing the reject option becomes negligible. In fact, from Eq. (27) it 
is evident that the percentage of samples turned from misclassified into rejected 
contributes to the increase of P proportionally to the difference Ce — Cr. Conse-
quently, for Ce = Cr, the increment of P can become comparable to the decre-
ment of P produced by the decrease of the classification rate. 

VII. EXPERIMENTAL RESULTS 

The performance of the method described in the previous section will be 
now illustrated with reference to two different applications: recognition of un-
constrained handwritten characters and fault detection in electrical systems. The 
experimental results obtained in both cases will be discussed. The applications 
have been chosen because they represent critical recognition problems: both are 
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characterized by a high variabiHty among the samples belonging to a same class 
and by partial overiaps between the regions pertaining to different classes. In these 
conditions it is difficult to get high recognition rates and the availability of a reject 
option is particularly useful. Let us note that the emphasis here is not placed so 
much on the absolute performance of the description and classification techniques 
used, as on the improvement of classifier effectiveness achievable by introducing 
a reject option according to our method. 

A. CASE 1: HANDWRITTEN CHARACTER RECOGNITION 

Optical character recognition is one of the oldest application problems consid-
ered in pattern recognition. For its solution, a large number of statistical, struc-
tural, and hybrid methods have been proposed (reviews can be found in [58-60]). 
Although many OCR systems, suitable in a variety of applications, are today com-
mercially available, the problem of recognizing unconstrained handprinted char-
acters still remains unsolved and can be considered as a significant test bed for 
our method. 

Recognition is made difficult by both a high degree of overlapping among 
classes and a high variability within each class; this is due partly to the quality of 
the original data, which comes from different writers with greatly varying draw-
ing styles, and partly to the preprocessing and feature extraction phases, which can 
lose meaningful details of the character to be recognized. When significant char-
acter distortions occur, the uncertainty of the whole recognition process makes it 
essential to establish whether or not the decision of the classifier is acceptable or 
not, and therefore to estimate the classification reliability. 

The characters used for the test are 7000 digits extracted from the ETL-1 char-
acter data base [61], containing 141,319 segmented characters produced by 1445 
writers and belonging to 99 classes (digits plus latin, special, and katakana char-
acters). In Fig. 5, some examples of digits are shown. 

Characters are preliminarily submitted to a process that will represent them in 
terms of structural features [62]. The main steps of the process are briefly sum-
marized in the following. Since the thickness of character strokes is generally 
not a significant feature for recognition purposes, character bit maps (Fig. 6a) are 
first thinned (Fig. 6b). Unfortunately, skeletonizing algorithms typically give rise 
to distorted representations of character shapes: the most significant shape distor-
tions occur at joins and crossings of strokes. In order to better preserve the original 
shape information, a skeleton correction technique [63] is used; after this correc-
tion a character is represented by a set of polygonal lines (Fig. 6c). A further step 
consists of approximating pieces of polygonal lines with circular arcs (Fig. 6d) 
according to a method illustrated in [64]. 
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\ \ / I / / I / / i i f / I 

5 3 - 5 3 3 3 3 3 3 ^ 3 ^ ^ - ? 

Figure 5 An example of the digits belonging to the ETL-1 data base. 

ltZA^67Vt, 
/ 1 

} ) /jU.., /rj Q^^ 
(b) 

Figure 6 (a) The bit maps of some characters; (b) characters after thinning; (c) polygonal approxi-
mations after correcting shape distorsions; (d) representation in terms of circular arcs. 
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The aim of the above processing is to try to absorb as far as possible the large 
shape variability among different samples of the same class, singling out the most 
characteristic and invariant features for a recognition class. On this kind of char-
acter representation, the central moments up to the seventh order are evaluated. 
Moments of zero and the first order have been used to make the remaining mo-
ments invariant with respect to scale and translation, thus obtaining a feature vec-
tor made up of 33 components. Every component value is normalized so as to 
range between 0 and 1. For further details see [65]. 

The adopted classification system is an MLP made up of three fully connected 
layers, with 50 hidden neurons and a sigmoidal activation function. The standard 
BP algorithm was used for training with a constant learning rate equal to 0.5 and 
10,000 learning cycles. A training set of 1000 samples and a test set of 5000 
samples were used. The remaining 1000 samples were used for computing the 
reject threshold. 

As regards the cost coefficients, we assumed Q = 1, while the values for Ce 
and Cr were selected within the sets {6, 9, 12,15, 18} and {3,4, 5}, respectively; 
under this assumption the normalized cost C„ ranges from 0.17 to 3.75. This 
choice seems adequate to include a bunch of real cases and makes it possible to 
verify the behavior of the method for taking up the reject option for a wide range 
of situations, from those for which Ce = Cr (and thus C„ = 0) to those for which 
Ce ^ Cr (and thus Cn is higher than 1). The former case refers to situations in 
which the occurrence of an error is not so detrimental as to induce to accept, in 
order to avoid it, a high reject rate which could imply a significant reduction of the 
classification rate. In the latter case, vice versa, the main requirement is to avoid 
as many errors as possible, even if classification rate significantly reduces. 

Table II summarizes the results obtained with the 0-reject classifier and with 
the classifier with the reject option, showing, for each combination of the cost co-
efficients, the optimal threshold value a*, and the values of the parameters char-
acterizing performance and effectiveness of the classifier. Another column lists 
the classifier effectiveness values in the ideal case (Pid). In order to properly in-
terpret the data, it should remembered that by definition P represents the variation 
of classifier effectiveness with respect to V^. 

The trend of the reject threshold a* as a function of C„ is plotted in Fig. 7. 
In Fig. 8, Re, Re, and Rr are shown as a function of Cn. It is easy to verify that 

the trend of these curves is in agreement with the theoretical considerations made 
in Section VI. In particular, if the cost of a misclassification is low, the cost of a re-
ject must be even lower and C„ is close to 0. In this situation, it is more convenient 
to accept a low reject rate so as to keep the recognition rate high, even at the risk 
of some misclassifications. The results are similar to those obtained at 0-reject. 
On the contrary, when the value of C„ increases, it is more convenient to reject 
an unreliably classified sample rather than run the risk of misclassifying it, even 
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Table II 
Results at 0-Reject and with the Reject Option 

Cn 

0.17 
0.40 
0.67 
0.75 
1.00 
1.17 
1.50 
1.60 
1.67 
2.17 
2.20 
2.25 
2.80 
3.00 
3.75 

Ce 

6 
6 
9 
6 
9 

12 
9 

12 
15 
18 
15 
12 
18 
15 
18 

Cr 

5 
4 
5 
3 
4 
5 
3 
4 
5 
5 
4 
3 
4 
3 
3 

0-reject 
classifier^ 

-pO 

0.68 
0.68 
0.54 
0.68 
0.54 
0.40 
0.54 
0.40 
0.26 
0.13 
0.26 
0.40 
0.13 
0.26 
0.13 

Ideal 
case 

Pid 

0.05 
0.09 
0.18 
0.14 
0.23 
0.32 
0.28 
0.37 
0.46 
0.60 
0.51 
0.41 
0.64 
0.55 
0.69 

Classifier with the reject option 

a* 

0.00 
0.00 
0.01 
0.01 
0.09 
0.09 
0.09 
0.09 
0.15 
0.32 
0.32 
0.32 
0.56 
0.56 
0.56 

Re 

95.40 
95.40 
95.09 
95.09 
93.91 
93.91 
93.91 
93.91 
93.10 
91.52 
91.52 
91.52 
89.53 
89.53 
89.53 

Re 

4.60 
4.60 
3.91 
3.91 
2.70 
2.70 
2.70 
2.70 
2.52 
1.89 
1.89 
1.89 
1.59 
1.59 
1.59 

Rr 

0.00 
0.00 
1.00 
1.00 
3.39 
3.39 
3.39 
3.39 
4.38 
6.59 
6.59 
6.59 
8.88 
8.88 
8.88 

P 

0.00 
0.00 
0.01 
0.01 
0.02 
0.04 
0.05 
0.08 
0.08 
0.11 
0.11 
0.09 
0.12 
0.13 
0.21 

Pn 

0.00 
0.00 
5.43 
6.52 
8.70 

13.35 
19.57 
20.92 
15.65 
19.57 
20.16 
21.01 
19.41 
22.46 
31.01 

^The recognition rate at 0-reject is 95.4%. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 7 The trend of cr* versus Cn for the test case 1. 
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 8 The trend of Re, Re, and Rr versus Cn when the reject option is used. 

though this implies that some correctly classified samples could be rejected. Con-
sequently, the value of the reject threshold rises with an overall decrease in both 
misclassified and correctly classified samples. Specifically, we observe a decre-
ment of the recognition rate from 95.4%, for Cn < 0.5, to 89.5%, for C„ = 3.75, 
while the misclassification rate decreases from 4.6% to 1.6%, and the reject rate 
increases from 0.0% to 8.9%. The advantage attainable by exploiting the reject 
option can be made more evident by considering the relative variation of classifi-
cation and misclassification rates, with respect to the 0-reject case, as a function 
of Cn (Fig. 9). It can be seen that, for high values of C„, about 65% of the sam-
ples previously misclassified are now rejected, while the corresponding amount 
of correctly classified samples which are rejected is less than 6%. 

As already said, a global evaluation of the advantage achieved when using the 
reject option can be obtained by considering the trend of Pn with respect to C^. 
From the experimental results relative to this case (Fig. 10), it is evident that for 
high values of C„, P„ reaches a maximum of more than 30%, demonstrating the 
convenience of using the reject option. 

In conclusion, it is important to recall that the overall improvement of the clas-
sifier effectiveness is closely Unked to the shape of the distributions Dc and D^, 
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0.0 

Figure 9 Percentage decrement of misclassification rate (A/?e) and recognition rate {ARe) versus 
Cn obtained by using the reject option. The decrements are computed with respect to the correspond-
ing rates at 0-reject. 

which, in turn, depend not only on the data but also on the definition of V̂ . In real 
situations, such as the one considered here, Dc and De are far from the ideal case 
since they overlap extensively (Figs. 11 and 12). This makes them not separable 
and thus the attainable improvement in classifier effectiveness, although valuable, 
is lower than in the ideal case. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 10 The trend of P„ versus Cn for the test case 1. 
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(b) (C) 

Figure 11 The distributions of correctly classified samples at 0-reject versus xj/. Since the values of 
Dc range over many orders of magnitude, the plots (b) and (c) show two parts of the plot (a) using 
different scales for the y axis. 

B. CASE 2: FAULT DETECTION AND ISOLATION 

The second case deals with the detection and localization of faults in complex 
systems. This is a very crucial problem for the correct management of industrial 
plants, electrical networks and equipment, and many other systems. 

Generally, a system S is monitored by means of a set of instruments (the mea-
surement station) which measure the relevant parameters of S. The outputs of the 
instruments are fed to a fault detection and isolation unit (FDI) which, on the ba-
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 12 The distribution of misclassified samples at O-reject versus ^. 

sis of the measurement values, should detect and localize the faults on the various 
components of S. Faults on the instruments should also be taken into account as 
atypical measurement values may indicate either a fault on S or a fault on the in-
struments. Consequently, to be effective, an FDI system should be able to classify 
an event as associated either to the presence of a fault on S or on some instrument, 
or to the absence of faults (Fig. 13). 

To this end, many FDI techniques and architectures [66, 67] have been pro-
posed in the literature; in particular, schemes based on "hardware redundancy" 
[68, 69] or analytical models of the expected measurement values [70, 71] have 
been widely investigated. Whatever approach is adopted, a primary issue to be 
considered is the evaluation of the classification reliability attainable with the FDI 
system. In other words, the matter in hand is to recognize whether a sample (de-
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Figure 13 Block diagram of a generic FDI system. 
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scribed by a vector of measurements in this case) denotes the presence of a fault 
and, if one is indeed present, the nature of the fault. For this application, the sam-
ple description problem is relatively trivial, whereas classification is critical as 
serious consequences may occur if a fault remains undetected because of a recog-
nition error. In these cases it is more advisable to reject the uncertain decision and 
ask for human intervention. 

Neural network classifiers turn out to be particularly profitable [72] for this 
application because of their speed, which allows real-time fault locaUzation, and 
because of the increased system effectiveness achievable by introducing the reject 
option. Moreover, the generalization capability of the neural classifier contributes, 
to some extent, to ensuring correct monitoring even when the system works out-
side its operating range, i.e., when the values of the parameters are different from 
the allowed ones, without causing yet a system malfunction. This property is re-
ferred to as the diagnostic robustness of the FDI system. 

The neural-based FDI approach we considered has been applied to an auto-
matic measurement station for induction motor testing (Fig. 14). The data ac-
quisition board measured three phase voltages (V1, V2, VS), three line currents 
( /I , 72, 73), the motor angular speed {(o) and torque {T) and three phase powers 
(PI , P2, P3). A reference voltage (VR) was used to verify the correct operation 
of the data acquisition board. The mean values of the 12 instrument output sig-
nals, computed over 30 measurements, and the corresponding standard deviations 
have been assumed as input data for the neural network. 
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Figure 14 Block diagram of the realized neural FDI system. 
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As for the classifier architecture, two implementations of the MLP have been 
tested: the first with 12 input neurons, corresponding to the signal mean values, 
the second with 24 input neurons, 12 for the mean values and 12 for the standard 
deviations. After a preliminary test, the number of hidden layer neurons was fixed 
to 30 for both classifiers. 

Besides one "unfaulty" class and one class for motor faults, 28 classes for 
instrument faults have been considered: 12 classes for short circuits on the data 
acquisition input channels, 12 classes for interruptions on the system wiring, and 
4 classes for faults relative to the devices used to reduce the input currents to the 
transducers needed to measure the phase powers. 

The training set was made up of 240 samples obtained from tests carried out 
by varying the motor current up to 110% of its maximum nominal value. 

Both the set used for computing the reject threshold and the test set were made 
up of 72 samples, corresponding to 10 unfaulty conditions, 56 instrument faults 
(two cases for each considered fault) and 6 motor faults; these samples were ob-
tained from tests carried out in operating conditions different from those of the 
training set. In order to evaluate the diagnostic robustness of the FDI system, a 
further test was conducted with 32 faults occurring outside the system operating 
range. Both the classifiers were trained using the standard BP algorithm, for 6000 
learning cycles, with a learning rate of 0.5. The values of Cc, Cr, and Ce were 
chosen equal to 1, 2, and 6, respectively; therefore the reject threshold a* turned 
out to be equal to 0.29 for the 12-input classifier and to 0.44 for the 24-input 
classifier. 

Table III shows the results obtained with the two networks on both training and 
test sets. The 24-input classifier performs well on the training set but gets signif-
icantly worse on the test set; this may be due to the excessive variability of the 

Table III 

Diagnostic Performance of the Neural FDI System^ 

O-reject classifier Classifier with the reject option 

12 Input, TR 
12 Input, TS 
24 Input, TR 
24 Input, TS 
12 Input, TSl 

R'c 

95.49 
94.44 
97.95 
ll.lS 
93.75 

R'e 

4.51 
5.56 
2.05 

22.22 
6.25 

Re 

95.08 
94.44 
97.95 
75.00 
90.63 

Re 

1.64 
1.39 
0.00 

11.11 
3.12 

Rr 

3.28 
4.17 
2.05 

13.89 
6.25 

Pn 

56.82 
75.00 

100.00 
40.62 
12.64 

^TR and TS mark results obtained on the training set and on the test set, 
respectively. TSl refers to a case in which the motor current is external to 
the system operating range. 
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standard deviation values, showing that sample description using these features is 
not adequate. On the contrary, the performance of the 12-input classifier is quite 
good. In both cases it is evident that the introduction of the reject option makes 
it possible to reject a significant percentage of misclassified samples with a small 
reduction in the recognition rate. 

However, the case of practical interest regards the 12-input classifier which 
achieves an effectiveness equal to 75% of the ideal one on the training set. The di-
agnostic robustness of this latter configuration was then evaluated. The last row of 
Table III shows the results obtained on a set of samples for a motor current equal 
to 120% of its nominal value and thus outside the system operating range: the 
recognition rate, although worse than that obtained within the nominal operating 
range, is still more than acceptable. Again, there is a significant decrease (about 
50%) in the misclassification rate after the introduction of the reject option. 

VIII. SUMMARY 

In this chapter, the problem of assessing classification reliability, with special 
reference to the case of neural classifiers, has been addressed. After a review of the 
specific problem and the related topics, a method for using the information about 
classification reliability in order to find the best trade-off between reject rate and 
error rate has been illustrated. The method takes the following considerations as a 
starting point. When the reliability of a classification is low, the question is: does 
one accept the decision of the classifier running the risk of an error, or reject it 
and consider the sample at hand as not recognizable by the given classification 
system? In the former case, the risk of the decision being wrong increases as 
the classification reliability decreases. In the latter case, the sample has to be 
examined again with alternative techniques, generally by man. In both cases the 
choice implies a cost that has to be paid. 

In practice, the definition of a parameter measuring classification reliabiUty 
reflects the characteristics of the considered classifier; criteria for evaluating the 
classification reliabiUty for a wide set of neural network classifiers have been pro-
posed. They allow one to detect low reUable classifications in the case that the 
considered sample is either significantly different from those present in the train-
ing set, or similar to training set samples belonging to different classes. However, 
reliability alone is not sufficient to take a decision about the advantage of reject-
ing a sample instead of running the risk to misclassify it. This advantage can only 
be evaluated by taking into account the requirements of the specific application 
domain. In fact, for some applications the cost of a misclassification may be so 
high that a high reject rate becomes acceptable provided that the misclassification 
rate is kept as low as possible, while for other applications it may be desirable 
to assign every sample to a class even at the risk of a high misclassification rate. 
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Under hypotheses generally satisfied for a wide range of applications, these re-
quirements can be expressed by attributing a cost to each misclassification, reject, 
and correct classification. 

The method which is proposed computes the reject threshold value in such a 
way as to maximize the value of a function, which we have called "classifier ef-
fectiveness," taking into account the occurrence density distributions of correctly 
classified and misclassified samples, computed over a representative data set, as 
a function of classification reliability, together with the requirements of the appli-
cation domain considered. The method does not require any a priori knowledge 
about the probability density distributions of the samples to be classified. Under 
these assumptions, the optimal reject threshold is the one for which the classifier 
effectiveness reaches its maximum value. 

Assuming that in an ideal case it is possible to reject all and only those samples 
which, if not rejected, would be misclassified, it seemed convenient to compare 
the improvement P of the classifier effectiveness achieved when using the reject 
option with that achievable in the ideal case Pid. 

The results of testing the method in two real applications, recognition of hand-
written characters and fault detection and isolation in electrical systems, showed 
that the ratio P/Pid can be maintained relatively high even in recognition prob-
lems characterized by high variability among the samples of a same class and by 
partial overlap between the regions pertaining to different classes, so demonstrat-
ing the effectiveness of the approach. 
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I. INTRODUCTION 

Almost all digital image processors employ the same architecture for the sen-
sor interface and data processing. A camera reads out the sensed image in a raster 
scan-out of pixels, and the pixels are serially digitized and stored in a frame buffer. 
The digital processor then reads the buffer serially or as blocks to smooth the 
noise in the acquired image, enhance the edges, and perhaps normalize it in other 
ways for pattern matching and object recognition. There have been several at-
tempts in recent years to implement these functions in the analog domain, to 
attain low-power dissipation and compact hardware, or simply to construct an 
electrical model of these functions as they are found in biological systems. For 
analog implementations, we must evaluate their performance in comparison with 
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their digital counterparts and establish systematic techniques for their design and 
implementation. These considerations guided the work described here. 

Single-chip analog image processor chips consist primarily of resistors and 
transistors in an array, and sometimes memory elements. A two-dimensional im-
age is sensed by embedded photosensors at nodes in the array and converted to 
voltages or currents which drive the array. Computations are performed by physi-
cal laws underlying circuit behavior. These laws may be categorized as follows: 

• Kirchhoff's laws together with Ohm's law imposed on resistor or transistor 
characteristics define the desired linear combination of signals. This 
contrasts with digital signal processors in which linear combinations are 
computed with multiply or add operations on binary words. 

• The desired filtering is defined by a circuit (equilibrium) operating point. 
When subject to a stimulus, the circuit attains the operating point through 
dynamics defined by the parasitic capacitors. A clock is employed for 
memoryless filtering, and the circuit attains its equilibrium in real time. 

This chapter describes how a class of parallel analog image processing algo-
rithms is derived and how such algorithms can be implemented as parallel analog 
chips. The architectures for the chips described in this chapter are inspired by 
several physiological findings in lower vertebrates. 

Section II explains several findings in lower vertebrate retinas in a manner 
which is accessible by engineers, while Section III describes algorithms, architec-
tures, circuitry, and chip implementations. Section IV presents the circuit stability 
issues motivated by one of our vision chip implementations. 

Until the early 1990s there had been only a small number of vision chips. 
Today, however, there are numerous vision chips (see the references). While some 
of the chip architecture are inspired by physiological facts, many others are based 
purely on engineering disciplines. 

11. PHYSIOLOGICAL BACKGROUND 

The retina is a part of the central nervous system in the vertebrate and plays 
important roles in early stages of visual information processing. The retina com-
putes the image with a completely different algorithm or architecture from the one 
which most engineers are familiar with. Using this algorithm or architecture, the 
retina can perform real-time image processing with very low power dissipation. 
Inspired by such excellent performance and underlying network structure, vision 
chips have been designed using analog CMOS very large scale integrated circuit 
(VLSI) technology [1-8]. 

The retinas of lower verterbrates provide suggestive insights into designing 
the vision chips, since their visual functions are somewhat more sophisticated 
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than those of mammal retinas. Therefore, the contents of this chapter are mainly 
inferred from physiological observations of the lower vertebrates. Most of these 
observations, however, are applicable to higher species including humans. 

A. STRUCTURE OF THE RETINA 

The vertebrate retina is one of the few tissues of the nervous system in which 
electrical properties and structural organization of neurons are well correlated. 
Six principal cell types of neurons have been identified in the retina (see for re-
view [9]). Figure 1 is a schematic illustration showing the gross structure of the 
vertebrate retina. Although the retina is transparent, the figure is colored for obvi-
ous reasons. Each of these principal cell types is classified into several subtypes, 
which are not shown in the figure to avoid complexities. In Fig. 1, the bottom side 
corresponds to the frontal surface of the retina from which the fight comes through 
the optical apparatus of the eye. The light passes through the transparent retina to 
reach the photoreceptor array (gray), on which an image is projected. The light-
sensitive pigment catches photons and a chemical reaction cascade tranduces it 
to a voltage response in the photoreceptor. The voltage signal is transmitted to 
the second-order neurons, which are the horizontal cell (blue) and the bipolar cell 
(red). The photoreceptors, horizontal cells, and bipolar cells interact with each 
other in the outer plexiform layer (OPL), which is a morphologically identifiable 
lamina seen in the cross section of the retina (indicated by arrow 1 in Fig. lb). 
In this chapter, we refer to the neuronal circuit consisting of these three types of 
neurons as the outer retinal circuit. 

The bipolar cell transmits the output of the outer retinal circuit to the amacrine 
cell (white) and the ganglion cell (yellow). The bipolar cells, amacrine cells, and 
ganglion cells interact in the inner plexiform layer (IPL), which is another mor-
phologically identifiable lamina seen in the cross section of the retina (indicated 
by arrow 2 in Fig. lb). The neuronal circuit consisting of these three types of 
neurons is referred to as the inner retinal circuit in this chapter. There are two 
distinguishable information channels in the inner retinal circuit. One channel is 
sensitive to static stimuli, and the other, to moving stimuli. The interplexiform 
cell (light green) is a unique neuron which provides a feedback pathway from the 
IPL to the OPL. The function of the interplexiform cell (IP cell) will be discussed 
in Section II.D. The outer retinal circuit and the inner retinal circuit are important 
portions to study how visual information is processed in the retinal circuit. 

The retina consists of several layers of neuronal networks. The neurons be-
longing to the same types are arranged in two-dimensional arrays to aggregate 
in separate layers. The photoreceptors are arranged in a two-dimensional array. 
The photoreceptor mosaic is relevant to visual resolution under optimal viewing 
conditions. Other types of neurons are also arranged in two-dimensional arrays. 
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The layered structure is conserved in all vertebrate retinas, from fish to mam-
mals. The visual information is processed in successive stages, from one layer 
to the next layer, with convergences and divergences of the wiring in the retina. 
The interaction between these layers includes feedback connections from prox-
imal layers to distal layers as well as feedforward connections. It is noteworthy 
that these interconnections are made only between nearby neurons. This effective 
wiring is achieved because of the layered architecture. Since the voltage signal is 
transmitted only to neighboring neurons, the signal distortions are minimal and 
the calculation in the circuit is carried out with analog voltage signals (except in 
the ganglion cells). The ganglion cells give rise to action potentials to send the 
outputs to the brain. 

B. CIRCUIT ELEMENTS 

1. Chemical Synapse 

The interaction between the neurons takes place with two types of mecha-
nisms, the chemical synapse and the electrical synapse. At the chemical synapse, 
the signal is transmitted by a chemical substance, the neurotransmitter. Figure 2a 
illustrates the signal transmission at the chemical synapse. When the voltage sig-
nal reaches the nerve terminal of the presynaptic neuron, which sends the signal 
to another neuron, the transmitter is secreted from the terminal. The transmitter 
reaches the receptor molecule of the membrane of the postsynaptic neuron, which 
receives the signal from the presynaptic neuron and opens channels of specific 
ions. As a consequence, the currents carried by the ions change the membrane 

v^ pre 

T 

4> t^i pos 

(a) (b) 
Figure 2 Chemical synapse, (a) The terminal of the presynaptic neuron (left) secretes neurotransmit-
ters. The neurotransmitters open ionic channels in the membrane of the postsynaptic neuron (right), 
(b) The signal transmission at the chemical synapse is modeled by the voltage-controlled current 
source. The postsynaptic currents are generated by the neurotransmitters which are controlled by the 
membrane voltage of the presynaptic terminal, Vpre-
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potential, which is the voltage inside the cell in reference to the outside space. 
In other words, the membrane current of the postsynaptic neuron is controlled by 
the voltage of the presynaptic neuron at the chemical synapse. When the signal is 
weak and the change of membrane conductance at the postsynaptic site is small 
compared with the input conducatance of the postsynaptic neuron, the transmis-
sion at the chemical synapse is modeled by the voltage-controlled current source 
as shown in Fig. 2b. Because the signal transmission takes place through several 
intermediate processes, there exists an inherent time delay in the transmission at 
the chemical synapse. 

Several neurotransmitter molecules have been identified in the retina. The 
membrane potential of the postsynaptic neuron shifts in either positive (depo-
larization) or negative direction (hyperpolarization) depending on the neurotrans-
mitter molecules. Glutamic acid is one of the major excitatory neurotransmitters 
which depolarize the membrane potential, y-aminobutyric acid (GABA) is one 
of the major inhibitory neurotransmitters which hyperpolarize the membrane po-
tential. A particular transmitter activates corresponding receptor molecules and 
generates currents carried by specific ions. Therefore, the temporal properties of 
signal transmission depend on transmitter molecules. 

2. Electrical Synapse 

The currents spread directly into neighboring neurons through the electrical 
synapse. Gap-junctions are a typical electrical synapse occasionally found in the 
retina (Fig. 3a). The gap-junctions provide a low-resistance pathway between 
neighboring neurons. The currents flowing through the gap-junctions are ordinar-
ily bidirectional, and therefore the gap-junctions are modeled by resistors. The 
voltage signals pass to neighboring cells without time delay through the gap-
junctions. The electrical synapse plays important roles in visual information pro-
cessing in the retina, especially in the outer retina as shown later. As was explained 
in Section II.A, homogeneous types of neurons are arranged in two-dimensional 
arrays. When neighboring neurons of a homogeneous type are connected by elec-
trical synapse over the lamina, the neurons constitute an electrically continual 
network. This network is called a neuronal syncytium, and the voltage signals 
conducting in such a syncytium are described by the analog network model as 
shown in Fig. 3b [10, 11]. In this figure, the arrangement of neurons is treated as 
one-dimensional. We treat the two-dimensional arrangement of neurons as a one-
dimensional array in this section, for simplicity. The one-dimensional model can 
be directly applied to analyze the responses to illuminations which induce homo-
geneous voltage change in one direction. For example, a long sUt of light induces 
the voltage change which is homogeneous along the long axis, and the current 
spreads only perpendicular to the slit [12, 13]. Although the applications of this 
one-dimensional model are limited to such stimuU, it is still useful to gain qualita-
tive insights for the properties of voltage responses generated two-dimensionally. 
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777777 

Figure 3 Electrical synapse, (a) The gap-junction provides a low-resistance pathway between cells 
and thus is described by a resistor. In some cases, the gap-junction is controlled by intracellular mes-
senger machineries (see Section ILD). (b) Neuronal syncytium. Neighboring neurons are connected 
by gap-junctions and neurons constitute an electrically continual network. 

Each neuron is represented by a parallel RC circuit in Fig. 3b. Rm and Cm cor-
repond to the total membrane resistance and capacitance of a single neuron. The 
resistance of the electrical synapse connecting neighboring neurons is represented 
by Rs. The spatio-temporal properties of the voltage signal can be described by 
analytical solutions derived from the model. The solutions are obtained in the fre-
quency domain, so the time course of voltage responses is calculated with the aid 
of the inverse fast fourier transform. 

Let Vk{o)j), j = V^, be the membrane voltage and Uk((oj) be the synap-
tic current generated in the A:th neuron of the syncytium. We assume that the 
distribution of the current is symmetrical, that is, Uk((oj) = u-k{coj). Applying 
Kirchhoff's current law in the frequency domain at each node, we obtain 

{Vkicoj) - Vk-\{0)j)) (Vk(0)j) - Vk-{-l((OJ)) Vk(0)j) 

Rs Rs Zm(C0J) 

k = 1, . . . , A2. 
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Here, 

Zmi(OJ) = 
Rm 

l-\-RmCmCOJ 

is the membrane impedance of each neuron. When the current uoicoj) is generated 
only at the neuron numbered 0, the voltage response of the A:th neuron becomes 
[14,15] 

v,(coj) = R.^^M=p(coj)\ (1) 
^/c^icoj) - 4 

where 

-C(C0J) - y/c((0j)^ - 4 
P(^J) = 2 • 

c(a)j) is a function of membrane impedance and coupling resistance expressed as 

V Zm{o)j))' 

Equation (1) is the line spreading function, expressed in the frequency domain, 
of the spatio-temporal properties of the voltage response in the single-layer syn-
cytium. Specifically, the spatial distribution of an arbitrary frequency component 
of the voltage response is described by p{coj). The modulus of p{coj) gives the 
rate of response decay while the voltage conducts to the neighboring cell. The 
argument of p(o)j) gives a phase shift of the response during the conduction. 

When the retina is illuminated with image which induces currents, Ii(coj), I = 
1 , . . . , n, in the /th cell, the voltage response of the /:th cell is expressed by the 
convolution of Eq. (1) with the light-induced current, i.e., 

R ^ 
Vkicoj) = . ' Tp((ojf-^^Ii(coj), 

y/c^ia)j)-4f^^ 

The response waveform can be obtained by transforming the above equation into 
the time domain with the aid of the inverse fast fourier transform (FFT) algorithm. 

In some cases, the resistance of the electrical synapse is modulated through 
intracellular chemical reactions. An example of such modulation found in the 
horizontal cell is shown in Fig. 3a. A modulatory signal transmitted by dopamine 
activates the receptor on the horizontal cell membrane [16]. The activated receptor 
increases the concentration of cyclic AMP (cAMP). cAMP is one of the potent 
intracellular messenger substances influencing a wide variety of neuronal func-
tions, and in this case cAMP closes the gap-junctions to increase the resistance 
connecting the horizontal cells [17]. This modulation is considered to be relevant 
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to the adaptive control of the spatial filtering properties of the outer retinal cir-
cuit [2, 15]. The architecture of adaptive silicon retina discussed in Section III is 
inspired by this modulatory mechanism. 

3. Properties of a Single Cell 

The retinal network filters the input image with its dynamics. Since a single 
neuron is a basic component of the circuit, the filtering properties of the retinal 
circuit are highly relevant to the electrical properties of a single cell. The con-
ductance of a single cell can be directly measured by electrophysiological exper-
iments [18]. To measure the conductance, the single cell has to be isolated from 
the retinal tissue to curtail interactions with other neurons. Such isolation is ob-
tained by treating the retina with an enzyme, e.g., papain [19]. Figure 4a shows 
the membrane current of a single bipolar cell induced by steps of voltage. The 
membrane voltage was clamped at —30 mV, where the membrane current was 
almost 0 pA, and then stepped to different levels. The physiological range of the 
membrane voltage of outer retinal neurons is between —60 mV and —10 mV. The 
current is as small as several picoamperes and almost Hnear (but in a biological 
sense) in the physiological voltage range (Fig. 4b). When the step of voltage de-
viates from the range, prominent nonlinear responses are seen. It is noteworthy 
that the conductance of the membrane increases significantly out of the physio-
logical range. The increment of conductance prevents the membrane voltage from 
abnormal excursions by the shunting effect. The current responses to the voltage 

V[mV] 

(a) (b) 
Figure 4 Electrical properties of a bipolar cell, (a) The current responses to voltage steps of different 
levels are superimposed (upper trace). The lower trace illustrates the voltage steps, (b) The current-to-
voltage relation replotted from (a). The amplitudes of current responses are measured at 0.5 sec (x) 
and 3 sec (o) after the onset of voltage steps. (Hayashida and Yagi, unpublished data.) 
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pulses are usually less than 50 pA in the physiological range in the outer retinal 
neurons. These observations indicate that the retinal nuerons compute the visual 
information with extremely small voltages and currents. 

C. OUTER RETINAL CIRCUIT 

Most neurons have a membrane potential of about —70 mV at rest and re-
spond to stimuH with action potentials. In contrast, the outer retinal neurons have 
a membrane potential of about —30 mV in the dark, indicating that they are in 
an excited state when the stimuli are absent. These neurons respond to light with 
slow voltage changes which are referred to as the graded voltage response. The 
slow time course of the response is mainly due to the chemical reaction cascade 
of the phototransduction process in photoreceptors. 

1. Photoreceptors 

There are two types of photoreceptors, the rod and the cone. The rod has a 
high sensitivity to light and operates at night. The cone is much less sensitive to 
light and operates in the daytime. The cone is classified into three subtypes cor-
responding to different spectral sensitivities to light wavelenghts. These subtypes 
are the red cone, green cone, and blue cone. Figure 5a shows a set of light-induced 
responses of a cone obtained with intracellular recordings [20]. In this figure, re-
sponses to different intensities of flash are superimposed. The flash duration is 
10 msec. The membrane voltage of the cone is about —30 mV in the dark. The 
flashes of light generate hyperpolarizing voltage responses. The amplitude of re-
sponse increases as the illumination becomes brighter. The response amplitude of 
the cone reaches its peak 50 to 100 msec after the onset of the flash, depending 
on the light-adaptation. The chemical reaction of the phototransduction process is 
much slower than operation of CMOS transistors. However, the cascade of chem-
ical reactions can achieve an extremely high amplification of the signal. 

The graded potential also has an advantage in integrating and averaging the 
photon signal over time. The time course of rods is much slower than that of 
cones. It takes several hundreds of milliseconds for the rod response to reach its 
peak amplitude. The high sensitivity and the slow time course of rod response are 
suitable for detecting a small number of photons. 

Figure 5b shows the maximum amplitudes of the responses to different inten-
sities of light plotted as a function of log light intensity (intensity response plot) 
[21]. The left curve is the intensity response plot for rods, and the right one is that 
for cones. In each case, the response amplitude increases with a shallow gradient 
when the intensity of light is low. The gradient of the response increase becomes 
the highest near half of the saturation amplitude where the resolution of the light 
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(b) 
Figure 5 Voltage response of photoreceptors, (a) Responses of the cone to flash of different inten-
sities. Responses are superimposed. From Baylor and Fuortes (1979), reprinted with permission, (b) 
The intensity response plot of cone (right) and rod (left) responses. Reprinted with permission from 
G. L. Fain and J. E. Dowling, Science 180:1178-1181, 1973 (Copyright 1973 American Association 
for the Advancement of Science). 

intensity is highest. Around this intensity region, the ampUtude of the voltage re-
sponse is proportional to the log light intensity. The response amplitude reaches 
its saturation voltage with a shallow gradient. As shown in the figure, each of 
the photoreceptors detects the intensity difference in 3 log units. Therefore, the 
rod and cone together cover the light intensity of 4 to 5 log units. The relation 
between the maximum amplitude (V) and light intensity (/) is described by the 
MichaeUs-Menten equation [20]: 

V = Vr, 
• ( T ^ ) 
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Here Vmax is the amplitude at saturation, a is the intensity which gives a response 
of Vmax/2 and relates to the degree of light sensitivity. 

Neighboring photoreceptors are coupled electrically by gap-junctions to con-
stitute a syncytium [23, 24], even though the coupling is not as tight as the hori-
zontal cell (see Section II.C.2). The significance of electrical coupling is thought 
to be the reduction of noise occurring in the retinal neuronal circuit. When cells 
are electrically coupled, the current generated in a single cell spreads into neigh-
boring cells. Since the intrinsic noise in each cell is not correlated, the signal-
to-noise ratio can be improved when the image has an appropriate size [10, 25]. 
It is also likely that the electrical coupling masks random variations of electrical 
properties of each cell. The electrical coupling, however, blurs the image. Thus, 
the coupling strength between neighboring cells is a critical parameter to be de-
termined by the trade-off between these conflicting factors. The analog CMOS 
VLSI encounters a similar problem, i.e., random variations of transistor offsets. 

2. Horizontal Cell 

The horizontal cells also give rise to graded potential responses. It is well 
known that the horizontal cells exhibit large receptive fields which sometimes 
cover almost the entire retina [26, 27]. This is because neighboring horizontal 
cells are tightly coupled electrically by gap-junctions. The electrical coupling be-
tween neighboring cells is found in the photoreceptors as well as bipolar cells 
[26], but the coupling is not as intensive as in the horizontal cells. 

Figure 6 shows a piece of evidence demonstrating the electrical coupling be-
tween horizontal cells. The schematic drawing in the figure explains the record-
ing method. The response of a horizontal cell to a brief flash of light is recorded 
with a microelectrode (indicated by the thin triangle) connected to the operational 
amplifier (a). In this experiment, a narrow brief flash was first placed above the 
recorded horizontal cell (A), then displaced by 0.2-nmi steps from the recorded 
cell (B and C). The experimentally recorded responses are shown in (b). The re-
sponses to the flash placed at A, B, and C are superimposed in the figure. The 
response was clearly observed for the flashes B and C, in which the distance from 
the recorded cell far exceeds the dimension of the horizontal cell. This indicates 
that the response to the flash in the recorded cell is propagated through the elec-
trical synapse. 

3. Bipolar Cell 

The bipolar cell is the first neuron which exhibits a V^G-like receptive field 
in the vertebrate visual system [29]. In the bipolar cell, the response to an illumi-
nation placed above the center region of the receptive field antagonizes the one 
placed above the surrounded region. Figure 7a presents the response of a bipolar 
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1 mV 

100 msoc 
(b) 

Figure 6 Spatial properties of horizontal cell response, (a) Schematic illustration of the experimental 
procedure. Intracellular voltages are recorded with a microelectrode (thin triangle) connected to an 
amphfier. The retina is illuminated by a narrow slit of flash as it is displaced at A, B, and C. (b) Voltage 
responses to the flash. The responses to the slit at A, B, and C are superimposed. Upper trace indicates 
the timing of flash. 

cell showing the antagonistic receptive field (Sakakibara and Yagi, unpublished 
data). In this experiment, the responses of a bipolar cell to spots of light with 
different diameters were recorded. As the diameter of the spot of light centered 
above the recorded bipolar cell increased up to 0.3 mm, the response amplitude 
increased. However, the response amplitude decreased and finally the polarity of 
the response reversed when the diameter was further increased. This indicates that 
there exists a receptive field surround which antagonizes the receptive field center. 
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(b) 
Figure 7 Receptive field of the bipolar cell, (a) A spot of light was centered on the recorded bipolar 
cell and voltage responses were obtained as its diameter was increased. The voltage responses are 
shown in lower trace, (b) The interaction among the photoreceptors, horizontal cells, and bipolar cells. 
The chemical synapses are indicated by arrows. The electrical synapses are indicated by resistors. 
(Sakakibara and Yagi, unpublished data.) 

It is widely believed that the center response is mediated by the direct input 
from the photoreceptor and the antagonistic surround response is mediated by the 
horizontal cell. The neuronal circuit which generates the bipolar cell receptive 
field is illustrated in Fig. 7b. The bipolar cell receives inputs from the photorecep-
tor and the horizontal cell. These two inputs antagonize to produce the V^G-like 
receptive field. The narrow center reflects the input from the photoreceptor and 
the wide surround reflects that of the horizontal cell. 
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D. NEURONAL ADAPTATION 

The V^G-like receptive field has two effects on image processing. It smooths 
a noisy image and enhances the image contrast [28]. Since these two require-
ments, i.e., smoothing and contrast-enhancement, contradict each other, the re-
ceptive field size of the bipolar cell should be adjusted depending on the signal-
to-noise ratio of the input image. Several pieces of evidence indicate that the outer 
retinal circuit adaptively modulates spatial filtering properties under a different vi-
sual environment. Previous physiological experiments revealed that the receptive 
field of the horizontal cell is controlled by the IP cell. The IP cell (light green in 
Fig. 1) is believed to be a centrifugal neuron innervating to the horizontal cell. Its 
cell body is located near the IPL (arrow 2 in Fig. lb) with ascending axons to hor-
izontal cells [16]. It was found that a physiologically active substance, dopamine, 
is released from the IP cell and reduces the receptive field size of the horizontal 
cell by decreasing the conductance of electrical synapses connecting neighboring 
cells [17]. Since the receptive field surround of the bipolar cell is mediated by the 
horizontal cell, it is natural that the receptive field of the bipolar cell is controlled 
by the IP cell. More recently, it was demonstrated that the effect of dopamine on 
the horizontal cell is mimicked by exposing the retina in the light-adapted state 
[31]. These observations indicate that the receptive field size of the horizontal cell 
is reduced in the light-adapted state, and consequently the receptive field of the 
bipolar cell is sharpened. 

We hypothesize that the IP cell adaptively controls the receptive field size of 
the horizontal cell according to the signal-to-noise ratio. If we assume that the in-
trinsic noise is constant regardless of the adaptation level of the retina, the relative 
magnitude of noise to signal is small in the daytime since the light intensity of 
the signal image is high. In that situation, the bipolar cell receptive field is to be 
sharpened to gain spatial resolution. The spatial filtering properties of the outer 
retinal circuit are described in terms of this adaptive hypothesis in the following 
section. 

E. ANALOG NETWORK MODEL OF OUTER RETINA 

Based on the physiological bakcground described previously, the outer retinal 
circuit is expressed by the analog network model (Fig. 8). Each photoreceptor 
is represented by a membrane impedance Zm\{(joj) and each horizontal cell by 
Zm2((^j)' The resistance Rsi represents the electrical coupHng between photore-
ceptors. The resistance Rs2 represents the electrical coupling between horizon-
tal cells. The resistance connecting neighboring horizontal cells, Rs2, is variable, 
since it is modulated by the IP cell. In this model, the coupling between bipolar 
cells is neglected for simplicity. We denote the light-induced current of cones with 
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Figure 8 Analog network model of outer retina. See text for the detail. 

u and the light-induced voltage responses of cone, horizontal cell, and bipolar cell 
with v^ v^, and x, respectively, i.e., 

u = 

/ m{(oj) \ 
U\{(OJ) 

\un{0)j) ) 

(^o(^J)\ 

' ^ ' ^ 

(v\icoj)\ 

v\icoj) 

Wnio^J)/ 
/xi(coj)\^ 

V = 

liQrQ,Uk(coj) (k — ! , . . . , « ) is the light-induced current of the A:th cone expressed 
in the frequency domain, vl (coj) and vl(coj) are the voltage responses of the A;th 
cone and horizontal cell. Xk((oj) is the /:th bipolar cell response. The strength of 
the synaptic input from the photoreceptor to the horizontal cell is expressed by 
ti (coj) (Siemens). The strength of the feedback synaptic input from the horizontal 
cell to the photoreceptor is expressed by t2{coj) (Siemens). The synaptic inputs 
to the bipolar cell from the photoreceptor and horizontal cell are expressed by 
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t-i{coj) and tn{coj), respectively. These synaptic strengths are defined by the ratio 
of postsynaptic current induced by neurotransmitters to the presynaptic vohage. 
The synaptic strengths are also expressed in the frequency domain. 

Applying Kirchhoff's current law at each node representing the cones and hor-
izontal cells, we obtain a set of matrix equations for cone and horizontal cell 
responses: 

Civ' + t2{(oj)Rsiv^ = -RsMcoj), 

Here Ci and C2 are 

/ c i 2 

1 ci 

Ci = 
0 1 ci 

0 . . . 
\ 0 0 

/C2 2 

1 C2 

C2 = 
0 1 C2 

1 

0 

0 

1 

0 

0 

0 
1 

1 ci + lj 

0 0 

0 . . . 

\0 0 

1 

0 

C2 

0 

0 
1 

and 

ci 

C2 

- ( 

- ( 

1 C 2 + I 7 

'Z.mlicoj), 

On combining Eqs. (2) and (3), we find matrix equations, 

{C2C\-tit2Rs\Rs2my^ = -RsxCiu, 

(C1C2 - ht2Rs\Rs2^)y^ = tiRsiRsin. 

Here, E is the identity matrix. 

(2) 

(3) 

(4) 

(5) 
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When only the cone numbered 0 is stimulated and the current uo(coj) is in-
duced, the solutions of Eqs. (4) and (5) become [15] 

vlicoj) = Ai{o)j)pi{a)jf + A2{oyj)p2{(ojf, (6) 

vlicoj) = Bx{(oj)px{(Djf + B2((oj)p2((oj)K (7) 

Here, 

Pi(coj) = -a(coj) - yjot{(oj)'^ - 1, 

P2{(oj) = -Picoj) - ^Jpicoj)^ - 1, 

and 

ct{coj) = ^i^^^'^^^^^^-^) + \yj{ci{a)j) - C2{coj))^ +4ti{coj)t2(coj)RsiRs2, 

Picoj) = ^^(^'^^+^^^^'^^ _ y(ci(coj) - C2(coj))^ -^4ti(coj)t2(coj)RsiRs2-

Ai(coj), A2(coj), Bi(a)j), and B2{coj) are found from the boundary conditions. 
Solutions (6) and (7) indicate that the ampUtude of an arbitrary frequency compo-
nent of voltage response decays with two coefficients, pi (coj) and P2(coj)' When 
the retina is illuminated with an arbitrary image and the current Uk (coj) is induced, 
the voltage responses of the cone and horizontal cell are obtained by convolution 
of Eqs. (6) and (7) with Ukicuj), respectively. 

The voltage distribution of the bipolar cell response, x, is expressed simply by 
the difference between the cone response and the horizontal cell response [30], 
i.e., 

X = Zm3t3y^ + Z^3^4V^ (8) 

Here Zm3 is the membrane impedance of the bipolar cell. 
If we focus on the spatial distribution of the bipolar cell response in the steady 

state (equilibrium point), the spatial filtering properties of the bipolar cell are 
found to be characterized in terms of the standard regularization theory, with 
which some early vision problems are solved as minimization of quadratic cost 
functions [33]. We demonstrate how the outer retinal circuit naturally solves reg-
ularization problems with the cost function derived from the model. Since we 
consider the voltage distribution of the RC circuit at equilibrium, the membrane 
can be replaced by pure resistors instead of impedances. Combining Eqs. (4), (5), 
and (8), we obtain the equation for the voltage distribution of the bipolar cell 
response: 

(C1C2 - tit2RslRs2^)^ = -t3Rm3RslC2U + tit4Rm3RslRs2n. (9) 
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If we ignore the boundary effect, which is often feasible when the network is 
stable (see Section IV), and substitute Ci and C2 of Eq. (9) by (L - Rsi/Rmi^) 
and (L - Rs2/Rm2^), using 

L = 

/ - 2 1 0 
1 - 2 1 
0 1 - 2 

0 \ 

\o 0 1 - 2 / 

then we find that the response of the bipolar cell is described by an equation 
similar to the Euler equation ([2], see also Section III for details). Specifically, 

X - d - AiLx + A2L^x = 0. (10) 

Here 

and 

where 

Ai = 
Rml/Rsl-\-Rm2/Rs2 

1 - htiRmlRml 
A2 

Rm\Rm2/{Rs\Rsl) 

1 - t\t2Rm\Rm2 

d = vRoM — RoLvi, 

Ro = 
RmlRm2Rm3t3 

{\ - ht2Rm\Rm2)Rs2' ""'ii Rm2 t3 ) ' 

As was defined, u is the light-induced current of cones. RQ has the dimension 
of resistance (ohm) and v is a dimensionless constant. Therefore, VRQU desig-
nates the spatial voltage distribution proportional to the input image, provided 
that the light-induced current is proportional to the illumination intensity. Simi-
larly, RQLXX designates the spatial voltage distribution which is proportional to the 
second-order difference of the input image. Note that the second-order difference 
operation enhances the contrast of image as well as noise. As will be shown in 
Section III, Eq. (10) gives the solution which minimizes the cost function. 

/(x) = (X - d)^(x - d) -I- Ai(Dx)^(Dx) + A2(Lx)^(Lx). (11) 

In other words, the bipolar cell responses distribute themselves so as to minimize 
the function (11). The first term of the cost function (11) decreases as x becomes 
closer to d, which is composed of the raw input image, vR^^n, and the contrast-
enhanced image, RQ\M. The second and the third terms of the cost function (11) 
decrease as x is smooth. Thus, the distribution of the bipolar cell response is deter-
mined by the trade-off between contrast-enhancement and smoothing operations. 
It is interesting to study how the resistance of gap-junctions between horizontal 
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cells, Rs2, affects the spatial filtering properties of bipolar cells. The effect of Rs2 
is unambiguously predicted from the cost function (11). When Rs2 decreases, 
RQ increases and the contrast-enhanced image is emphasized. The weight on the 
raw image, v/?o» does not change since Rs2 is canceled. This is an important 
feature since the response to the background illumination is not modulated even 
though Rs2 changes. X\ and X2 also increase as Rs2 decreases, and thus the fil-
tered image becomes smoother. In the following, these effects are demonstrated 
by simulations. 

-150 -100 -50 0 50 

cell number 
(a) 

100 150 

- 6 0 0 - 4 0 0 - 2 0 0 

(b) 

200 400 600 
cell number 

200 400 600 
cell number 

(c) 
Figure 9 Simulation of neuronal adaptation, (a) The receptive field of the bipolar cell calculated 
with different values of R^i- (b) Noisy input image, (c) The spatial distribution of bipolar cell response 
calculated with high Rs2 (thin fine) and with low Rs2 (thick fine). 
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The receptive field of the bipolar cell was calculated from the model with dif-
ferent values of Rsi (Fig- 9a). In this calculation, v was taken to be zero for sim-
plicity. Figure 9c illustrates the spatial distribution of the bipolar cell response 
to a noisy input image. The noisy input image is composed of a square object 
spreading from cell number —150 to 150 and random noise (Fig. 9b). As shown in 
Fig. 9c, the image filtered with the high Rs2 is still noisy, and the contrast enhance-
ment seen as the "Mach Band"-like phenomenon is hardly distinguished from the 
noise (thin line). The high Rsi enhanced the amplitude of noise as well as the 
contrast of the image. However, it is easier to specify the contrast-enhancement 
effect when Rs2 is low (thick line). It is also evident that the gain of the bipolar 
cell response increases as Rsi decreases. Note that the response to background 
illumination does not change even though Rsi changes. 

The vision chip with light-adaptive architecture inspired by these physiological 
and computational backgrounds is explained in the next section. 

III. REGULARIZATION VISION CHIPS 

A. INTRODUCTION 

This section first explains how regularization problems which naturally arise 
in early vision problems can be solved in a completely parallel manner using 
layered analog resistive networks. The second part of this section presents com-
plete details of the smoothing contrast-enhancement (SCE) vision chip which has 
a double-layer architecture inspired by the physiological results discussed in the 
previous section. The chip solves first-order and second-order regularization prob-
lems simultaneously and outputs their difference. Since the chip is equipped with 
a photosensor array and an analog processing array, the execution is extremely 
fast, typically several microseconds. Implementation of the chip requires no spe-
cial technology; it uses a standard 2 /xm CMOS process. The third part of this 
section described light-adaptive architecture and its CMOS circuitry. This adap-
tation mechnism enables automatic adjustement of the SCE filter scale in accor-
dance with the intensity of input images. This is inspired by the horizontal cell 
adaptation mechanism explained in the previous section. 

B. TiKHONOv R E G U L A R I Z A T I O N 

When a solution to an operator equation (not necessarily linear) 

Av = d, veX, deY, (12) 

loses existence or uniqueness or continuity in d, Eq. (12) is called ill-posed. 111-
posedness typically arises when "data" d is noisy while the solution v sought 
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should be reasonably smooth. It can also result from the nature of A. The 
Tikhonov regularization [34-36] converts Eq. (12) into a family of minimization 
problems: 

G{v, d, X) = \\Av - df + XQ(v), (13) 

where || • || denotes a norm (on Y), Q: X ^^ IZis continuous and strictly convex, 
X > 0. If Av* = J*, then under reasonable conditions, Eq. (13) regularizes 
Eq. (12) in the sense that for any 6-neighborhood N^(v*) of v* (with respect to 
an appropriate topology), there is a ^-neighborhood Nsid*) ofd* such that if ^ G 
Nsid*), 2ind if X(8) > 0 is appropriate, then there is a unique i;(J, A(5)) e N^iv"^) 
which minimizes Eq. (13). It should be noted, however, than when d is noisy, 
choosing the best X is another interesting as well as difficult problem because one 
needs to take into account the statistics of d [37-39], and its is outside the scope 
of this paper. 

Now a typical "stabilizer" ^{v) in Eq. (13) is of the form 

where Cr{x) > 0 and D = [a, b] is the domain of the problem. If Eq. (13) with 
Eq. (14) can be written as 

dx"-' 
(15) 

G(v, d,X) = I F(vix), v^^\x),..., v^^\x), x, d(x), X) dx, v^'' = 
JD 

where F is "well-behaved," then the variational principle gives the Euler equation 

^ dx^ dv^^^ 
r=0 

with natural boundary conditions 

d' d 
^ dx^ dv^^~^~^> 
r=0 

atx=a,b for ^ = 0 , 1 , . . . , P. (17) 

It should be observed that because of the particular form of Eq. (14), the Euler 
equation Eq. (16) necessarily contains terms of the form 

r = l , . . . , P . (18) (S)<-
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Namely, if the stabilizer Eq. (14) contains the rth-order derivative, one needs 
to implement the 2rth-order derivative operation for solving the regularization 
problem. 

For the sake of simplicity, the independent variable x has been one-dimen-
sional. Two-dimensional problems will be discussed in the next subsection. 

In the following, we will formulate the regularization problem as a minimiza-
tion problem on a finite-dimensional space instead of approximating the Euler 
equation because 

(a) in a chip implementation the space variable x takes finite discrete values, 
(b) the formulation naturally leads to our layered architecture, 
(c) discrete approximation of the Euler equation Eq. (16) together with the 

natural boundary condition Eq. (17) in a consistent manner is not 
straightforward. Boundary conditions are important since inadequate 
boundary conditions even lead to instability [40,41]. Our discrete 
formulation given below naturally incorporates Eqs. (16) and (17), 

(d) most of the vision chips fabricated/proposed so far, including the filter 
described in Section III.D, are on a hexagonal grid instead of a square 
grid (see Section III.C for reasons). A rigorous approximation result on a 
hexagonal grid will be rather involved. 

Thus let V = ( u i , . . . , VnV ^ '^"- Then the derivatives in Eq. (14) should be 
replaced by the differences, e.g.. 

(S* l(x) -^ Vk -Vk-\, |(x) -> Vk-\ +Vk+\ -2vk. 

These operations are conveniently expressed by 

where 

D = 

Note that ahhough D is not symmetric, D^D is symmetric and 

D^D = - L , 

(19) 

(20) 

1 0 0 . . . 
- 1 1 0 . . . 
0 - 1 1 . . . 

0 0 0 . . . ] 
0 0 0 . . . -

0 
0 
0 

I 0 
1 1 

L = 

- 2 1 0 .. 
1 - 2 1 . . 
0 1 - 2 .. 

0 0 0 . . 
0 0 0 . . 

. 0 

. 0 

. 0 

- 2 1 
1 - 2 

(21) 

(22) 
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where T denotes transpose of a matrix. Therefore, the regularization problem for 
the finite-dimensional space case calls for minimizing 

EkCr(k)(U/h)l 

where d = (du...,dnV ^ W, Cr{k) > 0, and (L''/^v)jt [respectively 
(DL('"-^^/^v)fc] is the A:th component of L''/^v [respectively DL^'-^^/^v]. Differ-
entiating Eq. (23) with respect to v and setting it to zero, one has 

1 dG 
- — = pJ{Ay - d) + Y,^-\Y^rVy = 0, 
2 d\ 

r=l 

where 

(24) 

are called the hyperparameters. 
Consider, for instance, F = 2, A2 7̂  0, Xi = 0 , which amounts to 

Note that 

\} = 

- 2 1 0 0 

1 - 2 1 0 

0 1 - 2 1 

V - d + k2\/\ = 0. 

0 

0 

0 

(25) 

0 0 0 

0 0 0 

* - 4 1 0 

- 4 6 - 4 1 

1 - 4 6 - 4 

1 - 2 1 

0 1 - 2 

- 2 1 

1 - 2 

0 1 

0 0 

0 0 

0 0 

1 0 

- 2 1 

0 . 

0 . 

. . 0 1 

. . 0 

. . 0 

1 - 2 1 

0 1 - 2 _ 

0 0 0 

0 0 0 

0 

0 

0 

- 4 6 - 4 

1 - 4 * 

(26) 
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where * = 5 due to the "boundary effect." One sees that the kih component of 
Eq. (25) in the "interior" reads 

Vk-dk-\- )^2[^Vk - 4(vk-i + Vk-\-i) + Vk-2 + Vk-\-2] = 0. (27) 

A direct implementation of Eq. (27) is given by Fig. 10 where 

go, 81 > 0, g2 < 0, ^1 =4 |g2 l , 

because the Kirchhoff current law (KCL) gives 

(28) 

-(go + 2gl + 2g2)Vk + gl(Vk-l + Vk-\-l) + g2(Vk-2 + Vk-\-2) + Mjfc = 0. (29) 

Therefore, X2 = ^o/l^2l» dk = A2Mjt. This is what has been done in [40-42]. For 
a general r, matrix U is of the form 

ao ai a2 . ar 0 0 . . 0 
ai ao ai a2 . ar 0 . . 0 
a2 ai ao cii 0 
. a2 ai ao . . . . 0 0 

ar ar 0 
0 ar ar 
0 0 . . . . ao ai a2 . 

a\ ao a\ a2 
0 . . ^ ar . a2 a\ ao a\ 
0 . . 0 0 ar . a2 ai ao 

U = (30) 

where the boundary effects are not explicitly shown in order to save the space. 
Equation (30) shows that direct implementation requires connections between 
every pair of the A:th nearest nodes for all A; < r with possibly negative con-
ductance. As will be shown in Section III.F, r = 2 is already very difficult to 
implement due to wiring complexity. 

The architecture given below solves the Pth-order regularization prblem with 
only wiring between nearest nodes and without negative conductance. The fol-
lowing fact shows that the network given by Fig. 11 (in one-dimension) solves 
the Pth-order regularization problem for all P, 1 < P < Â , simultaneously, 
where A = 1 and Cr (k) is independent of k. Proof is found in [2]. 

Fact 1. Consider the network given by Fig. 11a (in one-dimension) where 
the symbol given in Fig. l i b stands for a voltage-controlled current source, and 
Smt, gsi > 0,i = I,..., N. Gain 7) is assumed to be constant unlike in Section II 
where 7} can depend on co. 

(i) The network is temporally stable in the sense that for any symmetric 
positive definite (not necessarily diagonal) parasitic capacitance matrix. 
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Figure 10 Architecture of a second-order regularization chip. Reprinted with permission from 
T. Matsumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural Networks 3:540-569,1992 (©1992 
IEEE). 

the temporal dynamics converges to a unique stable equilibrium for any 
DC input, 

(ii) At an equilibrium, the voltage distribution of the Pth layer, I < P < N, 
simultaneously solves the Pth-order regularization with 

Ap = 
^̂ 1 • • • gsp 

(31) 
8mi ' ' ' 8mp 

^P-1 = (gsi ' ' ' gsp-igmp -^ gsi'" gsp-2gmp-igsp H 

•^gmxgs2 ' "gsp)/{gmi ' "gmp). (32) 

^ P - 2 = {gs\ ' ' ' gsp-2gmp-\gmp -^ gsi" ' gsp-^gmp-igmp-igsp H 

+ gmigm2gs2, ' • ' gsp)/igmi ' ' ' gmp), (33) 

-^1 = igmi ' ' ' gmp-igsp + gmi ' * * gmp-2gsp-\gmp + * * * 

-^gsxgm2 "'gmp)/{gmx " ' gmp). (34) 

dk = Uk. 
gmi'" g 

(35) 
mp 

(iii) The voltage distributions of all the layers are spatially stable in the sense 
of [40,41,45]. 
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(a) 

Figure 11 (a) The layered architecture, (b) Voltage-controlled current source. Reprinted from Neu-
ral Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing 
Regularization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier 
Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 

C. TWO-DlMENSIONAL PROBLEMS 

Although the basic idea of our layered architecture derived in the previous 
subsection is naturally carried over to two-dimensional problems, there are three 
issues which call for explanations. First, when there are two independent space 
variables, say x and y, there is more than one choice of the stabilizer Eq. (14). 
With P = 2, for instance, the stabilizer can be 

• / / ' " ' 
+ Vyy) dxy (36) 
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or 

or other forms, where 

^ / / "̂"̂^ ^ "̂"̂ ^ ^ ""̂ "̂  "̂ ""̂  ^̂ '̂ ^ 

a^i; a^u a^i; 
. . . = ^ ' ^^. = a ^ ' -yy = ^ - (^8) 

Second, natural boundary conditions get more involved. For instance, if P = 2, 
and A,i = 0, then the first variation of 

G(v,d,X)= / / F(v(x,y),Vxx,Vxy,Vyy,x,y,d(x,y),X)dxdy (39) 

on the boundary dD gives rise to 

f \^ { ^^ I dF \ 3 / 8F I dF \ 
JdD L ""K^^xx 2 dvxyj dx \dvxx 2 dvxy J 

^ f \ I ( ^^ i 1IL\ _ ^ / ^ ^ ^ aF \ 
JdD I ^\^^yy ^^VxyJ dy\dvyy 2 dVxy J 

dy 

dx, (40) 

where v(x,y) is perturbed io v(x,y) + '\l/(x,y). When one performs integration 
by parts on dD, one obtains, for instance, for Eq. (37), 

-(vyy + Vxx) + {vxxx^ + 2i;;c3;̂ TJr + Vyyy^) = 0, (41) 

— (f^^ + l̂ jcjc) + :^{vxxXnXr + f.>;(^n}'T + ^r>^n) + l^>'>'Jn}'r) = 0, (42) 

on 9D where Xn, yn and JCT, yr are the direction cosines of the outward normal 
and the tangent vectors, respectively. Approximation consistent with Eqs. (41) 
and (42) together with Euler equation 

dF d^ dF d^ dF d^ dF 
1 - + T T ^ + T ^ i + ^ T ^ = ^ (43) 
dv 9x^ dVxx dxdy dVxy dy^ dVyy 

will not be easy to justify rigorously. 
Third, many of the vision chips implemented or proposed so far, including 

ours, are on a hexagonal grid because 

(i) a network on a hexagonal grid has much better circular symmetry than on 
a square grid [3,42, 43], 

(ii) a hexagonal grid affords the greatest spatial sampling efficiency in the 
sense that the least number of nodes will attain a desired of the 
image [44]. 
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We will handle the problem as a minimization problem on a finite-dimensional 
space as was in Eq. (23). It should be noted that in our arguments below, every-
thing is rigorous insofar as the minimization is concerned. 

On a hexagonal grid there are two labeling conventions: standard grid 
(Fig. 12a) and alternate grid (Fig. 12b). We will use the standard grid. Let 

V := (Viu 1̂ 12, . • . , V\n, V2U 1̂ 22, • • • , Vln, VnU Vn2, • • • , Vnn) ^ 7^"' '", (44) 

and let d be similarly defined. 

(i) P = I. The most reasonable function to minimize is 

G(v, d, Ai) = ||v - df + AidlDivll^ + ||D2V||2 + IIDsvf), (45) 

where the (/, 7)th components of Div, D2V, and D3V are, respectively, given by 

Vii - Vi-•/-17' (Div),7 

(D2\)ij = Vij -Vij-i, 

(D3\)ij = Vij - i ; / _ iy+ i . 

(46) 

(47) 

(48) 

Appropriate modifications must be made on the boundary. Differentiation of Eq. 
(45) with respect to v gives 

v - d - A i L v = : 0 , (49) 

where 

L := - ( D [ D I + Df D2 + D [ D 3 ) . (50) 

(a) (b) 
Figure 12 Labeling conventions for hexagonal grid, (a) Standard, (b) Alternative. Reprinted from 
Neural Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing 
Regularization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier 
Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 
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The (/, j)th component of Lv in the interior reads 

Vi-ij + Vi-^ij + Vij-i + Vij-^i + Vi-ij^i + Vi-^ij-i - 6vij, (51) 

which is a reasonable approximation of the Laplacian on a hexagonal grid. One 
can easily show that Eq. (49) corresponds to the KCL of the network given in 
Fig. 12 with P = 1. 

(ii) P = 2. As was remarked earUer, there is more than one reasonable choice 
ofG. 

(iia) 

G(v, d, Al, X2) = ||v-d||2-f Ai(||Div||2+||D2v||2+||D3V||2)+A2||Lv||2, (52) 

where L is defined by Eq. (50). The solution to this problem is given by 

V - d - AiLv + A2L^v = 0, (53) 

which, again, is of the form Eq. (23). The (/, 7)th component of L^v in the interior 
reads 

Vi-2j + Vi-^2j + Vij-2 + Vij^2 + Vi-2j+2 + Vi-^2j-2 

+ 2(i;/_iy_i + U/+l;+l + Vi-ij-^2 + Vi+lj-2 + Vi-2j+l + Vi-\-2j-l) 

- I0(vi-ij + Vi-^ij + Vij-i + Vij^i + Vi-ij-^1 + i^/+i;-i) + 42i;/y, (54) 

which is a reasonable approximation of the biharmonic operator on a hexagonal 
grid. Note that the third term X2 l|Lv|p in Eq. (53) corresponds to a solution with 
Eq. (36) which is called the square Laplacian (Grimson 1981). The question as 
to what would be a good approximation of the quadratic variation Eq. (37) [47] 
on a hexagonal grid may not be easy to answer. We will not pursue this subject 
since it is not our purpose in the present paper. Grimson [47] observed a difference 
between solutions to a particular visual reconstruction problem (not regularization 
problem) with contraint Eq. (36) and constraint Eq. (37). We have, so far, observed 
no strange behavior to the solution to Eq. (52) on a hexagonal grid, 

(iib) Another choice of G for P = 2 is 

G(v,d,M,A2) = | | v - d f + Ai ( | |D ivf+ ||D2v||2 + ||D3vf) 

+ A2( | |Livf+ | |L2v f+ ||L3V||2), (55) 

where 

Li := -DfDi , L2 := -DJD2, L3 := -D^Dg. (56) 

The solution is given by 

V - d - AiLv + A2(Lf Li + L J L 2 + L [ L 3 ) V = 0. (57) 
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Note that the last term (Lf Li + L2 L2 + L3^L3)v in Eq. (57) is not Lv and it reads 
[compare with Eq. (54)] 

Vi-2j + Vi^2j + Vij-2 H- Vij-^2 + ^i-2j-\-2 + Vi+lj-2 

-A{vi-\j-\ + Vi^ij + u/y+i + Vijj^i + i;/-i;+i + i ; /+i ;- i ) + l^Vij, (58) 

which is a rather crude approximation of \?y. The network given in Fig. 10 and 
hence v in Fig. 12 minimizes Eq. (55) with Ai = 0, A2 > 0. 

(iii) P = 3. A possible choice of G will be 

G(v, d, Xi, A2, ^3) = l|v - d f + Ai(||Div||2 + ||D2V||2 + ||D3V||2) + X2| |Lvf 

+ A3(||DiLv||2 + l|D2Lv||2 + IIDsLvll^). (59) 

Note that the third term corresponds to one of the penalty terms considered in [46] 
for the continuous two-dimensional problem. The solution is given by 

V - d - AiLv + A2L^v - XBL^V = 0. (60) 

We will stop here and formalize the argument in the following. 

Fact 2. Consider the minimization problem on a hexagonal array: 

G ( v , d , X i , . . . X p ) = | | v - d f 

^•^vll"', r: even, 

(61) 

v-fA,||L'-/: 

where L, Di , D2, and D3 are defined by Eqs. (50), (46), (47), and (48), respec-
tively. Then the statements of Fact 1 are valid. 

D. THE S C E FILTER 

1. Theory 

The following fact provides a theory for our smoothing contrast-enhancement 
(SCE) filter. 

Fact 3. Consider the double-layer network given in Fig. 13. Let 

73 1 , 74 2 

gm3 gm3 

i.e., Xk is a linear combination of vl and v^. 
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Figure 13 A double-layer network. Reprinted from Neural Networks 6:327-350, H. Kobayashi, 
T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on Layered Archi-
tecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boulevard, Langford 
Lane, Kidlington OX5 1GB, UK. 

(i) Then x := (jci,. . . , x„) minimizes 

G(x, u, Ai, A.2) := ^ {xk - Ro(-Uk-i - Uk-\-i + 2uk) - vRoUk) 
k 

+ Xi Y^{xk - Xk-\f + ^2 Y^{xk-\ + Xk+\ - 2xkf, 

where 

Ro = 
gsl T3 

Al = 

gmlgml 8m3 

gmlgs2-\-gm2gsl 

gmlgml 

gs2 V T3 J 

A2 = 
gslgs2 

gmlgm2 

(ii) Consider the uniform input Uk = u for all k. If 

gm2-\-^Ti = 0 , 
T3 

(62) 
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then 

Xk =0 for all k. 

233 

(63) 

Remarks, (i) This filter naturally has an impulse response similar to the one 
shown in Fig. 9a. Consider, that the input given by Fig. 14a, which is a rectangular 

C«rr«M( 

1. 

1 

«••«« 

n 41 (1 

(a) 

^ 

(b) 
Figure 14 Responses to noisy input, (a) Noiseless input where 

4 M , 
0, 

24<k< 38, 
elsewhere. 

(b) Responses to (a), (c) Input is corrupted by a white Gaussian noise with 3a = 1 /xA. (d) Re-
sponse vl and v^. (e) Response xj^. (f) Responses Xk when all the circuit parameters are perturbed by 
Gaussian around the nominal values with 3a = 20%. Reprinted from Neural Networks 6:327-350, 
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on 
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington OX5 1GB, UK. 
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HBSI 

\SSil 

(f) 
Figure 14 (Continued) 

"imager 

Uk 
4 M , 
0, 

24 < )̂  < 38, 
elsewhere, 

is corrupted by a Gaussian noise Uk with 3cr = I /JLA, i.e., 

M1 = Uk -¥nk. 

(64) 

(65) 

Figure 14b gives the filter response when T^/gm?> = 1» T^lgm^ = — 1. 
(ii) In engineering terms, this network can be regarded as a noncausal^ IIR 

(infinite impulse response) implementation of a V^G-like filter and it enhances 
contrast after smoothing. Speaking roughly, our filter output x is (L~^ — L~'^)u 
where L is as defined by Eq. (5). We are avoiding the term "edge detection" 
simply because a zero-crossing of V^G is not necessarily an edge [49]. Note, 
however, that in the particular situation given in Fig. 14f, our SCE filter correctly 
identifies the two edges against noise and parameter variations, if one checks the 
zero-crossings. 

(iii) Statement (i) in Fact 3 is straightforward. In order to prove statement (ii) 
on Fact 3, note that the input being uniform implies that no current flow through 
g^p and hence vl = ulgmx- Similarly, v\ = {J\lgm\gmi)u which yields Xk = 
ij^lgmi)v\ + {TA/gm^H = (w/(^mlgm3))(73 + TiTA/gml) = 0. ThuS Eq. (62) 
impHes Eq. (63). This means that if Eq. (62) holds, then Xk does not respond 
to the "Dc component," namely, Xk responds only to intensity differences and is 

^Noncausal is referred to the fact that the voltage at a particular node depends on the node voltages 
"to the right" as well as on those "to the left." 
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insensitive to absolute values. This is important from the information processing 
viewpoint. 

(iv) That the voltage-controlled current source TifMs a unilateral element is 
important. Namely, while the first-layer voltage v^ does affect the second layer 
via T\v^, the second-layer voltage v^ has no effect on the first layer. Thus, if T\ vl 
were replaced with a passive resistor (a bilateral element), then v\ > v^ always 
and hence Eq. (63) could never be satisfied. It is also clear that there would be no 
antagonistic surround. 

2. Circuit Design 

As this formation of the second-order regularization network requires only 
nearest neighbor connections, its principal virtue is the ease of implementation 
on an integrated circuit. Compared to an earlier implementation of a network 
with a Gaussian impulse response [42, 43], no resistor connections are required 
to second-nearest neighbors, nor are negative impedance converters necessary at 
every node. However, two independent resistor networks must now coexist on the 
same IC, so the compact design and layout of the unit cell at each node remains a 
most important consideration. 

The quality of signal processing from all-analog parallel image processors has 
usually been inferior to that from digital implementations. The dynamic range is 
limited at the input transducer, and offsets, noise, and transistor mismatches often 
corrupt circuit action so profoundly that only a vague semblance remains between 
the experimentally obtained output and that predicted by theory or simulation. We 
used this filter as a means to access the potential of image processing with parallel 
analog circuits by designing individual circuits so that the well-known sources of 
imperfection are suppressed within reasonable bounds. Some key considerations 
were: 

(i) To bias all FETs well above threshold, so that local random mismatches 
in threshold voltage or large-scale gradients across the chip do not introduce or 
distortion in the output reconstructed image. The bias values were constrained by 
the requirement of a 1-V signal swing, and operation with a single 5-V power 
supply. 

(ii) To keep the chip power dissipation to a minimum, so that the chip surface 
is almost at constant temperature. Too large a temperature gradient across the 
chip will produce a nonuniform profile in dark currents in the photosensor, and 
warp the input image. This requirement is reconciled with (i) above by use of 
the smallest possible FET W/L ratio. Compactness in layout further requires that 
both W and L should be small, so almost all FETs were of the minimum channel 
length. 

(iii) To place the photosensors on a hexagonal grid, so that no spatial distortion 
arises in sampling the input image. Although all unit cells and their associated 
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wiring lie on a Manhattan geometry, the aspect ratio of the abutted rectangular 
cells was chosen so that their centers come to rest on a hexagonal grid. 

a. Photoreceptor 

The network was driven by the voltage output of the photoreceptor, in a 
Thevenin equivalent of the circuit of Fig. 15. An advantage over current drive 
is that when the network is uniformly illuminated, no current flows in the network 
resistors, so they dissipate zero power. A minimum differential pair with unity 
feedback buffers the photoreceptor from the network resistors. 

b. Network Resistors 

To keep power dissipation small, the network uses large-value resistors. Nomi-
nal values are l/gm\ = 600 k^, l/gsi = 400 k^, l/gs2 = 20k^-200k^. These 
are most compactly implemented with FETs, rather than as diffused resistors. In 
this way, the variable resistor which must use FETs will track the fixed resistors 
over process and temperature. 

The network uses a variant of a well-known circuit [3, 50] to cancel the 
quadratic nonlinearity between two FET resistors (Fig. 16a). FET sizes are 
3 X 10 /xm^ for l/gm\, and 3 x 7 /xm^ for l/gsi- The circuit affords an acceptable 

Light 

Vout 

Unity Gain Buffer 

Figure 15 Photosensor circuit. Photocurrent is converted to voltage by diode-connected MOS FETs. 
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linearity (Fig. 16b) over the maximum 1-V swing. The variable resistance ^^2 is 
set by the gate voltage of a single FET in parallel with the two main resistor FETs 
(Fig. 16a). 

c. Unit Cell 

The network is assembled from these and other subsidiary components in each 
unit cell (Fig. 17). Using once again the Thevenin equivalent of the network pro-
totype, the output voltage from the first mesh is buffered and applied as a voltage 
input to the second mesh. The output voltages from the two networks are sub-
tracted in a differential pair. The pair NMOS FETs are biased at a Vgs - Vt of 
1 V and use a PMOS FET load to obtain an almost Hnear voltage input-output re-
lation. Either the network input (the log compressed sampled light signal) or the 
output may be multiplexed on to a single line through addresable PMOS switches. 
Addressing is arranged to scan out one column at a time. 

d. Layout 

The unit cell size of 138 x 160 /^m^ following l-^im CMOS two-layer design 
rules is dominated by wiring (Fig. 18a). Centers of rectangles with this aspect 
ratio of 2 : v^ , when assembled in a checkerboard pattern, will coincide with 
the centers on a hexagonal grid (Fig. 18b). An array of 52 x 53 unit cells fits on 
a 7.9 X 9.2-mm^ die (Fig. 19); this was thought to be the smallest sized array 
required to sense images of simple objects with a useful resolution. 

(a) 

Figure 18 (a) Two-layer wiring pattern over unit cell layout. Cell size is dominated by wiring, (b) Ar-
rangement of unit cell centers on a hexagonal grid by appropriate choice of cell aspect ratio. 
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3. Experimental Results 

a. Measurement Method 

P u t l * ! r Z J """"" " T " r * ' "'̂ ^"^"^ ™^S '̂ ̂ d P^«duces a 2D out-put the smoothed image with enhanced contrast, it does not obtain any data re-

o C t (Ffg.^O;' ^ ' ^ ' ""^ ^""^^^^ ' ^"^ ^^^"^^^ «̂ - ^ - ^ - « Us 

h n ^ . ' J ^ ' T r ' P " ' ' ^'•°'" ^^ '^"'""^^ "^ ^^^^ digitized to 12 bits off-chip 
^ l l T t T '"''"•' P''̂ '̂ '̂ ^ '̂̂  ™^S^ '' reconstructed after a computer ha^ 
addressed all the rows on the chip. The images shown in the next section were 
captured from the computer display, and were not subject to any subrequenrnT 
mencal smoothing or enhancement. ^ subsequent nu-

h. Test Results 

frn^r w " ' ' ' ' f ' i ? " " ' ' P""'"^"'^ ̂ ° " pin-grid-array, and dissipated 300 mW 

ou n?t H 1 ^ f ° " ^ ^ . ' P' '""'^' ^'^ ^ ' * ^ pinhole in the middle. The measu^d 
output clearly shows the axis undershoot surrounding the peak and good^ru 
lar symmetry. It closely matches a 2D simulated impulse respl^CFig 2 1 ) T ; 

Figure 20 Optical input to chip is 2D; elaborate interface 
chip output. required to acquire and reconstruct 2D 
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small ripple on the baseline away from the peak relative to the height of the peak 
is a measure of the useful network dynamic range, in this case about 100:1. 

Images of simple objects were also focused on the chip. The input image as 
sampled by the photoreceptor array is compared with the network output after im-
age smoothing and contrast-enhancement. The image of a disk of light (Fig. 22a) 
appears at the output as a disk surrounded by a halo (Fig. 22b). This halo en-
hances the contrast at the edge of the disk. Most dramatic is the network action 
on a styrofoam coffee cup imaged on the chip (Fig. 23). 

A halo surrounds the cup, enhancing the contrast of its outline, but more inter-
estingly, streaks of light on the curved surface of the cup which were not notice-
able on the incident images appear prominently after enhancement (Fig. 23). In 
all cases, the sensed and filtered images are remarkably clear, in fact the best ob-
tained in our knowledge from a signal sensor and analog processor of this genre. 
Note that for edge detection, one locates the zero-crossings of the V^G-filtered 
image, which is not necessarily "better" to human eyes. 

The filter scale, as determined by the width at half maximum of the impulse 
response, is experimentally seen to be variable by almost 2:1. A new image will 
be smoothed by the network in the time interval required for every node to relax 
to its final equilibrium, set by the RC time constant of the network resistors and 
the associated capacitance of the FETs and interconnect wires. 

More details are found in [51, 52]. 

E. LIGHT-ADAPTIVE ARCHITECTURE 

1. Theory 

In all the vision chip architectures implemented/proposed so far that we know 
of, the hyperparameters Xr are fixed. Our architecture proposed below makes Xr 
variable so that adaptation can be incorporated. Most generally, kr can depend 
on V, d, and k. The dependency of kr on v makes Eq. (23) nonquadratic and the 
general analytical form corresponding to Eq. (24) can be nonlinear, which we 
do not pursue at least in the present paper. Although the dependency of kr on k 
does not alter the quadratic nature of the problem, the generalization in this di-
rection does not, so far, find interesting enough applications. Therefore, we will 
consider the minimization of Eq. (23) where kr is now kr(d). Although this re-
quires only a straightforward modification in Eq. (24), i.e., kr should be replaced 
with kr (d), it leads to rather interesting adaptation networks. Among many possi-
ble adaptive networks, the SCE (smoothing contrast-enhancement) filter network 
[1,2, 5,6] has probably one of the most interesting structures suited for this adap-
tation. 

The following fact is a straightforward consequence of Fact 3 and the argument 
preceding it. 
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(a) (b) 
Figure 22 In response to input image of a disk (a), the network produces at the output (b) the disk 
surrounded by a halo. 

(a) (b) 
Figure 23 Network accurately acquires (a) images of a styrofoam cup, and produces at its output 
(b) the filtered image, with major features enhanced. 
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Fact 4. Consider the double-layer network given in Fig. 13, where the 
second-layer horizontal conductance ^^2 has an adaptation mechanism described 
by 

g,2(u):=-^ , G > 0 , (66) 

where G is a constant and Uk is a photocurrent induced at node k. Then 
(i) the second-layer voltage distribution v^ solves the second-order regulariza-

tion problem with 

, . X Ss\ , gs2W , . . gslgs2(^) 
Ai(u) = \ , A2(U) = , 

gml gml gmlgml 

SO that the weight ratio is given by 

^2(u) \ . Tx 

^ l ( u ) gm\lgs\ + gm2G{2^k ^k) gmlgml 

Statements (ii) and (ii) of Fact 3 are still valid. 

Remarks, (i) When the total input current ^ ^ Uk gets larger, which amounts 
to the fact that the environment is light, the second-layer horizontal conductance 
gs2 dereases. Although the decrease of ^^2 changes both Ai(u) and A2(u), the 
ratio A.2(u)/Xi (u) decreases [Eq. (67)]. This means that when J2k ^k is large, the 
emphasis of the network on the second-order derivative decreases. This adaptation 
mechanism has rather interesting implications. Suppose that uk = u^-\- Xk, where 
u^ is the noiseless image while Xk stands for noise. Suppose also that the mean of 
the noise has been absorbed into u^ so that Xk has zero mean. If JCmin < Xk < Xmax 
where ;cmin and JCmax are independent of u^, then J^k ^k large means that effect of 
noise is less significant than when ^j^ Uk is smaller. Thus when Y^j^ Uk is smaller, 
noise is more significant and the network puts more emphasis on the second-
order derivative penalty. This architecture is endowed with the capability shown 
in Fig. 9. 

Figure 24 shows the effect of the adaptation mechanism. The input image is 
the sum of a (one-dimensional) restangular "image" 

1 M , 61 < ^ < 141, 
0, otherwise, 

and the Gaussian white noise with mean 300 pA, 3a = 600 pA. Figure 24a shows 
the network response Xk, where 

l/gs2 = 5 M ^ , l/gsl = 3 0 M ^ , I/gml = l/gm2 = 1 G ^ , 

Ti = 10~^ Siemens. (68) 
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(a) 

Veltafl« 

Figure 24 Responses of the network in Fig. 13. (a) Adaptation is not incorporated (1/^52 = 5 Mfi). 
(b) Adaptation of Eq. (66) is incorporated with G = 1.0 x 10^^. Reprinted from Neural Networks 
8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive Architectures for 
Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 
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A dramatic effect is discernible when the g52-adaptation Eq. (66) is incorporated 
where 

G = 1.0x 10^1 

It is known that the V^G filter identifies edges of an object by its zero-crossings 
even though not every zero-crossing corresponds to an edge [49]. Observe that 
while Fig. 24a gives no information about the edges of the original object, 
Fig. 24b, which is the network response with the g^2-adaptation given by Eq. (66), 
correctly identifies the edge of the original image by its zero-crossings. 

(ii) In [5, 6] the gsi values are changed manually. 
(iii) Since the photocurrent Uk is always positive, one does not have to square it 

or one does not have to take the absolute value. In fact, v\ and v^ are also positive. 
The output Xk = vl. — v^., however, can be negative. 

2. CMOS Circuits for Light Adaptation 

Figure 25 shows a possible configuration and note that the input circuit in 
Fig. 17 is the Thevenin equivalent of the current source in Fig. 11. Let us denote 
this equivalent voltage by 

vl := gm\Uk' 

In Fig. 25, this voltage v^ is first converted into current h by the V-I converter so 
that Ik is proportional to v^. The summation of all these currents can be obtained 
for free by simply connecting the wires together because of the Kirchhoff current 
law, and the summed current / is given by 

k k 

The current / is fed into the bias voltage generator which produces a bias voltage 
Vc so that the ^^2 value is inversely proportional to / . Figure 26 shows a circuit de-
sign example of the V-I converter, gs2, and the bias generator. The V-I converter 
is designed with a differential pair and gs2 is implemented with two parallel MOS 
FETs [50] whose value becomes larger as Vc increases. In the bias generator, the 
summed current / is subtracted from a bias current lb and the resultant current 
lb — I flows into a resistor R and a diode-connected NMOS which generate a 
bias voltage Vc. Thus as / becomes smaller, Vc (and then ^^2) increases. Figure 27 
shows SPICE simulation results of ^^2 characteristics at several different values 
of Y,k ^k ^^^ ^^ ^^^ ^̂ ^̂  ^̂  ^k ^k t>ecomes larger, ^^2 decreases. It should be 
noted that perfect linearity is not necessary at all. 
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Figure 27 Simulation results of Figs. 25 and 26. V-l characteristics of ^^2 ^^ shown at several 
different values of ^ ^ v^. The "higher the level," the greater the value of ^^ v^. Reprinted from 
Neural Networks 8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive 
Architectures for Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier 
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK. 

3. Other Adaptations 

a. Local Adaptation 

The adaptation Eq. (66) is global in that the ^^2 value changes according to the 
global information Ylk ^k- If 

gs2ik,k-{-l) ' = 
^(^1 + ^1+1)' 

L > 0 , (69) 

where L is a constant, then the second-layer horizontal conductance value 
gs2{k,k-^i) between node k and node ^ + 1 is inversely proportional to the sum of 



252 T. Yagi et al 

Current 
0.250000 nA 

0.050000 nA 

I 
- 1 0 1 -

(a) 

local adaptation 

Rs2 = 500 k ohm 

201 node 

Figure 28 Response of the locally adaptive network, (a) A rectangular input image with 81 pixel 
width, (b) Responses of the networks with l/gs2 = 5 MQ (no adaptation), l/gs2 = 500 kQ (no adap-
tation), and l/gs2(k,k-\-l) = 2 x 10^(u^ + v^i) (local adaptation). Reprinted from Neural Networks 
8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, "Light-Adaptive Architectures for 
Regularization Vision Chips," Copyright 1995, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 



Parallel Analog Image Processing 253 

the first-layer voltages û  and vl_^^. Figure 28a is a simple rectangular input while 
Fig. 28b compares the response incorporating the local adaptation Eq. (69) where 
L = 2 X 10^ with those responses without adaptations where 1/̂ 52 = 5 M ^ and 
l/gs2 = 500 k^, respectively. Even though the effect of the local adaptation is not 
as dramatic as in Fig. 24, where the global adaptation is incorporated, one can see 
that where the input intensity is high, the response with Eq. (69) is closer to that 
with l/gs2 = 5 M^. On the other hand, where the intensity is low, the adapted 
response behaves in a manner similar to the one with 1/̂ 52 = 500 k^. Therefore 
with Eq. (69) contrast is even more enhanced where interesting difference exists. 

Figure 29 shows a possible circuit block diagram for the local adaptation and 
Fig. 30 shows a circuit design of locally adaptive conductances gs2 and bias gen-
erators in Fig. 29. The bias voltage generator at node k outputs v^ inversely pro-
portional to the first-layer node voltage f̂ , and gs2(k,k-\-i) is implemented with 
two parallel MOS FETs whose value is roughly proportional to v^ + i;ĵ _̂ p and 
then this approximates Eq. (69). Figure 31 shows SPICE simulation results of 
gs2ik,k-\-i) characteristics at several different values of vl + vl_^^. One sees that as 
^l + ^l^i becomes larger, gs2(k,k-\-i) decreases. 

b. Maximum Value Adaptation 

Consider 

< '= xr-^^V^' ^ > 0, (70) 

which is implemented by the network in Fig. 32 where it senses the maximum 
input voltage and changes the gain of PGAs (progranunable gain amplifiers) uni-
formly to as high a value as possible without overloading the network. Since there 
are all kinds of noises in a chip, one obtains a better signal-to-noise ratio if the 
input signal is amplified as much as possible without overloading the network. 
A similar method is widely used in A/D converters, where one can obtain a good 
signal-to-noise ratio if the converter is preceded by a PGA which amplifies small 
input signals so that the input signal stays within the full input range of the A/D 
converter. 

Remarks, (i) When looked at as a regularization filter, the local adaptation 
mechanism Eq. (69) changes Xi and A2 according to vl and its local values so 
that they are described as Ai (v^, k) and A,2(v ,̂ k) which are nonlinear. 

(ii) Equation (70) corresponds to a different, though still linear, regularization 
problem. Namely, the function minimized is of the form 

G(v, d*(d)) = ||v - d*(d)||2 + Ai ||Dv||2 + A2||Lv||2, 

where d*(d) indicates Eq. (70). 
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ĉ« 

5
s 



(31) 

O
D

 

s 
> 

B
 

o 
g

 
l

i 2 

3
 

H
J 

^ 
§ 

C
 

O
H

 

in 

W
D

 
o

 
E2 

•5 
s 

c 
c3 

o
 

-
"

^ 
•

&
 

(U
 

. C
^ 

> 
>H

 

1̂
 

•S
 

S
 

ti 
8

| 

.1.̂: 

^ 
Q

 
.U

 
K

^
 

u 
ffi 

;̂=^̂
 

-! ^ 
2 7 
.Is 
fa 

00 

h
 

o
 

*>
 

b
 

W
 

S
 

o
 

<£ 
I (A 73 

•
^ 

•5 

w-T
 

as 
ô
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Figure 31 Simulation results of Figs. 29 and 30. V-l characteristics of gsl{k,k-\-\) ^ ^ shown at 
several different values of v\ + v^^y The "higher the level," the greater the value of v^ + vL p 
Reprinted from Neural Networks 8:87-101, H. Kobayashi, T. Matsumoto, T. Yagi, and K. Tanaka, 
"Light-Adaptive Architectures for Regularization Vision Chips," Copyright 1995, with kind permis-
sion from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK. 

R WIRING COMPLEXITY 

Wiring complexity is repeatedly emphasized in ([3, pp. 7, 116, 276-277]) as 
the single most important issue. It is indeed critical for implementing vision 
chips because, although each computing unit has relatively simple circuitry, there 
are thousands of computing units placed regularly so that the routing can be ex-
tremely difficult when the network architecture demands complicated intercon-
nections among computing units. 

Figure 10 shows a unit cell wiring for (an approximated) second-order regular-
ization filter [42,43], while Fig. 33 shows the actual implementation where every 
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Figure 33 Actual implementation of the circuit in Fig. 10 demands connections with every second-
nearest neighbor in addition to the immediate-neighbor connections. Reprinted from Neural Networks 
6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization 
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, 
The Boulevard, Langford Lane, KidUngton OX5 1GB, UK. 

node must be connected with its second-nearest neighbors in addition to the near-
est neighbors. Complexity of wiring was a serious problem in the layout phase of 
[42, 43] and yet this is a crude approximation to the second-order regularization 
filter. 

If one wants to implement Eq. (53), the wiring gets even more serious. Let 
us look at, for instance. Fig. 34 which implments Eq. (53) (go and input are not 
shown) provided that 

^ i : ^ 2 : g 2 = 1 0 + ^ : - 2 : - l , (71) 
A2 

because the KCL reads 

-(^0 + 6gi + 6g2 + 6g2)vij + gi(vi-ij + Vi-^ij + Vij-i + Vij+i + T;/-I;+I 

+ Vi+lj-l) + 82iVi-2j + Vi^2j + Vij-2 + %+2 + Vi-2j+2 + Vi^2j-2) 

-^gli^i-lj-l + Vi+lj-^-l + ^i-lj-^2 + Vi+ij-2 + Vi-2j-\-l + Vi-\-lj-\) 

+ wo=0, (72) 

where uij is the input current source. Thus the network of Fig. 10 corresponds to 
g2 = 0 in Fig. 35. 
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Figure 34 A network implementing L^. gQ and input are not shown. Reprinted from Neural Net-
works 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shinmii, "Image Processing Regular-
ization Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science 
Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 

Since Fact 1 claims that the layered network of Fig. 11 with only immediate 
neighbor connections, there must be a significant reduction of wiring complexity. 
This section tries to quantify the wiring complexity. 

Let us first note that there are basically three categories in vision chip wiring: 

Class 1: conductance interconnections between unit cells 
Class 2: power supply lines and bias voltage lines 
Class 3: data lines and address lines for data readout 

Even though these are not completely independent of each other, we will pay 
particular attention to Class 1 because it is the dominant one and is critically 
dependent on the architecture of the signal processing part. Class 2 depends much 
more heavily on circuit design than the architecture. Class 3 essentially depends 
on the data readout mechanism. 

Since a precise technical definition of wiring complexity is not given in [3], we 
will try to give a reasonable one here. Naturally we do not claim this is the best, 
nor only definition. In order to quantify wiring complexity, several simplifications 
are necessary. As far as wiring complexity is concerned, the following assumption 
will be made. 

Assumption. The lateral conductances are regarded as pure wires, while the 
vertical conductances as well as the input circuit are regarded as a "unit cell." 

Remark. Conductances gi and g2 in Fig. 10 will be regarded as pure wires 
whereas go and the input circuit are regarded as a unit cell. Similarly, ^^i and 
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Figure 35 Wiring complexity of the layered network with P = 2 amounts to 6. A hexagon stands 
for a umt cell. Reprinted from Neural Networks 6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, 
and T. Shimmi, "Image Processing Regularization Filters on Layered Architecture," Copyright 1993' 
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 
1GB, UK. 

gs2 in Fig. 13 are regarded as pure wires whereas gmu gmi, and the input circuit 
consitute a unit cell. 

A natural question arises. Does not the unit cell of a multilayered network 
need more chip area than that of a single-layered network? Not necessarily. Let 
us compare, for instance, Fig. 10 with Fig. 13. First note that in actual imple-
mentation, one-half of each lateral resistor l/gr or l/g^^ is realized in each unit 
cell area. Second, since g2 in Fig. 10 is negative, it demands more transistors. 
In [42, 43], g2 necessitates a transconductance ampHfier and six transistors per 
node. In Fig. 13, the voltage-controlled current source is realized by a differential 
amplifier together with gm2 and hence six transistors are enough per node. Thus 
the unit cell area of a layered network would not be any larger. Hence the wiring 
complexity of a chip is the complexity of wiring among unit cells. We assume, 
therefore, that the unit cell area is normalized to 1 x 1. 

DEFINITION. The wiring complexity of a vision chip is defined as the num-
ber of wires which cross a unit cell. 

Remarks, (i) The unit cell defined above correponds to a pixel. 
(ii) For the wiring complexity, one has to count not only the wires connecting 

a particular unit with another unit but also those which pass through a unit cell 
for the purpose of connecting other cells together. 



Parallel Analog Image Processing 261 

(iii) If the unit cell size is normalized to 1 x 1, our definition of wiring com-
plexity means the wire length. Observe that for a chip implementation, a wire 
which comes into a unit cell area contributes to the same complexity whether or 
not there is an electrical contact at the unit cell because one simply places a "via" 
(hole) if there is an electrical contact. 

Fact 5. Consider the layered network of Fig. 11 on a hexagonal grid. If the 
number of layers is P, then 

wiring complexity = 3P. (73) 

Proof. Since each layer has only immediate neighbor connections, three 
wires cross each unit cell represented by a hexagon. • 

Figure 35 shows the case with P = 2. As for a single-layer network with gen-
eral P on a hexagonal grid, the wiring complexity formula itself gets complicated. 
We will give formulas up to P = 3 which is enough for the present purpose. 

Fact 6, (i) For the single-layer network which implements Eq. (49) (P = 1), 

wiring complexity = 3. (74) 

(ii) For the single-layer network of Fig. 34 which implements Eq. (53) 
(P = 2), 

wiring complexity = 1 5 . (75) 

(iii) For the single-layer network of Fig. 34 with g2 = 0, which implements 
Eq. (57) (P = 2), 

wiring complexity = 9. (76) 

(iv) For the single-layer network of Fig. 35 which implements Eq. (60) 
(P = 3), 

wiring complexity = 33. (77) 

Proof. For P = 1, the single-layer network and the "multilayer network" 
coincide. Consider the network of Fig. 34 which implements Eq. (53). There are 
three classes of wires which cross a unit cell represented by a hexagon: 

(a) The gi connections which give rise to three wires crossing a unit cell 
(Fig. 36). The g2 connections demand six wires, not three, because, in addition 
to the three wires which connect each unit cell with its second neighbors, there is 
another set of three wires connecting between the neighboring nodes. 

(b) In order to see the complexity of the g2 connections, let us look at Fig. 37. 
In order to avoid an obvious technical difficulty in drawing the figure, four 

different textures are used for wires. Where a circle is placed with a particular 
texture, there is an electrical contact by a wire with that particular texture. 
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Figure 36 Wiring complexity of the gj connections contributes 3. Reprinted from Neural Networks 
6:327-350, H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization 
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, 
The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK. 

Figure 37 Wiring complexity of the g2 connections is 6. Three wires connect a cell with its second-
nearest neighbor while another three wires pass through each cell. Reprinted from Neural Networks 
6:327-350, H. Kobayashi, T Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization 
Filters on Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, 
The Boulevard, Langford Lane, Kidlington OX5 1GB, UK. 
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(c) The g2 connections which also demand six wires. In order to demonstrate 
this, let us look at Fig. 33. First, note that the wires drawn in this figure are not 
present in Fig. 37. For instance, there are no "horizontal" connections in Fig. 38, 
while "vertical" connections are present which are not present in Fig. 37. Thus, in 
addition to the three wires which cross a unit cell "in the middle," there are another 
six wires passing through the "boundary" of a unit cell represented by a hexagon. 
Since a wire must pass through somewhere, by an appropriate "splitting," one sees 
that the complexity contribution from these wires is 3. 

Therefore, 3 + 6 + 6 = 15 wires contribute to the complexity which is Eq. (75). 
If g2 = 0, then one has nine wires, which is Eq. (76). Using a similar argument, 
one can show that the g^ connections and the gs connections of Fig. 37 demand 
18 wires which must be added to 15 and hence the complexity is 33. • 

Reduction of the wiring complexity by the layered architecture is significant. 
Let us call the ratio between the wiring complexity of a layered network and the 
wiring complexity of a single-layer network, the complexity ratio. 

Figure 38 The g2 connections contribute another 6. Reprinted from Neural Networks 6:327-350, 
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on 
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington 0X5 1GB, UK. 
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Figure 39 A network solving the problem with P = 3. Reprinted from Neural Networks 6:327-350, 
H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, "Image Processing Regularization Filters on 
Layered Architecture," Copyright 1993, with kind permission from Elsevier Science Ltd, The Boule-
vard, Langford Lane, Kidlington 0X5 1GB, UK. 

Fact 7. (i) For the network of Fig. 34 {P = 2), 

complexity ratio = | . 

(ii) For the network of Fig. 39 (P = 3), 

complexity ratio = ^ . 

(78) 

(79) 

IV. SPATIO-TEMPORAL STABILITY 
OF VISION CHIPS 

A. INTRODUCTION 

Vision chip architecture sometimes demands negative conductance values. For 
instance, exact implementation of the second-order regularization 

6vk - 4(i;;t_i + Vk-[-i) 4- {vk-\-2 + Vk-2) 

necessitates negative conductance values [2]. Whenever negative conductance is 
present, there are potential stability problems. This section has been motivated 
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by the temporal versus spatial stability issues of an image smoothing vision chip 
[42, 43]. The function of the chip is to smooth a two-dimensional image in an 
extremely fast manner. It consists of the 45 x 40 hexagonal array of very simple 
"cell" circuits, described in Fig. 10. An image is projected onto the chip through 
a lens (Fig. 40), and the photosensor represented by the current source inputs the 
signal to the processing circuit. The output (smoothed) image is represented as 
the node voltage distribution of the array. With an appropriate choice of ^o > 0, 
^1 > 0, and g2 < 0, the chip performs a regularization with second-order con-
straints and closely approximates the Gaussian convolver. Since the negative con-
ductance g2 < 0 is involved, two stability issues naturally arise: 

(i) Because the chip is fabricated by a CMOS process, parasitic capacitors 
induce the dynamics with respect to time. This raises the temporal 
stability issue with respect to whether the network converges to a stable 
equilibrium point, 

(ii) Because a processed (smoothed) image is given as the node voltage 
distribution of the array, the spatial stability issue also arises even if the 
temporal dynamics does converge to a stable equiUbrium point. In other 
words, the node voltage distribution may behave wildly, e.g., oscillate. 

INPUT 
IMAGE 

LENSE 

CHIP 

OUTPUT 

S' 

Figure 40 A chematic diagram. Reprinted with permission from T. Matsumoto, H. Kobayashi, and 
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE). 
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Figure 41 Spatial impulse responses with iV = 61, m = 2, 1/go = 200 k^, \/g\ = 5 k^, 
M31 = 10 /xA, Mjt = 0 for î  / 31. (a) \/g2 = - 2 0 kfi; stable, (b) \/g2 = - 18 k^; stable. 
(c) 1/^2 = -17 kfi; unstable. Reprinted with permission from T. Matsumoto, H. Kobayashi, and 
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE). 
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50.0 50.5 TIME (iiS) 

(b) 
Figure 42 Temporal step responses of the center node v^i (0 with N = 6l,m = 2, l/gQ = 200 kfi, 
\/gl = 5 k^, CO = 0.1 pF, Uk(t) =OfoTk ^ 31, and u^iit) = 0 when t < 50 /AS, 10 /xA when 
t > 50 fis. (a) l/g2 = - 2 0 kfi; stable, (b) l/g2 = - 1 8 k^; stable, (c) l/g2 = - 1 7 k^; unstable. 
Reprinted with permission from T. Matsumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural 
Networks 3:540-569, 1992 (©1992 IEEE). 



268 

50.0 

T. Yagi et al 

TIME (AiS) 

(c) 
Figure 42 {Continued) 

50.5 

Our earlier numerical experiments investigating these issues were rather in-
triguing. The results suggested that the network is temporally stable "if and only 
if" it is spatially stable. Figure 41 shows spatial impulse responses at different 
sets of parameter values. The network has 61 nodes (linear array, for simplicity), 
and the impulse is injected at the center node. Figure 42 shows the correspond-
ing temporal step responses of the center node. For simplicity, the only parasitic 
capacitors taken into account are those from each node to ground. The responses 
shown in Fig. 42a and b are temporally stable, while that in Fig. 42c is not. Fig-
ure 41c is spatially unstable because the response does not decay, which is highly 
undesirable for image processing. (A precise definition of spatial stabiHty will be 
given later.) All of our earlier numerical experiments suggested the equivalence 
of the two stability conditions. However, there are no a priori reasons for them 
to be equivalent. As will be shown rigorously, the two stability conditions are not 
equivalent. The spatial stability condition is stronger than the temporal stability 
condition. Nevertheless, the set of parameter values {go, g\, ^2) for which the two 
stability conditions disagree turns out to be a (Lebesgue) measure zero subset, 
which explains why our numerical experiments suggested equivalence between 
the two conditions. (A measure zero subset is difficult to "hit.") Explicit analyti-
cal conditions will be given for the temporal as well as the spatial stabilities in a 
general setting. Also given is an estimate of the speed of temporal responses of 
the networks. Since our results are proved in a general setting, they can be applied 
to other neural networks of a similar nature. 
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Remark 1. Due to the space limitation, many of the proofs and technical de-
tails cannot be included. The reader is referred to [40] for complete proofs and 
details. We note that the vision chip stability issues are descibed in [45,51, 52] in 
a different problem setting and/or using different approaches. 

B. STABILITY-REGULARITY 

1. Formulation 

Consider a neural network consisting of a linear array of Â  nodes, where each 
node is connected with its pth-nearest neighbor nodes, /? = 1, 2 , . . . , m < N, via 
a (possibly negative) conductance gp and a capacitance Cp. Figure 43 shows the 
case where m = 3. The network is described by 

peM 

dvi-

dt 
= ^apVi-p-\-Ui, / = 1 ,2 , , . . . , Â , (80) 

peM 

CorUyo CorQyo CzHyo Co=nyo c.=yy 

Figure 43 Network described by Eq. (80) when m = 3. Reprinted with permission from T. Mat-
sumoto, H. Kobayashi, and Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 
ffiEE). 
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where vi and M/ are the voltage and the input current at the /th node, and 

M = {p: integer \p\ < m}, (81) 

«0 = - ( g 0 + 2 ^ g p j , a±p = gp, l<p<m, (82) 

m 
^o = co + 2 ^ C p , b±p = -Cp, l<p<m. (83) 

Equation (80) is obtained simply by writing down the Kirchhoff's current law 
(KCL) at each node. Letting 

V := (VQ, f i , . . . , VN-i)^ e TZ^ and u := (MQ, MI, . . . , UM-I)^ e TZ^ 

(T denoting transpose), one can recast Eq. (80) as 

d 
B—v = Av + u, (84) 

at 

where 

A := {A(/, j)} e / ? ^ ^ ^ , /, 7 = 0 , 1 , . . . , TV - 1, 

A(iJ):=\T ^ h e n / - y = ± ^ , ^ = 0 , . . . ,m , 
•̂  [0 , otherwise, 

B := {B(i, j)} G / ? ^ ^ ^ , /, 7 = 0 , 1 , . . . , iV - 1, 

5(,. . ) . . ^ ( ^ ^ ^ w h e n / - 7 = ± / : , ^ = 0 , . . . ,m , 
^ "̂ ^ [0, otherwise. ^ ^ 

Note A as well as B is symmetric and has a uniform band structure. If B is non-
singular, an equlibrium point of Eq. (84) satisfies 

- ^ apVi-p = Ui, (87) 
peM 

which is a difference equation instead of a differential equation. Assuming that 
a^ / 0, one has 

(88) 
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Therefore, letting 

F : = 

271 

0 
0 
0 

0 

1 
0 
0 

0 

0 
1 
0 

0 

0 
0 
1 

0 

0 
0 
0 

1 
-1 -am-l/Om —Om-l/am • - « o / « m • - « m - l / a n 

en-2mx2m 

(89) 
with 

T ^ ^2m ^k '= (Vk-m, Vk-m-^l, . . . , l̂ yt, . . . , Vk-\-m-l) ^ Ti' 

yk := i0,...,0,~uk/amf en^"^, 

one can rewrite Eq. (88) as 

X)t+i = F x ^ + y ^ . (90) 

Observe that subscript k in Eq. (90) is not time. Equation (90) represents the 
spatial dynamics induced by the temporal dynamics Eq. (84). Note also that 
dimv = N, the number of nodes, while dimx^ = 2m, the size of the neigh-
borhood, which is independent of Â . 

In image processing, input is u while output is v(oo), the stable equilibrium 
point of Eq. (84). Equation (90) describes how the coordinates of v(oo) are dis-
tributed with respect to k. There are several issues that need care. 

(i) The temporal dynamics given by Eq. (84) consitute an initial value problem 
while Eq. (87) or Eq. (90) is a boundary value problem. Namely, arbitrary v(0) 
and u(.) completely determine the solution to Eq. (84) while for Eq. (87) or Eq. 
(90), one cannot specify (for a given {ŷ }̂) an arbitrary {XQ} because a solution 
{Xk} must be consistent with the KCLs at the end points. Therefore the temporal 
dynamics (84) are causal while the spatial dynamics (90) are noncausal. 

(ii) The stability of the spatial dynamics (90) must be carefully defined. That 
"Eq. (90) is stable iff all the eigenvalues of F lie inside the unit circle" does not 
work because F has a special structure [see Eq. (107)]: 

if A is an eigenvalue, so is 1/A. 

Therefore, "|A| < 1 for all A" is never satisfied. Since N = IK -\- \ \^ finite, 
another standard definition of stability: 

^ lly l̂l < 00 implies ^ \\xkf < oo (91) 
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does not work either, because Eq. (91) is always satisfied. As was shown in 
Fig. 41c, Xĵ  can behave in a wild manner even if Â  = 2 ^ + 1 is finite, which is 
highly undesirable for image processing purposes. 

2. Spatial Dynamics 

Let ksi, kci, and A .̂ be the eigenvalues of F satisfying 

\ks,\<h |AcJ = l, | X , J > 1 , 

respectively, and let E^, E^, and £"" be the (generalized) eigenspaces correspond-
ing to ksi, kci» and Xui, respectively. They are called stable, center, and unstable 
eigenspaces, respectively. Let E = R^^. Then [53] 

£ = £ ' e £ ^ e £ " , (92) 

where 0 denotes a direct sum decomposition, and 

F(£") = £:", a=s,c,u, (93) 

i.e., E\E^, and £"" are invariant \xndLQr¥. 
Our task here is to give an appropriate definition of spatial stability while main-

taining consistency with Eq. (91) when N ^^ oo. 
First, we remark that the boudnary conditions are crucial for the spatial stability 

as indicated by the following example. 

EXAMPLE 1. Consider the simplest case, m = 1 in Eq. (90) with go = g^ 
gi=2g,g >0 (Fig. 44a). Then 

F : = 
0 I T 

- 1 5 / 2 J 

and F is hyperbolic because eigenvalues are pi = 1/2 and P2 = 2. Figure 45a 
shows the impulse response when l/g = 50 k^, where the impulse is injected 
at the center node. Let us now replace the rightmost go and the leftmost go with 
gf = —g as in Fig. 44b. The impulse response is then given by Fig. 45b, which 
"explodes" in the negative direction. 

There is another story about spatial responses. Our simulation results indicate 
that the spatial responses behave quite properly even if the gt value is varied by a 
large amount. Namely, spatial impulse responses are very robust against variations 
of gt from go. Thus, two fundamental questions concerning the spatial dynamics 
must be answered for the spatial stabiUty definition: 

(i) Why does a particular gt value give rise to explosion of impulse 
responses even if the eigenvalues of F are off the unit circle? 
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Figure 44 A network with m = 1. (a) Original network, (b) Modified boundary condition, where 
the rightmost go is replaced by gt. Reprinted with permission from T. Matsumoto, H. Kobayashi, and 
Y Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE). 

(ii) Why do impulse responses behave properly over a wide range of gt 
values? 

DEFINITION 1. Consider Eq. (90) and let [yk] be nonzero only for 0 < ^ < 
Then {Xjt}!^ is said to be SL free-boundary solution if 

(94) Xk+i =Fxk, k<0, 

d-\ 

k=Q 

xjt+i = Fxjt, k>d. 

(95) 

(96) 

Remark 2. If J = 1, then [yk) is an impulse. If one redefines the summation 
term in Eq. (95) as a new yo, then Eqs. (94), (95), (96) can be replaced by 

Xit+i = ¥xk. fc / 0, 

xi = Fxo + yo. 

(97) 

(98) 
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NODE 

(a) 

-0.500000 V 

> -2.500000 V 

NODE 

(b) 
Figure 45 Significance of boundary conditions, (a) Impulse response for Fig. 44a with gQ = g, 
g\ = 2g, \/g = 50 k^, M31 = 0 . 1 /iA. (b) Impulse response for Fig. 44b with the same data except 
for gf = - ^ , M31 = 0.1 /xA. Reprinted with permission from T. Matsumoto, H. Kobayashi, and 
Y. Togawa, IEEE Trans. Neural Networks 3:540-569, 1992 (©1992 IEEE). 
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Since no boundary conditions are imposed, {xA:}t^ is not unique. 

DEFINITION 2 (Spatial stability). A neural network described by Eq. (90) is 
said to be spatially stable if and only if there is a unique free-boundary solution 
{Xjt}!^ satisfying 

+00 

X^ \\ikf< oo. (99) 
k=—oo 

PROPOSITION 1. (i) The network described in Eq. (90) is spatially stable if 
and only if the F matrix of the spatial dynamics is hyperbolic. 

(ii) The unique free-boundary solution {xjt}i^ satisfying Eq. (90) is deter-
mined by 

XI € E\ xo G £", XI = F^xo + yo. (100) 

DEFINITION 3 (Stable free-boundary solution). The unique {x^;}!^ given in 
Proposition 1 is said to be the stable free-boundary solution. 

Consider the spatial dynamics Eq. (87) and let r+ (resp. T-) be an m-
dimensional linear subspace which describes the boundary conditions at the right 
(resp. left) end. 

DEFINITION 4. Let [yk] be nonzero foxO <k < d. Then {xj^l^f is said to 
be a solution for (r+, r_, A') if 

Xit+i = Fx^, -K<k<K, k^O, (101) 

xi = F^xo, (102) 

x-K e r_, XK e r+. (103) 

The following result thoroughly answers the second question that arose in con-
nection with spatial dynamics in a very general setting. 

THEOREM 1. Let a neural network described in Eq. (90) be spatially stable, 
i.e., F be hyperbolic. If the boundary conditions r+ and T- satisfy 

r+ + £" = E, T--\-E' = E, (104) 

then a solution {x}_^/or (7+, r_, K) converges to the stable free-boundary so-

lution {x}^j^ as K ^^ OQ: 

lim T \\Xk-Xkf = 0. (105) 
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3. Temporal Stability—Spatial Regularity 

DEFINITION 5 (Spatial regularity). A neural network described by Eq. (90) 
is said to be spatially regular if there is a nonsingular 2m x 2m matrix T such that 

E = E' ^E' ^E"", 
rF, 0 0 0 1 

0 Fe G 0 

0 0 Fc 0 

0 0 0 F7I 

j j r j - i _ (106) 

where a blank indicates a zero matrix, and elements of G consist of + 1 or 0. 

Remark 3. It can be easily shown that spatial stability implies spatial regular-
ity, but not conversely. 

We consider the temporal stabiUty of the network for all Â  instead of a fixed 
Â ; if the temporal stability is defined for a fixed size of Â , a designer has to 
recheck the stability when the network size is changed in response to certain de-
sign considerations. We also remark that for a fixed Â , while it is easy to say 
that Eq. (84) is asymptotically stable iff B~^ A is negative definite, it is very hard 
to derive analytical (a priori) iff conditions for negative definiteness even with 
m = 2. One can derive, however, an interesting analytical condition if one looks 
for negative definiteness of B~^ A for all N, which will be shown in Section IV.D. 

DEFINITION 6 (Temporal stability). A neural network described by Eq. (84) 
is said to be temporally stable if and only if it is asymptotically stable for all Â . 

PROPOSITION 2. A neural network described by Eq. (84) is temporally sta-
ble ifB~^A is negative definite for all N. 

The following standing assumptions are made throughout this chapter unless 
stated otherwise. 

Standing Assumption 1. (i) fl^o < 0, a^ / 0; 
(ii) B is positive definite for all Â . 

A must be negative definite (provided that B is positive definite), which is the 
inequaUty in (i). If am = 0, then the neighborhood M is of a smaller size. No 
restrictions will be imposed on the sign of ap, p ^0. In image processing vision 
chips, Cp in Eq. (83) are parasitic capacitors of MOS processes, and positive def-
initeness of B is a mild condition. The following result establishes a fundamental 
relationship between the temporal and spatial dynamics. 

THEOREM 2. A neural network is temporally stable if and only if it is spa-
tially regular 



Parallel Analog Image Processing 111 

Proof. ( ^ ) Consider the characteristic polynomial of F: 

P F W : = d e t ( A l - F ) = A'̂  
am 

rn 

p=\ 

(107) 

This implies that if Xs (resp. A )̂ is a stable (resp. unstable) eigenvalue, i.e., 
IA.5I < 1 (resp. \Xu\ > 1), then Xj^ (resp. k~^) is also an eigenvalue and un-
stable (resp. stable). F is nonsingular, therefore there are no zero eigenvalues. In 
order to discuss FIE'^, let 

co = X + X~^ or A, = ^(co±y/o)^ -4). 

By a repeated use of the binomial formula, one sees that 

m m 

+ J2 ^(XP+X-P) = Y^apCoP := Q{co) 

for real as. Since F has no zero eigenvalues, 

P^(A) = 0 iff e ( ^ ) = 0 , 

am 

(108) 

(109) 

(110) 

where k and co are related via Eq. (108). Hence if Xc is real and \'kc\ = 1, then 
Eq. (108) forces Xc to be a double eigenvalue {Ac, Ad or its multiple. It is easy to 
show 

dimker(Al-F) = 1 (111) 

for any eigenvalue A, where "ker" denotes the kernel of a matrix. Thus, for each 
eigenvalue A of F, there is only one elementary Jordan block [53]. Therefore, the 
real canonical form of Fl^'^^, restriction of F to the eigenspace corresponding to 
Ac, is given by 

K 
0 

1 
Xc 
0 

0 
1 

Xc 
0 

0 

0 
1 

Xc 

^2qx2q (112) 

where 2q is the multiplicity. This is clearly of the form Eq. (106). 
So far, no use has been made of the negative definiteness of B~^ A and yet we 

are already close to Eq. (106), the regularity. The situation, however, is slightly 
subtle when it comes to a nonreal Xc with |Ac| = 1, because A*, the complex 
conjugate, is also an eigenvalue [see Eq. (107)]. This last is of no use since F is 
a real matrix and A* also being an eigenvalue is automatic. We now assume that 
B~^A is negative definite for all N, A is negative definite for all Â . It is known 
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[54], then, that there are z^ e R, p = 0 , . . . , m, such that the elements of A 
satisfy 

m—p 

~^p = ^ ZiZi+p, /7 = 0 , . . . , m , (113) 

i.e., apS can be decomposed as in Eq. (113). Substitution of Eq. (113) into 
Eq. (107) yields 

PF(>^) = — 
ZOZm 

ZOZm 

m m-p 

^=0 p=\ i=0 

' m \ / ^ \ 
(114) 

Since 0 ^ am = —zoZm and since F has no zero eigenvalues, one sees that 

PF(X)=0 iff R(X)R(l/X) = 0, (115) 

where 

i=0 

(116) 

Therefore, if X is a nonreal eignevalue with |A.c| = 1, Eq. (115) forces the eigen-
value configuration to be of the form [Xc, X*,Xc,X*] or its multiple. It follows 
from Eq. ( I l l ) that the real canonical form of F on this eigenspaces is given by 

Of - ) S 1 0 0 . . 
)g a 0 1 0 . . 
0 0 a - ) S 1 0 . 
0 0 )S a 0 1 . Qlq'y^lq' (117) 

where 

0̂ 2 + ^ 2 ^ 1 (118) 

and 2q' is the multiplicity. This, again, is of the form Eq. (106). 
(=>•) If a neural network is spatially regular, the real canonical form, of the spa-

tial dynamics F is equivalent to Eq. (106). The characteristic polynomial F, then, 
admits a decomposition of the form given by Eq. (114). Comparing Eq. (114) with 
Eq. (109), one sees that Eq. (113) holds. The condition is known [54] to be not 
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only a necessary but also a sufficient condition for A to be negative definite for all 
Â . Since B is positive definite and symmetric for all Â , it follows from [55] that 

V Av 
max. eigenvalue of B~ A = max ^^ < 0 (119) 

for any N which impies temporal stability. • 

Remark 4. (i) Consider Eq. (80) and let 

N 

W \=^ViUi, 

which is the power injected into the network. It follows from Eq. (80) that 

W = - ^ ^ v i a p V i - p -^Y^Y.""^^P"^ 
i P i P 

T 'T dy 
= -v^Av + v^B— := WR + Wc. 

at 

Thus the first term 

WR := —v^Av = power dissipated by the resistive part of the network. 

Therefore, a neural network is temporally stable iff its resistive part is strictly 
passive, i.e., 

W/? > 0, V # 0 for all N. 

It follows from the previous remark that spatial stability demands more than strict 
passivity of the resistive part. 

(ii) Observe that v^Bv/2 = energy stored in the capacitors. Therefore Eq. 
(119) says that 

^ ̂ _ 1 / —power dissipated by resistors \ 
max. eigenvalues of B A = max I * 

= —nun 

2 X energy stored in capacitors/ 

/ power dissipated by resistors \ 

\ 2 X energy stored in capacitors/ 

Since the temporal stability condition is equivalent to spatial stability, we will 
say, hereafter, that the stability-regularity condition is satisfied if a network is 
temporally stable or spatially regular. Recall Q{co) defined by Eq. (109). 
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PROPOSITION 3. The following are equivalent: 

(i) Stability-Regularity. 
(ii) Every nonreal eigenvalue pc of¥ with \pc\ = 1 has an even multiplicity. 

(iii) Every real zero COR of Q with \(OR\ < 2 has an even multiplicity. 

For the sake of completeness, we will state the following. 

PROPOSITION 4. The following are equivalent: 

(i) Spatial stability. 
(ii) Eigenvalues ofF are off the unit circle. 

(iii) Q has no real zero on [—2, 2]. 

C. EXPLICIT STABILITY CRITERIA 

Recall Q defined by Eq. (109). The following functions will be called the sta-
bility indicator functions: 

a+(flo,«i,...,^m) := max amQ(o)), 
(oe[-2,2] 

a-(ao,ai, ...,am) := min amQ(co). (120) 
a)e[-2,2] 

PROPOSITION 5. The network described in Eqs. (84) and (90) is stability-
regular if and only if 

a^(ao, au ..., am) < 0. (121) 

PROPOSITION 6. The network described in Eq. (90) is spatially stable if and 
only if 

cr-^(ao,ai,...,am) < 0. (122) 

The following fact gives upper and lower bounds for eigenvalues of the temporal 
dynamics A. 

PROPOSITION 7. (i) Any eigenvalue JJL of the temporal dynamics A for any 
N satisfies the following bounds: 

a-(ao, a i , . . . , a^) < /i < a+(ao, ^ i , • • •, <3m)- (123) 

(ii) The bounds (123) are optimal in the sense that ifcr^ (respectively a^) is 
any number which satisfies 

a^ < G-(ao,ai,...,a^) \respectivelyG-(ao,a\,...,am) < cr^], 
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then there is an eigenvalue /JL of Afar some N such that 

a^ < fjL (respectively JJL < a^). 

We would like to emphasize the if and only //"nature of Propositions 5 and 6 and 
the optimality of Proposition 7 which indicate that a+ and a_ are crucial to the 
stability issues of our interest. 

PROPOSITION 8. When m = 2, the stability indicator functions are given by 

I
-go - 2gi + 2\gi\, when g2>0or {g2 < 0 

and\gi/g2\ >4}, 
-^0 - 2gi - 4g2 - ^?/(4g2), when g2 < 0 

and\gi/g2\ <4 , 
r -go - 2gi - 2\gi\, when g2 <0 {or g2 > 0 

cr-igo. gu82) - 1 , ^ , _ 2g, - 4g2 - gi/(4g2), when g2 > 0 
and\gi/g2\ >4}, 
len g2 > 0 
and\gi/g2\ < 4 . 

(124) 

EXAMPLE 2. For a Gaussian-like convolver [42,43], 

^ i > 0 , g 2 < 0 , gi=4\g2l (125) 

Propositions 5 and 8 tell us that the stability-regularity is equivalent to 

cr-\-(gO, gugl) = -go < 0, (126) 

i.e., passivity of go- Furthermore, Proposition 6 says that the network is spatially 
stable iff 

cr-i-igo, gu gl) = -go < 0, 

i.e., iff go is strictly passive. Thus go can be safely varied over any range as long 
as it is positive. 

Remark 5. (i) Even when gi as well as g2 is negative, a network can satisfy 
the stability-regularity or/and the spatial stability condition provided that go is 
"sufficiently" passive because 

/ . _ f-<^o + 4|gi|, when |gi/g2l > 4, 
cr^^go, gu g2) - [ _^o _ 2gi - 4g2 - gj/(4g2), when \gi/g2\ < 4. 

(ii)Ifg2 >0,then 

cr-{-(go.gug2) = I _ 
-go, when gi > 0, 

go+4 |g i | , whengi < 0. 
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(iii) Since Q is quadratic, conditions (ii) and (iii) of Proposition 3 are sharp-
ened, respectively, to the following: 

(ii)' F has no simple nonreal eigenvalue on the unit circle, 
(iii)' Q has no real zero on (—2, 2). 

It follows Proposition 5 (resp. Proposition 7) that the set of parameter values 
(^0, gi^gi) for which stability-regularity and the spatial stability hold are given, 
respectively, by 

SR := {(go, gu g2)\cr+(go, gu gi) < 0, go + 2gi -h 2g2 > 0}, (127) 

SS := {(go, gu g2)W+(go, gugi) < 0, go + 2gi + 2g2 > 0}. (128) 

We will now give a fact which, as its by-product, explains why our numerical 
experiments suggested SR = SS, which is untrue. Let 

G := {(go.gi,g2)\g2 < 0}, 

on which our numerical experiments were performed. 

PROPOSITION 9. (i) meas[5'5' n G] > 0. 

(ii) meas[(5'/? — SS) fl G] = 0, where meas[. ] denotes the Lebesgue measure 
onR^. 

This proposition explains why our experiments suggested SR = SS for a 
Lebesgue measure zero subset is "hard to hit." 

Conjecture 1. Proposition 9 will be true for a general m. 

Neural networks with m = I aiQ used in an extensive manner [3]. Although 
those networks contain only positive conductances (go, gi > 0), it would be 
worth clarifying the temporal as well as the spatial stability issues when gi < 0 
or go < 0. 

PROPOSITION 10. When m = I, the stability indicator functions are given 
by 

cr+(go,gl) = - g o - 2 g i + 2 | g i | , 

o^-(^0,^l) = -go-2gi-2\gi\. 

EXAMPLE 3. When go > 0 but gi < 0, the network is temporally (resp. 
spatially) stable iff 

-^0 + Mgi I < 0 (resp. - go + 1̂ 11 < 0). 

Remark 6. The reader is referred to [40] for the proofs and explicit formula 
form = 3. 
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D. TRANSIENTS 

This section gives an estimate of the "processing speed" of vision chips. 

COROLLARY 1. Consider the temporal dynamics Eq. (84) with v(0) = 0. If 
Eq. (121) is satisfied and B is positive definite, then the solution y{t) ofEq. (84) 
satisfies the following bounds: 

^ [ e x p ( ^ r - l ) ] | | B - i u | | < ||v(r)|| < ^ [ e x p ( ^ . - l ) ] l | B - i u | | . (129) 

Remark 7. (i) The above corollary is obtained by the analysis of the capaci-
tance matrix B in Eq. (83) using the method used for analyzing A. 

(ii) The result tells us how fast/slow a step response of Eq. (84) grows. 
Although there is no precise concept of the time constant RC for Eq. (84) 
(dim V ^ 1 ) , Eq. (129) can be interpreted as 

ri- rjA. 
- - ^ < "time constant" < - - ^ . (130) 

CT- a-^ 

(iii) Let us compute the upper bound in Eq. (130) for m = 2. It is not difficult 
to show that 

r]^(co,c\,C2) = 
Co + 2ci + 2\ci\, whenC2 < 0orC2 > 0 

and \ci/c2\ > 4, 
Co + 2ci + 4c2 + Cj/4c2, when C2 > 0 and \ci/c2\ < 4. 

If ^0, gi, CO, ci,C2 > 0, then it follows from Eq. (124) and 

(co + 4ci)/go, when \ci/c2\ > 4, 
^+/a+ - rj^/go - I (CQ + 2ci + 4c2 + cf/4c2)/^o, when \ci/c2\ < 4. 

Since it is difficult to estimate parasitic capacitances accurately, this is as much as 
one can tell from the corollary. 
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L INTRODUCTION 

Pattern recognition is an area where neural networks have been widely applied 
with much success. The network of choice for pattern recognition is a multilay-
ered feedforward network trained by a variant of the gradient descent method 
known as the back-propagation learning algorithm. As more applications of these 
networks are found, the shortcomings of the back-propagation network become 
apparent. Two drawbacks often mentioned are the need to determine the archi-
tecture of a network before training can begin and the inefficiency of the back-
propagation learning algorithm. Without proper guidelines on how to select an 
appropriate network for a particular problem, the architecture of the network is 
usually determined by trial-and-error adjustments of the number of hidden layers 
and/or hidden units. The back-propagation algorithm involves two parameters: the 
learning rate and the momentum rate. The values of these parameters have signif-
icant effect on the efficiency of the learning process. However, there have been no 
clear guidelines for selecting their optimal values. Regardless of the values of the 
parameters, the back-propagation method is generally slow to converge and prone 
to get trapped at a local minimum of the error function. 

When designing a neural network system, the choice of a learning algorithm 
for training the network is very crucial. As problems become more complex, 
larger networks are needed and the speed of training becomes critical. Instead 
of the gradient descent method, more sophisticated methods with faster conver-
gence rate can be used to speed up network training. In Section II of this chapter. 

Image Processing and Pattern Recognition 
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 2 8 7 
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we describe a variant of the quasi-Newton method that we have used to reduce 
the network training time significantly. 

Another important aspect of the feedforward neural network learning is the se-
lection of a suitable network architecture for solving the problem in hand. There 
is no doubt that the performance of a neural network system can be greatly af-
fected by the network architecture. When building a neural network system, there 
are several components of the network that need to be determined: 

1. the number of input and output units, 
2. the number of hidden layers, 
3. the number of hidden units in each layer, and 
4. the connectivity patterns among the units in the network. 

Most of the remaining sections of this chapter are devoted to the issues of 
finding the optimal number of units in each layer of a feedforward network and of 
finding the relevant connectivity patterns among these units. In order to achieve 
optimal performance, network systems designed for different problem domains 
require different network architectures. We describe some algorithms that have 
been developed to automatically construct a suitable network architecture. These 
algorithms have been shown to be very successful in finding appropriate network 
architectures for a wide variety of problems. 

We shall consider only a particular network architecture, namely, layered feed-
forward networks. Layered feedforward networks are among the most commonly 
used network architectures at present. We also restrict the number of hidden lay-
ers to one and hence we consider feedforward networks with only three layers of 
units. Theoretically, it has been proved that a network with a single hidden layer 
is capable of forming arbitrary decision boundaries if there are a sufficient num-
ber of units in the hidden layer [1,2]. Experimental studies have also shown that 
there is no advantage to using four-layered networks over three-layered networks 
[3]. Section III discusses the selection of the right number of output units in a net-
work. Neural network construction algorithms which dynamically add units in the 
hidden layer are described in Section IV. By making use of the cross-entropy error 
measure, we show how the addition of a hidden unit to the network is guaranteed 
to decrease the error function. We also present the results of applying a neural 
network construction algorithm on the well-known spiral problem [4]. Section V 
presents an algorithm that we have developed to determine the required number of 
input units by pruning. Section VI presents an algorithm that removes redundant 
or irrelevant connections from a fully connected network. Section VII discusses 
the potential applications of the techniques for constructing a neural network sys-
tem discussed in this chapter to data mining. Data mining is a multidisciplinary 
field which in recent years has been attracting a great deal of attention from re-
searchers in data base, machine learning, and statistics. It is concerned with dis-
covering interesting patterns that are hidden in data bases. In this section, we 
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discuss how a neural network system can be used as a tool to extract rules that 
distinguish between benign and malignant samples in a breast cancer data set. 
Finally, a summary is given in Section VIII. 

We briefly describe now our notation. For a vector x in the n-dimensional real 
space W, the norm \\x\\ denotes the Euclidean distance of x from the origin, that 
is, ||x|| = (Y4=i ^f)^'^' Fo^ a i^atrix A e R'"''", A^ will denote the transpose 
of A. The superscript T is also used to denote the scalar product of two vectors 
in R", that is, x^y = Yl^^i ^tyi- ^^^ ^ twice-differentiable function f(x), the 
gradient of f(x) is denoted by V/(jc), while its Hessian matrix is denoted by 

vV(^). 

11. QUASI-NEWTON METHODS 
FOR NEURAL NETWORK TRAINING 

The problem of training a feedforward neural network can be cast as an un-
constrained optimization problem. Consider the three-layered network with one 
output unit depicted in Fig. 1. The optimization problem that is usually solved 
when training this network is the minimization of the squared-error function [5]: 

/(u;, ^ V, r) := V or ya((xYwJ - ^^W - r - rM , (1) 

where 

h = integer number of hidden units, 
k = fixed integer number of given samples jc' G R", 
r̂  = Oor 1 target value for xS / = 1, 2 , . . . ,^ , 
r = real number threshold of output unit, 

yj = real number weights of outgoing arcs from hidden units, 
7 = l ,2 , . . . , / z , 

^j = real number thresholds of hidden units, 7 = 1, 2 , . . . , /i, 
w^ = Ai-vector weights of incoming arcs to hidden units, j = 1, 2 . . . , /z, 
x^ = given n-dimensional vectors samples, / = 1, 2 , . . . , /:, 

or(§) = 1/(1 + ^~^) is the sigmoid activation function. 

If we let z = (if, ^, i;, r) , then given an initial approximation z^, each epoch 
of the back-propagation method can be viewed as an attempt to minimize an ap-
proximation of the function f{w) by the linear function 

fk{z) = f{z') + Vf{z'Y{z-z% 
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Output Layer 

Hidden Layer 

Input Layer 

Input: X 

Figure 1 A three layer feedforward neural network. 

subject to the constraint ||z — z^ || < 1. The solution of this auxiliary problem is 

^-z* = -V/(zV|V/(z*)|. 

The steepest descent algorithm proceeds by performing a line search along the 
descent direction — V/(z^)/| |V/(z^)| | , or equivalently along the direction of 
the negative of the gradient a.tz^,d^ = —^fiz^)- The algorithm thus generates 
the sequence 

where k^ is a solution of the line search problem 

min fiz^+Xd^), (2) 

The step length 7^ is commonly referred to as the learning rate and the simplest 
variant of the steepest descent method holds the value of this step length constant, 
i.e., }} = k, Wk for some small positive value of X. 

A momentum term can be added when updating z to include contribution from 
the previous iteration. With a momentum parameter a e (0, 1), the new weight 
^^+1 is computed as 

^^+1 =^^+X^j^+c^(^^ ^/:+l - ^k _L. \k^k _^^(^k _^k-\\ 

Newton's method is obtained when a quadratic approximation instead of a lin-
ear approximation of the function f{z) is used. For Newton's method, the next 
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approximate solution is obtained as a point that minimizes the quadratic function 

fkii) = f{z') + V/(z*)^(z -z') + \{z- z'Yv^f{z'){z - z% 

Hence, we obtain the sequence 

The step length X^ can also be incorporated in the method to generate the damped 
Newton sequence 

z'^+'=z'->}[V^f{z')]-'vf{z% 

where X^ is a solution of the line search problem (2) with the search direction 
d^ = -[V^/(z^)]~^ V/(z^). The main advantage of the Newton's method is that 
it has a quadratic convergence rate, while the steepest descent method has a much 
slower, linear convergence rate. However, each step of the Newton's method re-
quires a large amount of computation. Assuming that the dimensionality of the 
problem is n, then an 0{n^) floating point operation is needed to compute the 
search direction d^. 

A method that uses an approximate Hessian matrix in computing the search 
direction is the quasi-Newton method. Let B^ be an n x n symmetric matrix that 
approximates the Hessian matrix V^/(^^); then the search direction for the quasi-
Newton method is obtained by minimizing the quadratic function 

fkiz) = f{z') + Vfiz'Yiz - z') + i(2 - z'fB>^{z - z% 

If B^ is invertible, then a descent direction can be obtained from the solution of 
the above quadratic program: 

d^:=z-z^ = -{B^)~^Vf{z^). (3) 

Since we would like to have the matrix B^ to approximate the Hessian of the 
function f(z) at z^, it needs to be updated from iteration to iteration by incorpo-
rating the most recent gradient information. One of the most widely used quasi-
Newton methods is the BFGS method, where the matrix B^ is updated according 
to the following equation: 

j,M r,k B'^SHs'fB'^ yHy'f ... 

where 
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This updating formula was independently proposed by Broyden, Retcher, Gold-
farb, and Shanno [6-9]. 

The BFGS method is an example of a rank-2 method, since the matrix B^^^ 
differs from the matrix B^ by a symmetric matrix of rank at most 2. A quasi-
Newton method that updates the matrix B^ by adding only a rank-1 matrix is the 
SRI (symmetric rank-1) method. It updates the matrix B^ as follows: 

. .+1 _r,k_ (y'-B'8')(y'-B'8'f 

(yk_Bk8^)T8f' ' ^^^ 

It can be shown that the matrix B^^^ defined by either the BFGS update (4) or 

the SRI update (5) satisfies the quasi-Newton condition 

A minor modification to the BFGS update (4) was proposed by Biggs [10]. 
A scalar variable t^ is introduced into the update formula as follows: 

where f * is defined by 

2 
r* = 

(^Sk^Tyk 
[3/(z*) - 3/(z*+i) + (5*)^(v/(z*) + 2V/(2*+l))] . (7) 

It was shown that for some functions, this update resulted in faster convergence 
than the original BFGS update where t^ = \. 

The search direction d^ given by Eq. (3) can be obtained by either 

1. computing the inverse of the matrix B^ and then multiplying the inverse by 
the negative of the gradient, or 

2. finding the Cholesky factorization of B^, that is, computing the lower 
triangular matrix L such that LL^ = B^ and then computing the direction 
d' via backward and forward substitutions. 

For a function with n variables, either one of these two approaches requires an 
0(n^) floating point operation. 

This cost of computing d^ can be reduced to 0(n^) if, instead of B^, the in-
verse of the matrix is kept. Suppose, at iteration k, we have a matrix H^ that is 
equal to (B^)~^; then the search direction d^ is equal to 

J^ = -H^Vfiz^). (8) 
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For the SRI method, it can be easily verified that if we define 

then //^+^ = (B^+i)-^ where 5^+^ is the update defined by Eq. (5). Similarly, 
we can show that the inverse of the matrix B^~^^ for the BFGS update given by 
Eq. (6) is 

~\ (5^)^yV V (8'^Vy^J '^ t^(8f^)Ty^' ^ ^ 

Given a search direction d^, an iterative one-dimensional optimization method 
can be applied to find a step length X that solves the line search problem (2). How-
ever, this procedure may require an excessive number of function and/or gradient 
evaluations. In fact, it is well known [11, 12] that often inexact line searches are 
preferable to exact line search (2). A step length Â  > 0 is considered acceptable 
if it satisfies the following two conditions: 

fiz'+X'd'^) < f{z')+ciX'^{d'fvf{z'), (11) 

(d'Yvfiz' + X>^d') > C2{d'fvf{z% (12) 

where ci and C2 are two constants such that 0 < ci < C2 < 1 and ci < 0.5. The 
condition (11) is to ensure that the step length k^ produces a sufficient decrease in 
the value of the function f(z) at the new point z^~^^, while the second condition 
is to ensure that the step length is not too small. The values of ci and C2 that have 
been suggested are 0.0001 and 0.9, respectively [13]. An iterative algorithm for 
finding a step length k^ that satisfies both conditions (11) and (12) is given in [13]. 

A quasi-Newton method that allows a choice between a rank-1 update and a 
rank-2 update at each iteration is the SRl/BFGS algorithm [14]. This method is 
shown to be faster than the standard BFGS method for a wide range of nonlinear 
optimization problems. The SRl/BFGS quasi-Newton method with inexact line 
search can be summarized as follows. 

SRl/BFGS algorithm for minimizing / ( z ) 

Step 0. Initialization. 
Choose any ẑ  as a starting point. Let H^ = I,SQtk = I. Let € > 0 
be a small terminating scalar. 

Step 1. Iterative Step. 

• Check for convergence: 
If IIV/(z^)|| < € max{l, Ijẑ jl} then Stop. 



294 Rudy Setiono 

Otherwise 

1. Compute the search direction 

2. Calculate a step length k^ such that both conditions (11) and 
(12) are satisfied and let 

3. Compute the value of t^ by Eq. (7). 

ifr^ < 0.5 then set f̂  = 0.5, 

else if t^ > 100 then set t^ = 100. 

4. If (5^ - H^y^fy^ > 0, then compute H^+i using Eq. (9), 

else compute H^^^ using Eq. (10). 

5. Set A: = A: + 1 and repeat Step 1. 

If the matrix H^ is positive definite and (8^ - H^y^)^y^ > 0, then the matrix 
//^"^^ computed using the SRI update (9) will also be positive definite. If the 
matrix H^ is updated using the BFGS update (10) and if the condition 

t\6^fy^ > 0 

holds, then H^^^ will also be positive definite. The line search condition (12) and 
t^ in [0.5, 100] guarantee that t^{6^)^y^ > 0 holds at every iteration. It is im-
portant to have positive definite matrix H^ to ensure that direction d^ is a descent 
direction. 

An iterative line search procedure may require more than one function and gra-
dient evaluation before a step length X̂  that satisfies conditions (11) and (12) can 
be found. Hence, in general the total number of function and gradient evaluations 
required by the SRl/BFGS algorithm to find a minimum of the error function 
is more than the total number of iterations. While the total number of iterations 
reflects the total number of times that the weights of the network are updated, 
the total number of function/gradient evaluations is a more accurate indication of 
the cost of training the network. Since the gradient of the function is always com-
puted when the function value is computed and vice versa, the number of function 
evaluations is equal to the number of gradient evaluations. 

We note that for the steepest descent method with a fixed step length, only two 
n-dimensional vectors need to be stored: the current estimate of the minimum z^ 
and the gradient of the function at this point, Vf{z^). When a line search pro-
cedure is implemented in conjunction with this method, two more n-dimensional 
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vectors are needed by the procedure to store the new estimate of the minimum: 
z^ — kVf(z^) for some A, > 0 and the gradient at this new estimate. 

In addition to these four n-dimensional vectors, the quasi-Newton method re-
quires extra storage for holding the vector H^y^ and the matrix H^. Since this 
matrix is symmetric, an additional n(n + l) /2 real words of storage will be 
sufficient. Hence, the total storage requirement for the quasi-Newton method is 
n(n + l l ) / 2 plus several scalar variables for storing the various constants and 
scalar products. Although this 0(n^) storage requirement and the O(n^) floating 
point operations needed at each iteration to update the matrix H^ may seem to be 
major drawbacks of the quasi-Newton method, our experience with this method 
indicates that the number of iterations and the number of function and gradient 
evaluations required by this method are much fewer than those of the steepest de-
scent method. The conjugate gradient method, which has also been used for neural 
network training [15] requires an 0(n) storage space. If the storage space is lim-
ited, this approach is suitable for a network with many units. However, in general, 
quasi-Newton methods converge faster than the conjugate gradient method [12]. 
The fast convergence of the quasi-Newton method should make it the method of 
choice for training a neural network when the storage space is not a restricting 
factor. 

III. SELECTING THE NUMBER OF OUTPUT UNITS 

The necessary number of output units in a network is usually the easiest to 
determine. For a pattern classification problem to distinguish between patterns 
from two classes, a single output unit would suffice. Each pattern that belongs 
to one class can be assigned a target of 1, while a pattern that belongs to the 
other class can be assigned a target of 0. If the classification involves patterns 
from N > 2 classes, a commonly used approach is to have Â  output units. Each 
pattern is labeled by an A^-dimensional binary vector, where Â  — 1 bits are set to 
zero and exactly one bit is set to 1. The position of the 1-bit indicates the class to 
which the pattern belongs. When N is large, instead of having an A^-dimensional 
target output for each pattern, we could use a binary encoding to represent class 
membership. Using binary encoding, only flog Â l output units would be needed. 
With the smaller number of output units, however, more hidden units may be 
needed to represent the mapping of the input patterns and their binary encoded 
class labels. 

The number of output units is generally much fewer than the number of in-
put or hidden units. For applications other than pattern classification, however, a 
large number of output units may be needed. One such applications is image com-
pression. Image compression using neural networks with one hidden layer can be 
considered as a learning problem where the target to be learned is actually the 
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same as the input. Typically, an image is divided up into small patches of 4 x 4 
or 8 X 8 pixels [16-18]. A patch of 8 x 8 pixels would require 64 input units 
and the same number of outputs. The connections between the input units and the 
hidden units act as an encoder which compresses the image, while the connec-
tions between the hidden units and the output units act as a decoder which will 
be needed to recover the original image. The activation values of the hidden units 
thus represent the coded image. These activation values, which are real numbers 
in the interval [0,1] or [— 1,1] depending on the activation function used, are dis-
cretized into a small number of bits. If the number of bits is n, then the number 
of distinct activation values in a hidden unit can be up to 2". A small number 
of hidden units and a small number of bits used to represent the discretized hid-
den unit activation values result in a high compression ratio. For example, if four 
hidden units are present in the network and four bits are used to represent the 
activation values of an 8 x 8 input patch at each hidden unit, a compression ratio 
of (8 X 8)/(4 X 4) = 4 is achieved. Hence, it is desirable to have a network with 
a small number of hidden units and a small number of distinct discretized hid-
den unit activation values to achieve a high degree of compression. The goal of 
achieving a high compression ratio, however, must be balanced against the quality 
of the decoded image. 

IV. DETERMINING THE NUMBER 
OF HIDDEN UNITS 

While it is known that a network having a single hidden layer is capable of 
approximating any decision boundary, in general, it is not known how many units 
in the hidden layer are needed. The problem of selecting an appropriate number of 
hidden units in a network is a very challenging one. If the network has too many 
hidden units, it may overfit the data and result in poor generalization. On the other 
hand, a network with too few hidden units may not be able to achieve the required 
accuracy rate. 

Two different approaches have been described in the literature to address the 
difficulty of finding the right number of hidden units of a network. The first ap-
proach begins with an oversized network and then prunes redundant units [ 19-22]. 
The second approach begins with a small network with one or two hidden units 
and adds more units only when they are needed to improve the learning capability 
of the network. 

Algorithms which automatically build neural networks have been proposed by 
many researchers. These methods include the cascade correlation algorithm [23], 
the tiling algorithm [24], the self-organizing neural network [25], and the up-
start algorithm [26]. For a given problem, these algorithms will generally build 
networks with many layers. The dynamic node creation method proposed by 
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Ash [27] is an algorithm which constructs neural networks with a single hidden 
layer. The method creates feedforward neural networks by sequentially adding 
hidden units to the hidden layer. 

The neural network construction algorithm FNCAA [28] is similar to Ash's 
dynamic node creation algorithm. It starts with a single hidden layer network 
consisting of a single hidden unit and finds a set of optimal weights for this net-
work. If the network with these weights does not achieve the required accuracy 
rate, then one hidden unit is added to the network and the network is retrained. 
The process is repeated until a network that correctly classifies all the input pat-
terns or meets some other prespecified stopping criteria has been constructed. The 
outline of the algorithm is as follows: 

Feedforward neural network construction algorithm (FNNCA) 

1. Let h be the initial number of hidden units in the network. Set all the initial 
weights in the network randomly. 

2. Find a point that minimizes the error function (1). 
3. If this solution results in a network that meets the stopping condition, then 

stop. 
4. Add one unit to the hidden layer and select initial weights for the arcs 

connecting this new node with the input units and the output unit. Set 
h = h -\- 1 and go to Step 2. 

The difference between the dynamic node creation algorithm and FNNCA 
lies in the training of the growing network. In the dynamic node creation algo-
rithm, the network is trained using the standard back-propagation method, while 
in FNNCA the growing network is trained by the SRl/BFGS method described 
in the previous section. 

Interesting results were obtained when FNNCA was applied to solve the Â -
bit parity problem. This problem is a well-known difficult problem that has often 
been used for testing the performance of a neural network training algorithm. The 
input set consists of 2̂^ patterns in «-dimensional space and each pattern is an 
n-bit binary vector. The target value t^ is equal to 1 if the number of one's in the 
pattern is odd and it is 0 otherwise. To solve this problem by a feedforward neural 
network, the number of hidden units is usually set to Â , the same as the number of 
input units. The initial number of hidden units in FNNCA was set to two. For the 
4-bit parity problem, FNNCA terminated after 105 iterations and 132 function/ 
gradient evaluations. The final number of hidden units was three. The algorithm 
required 168 iterations with 222 function/gradient evaluations to construct a net-
work having four hidden units that correctly classified all 32 inputs of the 5-bit 
parity problem. A network with five hidden units was also found by the algo-
rithm for the 7-bit parity problem after 943 iterations and 1532 function/gradient 
evaluations. Using the dynamic node creation algorithm, the 4-bit parity problem 
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required more than 4000 iterations and the final network constructed had four 
hidden units. 

Instead of the sum of the squared-error function (1), any function that attains 
its minimum or maximum when the output value from the network for each input 
pattern is equal to its target value can be used to compute these weights. The 
maximum likelihood neural network construction algorithm (MLNNCA) [29] is 
similar to FNNCA except that it trains the growing network by minimizing the 
cross-entropy error function 

TmnF^(y,z) :=-T\ogS^ - V l o g ( l - S'), (13) 

where 

S^ = the predicted output for input jcS a(5]]/=i V^((x^)^u;^)i;-^), 
ir{r]) = the hyperbolic activation function, {e^ — e~^)/(e^ + e~^), 

1= {i\t' = i]. 

The superscript h on the function F has been added to emphasize that the 
function corresponds to a network with h hidden units. The components of the 
gradient of the function F^{w, v) are as follows: 

dF^(w,v) 

'< -i 
= - ^ [(1 - S') X i;'" X (1 - ir{x^w'^f) x x^] 

4- J2 [^' X i;'" X (1 - xlr{x'w'^f) x x^] 
iix 

k 

=1 

dF^(w,v) 
= - ^ [ ( 1 - S^) X ir{x'w'^)] + J2[S^ X xlf{x'w"')] 

ieX iiX 
k 

for all m = 1, 2 , . . . , /i and £ = 1, 2 , . . . , n, with the error e^ = S^ - t\ 
Let (uJ, iJ) € IR('^+1)X^ be a point such that VF^(w, v) = 0 and suppose that 

the network with h hidden units corresponding to this set of weights does not meet 
the stopping condition of the network construction algorithm. Let w^"^^ G R" be a 
randomly generated vector; it is clear that F^'^^ (W, w^'^^, U, 0) = F^(w, v). We 
wish to find v eR such that the value of the cross-entropy error function for the 
network with an additional hidden unit is less than that of the original network; 
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that is, 

The variable v represents the weight of the connection from the new hidden unit 
to the output unit. For simpHcity of derivations, we hold w^'^^ constant and define 
a new function of a single variable 

= -J2^og[a{A'+S^v)] - ^ l o g [ l -a(A^' +5^1;)], 
ieX i^X 

where 
h 

A^ = y^\l/{x^wJ)vJ, 
7 = 1 

It follows that the first and second derivatives of this function are 

ieX i^X 

k 

i=l 

Hence we have that the derivative of this function at zero is 

ieX i^X 

k 

i=l 

and that the second derivative is bounded above as follows: 

\T\V)\ <k/4, Vv eR. 

By definition of the function ^ , we have that 

F^^^w^w^-^^v.Xv) =J='(kv). 

From the second-order Taylor expansion of this function, we have 

J=-(Xv) = jr(0) + XJ^\0)v + ^(kvfj^\pkv), 0 < p < 1. 
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By letting v = —^(0), we obtain 

The inequality above is obtained from the fact that the second derivative T" (V) is 
bounded by k/4. Now let us set X = 4/A:; we have 

= HO) -

= F^{w,v) 

Y,e'f{x'w^^^) 
/=i 

Y,e'ylr{x'w^^^) 
i = i 

For a randomly generated w^^^, it is very unlikely that the sum Y^i^i e^ x 
ylrix'w^""^) will be zero. Thus, even before the new expanded network is re-
trained, if we pick w^'^^ randomly and set v^^^ = - 4 ( ^ f ^ i e^\l/(x^w^^^))/k, 
there is already a decrease in the function value. 

If the sum of the squared-error function (1) is used for training the network in-
stead of the cross-entropy error function (13), then the function !F{v) will become 

i \ 2 
^(i;) = ^ ( a ( A ^ + 5 ^ ' i ; ) - ^ 0 

The derivative of this function at zero is 

k 

^ ( 0 ) = 2J2[^' X ^ ( ^ 0 X (1 - CT(A^)) X 8']. 

(14) 

(15) 
i=l 

Due to rounding error, the product e^ a (A^) (1 —a (A^)) is often zero. This happens 
when each of the network outputs 5̂  is either very close to zero or very close 
to 1. When the training of a network with h hidden units converges to a point 
(uJ, v) such that e^ is equal to 0, or 1, or —1 for all / = 1,2, . . . ,^, then the 
derivative (15) will be zero and the point (w, w^^^, U, 0) with any w^^^ e W is 
in fact a local minimum of the function f{w,v) for a new expanded network with 
h-\-\ hidden units. Since there is no decrease in the function value, the addition 
of a new hidden unit will be futile and the recognition rate of the network will 
not improve. It has also been observed that neural network training with a fixed 
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number of hidden units requires less iterations if one substitutes the cross-entropy 
error function (13) for the sum of the squared-error function [4, 30]. 

MLNNCA was run 50 times using 50 different random starting points to solve 
the A -̂bit parity problems for Â  ranging from four to eight. The minimum number 
of hidden units in the constructed networks was N /2-\-\ for even A/̂ , and (A^+l)/2 
for odd N. Not all runs ended with the minimal network. However, regardless of 
the starting random weights, the algorithm was always successful in constructing 
a network that correctly classified all the input patterns. 

The algorithm was also tested on the spiral problem [4]. The problem of dis-
tinguishing two intertwined spirals is a nontrivial one. The two spirals shown in 
Fig. 2 consist of a total of 970 patterns. Solutions to the spiral problem have been 
obtained by feedforward networks with several hidden layers having connections 
connecting every layer to all succeeding layers [4], by networks where there are 
connections among hidden units such as those generated by the cascade corre-
lation algorithm [23], or by networks with connections among hidden units and 

Figure 2 The spiral patterns. Reprinted with permission from Carfax PubUshing Limited. 
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shortcut connections from the input units to the output units [31], Solutions from 
the standard single hidden layer networks have been reported only for a substan-
tially reduced problem [32]. 

FNCAA was run 10 times to solve the spiral problems. It constructed networks 
with a final number of hidden units ranging from 28 to 38. A two-dimensional 
classification graph of one of the networks is shown in Fig. 3. The graph shows 
the classification of the network at different growing stages. In each square, black 

(c) (d) 
Figure 3 Evolution of a network with 34 hidden units. Classification graphs of a network with (a) 
4 hidden units (b) 12 hidden units (c) 22 hidden units (d) 34 hidden units. Reprinted with permission 
from Carfax Publishing Limited. 
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represents an activation value of 0, white represents 1, and grey represents inter-
mediate values between 0 and 1. The final number of hidden units for this partic-
ular run is 34. The classification graph of the network with 34 hidden units shows 
that most of the points in the square enclosing the training data are classified as 
Oorl . 

V. SELECTING THE NUMBER OF INPUT UNITS 

Finding the optimal number of input units is equivalent to selecting the set 
of attributes of the patterns that are useful for classification. While a great dea 
of research has been focused on algorithms that optimize the number of hidden 
units, there has not been much work that addresses the issue of optimal number 
of input units of a neural network classifier. 

It is quite common that data sets collected contain many attributes that are 
redundant and/or irrelevant. By excluding these attributes from the classification 
process, a classifier with higher generaUzation capability, i.e., better predictive 
accuracy on new/unseen patterns, can often be found. The dimensionality of pat-
terns with attributes that are highly correlated may be reduced with little or no 
loss of information. Hence, by collecting only values of the relevant attributes, 
the cost of future data collection may also be reduced. 

Feature selection aims at selecting a subset of the attributes that are relevant 
for classification. Similar to selecting an optimal number of hidden units, there are 
two approaches that have been applied in feature selection. One can begin with 
no feature and start adding the relevant features one at a time, or one can begin 
with the entire feature set and remove those irrelevant features one by one. 

Setiono and Liu [33] propose an algorithm for determining the relevant subset 
of attributes for classification using neural networks. A network is trained with the 
complete set of attributes as input. For each attribute At in the network, the ac-
curacy of the network with all the weights of the connections associated with this 
attribute set to zero is computed. The attribute that gives the smallest decrease in 
the network accuracy is removed. The network is then retrained and the process is 
repeated. To facilitate the process of identifying the irrelevant attributes, the net-
work is trained to minimize an augmented error function. The augmented error 
function consists of two components. The first component is a measure of net-
work accuracy and the second component is a measure of the network complexity. 
The accuracy of the network is measured using the cross-entropy error function, 
while the complexity of the network is measured by a penalty term. A network 
weight with a small magnitude incurs almost no penalty, while a weight that falls 
in a certain allowable range incurs an almost constant penalty. The penalty of a 
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large weight that falls outside this interval increases as a quadratic function of its 
magnitude. 

Relevant and irrelevant inputs are distinguished by the strength of their con-
nections from the input layer to the hidden layer in the network. The network 
is trained such that the connections from the irrelevant inputs to the hidden layer 
have small magnitude. These connections can be removed from the network with-
out affecting the network accuracy. Since we are interested in finding the smallest 
subset of the attributes that still preserves the characteristics of the patterns, it 
is important that the network be trained such that only those connections from 
the necessary inputs have large magnitude. To achieve this goal, a penalty term 
P(w) is added for each connection from the input layer to the hidden layer of the 
network. It is defined as follows: 

pw=MEi: p{<) J\2 

l\2 ;^;^ i+;8K) 
+̂2 EE(-iy (16) 

61 > €2 > 0 are penalty parameters and ^ is a positive constant. 
There are two components of the penalty function P{w)\ the first component 

is to discourage the use of unnecessary connections and the second component is 
to prevent the weights of these connections from taking very large values. These 
two components have been used individually in conjunction with many pruning 
algorithms proposed in the past few years [34]. 
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Figure 4 Plot of the function f{w) with 6i = lO"!, €2 = lO"'*, and /8 = 10. 
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A weight with small magnitude is encouraged to converge to zero as reflected 
by the steep drop in the function value near zero (Fig. 4). On the other hand, 
the weights of the network are prevented from taking values that are too large 
as reflected by the quadratic component of the penalty function which becomes 
dominant for large values of w. 

Combining the cross-entropy error function and the penalty function, we min-
imize the following function during network training: 

\i=ip=i I 

where C is the number of output units in the network, and 5 ,̂ and f^ are the 
network output and the target output for pattern x^ at output unit p, respectively. 

Features are selected for removal based on their saliency. Several saliency mea-
sures are reported by Belue and Bauer [35]. These measures of saliency of an at-
tribute involve the derivative of the network error function, or the weights of the 
network, or both. In order to obtain a confidence interval for the mean value of 
the saliency of the attributes, the network needs to be retrained repeatedly starting 
from different random weights. It is suggested that the network be trained at least 
30 times in order to find a reliable mean and standard deviation of the saliency 
measure. As network training can be very slow, the requirement that the network 
be trained many times makes their proposed scheme computationally unappeal-
ing. Instead of using a saliency measure that is a function of the network weights, 
we use a very simple criterion to determine which attribute is to be excluded from 
the network. This criterion is the network accuracy on the training data set. Given 
a trained network with the set of attributes A = {Ai, ^42,. . . , AN] as its input, 
we compute the accuracy of the networks having one less attribute, i.e., the set 
-4 — {Ak}, for each k = 1,2,,.., N,is an input attribute set. The accuracy rates 
are computed by simply setting the connection weights from input attribute Ak of 
the trained network to zero. The accuracy rates of these networks are then ranked. 
Starting with the network having the highest accuracy, the set of attributes to be 
retained is searched. The steps of the algorithm are outlined below. 

Neural network feature selection algorithm 

1. Let A = {Ai, . 42 , . . . , ^A^} be the set of all input attributes. Separate the 
patterns into two sets: the training set Si and the cross-validation set 52. 
Let AT?, be the allowable maximum decrease in accuracy rate on the set ^2 
and let €i (k) and €2(k) be the penalty parameters [cf. Eq. (16)] for the 
connections from input Ak to the hidden layer, for all A: = 1,2,..., N. 
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2. Train network J\f to minimize the augmented error function 0{w,v) with 
the set A as input such that it achieves a minimum required accuracy rate 
on the set Si. Let TZ^ be the accuracy of the network on the set 52. 

3. For all fe = 1, 2 , . . . , N, let A/it he the network whose weights are set as 
follows: 

(a) From all inputs except for Ak, set the weights of A4 equal to the 
weights of A/̂ . 

(b) Set the weights from input Ak to zero. 

Compute TZl and TZl, the accuracy rates of network Afk on the sets 5i and 
«S2, respectively. 

4. Rank the networks A4 according to their accuracy rates: 
^j^y Let TZl^^ be the average of these rates. 

(a) SetA:=L 
(b) Retrain the network A/̂ (it). 
(c) Let5 = (7^2-7^^(^p/7^2. 
(d) lf8< ATI, then 

• Update the penalty parameters for all attributes j ^r{k): 

- For each input attribute Aj with network accuracy rate 
n] > n\,,. set 6i0-) := 1.161(7) and62(;) := 1.1620'). 

- For each input attribute Aj with network accuracy rate 
n) < nl,,, set 610') := 6i0-)/l . l and 62(7) := ^2(7)/l.l. 

• Reset the input attribute set to ^ — {Ar(k)}, and setN:=N — l. 
• Set n^ := max{7e^, 7e^(^)}. 

Go to step 3. 

(e) If ^ < AT, set A: := A: + 1 and go to Step 4(b). 
Else stop. 

The available patterns for training are divided into two sets, Si and 52. The 
set Si consists of patterns that are actually used to obtain the weights of the neu-
ral networks. The set 52 consists of patterns that are used for cross-validation. 
By checking the accuracy of the networks on the set 52, the algorithm decides 
whether to continue or to stop removing more attributes. The best accuracy rate 
TZ^ of the networks on this set is kept by the algorithm. If there is still an attribute 
that can be removed such that the relative accuracy rate on 52 does not drop by 
more than ATZ, then this attribute will be removed. If no such attribute can be 
found among the inputs, the algorithm terminates. 

At the start of the algorithm, the values of the penalty parameters €i{k) and 
62(fc) are set equal for all attributes Ak, since it is not yet known which are the 
relevant attributes and which are not. In our experiments, we have set the ini-
tial values for €i(k) and 62(A;) to 0.1 and 10""*, respectively. After the network 
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is trained, the relative importance of each attribute can be inferred from the ac-
curacy rates of all the networks Afk having one less attribute. A high accuracy 
rate of Afk suggests that the attribute Ak can be removed from the attribute set. 
Step 4(d) of the algorithm updates the values of the penalty parameters for all 
the remaining attributes based on the accuracy of the networks. If the accuracy 
rate of network A4 is higher than the average, then the penalty parameters for the 
network connections from input attribute Ak are multipUed by a factor 1.1. It is 
expected that with larger penalty parameters, the connections from this input at-
tribute will have smaller magnitudes after the network is retrained, and therefore 
the attribute can be removed in the next round of the algorithm. On the other hand, 
a below-average accuracy rate of the network J\fk indicates that the attribute Ak 
is important for classification. For all such attributes, the penalty parameters are 
divided by a factor of 1.1, 

Among the problems on which the neural network feature selection algorithm 
was tested are the monks problems [36]. There are three monks problems in which 
robots are described by six different attributes (Table I). The learning tasks of the 
three monks problems are of binary classification; each of them is given by the 
following logical description of a class: 

• Problem Monks 1: (head_shape = body_shape) or (jacket_color = red). 
From 432 possible samples, 112 were randomly selected for the training 
set, 12 for cross-validation, and all 432 for testing. 

• Problem Monks 2: Exactly two of the six attributes have their first value. 
From 432 samples, 152 were selected randomly for the training set, 17 for 
cross-validation, and all 432 for testing. 

• Problem Monks 3: (Jacket_color is green and holding a sword) or 
(jacket_color is not blue and body_shape is not octagon). From 432 
samples, 122 were selected randomly for training and among them there 
was 5% misclassification, i.e., noise in the training set. Twenty samples 
were selected for cross-validation, and all 432 samples formed the 
testing set. 

Table I 

Attributes of the Three Monks Problems 

Ai: 
A2: 
Ay. 
A4: 
A5: 
Ae: 

head_shape 
body_shape 
is_smiling 
holding 
jacket_color 
has_tie 

€ 

€ 

e 
e 
e 
G 

round, square, octagon; 
round, square, octagon; 
yes, no; 
sword, balloon, flag; 
red, yellow, green, blue; 
yes, no. 
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In order to demonstrate the effectiveness of the feature selection algorithm, 
each possible value of the six attributes is treated as a single new attribute. For ex-
ample, the attribute head_shape, which can be either round, square, or octagon, is 
represented by three new attributes. The three attributes are head_shape = round, 
head_shape = square and head_shape = octagon. Exactly two of the three at-
tributes have values 0, while the third attribute has value 1. This representation of 
the original six attributes enables us not only to select the relevant attributes, but 
also to discover which particular values of these attributes are useful for classifi-
cation. 

For each problem, thirty neural networks with 12 hidden units and 17 input 
units were trained starting from different initial random weights. The results of 
the experiments are summarized in Table II. In this table, the average accuracy 
rates of the networks on the training and testing data sets with and without feature 
selection are given. Standard deviations are given in parentheses. The average 
function evaluation reflects the cost of selecting the relevant features. It is the 
average number of times that the value and the gradient of the augmented er-

Table II 
Results for the Monks Problems 

Monks 1 With all features^ With selected features^ 

Ave. no. of features 17 (0.00) 5.07(0.37) 
Ave. ace. on training set (%) 100.00 (0.00) 100.00 (0.00) 
Ave. ace. on testing set (%) 99.71 (0.67) 100.00 (0.00) 
Ave. function evaluations 360.37 (114.76) 
P-value (testing set ace.) 0.09 

Monks 2 With all features'̂  With selected features'̂  

Ave. no. of features 17 (0.00) 6.23(0.43) 
Ave. ace. on training set (%) 100.00 (0.00) 100.00 (0.00) 
Ave. ace. on testing set (%) 98.78 (2.34) 99.54 (0.99) 
Ave. function evaluations 538.63 (117.02) 
P-value (testing set ace.) 0.05 

Monks 3 With all features^ With selected features^ 

Ave. no. of features 17 (0.00) 3.87(1.78) 
Ave. ace. on training set (%) 100.00 (0.00) 94.23 (0.79) 
Ave. ace. on testing set (%) 93.55 (1.41) 98.41 (1.66) 
Ave. function evaluations 826.70 (212.86) 
P-value (testing set ace.) < 10~^ 

'^Standard deviation for the averages are given in parentheses. 
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ror function (17) are computed by the minimization algorithm SRl/BFGS. The 
P-value is computed to check if there is any significant increase in the accuracy 
of the networks with selected input features compared to the networks with the 
whole set of attributes as input. A smaller P-value indicates a more significant 
increase. Since the largest among the P-values obtained from the three sets of 
experiments is 0.09, we can reject at 10% level of significance the null hypothesis 
that there is no increase in the predictive accuracy of the networks after pruning. 

The figures in Table II show that feature selection not only removes the ir-
relevant features, it also improves significantly the predictive accuracy of the net-
works. For the Monks 1 problem, all 30 networks with selected input attributes are 
capable of classifying all testing patterns correctly. Twenty-nine networks have 
the minimum five input attributes and the remaining one has seven input attributes. 
For the Monks 2 problem, 23 networks have the minimum six attributes and the 
remaining seven networks have seven attributes. 

For the Monks 3 problem, most networks have either two or five input at-
tributes. The maximum number of attributes a network has is nine. All twelve 
networks with five input attributes achieve 100% accuracy rate on the testing data 
set. All eleven networks with two input attributes have accuracy rates of 93.44% 
and 97.22% on the training data set and the testing data set, respectively. The 
97.22% accuracy rate is the same as that reported by Thrun et al. [36]. It is worth 
noting that, despite the presence of six mislabeled training patterns, 14 of the 30 
networks with selected attributes have a perfect 100% accuracy rate on the test-
ing data set. None of the 30 networks with all input attributes has such accuracy. 
The results from running the neural network feature selection algorithm on many 
real-world data sets are reported in Setiono and Liu [33]. The results show that 
neural network classification using only selected input attributes is generally more 
accurate than using all the attributes in the data. 

VI. DETERIVIINING THE NETWORK 
CONNECTIONS BY PRUNING 

Instead of removing all the connections from an input unit to all the units in the 
hidden layer as described in the previous section, a finer pruning process which 
removes an individual weight or connection in the network may also increase 
the generalization capabihty of a neural network [37-40]. Methods for removing 
individual weights from a network also usually augment a penalty term to the net-
work error function [34]. By adding a penalty term to the error function, the rel-
evant and irrelevant network connections can be distinguished by the magnitudes 
of their weights or by other measures of saliency when the training process has 
been completed. The saliency measure of a connection gives an indication of the 
expected increase in the error function after that connection is eliminated from 
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the network. In the pruning methods Optimal Brain Damage [39] and Optimal 
Brain Surgeon [37], the saliency of each connection is computed using a second-
order approximation of the error function near a local minimum. If the saliency 
of a connection is below a certain threshold, then the connection is removed from 
the network. If the increase in the error function is larger than a predetermined 
acceptable error increase, the network must be retrained. 

The algorithm N2P2F for neural network pruning outlined below was re-
cently developed by Setiono [41]. Neural network pruning with penalty function 
(N2P2F) first trains a fully connected network by applying the SRl/BFGS method 
to find a set of weights that minimizes the augmented error function: 

§(w, v) = Jj2J2^'plogS'p^{l- ri,)log(l - 4 ) J + Q(w, V), (18) 
\ /=i p=i / 

where 

+^2i:(i:wy+EKf). (i9) 

The difference between the penalty functions (16) and (19) is that the latter 
also contains a penalty term for the connections between the hidden units and the 
output units. The reason why we also add a penalty term for each of the connec-
tions from a hidden unit and an output unit is linked to the criteria for weight 
removal (20) and (21) in the algorithm below. 

Algorithm N2P2F: Neural network pruning with penalty function 

1. Let r]\ and r]2 be positive scalars such that r]\^-r]2< 0.5 (r]\ is the error 
tolerance, r]2 is a threshold that determines if a weight can be removed). 

2. Pick a fully connected network, and train this network to minimize the 
error function (18) such that a prespecified accuracy level is met and the 
condition 

I4l = l4-rj,|<r;i 

holds for all correctly classified input patterns. Let (lu, v) be the weights of 
this network. 
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3. For each connection from input unit I to hidden unit m, w^ in the 
network, if 

max|i;^w;^| < 4 /̂2, (20) 

then remove w^ from the network. 
4. For each connection from hidden unit m to output unit p, v^ in the 

network, if 

^ " | < 4 r ; 2 , (21) 

then remove v^ from the network. 
5. If no weight satisfies condition (20) or condition (21), then for each w'^ in 

the network, compute 

(o^ = max \VpW^ |. 

Remove wf with the smallest cof. 
6. Retrain the network. If the classification rate of the network falls below the 

specified level, then stop and use the previous setting of network weights. 
Otherwise, go to Step 3. 

In steps 3 and 4, N2P2F removes all the connections of the network whose 
magnitudes satisfy the conditions (20) or (21). In Setiono [41], we show that re-
moval of such connections from the network does not affect the network accuracy. 
In step 5, we remove a network connection from an input unit to a hidden unit w^ 
based on the values of its products with the weight of the connections from hidden 
unit m to all output units /? = 1 ,2 , . . . ,C. The connection with the smallest max-
imum product is selected for removal. After removal of one or more connections, 
the network is retrained in step 6. Removed connections have their weight values 
fixed at 0. 

The algorithm has been successfully applied to prune networks that have been 
trained for classification of many artificial and real-world data sets. Generally, 
for the problem domains tested, pruned networks have higher predictive accuracy 
than the fully connected networks. Among the problems tested and reported by 
Setiono [42] are the monks problems introduced in the previous section. For these 
problems, the algorithm N2P2F is able to obtain networks with fewer connections 
and better accuracy than those obtained by other pruning algorithms reported in 
the Hterature. Two pruned networks obtained for the Monks 1 and Monks 3 prob-
lems are shown in Figs. 5 and 6. The network in Fig. 5 correctly classifies all the 
patterns in the training and testing data sets of the Monks 1 problem. The network 
in Fig. 6 correctly identifies the six mislabeled patterns in the training data set and 
obtains a 100% accuracy rate on the testing patterns. 
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Figure 5 A pruned network that solves the Monks 1 problem. 
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Figure 6 A pruned network that solves the Monks 3 problem. 
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VII. APPLICATIONS OF NEURAL NETWORKS 
TO DATA MINING 

After pruning, the network contains only those connections that are relevant 
to class labels of the patterns. It is only natural for one to ask whether it is pos-
sible to express the relationship between the inputs and outputs of the network 
in a meaningful way. Since symbolic rules are easier to understand and verify 
than a collection of network weights, many attempts have been made to develop 
algorithms that extract symbolic rules from trained neural networks. One such al-
gorithm is NeuroRule [43, 44]. By analyzing the activation values of the hidden 
units, NeuroRule generates symbolic rules that explain a network classification in 
terms of its input attributes. 

We illustrate how NeuroRule works using the Wisconsin Breast Cancer data 
base [45]. The data set is available publicly via anonymous ftp from the Univer-
sity of California Irvine repository [46]. The data have been used as the test data 
for several studies on pattern classification methods using linear programming 
techniques [45, 47,48] and statistical techniques [49]. 

Each pattern in the data set has nine attributes. The nine measurements taken 
from fine-needle aspirates from human breast tissues correspond to cytological 
characteristics of a benign or of a malignant sample. These are Ai. clump thick-
ness, A2' uniformity of cell size, A3, uniformity of cell shape, A4. marginal ad-
hesion, A5. single epithelial cell size, Ae- bare nuclei, Aj. bland chromatin, A^. 
normal nucleoli, and Ag. mitosis. Each of these nine attributes was graded 1 to 
10 at the time of sample collection, with 1 being the closest to benign and 10 
the most anaplastic. Since the attributes are integer-valued ranging from 1 to 10, 
we created 10 input units for each attribute. With an additional input for the bias 
weight at the hidden units, we have a total of 91 input units. Let us denote these 
inputs as Xi, 22, • • •, ^91- For / = 0, 1 , . . . , 8, the following coding schemes for 
the input data are used: 

^lOxi-^j = 1 <^=^ A+1 > 11 - 7, 7 = 1, 2 , . . . , 10, 

Iioxi+j =0 ^^=^ Ai+i < 10 - J, 7 = 1,2, . . . , 9, 

X91 = 1. 

With this coding, Iioxj is 1 for all 7 = 1, 2 , . . . , 9 for all patterns with valid 
attribute values in {1, 2 , . . . , 10}. 

There are a total of 699 samples in the data base, of which 458 are benign 
samples and 241 are malignant samples. The patterns in the data set are divided 
randomly into a training set consisting of 350 samples and a testing set consisting 
of the remaining 349 samples. The target value for a benign sample is 0, while for 
a mahgnant sample the target value is 1. Figure 7 depicts a pruned network that 
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-26 1-52 1-71 1-80 

Figure 7 A pruned network for the Wisconsin Breast Cancer diagnosis problem. 

has been trained to distinguish benign samples from mahgnant ones. Its accuracy 
rates on the training set and testing set are 96.57% and 93.12%, respectively. 

Since the hyperbolic activation function is used at the hidden units, the activa-
tion value of a pattern can be anywhere in the interval [— 1, 1]. In order to simplify 
the analysis, the continuous activation values of the patterns are discretized by 
clustering. A simple clustering algorithm that performs greedy clustering is given 
below. 

A greedy clustering algorithm (GCA) 

1. Find the smallest positive integer d such that if all the network hidden unit 
activation values are rounded to 6?-decimal-place, the network still retains 
its accuracy rate. 

2. Represent each activation value a by the integer nearest to a x 10^. Let 
T-li = {hi^i, /i/,2, • • •, hi^k) be the set of these representations at hidden unit 
/ for patterns x ^ x^ , . . . , x^ and let H = {Hi, W2, • • •, HH) be the set of 
the hidden representations of all patterns by all H hidden units. 

3. Let P be an ordering sequence such that P(i) ^ P(j) iff / ^ j for all 
i, j = 1 ,2 , . . . , / / . Initialize ^ = 1. 

4. SQti = P(k). 
5. Sort the set H such that the values of Hi are in increasing order. 
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6. Find a pair of distinct adjacent values htj and /i/,;+i in the sorted set Hi 
such that if /i/,y+i is replaced by htj, no conflicting data will be generated. 

7. If such a pair of values exists, replace all occurrences of /i/,;+i by hij and 
repeat Step 6. Otherwise, setk = k -\- l.lfk < H, go to Step 4, else Stop. 

Steps 1 and 2 of the GCA find integer representations of all hidden unit acti-
vation values. A small value for d in step 1 indicates that relatively few distinct 
values for the hidden unit activations are sufficient for the network to maintain its 
accuracy. For example, when d = 2, the distinct values are —1.00, —0.99,..., 
-0 .01 , 0.00, 0 .01 , . . . , 0.99, 1.00. In general, there could be up to 2 x 10^ + 1 dis-
tinct values. Experimental results, however, show that usually there are far fewer 
distinct values. 

The array P contains the sequence in which the hidden units of the network 
is to be considered. Different ordering sequences usually result in different clus-
ters of activation values. Once a hidden unit is selected, its discretized activation 
values are sorted. The values are clustered based on their distance. Step 6 of the 
algorithm is implemented by first finding a pair of adjacent distinct values with 
the shortest distance, that is, by finding a pair of distinct values hij and /i/,;-f-i 
such that hij-^i — htj is minimum. If htj^i can be replaced by htj without 
causing two or more patterns from different classes to have identical discretized 
values, they will be merged. Otherwise, a pair with the second-shortest distance 
will be considered. This process is repeated until there are no more pairs of values 
that can be merged. The next hidden unit as determined by the array P will then 
be considered. 

Since the network in Fig. 7 has two hidden units, the clustering can be done 
in two possible sequences: hidden unit 1 followed by hidden unit 2 or hidden 
unit 2 followed by hidden unit 1. For this network, the results of applying the 
two clustering sequences are the same. The range of activation values at hidden 
unit 1 is the interval [0, 0.78], while at hidden unit 2 it is [-0.93, 0.52]. GCA 
finds two clusters each in hidden unit 1 and hidden unit 2. The clustered values at 
hidden unit 1 are 0 and 0.46, that is, all continuous activation values in the interval 
[0, 0.46) can be replaced by 0, and those values in the interval [0.46, 0.78] can be 
replaced by 0.46 without affecting the accuracy rate of the network on the training 
data set. At hidden unit 2, the clustered values are —0.93 and 0.52. 

We only cluster the activation values of patterns in the training data set that 
have been correctly classified by the pruned network. There are 338 such patterns. 
After clustering, each of the 338 patterns is represented by one of the possible four 
combinations of hidden unit clusters. The classification of the samples based on 
the clustered activation values can be summarized as in Table III. 

From Table III, we observe that a sample is classified as benign only if its 
activation value at hidden unit 1 is in the interval [0, 0.46) and the one at hidden 
unit 2 is 0.52. The first hidden unit has two input connections, 226 and J52. Only 
the inputs 226 = ^52 = 0 result in an activation value in the first interval. The 
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Table HI 

The Clustered Activation Values of the Network in Fig. 7 and 
Their Predicted Output 

Hidden unit 1 Hidden unit 2 Predicted output Number of samples 

0.00 -0.93 Malignant 2 
0.00 0.52 Benign 225 
0.46 -0.93 MaUgnant 28 
0.46 0.52 Malignant 83 

second hidden unit also has two input connections, but since the value of input Xgo 
is always 1, the activation value at the second hidden unit is practically determined 
by the input Ij i alone. Since the weight of the connection from input J71 to hidden 
unit 2 is negative, the activation value of a sample will be 0.52 if only if 271 = 0. 
The rule that can be extracted from the network is then 

If X26 = ^52 = I71 = 0, then predict benign. 
Otherwise predict malignant. 

In terms of the original input attributes and their values, the above rule is equiva-
lent to 

If ^3 < 4 and .46 < 8 and A^ < 9, then predict benign. 
Otherwise predict malignant. 

The accuracy rates of the rule on the training and testing data sets are the same 
as those of the pruned network from which they are extracted, i.e., 96.57% and 
93.12%, respectively. Several other sets of rules that have been extracted from this 
data base are reported in [42]. 

VIII. SUMMARY 

In this chapter, we have discussed the various aspects that are important in the 
construction of an effective neural network system. We presented a variant of the 
quasi-Newton method for fast neural network training. A fast training algorithm 
is crucial to the successful construction of an effective neural network system. 
The algorithms for finding an optimal network architecture that we have devel-
oped require retraining of the network after units are added or removed from the 
network. 
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We described how the number of hidden units required in a network can be 
determined by adding hidden units one at a time as they are needed to the hidden 
layer. We showed that adding a hidden unit to the hidden layer will decrease the 
cross-entropy error function. We described how the relevant network inputs and 
network connections can be detected during training. By having a positive penalty 
for each weight in the network, only the relevant network connections will have 
large weights. Irrelevant and redundant connections can be distinguished by their 
small weights and they can be removed from the network without affecting the 
network accuracy on the training data set. Since networks with too many weights 
tend to overfit the training data, removal of redundant input units and connections 
usually results in a higher predictive accuracy rate. The removal of unnecessary 
inputs and connections from a network not only increases its predictive accuracy, 
it also facilitates the process of rule extraction. As symbolic rules are a form of 
knowledge that can be verified and expanded by human experts, having symbolic 
rules that explain the network predictions could make the neural network system 
even more attractive to users. 
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I. INTRODUCTION 

Recently, inspired by the structure of human brain, artificial neural networks 
have been widely applied to many fields such as pattern recognition, optimization, 
coding, control, etc., due to their capability of solving cumbersome or intractable 
problems by learning directly from data. An artificial neural network usually con-
sists of a large amount of simple processing units, i.e., neurons, via mutual in-
terconnection. It learns to solve problems by adequately adjusting the strength of 
the interconnections according to input data. Moreover, it can be easily adapted to 
new environments by learning. At the same time, it can deal with information that 
is noisy, inconsistent, vague, or probabilistic. These features motivate extensive 
researches and developments in artificial neural networks. 

The main features of artificial neural networks are their massively parallel pro-
cessing architectures and the capabilities of learning from the presented inputs. 
They can be utilized to perform a specific task only by means of adequately ad-
justing the connection weights, i.e., by training them with the presented data. For 
each type of artificial neural network, there exists a corresponding learning algo-
rithm by which we can train the network in an iterative updating manner. Gener-

Image Processing and Pattern Recognition 
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ally, the learning algorithms can be classified into two main categories: supervised 
learning and unsupervised learning. 

For supervised learning, not only the input data but also the corresponding tar-
get answers are presented to the network. Learning is done in accordance with the 
direct comparison of the actual output of the network with known correct answers. 
It is also referred to as learning with a teacher. A special case called reinforce-
ment learning is included, where the only feedback information is whether each 
output is right or wrong, not what the correct answer is. 

On the contrary, only input data without the corresponding target answers are 
presented to the network for unsupervised learning. In fact, the learning goal is not 
defined at all in terms of specific correct examples. The available information is 
in the correlations of the input data. The network is expected to create categories 
from these correlations, and to produce output signals corresponding to the input 
category. 

In the following, several typical artificial neural networks are briefly intro-
duced. The first one is the Hopfield network [1]. It is a single-layer network in 
which neurons are mutually interconnected. The output of each neuron is fed 
back to all the other neurons. An energy function is associated with the network. 
Whenever a neuron changes state, the energy function always decreases. Training 
is performed by directly setting the connection weights according to the train-
ing patterns. It is essentially supervised but not iterated. The Hopfield network 
has been utilized as an associative memory or to solve optimization problems 
(e.g., [2-5]). 

The back-propagation network (e.g., [6, 7]) is another typical artificial neural 
network. It is a multilayer network in which neurons are usually connected only 
to the ones belonging to the preceding and the succeeding layers. The network is 
trained in an error back-propagation manner: For each input, a signal propagates 
feedforward to the output layer. Then, the output is compared with the desired 
target and the error propagates backward to update the connection weights. This 
learning is obviously supervised and iterated. The back-propagation network es-
sentially performs the function approximation. It has been applied to control, pat-
tern recognition, image compression, etc. (e.g., [8-11]). 

Different from the above supervised learning networks, a competitive learn-
ing network (e.g., [12-14]) is an unsupervised learning network. It consists of a 
single layer of competitive neurons. These neurons compete with one another for 
becoming the unique winner to fire. The learning is based on the winner-take-all 
rule. That is, only the weights of the winner will be updated. The aim of this type 
of network is essentially to cluster the input data. The weights, after learning, will 
be distributed, in data space, approximately in proportion to the data pattern den-
sity. Due to such characteristics, the competitive learning network can be applied 
to vector quantization (VQ) [15, 16] and probability density function (PDF) esti-
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mation [17] that are very useful in data compression, coding, pattern recognition, 
etc. (e.g., [18-23]). 

The principal component analysis (PCA) learning network (e.g., [24]) is an-
other type of unsupervised learning network. It is also a single-layer network but 
the neurons are linear. Figure 1 shows the schematic diagram. The learning is 
essentially based on the Hebb rule [25]. It is utilized to perform PCA (see, e.g., 
[26, 27]), i.e., to find thQ principal components embedded in the input data. PCA 
is one of the feature extraction methods. It extracts information by finding the di-
rections in input space in which the inputs exhibit most variation. It then projects 
the inputs onto the subspace to perform a dimensionality reduction. The desired 
directions are in fact along those eigenvectors associated with the m largest eigen-
values of the input covariance matrix [28] if the dimension of data is expected to 
be reduced from n to m. In the PCA learning network, the weights will converge 
to the principal component vectors after learning. The PCA learning network has 
been appUed to feature extraction, data compression, image coding, and texture 
segmentation (e.g., [24, 29-31]). 

For the PCA learning network, a variety of neural network learning algorithms 
have been proposed [24, 30-36, etc.]. Most of them are based on the early work 
of Oja's one-unit algorithm [37]. Among these algorithms, Sanger's Generalized 
Hebbian algorithm (GHA) [24], which combines Gram-Schmidt orthonormaliza-
tion and Oja's one-unit algorithm, is usually more useful in practical applications. 
This is because it can extract the principal components individually in order. In 
addition, it can give a reproducible result on a given data set. However, the success 
of the GHA is dependent on the values of the learning rate parameters. If the pa-
rameter values are too big, the learning process will diverge. On the contrary, the 
learning process will converge very slowly if the parameter values are too small. 
The appropriate values of the learning rate parameters are in fact data dependent. 

^ l / 

^1 

^'^""^^'^ \ / ^-/^ • • • ^̂ """̂  
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Figure 1 PCA learning network. 
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In order to ensure that the learning be successful when the above neural net-
works are applied in practical applications, we would like to develop adaptive 
learning algorithms that can automatically and adaptively select the appropriate 
parameter values according to input data. Hence, in this chapter an adaptive PCA 
learning algorithm is proposed. The learning rate parameters are adaptively ad-
justed according to the eigenvalues of the data covariance matrix that are esti-
mated during the learning process. All weights can quickly converge to the prin-
cipal component vectors in the small-eigenvalue case as well as the big-eigenvalue 
case. It has been appUed to data compression and image coding. Excellent results 
have been obtained. 

11. ADAPTIVE LEARNING ALGORITHM* 

In this section, an adaptive learning algorithm (ALA) for PCA will be proposed 
(see also [38, 39]). The learning rate parameters can be selected automatically 
and adaptively according to the eigenvalues of the input covariance matrix that 
are estimated during the learning process. We will show that the m weight vectors 
in the network can converge quickly to the first m principal component vectors 
with almost the same rates. Simulation results will demonstrate that the ALA can 
converge quickly to the desired targets while Sanger's GHA diverges in the large-
eigenvalue case and converges very slowly in the small-eigenvalue case. Finally, 
the ALA will be applied to image coding problems and excellent results can be 
obtained. 

This section is organized as follows. First, some basic mathematical back-
ground and Sanger's GHA are introduced. The parameter selection problem of 
the GHA is then presented. Finally, our ALA is proposed and analyzed. Proposi-
tions concerning its properties are also presented in this section. 

Let X denote the n-dimensional input data vector with probability distribu-
tion P(x). The aim of PCA is to find a set of m orthonormal vectors in an n-
dimensional data space such that they will account for as much as possible of the 
variance of the data. It was shown in [26] that the aforementioned orthonormal 
vectors were actually the m eigenvectors associated with the m largest eigenval-
ues of the data covariance matrix T = E{(x — Tax){x — mxY), where t denotes 
the transpose operator and nijc = E{x]. If the eigenvalues of T are sorted in de-
scending order, i.e., ki > X2 > -- - > K with ki = Amax, then the A:th principal 
component direction will be along the A:th eigenvector. In general, the mean values 
of data can be subtracted from the data. Hence, in the following, we will discuss 
zero-mean data exclusively. In case of zero-mean data, the covariance matrix T 
will be reduced to the correlation matrix C = E{x\^}. 

* Portions of the following two sections are reprinted with permission from IEEE Trans. Neural 
Networks 6(5) 1255-1263, Sept. 1995 (© 1995 IEEE). 
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In order to find the first principal component direction vector for zero-mean 
data, i.e., the first eigenvector of C, by learning directly from data, Oja [37] pro-
posed a one-unit learning rule: 

Aw(0 = r](t)V(t)(xit) - y(Ow(0), (1) 

where rj(t) is the learning rate parameter. This rule is used to train a linear neu-
ron whose output V(t) is equal to the product of weight vector w(0 and input 
pattern x(t) at time t, i.e., V(t) = W(t)w{t). Here, we assume that x(r)s are in-
dependent and identically distributed with the same distribution P(x) as before. 
Under the assumption that ri(t) is sufficiently small, Oja approximated Eq. (1) by 
a corresponding ODE 

dw/dt = Cw - (w^Cw)w 

via the stochastic approximation theory (see, e.g., [40]). He then proved that the 
weight vector w(t) will asymptotically converge to the first normaUzed eigenvec-
tor of C, i.e., ibvi. 

By combining Oja's rule and the Gram-Schmidt orthonormalization process, 
Sanger [24] proposed the so-called GHA: 

Aw/(0 = r]it)Vi(t)lx(t) -J2Vjit)wj(t)Y / = 1,2, . . . , m , (2) 

where Vt (t) = w\(t)x(t). It is used to train a one-layer m-unit network (referring 
to Fig. 1) consisting of m linear neurons so as to find the first m principal com-
ponents. Using the same approximation technique, the GHA was able to make 
Wi(t),i = 1, 2 , . . . , m, converge to the first m principal component directions, in 
sequential order: w/(0 -^ i v / , where v/ is a normalized eigenvector associated 
with the ith largest eigenvalue A/ of the correlation matrix C. In fact, Eq. (2) can 
be rewritten as 

x(0 - ^ Vj{t)yvj(t)\ - Viit)^Vi{t) 

/ = 1,2, . . . , m . (3) 

A^Vi(t) = rJ(t)Vi(t) 

Hence, Eq. (3) can be treated as Eq. (1) with the corresponding modified input 
x/(0 = x(0 - I ] ;= \ ^ ; (0w; (0 , for neuron /, where / = 1, 2 , . . . , m. If wy(r), 
j = 1, 2 , . . . , / — 1, have converged to v^, j = 1, 2 , . . . , i — 1, respectively, 
it can be easily shown [24] that the maximal eigenvalue X\ and the associated 
normalized eigenvector v̂  of the correlation matrix of x/, i.e., C/ = £'{x/xj}, 
are exactly the /th eigenvalue A/ and the ith normalized eigenvector V/ of the 
correlation matrix of x, i.e., C, respectively. Hence, neuron / can find the /th 
normahzed eigenvector of C, i.e., div/. In other words, the m neurons trained by 
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Eq. (2) can be considered to be trained by Eq. (1) with their respective modified 
inputs x/, / = 1, 2 , . . . , m. 

In the following, we will show that the selection of r}(t) should depend on 
the eigenvalues A/s of the correlation matrix C. If r]{t) is bigger than 1/Ai, the 
learning process cannot converge^ as expected. In addition, the learning rate will 
become very slow if the product value of r/(r)Ai is very small. First, let us take the 
conditional expectation of Eq. (1) over the input distribution P(x) given weight 
vector w(0, i.e., 

£{Aw(0|w(0} = E{ri(t)Vit)(x(t)-V(t)yv(t))Mt)} 

= rj(t)[E[x(t)x\t)}yv(t)-W(t)E{x(t)x\t)}w(t)yv(t)] 

= rjmC\v(t) ~ W(t)C^v(t)^v(t)l (4) 

where we have used the following facts for derivation: E{x(t)x^(t)w(t)\w(t)} = 
E{x(t)x^(t)}w(t) = Cw(0, and £{w^(0x(0x^(0w(0w(0|w(0} = w'(0 x 
E{x{t)x^(t)}w(t)w(t), where x(t) and w(0 are independent. 

PROPOSITION 1. For learning rule Eq. (1), if r]{t) selected is not smaller 
than 1/A.i, then weight vector w(0 will not converge to divi even if it is initially 
close to the target. 

For the proof, see the Appendix. 
From Proposition 1, we know that r]{t) should be smaller than l/Ai to get the 

expected convergence. Under this condition, the learning rate can be estimated by 
the value of y/CO î-

PROPOSITION 2. When rj(t)'k\ < 0.5, the smaller the value ofr}{t)X\ is, the 
slower the convergence rate of the expectation ofw(t) is. 

For the proof, see the Appendix. 
According to these two propositions, for each neuron / in Eq. (2), the learning 

rate parameter rj(t) has to satisfy r](t)Xi < 1 in order to converge. In the mean 
time, it cannot be too small in order to have a decent learning rate. However, 
the values of Xi s are usually unknown a priori. Therefore, to select properly the 
value of r](t) becomes a problem when one tries to apply the GHA in practical 
applications. For example, if one of the eigenvalues Xi = 10^, the r]{t) must 
be smaller than 10~^ for W/(0 to converge. However, in the GHA, the identical 
value setting of rj(t) for all neurons will slow down the learning rate of Wj(t) if 
for Ay < 10"̂  for 7 >i. 

In order to overcome the aforementioned problem, an adaptive learning algo-
rithm (ALA) for PCA will be proposed in the following. In the algorithm, the 
learning rate parameter for each w/ (0 can be selected adaptively. 

^The convergence here is in the mean-square sense. 



Learning Algorithms of Principal Component Analysis 327 

For n-dimensional zero-mean input pattern vector x with probability distribu-
tion P(x), the ALA that will find the first m principal component vectors can be 
described as follows: 

Step 1: Set weight vectors w, (0) e W such that || w/ (0) |p «: 1/2^ and 
estimate of eigenvalues Xi (0) = 5 (a small positive number) > 0 for 
/ = 1, 2 , . . . ,m. 

Step 2: Draw a new pattern x(t) at time ̂  ^ > 1, and present it to the 
network as input. 

Step 3: Calculate the output V/s: 

V,(0=w[(r)x(0, / = l ,2 , . . . ,m. 

Step 4: Estimate the eigenvalues A|S: 

ii(t) = iiit - 1) + y(0[(w;(Ox/(0/llwKOII)^ - hit - l)], 

/ = 1, 2, . . .,m, (5) 

where x/(0 = x(t) - Yl'j^i Vj(t)yvj(t), The value of y(t) is set to 
be smaller than 1 and decreased to zero as t approaches oo. 

Step 5: Modify the weights w/s: 

i 

VViit + 1) = W,(0 + rjiitWim^it) ~ J2 7̂ WWy(0], 
7 = 1 

/ = l ,2, . . . ,m, (6) 

where rjt (t) = fii (t)/ki (t). The value of fit (t) is set to be smaller 
than 2(\/2 — 1) and decreased to zero as t approaches cx). 

Step 6: Check the length of w/ s: 

fyi72(wKr + i)/l|wK^ + l)ll), 

w / (^+ l )= ! if||w/(r + l ) f > ^ . \ , , - ^ l , (7) 

I w/(f + 1), otherwise. 

Step 7: Increase the time t by 1 and go back to step 2 for the next input 
pattern until all of the w/s are mutually orthonormal. 

Remarks. 

(i) The procedure of eigenvalue estimation in step 4 is the Grossberg 
learning rule [41]. When the value of y (r) is set smaller than 1 and 
decreased to zero with time, A., (t), i.e., X\ (f), can converge to the mean 
of (wjx//||w/11)^ in the mean-square sense. 

Îlyll denotes in this chapter the length of a vector y, i.e., ||y|| = (y^y)^/^. 
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(ii) Due to the fact that the estimates of A/ s may be inaccurate during the 
initial period of the learning process, the normalization process in step 6 
is required. The details will be described in Section III. 

(iii) The reason for using the upper bound of fit (t) in step 5 will be given in 
Proposition 3. 

Notice that in the ALA, its learning rate parameters r]i (t) are no longer the 
same for all neurons. They are adaptively selected according to the corresponding 
eigenvalues A/s that are estimated by Eq. (5). We will contend in the following 
that w/ (t) can quickly converge to ±v/ for all / and that they will converge with 
nearly the same rate. 

First, let us consider the convergence of w^O to ±v/ for all /. Recall that 
Eq. (6) can be written as 

w/ a + 1) = w/ (0 + rji (0 Vi (t) {xi (t) - Vi (t)^Vi (t)), (8) 

where x/(0 = x{t) — Xl;=\ ^ ; (0w;(0 for all /. It can be considered just as 
the learning rule Eq. (1) applied to every neuron / with x/ as its corresponding 
modified input. Hence, in the following, it suffices to consider Eq. (8), where 
rji(t) = Pi(t)/X\(t), for only one neuron / and show that it can converge to the 
first normalized eigenvector of its corresponding input correlation matrix C/. 

The proof will be decomposed into several parts. It will be shown first that the 
mean of w/(r) will approach v̂ .̂ That is, its length will approach 1 and its angle 
from \\ will approach zero. We will then analyze the variance and show that it 
will decrease to zero. Notice that in the following discussion, w/ (t) is no longer 
assumed to be close v̂^ to initially as in Proposition 1. 

PROPOSITION 3. In the ALA, the mean ofwiit) will approach the unit hy-
persphere in R" space. 

Proof, Let Wi{t) stand for a reahzation of w/(0 at time t. An orthonormal 
basis of R", {Up U2, . . . , ujj}, such that u'̂  is the unit vector along the direction of 
Wi (t) can be constructed. Hence, wt (t) is represented as 

n 

where k'^(t) is equal to the length of io,(r), i.e., ||u),(')ll. and e' (0 = 0 for 
j — 2,3,.. .,n. Similar to Eq. (4), we can obtain, from Eq. (8), 

E{Awiit)\wi{t)} = r,i(t)[CiWi{t) - wl{t)CiWi(t)Wi{t)], (9) 
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where E{*\wi(t)} stands for £{«|wKO = ^iiO)- Project Eq. (9) onto, u^, j = 
1,2, . . . , n ; we get 

{u^,yE{Awi(t)\Wi(t)} i^Aklit)) 

= (u\)^r;KO[Q/:i(Oui - 4 ( 0 ' ( U \ ) ' Q U \ U \ ] 

= ^7/(04(0((ui)^Qu\)(l - kl(tf), for y = 1, (10a) 

and 

{u)yE{A^Vi(t)\wi(t)} i^Asljit)) 

= ^ , (0 / : i (OK) 'Qu \ , for 7 = 2, 3 , . . . , n. (10b) 

The A/:y(0 defined in Eq. (10a) is the component of £'{Aw/(0|u;/(0} along the 
direction of û .̂ It is referred to as the "radial weight change." The Ae^At) de-
fined in Eq. (1 Ob) is the component of £" {A w/ (01 u;/ (0} along the direction of u y, 
7 > 1. It is referred to as the "tangential weight change." Figure 2 is a demon-
stration of the case n = l.li is clear that from Wi(t) to E{yfi(t + \)\Wi{t)}, the 
change in length is caused by Ak\^{t). On the other hand, the change in direction 
is caused by Ae^- (t). 

In order for E{yvi (t-\-l)\Wi(t)}io be closer to the unit hypersphere than wi (t), 
the value of /̂ (̂O + Ak^^it) has to be closer to 1 than k^^it). From Eq. (10a), we 
obtain 

4 ( 0 + Aklit) = [1 + ry/(0(u\)^C/u\(l - kl(tf)]kl(t). (11) 

E{AyVi{t)\Wi{t)] 

unit hypersphere 

A8i/0 

Figure 2 Illustration of radial and tangential weight changes. Reprinted with permission from 
L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995 IEEE). 
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Taking the square of both sides of Eq. (11) and letting AJj = (u^) C/u^, we get 

(klit) + Akliof = [1 + m(tK(^ - kl(tf)fkl(t)\ (12) 

Equation (12) takes the form of 

z(r + l) = [ l + a ( l - z ( 0 ) f z ( 0 , (13) 

where z(t + 1) = (k^it) + Aklit))^, z(t) = k\^{t)^, and a = y;K04- It can be 
easily checked that for Eq. (13), the relation 

k(r + l ) - l | / | z ( 0 - l | < l (14) 

holds if a G (0, 2(V5 - 1)) and z{t) e (0,1 + 2/a). Now, since X\ is equal 
to maxu(u^CiU) where u is any unit vector, thus ^ /̂(O^u - ^/(O^i- In addition, 
the value of Y]i{t) is selected such that rji(t)X\ = Pi(t) < 2 (v^ — 1). Hence, 
rji(t)K < 2(V2 - 1). Moreover, kl(0)^{= ||ii;/(0)||^) is set to be smaller than 
1 in step 1 and Wi(t) will be bounded by ||ii;/(OlP < 1/2 + l/Pi(t) = 1/2 + 
l/(r//(OA.\) < 1+2/(^7/(04) according to step 6 ofthe ALA. Thus, both (A:jj(0 + 
A/:i(0)^ and/:i(0^ satisfy Eq. (14), i.e., I (/:i(0 + A/:i(0)^ - 1 |/|/:i(0^ -11 < 1. 
That is, E{w/ (r +1) | lU/ (r)} will be closer to the unit hypersphere than wt (t). Since 
this is true for all realizations Wi(t), so E[wi(t + l)|w/(r)} will be closer to the 
unit hypersphere than w/(r). Hence, £:{w/(r + 1)} = E{E{Wiit + l)|w/(0}} will 
be closer to the unit hypersphere than E{wi(t)]. We conclude that the length of 
the mean of w/ (t) will approach 1 as r goes to oo. • 

Next, we will show that the direction of w/ (t) will approach that of v^. 

PROPOSITION 4. The angle between the mean ofWi(t) and \\ in the ALA 
will approach zero. 

Proof. First, express wi (t) in the following form: 

n 

Wi(t) = k\tWi(t) + Si(t) = k\t)y\ ^^s)(t)y), (15) 
j=2 

where k^(t) is the magnitude of Wi(t) along eigenvector v̂^ and s/(r) = 
Yl'j=2^)(^'^^) ^^^ component of Wi(t) perpendicular to v^. Notice that s^j(t) is 
the magnitude of wt (t) along v^. For a given Wi (t), its average new location after 
one iteration of learning will be E{wi (r + 1) | w/ (0} = Wi (t) + E{Awi (t) \ wi (t)}. 
Thus, 

{\\yE{wi(t + l)\Wi(t)} ( ̂  k\t + D) = k^it) + (y\yE{Awi(t)\Wi(t)} 
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and 

(v'i)'£{w,(f + l)|M;/(0} ( s £}(? + !)) 

= s'jit) + iv))'E{Ayfi{t)\wiit)], for j=2,3,...,n. 

According to Eq. (9) and Eq. (15), (v^)'£'{Aw/(0|u),(0}, j = 1, 2 , . . . , n, can 
be written as 

{y\)'E{Ay/i{t)\Wi(t)} = /?KO(M -<(t})k '{t) (16a) 

and 

iVj)'E{AyVi(t)\wi{t)} = niiOi^'j - (ri(t)}s'jit), ; = 2, 3 , . . . , n, (16b) 

where a[{t) = u;,UOC,Wi(0 = k\k'(t)^ + "£"=2 ^Y^itf. Then, we get 

k\t + \) = [\ + r^i{t){k\-al{tm{t) 

and 

s){t + 1) = [1 + ni{t){k) - a{{ms){t). 

Let us denote the angle between w, and Vj by Ang(w,). Then, 

tan^(Ang(u;/)) = 
ik^)^ (t)^ 

To prove that Ang(E{wi(t + l)\wi(t)}) will be smaller than Ang(u;/(r)), it 
suffices to show that tan^(Ang(£'{w/(r + l)|ii;/(0})) will be smaller than 
tan^(Ang(u;/(0)). That is, 

s)(t + 1)2 _ [1 + rjim^)-cyl(t))]^ e){tf 8){t) 

ki{t + 1)2 [1 + ni{t){X\ - al{t))f ki{t)^ kKt)^ ' 

for; = 2 , 3 , . . . , n . (17) 

It can be easily checked that if 

then 

<(.)<xl| |»,«f<^^ 
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and then 

[l-^rjimk)-alit))]^ 

[l + r;K0(M-^ji(0)]2 
< 1, for7 = 2, 3 , . . . , « . 

That is, Eq. (17) can hold. Since Wi(t) is, by Eq. (7), bounded such that 
\\Wi(t)f < 1/2 + l/Pi(t) = 1/2 + 1/(^,(0^) ' the condition Eq. (18) will be 
satisfied. Thus, Ang(£'{w/(r + l)|u;/(r)}) will be smaller than Ang(ii;/(0). Since 
this is true for all realizations Wi(t), so E{wi(t + l)|w/(0} will have a smaller 
angle from \\ than w/(r). Hence, E{wi(t + 1)} = £{£{w/(r + l)|wKO}} will 
have a smaller angle from v̂  than E{wi (t)}. That is, the angle between the mean 
of Wi (t) and v̂^ will approach zero. • 

In the following, we will analyze the variance of Aw/ (0, i.e., Var(Aw/ (t)). 

PROPOSITION 5. Given that x is normally distributed and || w/ {t) \\ < 1, then 
Var(Aw/(0) is bounded above by 3(n — l)(r]i(t)X\)^, where n is the dimension 
of the input pattern. 

Proof. Recall that 

Var(Aw/(0) = E{\\A^Vi(t)f} - ||£{Aw/(0}||^ < E{\\Ayvi(t)f}. 

According to Eq. (8), we get 

E{\\A^Vi(t)f\Wi(t)} = rif(t)E{V,Ht)\\Mt) - Vi(t)Wi(t)f\Wi(t)} 

= rjf(t)E{V^(t){\\Xi(t)f -2V^(t) 

-^V^{t)\\Wi(t)f)\Wi(t)}. 

lf\\Wi(t)\\<hthcn 

E{\\A^Vi(t)f\Wi(t)} < rjf(t)E{V^(t){\\Xi(t)f -V^{t))\Wi(t)} 
n 

<Y^TiJit)E{{(v'0'Mt)f{iu))'xi(t)f}, 

where u', 7 = 1, 2 , . . . , n, have been defined in Proposition 3. Notice that 

£{((u',)'x,(0f((u})'x,(0)^}<3£{((u'i)'x,(0)^}£{((u;.)'x,(0)^}, 
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if Xf is normally distributed. In addition, £{(u^x/)^} = u^E{Xix\}n = u^Qu < 
(y\yCi\\ = X\, where u is any unit vector. Thus, 

n 

j=2 

= 3(n - mm(t)^\)\ for||M;,(r)||<l. 

Since it is true for all realizations Wi(t) with ||ic,(OII < 1. so 

£{£{||Aw,(Of |w,(0}ll|w,(OII < 1} = £{||Aw,(OI|2|||w,(OI| < 1} 

<3(n-l){r,dt)X\f. 

Thus, Var( Aw, (f)) for ||w,(OII < 1 will be bounded above by 

3(n-l)(;j,(0M)^- • (19) 

The variance Var(Aw, (f)) can be decomposed into the sum of the variances 
along u's, i.e., Var(Aw,- (r)) = 5Z'|=i Var((u')'Aw, (0). Here, the radial variance 
of Aw, (f), i.e., the variance along the direction of w,(f), is 

Var((u'i)'Aw,(0|i«,(f)) = £{((u'i) 'Aw,a))>,(0} - {AK(t))\ (20a) 

and the tangential variances of Aw,(0, i.e., the variances along the directions 
perpendicular to u>,(0, are 

Var((u;.)'Aw,(OI«',(0) = £{((u^)'Aw,(0)^|u.,(r)} - (Ae^(r))^ 

j = 2,3,...,n. (20b) 

According to Eq. (8), we get 

£{((u',)'Aw,(r))V,(0} 

= m(t)Xitf{l - kl(tffE{{iu',)'Mt)^iitW^f}, (21a) 

£{((u^.)'Aw,(0)V,(r)} 

= rii(tfklitfE{{iu'j)'xi(t)K'i(tWif}, j = 2,3,...,n. (21b) 

Substituting the square of Eq. (10) and Eq. (21) into Eq. (20), we get 

Var((u',)'Aw,(f)|«),(0) = ///(O^^W^d - 4(0^)^[£{((u'i)'x,(f)x;(0u'i)^} 

- ((u'i)'C,u'i)% (22a) 

Var((u^)'Aw,•(0|u>,•(r)) = 7?,•(02fci(f)^[£{((u^)'x,•(OxJ(Ou'̂ )^} 

- ((ui,.)'C,u'if ], j = 2,3,...,n. (22b) 
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It is obvious that the tangential variances Var((u^ Y Awt (t) \ wt (0) increase as the 
length of Wi{t), i.e., ||iu/(0ll or k\^{t), increases. On the other hand, the radial 
variance Var((u ĵ)̂  Aw/(0|u;/(0) vanishes as the length of Wi{t) approaches 1. It 
leads to the following propositions. 

PROPOSITION 6. When w/ (0 reaches the stable fixed point \\, it will fluctu-
ate around y\ only in direction but not in length. In addition, the range Of can be 
estimated by Of < tan~^ (V3(n — l)rji (t)X\). 

Proof. Take w/ (t) = \\. Then, k!^J^(t) = 1 and u^ = v^. As a result, the radial 
variance Var((Uj)^Aw/(01Vj) [referringtoEq. (22a)] vanishes because/:Jj(0 = 1. 
That is, there is no radial fluctuation of ŵ  (0 to influence its length. On the other 
hand, the tangential variance Var((Uy)^AwKO|v\) [referring to Eq. (22b)] still 
exists. That is, there exists tangential fluctuation of w/ (0- Hence, w/ (t) fluctuates 
only in direction not in length. According to Proposition 5, the range Of of such 
fluctuation in direction can be estimated as follows: 

_i VVar(AwKr)) 
tan 

llwKOII 

_^^3(n-l)r]i{t)k\ 
< tan 

yfi(t)=y\ 

= tm-^(^3(n-l)rji(t))J^). • (23) 

In accordance with the above propositions, it can be seen that the learning rate 
of w/(0 and its variance can be estimated by the value of r}i(t)X\. For instance, 
from Eq. (19) and Eq. (22), one can see that the size of the variance Var( Aw/ (t)) 
can be estimated by the value of (r]i(t)X\)^. It decreases to zero as (r]i(t)X\)^ 
decreases to zero. Since the value of Pi(t) [= r]i(t)X\] is monotone decreasing, 
W/ (0 will then converge to \\ in the mean-square sense due to the decreasing 
variance. On the other hand, the learning rate of the length of w/ (0 depends, from 
Eq. (12), on the value of r]i (O^u- It increases as r]i {t)X\^ increases. Since X\^ < X\, 
we can then use rji (t)X\ to estimate the rate. Similarly, from Eq. (17), the learning 
rate of the direction of w/(0 depends on the values of r}i(t)X^.s. It increases as 
rii(t)X^jS increase for a given data set. Since X\ is the largest eigenvalue, it is 
then reasonable to estimate the rate by using the value of T]i(t)X\. Therefore, for 
different neurons corresponding to different eigenvalues, i.e., X\, the same level 
of learning rate can be obtained by choosing rji (t) such that the values of rji (t)X\ s 
are the same. Hence, the following proposition can be obtained. 

PROPOSITION 7. The learning rates of all w/(r) in the ALA are nearly the 
same if Pi (t) is the same for all i. 

Proof. Since fit (t) is the same for all /, the value of rji (t)X\ will be the same 
for all /. Hence, the learning rates of all w/ (t) in the ALA will be nearly the same 
due to previous discussion. • 
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According to Proposition 7, the learning rate of w/ (0 will not decrease as that 
of the GHA when A/ decreases. Hence, the learning of the ALA can be faster than 
that of the GHA. Simulation results in the next section will confirm the effective-
ness of the ALA. 

III. SIMULATION RESULTS 

First, let us demonstrate that the ALA can converge quickly to the desired 
target in the small-eigenvalue case as well as the large-eigenvalue case while the 
GHA fails to do so. Two sets of three-dimensional randomly generated zero-mean 
data are adopted as input. The maximal eigenvalue Xi of the covariance matrices 
of the two data sets is 0.0086 and 25.40, respectively. One neuron, i.e., m = 1, is 
considered for the moment. The weight vector wi (t) is initially set to be nearly 
perpendicular to its target vi with length about 0.2. Such initial setting is adopted 
in all of the following experiments. The GHA (it is reduced to Oja's rule here 
since m = 1) is first used to train the network. The value of r]{t) is set to be expo-
nentially decreased with time from 0.1 to the final value 0.008. Its time function is 
set as max(0.1(0.01/0.1)^/^^^^, 0.008). Figure 3a and b shows the time histories 
of learning corresponding to the two data sets, respectively. From Fig. 3a, one 
can see that the convergence of the learning process is very slow. The angle Oi (t) 
between wi (t) and vi is still near 90° and the length of wi (0, i.e., || wi (t) \\ is still 
much smaller than 1. The reason is that the value of Xi (0.0086) is so small such 
that rj{t))Xi is even smaller and the convergence rate for the learning process is 
very slow. On the other hand, if the same value of r](t) is used for the other data 
set with Xi = 25.40, the learning process will fail because it is too big for this set 
of data. As shown in Fig. 3b, || wi (t) \\ grows to infinity and Oi (t) cannot decrease 
to zero. 

On the contrary, the ALA can succeed in both cases with the parameters Piit) 
set as the r] (t) of the GHA mentioned above and y (t) set as a constant value 0.01. 
First, let us discuss the procedure of eigenvalue estimation. In our experiments, 
wi(0 is initially set far from vi purposely; then the Xi estimated by Eq. (5) is 
much smaller than its true value during the initial period of the learning process. 
As a result, rji(t) [= Pi(t)/Xi{t)] becomes much bigger than the desired value 
P\{t)/X\. That is, r]\{t)X\ becomes much bigger than P\{t), the value we set, 
or even the upper bound 2(V2 — 1). According to Eq. (11), the length of wi(0 
will diverge. However, this minor problem can be remedied by the normalization 
procedure in step 6 of the ALA. In step 6, once ||wi {t) \\ > y/\/fi\{t) + 1/2, it is 
normalized to \/o!5. Otherwise, no normalization is required. From Eq. (18), one 
can see that the directional convergence of wi(f) will then hold. Moreover, the 
convergence rate will, from Eq. (17), be faster with the bigger value of r]\(t)X\. 
Hence, wi(0 will be close to vi in direction and the mean of(w',x/||wi||)2will 
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Figure 3 Simulation results of the GHA for (a) Xi = 0.0086, (b) Ai = 25.40. Reprinted with 
permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995 
ffiEE). 

then approach the desired value ^ i . As a result, A,i (t) will converge very quickly. 
Figures 4a and 5a clearly illustrate this point for these two data sets. With the 
accurate estimate of eigenvalue, wi (t) will converge to vi in the mean-square 
sense as indicated by Propositions 3-6. It is illustrated in Figs. 4b and 5b. It can 
be seen from the figures that the length of wi (t) and angle Oi (t) between wi (t) 
and vi converge quickly to 1 and 0, respectively, for both data sets. From the k^ (t) 
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(b) 
Figure 4 Simulation results of the ALA for >.i = 0.0086. (a) Time histories of Xi (top figure) and 
(fil /A-i )>-i (bottom figure for two different time scales). The dashed line and curve denote the values of 
ki and fii (t), respectively, (b) Time histories of ||wi || and Oi as functions of iterations, (c) Trajectory 
of wj on the k^ versus ||si || plane. Parts (a) and (b) reprinted with permission from L. H. Chen and 
S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 ((c)1995 IEEE). 

versus ||si (t) || plots in Figs. 4c and 5c, one can see that each wi (0 approaches the 
unit hypersphere (the dotted curve) quickly and then reaches its target vi which 
is located at the coordinate (1, 0) of the plot. To sum up, the learning process of 
ALA is successful for both data sets. 
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Figure 4 (Continued) 

In the following, simulations will be used to demonstrate that the ALA can 
make all of the m weight vectors Wi(0» i = 1, 2 , . . . , m, converge quickly to 
the desired targets independent of the eigenvalues and eigenvalue spread. Three 
data sets are used here: Sandpapers, IRIS [42], and X08. The set of Sandpa-
pers contains 96 four-dimensional patterns describing the texture measurements 
of the images of four kinds of sand. The IRIS data contains 150 four-dimensional 
patterns of three classes of flowers. Finally, the set of X08 contains 45 eight-
dimensional patterns describing the characters "X," "O," and "8." The ALA can 
still handle such non-zero-mean data, well as zero-mean data by estimating the 
data mean and subtracting it from the patterns. We estimate the data mean with 
the equation mjc(̂  + l) = m;c(OH-(x(0-injc(0)/(^ + l)-Notice that the patterns 
in the data set are drawn randomly and repeatedly as the inputs presented to the 
network. In addition, the number of output, m, is set to n now. The parameters 
Pi(t), for / = 1, 2 , . . . , m, are all set to the same value as Pi(t) in the previous 
experiments except time delay and the final value denoted by fif. For the time 
delay, the learning time of neuron / starts later than that of neuron / — 1 with a 
time delay tp which is set to 500. The goal is to make all w^ (0 come close to 
V; for j < i when neuron / begins to learn. Moreover, in order to make the final 
angle error between w/ (t) and v/ be smaller than 1.5°, the final value fif of ^t (t) 
is set, according to Eq. (23), to 0.008 for Sandpapers and IRIS, and 0.005 for 
higher-dimensional X08, respectively. The results for Sandpapers and IRIS are 
shown in Figs. 6 and 7, respectively. It is clear from the time histories of ||w, (t) ||s 
and Oi(t)s that all of w/(Os can converge quickly to their corresponding v/s re-
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Figure 5 Simulation results of the ALA for Xj = 25.40. (a) Time histories of Xi (top figure) and 
(^l /M )^l (bottom figure for two different time scales). The dashed line and curve denote the values of 
Xi and ^i (r), respectively, (b) Time histories of ||wi || and 6i as functions of iterations, (c) Trajectory 
of wj on the fc^ versus ||si || plane. Parts (a) and (b) reprinted with permission from L. H. Chen and 
S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 (©1995 IEEE). 

spectively even in the Sandpapers case where the second and third eigenvalues 
are very close. Moreover, one should notice that, although the differences among 
the eigenvalues are great, the learning rates of neurons are all nearly the same af-
ter they start learning. The eigenvalue spread A.i/A.„ reaches about 200. However, 
the learning rate of neuron / in the ALA will not be slowed down as i increases. 
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Table I 

Final Values for Sandpapers Using ALA 

Neuron / 

1 
2 
3 
4 

Oi 

0.5831 
0.8085 
0.4997 
0.5086 

llwHI 

1.0002 
0.9985 
0.9931 
0.9921 

^1 

0.0266 
0.0011 
0.0009 
0.0001 

^1 

0.0265 
0.0011 
0.0008 
0.0001 

Reprinted with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 
6:1255-1263, 1995 (©1995 IEEE). 

Table II 

Final Values for IRIS Using ALA 

Neuron i 

1 
2 
3 
4 

Oi 

0.3112 
0.8727 
0.9051 
0.8935 

llwHI 

1.0003 
0.9982 
0.9951 
0.9886 

h 
4.1045 
0.2358 
0.0729 
0.0233 

^1 

4.2001 
0.2411 
0.0777 
0.0237 

Reprinted with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 
6:1255-1263, 1995 (©1995 IEEE). 
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(b) 
Figure 6 Simulation results of the ALA for Sandpapers data, (a)-(d) Learning times histories of wi, 
W2, W3, and W4, respectively. The vertical dotted lines denote the starting time of learning. Reprinted 
with permission from L. H. Chen and S. Chang, IEEE Trans. Neural Networks 6:1255-1263, 1995 
(©1995 IEEE). 

Tables I and II list the final values of ||w, (t) ||s and Ot {t)s as well as the eigenvalue 
estimates Xi(t)s at the end of the learning process. It is obvious that the results 
are quite accurate compared with the theoretical values. Table III is the simula-
tion result for the data set X08. It demonstrates that the ALA also works well for 
higher-dimensional data. 
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From these experiments, it is clear that the ALA can properly and automati-
cally select the learning rate parameters such that w/ (t) can converge to v/ with 
almost the same rate for each / no matter what values the eigenvalues Xts are. 
Hence, the ALA is a very effective way to execute PCA. 
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Figure 7 Simulation results of the ALA for IRIS data, (a)-(d) Learning times histories of wi, W2, 
W3, and W4, respectively. The vertical dotted lines denote the starting time of learning. 

IV. APPLICATIONS 

Due to the aforementioned effective computing capability for PCA, the ALA 
can then be applied to data compression. By not removing the data mean, the 
PCA is equivalent to the Karhunen-Loeve transform (KLT) [43, 44], by which 
higher-dimensional data can be transformed to lower-dimensional data. From 
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these lower-dimensional data, we can reconstruct the higher-dimensional data 
with minimal mean-square error. That is, data are compressed via dimensionality 
reduction. The ALA can exactly be utilized to quickly perform such a task. 

The ALA can also be applied to image coding, texture segmentation, and de-
velopment of receptive fields due to its effective executing capability of the KLT. 
These applications can be found in [24]. The following are two examples of im-
age coding. Figure 8a is the original "pepper" image with 256 x 256 pixels and 
256 graylevels. A PCA learning network with 64 inputs and 8 outputs is adopted 
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Table III 

Final Values for X08 Using ALA 

Neuron i 

1 
2 
3 
4 
5 
6 
7 
8 

Oi 

1.2992 
1.5005 
1.1511 
1.6035 
1.7126 
1.5847 
0.6891 
0.6647 

llw/ll 

1.0029 
0.9996 
0.9994 
1.0001 
0.9966 
0.9909 
0.9935 
0.9884 

M 

15.822 
9.9920 
6.9473 
4.8364 
3.7637 
2.2885 
1.2062 
0.6284 

1̂ 

15.842 
10.145 
7.0847 
5.0343 
3.9537 
2.3659 
1.1999 
0.6376 

here. That is, the number of neurons, m, is equal to 8 now. The image is first di-
vided into nonoverlapped 8 x 8 blocks. These 8 x 8 blocks are then presented in 
a random order to the network as training samples. The parameter y is set here as 
0.005 while Pi is set to be exponentially decreased with time from 0.1 to 0.002. 
It decays to 0.01 as t comes to 500. The final value of Pi, i.e., 0.002, is still set 
according to Eq. (23) to make the final angle error between the 64-dimensional 
weight vector w/ and its target v/ to be smaller than 1.5°. In addition, the time 
delay tp is set to 50. 

The eight outputs are then used to represent the input 8 x 8 image block. This is 
the image coding. To reconstruct the image, each 8 x 8 block is approximated by 
adding together the weight vectors multipHed by the corresponding outputs. The 
performance of coding is evaluated by calculating the normalized mean-square 
error (NMSE) [11]: 

NMSE = ^^^^^'" T ^^-"^'^ (24) 

where In,m is the pixel value at position n,m of the original image and In,m is the 
corresponding pixel value in the reconstructed image. 

Figure 8b shows the reconstructed pepper image, and in the top part of Fig. 8c 
are the learned eight weight vectors, each of which is arranged as an 8 x 8 mask. 
The bottom part of Fig. 8c is the plot of the time history of the NMSE. It decays 
very quickly. At t = 798, the NMSE has been decreased to lower than 0.01! 
The final value reaches only 0.006. On the contrary, the similar experiment by 
the GHA can only obtain a NMSE higher than 0.02 even if the iterations have 
been over 2000 [24]. In addition, observing from the estimated eigenvalues listed 
in Table IV, the first eigenvalue extends 10^ and is almost 900 times the eighth 
one. It needs the learning rate parameters smaller than 10~^ in order to make 
the learning process converge! Moreover, these parameters should be increased 
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Figure 8 Experimental results of the ALA for image coding, (a) Original "pepper" image, (b) Re-
constructed image, (c) Learned eight weight vectors and the NMSE learning curve. 
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as the index of neuron increases such that the last one becomes 900 times the 
first one in order to keep the learning speed from decaying as the index increases. 
All of these requirements are automatically and adaptively achieved by our ALA. 
The learning process then not only converges but also converges very quickly 
as indicated by the NMSE learning curve. Figure 9 and Table V are results for 
another similar experiment for the "Wha" image. All of these experimental results 
obviously demonstrate again the power of the ALA. 

Table IV 

Estimated Eigenvalues of the "Pepper" Image 

Neuron i ^i 

1.2 e6 
2.1 e4 
1.5 e4 
5.7 e3 
4.0 e3 
2.3 e3 
1.6 e3 
1.4 e3 
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Figure 9 Experimental results of the ALA for image coding, (a) Original "Wha" image, (b) Recon-
structed image, (c) Learned eight weight vectors and the NMSE learning curve. 



Learning Algorithms of Principal Component Analysis 349 

1500 
Time 

(c) 
Figure 9 (Continued) 

3000 

V. CONCLUSION 

For PCA learning networks, we have proposed an adaptive learning algorithm 
(ALA). By adaptively selecting the learning rate parameters according to the 
eigenvalues of the input covariance matrix, it has been shown that the ALA can 

Table V 

Estimated Eigenvalues of the "Wha" Image 

Neuron / A./ 

1.2 e6 
1.7 e4 
1.3 e4 
6.7 e3 
3.4 e3 
2.6 e3 
1.9 e3 
1.0 e3 
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make the m weight vectors in the network converge quickly to the first m princi-
pal component vectors with almost the same learning rates. From the simulation 
results, it has been confirmed that the ALA can converge very quickly to the de-
sired target in the large-eigenvalue case as well as in the small-eigenvalue case. On 
the other hand, the conventional GHA diverges in the former case and converges 
very slowly in the latter case. In addition, from the simulation results of the three 
real data sets—Sandpapers, IRIS, and X08—one can see that the ALA has been 
able to find quickly all principal component vectors even if the eigenvalue spread 
is quite big. The ALA is thus a very effective way to execute the PCA. Based on 
such capability, the ALA has been applied to data compression and image coding. 
Excellent experimental results have been obtained. 

In the future, it is expected to implement the above adaptive learning algo-
rithms in VLSI architectures in order to facilitate practical applications. 

VI. APPENDIX 

Proof of Proposition 1. Take w{t) to be close to vi, i.e., w(0 = vi + e(r), 
where Cvi = A-ivi, ||vi|| = 1, and ||e(OI| < 1. Thus, E[Awit)\vf(t)] = 
£{Ae(0|e(0},andwegetbyEq.(4) E[Ae{t)\e{t)] = /?(f){C(vi+e(0)-[(v'i + 
e'(0)C(vi +e(0)](vi +e(0)} = »?(?)[Ce(0 -2Xi -e'COviVi -Xie (0 + 0(^^)1 
where O(e^) denotes the higher-order terms of e(t). Ignoring the O(e^) terms, 
it becomes £:{Ae(0|e(0} = r](t)[Ce(t) - 2A.ien0vivi - Xiei(t)]. Recall that 
the normalized eigenvectors associated with distinct eigenvalues of symmetric 
matrix C are orthonormal. They can form a basis spanning the R" space. As a 
result, we can represent yv(t), t(t), E[Ae(t)], etc., by their components along 
the directions of the normalized eigenvectors of C. Thus, along the direction 
of\j,j = 1, 2 , . . . , n, the component of E{Ae(t)\e(t)} is \^jE{Ae{t)\eit)} = 
-2ri(t)Xiy[e(t), if j = 1; -^ (0(^1 - Ay)v^ .̂e(0, if; ^ 1. Therefore, 

Y)E{e(t + l)\e(t)} = y)eit)^y)E{Ae{t)\e(t)} 

{l-2r]it)ki)x[e(t), ifj = h . _ . 
[1 - rj(t)(Xi - kj)Wje{t), if 7 ^ 1, ^^^^ 

where e(t) stands for the realization of e(t) at time t. It can be seen that if r](t) < 
l /Xi , then| l -2^(0A.i | < 1 and |1 - r/(0(^i - A,y)| < I fo r j = 1, 2 , . . . ,n. As 
a result, from Eq. (25), \\^jE{eit -f- 1)|^(0}| will be smaller than \\^je{t)\ along 
all directions \j, j = 1, 2 , . . . , n. Since this is true for all realizations e(t), the 
expectation of error will thus decrease. It implies that the expectation of w(0 will 
approach vi. Hence, if ^ (0 > 1 /-^i»then the expectation of w(0 cannot approach 
vi and therefore w(0 cannot converge to vi. This completes the proof. • 
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Proof of Proposition 2. When ri(t)ki < 0.5, the values of 11 — 2r}(t)Xi \ and 
|1 — T](t)(Xi — Xj)\, j = 2,3,... ,n, will be closer to 1 if the value of ^(0^1 is 
closer to zero. As a result, from Eq. (25), the expectation of error will decrease 
much more slowly. • 
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I. INTRODUCTION 

The fundamental goal of supervised learning is to synthesize functions which 
capture the underlying relationships between input patterns and outputs of some 
particular task of interest. For learning to be truly satisfactory, these functions 
must provide good estimates of the outputs corresponding to input patterns not 
used during training. This ability is normally referred to as generalization. 

Clearly, the architecture of a neural network—its layers, connectivity, and es-
pecially hidden neurons—defines the number of adjustable parameters available 
to synthesize the functions. Large networks have more parameters than small ones 
and, therefore, do better at fitting the training patterns. Too small networks may 
not even be able to bring the training error below some desired minimum value. 
However, if the number of parameters is far larger than needed, the network will 
actually learn the idiosyncrasies of the data, an effect known as tuning to the noise 
or overfitting, and will exhibit rather poor generalization. 

It is widely accepted that good generalization results when the number of hid-
den neurons is close to the minimum required to learn representative training pat-
terns with a small quadratic error. Hence, it is desirable to assess learning ability 
with respect to the training samples, and find a reduced architecture which ensures 
proper generalization. 

Several strategies have been proposed to estimate upper and/or lower bounds 
on the number of hidden neurons required to learn specific tasks within the de-
sired generalization accuracy. Many of these approaches are based on the seminal 
learning theory paper by Valiant [1], or apply the theory of large deviations in 
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its uniform version by Vapnik and Chervonenkis. Not surprisingly, it has been 
usually found that a high generalization error is expected when the number of 
samples is small compared with the system's complexity. 

Blumer et al [2], for instance, relate the size of the learning system to the 
number of training samples. Along the same line of thought, Baum and Haus-
sler [3] give theoretical upper and lower bounds to relate the number of training 
patterns to weights so that valid generalization can be expected. After making a 
few simplifying assumptions—such as considering neurons with linear threshold 
activation functions or Boolean valued—^their derivations suggest the number of 
training samples should be roughly the number of weights divided by some ac-
curacy parameter, s. Hence, if e = 0.1 (for a 90% generalization accuracy), the 
number of weights should be approximately 0.1 times the number of patterns. 
A similar rule of thumb had been previously suggested and proven to be effec-
tive [4]. 

Other methods are tailored to specific architectures, usually with only one hid-
den layer [5], or with particular conditions on the input data and the activation 
functions [6]. Igelnik and Pao [7] derived a lower bound for the size of the single 
hidden layer in the random functional-link net, a higher-order network [8]. This 
bound guarantees the training error will be smaller than some prescribed level. 
Sometimes, the practical usefulness of these methods is rather marginal. Arai [9], 
for example, found that a binary-valued network with a single hidden layer needs 
a maximum of (P — 1) neurons to learn P patterns. 

In any case, upper and lower bounds can only serve as initial guidelines in 
the construction of an effective network. Arriving at an optimal or near-optimal 
architecture usually requires sound heuristics and an iterative building process 
during training. 

A. SIMPLIFYING ARCHITECTURE COMPLEXITY 

Techniques which iteratively build networks with good generalization prop-
erties and reduced architectures fall under two categories: network growing and 
network pruning. 

In network growing, we start with an architecture which is smaller than needed 
to learn the task at hand. This architecture is then progressively increased dur-
ing training, adding more neurons until the learning error falls below a specified 
threshold. Hirose et al [10] start with a network that has only one hidden neuron. 
Then back-propagation (BP) is applied until the learning error does not decrease 
significantly any longer. At this point, a new hidden neuron is added to the ar-
chitecture, and the cycle repeated. Eventually, there will be enough neurons to 
synthesize appropriate classification rules so that the error falls below a desired 
value. Subsequently, a reduction phase is initiated which consists in pruning one 
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neuron at a time. After pruning a neuron, the network is retrained until it con-
verges. If it does not, the algorithm stops and the last converging network is used. 
Other variations on the same theme include Zhang's SEL and SELF architectures 
[11], Fahlman and Lebiere's cascade correlation [12], Lee et al.'s [13] structure-
level adaptation, and Lee et al's [14] separating hyperplanes incremental model. 

In network pruning, we start with an architecture which is larger than the min-
imum needed for learning. Such architecture is then progressively reduced by 
pruning or weakening neurons and synaptic weights. Network pruning techniques 
and their application constitute the main focus of this chapter. 

B. APPLICATIONS 

Architecture reduction paradigms have multiple applications. As will become 
apparent in future sections, some paradigms are better suited for certain applica-
tions than others. Consequently, algorithm selection should be the result of evalu-
ating the problem at hand, as well as any hardware or computational limitations. 
In general, the following Ust comprises the most important applications of net-
work pruning. 

• Improve generalization. This is the primary aim of all pruning techniques 
and, as previously indicated, is an essential characteristic of any successfully pre-
pared network. 

• Speed up on-line operation. Obviously, smaller networks with few connec-
tions and neurons need less time to generate an output value after the input pattern 
is presented. This application is particularly important when the trained network 
becomes part of a real-time estimation or control system. 

• Reduce hardware requirements. In commercial applications where the net-
works might have to be realized in hardware, product costs can be cut down by 
identifying reduced architectures. 

• Understand behavior in terms of rules. In networks with reduced connec-
tivity, it is easier to identify those features exerting the most effect on the output 
functions. Generally, those features propagate their effects to the output neurons 
through large weights. Consequently, it is rather easy to derive gross rules relating 
process features and outputs. 

• Evaluate and improve feature space. Several pruning strategies, particu-
larly constraint optimization and iterative pruning, can be readily applied to the 
assessment of feature spaces. This way, features deemed irrelevant or carrying 
limited information are eliminated, while features with higher information content 
are added. Improving feature space quality has an unmeasurable value: a pattern 
recognition problem cannot be solved without good feature representation. 

• Speed up learning. At first glance, talking about learning time could appear 
to be irrelevant once a reduced architecture has been found. However, small net-
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works usually show a strong dependency with the initial weights values during 
training. For this reason, sometimes it is necessary to retrain a reduced network. 
Clearly, smaller networks train faster than larger ones. 

C. OUTLINE 

Many network pruning schemes have been proposed since the late 1980s. 
Based on the principles and heuristics they exploit, we have broadly grouped them 
into the following six categories. 

• Complexity Regularization. The first type of pruning algorithms reported, 
complexity regularization, attempts to embed architecture simplification within 
the gradient descent training rule. The primary assumption is that complexity and 
weight magnitude are equivalent. Hence, the training rules are modified so that 
large weights are penalized. After training, connections with very small values 
can be pruned altogether, rendering a smaller network. 

• Sensitivity Estimation. Magnitude is not always a good indicator of a 
weight's importance. Frequently, small weights provide highly desirable resis-
tance to static noise by smoothing output functions. For this reason, their preven-
tion could actually deteriorate performance. A more effective pruning approach 
consists in eliminating weights that show little effect on the synthesized outputs. 
Through heuristics and other simplifying assumptions, sensitivity methods esti-
mate the relevance of a weight or neuron on the network's output, and deactivate 
elements with low relevance. 

• Optimization Through Constraint Satisfaction. There are similarities be-
tween a supervised learning task and a resource allocation problem. The archi-
tecture's complexity can be treated as a limited resource, while the learning re-
quirements set forth by the training patterns can be treated as constraints. Within 
this framework, performance depends on the network's ability to satisfy the con-
straints with its available resources. Constraint satisfaction techniques set up the 
resource allocation problem in ways which are appropriate for optimal pruning. 

• Bottlenecks. It has been observed that generalization improves when 
a bottleneck—a hidden layer with significantly fewer neurons than previous 
layers—is imposed in the architecture. In these paradigms, bottlenecks are cre-
ated during gradient descent training by compressing the dimensionality of the 
spaces spanned by the hidden layer's weights. 

• Interactive Pruning. In trained networks, it is sometimes possible to iden-
tify neurons whose behavior duplicates other neurons, or which have limited dis-
crimination ability. Interactive pruning techniques identify these neurons through 
heuristics, and eliminate them. 

• Other Methods. 
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In the remaining sections, we discuss the fundamental principles behind each 
one of these categories. Similarly, we describe relevant algorithms appearing in 
the open literature. Our interest is not to give an exhaustive review of all available 
techniques, but rather to present in sufficient detail the most important ones under 
each category, as well as comment on their potential and Hmitations. 

II. COMPLEXITY REGULARIZATION 

As mentioned before, to improve generaHzation it is important to reduce the 
size or complexity of a network, so that the synthesized output function captures 
the essence of the training data rather than its idiosyncrasies. Since the purpose of 
the training session is to construct a nonlinear model of the phenomena originating 
the data, it is convenient and simple to include as part of the training criteria some 
measure of complexity. This way, pattern learning and complexity reduction can 
be accomplished simultaneously as part of the same process. 

Complexity regularization was one of the first proposed paradigms aimed at 
reducing size. In its general form, it consists of adding to the usual quadratic error 
function, Eo, an extra penalty term Ei that measures complexity. The result is a 
total error function £, which penalizes both training data misfit and complexity. 
Hence, the learning rule is obtained by applying gradient descent to 

E(w) = Eo(yv) + XEi(yv), (1) 

where X is the regularization parameter dictating the relative importance of Eo 
with respect to Ei. A large A favors solutions with reduced complexity, while a 
small one gives more importance to accurate training pattern learning. It should 
be mentioned that k can be modified as needed during training. 

The procedures described in this section differ between each other by their 
penalty term(s), the selection or modification of the regularization parameter, 
and the training stopping criteria. However, all of them share a—sometimes 
unintended—association of complexity with weight magnitudes. As a conse-
quence, they tend to reduce the weights' absolute values rather than the actual 
number of connections in the network's architecture. 

A. WEIGHT DECAY 

Weight decay (WD) [15, 16], the simplest complexity regularization method, 
directly equates network complexity to weight magnitude. The idea is to reduce 
connections by adding to the standard BP quadratic error function a term which 
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penalizes large weights, so that 

E = J2^tp-Opf + xJ2^f, (2) 
peT ieC 

where tp and Op denote the desired and actual output for training pattern p, T 
and C represent the sets of all training patterns and all weights, and wt is the /th 
weight. 

Since the derivative of the complexity term is proportional to u;/, each weight 
will have a tendency to decay toward zero at a rate proportional to its magnitude. 
Such decay is only prevented by the reinforcement introduced through the gra-
dient of the quadratic error term. Thus, the learning rule not only causes pattern 
learning but also favors weight magnitude reduction. Once training has finished, 
the weights can be grouped into two sets: one with relatively large values and in-
fluence on the network's performance, and another with small values. This latter 
set contains the so-called excess weights, which can be removed to avoid overfit-
ting and improve generalization [15]. 

Krogh and Hertz [17] provide analytical arguments to explain why WD im-
proves generalization. They conclude that improvement occurs for two reasons: 
(1) WD chooses the smallest vector which learns the training patterns, and (2) if 
properly selected, it can reduce some of the effects of static noise. However, ap-
propriate dynamic modification of X during training is of critical importance. It 
has been found that a poorly selected or constant k could preclude learning and 
generalization altogether [18], while an adaptive one renders better results [19]. 
Also, it has been argued that a |M;| regularizer is more appropriate than w^ [20]. 

B. WEIGHT ELIMINATION 

A disadvantage of the penalty term included in Eq. (2) is that all weights are 
subjected to the same decaying criteria. Better performance can be obtained if bi-
ases are designed so that only weights within particular range values are affected 
[21]. Weight elimination (WE), proposed by Weigend et al [22, 23], is a proce-
dure which selectively biases weights. In WE the modified error function is given 
by 

2 

where Wo is a preassigned weight-decay parameter. Thus, the importance of 
a weight depends on the magnitude of its value relative to Wo. As shown in 
Fig. 1, the complexity term approaches zero when \wi\ <^ Wo, and unity when 
\wi\^ WQ. Hence, the BP training will promote the appearance of small weights, 
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and penalize large ones. Note that WD is then a special case of WE: for large Wo, 
Eq. (3) reduces to Eq. (2), except for a scaling factor. 

Just as with WD, here too performance is particularly sensitive to the selection 
of A. A small A lets the network exploit all of its weights and pay more atten-
tion to learning the training patterns; a large X assigns more importance to the 
reduction of weight magnitude in an attempt to improve generalization. For this 
reason, a few heuristics have been derived to dynamically adjust X after every 
epoch depending on the current value of the error over the training set, Eo. These 
adjustments are of three types: small increments, small decrements, and cut down. 

Suppose En denotes the error after the n\h epoch. Initially, training starts with 
A = 0. To modify X after every epoch. En is compared against three quantities: 
(1) the quadratic error in the previous epoch, En-\\ (2) an exponentially weighted 
value of the error. 

An = yAn-l + ( 1 -y)En, 1; (4) 

and (3) a desired minimum error, D. 
If En < D and/or En < £"^-1, it can be inferred that training is going well. 

Consequently, we proceed to increment J\. by a small amount AA,, on the order 
10"^. If En > En-i A En < An A En > D, the error is increasing but still im-
proving with respect to the long-term average. Hence, we decrement k by Ak. If 
the new A is negative, then A = 0. Finally, if En > En-i A En > An A En > D, 
the error is definitely deteriorating; in an attempt to prevent weight elimination 
from permanently damaging the net, A is now set to 0.9A. 

Weigend et al [23] have used WE to predict yearly sunspot averages, and cur-
rency exchange rates. For sunspot series prediction the procedure rendered not 
only a smaller network (just three hidden neurons), but also one with half the out-
of-sample error of the benchmark model by Tong [24]. Similarly, out-of-sample 
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exchange rate predictions were much better than chance. In both cases, the resuh-
ing networks successfully ignored irrelevant information. 

C. SMOOTHNESS CONSTRAINT GENERALIZATION 

A broad class of ill-posed inverse problems describing physical phenomena— 
including early vision—^have been regularized through smoothness constraints. In 
those cases, generalization is reduced to finding a solution function that smoothly 
interpolates between the training patterns. In a neural network, the output func-
tion is smooth when the weights are relatively small, but it can exhibit abrupt 
transitions if the weights are large. This is so due to the dependency between a 
sigmoidal neuron's response and its input weights. 

Inspired by the good performance of smoothness constraints, Ji et al. [25] pro-
pose a complexity reduction algorithm which consists of modifying the quadratic 
error function with two heuristic terms, one to reduce the number of hidden neu-
rons and the other to minimize the weights' magnitudes. The first term eliminates 
spurious local extrema in the output function, while the second one avoids unnec-
essary transitions. 

The procedure is introduced in the context of a network with one linear input, 
one hidden layer of N sigmoidal neurons, and one linear output. Due to the ar-
chitecture's simplicity, the input and output weights of the /th hidden neuron are 
denoted as M/ and vt, respectively. A hidden neuron is assumed to be significant 
only when connected to the input and output through weights of large magnitude. 
Hence, the significance of the /th neuron could be quantified as 

Si =G{ui) -aivi), (5) 

where or(w;,y )̂ = M;?-^/(1 + w;?-̂ ). 
To procure solutions with few significant neurons, the term 

Â  i-\ 

Ex{yf) = kY,Y.^iSj (6) 

is added to the quadratic learning error, EQ. Note how this modification only af-
fects connection weights—it does not affect biases. After applying the gradient 
decent algorithm, the learning rule for weights then becomes 

dEo SEi 
mjk = Wijk - T] (w, b) - X (w), (7) 

dwijk owijk 

with w, b denoting the vectors of weights and biases, respectively. 
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Both gradients in Eq. (7) could be in conflict and thus originate spurious 
equihbria. To avoid this undesirable situation, it is convenient to have a dy-
namic A which increases in value as the error Eo decreases. Ji et al [25] use 
k = Xo cxp(—KEo), where K specifies the EQ value below which the neuron elim-
ination term kicks in, and ko is on the order of lO"" .̂ 

To reduce weight magnitudes, a small amount is subtracted from both weights 
and thresholds in every epoch, thus resembling weight decay. The amount sub-
tracted is iJit3nh(wijk), with, /x = /lol^Eol, (JLO on the order of 10~^. This term 
seems to reduce the larger weights more effectively than other methods [25], and 
its effects diminish as convergence occurs. 

Neuron pruning works as follows. Once an acceptable learning error EQ is 
reached, weights with small magnitudes are periodically eliminated as training 
progresses. After all weights connected to a particular neuron have been elimi-
nated, the neuron itself is removed. 

Simulation results showed this algorithm produces smoother response func-
tions than standard BP, and architectures with fewer hidden neurons. This behav-
ior is nevertheless obtained at the expense of a slower convergence rate. 

D. CONSTRAINED BACK-PROPAGATION 

The regularization methods described so far operate by expanding the error 
function with terms which directly penalize weight magnitude. On a more ambi-
tious path, Chauvin [26-28] has proposed and tested a variety of penalty terms 
to reduce as well the magnitude of the hidden neurons' outputs over the training 
set. The underlying assumption is that a neuron's "energy"—^how much its output 
changes across the training set—indicates relevance. Naturally, neurons carrying 
significant information have large energy values, while less important ones have 
little internal energy. 

Constrained back-propagation (CBP), perhaps the most elaborate method ex-
plored by Chauvin [27], adds two terms to the usual error function. The first term 
reduces large weights just as WE, while the second term reduces the outputs of 
the hidden layers across the training set. The combined error function becomes 

2 2 

peT ieC ^i '^^ k p ^kp + ^ 

Obviously, the second and third terms effectively introduce a selective 
parameter-decay force into the learning rule. For example, the gradient of the 
weight-dependent term approximates 2Xu)Wi for small weights. Hence, when a 
parameter's magnitude—either weight or output—is much smaller than unity, the 
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learning dynamics will tend to decrease that parameter even more. The final re-
sult is not only a network with smaller weights but also one with possibly several 
inactive hidden neurons. These neurons can be identified and pruned as training 
progresses. 

Chauvin extensively tested CBP in the difficult task of phonemic classification 
from spectrograms [28]. His results indicated that: 

• Overfitting depends on both the size of the network and the number of 
training cycles. CBP basically eliminates overtraining despite long training 
times. Regardless of the original network size, the generalization 
performance remained approximately constant during the entire training 
session. 

• With CBP the hidden neurons' energy rapidly decreases to a low level at 
the start of training. On the other hand, with BP the energy continues 
increasing, though slightly, throughout training. 

• The learning error decreases more slowly in CBP than in the regular BP. 

III. SENSITIVITY CALCULATION 

According to several researchers including Mozer and Smolensky [29], and 
Hanson and Pratt [21], the penalty parameters in regularization methods are dif-
ficult to adjust, and it is often impossible to avoid local minima. Historically, this 
drawback motivated work into alternative pruning algorithms based on sensitivity 
analyses. The idea is that a neuron or a weight to which the output of a trained 
network is insensitive can be eliminated without much detriment to generaliza-
tion performance. On the other hand, if the output's sensitivity is high, then this 
is an indication that the weight has captured important information contained in 
the training patterns. As a result, the weight or neuron should remain as part of 
the core—the skeleton—of the network. 

In principle, calculating the sensitivity with respect to a weight is simple: just 
make that weight equal to zero, and then find the resulting increment in the error 
function E. If the increment is small, the weight can be pruned, and the architec-
ture's complexity reduced. However, the problem with this brute force approach is 
the computational time required. In serial computers, a forward propagation of an 
input pattern takes O {W) time, where W is the number of weights. Hence, assum-
ing we have P training patterns and one single output, the time needed to make 
one pruning pass is 0{PW^). Furthermore, since a weight's elimination affects 
other sensitivities, a more conservative algorithm would prune only one weight 
after each pruning pass. This would increase the time to 0{PW^). Clearly, such 
an exhaustive approach is infeasible for all but the smaller networks. 

The pruning methods presented in this section try to approximate sensitivity 
through more efficient means. They differ among each other in the way the ap-
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proximation is formulated. Nevertheless, most of them share the following char-
acteristics: 

• They attempt to prune weights or neurons, rather than reducing their 
magnitudes. This represents a significant departure from the objective of 
regularization. 

• Sensitivity is approximated from information which is available as training 
progresses. 

• Actual pruning only takes place after some training, usually—but not 
always—until convergence. Thus, the error function is at a near local 
minimum with respect to the weights of the trained architecture. 

• Some retraining or other weight modification is needed after pruning. 
• Pruning can be repeated several times, until further architecture reduction 

starts deteriorating learning performance. 

A. NEURON RELEVANCE 

The idea of pruning neurons rather than individual connections was first in-
troduced by Mozer and Smolensky [29]. The underlying idea in their strategy 
is rather simple: iteratively train the network to a certain performance criterion, 
compute some meaningful functionality or relevance metric to quantify how im-
portant each neuron is, and then eliminate those neurons which are less relevant. 
The process can be repeated after a number of epochs, so the net is trimmed little 
by little. 

Suppose we measure performance by calculating the quadratic error E over 
the training set. Conceptually the relevance pik of the /th neuron in the kih 
layer is the increment in error experienced as a result of eliminating that neuron. 
This is, 

Pik = ^without neuron ~ ^with neuron- (9) 

Since calculating E requires a complete pass on the training set, the cost of com-
puting all relevances will be 0(NP), where N and P represent the number of 
neurons and training patterns, respectively. A more efficient solution can be ob-
tained by finding an estimate ptk. To this end, the gating coefficient atk was intro-
duced and a neuron's output expressed as 

Oj{k-^\) = / ( X I ^iJk^ikOikl (10) 

where / denotes the sigmoidal squashing function. By taking the derivative of the 
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error function with respect to atk, and through some rather crude approximations, 
it can be shown that [29] 

SE 
Pik"^--— 

datk 
(11) 

Thus, when ptk falls below a certain small threshold, its corresponding neuron 
can be pruned. Since the error derivative fluctuates significantly in time, the ex-
ponentially decaying average 

Pikit + 1) = O.Spikit) + 0.2^E(t) (12) 

is used instead. Also, even though the typical sum of squared errors is applied 
during training, the error function that measures relevance is the sum of absolute 
values of the errors. Hence, two separate error functions must be computed; this 
could be considered a disadvantage. 

Segee and Carter [30] tested the fault tolerance of pruned networks trained to 
produce the sine value of inputs on the interval [—n, TT]. Pruning consisted of 
computing relevances every 500 epochs, and eliminating the neuron with the low-
est relevance. Training was stopped when the error reached a specified threshold. 
After training, fault tolerance was measured by calculating the increment in the 
RMS error over the training set which resulted from zeroing weights and neurons 
one at a time. 

Three revealing results were found from this study. First, the algorithm basi-
cally eliminates neurons with small weights; the pruned networks did not have 
weights with small values. Second, not surprisingly the larger the magnitude of 
a weight, the higher its relevance. There is also a strong correlation between the 
relevance of a neuron and the magnitude of its largest weight. Finally, it was con-
cluded that the pruned networks were not less fault tolerant than the unpruned 
ones. 

B. WEIGHT SENSITIVITY 

As mentioned before, it is a disadvantage to have network training and rele-
vance evaluation as separate processes. To eliminate this drawback, Kamin [31] 
proposed an improved version for pruning weights which does not require compu-
tation of two error functions. This way, both training and sensitivity (relevance) 
estimation take place simultaneously without interfering with one another. The 
algorithm is derived as follows. 
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Suppose that after training, the weight Wijk was eliminated. The sensitivity of 
the error function to this pruning can be expressed as 

E(wf) - E(0) f 

where w^ represents the collection of all synapses after training. 
When training starts, synapses are initialized to some random, usually small 

value. Suppose the initial value of wtjk is fairly small and given by w]-^.. Then the 
sensitivity can be approximated by 

^ E(wf) - E(W) f 
Sijk = f wijj^, (14) 

Kk - "^ijk 

in which ŵ  represents the weights after training, but with wtjk = if ••̂ . This 
approximation is advantageous because the difference in the numerator corre-
sponds to the variation the error function experiences during training as a result 
of updating wijk, assuming all other synapses remain fixed at their final values. 
Consequently, the difference can be expressed as 

E(^f) - E(W) = f ^ ^ ^ dwijk, (15) 

where I and F are the initial and final points in weight space. This integral can, 
in turn, be approximated by a summation along the learning trajectory in weight 
space throughout the total number of epochs, R. Hence, 

S , , = - | ; | ^ A . , , ( . ) ^ ^ ^ . (16) 

For implementation purposes, a general expression for the partial derivative 
of the error function with respect to the synapse should be found in terms of the 
training parameters (such as the gain factor r], or momentum P), and the synapse 
modifications. For example, if training takes place using the basic BP without 
momentum, the sensitivities would then be calculated with 

^-1 ^ / 

Sijk = J2^Awijk(n)f ''^ . . (17) 

Note how all the data needed to compute Sijk according to Eq. (16) would be 
available during training. 
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C. OPTIMAL BRAIN DAMAGE 

Since the previous two pruning algorithms are based on the simpHstic approx-
imation of Eq. (11), they favor pruning small weights (or neurons with small 
weights.) As has been found by several researchers, this elimination criterion 
sometimes actually leads to sensible increments in the error function. As pointed 
out by Le Cun et al [32], a more effective approach is to construct a local model 
of E to analytically predict the effects of eliminating weights. 

Applying Taylor series, it is easy to show that a small perturbation (5w in the 
weights will produce a variation 8E in the error function, with 

8E=l—I 8w+-8w^ 'H'8w-hO(\\8wf), (18) 
\ 9 w / 2 

where H = d^E/dw^ is the Hessian matrix with all second-order derivatives. 
If the network has been trained to some local minimum, then the first term in 

Eq. (18) vanishes. By ignoring the third- and higher-order terms in the expansion, 
we get the simplified expression 

8E = ^8yv^ . H . (5w. (19) 

To reduce the computational cost, Le Cun et al, [32] approximate the Hessian 
by its diagonal [33]. This approximation assumes the 8E produced by changing 
several weights is equal to the sum of the ^^s produced by changing each weight 
individually. Hence, the saliency of weight wijk can be computed as 

8Eijk = Sijk = -wfjk-^. (20) 

The resulting iterative pruning algorithm, normally referred to as Optimal 
Brain Damage (OBD), is as follows: 

Step 1. Select a network with a reasonable architecture. 
Step 2. Train the network to a local minimum or a satisfactory solution. 
Step 3. Compute the saliencies according to Eq. (20). 
Step 4. If weights with low saliencies are identified, prune them. Otherwise, 

stop. 
Step 5. Iterate to step 2. 

OBD has been used successfully in real-world applications not only to reduce 
network size but also to interactively find better architectures [32, 34]. 
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D. OPTIMAL BRAIN SURGEON 

OBD presents two drawbacks. First, after deleting a few weights, the network 
has to be retrained, increasing training time significantly. Second, and perhaps 
most importantly, using the Hessian's diagonal rather than the Hessian seems to 
cause incorrect pruning. Hassibi et al [35,36] have reported better generalization 
and size reduction with a variation of OBD called Optimal Brain Surgeon (OBS). 

In OBD, retraining is required after pruning because the error E is no longer 
at a local minimum. OBS takes care of this inconvenience by providing a method 
to analytically determine the modifications 5w needed to bring E back to a min-
imum. Suppose a single weight in a trained network is to be selected for elimi-
nation. The objective of this selection will be to find that weight whose pruning 
minimizes the increment 8E in Eq. (19). If this weight is represented by wijk, 
then pruning (setting it to zero) can be expressed as the constraint 

e,.^.^.5w + w;,7^=0, (21) 

where ê yĵ  is the unit vector in weight space which corresponds to wtjk. Hence, 
we have a constraint optimization problem, solvable with the Lagrangian 

S = ^5w^ . H . 5w + A(e,.ŷ  . (5w + wtjk). (22) 

where k is the Lagrangian multiplier. 
After taking the derivative of S with respect to 5w, applying Eq. (21), and some 

algebra, we find the optimum change in the weight vector is 

while the saliency of wtjk becomes 

-̂ = -[iF^(«"--). 

4. 
^Ln Ujkjjk 

In general, the Hessian produced by BP is always nonsingular but almost rank-
deficient. Nevertheless, Hassibi et al. [35] also present an elegant way to compute 
the inverse for a fully trained network, independently of training method. How-
ever, it should be pointed out that the computation requirements in OBS are more 
significant than in OBD. 

Summarizing, the sequence of steps in the OBS pruning algorithm is as fol-
lows: 

Step 1. Select a network with a reasonably large architecture. 
Step 2. Train the network to a local minimum. 
Step 3. Compute H - ^ 
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Step 4. Find and delete the weight with smallest saliency by using Eq. (24). 
Otherwise, stop. 

Step 5. Update all weights using Eq. (23). 
Step 6. Iterate to step 3. 

IV. OPTIMIZATION THROUGH 
CONSTRAINT SATISFACTION 

There are similarities between a supervised learning task and a resource allo-
cation problem. A network's architecture—^number of layers, neurons, and acti-
vation function characteristics—can be treated as interrelated, limited resources 
which must satisfy the constraints set forth by the training patterns. Within this 
framework, performance depends on the network's ability to satisfy the con-
straints, and it can be readily measured through mathematical programming. 
Work on this area was first introduced during the 1960s, with the idea of decid-
ing whether the pattern classes a perceptron had to learn were linearly separable 
[37, 38]. More recently, constraint optimization has been exploited to solve more 
challenging problems, such as network pruning and feature space optimization 
[39,40]. 

Learning performance is usually assessed with the quadratic error E: training 
is normally considered successful if E falls below a small, nonzero value. This im-
plicit discrepancy tolerance acts as an inequality constraint, and can be exploited 
to find optimal architectures and feature spaces. 

To show the effect the tolerance has on the training process, consider a particu-
lar training pattern with K features {fi\ / = 1, 2 , . . . , A'), and one desired output 
tp. Assume the allowed discrepancy tolerance is specified by an upper bound 5+ 
and a lower bound 8-. In such a case, the network would have learned the pat-
tern if its actual output falls in the range [tp — 5_, r̂  -f- 5+]. Hence, the pattern is 
learned if the constraints O > (tp — 8-) and O < (tp -\- 5+) are satisfied. Since 
it is possible to specify tolerance levels for every pattern, this procedure can be 
extended to include all patterns used to train the network. Consequently, learning 
can be posed as an inequality constraint satisfaction problem. 

A. CONSTRAINTS IN HIGHER-ORDER NETWORKS 

For simplicity, we concentrate our work on the class of higher-order networks 
shown in Fig. 2, which are universal approximators [41] that have been used in 
pattern recognition [42], character recognition [43], and system identification and 
control [44] applications. Although focused on higher-order networks, our analy-
sis can be extended to other architectures. 
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Higher-order 
expansions 

Figure 2 Architecture of a higher-order network. The original feature vector has N components. 
Through nonlinear transformations, higher-order terms are added to the original feature vector, effec-
tively expanding it. 

The mapping learned by the architecture is given by 

Om = g{ncim), 
N K-N 

(25) 

where Om is the mth output, Wtm is the weight from the ith feature to the mth 
output neuron, ̂ (0 is the output neuron's activation function, 0 is the output neu-
ron's bias, Fj is the jth element of the original N — D feature vector F', and /i/ (•) 
is the ith higher-order feature expansion function. 

To simplify the analysis, we concatenate the original feature vector F' with the 
higher-order feature expansions and create the ^ — D vector F. Thus, the mth 
output can be expressed as 

Om=glj2^J^^J-^^"'] (26) 

Suppose there are P training patterns of K features (including the higher-order 
expansions), and one output. Their information can be captured indiPxK matrix 
(F) with the feature vectors, and 3LP — D vector T with the desired outputs. These 
data can be learned with the desired accuracy if there exists at least one K — D 
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vector W, and a scalar 0 which satisfy 

where _̂j_ and 5_ are P — D vectors with the upper and lower bound tolerances, 
and g~^ (•) is the inverse of the activation function. According to Eq. (27), success-
ful learning occurs when the set of solutions of the linear inequality constraints is 
nonempty. 

B. LINEAR PROGRAMMING FORMULATIONS 

Linear inequality constraints like those of Eq. (27) are solved with linear pro-
gramming (LP) algorithms such as the Simplex method [45]. Simplex operates in 
two stages. First, it finds out whether the constraints have a nonempty set of feasi-
ble solutions; then, if there is at least one feasible solution, the algorithm searches 
the space of feasible solutions guided by an objective function. 

LP algorithms require the variables in the inequaUties to take only nonnega-
tive values. Hence, a variable without sign restrictions must be expressed as the 
difference of two nonnegative variables [46]. For this reason, the formulation of 
Eq. (27) has to be rewritten as 

1] rw^-w^i^r<^-'(i+^+) 
i j L OA-OB J L>^"HT-5_) 

(28) 

where W^ and W^ are A' — D vectors of nonnegative variables and W^ — W^ = 
W. Similarly, OA and OB are nonnegative variables such that OA—OB=0. 

The solution of Eq. (28) indicates whether the patterns can be learned with the 
desired accuracy. Should learning be possible, feasible solutions will be identi-
fiable which correspond to connectivities satisfying all the accuracy constraints. 
Otherwise, the set of feasible solutions will be empty, prompting Simplex to stop 
after its first phase. 

If not all patterns can be learned with the desired accuracy, the formulation 
would not be appropriate for identifying any of the nonleamable patterns. To ad-
dress this problem, we modify the constraints such that they have a default feasible 
solution. With this modification, we can define an objective function such that the 
optimum feasible solution indicates which patterns are nonleamable. 

Introducing a default feasible solution We guarantee the existence of a de-
fault feasible solution by introducing "pad variables," one for every pattern, into 
the LP formulation. 

Let Si be the pad variable associated with the /th pattern. St is allowed to 
take any real number and so we express it as the difference of the nonnegative 
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variables SAI and SBI . We introduce the pad variables in the formulation as shown 
inEq.(29): 

::] 
^A-
QA-

SA-

-m 
-OB 

-SB 
L>^"ni-^-)J' (29) 

with I the P X P identity matrix. Clearly, the default feasible solution consists of 
making W and 0 equal to zero, and assigning each pad variable a value which falls 
in the range of satisfactory learning. Should one or more of the feasible solutions 
have all pad variables equal to zero, the learning task would be feasible. If none 
of the feasible solutions has all pad variables equal to zero, satisfactory learning 
would not be possible. 

Specifying an optimization criterion Among all the feasible solutions for 
Eq. (29), one is particularly informative: the feasible solution with the largest 
number of zeroed pad variables. Let this solution be C* = [W*^*S*]. Then, the 
patterns whose associated pad variables appear zeroed in C* form the largest set 
of patterns the structure can learn with the desired accuracy. For this statement 
to hold true, every leamable pattern must have its pad variable zeroed in C*, and 
every nonleamable pattern must have its pad variable different from zero. From 
here, it follows that our optimization criterion should be the minimization of the 
sum of nonzero pad variables. After some work [40], the complete LP formulation 
can be expressed as 

Objective Function = Min T J Hi, 
/=i 

subject to 

F 1 I 0 0 
F 1 I 0 0 
0 0 0 I - L 

WA-WB 
OA-OB 

^A ~^B 
^A + 5 B 

H 

— 
'<g' 

>g' 
< 0 

-1(1 + 5+) 
-i(T-S_) (30) 

where Li is a sufficiently large upper bound for \Si\, and Hi is an integer 0/1 
variable used to test whether Si is different from zero. 

Remarks. The solution of Eq. (30) provides us with the following informa-
tion: 

• It indicates whether the network can effectively learn the training patterns 
with the desired level of accuracy. 
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If the structure is appropriate for learning the training patterns, the solution 
gives a connectivity which corresponds to satisfactory learning. 
If the network is not capable of learning all the patterns, one or more of the 
integer variables will remain nonzero. The patterns whose associated pad 
variables are nonzero form the smallest set of nonleamable patterns. 

C. OPTIMIZING FEATURE SPACE 

If we have confirmed that a particular structure is appropriate for learning the 
information contained in the training patterns, the next step would be to identify 
those features, if any, which can be eliminated from the feature space without 
diminishing performance. 

To explain our feature space pruning technique, let us assume the jth feature 
in the feature space can be eliminated. This implies the jth connection weight Wj 
can be made equal to zero in a feasible solution, which means that 

\WJ\ = WAJ-\-WBJ=0. (31) 

It is possible to test whether Wj can be made equal to zero following a proce-
dure similar to the one used to test pad variables [40]. The only difference is that 
the objective function should now be the minimization of the number of connec-
tion weights different from zero in the optimum solution. If the integer variable 
Qj is used for testing Wj, our LP formulation becomes 

subject to 

Objective Function = Min Y^ Qj, 

F 1 0 0 
F 1 0 0 
0 0 I - L 

0A-0B 

Q 

<g'HT + s+)' 
>g 
<o 

- 1 (1-U (32) 

where Q and L are ^ 
spectively. 

D vectors of integer variables and constant values, re-

V. LOCAL AND DISTRIBUTED BOTTLENECKS 

Researchers report generalization improvement when a bottleneck—a hidden 
layer with significantly fewer neurons than previous layers—is imposed on the ar-
chitecture of a network. Some methods actually introduce locahzed bottlenecks, 
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either through weight or neuron deactivation. Kruschke [47, 48] has argued that 
this hardware minimization presents some disadvantages in terms of noise and 
damage resistance. As an alternative, he proposes a dupHcation of the bottle-
neck's functional properties—particularly complexity and weight-space dimen-
sion compression—without the actual hardware reduction. 

Consider the two consecutive layers k — I and k, with B and A neurons, re-
spectively. The weights connecting layer k — \io layer k can be arranged in the 
5 X A matrix W^, of rank R.lf R < A, layer k forms a bottleneck. Additionally, 
if B = R,thQ bottleneck is local, while if B > /?, it is distributed. Hence, to im-
prove generalization we want to decrease the functional dimensionality of R, and 
decrease the number of neurons B in layer k. This corresponds to compressing 
the weight space, and clustering the weights within that space. Shepard [49] de-
scribed an algorithm to accomplish both objectives. It is based on increasing the 
variance of the distances between weights by further stretching large distances 
and reducing small ones. 

Suppose Wjk = [u)ijkW2jk • • • ^Ajk] is the vector with the weights connecting 
layer k — Ito node j in layer k. The Euclidean distance between vectors Wjk and 
Wik is dijk = \\wjk — WikW, which has a mean value dk. We can define a cost 
function proportional to the variance of the distances, say 

B B 

D = -\Y,Y.^dijk-dkf. (33) 

which produces the gradient descent 

D 

^yfik = = A 2_^(dijk - dk) '—. (34) 

Thus, after every standard BP epoch, the weights have to be modified according 
to Eq. (34). 

Although promising, this procedure requires nonlocal computations. An easy 
way to improve it consists in redefining the distance so that now 

^ijk = ~ ^ net/^p • netjkp, (35) 
peT 

where net/^p represents the net input to neuron / for pattern p [50]. Recall that 
nciik = {wik, Ok-\). Using this distance in Eq. (33), and applying gradient de-
cent, we get 

B 

j=l peT 
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Substantial simplification occurs when we make dk = 0, for example by in-
cluding the magnitude of the weight vectors as part of the error function in BP 
[50]. As a side effect, this also prevents the variance of the weights from growing 
too large. Just as in some previously discussed procedures [22, 25], selection of 
the parameter X is critical. With a very large A, all weight vectors will collapse into 
two antiparallel directions, effectively acting like one neuron. A solution is to dy-
namically modify k. When learning is going well, A can be increased; otherwise, 
it is decreased and even reversed in sign. 

VI. INTERACTIVE PRUNING 

Interactive pruning strategies work by training a somewhat oversized network 
up to a local minimum, and then heuristically identifying and pruning redundant 
hidden neurons. Once pruning takes place, the skeletonized network is trained 
again to a local minimum. 

A. NEURON REDUNDANCY 

Sietsma and Dow [51, 52] have proposed an interactive off-line pruning pro-
cedure to eliminate hidden neurons in trained networks. It is based on heuristics 
carried out in two steps. The first phase identifies and prunes redundant neurons 
whose outputs remain nearly constant across the training set, or mimic the out-
puts of other neurons. To some extent, this resembles one of the objectives of 
bottlenecks [48], namely, to group together neurons whose weights are parallel or 
antiparallel. The main difference resides in that grouping here takes place inter-
actively and after training. 

Suppose the hidden output Oi{k-\) falls within the range {o ± 8o) across the 
training set, where 6o is fairly small. Then, its respective neuron can be elimi-
nated, and its effects compensated for, by modifying the biases of the neurons on 
the ^th layer according to 

bjk = bjk + WijkO. (37) 

Similarly, if the hidden output oa^k-i) is approximately the same as Om(k-i) across 
the training patterns, then one of the two neurons can be eliminated. When the 
pruned output is Om{k-\), then all weights wtjk originating from O/(A:-I) have to 
be modified so that 

y^ijk = Wijk + Wmjk' (38) 

It is also possible to find oi^k-i) ^ 1 — Om(k-i)' In this case, the elimination of 
Om(k-i) is done by modifying the biases and weights of all neurons fed by Om(k-i) 
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andoi(k-i)'' 

bjk = bjk + Wmjk. (39) 

yoijk = mjk - Wmjk' (40) 

The second pruning phase is aimed at identifying and removing neurons which, 
at the level of their respective hidden layer, do not contribute to the separation of 
pattern classes. These neurons are considered as transmitting unnecessary infor-
mation to the next layer [52]. Such a form of pruning could lead to the outputs 
of the trimmed layer being linearly inseparable with respect to the classes of the 
following layer. To deal with this problem, a technique for adding more layers has 
been proposed. It consists in training a small network to receive the outputs of the 
trimmed layer as inputs and produce the outputs of the following layer, and then 
inserting it into the original network. As a result, the pruned networks are narrow 
and have many layers. 

Sietsma and Dow conducted several tests to evaluate the hypothesis that nar-
row, many-layered networks generalize better than broad, shallow ones [53]. Net-
works were first trained with patterns contaminated with different levels of noise, 
and then pruned. These tests showed that [51]: 

• Better generalization and more hidden neuron utilization occur when the 
training patterns are noisy. This happens because the noise smears the basins of 
attraction, making overfitting more difficult. 

• Generalization deteriorates when the networks are trinmied to the smallest 
possible size during the second pruning phase. This observation indicates there 
are circumstances when minimum size is not a guarantee of better performance. 
However, it is important to keep in mind that there was no extra training after the 
rather crude neuron elimination. Consequently, this result cannot be extrapolated 
to other pruning procedures. 

• The long and narrow networks performed poorly. However, there is no rea-
son to believe this result will apply to other algorithms. 

B. INFORMATION MEASURE 

Information measure (IM), an indicator of how well a feature discriminates 
between members of different classes [54], has been used in several decision tree 
induction schemes. Basically, it measures the entropy reduction attained by know-
ing the value of a given feature attached to the classes. In a particular pattern 
recognition problem, the idea is to select features with high IMs, because they 
define a good discriminant. Consider for instance the case illustrated in Fig. 3, 
where two features (/i and /2) help define two linear discriminant functions. The 
function obtained with /2 separates the classes very well, far better than the func-
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fi IM(f2)=0.98 

IM(f]h0.45 

fl 

Figure 3 Feature discriminating power and information measure (IM). A feature's IM is related to 
the quality of the class discriminants it generates; good discriminants receive high IMs, while poor 
ones receive low IMs. Because of the Uttle information they convey, features with low IMs can be 
eliminated. 

tion obtained with f\. Consequently, IMifi) takes a large value, while IM(fi) 
takes a fairly small one. Of course, / i could be eliminated from the feature set 
used to describe the classes. 

Ramachandran and Pratt [55] have proposed a technique to prune already 
trained networks by estimating the hidden neurons' IMs. These estimates are cal-
culated by first thresholding the output of each neuron for every training pattern. 
If the actual output is above 0.5, the neuron is assumed to have a 1.0 output. Oth-
erwise, the output is assumed to be 0.0. This thresholding makes it possible to 
easily estimate IMs [54]. It is also possible to make a multivalue thresholding, 
thus producing a more accurate estimate of a neuron's true significance. 

After thresholding, the hidden neurons are treated as discrete-valued features, 
and the idea is to figure out whether one or more of them are either redundant 
or have Umited discrimination ability. Neurons with little discrimination power 
have small IMs and can be eliminated without inflicting significant damage to the 
architecture's classification potential. On the other hand, important neurons have 
large IMs and should remain as part of the skeleton. Of course, after pruning, the 
resulting network has to be retrained. 

VII. OTHER PRUNING IVIETHODS 

Even though the paradigms described so far are probably the most important 
ones, many others have been reported in the open literature. Some of them use, for 
example, Boltzmann methods [56], sequential function estimation [57], switch-
ing theory [58], and class entropy [59]. In this section, we consider techniques 
grounded on genetic algorithms and evolutionary programming. 
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A. GENETIC ALGORITHMS 

The main idea in this case consists in defining a parent network whose 
complexity is sufficient to learn the task of interest, and then applying genetic 
algorithms so as to generate smaller offspring which can still learn the required 
information. It should be pointed out that the goal is not necessarily to ob-
tain a particular pruned network—called a phenotype, but rather an architecture 
prototype—the genotype [60]. This is important because the actual performance 
of a phenotype is initial-weight dependent, while the performance of a genotype 
is not. 

Miller et al. [61] present a very simple approach in which an untrained network 
functions as parent, and the genetic operators swap functional substructures dur-
ing recombination. The crossover operator swaps all the links leading into some 
node. The offspring is then trained for a fixed number of cycles, and its genetic 
quality is measured by the final training error. The offspring with the lowest error 
would be the final pruned network. 

Obviously, two drawbacks plague this method. First, although it performs very 
well with small problems, the computational time in more complex ones becomes 
truly significant. Lacking a mechanism to favor the generation of some networks 
over others, the genetic algorithm has to evaluate all possible offspring. With a 
parent that has 50 connections, for example, retraining could be needed for per-
haps 2000 different networks, or more [62]. Second, there is no effective reward 
assigned to smaller networks; each offspring is trained the same number of cycles. 
The result is that larger networks have more opportunity to get lower training er-
rors, which reduces pruning potential. 

Witley and Bogart [62] propose a more refined approach which takes care of 
these two issues. In their method, the parent is an already trained network and its 
weights are assigned to each offspring. Consequently, offspring retraining is much 
faster. Also, the number of allowed training cycles increases linearly with the 
number of pruned weights. This operates as a reward given to the smaller, leaner 
offspring. Additionally, instead of generating all possible pruned versions of a 
parent, more reproductive trials are assigned to the networks which got smaller 
training errors. This increases the probability of generating very good offspring 
early in the process. 

B. EVOLUTIONARY PROGRAMMING 

Evolutionary programming is a global optimization paradigm through system-
atically stochastic search. Applied to neural architecture, the search can be applied 
for various purposes: to reduce the number of weights and/or neurons, find appro-
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priate weight values, or guide architecture enhancement by adding extra neurons 
during network growing [12,13]. 

Within the scope of pruning, McDonnell and Waagen [63] present three strate-
gies in which stochastic search simultaneously finds the weights and the number 
of hidden neurons. Weights are stochastically modified through Gaussian muta-
tions proportional to the learning error, while the architecture is modified using the 
standard deviation of the neurons' activation over all the training patterns. Their 
results suggest that smaller networks can be obtained by artificially constraining 
the search. 

VIII. CONCLUDING REJVIARKS 

By eliminating the chance of pattern overfitting, pruning techniques are of fun-
damental importance to improving the generalization capabilities of neural net-
works. In this chapter, we have described the principles underlying a variety of 
pruning paradigms such as complexity regularization, sensitivity analysis, con-
straint optimization, iterative pruning, and others. 

As we have explained, no one paradigm or algorithm gives optimal results 
for all learning tasks and applications. For example, if the main concern is to 
obtain efficient compact networks for hardware implementation or real-time es-
timation, then architecture optimizing algorithms are probably most appropriate 
despite their stronger training computation requirements. On the other hand, if 
derivation of rules relating features and outputs is more important, then com-
plexity regularization methods could be better suited. Similarly, if the goal is to 
identify irrelevant input features to improve feature space, then optimization or 
iterative pruning are more effective. In summary, algorithm selection must be tai-
lored to the application being considered. 
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