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Preface

Non-photorealistic computer graphics is a multidisciplinary field in the re-
search community, involving computer arts, computer graphics, computer
vision, digital image/video processing and visual cognitive psychology. It
aims at the computer generation of images and animations that are made
in part “by hand” in appearance, and are characterized by their use of ran-
domness, abstraction, ambiguity, or arbitrariness rather than completeness
and adherence to the portrayed objects’ properties. In essence, it mimics the
eyes and minds of artists and designers to create, view and depict the graphics
world, effectively carrying-out the visual communication between computers
and human beings.

Coverage and Audience

This book mainly focuses on the following five core issues in non-photorealistic
computer graphics.

(1) How to create the paintings, artworks or sculptures from a digitized blank
canvas or a standard shape with the tools simulated by the computer.

(2) How to convert a series of reference images into the resultant depiction
with the desired visual effect.

(3) How to automatically generate the artistic rendition or technical illustra-
tions from the 3D models in terms of the stylized parameters.

(4) How to produce the comprehensive and expressive visualizations from
a set of graphical and textual information on the basis of the semantic
meanings to be conveyed.

(5) How to speed up the production of cartoon animation by computer-
assisted refinement of traditional pipeline and the exploration of novel
approaches.

The author not only take a survey of the state-of-the-art research as
well as trends and open-ended questions regarding the aforementioned five
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core issues, but also discuss the theoretical underpinnings of the field. This
includes detailing a host of useful algorithms and addressing two applications
of particular interest: artistic rendering and cartoon animation.

The book will be useful to practitioners in the field. It contains a wealth
of examples, particularly in the form of images, which the authors hope will
motivate the reader in the use of non-photorealistic computer graphics. The
methods introduced are explained in enough detail so that programs can be
written directly without a major conceptual effort.

Anothers use of the book is for reference by researchers in the field.
The bibliographic references at the end of the chapters give the necessary
pointers to the important publications. In the case of researchers in the
field of non-photorealistic computer graphics, the methods that are built
up are referenced appropriately, and a comprehensive index aids in selective
readings.

Objective

Non-photorealistic computer graphics is a relatively young field, and new
works are constantly being published. The intent of this book is to bring
together a coherent conceptual framework for all of the research to date
in the context of computer graphics, art history and theory, and cognitive
psychology.

Although the field of non-photorealistic rendering has existed for more
than two decades, it has for a long time not been taken seriously by large parts
of the research community. The area has thus far been unstructured, making
it increasingly difficult to identify and assess new open problems. Indeed,
sometimes papers have even “reinvented the wheel,” albeit in a different
context and application concern. Recent years have seen many algorithms,
papers, and software tools devoted to artistic rendering and computer-
assisted cartoon animation. The time has become ripe for a systematic
assessment of the literature. The following are our goals:

(1) To become the seminal reference for core issues surrounding artistic ren-
dering and cartoon animation.

(2) To describe and review state-of-the-art advances in the field of non-
photorealistic computer graphics, and to distill the breadth of cutting-
edge non-photorealistic modeling, rendering and animation technologies
into a coherent, accessible treatise.

(3) To provide the guidelines for researchers and software developers to assess
and implement the best solution for their interactive arts application.
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1

Introduction

Non-photorealistic computer graphics are used to imitate the eyes and minds
of artists and designers to create, view, and depict the graphical world. These
computer-generated graphics are used instead of achieving the illusion of
photorealism via an optical camera. With the advent of many algorithms,
papers, and software tools dedicated to generating the artistic and meaningful
images, the entire field was exploded into existence in the 1990s. Now the field
appears to be approaching maturity. Many questions remain open, but many
have been settled. This book presents a detailed treatment of this field in a
coherent conceptual framework.

1.1 The Brief History: from Photorealism to
Non-photorealism

Photorealism in the context of computer graphics is a “faithful” rendering
of the material world based on a number of depiction principles, such as
convincing details, anatomical correctness, correct color rendition, and the
correct perceptions of space, volume, and texture, etc. Therefore this field of
computer graphics is also called photorealistic rendering, denoting algorithmic
techniques that resemble the output of a photographic camera even make use
of the physical laws being involved in the process of photography. A truly
photorealistic image needs to be generated accurately from an extremely
detailed object description requiring a great modeling effort. For the time
being, a vast number of different computational models have been explored
that to approximate these physical processes. The creation of realistic pictures
has made great progress in the computer graphics community. This can
be judged by viewing feature films and TV commercials, where it is often
impossible for the audience to decide which are the virtual objects generated
by the computer and which are the real objects captured by the camera.

It is no doubt that highly realistic graphics are very useful, e.g., they can
support designers to evaluate and refine new products and turn computer
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games into a more enjoyable experience. But in general photorealism
considers only part of the imagery traditionally used in simulation, design,
entertainment, advertising, research and education, etc. For instance, it may
be useful for designers to be able to generate photorealistic images of the
finished product. But, during the design process they prefer to work with
sketches and conceptual drawings that are better suited for explaining the
basic concept of a new product or showing its inner structure. In educational
course books, most of the pictures are not photographs, but rather diagrams
and illustrations that are better able to communicate the important aspects
of a topic. Furthermore, there are many research areas that can benefit from
automatically generated images based on purely abstract data. But, how
can one create photorealistic images of data that have no counterpart in
the visual world? As computer graphic is getting closer to its holy grail of
achieving photorealism, people finally realizes that there is more to images
than realism, and, computer-generated imagery should not be restricted to
photorealistic renderings.

Thus a new type of quest has emerged—creating imagery that is more
effective at conveying information, expressive or beautiful—rather than just
being physically realistic. Researchers started to explore alternative rendering
techniques other than mimicking the effect of a traditional photographic
camera. They needed to differentiate themselves from the rest of the computer
graphics community, and non-photorealism was thus proposed. From the
point of view of rendering an image, non-photorealistic images can be
anything from a drawing or a diagram to a painting, as long as it helps
to communicate the intended idea.

1.2 What is Non-photorealistic Computer Graphics

As with many new and young areas of scientific endeavor, there is no
uniform definition of what we have called non-photorealistic computer
graphics. The border between photorealism and non-photorealism is also
fuzzy. Examining the primary literature on the topic, a number of different
points of view have been summarized as follows [Gooch & Gooch, 2001;
Strothotte & Schlechtweg, 2002]:

(1) The process of image production that is being mimicked (or non-photo-
realistic to be more precise, processes that are definitely not being mim-
icked): non-photorealistic rendering.

(2) The freedom not to have to reproduce the appearance of objects precisely
as they are: non-realistic rendering.

(3) The process of adapting presentation to a dialog context and the dynamic
informational wishes of users: abstraction.

(4) A specific drawing style: the terms sketch rendering, pen-and-ink illustra-
tion, and stipple rendering are examples.
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(5) The effect a rendition has (or will hopefully have) on its viewers:
comprehensible rendering.

(6) The use of renditions for conveying information, perhaps in the context of
other media of expression: illustrative rendering, or expressive illustration.

(7) The possible deformations of images: elastic presentations.

In order to better explain non-photorealistic computer graphics, we will
first explore the fundamental concepts of image, picture, and visualization
for visual representation. We will then further discuss the essential aspects
of non-photorealistic computer graphics by comparing the photorealistic and
non-photorealistic computer graphics in terms of their goals and algorithmic
techniques.

1.2.1 Image, Picture, and Visualization

Image, picture, and visualization are the different levels of visual representa-
tions. They are often mixed when used to describe the resulting output of a
rendering in the computer graphics community. In order to help readers to
better understand the rest of this book, these vocabularies should be clarified
from the point of view of computer depiction. Computer depiction deals with
all aspects of picture production, encompassing both photorealistic and non-
photorealistic styles. Based on the definitions from the Webster dictionary,
the differences between image, picture, and visualization are given as follows
[Durand, 2002]:

(1) Image. An image is a “reproduction or imitation”, or “the optical
counterpart of an object” [Webster, 1983]. It is an optically formed
duplicate, characterized by optical accuracy to a visual scene or object.

(2) Picture. A picture is “a design or representation”, or “a description
so vivid or graphic as to suggest a mental image or give an accurate
idea of something” [Webster, 1983]. A picture is more loosely defined
than an image, and it corresponds to both to the graphical object and
to a representation. Pictures always have a purpose, which can be a
message, collaborative work, education, aesthetics, emotions, etc. The
term “picture” can be used to describe a visual representation of a
visual scene, but this representation is not necessarily optically accurate.
Moreover, a picture is not necessarily the representation of an existing real
scene or object. The extreme example of impossible figures shows that a
picture can superficially look like the representation of a 3D reality, while
no objective scene that can be projected to such a picture.

(3) Visualization. Visualization is “the act or process of interpreting in visual
terms or of putting in visual form” [Webster, 1983]. A visualization
can represent visually data or subjects that are not themselves visual.
Visualization therefore mainly relies on metaphors to communicate the
meaningful information to the audience.
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1.2.2 Photorealistic versus Non-photorealistic Rendering

The major goal of photorealistic rendering is to generate images that mimic
the effect of a traditional photographic camera. It depicts only “What I
See”—the extrinsic properties of objects such as outgoing light varying with
light conditions, and the resultant output is a photography-like image. Its
rendering process is a unidirectional optical projection of a 3D model onto
a 2D plane. A scene consisting of 3D objects is illuminated by a number of
virtual light sources, and images are generated by a virtual camera that is
placed in the scene. The idea is to generate 2D images of the scene by emit-
ting light from the light sources into the scene, computing the interaction of
the light with the surface of the 3D models, and capturing that portion of
the light that reaches the camera on a virtual film plate.

Non-photorealistic rendering (NPR), not only depicts “What I See”, but
also depicts “What I Know”—the intrinsic parameters and constancy that
are invariant and constant properties of the objects such as reflectance and
relative sizes. This gives freedom to encode an impression of the scenes rather
than being forced to follow physical constraints. Its resulting output is a hy-
brid picture balanced between extrinsic and intrinsic properties of objects.
The NPR process is a bi-directional interaction between a 3D model and
a 2D plane, involving feedback and influence from the picture space to the
object space. Therefore the NPR is essentially becoming a very complex opti-
mization problem, producing the best picture with back-and-forth exchanges,
given constraints, and goals linking the scene and the picture.

The function to minimize image information, and the degrees of freedom
to vary it, heavily depend on the rendering of context and goal. For example,
the goals and constraints for picture creation of art and craft are often set by
the medium, the social context, the artistic fashion, clarity, representation of
intrinsic vs. extrinsic qualities, 2D layout, etc. There are three main strategies
to solve this optimization problem. The user can solve it, the computer can
solve it, or the solution might involve both user and computer decisions.
All approaches are of course not contradictory and can be blended. The
frequently used case is the mixed one. The computer has to make decisions
automatically, but the user needs to keep some control and influence the
decisions. For example, in game and movie making, it is the equivalent of the
movie director wanting to keep control of the style of the pictures, and the
computer has to respond automatically to the user’s interaction.

As a summary, the differences between photorealistic and NPR are
investigated as follows:

(1) Content of rendition. Photorealistic rendering is merely based on the
3D geometry and topological information of the scene, and the resulting
image is an “objective” depiction of that scene, and nothing else. In
contrast, NPR encodes the “subjective” artifacts into the picture that
clearly do not exist in the world. These artifacts may stem from the way
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in which the geometric model represents the original object, or result
from the manner, or style in which the geometric model is rendered.

(2) Manners for presentation. In photorealistic rendering, the external world
is presented in an “objective” way. The depiction corresponds exactly
to the object being modeled, following physical constraints and leaving
nothing for the imagination. However, the presentation manner in NPR
is a graphical abstraction such that the resultant picture comes from,
and is “higher” than the underlying models, with certain features of the
model being enhanced. It gives freedom to encode an impression of scenes,
and introduce a broader variety of styles. This not only enables better
recognition of certain features of the object being modeled by changing
the model, but also enables selected features of the geometric model to
be exaggerated in the rendition, in order to emphasize them. Moreover,
it can show more of the relevant parts of an object than what would
otherwise be possible, while less relevant parts may no longer be visible.

(3) The cognition process of the resulting depiction. The output of
photorealistic rendering comes from the intuitive observation of the real
world, and its cognition process is consistent with the visual perception of
human beings in their daily lives. However, a reasoning process is needed
to interpret non-photorealistic images. It is assumed that the viewers
are able to build up a mental model of the object being portrayed with
creative thinking and imagination, and then to perform the cognitive
process for the visual understanding of the NPR results. This reasoning
process gives the greatest communicative power for NPR.

(4) The algorithmic mechanism. The photorealistic rendering technique is
based on the working model of another kind of machine, a camera. It
simulates the particle-by-particle lighting exposure principle with the
pixel-by-pixel rendering mechanism. The correspondence between pixels
and the drawn primitive object is direct. In contrast to the pixel-by-pixel
mechanism, NPR employs a relative global mechanism beyond pixels, and
paints. The resulting picture is in a region-by-region mode. Each region
has a set of pixels with attributes of shape, an area as a whole. These
regions may be formed by a stroke, or more generally, may come from
the interactional areas between the pen/brush with the canvas.

(5) The interplay between 3D and 2D aspects of depiction. Photorealistic ren-
dering is a unidirectional projection from a 3D objective scene onto a 2D
image. The typical object space inputs are a 3D geometric description of
the objects, their material properties, and light sources. Perspective ma-
trices, hidden-surface removal, and lighting simulation are then used to
project this model onto the 2D image. However, the NPR is a complex bi-
directional process between the 2D picture and the 3D model. A typical
feedback loop is that the user and the computer work together, cooper-
atively generating an initial picture, viewing it, assessing the qualities,
and then re-generating the new interim pictures via necessary modifica-



6 1 Introduction

tions and refinements. The process is iterated, and the final picture is
retouched until it looks right.

1.3 The Framework for Non-photorealistic Computer
Graphics

The default tendency of non-photorealistic computer graphics is to generate
imagery that superficially looks like that made by artists [Lansdown &
Schofield, 1995]. It involves a fundamental issue of simulating the intelligence
of artists, i.e., to emulate human facilities for producing an artist’s handwork.
Artists and other picture makers have developed a rich set of techniques to
produce effective pictures. Non-photorealistic computer graphics should learn
from this large body of knowledge, as well as from the analysis performed
in the perception community. However, fine arts are still believed to be of
a purely “metaphysical” nature and that there is no underlying theoretical
knowledge of them. Every creative act is partly guided by intangible “forces”
and “feelings” that are not easily translatable to algorithms.

Non-photorealistic computer graphics not only has been concerned with
simulating traditional drawing and painting techniques, but also aims at
improving visualization based on the findings from cognitive psychology.
Conveying meaning is beyond scientific curiosity for pursuing NPR. There
is ample evidence that non-photorealistic renditions are in fact more effective
for communicating specific information than photographs of photorealistic
renditions in many situations. Many studies have been carried out by
cognitive and educational psychologists that attest to the superiority of such
handmade graphics over photo-like images. NPR therefore enables users
to lead human-computer dialogs with information exchange in a graphical
form. The style of the picture generated should be flexible so as to be most
appropriate for the dialog at hand. To this end, a model of information
transfer must be assumed or developed. Methods and tools need to be
developed to enable designers and programmers of interactive systems to
have appropriate pictures rendered for their end users.

The core scientific problems in non-photorealistic computer graphics can
be categorized as the following ones in terms of its input/output information.

(1) How to create art crafts from a blank canvas. When an artist sets out
to paint a picture, he or she must have three types of physical tools.
The first is a medium, such as oil paint, acrylic or watercolor, to be
used to construct the picture. The second is some type of applicator or
brush/pen for the application of the medium. The third is a surface,
such as paper or canvas, on which the medium is applied. Therefore
the computer should first model and simulate these authoring tools and
the physical interaction among them, and then the user can employ the
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digitized authoring tools to interactively or semi-automatically create the
art craft of pen-and-ink illustration, watercolor/oil painting, or engraving.

(2) How to convert the source images into pictures with the desirable visual
effects. By the techniques from image processing, analogical reasoning,
computer vision, etc., it attempts to semi-automatically translate the
input images into the resulting pictures with the desired artistic styles,
which may be specified by numerical parameters, textual keywords, or
the reference images.

(3) How to generate artistic renditions from 3D models. Its input is
a 3D model of the scene, character, the viewpoint, etc., and the
algorithmic steps for rendering are very similar to those in photorealistic
renderings. However, the affine transformations, viewing projections,
texture-mappings or lighting models are usually with non-photorealistic
properties, and can help generate the output picture, which gives the
visual impression of the artistic rendition styles specified by the user.

(4) How to synthesize expressive pictures from textual, graphical or pictorial
data. The “expressive” picture embodies various levels of meaning for the
communication among artists and designers. Its input might be a combi-
nation of 3D models, 2D images, or semantic text. It attempts to render
objects and scenes to resemble how artists and designers might want to
see them. The resulting pictures are made meaningful and comprehensi-
ble. The viewer is encouraged to make the same imaginative, perceptual
contributions as those in the interpretive art.

(5) How to accelerate the production of cartoon animation sequences with
temporal coherence. 2D animation can only be automated to the extent
that the computer acts as an interactive assistant to the animator.
The key problem is that the modeling, rendering and motion which are
implicitly and tightly coupled in the animated drawings of key frames
are unavailable. The temporal coherence problem will arise if we want to
speed up the cartoon animation production by decoupling the modeling,
rendering, and motion as that in 3D animation production. For example,
some features of the frames in a cartoon sequence are chosen randomly
(e.g., stroke placement for hatching), and they will look different in each
frame. Although this may be desirable in some cases, it will in general
distract the beholders’ attention, and can put a considerable strain on the
eyes. Similar artifacts appear if the rendering algorithm is unstable with
respect to small changes of the viewing angle or small body deformations.
It is therefore important to ensure that small (or no) changes in the scene
result only in small changes in the cartoon animation production.

This book is accordingly organized in terms of the aforementioned five
scientific core issues, providing a systematic, in-depth insight into non-
photorealistic computer graphics. The structure of the book is shown in
Fig. 1.1.
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Fig. 1.1 The structure of the book based on a consistent framework of non-
photorealistic computer graphics

An overview of the remaining chapters is given below:
Chapter 2 employs the computer-aided design (CAD) principles to en-

able the artist to explore the inner and outer world and our relation to them
using the digitized media and tools. Its core technical issue is how to let
the computer replace the paper/canvas, pigments, and pens/brushes by the
natural media simulation.

Chapter 3 moves into how to automatically/semi-automatically synthe-
size the 2D art patterns in terms of the fractal computing, shape-grammars,
spatial-layout, and the aesthetic knowledge/rules.
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Chapter 4 deals with how to transform the source images into the
resulting pictures with the desirable visual effects, which can be specified
in three ways.

(1) The user explicitly specifies the resultant artistic style based on parame-
ters or semantic keywords.

(2) The desirable visual effects are intuitively specified by a set of reference
images/pictures.

(3) The user implicitly specifies the artistic transformation by the analogical
mapping between pairs of images, instead of the final visual effect.

Chapter 5 discusses how to automatically/semi-automatically render
the 3D objects or scenes into the artistic pictures. The rendition techniques
include artistic simulation based on a traditional 3D rendering pipeline,
conversion from the interim reference images, silhouette drawing, and the
dedicated illustrational algorithms for 3D surfaces, 3D landscapes, and 3D
volumes, respectively.

Chapter 6 structures and treats artistic communication methods that
can visually convey meanings, purpose, intent, etc., including comprehensible
rendering, expressing shape features, communications of design intent, and
artistic presentation for transparent objects.

Chapter 7 describes a variety of computer-assisted cartoon animation
techniques on the basis of traditional animation production pipeline,
including computer-assisted auto-coloring, transforming black-and-white
cartoon sequence into colorful ones, and computer- assisted “inbetweening”
for cartoon characters.

Chapter 8 explores the novel approaches to assisting cartoon animation
production beyond the traditional animation production pipeline, including
video-driven cartoon animations, cartoon animation production guided by
2.5 D or approximate 3D geometry, cartoon animation production accelerated
by artistic rendering with temporal coherence, and computer-assisted cartoon
animation by reusing the graphical models, motions and rendition.

Chapter 9 concludes the book with a summary of research methodolo-
gies, scientific problems, current hot topics, and future directions in non-
photorealistic computer graphics.
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2

Simulating Artistic Media for Digitized
Creation of Artworks

One of the fundamental issues in non-photorealistic computer graphics is how
to replace the natural media such as canvas, pigment, and pen/brush by the
computer, in such a way that the artist can create the digital artworks by
interactively manipulating these digitized artistic media. This chapter will
provide in-depth coverage of algorithms for digitized drawing, painting and
engraving. The relevant topics are broadly categorized into the following three
parts:

(1) Artistic tools modeling. It describes the digitization of drawing tools (pen,
pencil, crayon, charcoal, etc.), painting tools such as brushes, and engrav-
ing tools such as knives and chisels.

(2) Modeling and simulation of natural medium and its interaction with tools.
It includes the modeling of natural media such as papers and canvases,
and their interaction process with artistic tools such as pens and brushes.

(3) Visual effect illustration for the final artwork. It discusses the diffusion,
sediment and drying process of pen-and-ink, water coloring and oil-
painting, and the rendering of dried pigments.

2.1 Stroke-based Artistic Drawing

Strokes are the indivisible pictorial subunits or “building blocks” for
constructing the new artistic images. It is of utmost importance to clarify
how such pictorial subunits can be defined in terms of modeling their shape
and attributes and how they can be rendered one by one. Here we will examine
the different approaches for the creation of artistic lines, charcoal sketching,
pen-and-ink, pencil-drawing and wax crayons.

2.1.1 Interactive Drawing Based on Brushstrokes

In the 1980s, the computer could generate the 2D graphical primitives in real-
time. Then the graphics researchers began to extend the real-time drawing
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algorithms to mimic the brushstrokes by setting up the 2D lines, poly-lines,
polygons and circles as the path of strokes and specifying the types of pixel
distribution along the stroke path. The user can then interactively choose the
various types of drawing strokes, and create the vivid pictures as shown in
Fig. 2.1. The Paint on Windows platform is a typical application of it. The
simplest brushstroke merely has a constant visual effect along the stroke path,
ignoring the modeling of the paper and the temporal interplay of consecutive
strokes.

Fig. 2.1 Interactive drawing based on 2D graphical primitives [Beach et al., 1982].
Copyright of ACM, used with permission

In order to enhance the painting effect of a brushstroke, the researchers
started to mimic the drawing with the stroke of stylized lines. For instance,
the brushstrokes can be illustrated as shining tubes by employing the depth
information, and it looks like it’s being drawn by a brush with a shiny ball,
as shown in Fig. 2.2.

Fig. 2.2 Stylized line-drawing [Whitted, 1983]. Copyright of ACM, used with
permission
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From the point of view of interaction, the path of a brushstroke is usually
controlled by a mouse or one of many tablet input devices that merely
provide only (x, y) spatial information. The brushstroke itself is rendered
with a single “brush shape” of a fixed size and orientation. However, a mouse-
based interface does not support the fine control needed for detailed stroke
work. A number of interruptions of the drawing act will make it difficult or
impossible for the artist to maintain the kind of continuous control over his
or her medium that is required for such tasks as changing “brush” shapes
or the stroke styles. Thus digitized tablets with pressure-sensitive styluses
become attractive devices for interactive drawing with brushstrokes. As the
user draws on the tablet, the artist can change the shape of its contact point
with the drawing surface. By changes in pressure exerted with the stylus
against the surface, it is possible to control both the darkness (value) and
width (weight) of the stroke. All of these factors are controlled by the artist
in real time and with continuous feedback. Existing methods for modeling
brushstrokes fall into two classes: “raster brushstroke”, which models some
brushstroke attributes at the pixel level and paints the result into a bitmap.
The second class is the “vector brushstroke”, which models a brushstroke
outline and relies on scan-conversion for rendering.

The raster brushstroke approach is based on a digitization process called
“brush extrusion”. With the help of fast hardwired “BitBlt” operators,
a bitmapped brush is dragged along a trajectory, leaving the image of
the brushstroke. Fig. 2.3 shows a particular example of raster brushstroke
sketching with a piece of a simulated charcoal drawing via a stylus.
Raster brushstroke is well adapted to real-time sketching. Realistic models
of paintings have been developed which make raster brushstrokes more
expressive and simulate real paintings. Fig. 2.4 shows an example of a charcoal
drawing. However, raster brushstrokes present two major drawbacks: they are
resolution-dependent, and they cannot be edited. Resolution-dependence can
be overcome by working at the maximum resolution of all possible output
images. In any case, individual strokes cannot be easily, if at all, retouched
nor edited.

Fig. 2.3 Tilt stylus in use with dynamically brushed effects, varying with the mag-
nitude and direction of tilt, the user pressure, etc. [Bleser et al., 1988]. Copyright
of ACM, used with permission
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Fig. 2.4 An example of a charcoal drawing [Bleser et al., 1988]. Copyright of ACM,
used with permission

In the vector brushstroke approach, the stroke outline is computed
from the brush outline and trajectory. Vector brushstrokes share two
significant advantages of vector graphics: resolution-independence and editing
capabilities. Strokes can be created, scaled, rotated or flipped very easily.
Interactive retouching operations such as re-computing the stroke from
the same trajectory using a different brush or different pressure data are
straightforward. Moreover, the outline of the stroke is accessible to the user
and can be edited like any other shape outline. However, vector brushstrokes
have two major limitations. They often need heavier computations for curve
fitting, as analytically solving the equations of the outline is too slow in the
range of accessible shapes. Another limitation is that they sometimes require
the user to explicitly enter some mathematical parameters, and thus are not
suitable for sketching. Fig. 2.5 shows a set of typical vector brushstrokes and
some instances of hand-sketching.

Furthermore, Finkelstein and Salesin proposed a multi-resolution vector
brushstroke based on wavelets [Finkelstein & Salesin, 1994]. It requires no
extra storage, and can support continuous levels of smoothing as well as
direct manipulation of an arbitrary portion of the curve. Moreover, the control
points and discrete nature of the underlying hierarchical representation are
hidden from the user, which are preferred by hand-sketching. Fig. 2.6 shows
some examples of multi-resolution brushstrokes.
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Fig. 2.5 Hand sketching with vector brushstrokes [Pudet, 1994]. (a) Vector brush-
stroke examples; (b) Hand drawing with vector brushstroke. Copyright of Blackwell
Publishers, used with permission

Fig. 2.6 Line-drawings with multi-resolution brushstrokes [Finkelstein & Salesin,
1994]. Copyright of ACM, used with permission

2.1.2 Pen-and-ink Illustration by Stroke Textures

Brushstrokes are to emulate traditional artists’ tools, and the resulting art-
work is composed of the strokes which are individually drawn by the user.
However, pen-and-ink illustration incorporates a wealth of textures, tones,
and styles formed by thousands of individual monochromatic strokes of the
pen. The creation of pen-and-ink illustration will require a great deal of tech-
nical skills and patience. In order to remove the burden of placing individual
strokes from the user, Salisbury et al. proposed to emulate pen-and-ink illus-
tration via stroke textures [Salisbury et al., 1994].

Stroke textures refer to collections of strokes arranged in different
patterns. In pen-and-ink illustration, its tone and texture are not independent
parameters, as every stroke contributes both tone (darkness) and texture.
Furthermore, pen and ink strokes work together to express tone and
texture. The pen artist must take care to convey both of these qualities
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simultaneously. Therefore Salisbury et al. set up the stroke texture in a pen-
and-ink illustration as a collective result of many pen strokes, and a typical
representation of pen and ink strokes is given below [Salisbury et al., 1994]:

(1) Pixels: An arbitrary-size array of (x, y) pixel coordinate pairs, and x and
y never change by more than ±1 from one entry to the next.

(2) Length: The size of the pixels array.
(3) Width: The width of the stroke, in pixels.
(4) Bbox: The rectangular bounding box of the stroke’s pixels.
(5) Id: The texture from which the stroke was derived.
(6) Priority : The ranking of a stroke, if in a prioritized texture.

The Salisbury’s interactive pen-and-ink illustration system supports a
library of user-defined stored stroke textures and built-in procedural stroke
textures (as shown in Fig. 2.7). A stored texture is simply a collection of
strokes. Drawing a texture at a given darkness is a matter of choosing from
the collection a subset that has enough strokes to reach the desired tone.
Procedural stroke textures are computed procedurally to depict interesting
texture effects such as stippling (randomly distributed points or short
strokes), parallel hatching, and curved strokes. To draw procedural stroke
textures, the system simply generates appropriate candidate strokes under
the region of the brush and tests them.

Fig. 2.7 Instances of stroke textures [Salisbury et al., 1994]. (a) Assorted stored
stroke textures; (b) A single texture drawn with several tone values; (c) The pri-
oritized textures: the most significant strokes are drawn for light tone values, less
important strokes are brought in to darken the texture. Copyright of ACM, used
with permission
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The overall paint pipeline in this system is given as follows:

Paint:
For Each brush position P

While S←GenerateCandidateStroke(P )

ClipStroke(S)
If TestStrokeTone(S) then

DrawStroke(S)

End If
End While

End For

GenerateCandidateStroke(P): At each brush position P , the system
may in general try to draw many strokes. Each invocation of
GenerateCandidateStroke returns the next stroke instance from a set of
candidates. The next stroke returned may be generated dynamically based
on the success of the previous strokes.

ClipStroke(S ): The candidate stroke S is subjected to a series of clipping
conditions such as to the bounds of the overall image, to the brush, to
clipedges, etc. The clipping operations return a “first” and a “last” index
into the stroke’s pixels array, but before actually trimming the stroke, these
indices are perturbed up or down by a small random amount to achieve
ragged clipping.

TestStrokeTone(S ): Two tests are performed to see how stroke S affects
the image. First, the stroke’s pixels in the image buffer are tested. If all the
pixels are already drawn, the stroke has no effect on the image and is trivially
rejected. Next, the effect of the stroke on the image tone is determined. The
stroke is temporarily drawn into the image bitmap and the resulting tone
is computed pixel-by-pixel along its length, by low-pass filtering each pixel’s
neighborhood. The stroke fails if it makes the image tone darker than the
desired tone anywhere along its length.

DrawStroke(S ): To draw stroke S, its pixels in the image bitmap are
set, the display is updated, and an instance of S is added to the main stroke
database. For stored stroke textures, the system checks to see if the new stroke
S overlays an existing instance of the same stroke—such an occurrence could
happen, for example, if the earlier stroke was clipped to the brush and the
user has now moved the brush slightly. Rather than adding the new stroke,
the previously-drawn stroke is extended to include the new stroke’s pixels in
order to avoid overwhelming the data structures.

Compared to the tedious individual stroke drawing, pen-and-ink
simulation by stroke textures goes beyond emulating the traditional artists’
tools. This enables the higher-level cumulative effect that the strokes can
achieve: texture, tone, and shape. The user “paints” with a desired stroke
texture to achieve a desired tone, and the computer draws all of the individual
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strokes. Fig. 2.8 shows some resulting pen-and-ink illustrations based on
stroke textures.

Fig. 2.8 Interactive pen-and-ink illustrations [Salisbury et al., 1994]. Copyright of
ACM, used with permission

2.1.3 Interactive Pencil Drawing

Pencil drawing is a flexible medium, providing a variety of styles of line
quality, hand gestures, and tone building. It is excellent for preparatory
sketches, and is popularly used in the contexts of scientific and technical
illustrations, architectural and design drawings. From the point of view of
media simulation, pen-and-ink illustrations are relatively simple, as we merely
take into consideration the attributes of a pen-and-ink stroke such as width
and contact area. But pencil drawings are much more complicated, as we
should additionally consider the modeling of the pencil, drawing papers and
the interactions between them. There are two types of pencils: graphite and
colored. Thus we will discuss them respectively in the following subsections.

2.1.3.1 Graphite Pencil Drawing

The representative work on graphite pencil drawing comes from Sousa and
Buchanan[Sousa & Buchanan, 2000]. They took the observational approach
to simulating pencil drawing, capturing the essential physical properties and
behaviors observed to produce quality pencil marks at interactive rates. Its
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core is an observational model of the interaction among the real graphite
pencil drawing materials (pencil, paper, eraser and blender).

(1) Graphite Pencils. Their pencil model is from the category of a wood-
encased artist-grade graphite pencil. Every pencil contains a writing core
(or lead) which is made of graphite, wax, and clay. The hardness of the
lead depends on the percentage amounts of graphite and clay. The more
graphite it contains the softer and thicker it is. Pencil hardness usually
ranges from 9H to 8B. Table 2.1 presents the percentage values of the
mass amounts of graphite, wax, and clay particles for the nineteen grades
of pencil hardness.

Table 2.1 The percentage values of the mass amounts of graphite, wax, and
clay particles for the nineteen grades of pencil hardness

Pencil Number Graphite Clay Wax

9H 0.41 0.53 0.05
8H 0.44 0.50 0.05
7H 0.47 0.47 0.05
6H 0.50 0.45 0.05
5H 0.52 0.42 0.05
4H 0.55 0.39 0.05
3H 0.58 0.36 0.05
2H 0.60 0.34 0.05
H 0.63 0.31 0.05
F 0.66 0.28 0.05

HB 0.68 0.26 0.05
B 0.71 0.23 0.05
2B 0.74 0.20 0.05
3B 0.76 0.18 0.05
4B 0.79 0.15 0.05
5B 0.82 0.12 0.05
6B 0.84 0.10 0.05
7B 0.87 0.07 0.05
8B 0.90 0.04 0.05

(2) Pencil Points. Sharpening a pencil in different ways changes the shape
of the contact surface between the pencil and the paper. The tip shape
is defined as a polygonal outline based on the shape of three canonical
types of sharpened pencil points (typical, broad, and chiseled) (see Fig.
2.9). A pencil tip shape is defined as Ts={(xi, yi), s: 3� i � n}, where
(xi, yi) is one of the n vertices of the polygon, and s is the scale factor
of the polygon used to account for the thickness of the lead.
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Fig. 2.9 Typical polygonal shapes of pencils

Pressure distribution coefficients are values between 0 and 1,
representing the percentage of the pencil’s point surface that, on average,
makes contact with the paper. These pressure distribution coefficients are
defined as

Pc = {(c, x, y), (ci, xi, yi) : 3 � i � n}.
where c is the value of the main pressure distribution coefficient whose
location (x, y) can be anywhere within the polygon defining the tip shape,
and ci is the pressure distribution coefficient at the vertex (xi, yi) from
the polygonal tip shape. The value between c and ci is calculated by
linear interpolation, and thus defining the general shape of the pencil’s
tip (see Fig. 2.10).

Fig. 2.10 Different values of pressure distribution coefficients (c, ci) across the
polygonal shape results in different distributions of the lead material onto the
paper’s surface [Sousa & Buchanan, 2000]. Copyright of Blackwell, used with
permission
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(3) Drawing paper. Papers are made in a variety of weights and textures. The
smallest element of the paper’s roughness is the grain. A grain is defined
by 4 paper heights, where h1 is at the paper location (x, y), and its three
neighbors h2 at (x, y + dy), h3 at (x + dx, y + dy), and h4 at (x + dx, y)
(see Fig. 2.11 (a)). The units (dx, dy) are defined as in the normalized
coordinate space, and the volume above the grain is to be filled with lead
(see Fig. 2.11 (b)).

Fig. 2.11 The grain model of drawing paper

(4) Pencil and paper interaction. Pencil strokes are left on a paper through
the friction between the lead and the paper. The paper grains react to
the hardness of the pencil and to the pressure exerted upon it. In Sousa
and Buchanan’s system, the pencil and paper interaction is modeled as
follows [Sousa & Buchanan, 2000].
For each new position of the pencil tip over the paper:
• Evaluate the polygonal tip shape of the pencil point in terms of the

slant angle of the pencil (see Fig. 2.12).
• Initialize the local threshold volume of the paper.
• Distribute the pressure applied to the pencil across the tip shape.

1© Compute the grain porous threshold volume.
2© Process the grain biting the lead. It is composed of five steps (see

Fig. 2.13):
a. Compute the depth of the lead into the grain.
b. Compute the volume bitten.
c. Scale it according to the current lead degree of hardness.
d. Distribute it among the paper grain heights.
e. Compute the amount of lead deposited.

3© Compute the damage caused by the lead to the paper grain.
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Fig. 2.12 Scaling the tip shape of the pencil point according to the slant
angle of pencil [Sousa & Buchanan, 2000]. Copyright of Blackwell, used with
permission

Fig. 2.13 Proportional distribution among the grain heights. In the example,
D1 > D4 > D2 > D3 and D1 + D2 + D3 + D4 = 0. h3 is shared by four grains
g1, g2, g3 and g4. This means that h3 accumulates the lead material by four
grains [Sousa & Buchanan, 2000]. Copyright of Blackwell, used with permission
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Finally, the reflected intensity of lead material is computed to form the
resulting pencil drawing.

(5) Eraser and blender interacting with lead and paper. The eraser rubs the
paper surface, and the lead material will be lifted away. When the blender
is first being pushed, no lead material is deposited back onto the paper.
As the blender continues to rub the paper surface, lead material is re-
moved sticking to the blender’s point, and a certain amount of lead will
be deposited back on the paper. Fig. 2.14 shows some examples of the
interaction effects between an eraser and a blender.

Fig. 2.14 Some examples of interaction effects between an eraser and a blender
[Sousa & Buchanan, 2000]. Copyright of Blackwell, used with permission

Based on the aforementioned models of drawing materials and their in-
teractions, the artist can create the pencil drawings interactively. Fig. 2.15
shows some instances of pencil drawings.

Fig. 2.15 Some instances of pencil drawings [Sousa & Buchanan, 2000]. Copyright
of Blackwell, used with permission
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2.1.3.2 Colored Pencil Drawing

Colored pencil drawing (CPD), is not only used as a means of study or for
preliminary sketches to be developed further for painting and sculpture, but
it also becomes an art form in its own right. In particular, a CPD is often
being used for package illustrations and picture books. One of the salient
features of a CPD is a gentle appearance for human eyes because of the
soft, harsh, and almost misty representation. A colored pencil drawing can
be emulated on a screen by combining several functions provided by existing
digital paint systems, e.g., Painter (see Fig. 2.16) Takagi et al. developed
the first system to directly support the CPD appearance and techniques
[Takagi et al., 1999]. They proposed a volume graphics model for CPD. The
model consists of three sub-models, which describe in a volumetric fashion,
the microstructure of paper, pigment distribution on paper, and pigment
redistribution, respectively.

Fig. 2.16 An actual colored pencil drawing and an image drawn with painter
[Takagi et al., 1999]. (a) Hand made colored pencil drawing; (b) Colored pencil
drawing with painter.Copyright of IEEE, used with permission

The point of a pencil and the tip of a brush are assumed to be a sphere,
and the volumetric offset distance accessibility is used for calculating the
roughness of a paper. The system performs a binary classification on voxels
of the CPD volume according to the density of composition materials with
respect to prefixed thresholds. A colored pencil stroke is assumed to be a
straight line segment with a constant width, and specified with the coordi-
nates of the starting point, the direction vector on the (x, y) plane, and the
width. There are two ways in which pigment is distributed onto the surface
of paper (see Fig. 2.17):

(1) Pigments are shaved off from a pencil’s lead by friction and deposited on
the convex part of the paper.

(2) Pigments adhere to the surface of the paper, when a pencil’s lead runs
through areas covered with loading matter and pigments.
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Fig. 2.17 Volumetric diagram of paper volume, pigment distribution, and redis-
tribution concept in cross section [Takagi et al., 1999]. (a) Paper; (b) Drawing;
(c) Watering; (d) Eraser effects. Copyright of IEEE, used with permission

The line integral convolution (LIC) is extended to 3D by adding height in-
formation to the 2D data, and then adopted to approximate the movement of
pigments in the pigment redistribution sub-mode. Pigment redistribution cor-
responding to the pencil pigment characteristics and the brush stroke speed
can be simulated using the LIC by adjusting the length of the convolution
kernel, estimating the location of the voxels which contribute to the LIC
calculation, and finding the contribution of the convolution kernel.

For the colored pencil drawing watering effect (see Fig. 2.18), they assume
that a pigment dissolves in water when a wet brush touches the pigment voxel.
If a pigment voxel in the stroke region is accessible, the voxel has the possi-
bility of dissolving. For these voxels, the degree of possibility is determined
from the quantity of water contained in the brush, the quality of the bonding
agent contained in the lead, and the stroke pressure. When the degree of
dissolving exceeds a pre-specified threshold, the voxel is emptied, that is, it
becomes a source voxel. After the source voxels are located, the brush stroke
vector is used as a streamline for the LIC, and the pigment movements are



26 2 Simulating Artistic Media for Digitized Creation of Artworks

calculated. A convolution kernel is defined on the height field. Its length is
decided according to the quantity of water and the stroke speed. The source
voxels in the convolution kernel also contribute to the calculation of the LIC.
Non-pigment voxels, however, should not contribute to the calculation.

Fig. 2.18 Watering and eraser effects of colored pencil drawing [Takagi et al.,
1999]. (a) Colored pencil drawing; (b) After watering; (c) After eraser. Copyright
of IEEE, used with permission

For the colored pencil drawing eraser techniques (see Fig. 2.18), Takagi
et al. focused on the soft tint effect. A soft tint is obtained by applying light
eraser strokes to colored pencil drawing surfaces. The shape of the patted area
with an eraser stroke is assumed to be an ellipse. The involved parameters
include the coordinates of the patting point, and the size and orientation of
the ellipse. Additional key parameters are the softness of the eraser and the
pressure of the eraser stroke.

This CPD model takes advantage of volumetric offset distance accessibil-
ity and LIC, and thus is highly controllable with a small number of parame-
ters. The resultant CPD data sets are rendered using a volume visualization
algorithm.

2.1.4 Simulating Wax Crayons

Wax crayons possess certain characteristics making them challenging to sim-
ulation. First, the crayon contact area is large enough that the paper is not
flat over the entire region of contact. Secondly, wax is much more viscous than
paints and inks, and so its interactions are different than these other media.
The previously deposited wax will be obviously smeared by the action of later
crayon strokes. Thirdly, the crayon footprint can change shape over a short
period of time, changing substantially even within a single stroke. Rudolf et
al. synthesized wax crayons drawings from collections of user-specified strokes
based on a physically-inspired model [Rudolf et al., 2003].

Paper is represented by a height-field texture. There are two types of
paper textures in Rudolf’s system. One is the lunar texture which has a
suitable combination of roughness and coherence. It’s generated by convolving
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a quarter-circle arc with a lattice populated by uniform noise. The other one
is fundamentally different from the lunar texture. It is generated by using
2D stipple restriction masks to scale the amplitude of uniform noise. This
mask is tiled across the noise lattice to impose a repetitive structure upon
the generated texture. Examples of such textures are shown in Fig. 2.19.

Fig. 2.19 Paper textures generated with lunar convolution and stipple restriction
masks respectively [Rudolf et al., 2003]. Copyright of IEEE, used with permission

There are two cases with real crayons interacting with the underlying
paper. First, wax is deposited by the crayon. The volume of deposited wax
depends on the size of the contact area between the crayon and paper, the
slope of the paper over that area, and the pressure on the crayon. Second,
wax that has been deposited onto the paper can be smeared around when
another crayon passes over it. This smearing process pushes wax from the
peaks of the paper texture, and down into adjacent lower regions. Smearing
also has a directional component, in that the crayon can push wax over ridges
in the paper. Fig. 2.20 illustrates the interactions of a crayon with the paper
texture.

Fig. 2.20 Hypothetical interaction between crayon and paper [Rudolf et al., 2003].
(a) Wax deposition; (b) Smearing. Copyright of IEEE, used with permission

When creating wax renditions, they use line strokes as the drawing
primitives. The parameters of its line-drawing include the endpoints P1 and
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P2, the crayon’s height mask M , the scalar force f applied by the crayon to
the paper, and the set C for color properties of the wax. When drawing a line
stroke with a crayon, the system must remove some volume of wax from the
crayon and deposit it onto the paper underneath. The volume of deposited
wax depends on the values of the crayon’s height mask, relative to the local
height of the paper. The difference between these heights determines how
much wax is deposited, as well as how much wax is smeared from that region
of the paper onto adjacent regions. Since the crayon’s cells will potentially be
worn away with each movement, the crayon’s overall height must be adjusted
at each step, so that, at the next step, the crayon is exerting the same amount
of force upon the paper. In Rudolf’s system, Hooke’s Law of Compression is
used to numerically determine the appropriate vertical displacement [Rudolf
et al., 2003]. Fig. 2.21 shows the crayon strokes varied with the pressure
forces.

Fig. 2.21 Wax deposition with different amounts of force [Rudolf et al., 2003].
Copyright of IEEE, used with permission

As a crayon moves across the paper, it will smear the wax into adjacent
regions. It will force newly and previously deposited wax from that region to
spread to adjacent regions. To simulate smearing, Rudolf et al. employed a
smearing mask that encompasses the current paper cell and its eight neigh-
bors. Each value in the mask determines the proportion of wax that is to be
moved from the current cell to the cell underneath the given mask location.
Fig. 2.22 shows the examples of wax deposition and its smearing effect.
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Fig. 2.22 Modeled interaction between crayon and paper [Roudolf et al., 2003].
(a) Wax deposition; (b) Smearing. Copyright of IEEE, used with permission

To render the wax model, a simplified Kubelka-Monk (KM) model is
employed to generate the resulting images. The KM model approximates
spectral transmittance, scattering, and interference. The value of these
properties can be inferred by two specified colors. Each of these colors is
the observed result of a layer of pigment overtop of a uniform background.
One is the result with a black background, and the other with a white
background. From these two results (see Fig. 2.23), KM theory provides a
means of interpolating the resulting color, given arbitrary backgrounds. The
KM model does so by inferring how much light is scattered by the pigment
medium, and how much is transmitted through the medium. Fig. 2.24 shows
examples of final wax crayon images generated from user defined strokes.

Fig. 2.23 Appearance of (a) real wax crayons and (b) simulated crayons [Rudolf
et al., 2003]. Copyright of IEEE, used with permission
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Fig. 2.24 Sample simulated images (a) generated from real user-defined strokes
(b) [Rudolf et al., 2003]. Copyright of IEEE, used with permission

2.2 Oriental Calligraphy and Black Ink Painting

A typical pipeline to simulate oriental calligraphy and black ink painting is
shown in Fig. 2.25. The input from the user usually consists of the posi-
tion, pressure, tilt and trajectory of the brush. The dynamic and physical
attributes of the tip mainly includes the global deformation and the shape of
the tip, and the deformation of each bristle within the tip, etc. The dipping

Fig. 2.25 A pipeline to simulate oriental calligraphy and black ink painting
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of the brush tip is to calculate the ink flow distribution with the brush tip.
The ink flow behaviors on the paper are mimicked in terms of the interac-
tion model between paper and brush, including the ink absorption by the
paper and the ink infusion on the paper. The rendering of brush strokes is to
generate and display the resulting art work for the user.

2.2.1 Modeling of Soft Brushes

The brushes are usually modeled in terms of their shapes, the dipping and
dyeing, and the interaction between brush and paper. The existing brush
models can be classified as brush modeling with 2D strokes, parametric
3D brush, virtual brush with 3D geometry, and brush models driven by an
expressive input device.

2.2.1.1 Brush Modeling with 2D Strokes

The “brushes” used in conventional computer painting systems are similar
to automated rubber stamps They build up the resulting images by plac-
ing repeated copies of some static or simply derived patterns. Sometimes
they simulate a spray of ink by painting pixels in a circular region around
the brush. Strassmann described a typical brush modeling with 2D strokes
[Strassmann, 1986]. He represents the brush as an array of bristles. Each bris-
tle has a relative position to the center of the brush and an independent ink
supply with a specified color whose intensity is from 0 to 1. When the bristle
with dipped ink contacts the paper with sufficient pressure, it will leave a 2D
stroke on the paper, and the 2D stroke is represented by position and pres-
sure. The ink supply on each bristle is assumed to be a reservoir to a finite
quantity of fluid, which gets replenished each time the brush is dipped. The
quantity is decreased as the brush moves through the stroke, and eventually
the bristle runs out. When the quantity drops to zero, that bristle no longer
contributes to the image on the paper. If the stroke is known at the time of
the act of dipping, its length is used to help determine the quantity of ink
deposited on the bristles. If a scratchy breakup at the tail of each stroke is de-
sired, the dip should put just the right amount of ink on the brush, including
selecting a few bristles to be short-changed so they ran out early. There are
parameters which control how many bristles get short-changed, and by how
much, either as a fraction of the total stroke length or in units of absolute
distance.

Chan et al. modeled the brushes in terms of the interaction effect between
paper and bristles [Chan et al., 2002]. The brush model consists of many
bristles and they are arranged somewhat randomly within a circular area.
The circular area is divided into small squares and each bristle is positioned
randomly within that square. In order for a bristle to paint, it has to have ink
on it and also the pressure applied to the brush needs to be sufficient for the
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bristle to touch the paper. In this brush model, each bristle draws a line on
the paper. Combining all of the lines that each bristle draws makes a stroke.
The thickness of the lines can be varied to get different effects. Also, the
bristle does not stay at a fixed position all the time. It keeps moving to draw
a more irregular line. These two are important procedures that affect how a
stroke will look on paper. When ink is added to a brush, some bristles are
randomly selected and their ink content is increased by a random amount.
Also, it implements the “ink stealing” effect. As the artist paints a stroke, a
bristle can steal ink from neighboring bristles. This allows the possibility of
the Feibai effect because some bristles can dry up completely and then regain
ink by stealing from others. Fig. 2.26 shows the model of a brush and several
typical painting effects.

Fig. 2.26 Brush modeling in terms of interaction effects between bristles and paper
[Chan et al., 2002]. (a) Cross-section of a brush; (b) Brush strokes painted using
increasing amount of water added to the ink from left to right; (c) Each stroke’s
transparency depends on how much water is in the ink; (d) Feibai effect is created
by adding ink to randomly selected bristles and ink stealing. Copyright of ACM,
used with permission

2.2.1.2 Parametric 3D Brush Modeling

The brush model with 2D strokes is simple and easily implemented. How-
ever, it lacks 3D and other physical properties of the brush, and is difficult
to mimic the complex stroke effects for art works. Therefore Wong and Ip
proposed a parameterized brush model to simulate the physical process of
brush stroke creation [Wong & Ip, 2000]. It takes the following brush aspects
into consideration: (a) 3D geometric parameters for the brush; (b) The brush
hair properties; (c) The variations of ink deposition along a stroke trajectory.
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Its brush geometry model (BGM) specifies the necessary information
relating to the geometry of the brush bundle, i.e., the radius of the brush
stem R, the length of the brush bundle L and the number of hairs M that
form the bundle. These parameters are fixed for a given brush and do not
change during the stroke creation process. In the normal state, the brush
bundle, while suitably inked, can be approximated by an inverted cone as
shown in Fig. 2.27. Oi is the location of the hair root relative to the center of
the base of bundle O; hi (i=1, 2,. . . , M) is the piece of hair within the brush
bundle. A typical example of a real brush has the following values: (a) brush
stem radius R=0.9 cm; (b) length of brush bundle L=3 cm; (c) number of
hairs M=10,000 approx.

Fig. 2.27 Brush bundle in a normal state [Wong & Ip, 2000]. Copyright of Elsevier,
used with permission

The brush motion dynamic model consists of two components: the instan-
taneous position of the brush tip Pt, and the ‘footprint’ of the brush on the
paper Ut. The instantaneous position of the brush tip is the three-dimensional
coordinate of the brush tip at any instance of time during the stroke creation
process:

P
t
= (Pt.x, Pt.y, Pt.z),

where t=0, 1, 2,. . . is the discretized instances of strokes, Pt.x, Pt.y are the
planar coordinates on the paper, and Pt.z is the vertical distance from the
root of hair bundle, O, to the paper, such that,

|Pt.x − P(t−1).x| � 1, |Pt.y − P(t−1).y| � 1.
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For the computation of Ut, paper is assumed to be non-blocking and the
brush bundle can pass through its surface. The intersection of the brush
bundle and the paper is a rotating ellipse (as shown in Fig. 2.28).

The “footprint” Ut, of the brush at any instance of time is modeled as
3-tuple:

Ut = (ut, vt, wt),

where ut is the major radius of the intersecting ellipse, vt is the minor
radius of the intersecting ellipse, and wt is the degree of rotation of the
intersecting ellipse. Then, together with the root of each piece of hair oi,
where oi = (xi, yi) is the 2D coordinate with respect to the center of the
base of brush bundle O, the location of the pixels to be painted by each
piece of hair can be computed as

[
x
y

]
=

[
Pt.x
Pt.y

]
+

[
cos wt

sin wt

− sin wt

× cos wt

] [
xivt/R
yiut/R

]
,

where Pt is the coordinate of the trajectory of the brush stroke at instance
t, and R is the brush radius parameter found in the brush geometry model.
Suppose the brush bundle maintains a perfect cone shape and is vertical, our
computational model for evaluating the values of ut and vt can be formulated
as a function of Pt.z, L and R,

ut = vt = R/L (L − Pt.z) .

Fig. 2.28 shows the interaction contact of the brush with the paper.

Fig. 2.28 The interaction contact of the brush with the paper [Wong & Ip, 2000].
Copyright of Elsevier, used with permission
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Lee proposed a parametric brush model focusing on the elastic property
of each single bristle of the brush [Lee, 1999]. He modeled the brush bristles
using Hooke’s law, simulating bristles as long, thin, elastic rods. The theory
of elasticity is applied to model their deformation (as shown in Fig. 2.29).
The brush path is defined interactively by the user or as a list of control
points comprised of parameter conditions (time, position, pressure). For the
stroke rendering, it provides two methods. The first one is straightforward in
that the strokes are straightforward so that the paper pixels in contact with
each bristle are simply painted according to the ink quantity remaining in the
bristles. The second one is called boundary-shading rendering. The boundary
of the stroke segment and the amount of ink within are both calculated
iteratively. The brush mark at any instant in time is defined as the area of
the paper to be painted by the bristles, represented by the convex hull of
the paper points in contact with bristles. The outline of a brush mark is the
stroke segment, later used to compute the stroke. The stroke or boundary of
the stroke is the trail left by the brush as it moves along a path, with the
resultant image computed as the connection or union of all stroke segments
at every node along the brush path. Simultaneously with computing the
boundary of a stroke, shading within the stroke is applied in a left-to-right
linear shading pattern, across each shading segment. Fig. 2.30 shows some
examples of stroke rendering.

Fig. 2.29 The brush model and its bristle deformation [Lee, 1999]. Copyright of
IEEE, used with permission
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Fig. 2.30 Example of stroke rendering [Lee, 1999]. Copyright of IEEE, used with
permission

2.2.1.3 Virtual brush with 3D solid geometry

Xu et al. proposed a virtual brush model with 3D solid geometry on the basis
of hair cluster, a small bundle of hair clustering together [Xu et al., 2002]. A
virtual hairy brush consists of one or more hair clusters. Each hair cluster is
described by a NURBS surface, and its geometric solid model is constructed
through the general sweeping operation in CAD (as shown in Fig. 2.31). The
behavior of a virtual hairy brush is an aggregation of the behavior of all hair
clusters.

Fig. 2.31 The virtual brush model with 3D geometry [Xu et al., 2002]. Copyright
of Blackwell, used with permission
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A virtual hairy brush is assumed to have three possible states in its life-
cycle: the initial state, the dipping state, and the working state. In the initial
state of a virtual hairy brush, the tip control line, the middle control axis,
and the middle control ellipse are reduced to a point, a straight line, and a
circle, respectively. In the dipping state, the hair cluster acquires ink-related
information, which includes color and degree of wetness according to how
the brush is dipped. The working state of a virtual brush is the deformation
state of the brush. The brush deforms due to touching or pressing against
the paper. By varying the eccentricity of the middle control ellipse, the tip
control line and middle control axis, a series of solid modeling effects can be
achieved (see Fig. 2.32).

Fig. 2.32 The modeling effects of the virtual brush with 3D geometry [Xu et al.,
2002]. Courtesy of Songhua Xu

However, hairy-cluster-based modeling for a virtual brush is not suffi-
cient to deal with the highly chaotic geometry of the brush. Therefore they
further proposed an improved virtual brush with a two-level hierarchical ge-
ometry [Xu et al., 2003]. At the lower level of the hierarchy, hair threads
whose position and geometry in 3D space are close to each other are gath-
ered together and modeled as one hair macro. At the upper level, disjointed
hair macros whose geometries are similar are classified into the same clus-
ter of hair macros. A hair macro represents the smallest granularity in the
modeling, and its geometric model is created by sweeping an ellipse along
a skeleton. The shape of the moving ellipse can be varied during sweeping,
and the ellipse always lies on the normal plane with respect to its skeleton.
Based on this two-level hierarchical representation, it can efficiently repre-
sent the complex geometry as well as simulate the dynamic behavior of real
paintbrushes having thousands of disjointed hair clusters (see Fig. 2.33).
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Fig. 2.33 Complex brush geometries of the virtual brush [Xu et al., 2003]. Copy-
right of IEEE, used with permission

2.2.1.4 Brush Modeling Driven by an Expressive Input Device

The aforementioned brush models are mainly based on the mathematic or
physical properties of the real brush. They are transparent to the users. The
user can not feel or touch these virtual brushes. However, without an input
device as expressive as a real brush, the current virtual brushes will not be
very user-friendly. There are two typical approaches to designing expressive
input devices. One is to employ the real brush with additional sensors to
expressively capture the control and intension of the user. The other one is
to use the haptical devices with sufficient degrees of freedom as a substitute
of the real brush.

Chu & Tai proposed an expressive device based on a real brush with
ultrasound sensors [Chu & Tai, 2002]. The elastic brush built in the computer
is driven by the movements sensed from a real brush. As shown in Fig. 2.34

Fig. 2.34 The expressive input device and the internal structure of the elastic
brush [Chu & Tai, 2002]. Copyright of IEEE, used with permission
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the brush models are constructed in a two-layer approach: brush skeleton
and brush surface. The brush skeleton determines the dynamics of the brush.
It is composed of a spine and lateral nodes. The spine is a set of connected
line segments for general bending of the brush. Lateral nodes are slides along
the sides of a spine node for lateral deformation. Brush surface determines
the footprint of the brush. It is created by sweeping the cross-section (two
half-ellipses) along the spine. In the skeleton spring system of the brush, the
angular springs are generated from the consecutive spine nodes or lateral
nodes. The displacement springs are generated from the spine nodes and its
lateral nodes. The brush flattening and splitting are simulated by the lateral
nodes. The brush splitting at the bristle level is carried out by an alpha map.
The brush plasticity is simulated by zero-shifting the spring energy function.

Yeh et al. proposed a brush model driven by a force feedback device with
six degrees of freedom (DOF) (see Fig. 2.35). With force feedback, a user
experiences the interaction between the pen and paper and one can feel it
more realistically. The brush model is constructed by using physical-based
springs as the skeleton of the brush. The springs used in this system adapt to
the bending angle as the control variable. By using the information retrieved
from the six DOF device, the brush model changes its position and orienta-
tion and simulates the shape it represents. Then, the detection of collision
between the brush and paper is performed. Furthermore, the shape, orienta-
tion, position of brush, as well as volume of ink and water contained in brush
determine the stroke drawing on the paper. In the meantime, force informa-
tion is sent back to the force feedback device to simulate the feeling that the
user touched a paper. Lastly, the ink-water transfer model is responsible for
the transfer of ink and water in brush and paper.

Fig. 2.35 The six DOF force feedback device, the brush model and some simulated
brush strokes [Yeh et al., 2002]. Copyright of IEEE, used with permission

2.2.2 Calligraphy with Soft Brushes

The objective of calligraphy simulation is to allow users to “practice”
calligraphy electronically by generating the aesthetic character images using
the digitized brush. From the point of view of technology, its core issues
are how to capture and create the aesthetic features found in brush-written
images, e.g., the natural running of stroke shapes produced by calligraphers,
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the impression of physical rubbing between the brush and the underlying
paper, and the varying shades and trails of grey created by fast movement of
a drying brush, etc.

A representative work on calligraphy simulation comes from Wong and
Ip [Wong & Ip, 2000]. The user can specify the set of physical parameters
or apply a predefined set of standard parameter values appropriate for
that style of writing. The contact between the brush hair bundle and the
writing paper is modeled using an elliptic footprint whose principal axes can
be dynamically adjusted according to different brush bending and turning
control. The result is a good approximation to real brush-written characters.
By varying the different parameters which control the profile of ink absorption
and deposition variants, etc., along a stroke, realistic calligraphic effects can
be produced. They analyzed the four commonly used Chinese brush writing
styles Li (clerical script), Zhuan (seal character), Kai (regular script), and
Xing (running style), and decomposed the stroke creation process into I–
IV stages.

I is the stage when only x, y coordinates of the stroke trajectory are
specified. II is the result of varying the brush stem distance from the paper
to create a stroke with a sharp end. III is used to affect the rotation of
the brush at the turning point. This resembles the effect when the artist
turns the brush head in a direction in preparation for the ensuing downward
tick. During IV, the completed stroke is created. Note that in the resultant
stroke, the turning portion changes to a sharper box shape, which simulates
the artist’s action of pressing down on the brush head. Fig. 2.36 shows the
four stages with the horizontal strokes and the parameters to create the final
resultant stroke.

Fig. 2.36 The four stages of creating the horizontal strokes [Wong & Ip, 2000].
Copyright of Elsevier, used with permission

The amount of ink deposited by each piece of hair is modeled by two
parameters: (a) A parameter gt (0.0-1.0), which is a global reference of the
ink depositing level which can vary over time instances t; (b) A range (−s-s),
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where s (0.0-1.0), within an individual piece of hair is allowed to deviate from
the global reference gt. Then, for each hair hi, the degree at which it deviates
from gt is sqi , where qi is a uniform random number in the range (−1.0-1.0).
The amount of ink deposited by a single piece of brush hair hi at the instance
t is

gi,t = g0 +
∑

j=1,...,t

(gj − gj−1)(1 − sqi
).

With this we are able to model the amount of ink deposited by each piece
of the brush hair. However, there exists interaction between the brush hair
and the surface of the writing paper. Therefore a parameter for the absorption
variant et (0.0-1.0) is used. Consider a brush moving on the paper surface,
the tips of the hair move against the paper at a certain speed. If the speed
is relatively high and the brush is rather dry, then at certain instances some
hairs are probably not depositing any ink at their contact points on the paper.
The role of et is to control the probability of this “non-inking effect” at any
instance t of the stroke painting. Moreover, the on and off of inking is also
related to the degree of brush hair spreading bt, which is the consequence
of a drying brush bundle, and the perpendicular distance of the pixel to the
stroke trajectory, i.e., the ri value of the location of the root of each piece of
hair hi. As a result, this on and off function is formulated as E(et, ri) such
that

E(et, ri) =
{

on, if di,t < et(R−ri)/R−bt/R,
off, otherwise,

Where di,t(0.0-1.0) is a uniform number generated for hair hi at instance t.
An analysis of some well-known Chinese brush writing styles is given, with

a view to establishing the relationship of these writing styles and the modeling
process of simulating these different writing styles. The visual appearance of
brush-written characters is the combined effects of the speed and direction of
stroke writing, the orientation of the brush, the force asserted on the paper,
and the ink content of the brush. The simulated calligraphy characters with
different styles are shown in Fig. 2.37.

Fig. 2.37 Calligraphic characters with different styles [Wong & Ip, 2000]. Copyright
of Elsevier, used with permission
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Chu & Tai employed a real brush with the ultrasound sensors as an expres-
sive device to simulate the Chinese calligraphy[Chu & Tai, 2002]. The char-
acter simulation is controlled by an energy function as E = Edeform + Efrict,
where E is the total energy, Edeform is the tuft deformation energy and Efrict

is the frictional work done by dragging the brush against the paper surface.
The resultant character images are generated by texture mapping. Fig. 2.38
shows some examples of the resultant calligraphic characters.

Fig. 2.38 Some examples of the resultant calligraphic characters [Chu & Tai, 2002].
Copyright of Elsevier, used with permission

Xu et al. built a 3D geometric model for the typical brush typically in
Chinese calligraphy [Xu et al., 2002]. From the point of view of calligraphy
simulation, their main contribution lies in the setting-up of the quality
parameters of the virtual hairy brush in terms of the real brush. In real
life, brushes having soft hair tend to branch out easily during writing. Some
brushes have a great deal of hair and tend to take in more ink and cause
serious paper saturation during the writing process. Other brushes have
rather long hair and their tips tend to get deformed and easily rotated to a
greater extent. In order to ease the configuration of a virtual brush to achieve
the desired quality, they carried out a special procedure to train the computer
by employing the principle of the MiaoHong process in Chinese calligraphy.
The number of the training samples can be set by the users. The trained
results of a virtual brush are brush strokes whose boundaries are specified
by the machine-training module. The system maintains a library of quality
configurations contributed by the users themselves or by the machine training
procedure. The end users can configure their favorite virtual hairy brush by
assigning values to the quality parameters by themselves. The implemented
system provides a window in which the users can adjust these parameters
visually. Fig. 2.39 shows an example of real calligraphic artwork and an
electronicallic simulated one.
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Fig. 2.39 (a) Real calligraphic artwork vs. (b) artwork created by the virtual hairy
brush [Xu et al., 2002]. Copyright of IEEE, used with permission

2.2.3 Oriental Black Ink Painting

Oriental black ink painting originated from Chinese painting, which is a
spontaneous and expressive form of art, and has spanned more than three
thousand years. These black ink paintings were drawn by brushes made
from very fine animal hair which were dipped in ink and water. The
interaction between ink particles, water particles and paper produces different
aesthetically appealing effects unique to the ink-and-brush medium. The
secret of Chinese painting is in putting the correct tones in the proper parts
of the brush and in being able to call them forth by the proper handling
of the brush. Every brush stroke in a Chinese painting conveys meaning to
the viewer. Oriental black ink paintings have several unique features when
compared with oilcolor and water-color paintings. Firstly, a black ink painting
usually consists of a few well-placed strokes. Overlapping of strokes is not
often done and white spaces are necessary and meaningful. Secondly, in
black ink paintings the emphasis is in the quality of each stroke as well
as in that of the entirety. Artists usually draw each stroke in one sweep
without re-touching. Thirdly, from the point of view of rendering effects,
black ink paintings not only separate light and color, but also avoid depth
and other three-dimensional effects such as shadows to preserve the desired
features of an object. Finally, the black ink painting heavily stresses the
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notion of “implicit meanings” by abstracting objects with a minimum amount
of strokes to express their deepest feelings.

Due to the strokes similarity between calligraphy and paintings, some
researchers merely employ the brush strokes to mimic the black ink paintings
directly based on the rendering effects of strokes on the resultant pictures,
ignoring the ink diffusion on the paper. The resultant images are usually
generated by defining a path of the stroke with the brush model and
rendering the contact area of the brush with the paper based on the empirical
interaction model. For example, Strassmann used the 2D brush stroke to
create the black ink painting [Strassmann, 1986]; Xu et al. employed the
stroke imitation principle to generate the Chinese painting in terms of the
predefined stroke styles [Xu et al., 2003] Chu et al. geometrically built the 3D
deformation model, and took the dynamic texture mapping to generate the
resulting Chinese painting [Chu & Tai, 2002]. Yeh et al. physically constructed
an elastic brush stroke to generate the Chinese paintings [Yeh et al., 2002].
Fig. 2.40 shows several painting examples merely based on brush strokes.

Fig. 2.40 Example of simple simulation of oriental painting merely by the brush
strokes. (a) Selected from [Xu et al., 2002; 2003]; (b) Selected from [Chu & Tai,
2002]; (c) Selected from [Strassmann, 1986]; (d) Selected from [Yeh et al., 2002].
Copyright of ACM, used with permission

However, ink diffusion on the paper is perhaps the most admired unique
feature of oriental black ink. A type of halo appearing around the original
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stroke adds a mysterious touch, being caused by letting ink spread beyond
the stroke’s original border, while ink seeping into special paper with high
absorbency creates a feathery, blurred edge. These diffusion features represent
complex physical phenomena which cannot be completely simulated by simple
degradation functions, fractals, or texture mapping techniques, since purely
mathematical methods generally result in flatly blurred images which are
different compared to realistic diffusion images. In order to get the more
natural and sophisticated visual effect of oriental painting, the ink diffusion
mechanism should be incorporated into its simulation algorithm. Therefore
we will further discuss the ink diffusion mechanism and the interaction model
with the paper respectively.

2.2.3.1 The Ink Diffusion Principles and Mechanism on the Paper

Development of the appropriate model for simulating ink diffusion requires
attention to be focused on the occurring physical mechanism. Kunii et al.
presented the first multi-dimensional ink fusion model which proved to pro-
vide exactly the same intensity distribution as in real images of the oriental
black ink painting [Kunii et al., 1995]. When a drop of diffusing ink falls on
the surface of highly absorbent paper, it begins to spread throughout the
paper. As a result of this process, the final image appears to be sufficiently
bigger than the initial zone to which the ink was directly applied. As shown
in Fig. 2.41, the remarkable feature of the diffused ink image is a kind of
black border which appears along the edge of the initial zone, i.e., the zone
where ink was directly applied to paper. Outside the initial zone there finally
appears a sufficiently large grey zone with not very high ink concentration,
but has more or less a homogeneous intensity of color. This grey zone is one
where ink was not directly applied to the paper. Carbon particles collect
there as a result of diffusion.

Fig. 2.41 Three zones of different intensity appear in the image: initial zone where
ink was directly applied to paper; black border, a dark line along the border of the
initial zone; grey zone, the area where solid particles of the ink collect as a result
of diffusion [Kunii et al., 1995]. Copyright of IEEE, used with permission
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Due to the spread of water outside of the initial zone, the density of carbon
in water will decrease inside this zone. Consequently, the concentration of
carbon particles in water (i.e., ratio of carbon to water) rises sharply along the
boundary of initial zone. Thus, the points with high concentration occur when
the diffusion of carbon particles slow down. It results in the appearance of a
barrier for carbon particles near the border of the initial zone. Many carbon
particles which diffuse to the boundary of the initial zone from the inner
parts of this zone, begin to slow down there and can not leave the vicinity of
the border. After the water dries up, they remain near the boundary. That
is how the above-mentioned black boundary effect may occur. Some carbon
particles which are able to overcome this barrier, appear outside the initial
zone. Those particles immediately fall into a zone, where there is much more
water than carbon. Although there might be little water outside the initial
zone, the decrease in the number of carbon particles can be even greater than
the decrease of water density. In this case, concentration of carbon particles
in water appears to be sufficiently low outside of initial zone which results in
a diffusion with a maximal rate for carbon outside the initial zone. Carbon
particles there diffuse freely in water and draw a grey zone around the initial
zone. In this grey zone, the intensity of grey color will be approximately
constant. Due to the effects described above, the grey zone will be separated
from the initial zone by a dark line—black boundary. Therefore the density
distribution function will look as shown in Fig. 2.42.

Fig. 2.42 Typical diagram of surface density of carbon particles within a certain
point of the image [Kunii et al., 1995]. Copyright of IEEE, used with permission

Indeed, the nature of diffusion of water and carbon particles is quite
different. Water spreads in the paper mainly due to microscopic capillary
effects. The summary macroscopic effect can be satisfactorily described in
terms of diffusion. The diffusion coefficient in this case is determined mainly
by the structure of the paper and so is approximately constant. And it
might be different in different directions—depending on the manufacturing
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method of the paper. As to carbon particles, they are much bigger than the
molecules of water. Their motion is not based on the capillary effect of paper.
Motion of carbon particles in water is the well-known Brownian motion. Its
nature is due to microscopic collisions between molecules of water and carbon
particles. The faster such collisions occur and the higher the average speed of
water molecules is, the bigger the diffusion coefficient for Brownian motion
of carbon particles will be. Thus, the diffusion coefficient of the motion of
carbon particles depends on the temperature and the local concentration (in
the zone where this concentration is low) of these particles in water. Diffusion
of carbon particles does not depend directly on paper structure. Assuming
that the temperature is constant, the diffusion coefficient for carbon particles
will depend only on the concentration of carbon particles in water. The higher
this concentration is, the slower the diffusion might be. But the concentration
of carbon in water changes with time at each point of the image. Thus, the
diffusion coefficient for the motion of carbon particles can strongly depend
on time and the point of the image. As aforementioned, the density of carbon
in water will decrease inside this zone. The sharpest decrease of this density
will occur near the border of the initial zone because the gradient of density
function is maximal there. Consequently, it seems that distribution of water
density would soon become like the distribution shown in Fig. 2.43.

Fig. 2.43 Distribution of water and carbon in the stain made by diffused ink on the
surface of the paper after the diffusion process starts [Kunii et al., 1995]. Copyright
of IEEE, used with permission

Huang et al. proposed the diameter-filtering mechanism to simulate the
ink diffusion observation and analysis [Huang et al., 2003]. Water is a liquid
which can move to anywhere in the paper under the forces associated with
capillary action. All water particles are defined as objects with the same vol-
ume, mass, color and response to external forces. They only differ in position
recorded as coordinates in the paper cells. The quantity of water accordingly
governs the span of the diffusion image or the number of diffusion steps. The
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carbon particles can be most simply simulated like water particles. They have
mass, position, diameter and color. These attributes all vary among particles.
The diameter and mass of a carbon particle are determined by the fineness
to which the ink is initially ground. If the ink is initially ground coarsely,
it contains small and large particles that produce observably different color
intensities at the border of the initially brushed area. However, most homo-
geneous, small and uniform carbon particles move in water unhindered by
the fibers, as such the intensity changes smoothly across the diffusion area.
Only carbon particles that are smaller than the space between the fibers can
seep into the mesh in the water. Particles larger than this space remain in
their initial positions. As shown in Fig. 2.44, two adjacent cubes represent
two neighboring paper cells [Huang et al., 2003]. Black grains in the paper
cells are carbon particles of different sizes. It is chaotic between the two paper
cells represented fibers. The arrow represents the direction in which the wa-
ter flows. The carbon particles move in this direction. Larger carbon particles
cannot pass through the holes in the paper.

Fig. 2.44 An illustration of filtering effect. (a) Initial state; (b) Equilibrium state

2.2.3.2 The Ink Diffusion Interacted with the Paper

In order to render the brush contact effect of ink diffusion, we should take the
interaction model between ink and paper into consideration. The capillary
attributes of paper should also be modeled to display the ink diffusion effect.
A typical approach to modeling the paper in painting is to represent the
paper as a cellar model based on fiber meshes, in which the entire paper
is divided into an array of cells. Each cell will act as a container of the
ink. The fiber mesh structure of the paper provides information about each
point on the paper [Lee, 2001]. As shown in Fig. 2.45, simulating diffusion
rendering is to determine the schema simulating the point-to-point flow of ink
through the fiber mesh. Lee developed a “wave” schema for representing how
ink flows through a fiber mesh. Diffusion is considered to originate from the
“boundary points of strokes”, being analogous to the outward-moving circular
waves produced when an object is thrown into a lake. In other words, water
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oscillates up and down during wave movement and the paper cells diffuse
color when the diffusion wave arrives.

Fig. 2.45 Wave schema of ink diffusion in the paper [Lee, 2001]. Copyright of
Elsevier, used with permission

At any particular moment, the points at the edge of a profile of
the diffusion area are collectively termed as the “diffusion front” such
that the “boundary points” are the “initial diffusion front”. The diffusion
process accordingly involves using the current diffusion front to successively
determine the next diffusion front as a time sequence represented by a step
counter as it changes from zero to n. Fig. 2.45 depicts the main principles of
ink flow, and the important aspects are as follows:

(1) From a point P at the current diffusion front, ink can only flow to point
P ′ if it is connected to P and is dried.

(2) Point P ′ absorbs some amount of liquid ink before it transports ink to
other points.

(3) The ink absorbed at P ′ evaporates after a unit of time Δt, where it is
assumed that Δt = 2.

In this wave schema, (a) The ink density at the diffusion front is deter-
mined before the diffusion wave continues on; (b) The points covered by the
diffusion front will not be included in the next diffusion front for a short pe-
riod of time, hence the number of points involved in the diffusion process can
only linearly increase over time; (c) The ink cannot flow backward because
the diffusion wave travels only outward.

The ink diffusion algorithms are constructed based on the aforementioned
principles of ink flow and paper cells intensity. When a short stroke is pro-
duced quickly, the diffusion process starts at the points along the boundary
of the brush stroke almost at the same moment. For a long and slowly drawn



50 2 Simulating Artistic Media for Digitized Creation of Artworks

brush stroke, diffusion in the older sections may start earlier than in the newer
sections, and the ink within the oldest sections may even dry up. Therefore
the system provides two rendering modes: “stroke-unit” and “section-unit”.
With the “stroke-unit” rendering mode, the diffusion rendering starts at all
paper cells of the boundary line at the same moment. With the “section-unit”
rendering mode, the diffusion process starts in sequence among sections of
a stroke from old to new. Fig. 2.46 shows the results of diffusion rendering
carried out on a simple leaf-shaped stroke in which the amount of water, ink
parameters, or type of paper are varied respectively.

Fig. 2.46 Diffusion rendering on a leaf stroke with the variables water, ink param-
eters and types of paper [Lee, 2001]. (a) The amounts of water are different; (b)
The sizes of the carbon particles are different; (c) The densities of the paper cells
are different. Copyright of Elsevier, used with permission

Guo and Kunii proposed a similar structure model of paper with small
circular regions, in which the fibers are distributed with homogeneously ran-
domness in terms of the given density [Guo & Kunii, 2003]. This means that
the fiber density and the average fiber orientation are globally uniform, but
the local fiber density varies irregularly from place to place.

Their algorithmic schemas to simulate and render the ink diffusion effects
are as follows:

(1) The tree transportation schema determines how liquid ink flows in a fiber
mesh by three rules:
• Liquid ink can flow from point P to point P ′, if there is a capillary

tube connecting them, and P ′ has not gotten any ink yet.
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• Liquid ink can flow from point P to zero, at one or more than one
point.

• Point P absorbs a maximum amount of liquid ink Q(p) before it
transports liquid ink to other points.

(2) The source of ink quantity variation schema determines how long a dif-
fusion process will persist by two rules:
• If point P absorbed the amount of liquid ink Q(p), the amount of

liquid ink remaining at its source point decreases by Q(p).
• When all the source points have no liquid ink remaining, the diffusion

process gets stopped.
• The grey zone calculation schema determines the intensity for every

pixel on the paper by the following steps:
• The grey zone (or intensity) at each pixel is determined by the amount

and density of liquid ink absorbed there, i.e., I = Q(p) × V (p).
• The amount of liquid ink Q(p) is evaluated as a statistical function of

the number of fibers passing through the point;
• The density of liquid ink D(p) is evaluated as a function of the time

counter value and the density of ink on its corresponding source point.
Fig. 2.47 gives the circle strokes based on different fiber meshes.

Fig. 2.47 One stroke in various rendering effects [Guo & Kunii, 2003]. Copyright
of IEEE, used with permission
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During the digital painting process, the user picks up the control points
to define a boundary for a stroke. Each stroke is defined by two boundary
wire-lines with the picked control points placed on them. The next step is
to specify the rendering mode and to set the parameters for each stroke.
Rendering parameters include paper absorbency, paper type, ink density, ink
quantity, drawing speed, and brush size. Fig. 2.48 shows the interim painting
process of a dog and its resultant black ink painting artwork.

Fig. 2.48 A painting process of a dog and its resultant black ink painting artwork
[Guo & Kunii, 2003]. Copyright of IEEE, used with permission

Way et al. assumed that water and carbon particles are the two main
constituents of Chinese ink. He also assumed that the forces that move the ink
include the interactions among water molecules, water and carbon particles,
and the forces due to capillarity and gravity, etc. [Way et al., 2003]. The
motion of ink is simulated by the following processes:

(1) Paper absorbency. When the moving ink passes through paper cell p
with N fibers, the amount of water deposited in p is Q. The relationship
between N and Q can be expressed as proportional to Absorbency(p).
An equation for the absorbency of each paper cell is (Absorbency(p)=
Base+Var×rand).

(2) Movement of water particles. Water is a liquid which can move anywhere
in the paper under the forces associated with capillary action. When the
water in a certain paper cell flows out, its quantity and direction must be
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determined. The approximate equation for K(p), the ratio of the quantity
of out-flowing water to the quantity of water left in the paper cell, is
represented as K(p) = Fbase + Fdiff × (1 − (1 − Absorbency(p)2)), where
Fbase is a real number between zero and one, that represents the basic flow
rate p, and Fdiff is a real number between zero and one, that represents
the difference between the highest flow rate and the lowest. The quantity
of water that flows in all directions into the neighboring paper cells is
determined by associated probabilities. Fig. 2.49 illustrates how the water
propagation is influenced by the capillary force and the gradient of the
quantity of water relatively to each other in two neighboring cells [Way
et al., 2003].

Fig. 2.49 Illustration of water propagation during ink diffusion

(3) Movement of carbon particles. The carbon particles can be most simply
simulated like water particles. They have mass, position, diameter and
color. The diameter and mass of a carbon particle are determined by the
fineness to which the ink was initially ground. Only carbon particles that
are smaller than the space between the fibers can seep into the mesh in
the water. Particles larger than the space between the fibers remain in
their initial positions. This filtering effect can be represented as follows,
where p is the paper cell in which the carbon particle is located.

If carbon diameter>hole diameter(p) Then carbon position← p
Else carbon position←water outflow direction (p)

Fig. 2.50 shows the simulated result using the proposed ink diffusion
method. The strokes of the resulting image are similar to those of an artist’s
painting on real Hsuan paper.

Yu et al., proposed a local equilibrium model to calculate the movement
of water and ink effectively [Yu et al., 2003]. Their paper model is composed
of cells which are minimal components. A cell has eight neighboring cells, and
these neighboring cells are connected by fibers. When two or more strokes
are intersected, the shapes of the strokes in the intersected parts are different
from those in the other parts due to the moisture included in each cell. To
simulate this phenomenon, each cell on the paper is divided into three layers:



54 2 Simulating Artistic Media for Digitized Creation of Artworks

surface layer, absorption layer, and deposition layer (Fig. 2.50). Water and
ink in the surface layer are moved to neighboring cells or are absorbed in
the absorption layer. In the absorption layer, the water and ink are desorbed
to the surface layer or deposited in the deposition layer. Water in the de-
posit layer evaporates over time. A local equilibrium model is employed to
determine the state of water and ink movement of each cell at each time step
interactively. Let a cell ci,j denote a front cell if ci,j has water and ink moving
into neighboring cells. Let ck

i,j denote the kth neighboring cell of ci,j, and Wi,j

and Ii,j denote the quantity of water and ink of the cell ci,j respectively. A
fiber connecting neighboring cells is defined as input or output according to
the quantity of water in each cell. If Wi,j > W k

i,j , then the fibers connecting
ci,j and ck

i,j are regarded as output fibers. Otherwise, they are regarded as
input fibers. If fibers connecting ci,j and ck

i,j are output fibers, and water and
ink in ci,j have moved into ck

i,j (Fig. 2.50).

Fig. 2.50 The layer structure of paper and the relationship between a front cell
ci,j and neighboring cells. (a) The layer structure of paper; (b) The relationship
between cells

2.3 Simulation of a Colored Painting

The pipeline to simulate a colored painting is similar to that of the black ink
painting. However, the colored painting involves the blending and rendering
of colorful pigments on the canvas, and this makes the simulation process of
a colored painting much more complex than that of the black ink painting.
Fig. 2.51 gives an iterative diagram of the interactive colored painting. In
this section, we will first present the computational rendering model for color
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pigments, and then describe the simulation process for watercolor and oil
painting respectively.

Fig. 2.51 A typical pipeline to simulate the interactive colored painting

2.3.1 The Computational Model of Rendering Colored Pigments

The colored pigments are the manufactured objects in the real world. The illu-
mination of them should take into consideration the physical makeup of their
pigmented surfaces. To render the color of any pigmented object, the physical
interactions on the pigmented surface must be included. The straightforward
way of specifying color in a graphic scene is via the common red, green, and
blue (RGB) triplet. However this method is far removed from reality—the
RGB method is only appropriate for additive colorants, such as colored light
(e.g., the phosphors in the monitors screen). A second approach for specifying
color is in the cyan, magenta, and yellow (CMY) space. This specification is
in the domain of subtractive color synthesis and accurately models the ef-
fect of light transmission through a colored surface. However, this method is
insufficient for representing pigmented surfaces, since CMY color synthesis
works best for purely transmitting materials and a pigmented surface can
have both transmitting and reflecting characteristics.
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The most accurate way of dealing with light in a synthetic imaging
application is on a wavelength-by-wavelength basis. It is only in this way
that more subtle illumination modeling and color calculation problems can
be handled. The spectral energy distributions of the light sources in the
environment must be given and the spectral reflectance, transmittance, and
absorbance of the surfaces with which these light sources interact must
be specified. Instead of looking at pigmented solutions on a particle level,
Kubelka and Munk examined what happens as light traverses a thin layer
of paint applied over a substrate, and observed the effects of light energy
in the entire solution [Haase & Meyer, 1992]. At any location in the paint,
light from the surface is moving deeper into the material and light that has
reflected from the substrate is travelling back toward the top of the film. A
certain fraction K of the light travelling in each direction will be absorbed by
the material. Another portion S will be scattered. Light from each direction
that is scattered is assumed to contribute to the amount of light travelling in
the opposite direction. A set of differential equations were written as a result
of this analysis.

For complete hiding, i.e., when the pigment layer is so thick that the
substrate can not be seen through the pigment layer, the solution of the
differential equations for the reflectance Rx is:

K

S
=

(1 − Rx)2

2Rx
.

We can now derive the spectral reflectance of any pigmented material at
complete opacity if we know its respective K and S values (and the spectral
properties of the solution in which the pigments are immersed). Fig. 2.52

Fig. 2.52 Comparison of the resulting illumination of real pigments and the
simulated ones by the KM model [Haase & Meyer, 1992]. (a) Canvas painted with
real pigments showing mixtures of cadmium red and napthol red with titanium
white; (b) Resultant rendition of using the KM model to simulate the mixture of
cadmium red and napthol red pigment with titanium white. Copyright of IEEE,
used with permission
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shows the comparison of the resulting rendition of real pigments and the
simulated one by the Kubelka and Munk thoery. This is often rewritten as:

Rx = 1 +
K

S
−

√(
K

S

)2

+ 2
K

S
.

This approach incorporats the ideas behind the pigment particle scatter-
ing and absorption interactions, but allows a much easier and more com-
prehensive calculation of entire pigmented system. Due to the fact that the
combination of absorption and scattering are linear, we can compute the
properties of mixtures of pigmented solutions by the following equations:

KM =
n∑

i=1

Kici, SM =
n∑

i=1

Sici,

(
K

S

)
M

=

n∑
i=1

Kici

n∑
i=1

Sici

,

where
KM=absorption of pigment mixture, SM=scattering of pigment mixture,
n=number of pigments in mixture, ci=concentration of ith pigment in mix-
ture by weight of dry pigment, Ki=absorption of ith pigment, Si=scattering
of ith pigment.

There is lots of further work to be done on the KM model and their
shortcomings. An important example is the work of Saunderson [Saunder-
son, 1942], which can work well for the illumination of an oil painting layer.
Saunderson’s formula attempts to account for both external and internal sur-
face reflection. This formula is used to adjust the measured reflectance from
which K and S are determined. Given the Fresnel reflectance equation:

k1 =
(

n2 − n1

n2 + n1

)2

,

where
n1=refraction index of the external medium (i.e., the air), n2=refraction
index of the internal medium (i.e., the oil).

Saunderson’s formula is as follows:

Rt = k1 +
Rm − k1

1 − k1 − k2 + k2Rm
,

where
Rt=theoretical reflectance, spectral reflectance adjusted for use in determin-
ing K and S; Rm=measured reflectance, spectral reflectance measured by
a spectrophotometer, k1=front surface reflectance of the film, k2=internal
reflectance of the film.

For the time being in the computer graphics community, the KM model
theory is the most popular model being used to predict the reflectance that
will result when two or more pigments are mixed.
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2.3.2 Simulation of Watercolor Painting

Watercolor images are created by the application of watercolor paint to paper.
Watercolor paint is a suspension of pigment particles in a solution of water,
binder, and surfactant. It exhibits beautiful textures and patterns that reveal
the motion of water across paper, much as the shape of a valley suggests the
flow of streams. Its vibrant colors and spontaneous shapes give it a distinctive
charm. And it can be applied in delicate layers to achieve subtle variations in
color, giving even the most mundane subject a transparent, luminous quality.

The simulation of watercolor paint can be broken down into three parts
[Small, 1990]. First, pigment and water are applied to the paper in a variety
of ways. The paper characteristics are specified, as well as the environmental
variables such as humidity and gravity. Second, the movement of pigment
and water in response to various forces at discrete time steps is computed.
Finally, given the state of the simulation at some discrete time, the image
can be rendered in a variety of ways.

To simulate the watercolor effectively, it is important to study not only
the physical properties of the medium, but also the characteristic phenomena
that makes watercolor so popular with artists. A simulation is successful
only if it can achieve many of the same effects. In the following sections, the
modeling of water paper, the fluid simulation of pigment and water, and the
illumination of the color pigment will be described in detail.

2.3.2.1 Watercolor Canvas Modeling

Watercolor canvas/paper is typically made from linen or cotton rags pounded
into small fibers. The canvas itself is mostly air, laced with a microscopic web
of these tangled fibers. Such a substance is obviously extremely absorbent to
liquids, and so the paper is impregnated with sizing so that liquid paints may
be used on it without immediately soaking in and diffusing. Sizing is usually
made of cellulose. It forms a barrier that slows the rate of water absorption
and diffusion.

The fundamental model to simulate the watercolor canvas is the cellular
automata. The basic unit of the simulation is a paper cell, which can be
thought of as a group of paper fibers and the spaces between the fibers. The
water and pigments are assumed to be evenly distributed across the area of
a paper cell, which has constant absorbency and an initial color. The cell can
communicate only with its immediate neighbors. Fig. 2.53 is a typical water
canvas/paper model based on a complex cellular automata [Cockshott et al.,
1992].

(x, y) is the coordinate of the cell, and hi is the reservoir height of the
corresponding cell. In each paper cell, it has the properties of initial color,
absorbency, water content, and pigment content, etc. In addition to the spe-
cific information stored with each cell, there is also certain global information
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Fig. 2.53 A typical water paper model of cellular automata

such as humidity, gravity, the surface tension of the pigment-carrying medium
(i.e., water), and the weight of the pigments used.

In order to achieve more realistic watercolor effects, a more sophisticated
watercolor canvas model was proposed by Curtis et al. [1997]. As shown in
Fig. 2.54, the watercolor paper is modeled by three layers from top to bottom
in terms of the fluid movement of water and pigment. The shallow-water
layer—where water and pigment flow above the surface of the paper. The
position-deposition layer—where pigment is deposited onto (“absorbed by”)
and lifted (“desorbed” ) from the paper. And lastly the capillary layer—where
water that is absorbed into the paper is diffused by capillary action.

Fig. 2.54 The three-layer canvas model for watercolor paint [Curtis et al., 1997].
Copyright of ACM, used with permission
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This three-layer watercolor canvas model makes sense when examining
the different states in which water and pigment can exist during painting
activity. First, some sort of brush puts a mixture of water and pigment onto
a paper canvas. At this instant, the paint fluid acts like a flow of water,
carrying pigment particles. At some point, depending on the paper fabric,
the water will be absorbed into the paper and spread throughout the paper
structure. As the pigment particles are too large to be absorbed, they will
be deposited on the surface and possibly picked back up by the paint fluid
later on.

Laerhoven and Van Reeth further improved the three-layer canvas model
for their real time water color simulation [Laerhoven & Van Reeth, 2005]. As
shown in Fig. 2.55, their layered canvas consists of three active layers and an
unlimited number of passive layers. The active layers are very similar to that
in Curtis’ model [Curtis et al., 1997]. The passive layers are considered to
contain previously drawn strokes that have dried and no longer participate
in the simulation, except when the canvas is rendered.

Fig. 2.55 The improved canvas model with three active layers and an unlimited
number of passive layers [Laerhoven & Van Reeth, 2005]. Copyright of John Wiley&
Sons,Ltd., used with permission

2.3.2.2 Fluid Simulation of Pigment and Water

Curtis et al. made a good summary about the behavior of pigment and water
when they are applied to watercolor paper [Curtis et al., 1997]. A pigment is
a solid material in the form of small, separate particles. Watercolor pigments
are typically ground in a milling process into a powder of grains ranging from
about 0.05 to 0.5 microns. Pigments can penetrate into the paper, but once in
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the paper they tend not to migrate far. Pigments vary in density, with lighter
pigments tending to stay suspended in the water longer than the heavier ones
and thus spreading further across the paper. Staining power, an estimate of
the pigment’s tendency to adhere to or coat paper fibers, also varies between
pigments. Certain pigments exhibit granulation, in which particles settle into
the hollows of rough paper. Others exhibit flocculation, in which particles
are drawn together into clumps usually by electrical effects. The behaviors of
water are also summarized from the point of view of simulation. For example,
the water flow must remain within the wet area mask. A surplus of water in
one area should cause flow outward from that area into nearby regions. The
water flow will be dampened to minimize oscillating waves. The water flow
must be perturbed by the texture of the paper to cause streaks parallel to the
flow direction. Local changes should have global effects. e.g., adding water in
a local area should affect the entire simulation. There should be an outward
flow of the fluid toward the edges to produce the edge-darkening effect.

In the watercolor paper model based on cellular automata [Small, 1990],
each cell is required to know only about itself and its immediate environment.
The simulation takes into account diffusion, surface tension, gravity, humid-
ity, paper absorbency and the molecular weight of each pigment. A small
number of rules defining simple local behavior between a cell and its imme-
diate neighbors results in a complex global behavior of the fluid simulation.
The simulation of the fluid can then be broken down into three steps. First
the movement of water and pigment is calculated for the surface. Then it
is calculated for the infused material. And finally any movement of material
between these two states is computed.

The movement of water and pigment is considered to be driven by a
composite (gravity, surface tension, spreading force, etc.) displacement force
D, which is divided into horizontal and vertical components. Assuming that
Dx and Dy are the horizontal and vertical components respectively, and g, s
and sp are the coefficients that define the relative strengths of gravity, surface
tension, and diffusion coefficient. waterx is the surface component at some
location x. This equation of computing Dx and Dy are as follows:

Dx =g × waterx + s ×
(

n=10∑
n=1

1
n

waterx+n −
n=10∑
n=1

1
n

waterx−n

)

+ sp × (
water(x−1) − water(x+1)

)
,

Dy =g × watery + s ×
(

n=10∑
n=1

1
n

watery+n −
n=10∑
n=1

1
n

watery−n

)

+ sp × (watery−1 − watery+1) .

Let Δwater be the amount of water that will move from each cell, and a
positive displacement indicates that the material has moved to the right (or
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higher numbered cell). The following equations show the displacement in the
horizontal direction only:

Δwaterx = Dx × waterx,

If (Δwaterx−1 > 0) from left = Δwaterx−1,Else from left = 0,
If (Δwaterx+1 < 0) from right = Δwaterx+1,Else from right = 0,
waterx = waterx − |Δwaterx| + from left + from right.

Note that the displacement force is determined by the water content,
regardless of the pigments. The pigment content (cyan, magenta, and yellow)
are assumed to be in solution and will flow in equal proportion with the
water.

Now we can compute displacement of the water and pigment which have
become infused in the paper. The gradient, denoted by ∇, is the difference
between a cell and its neighbor. Again the horizontal and vertical components
are calculated for the water and pigment separately.

∇water = waterx − waterx−1, ∇cyan = cyanx − cyanx−1, etc.

The displacement field, Δ, is then computed for each component by the
following formulas:

Δwater = g × a∇water, Δcyan = g × Wcyana∇cyan, etc.,

where g is the gravity constant and a is the field which describes the ab-
sorbency of each cell; Wcyan is the weight of cyan pigment, which controls
the pigment component to diffuse faster or slower.

In addition to the surface and infused components of water and pigments,
how much of the surface material is absorbed by the paper should also be
simulated. This is affected by the absorbency of the cell a, the fluid capacity
of the cell c, and a constant k which is used to set the overall speed of the
absorption. For each cell the amount of fluid absorbed is described by the
following formulas:

A = k × a × watersurface,

If A (c − waterinfused)Then A=c − waterinfused,

waterinfused = waterinfused + A,

watersurface = watersurface − A.

Curtis et al. further improved the cellar automaton to simulate the fluid
flow and pigment dispersion of watercolor by adopting a more sophisticated
paper model and a more complex shallow layer model [Curtis et al., 1997].
The painting consists of an ordered set of translucent glazes or washes, the
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results of several independent fluid simulations, each with a shallow-water
layer, a pigment-deposition layer and a capillary layer.

In the shallow-water layer, water flows across the surface in a way that
is bounded by the wet-area mask. As the water flows, it lifts pigment from
the paper, carries it along, and re-deposits it on the paper. The quantities
involved in this simulation are:

(1) The wet area mask M , which is one if the paper is wet, and zero otherwise.
(2) The velocity v of the water u in the x and y directions.
(3) The pressure p of the water.
(4) The concentration gk of each pigment k in the water.
(5) The slope ∇h of the rough paper surface, defined as the gradient of the

paper’s height h.
(6) The physical properties of the watercolor medium, including its viscosity

μ and viscous drag ρ(set μ=0.1 and ρ =0.01).

Based on the aforementioned parameters, the shallow water equations to
update the velocities of water are as follows:

∂u

∂t
= −

(
∂2

u

∂x2
+

∂u∂v

∂y2

)
+ μ∇2u − ∂p

∂x
,

∂v

∂t
= −

(
∂2

v

∂y2
+

∂u∂v

∂x2

)
+ μ∇2v − ∂p

∂y
.

In the pigment-deposition layer, each pigment k is transferred between
the shallow-water layer and the pigment-deposition layer by adsorption and
desorption. While the pigment in the shallow-water is denoted by gk, the
deposited pigment is denoted by dk. The physical properties of the individual
pigments, including their density ρ, staining power ω, and granularity γ—all
affect the rates of adsorption and desorption by the paper.

The function of the capillary layer is to allow for expansion of the wet
area mask due to capillary flow of water through the pores of paper. The
relevant quantities in this layer are:

(1) The water saturation s of the paper, defined as the fraction of a given
volume of space occupied by water.

(2) The fluid-holding capacity c of the paper, which is the fraction of volume
not occupied by paper fibers.

The main loop of our simulation takes as input the initial wet-area
mask M , the initial velocity v of the water u, the initial water pressure
p, the initial pigment concentration gk, and the initial water saturation of
the paper s. The main loop iterates over a specified number of time steps,
moving water and pigment in the shallow-water layer, transferring pigment
between the shallow water and pigment-deposition layers, and simulating
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capillary flow.

Proc MainLoop(M, u, v, p, g1,. . . , gn, d1,. . . , dn, s):
For each time step Do:
MoveWater(M,u, v, p)

MovePigment(M, u, v, g1, . . . , gn)
TransferPigment(g1, . . . , gn, d1, . . . , dn)
SimulateCapillaryFlow(M, s)

End For

End Proc

Their model is capable of producing a wide range of effects from both
wet-in-wet and wet-on-dry painting (see Fig. 2.56). Due to its complexity,
the painting process is not real-time. Therefore Laerhoven and Van Reeth
made a trade-off between “real-timeness” and the simulation complexity.
They proposed a new model for the real-time simulation of watery paint
[Laerhoven & Van Reeth, 2005]. They employ a variant of the two dimensional
Navier-Stokes equation to simulate the fluid movement:

∂υ

∂t
= − (υ · ∇) υ + v∇2υ,

where, υ represents the two-dimensional vector field of velocities and υ = η/ρ
is a constant indicating the rate at which the fluid diffuses. ρ and η are the
mass density and viscosity of the fluid respectively.

Fig. 2.56 The simulated watercolor effects [Curtis et al., 1997]. Copyright of ACM,
used with permission

A time step in this simulation starts from adding water, pigments and
velocities values. And then the state of the velocities of a fluid body at any
given time and space is updated by the Navier-Stokes equation based on
the fast and stable algorithm from Stam [Stam, 2003]. Finally, the water
quantities w and pigment quantities Pidx for each pigment can be similarly
updated with the following two equations:
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∂w

∂t
= −(υ · ∇)w + υw∇2w,

∂pidx

∂t
= −(υ · ∇)Pidx + υP∇2Pidx.

Fig. 2.57 shows the simulated examples of strokes with various watercolor
effects.

Fig. 2.57 The simulated examples of strokes with different watercolor effects
[Laerhoven & Van Reeth, 2005]. Copyright of John Wiley & Sons, Ltd., used with
permission

Besides the traditional Navier-Stokes approach to fluid simulation, Chu
and Tai proposed a novel fluid flow model based on the lattice Boltzmann
equation. It combines the simulations of spontaneous shape evolution and
porous media flow under a unified framework [Chu & Tai, 2005]. The main
idea of the lattice Boltzmann equation approach is to model fluid dynamics
using a simplified particle kinetic model. This approach divides the simulation
domain into a regular lattice. At each lattice site x and time t, the fluid
particles moving at arbitrary velocities are modeled by a small set of particle
distribution functions fi(x, t).

2.3.2.3 Illumination of Watercolor Pigment

The final appearance of watercolor is derived from the interaction between
the movements of various pigments in a flowing medium, the adsorption of
these pigments by the paper, the absorption of water into the paper, and
the eventual evaporation of the water medium. While these interactions are
quite complex in nature, they can be used by a skilled artist to achieve a
wide variety of effects.

In the simulated watercolor painting, there are two approaches to ren-
dering the resulting watercolor artwork. The first one is to employ the CMY
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color system to calculate the resulting color [Small, 1990]. The final color at
each pixel is calculated by the following equations:

pixelr=initial colorr−(cyansurface+cyaninfused)
pixelg=initial colorg−(magentasurface+magentainfused)
pixelb=initial colorb−(yellowsurface+yellowinfused)

However, as aforementioned in Section 2.3.1, CMY color synthesis works
best for purely transmitting materials, and pigmented surfaces have both
transmitting and reflecting characteristics. Therefore the second approach
using the KM model is proposed to calculate the illumination of colorful
pigments. It is becoming the most popular model to perform the optical
composition of pigment layers.

In typical applications of the KM model theory, the K and S coefficients
for a given colorant layer are determined experimentally, using spectral
measurements from layers of known thicknesses. However, in watercolor
painting, it is much more convenient to allow a user to specify the K and
S coefficients interactively, by choosing the desired appearance of a “unit
thickness” of the pigment over both a white and a black backgrounds. Given
these two user-selected RGB colors Rw and Rb, respectively, the K and S
values can be computed by a simple inversion of the following equations:

S =
1
b
× coth−1

(
b2 − (a − Rw)(a − 1)

b(1 − Rw)

)
, K = S(a − 1),

where

a=
1
2

(
Rw +

Rb − Rw + 1
Rb

)
, b =

√
a2 − 1.

The above computations are applied to each color channel of S, K, Rw,
and Rb independently. In order to avoid any divisions by zero, we require
that 0 < Rb < Rw < 1 for each color channel. This restriction is reasonable
even for opaque pigments, since the user is specifying reflected colors through
just a thin layer, which should still be at least partially transparent.

After we get the scattering and absorption coefficients S, and K for a
pigmented layer of given thickness x, the KM model allows us to compute
reflectance R, and transmittance T through the layer:

R = sinh×(b × S × x/c), T = b/c,

where

c = a sinh×(b × S × x) + b × cosh×(b × S × x).

We can then use the Kubelka’s optical compositing equations to determine
the overall reflectance R and transmittance T of two abutting layers with
reflectance R1, R2 and T1, T2, respectively:
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R = R1 +
T 2

1 R2

1 − R1R2
, T =

T1T2

1 − R1R2
.

This computation is repeated for each additional glaze. The overall
reflectance R is then used to render the pixel. Fig. 2.58 shows examples of
watercolor renderings using the KM model. For individual layers containing
more than one pigments of thicknesses x1,. . . , xn, the S and Kcoefficients
of each pigment k are weighted in proportion to that pigment’s relative
thickness xk. The overall thickness of the layer x is taken to be the sum
of the thicknesses of the individual pigments. Fig. 2.59 shows several objects
in a resultant watercolor artwork rendered by the KM model.

Fig. 2.58 Watercolor effects rendering by the KM model [Curtis et al., 1997].
Copyright of ACM, used with permission

Fig. 2.59 Simulated watercolor artwork rendered by the KM model [Laerhoven &
Van Reeth, 2005]. Copyright of ACM, used with permission
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2.3.3 Simulation of Oil Painting

Each paint medium has its own characteristics. Watercolor is a very low-
viscosity painting, and it is relatively easy to model the fluid-like behavior
and generate physically-based realistic effects. Oil painting is a kind of highly
viscous paint media which is popular among artists for its versatility and
ability to capture a wide range of expressive styles. It is a challenge to design
an interactive model that correctly captures the physical behavior of viscous
paint, because of the complex underlying set of partial differential equations
that govern that motion. In this section, modeling of the oil painting canvas,
brushes, and the coloring will be discussed respectively.

2.3.3.1 Modeling of Oil Painting Canvas

Oil-based painting supported by a textile canvas constitutes the major part of
museum art collections in Europe and is still the favorite expressive medium
of modern painters. Even digital artists often try to reproduce the quality
and feel of the traditional masterpieces.

A typical model of oil painting artwork is shown in Fig. 2.60. The first
level of oil paint, the foundation for an oil painting, is called the “ground”. It
is composed of binding agents and pigments, traditionally chalk or gypsum,
white lead, and linseed oil. The ground preparation is applied directly on the
support to flatten the surface and provide a better adherence of the upper
layers to the structure. The other four layers in the oil painting artwork are:

(1) A dark initial layer composed of one or a few transparent colors related
closely to each other. These colors can be used as a block in the painting.

(2) A middle layer of opaque colors, including the lightest values in the
painting.

(3) A glaze painted with transparent colors that modify the underlying
tone and bring richness to the surface.

(4) A varnish that protects the paint from the effects of light, pollution,
and dirt and enhances the optical properties of the painting.

The representative work on simulation of oil-painting canvas modeling
comes from Drago and Chiba (2004). They present a synthesis of woven
canvas in three dimensions. There are two algorithmic steps to reproduce
the oil painting canvas. First, it generates a basic geometrical model which
can be offset by two successive displacing functions to form the macroscopic
structure of the thread. Secondly, procedural displacements are employed
to refine the model and simulate the microgeometry of the fabrics, surface
reflectance characteristics, etc. There are four basic types of weaving patterns:
simple tabby weave, ribbed tabby weave, rep weave consisting of doubled
wrap and weft threads, and twill weave (see Fig. 2.61).
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Fig. 2.60 Anatomy of an oil painting canvas with traditional oil-based medium
[Drago & Chiba, 2004]. Copyright of Springer Science and Business Media, used
with permission

Fig. 2.61 Typical weaving patterns and the corresponding oil painting canvas
generated by computer. From top left in clockwise order: simple tabby weave, ribbed
tabby weave, rep weave consisting of doubled wrap and weft threads, and twill
weave [Drago & Chiba 2004]. (a) Weaving patterns; (b) The corresponding canvas
simulated by computer. Copyright of Springer Science and Business Media, used
with permission

The algorithmic pipeline to create a generic woven fabric geometry is as
follows:

(1) With a step function, the surface shading divides the underlying geometry
in a pattern of straight lines and transparent areas. Each line segment
represents the top or bottom half of a thread.

(2) The weaving of the pattern is formed by displacing the geometry with an
explicit function.

(3) Each segment is displaced in a semicircular curve along new surface
normals to form the three dimensional characteristic of the thread.
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(4) The microgeometry is modeled by a third displacement and bump shading
is used to simulate the twist of the chords forming the thread.

(5) The underlying model is copied three times and textured with different
parameters defining orientation (wrap or weft), direction (upper or lower),
and surface reflectance characteristics.

Fig. 2.62 illustrates the steps involved in the modeling process of
the macrogeometry. The remaining steps involve modeling each yarn’s
microstructure and shading of the surface. The following sinusoidal function
is used to displace the geometry in forming the variations of weave:

Weave(x) = sin(2πx × Tfreq + Phase) × Height.

Fig. 2.62 Five steps to build the macrogeometry of canvas from a NURBS surface
[Drago & Chiba, 2004]. Copyright of Springer Science and Business Media, used
with permission

Where the periodic curve is a function of x, which is ideally chosen in one
of the surface parametric coordinate directions u or v. Tfreq is the number of
threads requested. It determines the coarseness or delicacy of the structure
and will dictate the choice of the other parameters characterizing weaving
attributes. Height is the total amplitude of the curve and should ideally be
twice the radius of each thread. In the case of the tabby weave, the phase
constant is either zero if the geometry represents even rows of threads or π
for odd rows.

The simulated canvas examples based on the four weaving patterns are
shown in Fig. 2.61 (b). This method is potentially applicable to the repre-
sentation of many types of woven fabrics.

2.3.3.2 Modeling of Oil Painting Brushes

Paint brushes are often regarded as the most important tools at an artist’s
disposal. In oil painting, there are four common and widely used brush styles
(see Fig. 2.63), including:
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(1) Rounds. Have a simple tubular shape with a semi-blunt point, allowing
for a great variety of strokes.

(2) Flats. Thinner and wider than rounds with bristles squared off at the
point. Flats are typically longer than they are wide.

(3) Brights. The same shape and construction as flats but typically shorter,
with width nearly equal to length.

(4) Filberts. Have a thicker collection of bristles that increase their ability to
hold paint. Filberts usually have oval-shaped heads.

Fig. 2.63 Typical brush styles commonly used in oil painting [Baxter et al., 2001].
Copyright of ACM, used with permission

The major difficulty in simulating the oil paint brushes used in acrylic
and oil-like painting is that the brushes are numerically stiff dynamical sys-
tems, and suffer from numerical instability. Bristles have very little mass.
As they bend, energy stored in them can induce large accelerations and ve-
locities when they are abruptly released. The representative work on the oil
brush modeling comes from Baxter et al. They present a physically-based,
deformable 3D brush model, which gives the user control of complex brush
strokes intuitively. The haptic feedback enhances the sense of realism and
provides tactile cues that enable the user to better manipulate the paint
brush [Baxter et al., 2001].

Compared with the brush modeling in watercolor, the most significant
feature of oil painting brushes is the bi-directional pigments transfer, i.e.,
paint is transferred both from the brush to canvas, and back from the canvas
to the brush. This is because the oil pigments are more viscous than those
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used in water color. During the contact between brush and canvas, the oil
pigments on the brushes will be deposited on the canvas and simultaneously
the oil pigments on the canvas will be obviously taken away by the brush.
Baxter et al. developed a bi-directional, two-layer paint model to simulate the
bi-directional color transfer [Baxter et al., 2001]. Paint information is stored
on both the canvas and brush in multiple textures. When the brush sur-
face intersects the canvas geometry, the brush is considered to be in contact
with the canvas. The bi-directional pigment transfer must correctly modify
the paint textures to simulate paint volume being interchanged between two
surfaces. The paint transfer problem is first reduced to two dimensions to
simplify computation while introducing only slight inaccuracies. In the gen-
eral case, a projection plane will be chosen that maximizes the area projected
by the intersecting curve between the brush and canvas surfaces.

The textures must be updated to simulate paint transfer and mixing.
The simulation of the brush produces discrete instances of the brush surface.
To produce a continuous stroke, the blending operation is performed over a
line connecting the current footprint to the previous one. The centroids of
the footprint ploygons are used as endpoints. After the 2D blending is com-
plete, the updated textures are reapplied to the surfaces. This is achieved
by rendering a variation of the brush subdivision surface mesh. The surface
vertices that were projected onto the footprint are used as texture coordi-
nated into a new updated footprints texture. The original surface texture
coordinates are used as vertex locations to render the updated textures back
into the surface’s texture maps. Fig. 2.64 shows an example of the simulated
bi-directional paint effects.

Fig. 2.64 (a) Bi-directional paint transfer is demonstrated by dragging a yellow
paint stroke through wet purple; (b) A purple glaze of paint has been thinly applied
over dry paint [Baxter et al., 2001]. Copyright of ACM, used with permission
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Later on, they further improved the bi-directional paint transfer model in
their IMPaSTO system by the following realistic brush-canvas paint transfer
heuristics principles [Baxter et al., 2004a]:

(1) Paint moves in the push direction.
(2) Paint is conserved (neither created nor destroyed).
(3) Brush-canvas paint transfer requires physical contact and is greater when

the brush is moving.
(4) The more paint is loaded on a brush, the more it will be deposited on

the canvas.
(5) The more paint is on the canvas, the more it will be picked up by the

brush.

Their paint transfer algorithm is responsible for determining how much
paint moves from the brush to the canvas and vice versa. They made the
assumption that at any given cell where brush-canvas contact is occurring,
the transfer flow is unidirectional. That is to say, if the pigments are being
deposited onto the canvas at a particular cell, it cannot also be loading into
the brush simultaneously. The direction of the flow is determined by whether
there is more paint on the canvas, or on the brush. When paint is transferred
in either direction, or is moved by the advection algorithm, the new pigment
concentrations on the affected brush or canvas cells are determined by simple
volume-weighted averaging.

2.3.3.3 Coloring of Oil Painting

There are two typical approaches to rendering the resultant oil painting
artwork. The first one is relatively simple, and it merely takes into account
the pigments on the contact area between brush and canvas. The resulting
color is calculated by empirical equations, ignoring the motion of oil painting
pigments. The second approach is complex. It takes into consideration the
fluid motion of oil pigment based on the physical behaviors of the oil fluid
and the resulting oil painting artwork is usually rendered by the KM model.

The DAB system [Baxter et al., 2001], employs the first approach to
simulate the coloring of oil paintings based on additive RGB blending for
thick paint. Each paint surface contains two color layers: the surface layer
and a deeper layer. The surface layer is the boundary at which paint transfer
between objects occurs, and it is completely wet. The deeper layer represents
the reservoir of paint contained within the bristles, and it is completely dry.
The paint transfer between surface layers occurs upon a collision between the
brush and canvas. Transfer from the brush’s reservoir layer to the surface is
performed whenever the surface is no longer saturated (and paint remains
in the reservoir layer). Drying paint from the canvas’s surface layer to the
deeper layer occurs on a timed interval or as requested by the user.

The surface and deeper layers are stored in color textures. The amount of
volume of paint transfers between surface layers is dependent on the volume of
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paint within each layer. The volume leaving, Vl, is computed from the initial
volume Vi and transfer rate R over the elapsed time T by the equation:

Vl = Vi × T × R.

The resulting paint color Cnew is computed by the weighted portions of
remaining paint volume and color, Vr = Vi−Vl and Ci. The incoming volume
and color from the other surface, V ′

l and C ′
i are calculated by the equation:

Cnew = Vr × Ci + V ′
l × C ′

i.

To generate realistic paint effects, the wet and dry layers of the painting
are composited together with an embossing of the paint volume. The volume
of the wet layer Vw is multiplied by the optical thickness Ot of the paint, and
then used for alpha blending of the wet and dry layer colors Cw and Cd as
follows:

Cdisplayed = α × Cw + (1 − α) × Cd, α = min(Vw × Ot, 1).

The composited color of the paint must not change during drying.
The optical blending function is used with this constraint to compensate
for the new dry layer C ′

d, when some volume δα is removed from the wet layer.

C ′
d =

α × Cw + (1 − δ) × Cd − a′Cw

1 − α′ , α′ = α − δα.

The dry layer of the canvas uses a relative height field to allow for
unlimited volume of paint to be added, with a constraint only on the relative
change in height between texels. An embossing of the height field is also
computed. The additive blending is employed to combine this embossing and
color buffer to create the final rendered image of the paint. As shown in Fig.
2.65, this paint model also supports variable wetness, which is accomplished
by gradually moving paint from the completely wet surface layer of the
canvas to the completely dry deeper layer. Fig. 2.66 shows some simulated
oil painting rendered by this additive blending model.

Regarding the fluid motion of oil pigments in the second approach, the
paint motion is often driven and dominated by boundary conditions. On
the one side is the paint’s boundary with the moving canvas, and on the
other, the boundary with the stationary canvas. In the IMPaSTO system
[Baxter et al., 2004a], a conservative advection scheme is proposed to simulate
the basic dynamics of paint, which preserves both overall paint volume and
pigment mass even when the paint is spread thinly. Moreover, it is augmented
with heuristics that models the remaining key properties needed for painting.
Assuming that the concentration of a pigment q is a scalar quantity, how this
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Fig. 2.65 Variable wetness is displayed as yellow paint has been painted over the
purple color stripes of 100%, 50%, 0%, 75%, 25% dryness (from left to right) [Baxter
et al., 2001]. Copyright of ACM, used with permission

Fig. 2.66 Oil painting examples generated by the DAB system [Baxter et al., 2001].
Copyright of ACM, used with permission

quantity evolves over time under a specified velocity v can be determined by
the following partial differential equation:

∂q

∂t
= −(v ×∇)q.

This advection calculation is predicated on the priori knowledge of which
velocity field to use. In real painting this velocity field comes from a number
of sources. The main source is the frictional forces imposed by the brush on
the one side of a layer of paint, and by the stationary canvas on the other. Any
viscid fluid will have zero slip (tangential) velocity at the interface between
the fluid and a solid boundary. So during a paint stroke, within the thin



76 2 Simulating Artistic Media for Digitized Creation of Artworks

layer of paint trapped underneath the brush, the paint in contact with the
brush has the canvas’s velocity, while paint in contact with the canvas has the
brush’s velocity. All possible velocities between zero and the brush speed must
exist within the layer of paint. Thus as a first approximation, a reasonable 2D
velocity relative to the canvas surface is used. This kinematic brush velocity,
vb, is the first component of the total velocity used. However, the paint will
flow outward in any unconstrained direction. They use a simple heuristic rule
to model this “squishing” behavior. First, for every cell in the 2D paint grid
where the brush penetrates the height field surface, the amount of penetration
p, and the 2D gradient of the penetration amount ∇p are computed. The
heuristic pressure-driven velocity vp is defined to be a constant c times that
value,

vp = −c ×∇p.

This pressure-driven velocity vp is then simply added onto the brush velocity
vb to get the total velocity at each cell of brush-canvas contact. The color
pigment mixing and compositing is rendered in real time based on the diffuse
reflectance model described by Kubelka and Munk (see Section 2.3.1). Fig.
2.67 shows some simulated oil paintings by this coloring model.

Fig. 2.67 Simulated oil paintings from IMPaSTo [Baxter et al., 2004a]. Copyright
of ACM, used with permission

However, the fluid simulation in the IMPaSTO system is just an empirical
approximation of the dynamics of oil pigments, and is not sufficiently accurate
for the highly viscous oil paintings. Therefore Baxter et al. further presented
a viscous paint model based on the well-known stokes’ equations for viscous
flow [Baxter et al., 2004b]. It is the first unconditionally stable numerical
method that treats viscous fluid with a free surface boundary. The viscous
fluid behavior uses the 3D incompressible Stokes equations:
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∂v

∂t
= v∇2u −∇p + F, ∇× u = 0,

where u was the velocity of the fluid, v is the kinematic viscosity, and p is
the pressure. F represents externally applied forces. The density is assumed
to be constant, since most familiar viscous materials are homogenous. The
second part of the equation is the equation for continuity, which enforces
incompressibility and the conservation of mass. The Stokes’ equation is a
simplification of Navier-Stokes’, which is applicable for highly viscous flows.
The simplification arises from the observation that the contribution of the
advection term which appears in Navier-Stokes’ equation,

(u · ∇) × v,

is negligible for viscous fluids with low Reynolds number flows. This can be
understood as the velocity field is diffusing so rapidly throughout the fluid
that the fluid’s inertia does not have time to exert influence on the flow.

The numerical method used to solve the fluid flow equations is as follows:
a provisional velocity field u is first computed, and captures the effect of
the viscous term v ×∇2 × u and any externally applied body forces F . The
new pressure p is used to compute the final divergence-free velocity field
u. A three-step temporal discretization scheme of the solver can be written
succinctly as follows:

u∗ = un + Δt
[
υ ×∇2 × u∗ + F

]
,

∇2p = ∇× u∗/Δt,

un+1 = u∗ − Δt ×∇× p.

where n refers to the time step for which the variables are to be evaluated.
The resulting oil painting artwork is rendered by the KM model.

2.4 Digitized Sculpting

The history of sculpture art can be traced back to the birth of human beings.
It originates from the tools made by human beings for hunting, farming and
the other daily living activities, which in essence differentiates the human
beings from animals. As it gradually evolves from the making of tools towards
the intentional creation of artificial models, solid logos or characters based on
the material of wood, stone and metal, etc., sculpting has become an art form.
In this section, we will describe the two most common forms of sculpture:
wood sculpting and mental embossing.
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2.4.1 Digitized Wood Sculpting

The representative work on the virtual sculpting of wood comes from Mizuno
et al. [1998, 1999]. They employed an interactive modeling technique to form
a solid object with curved surfaces by carving a virtual piece of work, as we
do it in the real world. Original solid objects to be carved are polyhedral with
plane or carved surfaces, defined with a CSG (Constructive Solid Geometry)
expression by planes or quadric surfaces as the primitives. Any shaped solid
object can be used as an original object. A carved solid object is also defined
by a CSG expression. The user can form a 3D sculpting solid object inter-
actively by carving a workpiece with virtual chisels. An ellipsoidal chisel is
defined with one quadric surface, and a cubic surface of a flat chisel is defined
with three quadric surfaces which are actually pairs of parallel infinite planes.
The tip of a virtual chisel is defined with an ellipsoid or a cube, and can re-
move or attach their own shape, from or to the virtual piece of work, which is
rendered with shadowing. By performing this carving operation repeatedly,
the user can form arbitrarily shaped solid objects. Since this virtual sculpting
uses an ellipsoid as one of the virtual chisels, the surfaces of the carved solid
objects look like surfaces carved by a round chisel (gouge) in the real world
(see Fig. 2.68).

Fig. 2.68 Examples of virtual chisels and their sculpting operation of removing
and attaching [Mizuno et al., 1999]. Copyright of Blackwell, used with permission

During the sculpting operation, the user can specify the following
parameters:

(1) Chisel type: to be selected from different ellipsoids.
(2) Chisel depth: moves along the normal axis of the object surface.
(3) Chisel direction: rotates around three axes.
(4) Sort of operation:to be selected from removing or attaching.
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The surface of the solid object needs to be changed after each carving
operation in terms of the CSG modeling. Fig. 2.69 shows some examples of
virtual carving operations on the workpiece.

Fig. 2.69 Examples of the virtual carving process [Mizuno et al., 1999]. Copyright
of Blackwell, used with permission

The entire carving process will be recorded with a logical formula, which
will be used to generate a high quality image of the carved object by the ray
tracing method. Fig. 2.70 shows some resulting wood sculpture of the virtual
sculpting.

Fig. 2.70 Resulting wood sculpture examples [Mizuno et al., 1999]. Copyright of
Blackwell, used with permission

Mizuno et al. also described how to synthesize a woodcut printing image
in terms of the wood sculpture. A virtual woodcut printing is generated
with virtual items consisting of “a printing block”, “a paper sheet”, and “a
printing brush” in a virtual 3D space. The grey value of each point on the
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virtual paper sheet is decided by the distance from the sheet to the virtual
printing block at each point, and the grey value increases inversely to the
distance. A virtual paper sheet is expressed as a 2D lattice (i, j) and is at
first placed in parallel with the x-y plane in the virtual space. The x and y
values of a lattice point (i, j) meet the following conditions:

x = si, y = sj ,

where s is sampling interval.
The lattice points can move only in the direction of the z axis. The paper

sheet does not cave in the printing block, so p(i, j), the z value of a lattice
point, satisfies the following condition:

p(i, j) � b(x, y).

The distance d(i, j) from the paper sheet to the printing block at the
lattice point (i, j) is expressed as follows:

d(i, j) = p(i, j) − b(x, y).

A grey value f(i, j) at each lattice point of the virtual paper sheet is
computed with the following expressions:

f(i, j) =
{

0, if d(i, j) > td,
a(td − d(i, j)), otherwise,

where a, td are constant > 0.
Thus, removed areas of the printing block print the sheet white and other

areas black. A virtual printing brush is used to change the distance from
the virtual paper sheet to the virtual printing block locally. The distance is
decreased little by little by operating the virtual printing brush, and a virtual
print is synthesized interactively. Fig. 2.71 shows some examples of a virtual
sculpture and its woodcut printing.

Fig. 2.71 Virtual sculpture and its synthesized woodcut printing [Mizuno et al.,
1999]. Copyright of Blackwell, used with permission
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2.4.2 Digitized Metal Embossing

Embossing is the art of decorating metals. It is usually performed on a sheet
of metal about 0.3-1.0 mm thick. It can be copper, brass, aluminum, silver or
any other soft and flexible metal. The ornamental design is raised from the
back of the metal by means of hammers and punches followed by hammering
from the front, which is called chasing. The tools used for embossing are
hammers with specially shaped handles and faces, and different punches are
used for raising metal from the back as well as for chasing it from the front.
The punches are so shaped that they are capable of producing any effect that
may be required. There are also “tracers” that are used for making contours
of the drawings onto the metal. A sheet of raw rubber or an asphalt block is
also needed as a foundation.

In order to simulate the virtual embossing, Sourin proposed a function-
ally based approach to modeling the embossing [Sourin, 2001]. Each tool, a
sheet of metal, and a final embossed picture are defined with the Function
Representation or just F-Rep. Each individual function in the F-Rep is an
inequality f(x, y, z) � 0, that is greater than zero for the points inside the
respective shape, equal to zero on the surface of the shape, and less than
zero for the points outside the shape. The resulting function is an inequal-
ity as well. It is a superposition of other functions representing shapes and
operations over them.

First, let’s represent a sheet of metal of size 2w × 2h × 2d as a thin solid
plate by intersecting six plane half-spaces as follows:

fembossed = f(x, y, z)
= min(x + w, min(w − x,min(y + h, min(h − y, min(z + d, d − z)))))
� 0.

The intersection operation is implemented with the min function.
Next, the contours of the drawing are outlined by dragging lines.

Mathematically, each curve drawn on the surface of the plate is interpolated
by segments of straight lines, where for each segment the negative offset
operation is applied along the normal to the surface.

About the raising up operation of the relief regions, it can also be modeled
with the offset operations and/or the set-theoretic operations over the plate
and the shapes representing the tools. In our case, for bossing up the portions
of the plate by hammering or pressing it from behind with the punches, the
offset is the most appropriate method. For each application of the punch to
point P1(x1, y1, z1), the following is to be done for any point P (x, y, z):
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P ′ = P − P1,

foffset =
pa3

q|P ′|2 + a2
,

fembossed new = fembossed + foffset,

ftool = fsphere(x, y, z) = r2 − (x − x1)
2 − (y − y1)

2 − (z − z1)
2 � 0,

where a, p, and q are parameters defining the size of the affected region and
the height of embossing.

In order to visualize the simulated embossing, Sourin employed the ray
tracing algorithm to render the resulting embossing artwork [Sourin, 2001].
To make ray tracing interactive, only the region that has been affected by
the most recent application of the tool is to be redrawn (see Fig. 2.72). This
method ensures the required fast rendering time of the affected regions.

Fig. 2.72 The affected regions by different tool shapes [Sourin, 2001]. Copyright
of Springer Science and Business Media, used with permission

At last, the background is to be made by beating down the metal with
differently shaped hammers and punches. To simulate the stroke of the punch
with a semi-spherical tip, the offset and/or the theoretic operations similar
to those can be used as follows:

Offsetting: fembossed = fembossed − foffset � 0.
Subtraction: fembossed = min(fembossed,−ftool) � 0.
Subtraction with blending:

fembossed new =fembossed − ftool −
√

fembossed
2 + (−ftool)

2

− a1

1 +
(

fembossed

a2

)2 (−ftool

a3

)2 ,

fembossed =fembossed new, fembossed � 0.

The process of embossing continues if other contours, raised regions, and
background patterns are to be made. Fig. 2.73 shows an offset function and
its resulting embossing effects.
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Fig. 2.73 Example of offset function and its resulting embossing effects [Sourin,
2001]. (a) Offset function; (b) The resulting embossing effects. Copyright of Springer
Science and Business Media, used with permission

2.5 Creation of Artwork in a Virtual Environment

The creation of artwork in a virtual environment presents many challenges.
Besides taking advantage of the many possibilities that a virtual environment
can offer, it must support design without restricting the artist’s creative
process, and provide sufficient immersion for the user as if they were creating
the artwork in the real environment. Lalioti et al. explored a research interface
for a Ndebele wall painting in a virtual environment [Lalioti et al., 2001]. The
system consists of three parts: a set of patterns; virtual tools that let users
select, manipulate, and paint a pattern; and the algorithms that facilitate
positioning and applying colors to the patterns. The users can select colored
and uncolored patterns from a pre-scanned set and then manipulate and
position them on a virtual surface. The users can also employ different
colors typical of the Ndebele wall painting to paint areas of the selected
pattern. The virtual tools in their system have two categories: one that allows
manipulation of the patterns and the other that lets the user choose colors
and paint the interior of patterns. In order to keep the interaction metaphors
as close as possible to the real wall painting process, they experimented
with a nonintrusive and seamless interaction method that uses image-analysis
techniques and stereo vision to track a real paintbrush or the user’s hand,
mimicking the real painting paradigm. Fig. 2.74 shows the pictures of a real
and virtual Ndebele painting.

Keefe et al. went further by extending the 2D brush strokes into a 3D
analog to create 3D works of art (CavePainting) in a fully immersive virtual
environment [Keefe et al., 2001]. The system is designed to take advantage
of the 8 ft.×8 ft.×8 ft. space in which the artist works. Physical props and
gestures are used to provide an intuitive interface for artists who may not
be familiar with virtual reality. It enables the artist to create a new type of
art medium and provides a novel approach to viewing this artwork after it
has been created. Fig. 2.75 shows its setup and examples of how to create
CavePainting.

The artist start the CavePainting by defining a ground plane and a wall
rising out of it. The strokes are animated as they leave the artist’s brush.
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Fig. 2.74 Virtual (a) and real (b) Ndebele painting [Lalioti et al., 2001]. Copyright
of IEEE, used with permission

Fig. 2.75 The system setup of CavePainting [Keefe et al., 2001]. (a) The painting
table interface; (b) A 3D color picker; (c) Virtual painting with a brush; (d) Virtual
paint dripped out of a real bucket. Copyright of ACM, used with permission
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They fall in the direction that the brush points until they reach one of the
walls of the Cave, where they splatter in the virtual world, as if they had
actually hit the physical wall of the Cave. Both strokes provide an interesting
link between the physical space the user occupies and the virtual world in
which he finds himself immersed. The artist is free to create long expressive
brush strokes and then step back to observe the work from different angles.
Interaction with the computer is accomplished through the use of simple
gestures and props that are commonly used in painting and positioned on a
table inside the Cave. Scenes are created by layering and arranging virtual
3D brush strokes in space.

The resulting CavePainting is composed of many 3D paint strokes. These
individual strokes are layered and arranged in space to produce a scene. The
artist can choose between several stroke types. The current stroke types in
the system are line, ribbon, tube, bumpy tube, trail of any type of geometry,
Jackson Pollock++, splat, extrusion, and bucket. The artist picks a stroke
type to indicate the general characteristics of the stroke. This is analogous to
choosing application of oil paint with a large flat brush, a small round brush, a
sponge, or a palette knife, since the artist can obtain considerable variation in
a stroke, even after a stroke type has been chosen. The artist actually applies
the virtual paint by moving a tracked paint brush prop around in the Cave.
The virtual strokes respond to fine variations in the position and orientation
of the paint brush prop. The immediacy of the response of the virtual paint
to the artist’s movements is very important. The direct control over the 3D
paint is what allows them to create expressive variations in strokes. Fig. 2.76
show an example of CavePainting artwork.

Fig. 2.76 A CavePainting artwork [Keefe et al., 2001]. Copyright of ACM, used
with permission



86 2 Simulating Artistic Media for Digitized Creation of Artworks

They also discussed the dispute about CavePainting. What are the main
differences between CavePainting and free form modeling? The first can be
attributed to the fact that their system runs in a fully immersive Cave en-
vironment. The Cave provides the artist with enough space to stand up and
walk around in while working. This directly affects the type of work that the
artist creates, as well as the way in which the artist works. Additionally, since
the user wears shutter glasses in the Cave, he or she is able to see both the
real world and the virtual world at the same time.

Second, CavePainting provides the artist with fine control over color and
a large, varied set of brush strokes with which to work. CavePainting3 does
not attempt to be a modeling system in a traditional sense, where the user is
often concerned with exact coordinate representations for the size or shape of
objects. Rather, CavePainting aspires to be an extension of painting in three
dimensions. Just as an oil painter builds up a painting with layers of varied
brush strokes, the Cave-painter creates many different 3D strokes to convey
the impression of a 3D scene.

Finally, CavePainting promotes the idea that art created by this dynamic
3D tool is meant to be viewed in an interactive 3D display environment, since
a static 2D print, no matter how large, cannot truly convey the 3D nature
of this type of work. CavePainting presents a viewing mode of its own which
takes this notion a step further by providing the observer with additional
insight into the artistic process that produced each work.

2.6 Summary

In this chapter, we mainly discussed the fundamental principles and algo-
rithms about how to create artwork from a blank canvas, including the sim-
ulation of pencil-drawing, pen-and-ink illustration, black ink, watercolor, oil
painting, etc. In recent years, there are more works published about how
to speed up the digitized painting by real-time implementation. The readers
who are interested in this topic can refer to [Coconu et al., 2006; Lee et al.,
2006; Luft & Deussen, 2006].

From the point of view of fine arts, the digitized creation of artwork
rapidly changes the mind and thinking mode of an artist. Its birth has not
only enabled the artist to employ an ever-increasing variety of medium and
tools to conveniently control, manipulate and generate the traditional art-
work, but it also has made the entire working space surrounding the artist
fully digitized. It provides a technical platform for the artists to explore a
new art medium. In moving from physical canvas to the computer screen,
the artist gains an incredible amount of flexibility. However, this is often in
exchange for the kind of subtlety and presence that are found only in fine
art tools and papers. The modeling of brushes, canvas, and pigment in the
digitized painting are simplified from that found in the real painting.
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With the advancement of computer graphics, the technical research work
on digitized painting will make for a more natural interface for the digital
painting. The techniques of digital painting will become strong enough to
make the content of the resulting artwork be only limited to the imagination
capability of the user. On the other hand, the novel interactive graphics
techniques will motivate the artists to explore and experiment with the new
art medium, greatly enriching the current art forms.
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3

Computer-aided Design of Art Patterns

Human artists often do the design of art patterns manually. The designer
first imagines the art patterns in his mind, and then draws them on paper or
canvas. This process is repeated until the desirable art patterns are created.
It is time consuming and the novelty of the resulting art patterns is limited
to the human’s imagination, which is difficult to meet the requirements for a
huge amount of art patterns in a manufacturing industry such as textile. This
chapter will mainly discuss how to let the computer assist in the generation
of the art patterns, including:

(1) Art pattern creation by fractals. It is based on the principles of fractal
geometry, and performs the numerical calculation by the iterative func-
tion system. The output of the numerical data are colored to generate
the resultant art patterns.

(2) Art pattern creation by shape grammars. Shape grammars specify
a mechanism for selecting and performing recursive rules for shape
computations. The computer handles the representation and computation
of shapes, rules, and the presentation of correct design alternatives. This
frees the designer to specify, explore, develop design languages in terms of
the shape grammar, and select alternatives for the desirable art patterns.

(3) Layout-based creation of art patterns. Three basic layout-based art
pattern design methods are presented: (a) How to convert the graphical
layout into the resulting art patterns in terms of the specified structure
of craftwork. (b) How to create an aesthetic layout of an art pattern by
the regular layout. (c) How to automatically/semi-automatically place
the user specified graphical entities by a specific artistic style.

(4) Knowledge-based creation of art patterns. The artificial intelligence tech-
niques are employed to represent the design knowledge and aesthetic
conventions of art patterns, and then generate the resultant art patterns
by reasoning on them.
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3.1 The Overview of Art Pattern Design

From the point of view of artwork, the art pattern design is a creative model-
ing activity that aims at the generation of planar decoration and ornamenta-
tion. There are four major components in the art patterns: graphical entities,
layouts, colors, and textures [Lu et al., 1997].

The graphical entity is composed of a set of geometric primitives such
as points, lines, and faces. The graphical entity is defined relatively to the
entire art pattern, and itself could be considered a kind of sub-art-pattern
that is generated by the transformations, translation, scale, rotation, skew,
etc., applied on the geometric primitives (see Fig. 3.1).

Fig. 3.1 A graphical entity generated from a rhombus primitive by composite
transformations [Lu et al., 1997]. Courtesy of Weilin Lu et al.

When multiple graphical entities are integrated into a novel art pattern,
the spatial relationships among the graphical entities are called the “layout”
of the art pattern. The typical layouts involved in the art pattern can be
summarized as follows:

(1) Planar layout. All of the graphical entities are placed on the same plane,
ignoring their depths to the view point, and there is no overlapping among
the graphical entities.

(2) Perspective layout. All of the graphical entities are presented to the viewer
in terms of the perspective projection principles.

(3) Scattered layout. The silhouettes of the graphical entities are generated
first. The desirable art pattern is generated by randomly scattering the
relevant graphical entities onto the canvas in terms of the predefined
density model.

(4) Radial layout. There is a central graphical entity in the art pattern. The
other graphical entities can be centripetally orientated towards the cen-
tral graphical entity, or centrifugally, or spirally placed from the central
graphical entity.
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(5) Evenly distributed layout. The graphical entities in the art pattern are
evenly distributed in terms of a central or a pre-specified axis. A typical
method to generate this kind of layout is to let several graphical entities
be evenly distributed within a small region, and then “copy and paste”
it to the remaining regions in the canvas, until the entire canvas is filled.

(6) Complex layout. There are several types of graphical entities in the art
pattern. The graphical entities of the same types are placed together with
connectivity in a region, and each region with the same type of graphical
entities will be surrounded by another type of graphical entities.

(7) Continuous layout. Several graphical entities are aesthetically formed into
a sub-art-pattern, and this sub-art-pattern will be repeated with a spatial
rhythm along a line, or within a specific region.

(8) Overlapping layout. The graphical entities are flattened out within a
specific view volume. The foreground graphical entities closely interweave
with the background graphical entities, but will not occlude the
background ones. All the graphical entities have a suitable contrast
with the neighboring ones, addressing the presentation principle of
domination vs. subordination, strong vs. light emphasis, and virtual vs.
real impression.

(9) Layout with bi-directional continuities. If one art pattern is stitched to
the same art pattern horizontally or vertically, the resulting art pattern
is seamless regarding their graphical entities placed on the horizontal or
vertical boundaries. The layout inside this kind of art pattern is called
bi-directional continuities.

(10) Layout with four-directional continuities. If one art pattern is stitched
to the same art pattern with four directions: left, right, up and down,
the graphical entities placed on the four directional boundaries in the
resulting art pattern are all seamless. The layout inside this kind of art
pattern is called four-directional continuities.

Color is one of the basic building blocks of creating art patterns. A color
field’s size and shape, the frequency of a foreground object with which a color
appears in an art pattern, and the background color all affect our perception
of a color. Therefore, the computer-aided creation of art patterns often in-
volves a color palette, which enables the user to mix and organize colors, ex-
plore color combinations, and solicit historical, theoretical, or expert sources
[Meier et al., 2005]. The harmony of color is one of the fundamental factors
in the visual style of the art pattern. The beauty of the art pattern is largely
dependent on whether the colors used in the art pattern are harmonious.
The designer can often choose, specify, and coordinate all the colors in the
art pattern mainly by his individual perception of color, orders of colors and
the other subjective preferences.

Texture is a high-level graphical primitive in the art pattern, in which
there is a highly coupled structure inside it. The texture of an art pattern
could be the background, or the special effects of graphical entities, which



94 3 Computer-aided Design of Art Patterns

are often generated by a non-linear transformation applied on the graphical
entities.

In the computer graphics community, lots of research work has been done
to assist the generation of the aforementioned four major components of
the art pattern, or even for the entire art pattern itself. In the following
sections, we will mainly discuss how to create art patterns by fractals,
from user-specified layouts, shape grammars, and by the aesthetic knowledge
respectively.

3.2 Art Pattern Creation by Fractals

A fractal is generally “a rough or fragmented geometric shape that can be
split into parts, each of which is (at least approximately) a reduced-size copy
of the whole” [Mandelbrot, 1982]. A fractal often has the following features
[Falconer, 2003].

(1) It has a fine structure at arbitrarily small scales.
(2) It is too irregular to be easily described in traditional Euclidean geometric

language.
(3) It is self-similar (at least approximately or stochastically).
(4) It has a Hausdorff dimension which is greater than its topological dimen-

sion (although this requirement is not met by space-filling curves such as
the Hilbert curve).

(5) It has a simple and recursive definition.

Because they appear similar at all levels of magnification, fractals are
often considered to be infinitely complex (in informal terms). Fractals can
be classified according to their self-similarity. There are three types of self-
similarity found in fractals:

(1) Exact self-similarity. This is the strongest type of self-similarity; the
fractal appears identical at different scales. Fractals defined by iterated
function systems often display exact self-similarity.

(2) Quasi-self-similarity. This is a loose form of self-similarity; the fractal
appears approximately (but not exactly) identical at different scales.
Quasi-self-similar fractals contain small copies of the entire fractal in
distorted and degenerated forms. Fractals defined by a recurrence of
relations are usually quasi-self-similar but not exactly self-similar.

(3) Statistical self-similarity. This is the weakest type of self-similarity; the
fractal has numerical or statistical measures which are preserved across
scales. Most reasonable definitions of “fractal” trivially imply some form
of statistical self-similarity. (A fractal dimension itself is a numerical mea-
sure which is preserved across scales.) Random fractals are examples of
fractals which are statistically self-similar, but neither exactly nor quasi-
self-similar.
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Fractal art is a cross-disciplinary field of mathematics and art. Graphi-
cally, fractals are images created out of the process of a mathematical explo-
ration of the space in which they are plotted. Most people recognize fractals
only as pretty pictures useful as backgrounds on the computer screen or origi-
nal postcard patterns. A fractal image is a graphical representation of fractals
whose points diverge, or go out of control and converge, or stay inside the
set. To make fractal images more elaborate and interesting, color is added to
them in terms of empirical rules and conventions. Images of fractals can be
created using by the following common fractal generation techniques:

(1) Escape-time fractals (also known as “orbits” fractals).These are defined
by a formula or recurrence relation at each point in a space. Examples of
this type are the Mandelbrot set (see Fig. 3.2), Julia set (see Fig. 3.3), the
Burning Ship fractal, the Nova fractal(see Fig. 3.4), and the Lyapunov
fractal. The 2D vector fields that are generated by one or two iterations
of escape-time formulae also give rise to a fractal form when points (or
pixel data) are passed through this field repeatedly.

(2) Iterated function systems. These have a fixed geometric replacement
rule. Cantor set, Sierpinski carpet, Sierpinski gasket, Peano curve, Koch
snowflake, Harter-Highway dragon curve, T-Square, and Menger sponge
are some examples of such fractals.

(3) Random fractals. Generated by stochastic rather than deterministic pro-
cesses, for example, trajectories of the Brownian motion, Lévy flight,
fractal landscapes and the Brownian tree.

(4) Strange attractors. Generated by iteration of a map or the solution of a
system of initial-value differential equations that exhibit chaos.

Fig. 3.2 Example image of Mandelbrot fractals [www.fractal.net.cn, 2007]. Copy-
right of www.fractal.net.cn, used with permission
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Fig. 3.3 Example images of Julia fractals [www.fractal.net.cn, 2007]. Copyright of
www.fractal.net.cn, used with permission

Fig. 3.4 Example images of Newton and Nova fractals [www.fractal.net.cn, 2007].
(a) Newton Fractals; (b) Nova Fractals. Copyright of www.fractal.net.cn, used with
permission

The fractal art brings the artists a new method to design art patterns.
One of the well-known websites of fractal arts in China is

www.fractal.net.cn/aboutfractal/aboutfractal.htm.
There are lots of beautiful fractal art patterns on it. Compared to the

traditional art patterns, the fractal art patterns present a novel aesthetic style
to the designer, and they are widely used in the manufacturing industry [Luo
et al., 2004; Wei et al., 2006]. Moreover, the digital geometrical processing
and shading methods can be integrated into the creation of art patterns,
thus generating more colorful art patterns. For example, Suffern employed
the recursive ray-tracing algorithm to calculate the global lighting, and used
the bump-texture mapping technique to process highlights and reflections
based on the fractal geometry by Brownian motion [Suffern, 2002].

3.3 Art Pattern Creation by Shape Grammars

Shape grammars were formally proposed by Stiny [Stiny, 1980]. A shape is
defined as a limited arrangement of straight lines in a Cartesian coordinate
system with real axes and an associated Euclidean metric. A finite set of
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shapes may be used as the vocabulary for the formation of other shapes. It is
said that a shape is made up of elements in a given set of shapes, whenever
it is the shape union of transformations of shapes within this set. The set of
all shapes made up of shapes in a given set of shapes S is denoted by S+.
For a given set of shapes S, the set of shapes S* contains in addition to all
of the shapes in the set S+ the empty shape SΦ.

Labeled shapes can be formed from given vocabularies of shapes and
symbols. It will be said that a labeled shape σ is made up of shapes in a set
S and symbols in a set L whenever it has one of the following three forms:

(1) σ = 〈s, Φ〉, where s is a shape in the set S+.
(2) σ = 〈s, p〉, where P is a finite, nonempty set of labeled points in which

any symbol associated with a point is an element of the set L.
(3) σ = 〈s, P 〉, where s is a shape and P is a set of labeled points satisfying

conditions (1) and (2) respectively.

The set of all labeled shapes made up of shapes in the set S and symbols
in the set L is denoted by (S, L)+. The set of labeled shapes (S, L)∗ contains
in addition to all the labeled shapes in the set (S, L)+, the empty labeled
shape (SΦ, Φ).

A shape grammar has four components:

(1) S is a finite set of shapes.
(2) L is a finite set of symbols.
(3) R is a finite set of shape rules of the form α → β, where α is a labeled

shape (S, L)+, and β is a labeled shape in (S, L)∗.
(4) I is a labeled shape in (S,L)+ called the initial shape.

The shapes in the set S and the symbols in the set L provide the building
blocks for the definition of the shape rules, in the set R, and the initial shape
I. Labeled shapes generated using the shape grammar are also built up in
terms of these primitive elements. Labeled shapes are generated by a shape
grammar by applying the shape rules one at a time to the initial shape, or to
labeled shapes produced by previous applications of the shape rules. A given
labeled shape γ is generated by the shape grammar if there is a finite series
of labeled shapes, beginning with the initial shape and ending with γ, such
that each term in the series, except for the first, is produced by applying
a shape rule to its immediate predecessor. From the point of view of art
pattern creation, a shape grammar defines a set of shapes called a language.
This language contains all of the shapes s generated by the shape grammar,
which have no symbols associated with them. That is, each of these labeled
shapes is derived from the initial shape by applying the shape rules. Each is
made up of shapes or sub-shapes of shapes in the set S. The resulting art
pattern can be considered as a specific language sequence defined by shape
grammar.
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From the point of view of the user, the process to create an art pattern
by shape grammar consists of three major phases [Tapia, 1999]:

(1) Creating and modifying the shape grammar. The designer creates the
rules and initial shape, and verifies or changes the spatial and logical
constraints.

(2) Compiling the grammar. While converting the grammar into an internal
form, the computer checks that each rule always applies in only a finite
number of ways.

(3) Exploring the resulting art patterns defined by the grammar. The designer
explores the language of designs, generating designs, imposing additional
constraints, halting the generation process, backtracking to a previous
design, or saving the current state. The designer may interpret the re-
sulting designs in a curvilinear world and use them as the basis for a
design.

Wong et al. applied the principle of shape grammars to create the tra-
ditional floral ornamental design by “adaptive clip art”, which encapsulates
the rules for creating a specific ornamental pattern [Wong et al., 1998]. They
defined adaptive clip art as two parts: elements and growth rules.

Elements correspond to the 2D geometric primitives that appear in the
ornament, e.g., flowers, leaves, and stems. They are the objects upon which
the growth rules operate. To provide simplicity without sacrificing the ability
to draw details, each element is defined as a collection of one or more proxies.
A proxy is a relatively simple geometric shape that represents the element, or
a part of the element, for the purposes of locating empty spaces and testing for
intersections. When producing the final output, a more complicated rendering
procedure can be invoked. The use of proxies, therefore, keeps the details of
rendering an element separate from the mechanics of positioning it in the
design.

Growth is a particularly good source for continuous patterns that fill space
and that can logically transport a design into new regions. The growth rules
are specified as procedures. When a rule is invoked on a parent element,
the code associated with that rule (the rule body) is executed. This code
can perform environmental queries and create child elements, among other
things. A support library is provided for common environmental queries and
for conveniently manipulating geometrical primitives such as proxy shapes.
Finally, the framework for elaborating adaptive clip art uses a limited form
of planning in selecting the element for growth on each new iteration. It
attempts first to grow the ornament into a large open space, then shifts to
filling in the corners of the desired region (see Fig. 3.5 (a)). If the region is
resized or reshaped, the ornament can be automatically regenerated to fill
this new area in an appropriate way.



3.3 Art Pattern Creation by Shape Grammars 99

Fig. 3.5 Examples of (a) growth rules and (b) ornaments [Wong et al., 1998].
Copyright of ACM, used with permission

Lu et al. embedded the fuzzy logic into the shape grammar to
automatically generate the art patterns, and the major improvements on the
shape grammar are as follows [Lu et al., 1996]: A shape rule schema α → β
is replaced by a fuzzy logic rule, and labeled shapes are defined as a fuzzy set
of shapes. Whenever specific values are given to all of the variables in α and
β by a fuzzy logic assignment g to determine specific labeled shapes, a new
shape rule g(α) → g(β) is defined in fuzzy logic principles. This new shape
rule can then be used to change a given shape into a new one by the fuzzy
logic reasoning. The resultant art patterns are generated by the integrated
process of fuzzy logic reasoning and rule rewriting, and Fig. 3.6 gives some
examples of the resulting art pattern for textile.
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Fig. 3.6 Examples of art patterns generated by integration of fuzzy logic and shape
grammar [Pan et al., 2002]. Courtesy of Yunhe Pan et al.

3.4 Layout-based Creation of Art Patterns

The layout-based creation of art patterns is one of the popular design methods
preferred by artists. Its popularity is partly because many types of art
patterns have obvious structural characteristics, and the artist can effectively
present his design intent or convey his meanings by making changes onto the
layout of these desirable art patterns. In the computer graphics community,
the methods of layout-based creation of art patterns are summarized as
follows:

(1) Novel layout creation based on regular structures. The user inputs the
regular shapes of the layout, and the computer makes it “irregular” based
on stochastic principles, and generates a new layout accordingly.

(2) Layout creation integrated with the fabrication process. The input layout
is processed in terms of a specific fabrication craft, and the resulting art
pattern is accordingly generated with the desired craft features or styles.

(3) Art pattern creation by stylized layout. The global layout of the art pattern
is often determined by the specified style. The resulting art pattern
is semi-automatically/automatically generated with placing graphical
entities by their shapes in terms of the aesthetic conventions or spatial
constraints.

3.4.1 Novel Layout Creation Based on Regular Structures

The layout with regular structures is convenient to be input. However, the re-
sulting art pattern with regular layout looks “artificial” and “rigid”. In order
to generate the layout with natural forms by the computer, the researchers
proposed to let the user input the regular shape first, and then transform
it into a desirable “natural” appearance by applying random disturbance on
it. Yessios was one of the pioneers to employ this approach to generating
the stone and wood patterns [Yessios, 1979]. A regularly laid out pattern is



3.4 Layout-based Creation of Art Patterns 101

derived first and next disturbed by randomly moving its points left or right
and up or down. A decisive part of this algorithm is the random number gen-
erator, which determines a variety of structural details, as well as the degree
of disturbances. The one used is based on the linear congruential formula

Xn+1 = (aXn + C) mod m,

where, the “magic numbers” X, a, C and m are assigned values in accordance
with principles of numerical computing.

Such a sequence of disturbances, when applied to what may initially look
like a regularly laid out brick-wall, changes it to a stone wall. Or, by applying
the proper disturbances to a set of concentric circles/ ellipses, the points of
the basic ellipse are disturbed in the X and/or Y directions and the wood
patterns can be derived. By regulating the degree and extent of the distur-
bances, variable types of walls and woods can be derived (see Fig. 3.7).

Fig. 3.7 Examples of generating stone and wood patterns by introducing dis-
turbance on regular shapes [Yessios, 1979]. (a) Stone pattern; (b) Wood pattern.
Copyright of ACM, used with permission

Miyata represented the stone wall as a combination of the joint pattern
and stone textures, and explored how to generate a variety of stone wall
patterns by specifying a few simple parameters regarding its layout and visual
appearance [Miyata, 1990]. The joint pattern is in essence the layout of stones,
represented by a “node and link model”. Each node has position and link
data. Each enclosed space of the joint pattern is equivalent to the space
occupied by a stone in the wall. The texture of the stone is generated by
using a fractal technique, and each line segment of an inter-node is subdivided
recursively to generate a natural joint pattern. The average size of stone, the
roughness of its surface, the variance of its size and so on, are used as input
parameters. Two output data files are generated: a bump data file, which
represents the stone’s height data, and an attribute data file, which represents
the stone’s attributes. The overall process to generate the stone pattern is as
follows:
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(1) The basic joint pattern is generated by using the average size of a stone
in the wall and the variance of its size.

(2) The basic joint pattern is deformed by relocating its nodes. After node
relocation, each line segment is subdivided recursively, using the fractal
method.

(3) The space occupied by each stone is found by using the link information
of the basic joint pattern. The stone space is a polygon formed by nodes
and line segments.

(4) The texture of individual stones is generated by subdividing the stone
primitive recursively. For this, the fractal method and the roughness value
of the stone are used.

(5) The stone texture is clipped by cut polygons, which are contracted poly-
gons of the stone spaces.

(6) The height data and the attributes of the clipped stones are placed in
the bump plane and the attribute plane, respectively, by the scan-line
method.

The 3D shape of a stone in a wall is reconstructed by recursively dividing
the patch triangles of the stone primitive into smaller triangles (see Fig. 3.8).
The midpoint of each side of the triangle is identified, and a point at a vertical
distance V from one of the midpoints is used to create new triangles, where
V is the displacement value given by the following equation:

V = 2−(n+1)(D−1) × Rnd × L,

where V is displacement value, D is roughness value (fractal dimension), n
is subdivision level, L is edge length, Rnd is regular random number.

Fig. 3.8 The examples of resulting stone patterns with 3D effect [Miyata, 1990].
Copyright of ACM, used with permission
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3.4.2 Layout Creation Integrated with Fabrication Craft

In many hand-made artworks, their art pattern is often closely related to the
craft that fabricates them. While generating this kind of art pattern with the
computer, it usually first lets the user specify the global layout or structure
with simple graphical primitives such as points, lines/edges or faces. Then
the computer will convert the input layout into the desired art pattern output
in terms of the styles or features of fabrication crafts specified by the user.

One of the popular fabrication art works is the “knotwork”, and many
researchers explored how to generate its art pattern by the computer. For
example, Kaplan and Cohen presented a technique for automating the
construction of Celtic knotwork and decorations [Kaplan & Cohen, 2003].
This knotwork is analogous to closed loops of rope that cross over and under
one another, becoming entangled. The loops of rope are called threads that,
when entangled, form the knot. In computer-aided Celtic design, the layout
of the knotwork is often represented by a planar graph, which can produce
all possible knots. The underlying graph structure provides an easy, intuitive
method for altering thread order via breakpoints.

In Kaplan and Cohen’s system, graph edges are represented by strokes
that are drawn by the user and vertices are represented by junctions. Users are
allowed to draw strokes with the mouse using either the free-form or straight
line styles. The system separates strokes where they intersect and culls tiny
overlaps that occur due to the hand drawn nature of the strokes. Next, a
set of junctions is automatically created at the endpoints of every stroke. A
junction records a location consisting of the strokes that have endpoints near
that location and a counterclockwise ordering, in which the strokes connect
to that junction. Junctions that are close to one another are combined. After
defining the layout of a knotwork by graph, the following algorithmic steps
are employed to generate the resulting knotwork (see Fig. 3.9):

(1) Find the midpoint of each edge. Put crossings at each midpoint.
(2) Compute the threads that compose the knot by connecting the crossings.
(3) Inflate the threads.
(4) Calculate the overlapping order of the threads and offset their height

values based on the overlapping order.

Fig. 3.9 Overview of the algorithmic steps to generate knotwork by graph [Ka-
plan & Cohen, 2003]. Copyright of ACM, used with permission
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In addition, they also presented techniques for interweaving and attaching
images to the knotwork, and techniques to encapsulate knot patterns to sim-
plify the design process. It can help design the knotwork intuitively, quickly,
and easily. Fig. 3.10 shows examples of knotwork created by the computer.

Fig. 3.10 Examples of knotwork created by the computer [Kaplan & Cohen, 2003].
Copyright of ACM, used with permission

3.4.3 Art Pattern Creation by Stylized Layout

While creating the new art patterns, the designers are often asked to employ
the specified graphical entities (such as characters/text, and icons/images),
which will be placed on specific objects/trajectories, or filled into a specific
region, in terms of aesthetic conventions, spatial constraints, or styles. In
most cases, the outline shapes of these graphical entities implicitly determine
the overall layout of the resulting art patterns. Sometimes small deforma-
tional changes on the graphical entities are necessary while satisfying the
requirements of the desired layout.

Inside this kind of art patterns, one of the frequently used graphical en-
tities is “text.” The text entity will be artistically deformed to place it along
a specific trajectory or on a specific surface (see Fig. 3.11). The text entity
can also be placed and rendered in terms of the lighting distribution and
tone. If we utilize the 2D image or graphical entities to create this kind of art
patterns, the deformation tolerance of the basic entities should be taken into
consideration, as it is preferred that the deformed entities in the art pattern
should be perceived as the original one.

One of the representative works of creating the art pattern by specific
graphical entities is the simulation of “Escherization”—a process that finds
an Escher-like tiling of the plane from tiles that resemble a user-supplied goal
shape. [Kaplan & Salesin, 2000]. The problem statement of Escherization is:
given a closed plane figure S (the “goal shape”), find a new closed figure T
such that: (a) T is as close as possible to S; (b) Copies of T fit together to
form a tiling of the plane.
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Fig. 3.11 The geometric layout of texts [Surazhsky & Elber, 2002]. Copyright of
Blackwell, used with permission

Kaplan & Salesin presented a solution to the Escherization problem that
is able to find reasonable-looking tiles for many real-world shapes [Kaplan
& Salesin, 2000]. It works by using a simulated annealer to optimize over
a parameterization of the “isohedral” tiling, a class of tiling that is flexible
enough to encompass nearly all of Escher’s own tiling, and yet simple enough
to be encoded and explored by a computer. Fig. 3.12 gives an example of
illustrating the processing pipeline of generating Escherization.

Fig. 3.12 The processing pipeline of generating Escherization [Kaplan & Salesin,
2000]. Copyright of ACM, used with permission

Later on, they extended it to solve the following dihedral Escherization
problem [Kaplan & Salesin, 2004]: given closed plane figures S 1 and S 2 (the
“goal shapes”), find new closed figures T 1 and T 2 such that: (a) T 1 and T 2

are as close as possible to S1 and S 2 respectively; (b) T 1 and T 2 admit a
dihedral tiling of the plane.

They augmented the representation of a tile shape with a curve that splits
it into two pieces, and optimized over this new configuration space using an
objective function that compares the two pieces with two goal shapes. Fig.
3.13 shows the examples of dihedral Escherization art patterns.
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Fig. 3.13 Examples of dihedral Escherization [Kaplan & Salesin, 2004]. Copyright
of ACM, used with permission

3.5 Knowledge-based Creation of Art Patterns

The researchers from computer graphic and artificial intelligence communities
explored a number of knowledge-based approaches to automating the
creation of art patterns by artificial intelligence techniques, including rule-
based reasoning, expert systems, case-based reasoning, etc. One of the
representative works comes from the research group led by Prof. Yunhe Pan at
the Artificial Intelligence Institute of Zhejiang University. They successfully
developed a computer-aided design system for automatic creation of art
patterns, which has been widely applied in the textile industry. The major
components of their systems are shown in Fig. 3.14. It collects the layout,

Fig. 3.14 The typical components in CAD system for automatic art pattern cre-
ation
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color conventions, and knowledge from a designer. Then it employs the
artificial intelligence techniques to apply them for the automatic creation of
the desirable art patterns. In this section, we mainly discuss the knowledge
representation and generative reasoning for automatic art pattern creation.

3.5.1 Aesthetical Knowledge Representation for Art Pattern
Generation

A typical design pipeline of creating an art pattern is as follows: at first, the
designer looks for the candidate graphical entities, and then makes changes on
them to fit the current design requirements. Secondly, the revised entities are
composed together on the canvas by the aesthetical harmony principles and
layout conventions regarding spatial and visual properties for art patterns.
At last, the colors and illustration techniques are applied on the composed
entities to generate the resulting art patterns.

In order to create the art patterns automatically or semi-automatically,
two kinds of aesthetical knowledge, layout generation and entity manipulation
knowledge, should be represented and computed [Zhuge et al.,1997]. The
layout generation knowledge is the core of art pattern creation, and consists of
semantic, spatial, and visual description of layouts in art patterns. The entity
manipulation knowledge depicts the allowable transformations or operations
that can generate novel entities from the source ones. Aiming at the automatic
creation of art patterns, we presented an integrated model for representing
the knowledge of both layout generation and entity manipulation [Geng &
Pan, 1999]. It is based on a symbolic matrix, and composed of three major
parts:

(1) The spatial description of entities. The symbols in the matrix depict the
spatial position of entities and geometric transformations.

(2) The sub-layouts and their hierarchical structure in the overall layout. It
is described by the sub-matrices at different levels.

(3) The overall description of art pattern. It is represented by a symbolic
semantic model, which includes the styles, types, templates of layout,
etc.

A formalized BNF-like description of the knowledge representation
scheme based on symbolic matrix is given below:

<Art-Pattern>::={<Sub-Art-Pattern>}|<Spatial-Placement-of-Entities>
<Composition-of-Entities>
<Aesthetic-Deformation-of-Entities>

<Sub-Art-Pattern>::=< Art-Pattern >
<Spatial-Placement-of-Entities>::={<Sub-Spatial-Placement-of-Entities>}|

<Basic-Entities><Spatial-Position>
<Basic-Entities>::=<Sub-Art-Pattern> | <Primitive-Element>
<Primitive-Element>::=<Symbol><Identification-Number><Color>
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<Spatial-Position>::=<Space-of-Layout><Location-in-layout-Space>
<Space-of-Layout>::=<Identification-Number-of-Layout-Space>

<Level-of-Layout-Space><Dimension-of-Layout-Space>
<Identification-Number-of-Layout-Space>::=<Identification-Number-of-

Underlying-Matrix>
<Level-of-Layout-Space>::=<Hierarchical-Level-of-Underlying-Matrix>
<Identification-Number-of –Underlying-Matrix>::=

<Identification-Number-of–the-Parent-Matrix >
<Hierarchical-Level-of–the-Underlying-Matrix >
<Location-in-the-Parent-Matrix> | <0-for-Root-Matrix>

<Dimension-of-Layout-Space>::=<Length-of Matrix><Width-of-Matrix> |
<Length-of Matrix><Width-of-Matrix><Height-of-Matrix>

<Location-in-layout-Space>::=<x, y> | <x, y, z>
<x>::=0..Length-of-Matrix
<y>::=0-Width-of-Matrix
<z>::=0-Height-of-Matrix
<Composition-of-Entities>::=<Element-to-be-Composed><Composition-

Relationship>
<Element-to-be-Composed>

<Element-to-be-Composed>::=<Composed Elements> | <Primitive element>
<Composed Elements>::=<Elements-Applied-with-Composition-Relation-ship>
<Composition-Relationship>::=<Up, Down, Left, Right> |

<Transparent, Semi-transparent, Overlapping> |
<Harmony composition such as appearing simultaneously> |
<Other conventional compositions>

<Aesthetic-Deformation-of-Entities>::=<Elements-to-be-
Deformed><Deformation-Parameters>

<Elements-to-be-Deformed>::=<Primitive-Element> | <DeformedElement>
<Deformed-Element>::=<Elements-Applied-with-Deformation-Parameters>
<Deformation-Parameters>::=<Scaling-Parameters> | <Rotation-Parameters> |

<Skewing-Parameters> |. . .

3.5.2 Generation of Art Patterns by Synthesis Reasoning

In the automatic generation of an art pattern, the generative reasoning
techniques are preferred. Therefore, Pan borrowed the reasoning concept
from artificial intelligence and presented a generative inference method, called
“synthesis reasoning”, for the automatic creation of art patterns [Pan, 1996].
Let S be the source to be used for synthesis; SS denotes the synthesis space
of potential art patterns constructed from S; C represents the constraints
to be involved in synthesis reasoning; R is the resulting art pattern. The
synthesis reasoning process is defined as finding R from SS in terms of the
constraints C (see Fig. 3.15).

The source of synthesis, S, is composed of three parts: primitive elements,
structure, and the field of influence, and can be described as follows:

S = {P, M, F}.
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Where P is a set of primitive elements, and P = {p1, p2, . . . , pn} means
that the synthesis source consists of n primitive elements. M describes both
the constructional relationship among the primitive elements and how to
build up the synthesis source by them. F defines its influence intensity distri-
bution, while S is involved in the synthesis reasoning process. Based on the
primitive elements and structure, F can be accordingly decomposed into two
parts, FP and FM .

FP = {FP1, FP2, . . . , FPn}, FPi,

where is the influence intensity of pi during the synthesis reasoning (i =
1, . . . , n). FM describes the influence intensity of structure M for synthesis
reasoning.

The synthesis space is constructed from all the synthesis sources to be
involved in the synthesis process. Assuming that there are m synthesis sources
with n primitive elements, the synthesis space can be represented as

SS =
m∑

i=1

n∑
j=1

(FPijPj , FMiMi).

Fig. 3.15 The diagram of the synthesis reasoning process

In essence, the synthesis space can be considered as the span of two sub-
spaces: the synthesis one for primitive elements and the others for structure.
Each position in the synthesis space represents a potential synthesis result.
An algorithmic diagram to create art patterns by synthesis reasoning is shown
in Fig. 3.16.

Zhang et al. [2000, 2001] explored how to create art patterns by the syn-
thesis reasoning scheme, and Fig. 3.17 gives an example of creating art pat-
terns by synthesizing layout structures, graphical entities, and colors.
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Fig. 3.16 The algorithmic scheme of creating art patterns by synthesis reasoning

Fig. 3.17 The example of art pattern creation by synthesis reasoning [Pan et al.,
2002]. Courtesy of Yunhe Pan et al.
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3.6 Summary

The application of computers in the design of art patterns provides a novel
visual language and toolkit for the designer, expanding their imagination
space as well as the media space for artistic presentation. From the point
of view of computer aided design techniques, the computer can preform lots
of the time-consuming and tedious work, and accordingly let the designer
focus more on creative activities regarding art pattern generation. Besides
the layout, entities, and colors, the designers also take into consideration
the artistic painting effects such as water-coloring, oil-painting, etc. In the
future, it may provide novel approaches to generating more sophisticated art
patterns by embedding the digital painting techniques into the automatic
creation of art patterns.
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4

Artistic Painting by Reference Images

The artistic painting by reference images is to convert the source input images
into the corresponding paintings with the desired artistic effects. From the
point of view of research methodology, the existing work can be summarized
into three categories:

(1) The reference images are taken as source images, and then the artistic
processing techniques (e.g., half-tone, heuristic image processing rules,
empirical stroke-generation techniques, etc.) are employed to transform
the reference images into the resulting painting in terms of the user spec-
ified rendering styles, and other parameters, to control the visual effect.

(2) The reference images are used to directly specify the desired visual effects
or artistic features, which are extracted from reference images and then
matched to that in the input source images. A computational model
of feature association between input and reference images is then built,
which will accordingly synthesize the resulting painting via optimization
techniques.

(3) A set of reference images is used to implicitly specify the association
relationship of visual effect between source and target images. Then the
analogy-based learning techniques are employed to automatically convert
the newly input images into the resulting painting with the desired visual
effect consistent with the relationship among the reference images.

4.1 Artistic Effect Generation by Pixel-level Image
Processing

The traditional image processing technique is the fundamental approach of
converting the source image into the artistic painting. It can directly make
the image, with the specified visual effect, by the image processing operators
on its pixels. At the level of aesthetic meanings, the visual perception of the
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resultant image is equal to that in the source image in terms of color/tone,
texture, shape, etc.

4.1.1 Artistic Processing via Digital Half-toning

Digital half-toning, also known as spatial dithering, is a classical image pro-
cessing technique. The half-toning process is based on phychophysical char-
acteristics of the human vision system. The eye integrates luminous stimuli
over a solid angle of about 2 degrees. This means that human beings actu-
ally perceive the average intensities corresponding to small solid angles in
our visual field. Half-toning algorithms exploit this phenomenon, effectively
redistributing the state of the pixels in such a way that the average intensity
in small areas of the dithered image is approximately the same as that of the
original image. Therefore, in a sense of visual perception, the images with
continuous tone can be simulated and approximated by the careful arrange-
ment of individual displayed cells with properly selected colors or elements.
At the beginning, half-toning research was mainly focused on the grey im-
age, and the resultant image processed by half-toning was approximated by
displayed cells filled with black and white colors only. Fig. 4.1 is an example
of artistic half-tone on a grey image.

Fig. 4.1 Artistic half-tone on grey image [Luiz & Jonas, 1991]. (a) Source image;
(b) The resultant image. Copyright of ACM, used with permission

The standard bi-level half-toning was soon generalized and extended to
the multi-colored half-toning [Ostromoukhov & Hersch, 1999], in which the
color image is converted into a barycentric combination of color intensities
into a multi-color non overlapping surface coverage. The elements to be filled
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into the individual displayed cells are also extended to include non-standard
colors, symbols, texture patterns, etc.

Some researchers further investigated how to mimic the special effects
using half-toning, for example, Buchanan [1996] showed that half-toning
methods can be altered to control the look and stylization of the images by
parameters such as the region size and shape, and the approximation function.
Freudenberg et al. [2002] applied the half-tone screen in texture space.
This enables many effects to be generated, including indication mapping
and individual stroke lighting. Its simulated rendering styles ranging from
engraving, with lighting-dependent line width, to pen-and-ink style drawings
using prioritized stroke textures.

4.1.2 Artistic Processing with Heuristic Rules

Image processing algorithms works well from the point of view of mathemat-
ics, however, there is no explicit relationship between its parameters and the
artistic visual effects. This makes it difficult to precisely predict the resulting
effects of the mathematical image processing operator under different param-
eters. In order to achieve the desired artistic effects, it usually needs lots of
experiments to iteratively refine the relevant parameters. Therefore, the re-
searchers started analyzing and summarizing the conventions and empirical
rules of artwork design techniques, the rules of using color, artistic styles,
how to convey the specified means, etc., and built a set of empirical rules
for artistic processing. These rules are evaluated by a series of experiments,
and then are embedded into a variety of image processing algorithms, which
can explicitly and directly generate the desired visual effects without any
experiments in advance. An artistic processing pipeline with heuristic rules
is shown in Fig. 4.2.

Fig. 4.2 The artistic processing pipeline embedded with heuristic rules

The heuristic rules are heavily dependent on the artistic styles, and here
we mainly discuss the rules for sketching, engraving and cubist styles.
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4.1.2.1 Shape and texture preserving for sketching

The sketching style is to generate an effect similar to a sketch with a pen
or pencil, such as pen-and-ink. The major goal of sketching from images is
to represent the intrinsic object’s detail. Wang et al. [2004b] implemented
the concept of self-quotient images (SQI), which is able to minimize the
influence of shadow in an image and allows shape information to be used
effectively. They also developed an edge-preserved low-pass filter to preserve
the important features of an image. They employed the binary form of a SQI
which can remove most of the object’s irrelevant information, including the
color, and keep only the shape and texture elements. The threshold controls
how much texture and shape information should be displayed. The threshold
is calculated by:

H = average(Q)×h,

where Q is the SQI image and h is a controllable parameter. Different values
of h give different threshold. h is usually chosen between 0.5 and 1.5. Fig. 4.3
is an example of sketching from images.

Fig. 4.3 Example of sketching from images [Wang et al., 2004b]. (a) Source image;
(b) The sketching style. Copyright of John Wiley & Sons, Ltd., used with permission
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4.1.2.2 Facial engraving

Engraving is among the most important traditional graphical techniques. It
first appeared in the fifteenth century as an illustrative support for budding
book-printing, but very quickly became an art in its own right. Ostromoukhov
[1999] proposed a facial engraving system that can make a digital engraving
from a photographic image with reasonable quality in a relatively short time.
It is based on the analogy between the “universal” copperplate which imitated
the true copperplate engraving technique and conventional dithering. The
art of digital copperplate engraving may be presumed to be the art of
building appropriate threshold structures. He developed the basic technique
for building separate engraving layers (threshold structures) which roughly
follow the features of the original image, as well as the rules for merging
them together. These layers are superimposed to form various cross-etching
and smooth transitions between different parts of the artwork rendered by
different engraving layers. The resulting threshold structure is equilibrated
in such a way that it generates a visually uniform output from a uniform
input signal of any intensity. When applied on an input digital photo
using a standard dithering algorithm, such a threshold structure generates a
reasonably faithful reproduction, which imitates traditional engraving. Fig.
4.4 is an example of digital facial engraving.

Fig. 4.4 Example of digital facial engraving [Ostromoukhov, 1999]. Copyright of
ACM, used with permission

4.1.2.3 Cubist style simulation

Cubist art is an artwork by composing elements of a scene taken from multi-
ple points of view. Paradoxically, the cubist style conveys a sense of motion
without assuming temporal dependence between views. Collomosse and Hall
proposed an approach to produce a cubist style painting using a set of two-
dimensional images [Collomosse & Hall, 2003]. Salient features are first iden-
tified within the image set, such as eyes, noses, and mouths as compositional
elements, and then geometrically distort them to produce the more angular
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forms common in cubist art. Finally, the composition is rendered to give a
painterly effect using an automatic algorithm. The composition of each out-
put image is stochastically decided, and so a potentially original rendering
is possible with each new pass over the same input set. Fig. 4.5 shows an
example of this cubist style.

Fig. 4.5 Cubist style generation from images [Collomosse & Hall, 2003]. Copyright
of IEEE, used with permission

4.2 Converting Images into Artistic Painting by Strokes

From the point of view of content and meanings, an artwork consists of
two components: one is the objective content abiding by the physical laws;
the other one is the subjective meanings motivated from the perception
of a human audience. The aforementioned pixel-level image processing
operators are performed on the original pixel-represented objects in the
source image, and it is difficult to embed the subjective meanings into the
resultant paintings. However, human artists can easily insert their subjective
imaginations into their artwork by their strokes. Therefore, the stroke-
based artistic painting is proposed to transform the input images into the
target paintings. A stroke-layer is built between the source images and the
target painting (Fig. 4.6). It is composed of strokes, and each stroke has
its individual parameters and attributes. These strokes are distributed in an
aesthetic order. From the aesthetic point of view, this stroke layer is equal to
the source image in terms of its abstraction or aesthetic principles, including
semantics, logics, style, visual effects, etc. Human artists can interact with
this stroke layer, and add their subjective understanding of the world into it
by editing and revising the relevant strokes, such that the desired subjective
meanings can be embodied in the resultant painting. Fig. 4.7 is a diagram of
stroke-based artistic painting from the point of view of logical processing.
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Fig. 4.6 An example of stroke-based artistic painting from images [Hertzmann,
2002]. (a) Source image; (b) The Stroke layer; (c) The resultant painting. Copyright
of ACM, used with permission

Fig. 4.7 A diagram of artistic painting from images

It is obvious that the key point in stroke-based artistic painting is how
to build the stroke layer, which is properly matched to the source image in
terms of the aesthetical principles and content. For the time being, a classical
solution to compute the stroke layer is to transform it into an optimization
problem, in which an energy function is defined to describe the differences
between the stroke layer and the source image. Accordingly the stroke layer
is built by minimizing the energy function. A typical definition of this energy
function, E(I), is described below [Hertzmann et al., 2001; Hertzmann, 2003]:

E(I) = Ematch(I) + wabsEabs(I),

Ematch(I) =
∑

(x,y)∈I

‖ I(x, y) − S(x, y) ‖2,

where I is the input source images, I(x, y) is the pixel value at (x, y) in the
source image I, S(x, y) is the stroke that passes through the (x, y) position
on the canvas. Eabs(I) is the number of strokes in the source image I. Wabs is
a scalar weighted parameter to control the level of abstraction in a painting
style.

In the following subsections, the stroke-based artistic painting for classical
art forms will be discussed respectively.
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4.2.1 Image-based Stippling Drawing

Stippling is an illustration technique that can create drawings by using mostly
dots. Typically, several tens of thousands of dots are manually arranged to
generate a single drawing. Many small dots of ink are carefully placed on
paper to approximate different tones. Stipples are placed closer together to
form dark regions and further apart to form lighter regions. The stipples must
be placed evenly, yet randomly, so that the human eye does not see spurious
patterns that are not a part of the intended impression. The stipples may
vary in size and occasionally shape to convey subtle details. In general, the
following degrees of freedom are used in stipple drawings [Deussen et al.,
2000].

(1) Dot spacing. Points are usually distributed randomly but nearly evenly
spaced; sometimes jittered distributions are found. There is also a method
where regular point patterns are used. For several materials, placement
of stipple dots has a main direction, sometimes lines of stipple dots are
combined to form some kind of cross hatching.

(2) Dot size. Point sizes may vary for lighter and darker regions. The largest
dots are up to about twice as large as the smallest dots.

(3) Dot shape. The shape of the individual dots can vary, while in others very
regular shapes are found. Sometimes special paper is used for additional
variations.

(4) Inverse drawing. If very dark regions have to be generated, an inverse pro-
cess is performed. The background is drawn in black, and white stipples
are used.

Stippling is a powerful and widely used illustration method. It has
significant artistic merit independent of its utility. The stipples can represent
fine detail and texture with little cost in complexity. Stippling is particularly
good at clearly representing smooth, rounded objects without sharp edges
and so is often used in medical and archaeological texts. The only reason
which prevents stipple drawings from being used much more widely is their
expensive creation. To generate a good and large stipple drawing is a very
time-consuming process. An artist creates a stipple drawing by locally placing
dots. He/she has to take care that no macroscopic patterns arise, which is
done by using a reduction lens during drawing. The lens allows the artist to
directly observe the tonal value of a region by optical reduction. A dot which
is set in the wrong position must be removed by a cutting knife, often large
areas are destroyed by some misplaced dots. It is a highly time-consuming
process until the result is reached.

One of the fundamental features of a good stipple drawing is that the stip-
ples are well-spaced, that is, the stipples do not clump together, leave uneven
voids, or form unwanted patterns. Therefore, the key point in computer-
generated stippling is how to produce a good distribution of stipples in terms
of the input reference image. A typical approach to generate the distribution
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of stipples is based on the centroidal Voronoi diagrams [Deussen et al., 2000;
Hertzmann, 2003].

An ordinary Voronoi diagram is formed by a set of points in the plane
called the generators or generating points. Every point in the plane is iden-
tified with the generator which is closest to it by some metric. The common
choice is to use the Euclidean L2 distance metric:

|X1 − X2| =
√

(x1 − x2)2 − (y1 − y2)2,

where X1 = (x1, y1) and X2 = (x2, y2) are any two points in the plane. The
set of points in the plane identified with a particular generator form that
generator’s Voronoi region, and the set of Voronoi regions covers the entire
plane.

A centroidal Voronoi diagram has the interesting property that each
generating point lies exactly on the centroid of its Voronoi region. The
centroid of a region is defined as:

Ci =

∫
A

xρ(x)dA∫
A

ρ(x)dA
,

where A is the region, x is the position and ρ(x) is the density function. For
a region of constant density ρ, the centroid can be considered as the center
of mass.

Fig. 4.8 gives the examples of a general Voronoi and a centroidal Voronoi
diagram.

Fig. 4.8 General and centroidal Voronoi diagrams [Secord, 2002]. (a) General
Voronoi diagram; (b) Centroidal Voronoi diagram. Copyright of Blackwell, used
with permission
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A centroidal Voronoi diagram is a minimum-energy configuration in the
sense that it minimizes ∫

A

ρ(x)|Ci − x|2.

Practically speaking, a centroidal distribution is useful because the points
are well spaced in a definite sense. The Lloyd’s [1982] method is usually
employed as a solver to generate a centroidal Voronoi diagram from any
set of generating points. It is an iterative algorithm, and can be stated as
[Secord, 2002]:

Algorithm: Lloyd’s method
While generating points xi not converged to centroids do

Compute the Voronoi diagram of xi

Compute the centroids Ci

Move each generating point xi to its centroid Ci

End While

The iteration is repeated until it converges. In practice, the movement of
the points is stopped if the differences are below a given threshold.

Deussen et al. [2000] presented the first system to create stipple draw-
ings by generating an initial dot set, which is then processed by a relaxation
method based on Voronoi diagrams. They introduced an interactive stipple
editor similar to painting systems that were used to generate such drawings.
The approach computes an initial dot distribution by a specialized half-toning
technique by the given reference image. This dot set is modified automati-
cally or semi-automatically to generate a final distribution similar to a stipple
drawing. Fig. 4.9 shows an example of the simulated stipple drawing by ref-
erence image.

Fig. 4.9 Stipple drawing from reference image [Deussen et al., 2000]. Copyright of
Blackwell, used with permission

Secord [2002] presented an alternate stippling style and algorithm, by
varying the dot spacing instead of the dot size. The idea is to define a spatially
varying density function κ(p) that determines how dense the stippling should
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be in different parts of the image. This density function is directly derived
from the tones of the reference image T (p), that is,

κ(p) = 1 − T (p)/m,

where m is the max grey level in T . The new energy function is:

E(I) =
∑
p∈I

Li
pκ(p) ‖p − Ci‖2 =

∑
p∈I

Li
pκ(p)

(
(px − Cix)2 + (px − Ciy)2

)
,

where Li
p ∈{0,1} is a binary labeling of pixels: if Li

p=1, then the pixel p has
been assigned to centroid i. Every pixel is assigned to exactly one centroid.∑

p

Li
p = 1.

The labeling step is the same, but the centroids are now re-estimated as:

Ci =

∑
p Li

pκ(p)p∑
p Li

pκ(p)
.

This summation can be accelerated by precomputing sums of κ(p).
Later on, Hiller et al. [2003] further extended the stipple drawing method

by replacing the dots with arbitrary shapes. Lloyd’s Method is also extended
to enable small objects to be positioned on a place in a visually pleasing form.
This allows us to generate new illustration styles. Fig. 4.10 gives an example
of extended stipple drawing.

Fig. 4.10 A stipple drawing of fish by distributing various types of objects [Hiller
et al., 2003]. Copyright of Blackwell, used with permission
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4.2.2 Image-based Mosaic and Stained Glass Simulation

The ancient art of mosaic is among the oldest, most durable, and most func-
tional art forms, which have a history of more than 5,000 years. Mosaics are
designs and pictures formed from the juxtaposition of small tiles of stones,
terracotta, or glass. Mosaics derive much of their splendor from scale. Upon
close scrutiny, the skillful placement of tiles and the intricate tessellations
that define the work are prominently visible. On a larger scale, the tiles fit
together like jigsaw pieces into an abstract puzzle, forming a unique and
striking blend of colors, designs, and images. The interplay between these
different levels of abstraction and our ability to resolve the “big picture”
from the individual tiles is what makes mosaics visually compelling. The aes-
thetic pleasure of a mosaic results from the reduction of the visual data and
the manual arrangement of important features. Some of the fundamental fea-
tures are contour lines, colors, shapes, and positions of the basic primitives.
Fritzsche et al. [2005] summarized the characteristic features of mosaics as
follows:

(1) Constant splices between the tiles.
(2) Fundamental colors with stochastic variation in tone and luminance val-

ues.
(3) Slight variation of the tile’s size and shape.
(4) Tiles are arranged along feature lines of the underlying master image.
(5) Smooth changes in tile orientation.

Hausner [2001] presented a formal problem statement of generating mosaic
artwork by reference image: given a rectangular region I2 in the plane R2, and
a vector field Φ(x, y) defined on that region, find N sites Pi(xi, yi) in I2 and
place N squares of side s, one at each Pi, oriented with sides approximately
parallel to Φ(xi, yi), such that all squares are disjointed and the area they
cover is maximized.

Hausner employed a modification of the known Lloyd’s method [1982] to
approximate centroidal Voronoi tessellation and distribute quadratic tiles in
a mosaic like arrangement. The rectangular region covers a colored image,
and each square will be uniformly colored, representing the part of the image
it covers. The direction field Φ usually tends to align tiles with edge features
in the reference image. A good tile size is calculated as follows: for an h × w
pixel image with n tiles, this yields tiles with sides of d = δ

√
h × w/n pixels.

The factor δ < 1 accounts for packing inefficiencies due to variations in Φ.
However, Hausner’s method reflects oversimplification and approxima-

tion, which prevents the user’s input and restricts high quality output (Fig.
4.11). Elber and Wolberg [2003] improved this by establishing a tessella-
tion in terms of the principal features and strokes in a digital image. The
feature curves are first extracted from the image, and the offset curves are
computed to delimit rows of rectangular mosaic tiles. In order to solve the
self-intersection problem, the offset curves are trimmed by Voronoi diagrams
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that are computed using a Z-buffer. Finally, composition rules are applied to
merge these tiles into an intricate jigsaw that conforms to classical mosaic
styles. Fig. 4.12 shows the offset curves and the tiles along them. Fig. 4.13
gives the simulated mosaic art work from a reference image.

Fig. 4.11 Artifacts in the synthetic mosaic generated by Hausner [Hausner, 2001].
(a) Wrong tiles sizes too close together; (b) Random misalignment of tiles; (c) Un-
wanted tile overlapping. Copyright of ACM, used with permission

Fig. 4.12 Offset curves and the tiles arrangement [Elber & Wolberg, 2003]. Copy-
right of Blackwell, used with permission

A disadvantage of this method is that the resulting regular tile arrange-
ment appears quite artificial, especially since the influence of the features
and offset curves are not restricted (see Fig. 4.13). Therefore, Fritzsche et
al. [2005] presented an interactive tool to efficiently create pleasing synthetic
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mosaics. It enables the user to arrange tiles of various shapes and sizes, es-
pecially for the small mosaic tiles. The user controls the distribution process
by adding contour lines and directional information. Tiles can be sized or
shaped in order to better approximate the master image features. It also al-
lows for variations, and the resulting mosaics often have the appearance of a
traditionally handcrafted one.

Fig. 4.13 Reference image and its mosaic effect [Elber & Wolberg, 2003]. Copyright
of Springer Science and Business Media, used with permission

Medieval stained glass windows are a stylized art form. The visual effect
of stained glass looks similar to that of mosaics. However, their concerns
are different, and the key issues in designing a stained glass window are the
tile boundaries and colors. The process for building a stained glass window
involves designing a composition first, or cartoon, indicating the arrangement
of tiles. The cartooned shapes are cut out of colored glass, assembled, and
fixed in place with lead solder, or leading. The key points in simulating stained
glass from a reference image are how to align tile edges with image edges, and
to form tiles, which may be straightforwardly cut from glass. Mould [2003]
presented an automated method for transforming an arbitrary image into a
stained glass version of that image. The pipeline in constructing the stained
glass window is divided into several stages.

Firstly, an initial segmentation of the image is calculated. Secondly,
this segmentation is used to obtain an appropriate tiling by the erosion
and dilation operators (see Fig. 4.14): one having smooth boundaries and
approximately convex pieces, and lacking excessively large or excessively
small pieces. Thirdly, for each tile, a color is properly chosen for it. Finally,
a displacement map is applied to a plane, representing the leading and
irregularities in the glass, and the resulting stained glass is rendered. Fig.
4.15 shows the examples of stained glass from reference images.
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Fig. 4.14 The original image, segmentations, manipulated with erosion operators
with different radiuses [Mould, 2003]. Copyright of ACM, used with permission

Fig. 4.15 Stained glass image pairs [Mould, 2003]. Copyright of ACM, used with
permission

4.2.3 Image-based Pen-and-ink Illustration

Salisbury et al. [1994] proposed the first system to interactively create pen-
and-ink illustration. They also used the reference image to assist the user to
set up the parameters (such as tone, silhouette, orientation of stroke texture,
etc.) to better generate the resulting pen-and-ink illustration. Fig. 4.16 shows
the examples of generating pen-and-ink illustration from reference image.



128 4 Artistic Painting by Reference Images

Fig. 4.16 Reference image and its pen-and-ink illustrations [Salisbury et al., 1994].
Copyright of ACM, used with permission

Later on, Salisbury et al. [1997] presented a more sophisticated system to
create pen-and-ink-style line drawings from grey-scale images in which the
strokes of the rendered illustration follow the features of the original image.
As shown in Fig. 4.17, a user creates an illustration from a reference image
by specifying three components: a grey-scale target image that defines the
desired tone at every point in the illustration, a direction field that defines
the desired orientation of texture at every point, and a stroke example set,
or set of strokes, to fill in the tone areas. Given these three components and
a scale for the final illustration, the system creates an orientable texture—
generated procedurally—that conveys the tone, texture, and forms of the
surfaces in the scene. An illustration is composed of one or more such layers
of orientable textures, allowing an illustration to be rendered with several,
potentially overlapping, types of strokes.

Fig. 4.17 From left to right: tone, direction, a stroke example set, and a resulting
illustration [Salisbury et al., 1997]. Copyright of ACM, used with permission

In implementation of Salisbury’s system, a stroke is a mark to be placed
on the page. Each stroke is oriented, in the sense that it can be rotated to any
angle to follow the direction field where it is placed. The stroke example set is
a collection of strokes, all drawn with respect to the vertical orientation, that
serve as prototypes for the strokes in the final image. By aligning the direction
field with surface orientations of the objects in the image, the user can create
textures that appear attached to those objects instead of merely conveying
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their darkness. The result is a more compelling pen-and-ink illustration than
that was previously possible from 2D reference imagery (see Fig. 4.18). One of
the remaining key issues is how to place strokes in the illustration so that the
tone of the illustration “matches” that of the original tone image. Matching
is necessarily approximate, because the illustration is purely black and white,
whereas the tone image is grey-scale. To facilitate this approximate matching,
each stroke is thought of as adding darkness to a region of the illustration.
One way of spreading the darkness of a stroke over a region is to blur the
image of the stroke when considering the effect of its darkness. To measure
the progress of a current illustration towards the reference image, a blurred
version of the illustration is compared with the tone image. The blurring
consists of applying averaging filters, of variable sizes, across the illustration,
with the size increasing with the target lightness in a region. The diameter
of the blurring filter is the same as the average inter-stroke distance required
to achieve the target lightness.

Fig. 4.18 Pen-and-ink illustration with orientable textures [Salisbury et al., 1997].
Copyright of ACM, used with permission

However, practical illustrations are somewhat different from illustrations
generated using other previous systems. For clarity, dictionary illustrations
express only the important characteristics of objects. As a result, many
features of an object are simplified or omitted and fewer strokes are used. Kim
et al. [2001] presented an approach to making more natural-looking pen-and-
ink illustrations with fewer user strokes. Its concise pen-and-ink illustration
generating procedure consists of three steps (see Fig. 4.19): (a) Boundary
extraction; (b) Input of user strokes; (c) Generation of artificial strokes. In
the first step, the boundaries of objects are extracted and smoothed by using
the Bezier curve. User strokes are then drawn by the user to generate artificial
strokes. In the final step, we use stroke morphing techniques to generate
artificial strokes.
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Fig. 4.19 Illustration generating procedure [Kim et al., 2001]. (a) An original
image; (b) Boundary extraction; (c) User stroke; (d) Illustration result. Copyright
of IEEE, used with permission

From the technical point of view, stroke morphing is a technique used
to automatically generate artificial strokes based on given user strokes. Two
kinds of methods: flow-oriented stroke and shape-oriented stroke morphing
are implemented in Kim’s system (see Fig. 4.20). Flow-oriented stroke mor-
phing is suitable when strokes are intended to show flow or direction, like
smoke or water. Shape-oriented stroke morphing, on the other hand, is suit-
able when strokes are influenced more by shape than flow, so this can be
applied to drawing leaves or feathers. Fig. 4.21 shows some examples of pen-
and-ink illustration based on stroke morphing.

Fig. 4.20 Two types of stroke morphing methods [Kim et al., 2001]. (a) Flow-
oriented stroke morphing; (b) Shape-oriented stroke morphing. Copyright of IEEE,
used with permission
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Fig. 4.21 Pen-and-ink illustration based on stroke morphing [Kim et al., 2001].
(a) Reference image; (b) Strokes given by the user; (c) The resultant illustration.
Copyright of IEEE, used with permission

4.2.4 Image-based Pencil Drawing

There are two typical approaches to create pencil drawings from reference
images. One is to implicitly recover or specify the pencil drawing strokes in
terms of the tone values of the reference image, and then render the final
pencil drawing based on the simulation model of interactive drawing (see
Chapter 2). The other one is to employ the image processing and visualization
techniques to directly simulate the visual effect of pencil drawing in terms of
the empirical conventions.

In the stroke-based approaches, Sousa and Buchanan [1999] employed the
blender and eraser model to render the tone values using one pencil hard-
ness (degree). Certain portions of the drawing are smudged using blenders,
a kneaded eraser is then used to lighten the areas where there are highlights.
Its implementation is based on a two-stage rendering pipeline. The first stage
is to evaluate pencil and paper model for each paper location (x, y) (corre-
spondent to the reference image pixel location) on the polygonal shape for
the pencil point (the smallest pencil point is equal to one pixel). The intensity
i(x,y) is used to adjust the pressure p applied to a single pencil resulting in
the correct amount of lead material deposited at paper (x, y). The pressure p
applied to the pencil is the only parameter that changes at this stage and it is
given by p = 1.0 − i(x,y). It is based on traditional pencil rendering methods
to create tone values. If the user provides additional pressure pa, then the
final pressure calculation p is scaled as p = p×pa. In Fig. 4.22, pencil strokes
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are interactively defined over the photograph after the automatic evaluation
of the pencil and paper model. The second stage is to adapt the blender
and eraser model to an interactive illustration system. The user interactively
controls the blender and the eraser model. For each paper location (x, y)
(correspondent to the reference image pixel location (x, y)), the blender and
eraser model is evaluated with mpdc from the blender’s and eraser’s point
located at (x, y). The pressure distribution coefficients (mpdc and vpdci) have
values equal to 1.0. The pressure applied to blenders/erasers is also adjusted
according to i(x,y). In this case, pi(x,y) = i(x,y), this means that in order to
achieve a lighter intensity more pressure is required.

Fig. 4.22 (a) High contrast photograph of Patricia; (b) Automatic rendering using
6H pencil followed by interactive rendering with strokes interactively applied using
medium-soft pencils applied with light pressure; (c) Smudging the darker tones, the
background plane of the photograph, and lightly smudging the shadows and some
of the face lines. Kneaded eraser lightly applied to emphasize the highlights [Sousa
& Buchanan, 1999]. Copyright of IEEE, used with permission

The advantages of this approach are obviously. The rendering pipeline is
very close to the real pencil drawing process. However, its strokes are limited
to the simple “point” shape, and it is difficult to generate the sophisticated
pencil drawings. Therefore, Durand et al. [2001] proposed a more general
stoke model for the image-based stroke drawings. The strokes are modeled
using a local threshold structure (threshold texture), which has a flat his-
togram and is represented as a grey-level texture map. Threshold textures
can be either acquired by scanning real stokes or modeled directly. Individual
strokes are described by a skeleton, a reference to a stroke threshold texture,
and a target tone for strokes excluded from automatic modeling. A stroke
skeleton is represented by a poly-bezier curve, along which the threshold tex-
ture is warped. The equilibration of threshold structures is performed by the



4.2 Converting Images into Artistic Painting by Strokes 133

merged probability of the histogram of overlapping strokes using the max
mode. The histogram of a stroke as a probability density function p(x) = 1,
for x ∈{0,1}. The cumulative density function (corresponding to the cumu-
lative histogram) is:

p(x) = 1, x ∈ {0, 1}, p[X � x] =
∫ x

0

p(ε)dε = x.

The main assumption is that there is no correlation between strokes. This
is reasonable given the texture of our strokes and their irregular placement.

The probability and cumulative density of two overlapping strokes p1 and
p2 are:

pmax(12)(x) = p1(x) × P2[X � x] + p2(x) × P1[X � x] = 2x,

pmax(12)[X � x] = x2.

This formula can be generalized to the histogram of n overlapping strokes:

pmax(i=1,...,n)(x) = nxn−1, Pmax(i=1,...,n)[X � x] = xn.

A flat is then obtained by multiplying each value x by the corresponding
cumulative density

Pmax(i=1,...,n)(x) = nxn−1.

Equilibration can thus be performed by applying a power function depending
on the number of overlapping strokes. Fig. 4.23 shows the examples of a flat
histogram of overlapping strokes under the max mode.

It provides a controllable simulation of the variation of pencil pressure or
stroke thickness traditionally used in tonal modeling. It provides the user with
freedom on the creative and aesthetic side. The user can specify smudging
and control the amount of detail over each part of the drawing. As shown
in Fig. 4.24, the user provides a reference photograph Fig. 4.24(a), edits
the tones, draws strokes and specifies a precision map Fig. 4.24(b) while
interactively viewing the drawing Fig. 4.24(c).

In the approach of image processing and visualization, LIC (line integral
convolution), a texture based vector field visualization technique, is usually
employed to generate the desired pencil drawing [Mao et al., 2001; Huang
& Li, 2003]. Given a 2D vector field represented as a regular Cartesian grid,
the LIC algorithm takes as input a white noise image of the same size as
the vector field and generates an output image wherein the texture has been
locally blurred in the direction of the vector field. There is a one-to-one
correspondence between the grid cells of the vector field and the pixels of
input and output image. To decide the value for each pixel in the output
image, a local streamline passing through the corresponding grid cell in the
vector field is generated. Then a low-pass filter kernel is defined on the local
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Fig. 4.23 A flat histogram of overlapping strokes under the max mode [Durand
et al., 2001]. (a) Stroke 1; (b) Overlapping of stroke 1 and stroke 2 (yellow); (c)
Stroke 2; (d) Max(stroke1, stroke 2); (e) Stroke 3; (f) Max(stroke1, stroke 2, stroke
3). Copyright of Springer Science and Business Media, used with permission

Fig. 4.24 Basic features of Durand’s interactive drawing system [Durand et al.,
2001]. Copyright of Springer Science and Business Media, used with permission
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streamline and the pixels lying on the streamline in the input image are
convoluted with it. Since an LIC image is obtained by low-pass filtering the
input image along the streamlines of a vector field, we can see traces along
streamlines. On the other hand, the intensities of pixels within any local
area vary randomly as the input image to the LIC is a white noise. Such
similarity, between the LIC textures and the real pencil drawings, suggests
to us that the tone of pencil drawings can be imitated with LIC textures
to avoid performing complex and time consuming physical simulations. That
is, a pencil drawing style image can be simply generated by taking a white
noise matching the target tone of the subject and a vector field specifying the
directions of strokes as the input to the LIC algorithm. The typical steps of
a LIC algorithm, to convert the source image into the pencil drawing effects,
are as follows [Huang & Li, 2003]:

(1) Use color-based image segmentation to subdivide the source image into
different regions.

(2) Each region is considered as a feature region, whose boundary is ex-
tracted.

(3) Apply image moment functions and texture analysis to obtain the fea-
ture’s geometric attributes.

(4) White noise image is generated from the original image.
(5) Apply the feature’s geometric attributes to generate the vector field.
(6) Use LIC to generate the final rendering.

Yamamoto et al. [2004] further extended the LIC technique to generate
the colored pencil drawing. It reproduces color images with custom inks to
automatically select the best color set for individual regions in a source image.
Then layers of stroke image for each color are generated and superimposed
with the KM optical compositing model. The major algorithmic steps are
below:

(1) Segment the source image into different regions and decide two best colors
for each region.

(2) For each of the two colors chosen in Step 1, calculate its density required
for building the target color. The density is calculated in a pixel-by-pixel
manner. The result consists of two density values (one for each color) for
each pixel. Two layers of grey scale images are subsequently generated
with the density of each color.

(3) Generate noise images for the two layers respectively. Each region of the
resulting noise images is a white noise with its pixels being either white
or the color of the region with a probability proportional to the density
value.

(4) For each layer, define a vector field representing the stroke directions.
(5) Apply LIC to the vector fields and noise images to generate two layers of

stroke images.
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(6) Modify the stroke images with the given paper model to obtain two
improved stroke images.

(7) Blend the two layers with the KM model to finally produce the finished
colored pencil drawing.

The users are also allowed to specify regions and to customize the color set
for a specified region interactively. Fig. 4.25 shows the examples of employing
different color sets to generate the colored pencil drawings from the same
reference image. Fig. 4.26 shows an example of a image-based colored pencil
drawing with custom colors.

Fig. 4.25 Colored pencil drawing resulting from the same reference image with
different color sets [Yamamoto et al., 2004]. (a) Reference image; (b) Result 1;
(c) Result 2; (d) Result 3. Copyright of IEEE, used with permission

Fig. 4.26 Image-based colored pencil drawing from reference images [Yamamoto
et al., 2004]. Copyright of IEEE, used with permission
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4.2.5 Image-based Oriental Painting

Chinese painting stresses the notion of “implicit meaning” in which painters
use a minimum amount of strokes to express their deepest feelings. Chinese
landscape and figure paintings are the two major themes of Chinese painting.
Chinese landscape painting is often based on the hemp-fiber and axe-cut tex-
ture strokes. The long hemp-fiber strokes express relatively smooth surfaces,
while short hemp-fiber strokes indicate a more wrinkled surface. The axe-cut
texture strokes best depict earthen forms and hills. It can also effectively
describe angularly shaped rocks of crystalline quality and sedimentary rocks
displaying layered structures. The simulation of different rock textures are
controlled by changing stroke distribution, ink density, stroke length, etc. A
typical pipeline to paint Chinese landscape with texture strokes is as follows
[Way & Shih, 2001]:

(1) An artist begins to visualize a land formation with external contours,
which define the overall shape. Internal contours are added to imply folds
on the slopes, to reveal the position and direction of the ridge, and de-
termines its volume.

(2) After the internal contours are defined, texture strokes are applied in the
area.

(3) The texture stroke is used to symbolize the rock information.
(4) Finally, the brush moves along the path of the stroke and deposits ink

on the canvas.

Regarding the oriental painting from reference images, the user merely
specifies the contour and relevant painting parameters in terms of the refer-
ence image, the system will accomplish the remaining painting process. Fig.
4.27 shows an example of a reference image and its corresponding oriental
painting.

Fig. 4.27 Interactive oriental painting from reference images [Way & Shih, 2001].
(a) Reference image; (b) The oriental painting based on hemp-fiber texture strokes.
Copyright of Blackwell, used with permission
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The corresponding oriental painting is based on the axe-cut texture
strokes.

The figure painting heavily depends on the painter and viewer. Users are
responsible for component figuration and stroke specification. Therefore, Way
et al. [2001] proposed a data-driven approach to generate the portrait painting
from reference images. A database of different components together with
their styles is established, and each component contains both figuration and
intelligence of stroke skills. Brush movement and the ink depositing strategy
are defined and saved in our components database. The component definition
methodology consists of four steps:

(1) Define the component figuration by imitating existing paintings, actual
photographs, or by user’s origination.

(2) Specify each stroke with the necessary stroke mechanisms.
(3) Define geometric feature points for this component. It is defined to control

component deformation, which occurs on primary elements or strokes.
(4) Define expression feature points for this component if necessary. Despite

controlling the deformation, an expression feature point is for optional
and expressional purposes.

The reference image is used to facilitate the structural design. The com-
position process comprises of the following steps:

(1) Draws assistant cross lines to determine the facing direction.
(2) Computes the component proportions.
(3) Determines the lip length.
(4) Refines the facial shape according to the lips length. Expand or contract

the cheek width.
(5) Refines the component geometry according to scenography.

After the automatic drawing process, the user is allowed to conduct three
refinements: geometrical refinement, expression refinement, and universal re-
finement.

4.2.6 Image-based Colored Painting

The work on an image-based color painting can be dated back to 1990.
Haeberli [1990] proposed a painting system that can interactively convert
the source image into the colored painting. A simple interactive program
is implemented to allow the user to operate on a source image. The basic
interactive technique is to follow the cursor across the canvas, point sample
color of a stored image at the location of the cursor, and then paint a brush
stroke of that color. Each stroke is described by a collection of attributes,
including:

(1) Location. Position of the brush stroke.
(2) Color. The RGB and Alpha color of the stroke.
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(3) Size. How big the stroke is.
(4) Shape. The look of the brush stroke.

By changing the size, direction and shape of brush strokes, many different
representations of a single photographic image may easily be created.

The major advantage of Haeberli’s colored painting method is that the
user can have better control of the resultant painting. Its limitation is also
obviously: it needs lots of manual input. Therefore, the researchers started
looking for the automatic/semi-automatic approach to convert the reference
images into the colored painting. The typical one is to generate the color
painting directly over the entire image in terms of the visual features. For
example, Curtis et al. [1997] presented a semi-automatic method to convert
the source image into watercolor effect. The user interactively chooses the
colored pigments that matches the source image. The system then computes
the distribution of colored pigments and adds new strokes of specified pig-
ments to approximate the desired color by the trial-and-error method. Fig.
4.28 is an example of converting a source image into a watercolor effect.

Fig. 4.28 Converting source image into a watercolor effect [Curtis et al., 1997]. (a)
Source image; (b) The resultant watercolor painting. Copyright of ACM, used with
permission

Hertzmann [2003] proposed a system that can simulate the embossing
painting effect. A “raw” color image is produced by compositing the brush
strokes. A height map is assigned to each stroke, and a height field for the
painting is produced by rendering the brush strokes textured with the height
maps. The final painting is rendered by bump-mapping the painting’s colors
with the height map (see Fig. 4.29).

Shiraishi and Yamaguchi [2000] presented an automatic painterly
rendering method that can synthesize an impressive image with a handcrafted
look from a source image. The color difference image is first obtained by
taking the differences between the local source images and stroke colors.
The image momentum of the color images are then computed to generate
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Fig. 4.29 Embossing painting effect from source image. (a) Source image; (b)
Height map; (c) Painting with lightingc [Hertzmann, 2002]. Copyright of ACM,
used with permission

rectangular brush strokes approximating the local regions of the source
image with suitable locations, orientation, and sizes. The resultant image
is composited with smaller strokes at the details while its flat regions are
painted with larger ones. The density is controlled by a dithering method
with space-filling curves. The painting process starts from the larger strokes
and finishes with the finer ones. Fig. 4.30 shows the example of converting a
reference image into a colored painting in terms of image momentum.

Fig. 4.30 Colored painting based on image momentum [Shiraishi & Yamaguchi,
2000]. (a) Source image; (b) The resultant painting. Copyright of ACM, used with
permission

However, these computer painterly rendering algorithms use very simple
brush strokes over the entire image, and the resultant images tend to
appear mechanical in comparison to hand-made work. In order to improve
the artistic quality of the resultant painting effect, two typical divide-and-
conquer strategies are employed to separate the source image into different
layers, or extract the regions of interest by the “vertical” separation and the
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“horizontal” segmentation respectively. In the vertical separation approach,
the reference image is separated into many layers in terms of simplification
or abstraction principles. The automatic/semi-automatic painting methods
are individually applied on each layer. The final painting is “vertically”
composited from the interim painting of all layers. In the horizontal
segmentation approach, the reference image is analyzed and segmented by
the visual features such as depth and colors in terms of the conventions
and principles of colored painting. In each segmented region, the computer
automatically computes the basic parameters of strokes such as position,
color, size, orientation, etc., and render the resultant painting according to
the stroke parameters. The final painting is a “horizontal” composition of
interim painting of all segmented regions.

A typical algorithmic pipeline on the “vertical” separation is shown
in Fig. 4.31. The most representative work of this approach comes from
Hertzmann [1998]. He observed that an artist would often begin a painting
as a rough sketch, and go back over the painting with a smaller brush to
add details. Therefore, he presented a technique of painting an image with
multiple brush sizes in terms of the principle that each brush can only
capture the details which are at least as large as the brush size. The resultant
painting is built up in a series of layers, starting with a rough sketch drawn
with a large brush. The sketch is painted over with progressively smaller
brushes, but only in areas where the sketch differs from the blurred source
image. The brush sizes are expressed in radii R1, . . . , Rm, and each interim
layer of image, Lp, is generated by blurring the source image. Blurring is
performed by convolution with a Gaussian kernel of standard deviation
fσLp, where fσ is a constant factor. The initial canvas is a constant color
image, and the algorithm then proceeds by painting a series of layers, one for
each radius, from largest to smallest. Fig. 4.32 shows examples of painting
with different sizes of brushes.

Fig. 4.31 The algorithmic pipeline for the “vertical” separation approach to colored
painting
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Fig. 4.32 Painting with three brushes. (a) A source image; (b) The first layer of
a painting after painting with a circular brush of radius 8; (c) The image after
painting with a brush of radius 4; (d) The final image, after painting with a brush
size of 2. [Hertzmann, 1998] Copyright of ACM, used with permission

In the “horizontal” segmentation approach, the key points are how to
extract the regions of interest from the source images and how to calculate
the position, orientation, color, and the size of strokes in each segmented
region. From the point of view of the visual features used for segmentation,
the existing relevant work can be classified into the following methods:

(1) Color painting by intensity and depth. Gooch et al. [2002] presented a
method that takes a raster image as input and produces a painting-
like image composed of strokes. It works by segmenting the image into
features, finding the approximate medial axes of these features, and
using the medial axes to guide the brush stroke creation. The input
digital image is first segmented using flood filling, and the boundaries
of each segmented region are smoothed and any holes in the region
are filled. Then a discrete approximation to the central axis of each
segment is found and pieced together into tokens, which are spatially
sorted into ordered lists. In the final image, this second sorting has the
effect of painting a region with a single large stroke instead of many small
strokes. Finally, the brush paths are rendered as brush strokes. They
also employed the depth map to segment the input image. The depth is
used as another information channel to the segmentation process. Objects
are first differentiated using the depth, and these objects are further
decomposed using intensity variation. This technique is chosen because
depth tends to be quite good at resolving object-object interactions, but
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poor at choosing how to lay strokes across a surface. Fig. 4.33 shows an
example of a colored painting based on a depth map.

Fig. 4.33 A colored painting based on depth segmentation [Gooch et al., 2002].
(a)Source image; (b) Depth image; (c) The resultant painting. Copyright of
ACM, used with permission

(2) Color painting by object detection. Johan et al. [2004] presented a color
painting technique that first detects the objects-to-be-rendered from the
input image, and then generates strokes for each object according to the
painting rules. Its major algorithmic steps are as follows:
• Edge detection. Edge detection is to find the boundary of objects. The

edges in the input image are detected by Canny’s algorithm [1986].
After the edges are detected, a distant image, whose pixels contain
the distance to the nearest edge, is created, and the Voronoi diagrams
are accordingly created by drawing cones with their apexes at the
edge pixels on the screen. The vector field of stroke directions that
follow the orientation of the nearby edges is generated by the direction
perpendicular to the gradient of the distance image.

• Object detection by image segmentation. Image segmentation is to
partition an image into meaningful regions. In many cases, each region
is closely related to the object in the image, so it is employed to detect
the objects in the input image. The input image is segmented using a
simple approach, which generates regions by connecting neighboring
pixels of similar colors. That is, a seed pixel is selected randomly from
the input image, and the region is grown by successively connecting
the neighboring pixels whose color differences to the seed pixel are
below the user-specified threshold. The input image is segmented by
repeating this process until all pixels are classified into specific regions.
Two neighboring regions with similar average colors are merged into
a single larger region. Small regions resulting from the segmentation
process are then regarded as showing the details of the objects that
are to be used in the detailed painting.
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• Simulation of the painting styles. A painting style is defined as a set of
parameters for controlling the properties of the generated strokes. The
properties of strokes are defined as direction, width, length, average
interval between strokes, and the maximum fluctuation of stroke
direction. The direction of strokes can be determined by a constant
direction specified by the user, or the direction of the vector field
that follows the edge direction. The other parameters are interactively
specified by the user. The color of the stroke is set to the color at the
starting point in the input image. However, in order to avoid unnatural
color, the average color of the pixels in the region is set as the color
of the stroke if the difference between the color at the starting point
and the average color exceeds a user given threshold value.

• Color diffusion. In order to render the generated strokes, considering
the pigment-based features, the proposed method first approximates
the strokes with sampling points, and then diffues their colors to
nearby pixels considering the diffusion direction and features (edges)
of the input image. The final color of a pixel is computed by weighted
averaging of the colors that reached that pixel and the color of the
paper. The basic idea of the color diffusion process is to diffuse two
types of weights: weight of color and weight of shape. The weight of
color is used to calculate the color of each pixel in the output image,
which is affected by the roughness of the paper. The weight of shape
determines the diffusion area, which is affected by the distance from
the sampling point and the roughness of the paper.

• Stroke rendering. A stroke is rendered by performing the color
diffusion process for all sampling points that approximate the stroke.
The shape of a stroke is defined to be the union of the diffused areas of
all the sampling points. The weight of the color of a stroke at a pixel
is defined as the maximum weight of color values that reached the
pixel. The output image is created by weighted averaging the colors
of all strokes and the paper.

(3) Segmentation by visual attention. DeCarlo and Santella [2002] employed
the eye-tracking device to capture the visual attention and identified the
meaningful elements of this structure using a model of human perception
and a record of a user’s eye movements in looking at the source image.
The resultant painting is a line-drawing style using bold edges and large
regions of constant color. A summary of the process used to transform
an image is as follows: (a) Instruct a user to look at the image for a short
period of time, obtaining a record of his eye movements. (b) Disassemble
the image into its constituents of visual form using visual analysis (image
segmentation and edge detection). (c) Render the image, preserving the
form predicted to be meaningful by applying a model of human visual
perception to the eye-movement data. The fundamental principles behind
the attention based image segmentation are that: each time we direct our
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gaze and attention to an image, our visual intelligence interprets what
we see by performing sophisticated inference to organize the visual field
into coherent regions; to group the regions together as manifestations of
meaningful objects; and to explain the objects’ identities and causal his-
tories. Once the identified object is in place, the remaining issue is to
direct these resources of style to preserve meaningful visual form, while
reducing extraneous detail. Visual form describes the relationship be-
tween pictures of objects and the physical objects themselves. Painterly
abstraction can cue visual form heuristically by emphasizing parts and
boundaries in an image through techniques such as aligning brush strokes
perpendicular to the image gradient (see Fig. 4.34). Santella and DeCarlo
[2004] also validated that such an abstraction will direct your attention
to its most meaningful places and allow you to understand the structure
there without conscious effort.

Fig. 4.34 A source image (1024×688), fixations gathered by the eye-tracker, and
the resulting line drawing [DeCarlo & Santella, 2002]. Copyright of ACM, used with
permission

4.3 Artistic Transfer of Color and Texture from
Reference Images

Color distribution and texture structure are the two important components of
the visual effect of an image. Given an artistic image or painting as a reference
example, the input source image can be converted into the desired visual
effects by imposing the reference images’s color or texture characteristics on
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it. It is a popular approach to inheriting the given visual effects or artistic
features from the specified image.

4.3.1 Artistic Transfer of Color

The problem statement of color transfer can be described as: given a reference
image T and a source image S, the target color distribution is specified by T .
The processing of color transfer is to create a new image S′ from S, such that
the cognition content of S′ is the same as that of the source image S, and
the color distribution of S′ is coherent with that in the reference image T .

For the time being, a typical solution of color transfer is that: a color space
is selected to make a statistical analysis of the color distribution of S and T ,
and then a mapping relationship model Mc between the color distribution of
S and T is built. At last, the source image S is converted into the resultant
image S′ in terms of the mapping relationship model Mc. The key points in
this approach include how to choose a best fit color space and how to build
the mapping relationship model Mc. Reinhard et al. [2001] chose the lαβ color
space, which minimizes correlation between channels for many natural scenes.
It assumes that the human visual system is ideally suited for processing
natural scenes. Their main algorithmic steps of color transfer, based on lαβ
color space, are as follows:

(1) The source and reference images are converted into lαβ color space from
the RGB color space by the following equations:⎡
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(2) In lαβ space, the means and standard deviations for each axis are
computed separately. The mapping relationship model Mc is built by
substracting the means of data points in the source image S first, and
then the data points comprising the synthetic image are scaled by factors
determined by their respective standard deviations. This transformation
makes the resulting data points have standard deviations that conform
to the reference image, and the transformation equations are as follows:
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l∗ = l − lS , l′ =
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(3) The averages computed from the reference image T are added back to
l′α′β′ previously computed, and then the resultant values in lαβ color
space are converted back into RGB color space by the following equations:
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Fig. 4.35 shows an example of color transfer based on lαβ color space.

Fig. 4.35 Color transfer based on lαβ color space. (a) Source image; (b) Refer-
ence image; (c) The resultant image [Reinhard et al., 2001]. Copyright of IEEE,
used with permission

However, the resulting quality of this general color transfer form depends
on the two images’ similarity in color composition. If source and target images
that do not work well together are selected, then separate swatches of each
color region must be manually set, and a match must be made between them.
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In order to overcome this limitation, Chang et al.[2003] proposed an improved
color transformation method in accordance with characteristics of human
color perception. Human beings have an outstanding ability to discriminate
between colors, and human color perception can also group similar colors into
the same category. It is found that there are regularities in the number of basic
colors and in their spreads on the color space in the developed languages.
There are eleven basic color terms: black, white, red, green, yellow, blue,
brown, pink, orange, purple, and grey. Based on the eleven perception-based
color categories, Chang et al. made the following two assumptions [Chang et
al., 2003]:

(1) Color transformation within the same basic color category does not pro-
duce an unnatural result. This is clear because we perceive colors in the
same basic color category as similar colors, so transferred color will not
be very perceptually different from the original color. Therefore, such a
transformation will not cause odd feelings in viewers.

(2) Color transformation within the same basic color category could create
a different impression. This is reasonable because human color vision
is sensitive. We are able to detect even small color differences, and the
differences can cause different feelings compared with those inspired by
the original color.

The first step in this approach is to divide the color space into the eleven
basic color categories, and then, segments the input photograph and reference
painting by using those categories. Chang et al. [2003] employed Uchikawa’s
802 test colors taken from the regular grid of an x, y diagram in six different
luminance, and each test color has been rated by subjects, which basic color
category is the most appropriate for it. All of these test colors are converted
into a CIE Lab color space and obtains the spreads for each color category.
The color space is divided into eleven basic color categories just like Voronoi
tessellation, regarding each data point as a site, and merges regions that
belong to the same basic color category. By these categories, the image
segmentation is performed by transferring all the pixel values to the CIE Lab
color space, evaluating them that to which basic color category each pixel of
an image belongs. For each basic color category, it generates a convex hull
that encloses all the pixel value points within the category. These convex
hulls are called basic convex hulls.

Now eleven basic convex hulls, chpic
i , for the input source image, and

eleven basic convex hulls, chpnt
j , for the reference painting are obtained. For

a pixel color value ppic in the basic convex hull, chpic of the source image,
its corresponding color value in the reference painting P pnt is given by the
following equation:

P pnt =
||cpic, ppic||
||cpic, bpic|| (b

pnt − cpnt) + cpnt,
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where cpic and cpnt are the center of gravity of chpic and chpnt respectively.
Assuming that l is a line that starts at cpic and goes through ppic. bpic is the
intersection point between chpic and l. l′ is a line that starts at cpnt and has
the same direction as l, and bpnt is the intersection point between chpnt and
l’. The final color transfer process is carried out by substituting each pixel
color value in the source image with its corresponding color in the reference
painting. The color feature of the resultant image will be similar to those
of the reference painting. Fig. 4.36 shows an example of a perception-based
color transfer.

Fig. 4.36 Perception-based color transfer [Chang et al., 2003]. (a) Source image;
(b) Reference painting; (c) The resultant image after color transfer. Copyright of
IEEE, used with permission

4.3.2 Artistic Transfer of Texture

The problem statement of texture transfer can be described as follows.
A reference image, R, specifies a texture effect to be transferred. Given a

source image S, it is modified by replacing some high-frequency information
with the texture in R, such that the resultant image is similar to the reference
image in some degree in terms of the texture effect.

From the point of view of painting, the artistic style simulation based on
texture transfer are global in the sense that the user need not deal with de-
tails such as defining and painting individual brush strokes. Texture transfer
methods are also more general since they don’t need to emulate any partic-
ular artistic style (line drawing, hatching, realistic oil painting, and so on).
Fig. 4.37 is an illustration of texture transfer for artistic style simulation.

The representative work of texture transfer comes from Ashikhmin [2003].
He proposed a texture transfer method based on his coherent texture
synthesis technique [Ashikhmin, 2001], which works by growing texture
patches of irregular size, one pixel at a time. It proceeds in scan line
order, choosing the best pixel from a short candidate list. This list is
based on locations from which synthesized pixels were already taken. Each
already synthesized pixel in a small (typically, L-shaped 5×2.5) neighborhood
contributes to its appropriately forward shifted neighbor in the texture image
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Fig. 4.37 An illustration of texture transfer for artistic style simulation
[Ashikhmin, 2003]. (a) Source image; (b) Reference image; (c) The resultant image.
Copyright from IEEE, used with permission

to the list. Certain texture transfer examples are created by extending the
notion of the neighborhood to a full square that includes corresponding
parts of the target image. He made two improvements on the coherent
texture synthesis technique. First, he increased the algorithm’s search space,
as a slight increase in search space dramatically improves the convergence
rate of coherent synthesis without compromising visual results. Second,
problem-specific image similarity metrics were modified as the measure of
neighborhood difference, which is the sum of two parts. First, the difference
of neighborhood averages between the source and the target, and secondly the
L2 pixel-wise difference of only high-frequency components in the L-shaped
neighborhoods of the result and the source texture images. Fig. 4.38 shows
an example of texture transfer for this artistic style simulation.

Fig. 4.38 Texture transfer for artistic style simulation [Ashikhmin, 2003]. (a)
Source image; (b) Reference image; (c) The resultant image. Copyright of IEEE,
used with permission

Wang et al. [2004a] further presented a hierarchical patch-based approach
to the synthesis of directional textures for painting style simulation. The
major improvements of this method are: (a) Painting styles are represented
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as one or more blocks of sample textures selected by the user from the
example painting, instead of using the entire reference image; (b) Image
segmentation and brush stroke directions defined by the medial axis are used
to better represent and communicate shapes and objects presented in the
synthesized painting. The synthesized stroke textures can follow a direction
field determined by the shapes of the regions to be painted. The major
algorithmic steps of this method are that: the user specifies in the example
painting one or more small blocks of sample textures that best represent
the distinct styles to be simulated. Then, the image-to-be-synthesized is
segmented according to the contents of the source image, and a direction field
in each segmented region is defined. Finally, a hierarchy of texture patches,
assisted with image masks, is employed to synthesize directional textures in
each segmented region to form the final synthesized painting. Fig. 4.39 shows
some examples of painting simulation by texture transfer.

Fig. 4.39 Examples of directional texture transfer for artistic style simulation
[Wang et al., 2004a]. (a) Source image; (b) Reference images with rectangles; (c)
The resultant painting. Copyright of IEEE, used with permission

Guo et al. [2006] presented a texture transfer method in terms of painting
technique. It is implicitly assumed that the textures in the example painting
are embodied by the brush strokes. Therefore, the transfer of these artistic
textures can be carried out by extracting the representative brush strokes
from the example painting, and then reapplying them on the source image
in terms of the painting conventions. The major algorithmic steps can be
described as:

(1) Brush library construction. Representative brushes are extracted from
example paintings of the given style to construct a brush library.
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(2) Region segmentation. The photographic image is segmented by the mean
shift method.

(3) Grounding layer synthesis. Suitable patches in the example painting are
selected to synthesize the grounding layer.

(4) Directional field construction. Directional field is constructed by either
interpolating user specified key directions, or synthesizing with extracted
direction field from example painting.

(5) Brush painting. Seeds are generated using the direction field and brushes
are placed over the seeds with perturbations added to the brush shape
and color.

(6) Fusion with image. The painted result is composed into an original
photographic image.

Fig. 4.40 shows an example of texture transfer for a painting.

Fig. 4.40 Texture transfer by brush strokes [Guo et al., 2006]. (a) The example
painting; (b) Extracted brush strokes; (c) Source image; (d) The resultant image.
Copyright of Journal Zhejiang University, used with permission

4.4 Image-based Painting Driven by Examples

From the point of view of image-based artistic rendering, a painting example
is composed of two parts: a source image S and its corresponding painting
image P . S and P depict the same content, but their visual effects are dif-
ferent. The relationship of S and P can be interpreted as: an image-based
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transformation, T , is implicitly specified, such that T (S) = P . From the point
of view of artistic painting, T can be considered as a painting technique that
can convert the source image into the desired artistic style. The example-
based painting is to apply this transformation T to a source image S, and
with the desire that the resultant image has the similar painting to style of
P . This will make the example-based painting to be a challenging problem,
as the transformation T is implicitly defined in the example.

There are two typical approaches for example-based painting. One is to
employ the analogical reasoning and texture synthesis techniques to directly
generate the resultant painting by the analogy in image space. The other one
is to explicitly generate the empirical stroke templates by analyzing the paint-
ing examples. And the new painting is synthesized by applying the template
on the source images based on pattern matching techniques.

4.4.1 Painting Style Simulation by Image Analogy

Analogy is a basic reasoning process. It is based on a systematic comparison
between structures that uses properties of, and relations between, objects
of a source structure to infer properties and relations between objects of a
target structure. Image analogy is explored by Hertzmann et al. [2001] as a
means for creating complex image filters, that can convert a photograph into
various types of artistic renderings having the appearance of oil, watercolor,
or pen-and-ink, by analogy with actual (real-life) renderings in these styles.
The problem of image analogy can be given as follows:

Given a pair of images A and A′ (the unfiltered and filtered source im-
ages, respectively), along with some additional unfiltered target image B,
synthesize a new filtered target image B′ such that A : A′ :: B : B′.

In other words, “image analogy” is to find an “analogous” image B′ that
relates to B in “the same way” as A′ relates to A.

A crucial aspect of the image analogy is the definition of similarity used
to measure not only the relationship between each unfiltered image and its
respective filtered version, but also the relationship between the source pair
and the target pair when taken as a whole. This issue is tricky, in that we
want to use some metric that is able to preserve recognizable features of the
original image filter from A to A′, while at the same time is broad enough to
be applied to some completely different target image B. Moreover, it is not
obvious what features of a training pair constitute the “style” of the filter:
in principle, an infinite number of different transformations could be inferred
from a pair of images. Hertzmann et al. [2001] employed a similarity metric
that is based on an approximation to a Markov random field model, using raw
pixel values and, optionally, steerable filter responses. Their image analogy
algorithm is easy to describe. First, in an initialization phase, multiscale
(Gaussian pyramid) representations of A, A′ and B are constructed, along
with their feature vectors and some additional indices used for speeding the
matching process (e.g., an approximate-nearest-neighbor (ANN) search, as
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described below). The synthesis then proceeds from the coarsest resolution
to the finest, computing a multiscale representation of B′, one level at a
time. At each level l, statistics pertaining to each pixel q in the target pair
are compared against statistics for every pixel p in the source pair, and the
“best” match is found. The feature vector B′

l(q) is then set to the feature
vector A′

l(p) for the closest-matching pixel p, and the pixel that matched
best is recorded in sl(q).

In actual usage, image analogy involves two stages. In the design (or train-
ing) phase, a designer (possibly an expert) creates a filter by selecting the
training images A and A′ (for example, from scanned imagery), annotating
the images if desired, and (directly or indirectly) selecting parameters that
control how various types of image features will be weighted in the image
analogy. The filter can then be stored away in a library. Later, in the appli-
cation phase, a user (possibly someone with no expertise at all in creating
image filters) applies the filter to some target image B. Fig. 4.41 gives some
examples of converting source images into artistic effects with image analogy.

Fig. 4.41 Examples of image analogy [Hertzmann et al., 2001]. Copyright of ACM,
used with permission

The major advantage of image analogy is that they provide a very natural
means of specifying image transformations. Rather than selecting from among
a myriad of different filters and their settings, a user can simply supply an
appropriate exemplar (along with a corresponding unfiltered source image)
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and say, in effect: “Make it look like this.” Ideally, image analogies should
make it possible to learn from a very broad variety of complex and non-linear
image filters by analogy, with actual (real-life) renderings in these styles. By
contrast, the previous artistic rendering works are that the methods have had
to be specifically tailored to a specific rendering style (or space of styles).

4.4.2 Artistic Painting Generation by Stroke Templates from
Examples

The aforementioned image analogy technique synthesizes a new “anal-
ogous” image B′ that relates to an input image B in “the same way”
as the example image A′ relates to A. This technique, while good at
mimicking the local relationships from image pair (A′, A) to (B′, B), lacks
the power to capture the high-level structural information. Therefore,
Chen et al. [2004] proposed a composite sketching approach for portraits
by examples. Each example sketch is a highly abstract representation of
the original source image, using realistic as well as exaggerated features
to achieve an evocative likeness. The basic idea is to first decompose
the data into components that are structurally related to each other,
such as the eyes or mouth. After these have been independently pro-
cessed, these components are carefully recomposed to obtain the final result.
As shown in Fig. 4.42, a global model of face is defined, and 14 global features
(w1/w, w2/w, w3/w, w4/w, w5/w, w6/w, w7/w, h1/h, h2/h, h3/h, e1, e2, e3, e4)
are carefully chosen from a pool of approximately 30 recommended facial
features in a caricature drawing textbook. These relations describe the
proportion of the face devoted to a particular facial feature. w4/w, for
instance, relates the width of the head to the width of the mouth. By not
tying these relations to fixed values, the model can adjust the size of the
features as the overall size of the head is changed.

Fig. 4.42 Global features of face [Chen et al., 2004]. Copyright of ACM, used with
permission
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A human face is decomposed semantically into 6 local components, one
for each of the major facial elements, of 4 types. They are left and right
eyebrows, left and right eyes, a nose, and a mouth. Each type of feature
is further divided into several prototypes based on their appearance in the
training data (see Fig. 4.43). The eyebrow component has two prototypes
which are classified as thick and thin. The eye component has 11 prototypes
which could be roughly clustered into 2 classes, those with or without a
contour above the eye and below the eyebrow. The nose component has 3
and the mouth component has 4 prototypes.

Fig. 4.43 The prototypes extracted from the training set [Chen et al., 2004]. Copy-
right of ACM, used with permission

For an input image of a face, it is firstly decomposed into components.
Secondly, the best match for each component is found from training examples.
Thirdly, corresponding drawings of components are generated, and the
drawings of separate parts are composited into the final drawings. Fig. 4.44
shows the pipeline of generating a portrait from an example.

Fig. 4.44 (a) Input image; (b) Image decomposed into components; (c) Best match
for each component found from training examples; (d) Corresponding drawings of
components in (c); (e) Composite drawing of separate parts as the final drawing
[Chen et al., 2004]. Copyright of ACM, used with permission
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The principal advantage of this component-based approach is its capacity
to capture large-scale correlation within the components and its ability to
create an overall picture in the style intended by the artist. Fig. 4.45 shows
the stylized portraits generated from images.

Fig. 4.45 Stylized portrait generation by stroke-based templates [Chen et al., 2004].
Copyright of ACM, used with permission

4.5 Summary

Image-based painting offers several advantages over the rendering from 3D
models [Salisbury et al., 1997]. First, it greatly reduces the tasks of geometric
modeling and of specifying surface reflectance properties, allowing much
more complicated models (such as furry creatures and human faces) to be
illustrated. Second, an image based system provides the flexibility of using
any type of physical photograph, computer-generated image, or arbitrary
scalar, vector, or tensor field as input, allowing visualization of data that is
not necessarily even physical in nature. Finally, image-based systems offer
more direct user control: the ability to more easily modify tone, texture, or
stroke orientation with an interactive digital-paint style interface.

Although the image-based painting techniques have made great progress,
there are several limitations in terms of artwork creation. First of all, the
artistic effects are constrained by the content of source image. Second, the
interaction pipeline is not flexible enough to create artistic drawings from
images. The long-term goal of interaction is to make the interaction pipeline
to be more consistent with the conventions of artists. And at the same time,
the tedious technical aspects of drawing are shifted to the computer side,
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while providing the user with expressiveness and a new kind of freedom on
the creative and aesthetic side.
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5

Artistic Rendering for 3D Object

The problem statement of artistic rendering for a 3D object can be described
as: Given a 3D model, the user specifies the viewing parameters, the ren-
dering styles and features, the system automatically or semi-automatically
creates the corresponding picture with the desired visual effect. The research
methodology of 3D artistic rendering can be classified as follows:

(1) Artistic simulation based on traditional 3D rendering pipeline. The overall
rendering pipeline is the same as the traditional one. However, its photo-
realistic lighting model, projection transformation, texture mapping are
replaced with non-photorealistic ones. The artistic images are accordingly
generated based on the traditional 3D rendering pipeline.

(2) Artistic rendering based on interim image generated from 3D object. The
interim image, generated by traditional photorealistic rendering, is used
as a reference image. The system then employs image-based artistic ren-
dering techniques to create the corresponding artwork guided by the in-
terim image and the salient 3D information of the 3D object to be de-
picted.

(3) Artistic rendering based on shape features of 3D object. The 3D shape
features are firstly extracted from the 3D object to be depicted in terms
of the specified viewpoint. The artistic rendering result is then created
by the 3D shape features and the drawing style. This method is often
utilized in the silhouette drawing of 3D objects.

However, detailed artistic rendering techniques are also heavily depen-
dent on the representation model of 3D objects. We will further discuss the
following three artistic rendering techniques:

(1) Line-drawing for 3D surface. Line-drawing is a popular rendition style
that is closely related to the presentation of shape features. The line-
drawing on the parametric surface and implicit surface is much more
difficult to achieve than that for polygonal objects.
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(2) Artistic rendering for 3D natural scenes. In the computer graphics com-
munity, there are no general representation forms for a 3D landscape
such as trees and mountains. Therefore, the artistic rendering for a 3D
landscape is unique in that we should take into account more information
about the description of a 3D landscape, such as the overall shapes, the
local shapes and the skeleton, and the 3D structures, etc.

(3) Artistic rendering for 3D volume model. The volume model is an ap-
proximate representation of a 3D object. The artistic rendering for a 3D
volume focuses on the rendition of the features of the surface, boundary
and its internal structure.

5.1 Artistic Rendering Based on Traditional 3D
Rendering Pipeline

Traditional photorealistic rendering still plays the dominant role in the com-
puter graphics community. When artistic rendering started being explored,
it was natural for a researcher to manage to generate the artistic rendi-
tion by “borrowing” the 3D rendering techniques. For example, Masuch and
Strothotte generated the artistic effects of line-drawing by post-processing the
wireframe drawing in traditional 3D graphics [Masuch & Strothotte, 1998].
Markosian et al. proposed an improved hidden surface model algorithm for
the artistic rendering of silhouettes [Markosian et al., 1997]. This section will
mainly discuss how to create the artistic rendering of 3D objects by em-
bedding the non-photorealistic lighting models, the non-photorealistic pro-
jection transformation, or the non-photorealistic texture-mapping into the
traditional 3D rendering pipeline, respectively.

5.1.1 Non-photorealistic Lighting Model

A non-photorealistic lighting model should go beyond the physical and optical
laws in traditional photorealistic lighting models, and its illustrated visual
effect should be consistent with intrinsic merit based on the evolutionary
nature of art and visual perception conventions. For the time being, there
are three typical approaches to building non-photorealistic lighting models:

(1) The non-photorealistic lighting model is created by improving and en-
hancing the traditional shading model in terms of the illustration con-
ventions and general principles of visual perception.

(2) The non-photorealistic lighting model is built on the human-like approach
by imitating the training process of the human artist in terms of the
“divide and conquer” strategy. It is based on the fact that human artists
usually start learning illustration skills from drawing primitives such as
boxes, cylinders and spheres, etc., and finally they will be able to depict
a 3D object with arbitrary geometric complexity by decomposing its 3D
models into these well-known primitives.
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(3) The non-photorealistic lighting model is generated by the quantitative
distribution of artistic illumination and color that are interactively ex-
tracted from the painting artworks.

Gooch et al. are the pioneers in the exploration of non-photorealistic light-
ing models. They made the first approach and proposed a non-photorealistic
lighting model for technical illustration based on cool-to-warm tones [Gooch
et al., 1998; Gooch, 1998]. Their lighting model uses both luminance and
changes in hue to indicate surface orientation, reserving extreme light and
dark for edge lines and highlights. The fundamental idea behind it is that
when silhouettes and other edge lines are explicitly drawn, then very low
dynamic range shading is needed for the interior. This is because adding a
somewhat artificial hue shift to shading helps imply shape without requiring
a large dynamic range. The lighting intensity of this modified shading model
is calculated as follows:

I =
(

1 + I · n
2

)
kcool +

(
1 − 1 + I · n

2

)
kwarm,

kcool = kblue + αkd,

kwarm = kyellow + βkd,

kblue= (0, 0, b), b ∈ [0, 1],

kyellow= (y, y, 0), y ∈ [0, 1].

Where I is the RGB color to be displayed for a given point on the surface;
I is the unit vector in the direction of the light source, and n is the unit
surface normal vector at the point; kd is the RGB diffuse reflectance at the
point; kblue and kyellow are fully saturated blue and yellow in RGB space
respectively. The values for b and y will determine the strength of the overall
temperature shift, and the values of α and β will determine the prominence of
the object’s color and the strength of the luminance shift. Fig. 5.1 shows how
to create the tone for a pure red object by summing-up a blue-to-yellow and
a dark-red-to-red tone. Fig. 5.2 shows the shading instances with Phong and
new lighting models respectively. The new illustration method gives a clearer
picture of the shape, structure and material composition than traditional
computer graphics methods. Moreover, this non-photorealistic lighting model
is further improved by Winnemöller and Bangay, who successfully simulated
the reflective visuals effect by modifying the calculation of the reflective
component accordingly [Winnemöller & Bangay, 2002].
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Fig. 5.1 The final tone is created by summing-up a blue-to-yellow and a dark-red-
to-red tone [Gooch et al., 1998]. (a) Blue-to-yellow tone; (b) Dark-red-to-red tone;
(c) The final tone. Copyright of ACM, used with permission

Fig. 5.2 Left to right: (a) Phong model for colored object; (b) New shading model
with highlights, cool-to-warm hue shift and without edge lines; (c) New model using
edge lines, highlights and cool-to-warm hue shift [Gooch et al., 1998]. Copyright of
ACM, used with permission

Geng et al. took the second approach to building the non-photorealistic
lighting model by imitating the human depiction methods [Geng et al., 2001;
Geng et al., 2005]. Regarding human depiction, Durand proposed a four-stage
processing pipeline to render a mechanical product [Durand, 2002]:

(1) Spatial mapping. It handles the spatial properties, and generates the cor-
responding spatial layout in a 2D picture according to the viewpoint and
projection type.

(2) Pictorial units conversion. It converts 3D primitives (points, lines, sur-
faces, volumes) into 2D pictorial units (points, lines, regions).

(3) Attributes assignment. It assigns visual properties such as color, texture,
thickness, transparency, wiggliness, or orientation to the pictorial units.



5.1 Artistic Rendering Based on Traditional 3D Rendering Pipeline 165

(4) Mark implementation. It is responsible for medium simulation (e.g.,
oil painting, pencil brush, watercolor, engraving), mimics the physical
strokes in traditional rendering, and realizes the visual effect of primi-
tives placed at their spatial location.

By this pipeline, a technical illustration system for 3D constructive solid
geometry (CSG) models is given in Fig. 5.3.

Fig. 5.3 The technical illustration pipeline based on CSG primitives. (a) Primitive
types to be selected; (b) The object composed from primitives; (c) The object after
hidden surface removal; (d) Spatial layout of the object to be rendered; (e) The
resultant illustration

The remaining issue is how to define the non-photorealistic lighting model
for technical illustration that is desired to preserve the correct geometric
projection and lighting distribution. Geng et al. defined the following non-
photorealistic lighting model for the technical illustration of CSG models
[Geng et al., 2005].

(1) The lighting intensity is represented as parameters of multiple discrete
levels in terms of highlight, Mach bands, mid-tone, semi-dark and dark
regions and so on. Their corresponding regions in image space are defined
as “principal regions”. For each level of lighting, the default value is
calculated by the Phong illumination model.

(2) The spatial size, location and shape of these principal regions in im-
age space are parameterized by projection conventions and type of CSG
primitives.

(3) The lighting distribution over each CSG primitive is computed by inter-
polating the lighting intensities of its principal regions.
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(4) Each CSG primitive has its own lighting model, and each level of the
lighting is subject to the user’s manual adjustment based on users’ pref-
erences or illustration styles.

Based on this definition, their NPR lighting models will have three major
components: the multi-level lighting parameters, the parametric description
of spatial occupations (principal regions) corresponding to each lighting level,
and an interpolation method to calculate the lighting distribution over the
entire primitive during run-time. For example, a cylindrical surface is divided
into four principal regions as shown in Fig. 5.4(a). The light distribution is
approximated and interpolated by sine function, as shown in Fig. 5.4 (b).

Fig. 5.4 (a) Segments on cylindrical surface; (b) Lighting model for cylinder

The default lighting for each primitive is the same as that of the Phong
model, except that it employs a region-based discrete calculation of lighting
intensity, rather than Phong’s pixel-by-pixel calculation. This feature some-
what reflects the lighting calculation utilized by human artists, as it offers
the user a flexible interface of local refinement of lighting [Geng et al., 2005].
Fig. 5.5 shows a set of technical illustration samples generated by this non-
photorealistic lighting model.

Sloan et al. took the third approach to create a non-photorealistic lighting
model that can capture custom artistic shading models from sampled artwork
[Sloan et al., 2001]. When an artist draws or paints an object, he/she often
starts with a shading study on the sphere that provides coverage of the com-
plete set of unit normals, and then adapts this study to a complex object. In
essence, the sphere serves as a surrogate for more complex objects in order to
simplify the characterization of reflected light and assure sufficient coverage
of normals. They refer to this “paint by normals” method of shading as the
lit sphere model, which is built by mapping shading from works of art to geo-
metric models . The lit sphere model is based on the assumption that source
materials are homogeneous, while artists often encode local surface features in
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Fig. 5.5 Illustration samples by non-photorealistic lighting models

their artworks. Suppose that a piece of artwork contains surfaces with locally
spherical patches. These patches possess an approximately correct distribu-
tion of normals. Thus, we can approximate the artistic lighting model by
projecting the shaded patch onto a lit sphere. However, the patch may lack
part of the hemispherical normal space or distort the distribution of normals.
Therefore the system accordingly provides a method for modifying the map-
ping from the patch to the lit sphere environment map. Given an image of
a shaded sphere, transferring a shading model from an image of a sphere to
a complex 3D model is straightforward. It allows the user to interactively
explore novel viewpoints of 3D models, and Fig. 5.6 shows the illustration
samples applying the established lit sphere from different viewpoints. This
lit sphere approach allows material properties found in 2D artwork retar-
get to 3D geometric models. It incorporates established principles from the
art, computer vision, and rendering communities into a framework for non-
photorealistic rendering. Fig. 5.7 gives an illustration sample of capturing
shading from artwork via the lit sphere and re-projecting it onto geometry
for human rendering.
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Fig. 5.6 Models illuminated by lit sphere from novel viewpoints[Sloan et al., 2001].
(a) Still life by Cezanne for lit sphere; (b) The resultant illustration 1; (c) The
resultant illustration 2. Copyright of ACM, used with permission

Fig. 5.7 The captured lit sphere and their application on the human illustration
[Sloan et al., 2001]. Copyright of ACM, used with permission

5.1.2 Non-realistic Projection

Perspective is the means by which cameras capture the 3D world in a 2D
image. Projection techniques are particularly useful as means of controlling
how information is presented to a viewer, expressing the various ways in
which the shape of objects, and the spatial relations between them, can be
represented in pictures. Levene informally characterizes a projection as being
parameterized by [Levene, 1998]:
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(1) The shape of the projection surface.
(2) The degree to which orthogonals converge to or diverge from a vanishing

point in the image.
(3) The behavior of orthogonals as they converge or diverge.
(4) The subset of objects in the scene that are operated on.

The characteristics of each non-realistic projection are embedded in the
transformation step. In formal terms, given point P in eye space, the trans-
formation P ′ is given by

P ′ = (Cx + [f(P ) × Vx], Cy + [f(P ) × Vy], Pz),

where

• The point C, called the center of scaling, is a 2D point at the same eye
space depth as P . The point C is used to control the location of the
vanishing points in the image.

• The vector V = (Px − Cx, Py − Cy) is a 2D vector describing P relative
to C.

• The function f = R3 → R, called the size-with-distance function, deter-
mines the factor to scale the x and y components of P , relative to C. f is
used to control the degree to which orthogonals converge or diverge. f is
defined as

f(P ) =
(

dP

dS

)n

.

As shown in Fig. 5.8, E is the eye point; S is the projection of P onto
a viewing surface; dP = |P − E| is the radial distance of P from the eye;
dS = |S − E| is the radial distance of S from the eye. n is a scalar that
determines the degree to which orthogonals diverge or converge (see Fig.
5.8).

The shape of the projection surface determines ds, influencing the degree
to which a point is scaled in eye space. The surface is represented as a non-
parametric cubic Bezier patch of the form

z = f(α, β),

where α =tan−1(x) and β=tan−1(y) are measures of a direction vector’s
angular displacement in x and y respectively. To convert a 3D vector to
α − β space, it is first scaled until it intersects the plane z=1. Its α − β
representation is then (tan−1(x), tan−1(y)). Converting back to Cartesian
space would then yield

(x, y, z) = (tan(α), tan(β), 1),

z is the depth of the surface point along the z direction in eye space. The
surface point itself is calculated by finding where the direction vector (α, β)
intersects the plane z = f(α, β).
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Fig. 5.8 Calculating f(P ), the size-with-distance function

The sixteen control points of the Bezier patch are evenly distributed in
α − β space, and the user may interactively alter each point’s corresponding
depth.

In order to enable oblique projections, as is shown in Fig. 3.3, we allow
the user to interactively skew the view volume in eye space by setting the
x and y coordinates of a skew point, K. After a skew point is defined, each
point P is skewed into point Pskew, before being transformed, according to:

Pskew =
(

Px −
[
Kx ×

(
Pz

Kz

)]
, Py −

[
Ky ×

(
Pz

Kz

)]
, Pz

)
.

In order to combine the multiple projections, a 2D inertial fitting tech-
nique is proposed. If a scene is partitioned into m projections, one is arbitrar-
ily assigned the “default” projection (which we call pd). The image of each
projection pi(1 � i � m − 1) is then merged into that of pd according to the
following two steps:

(1) The objects assigned to pi are duplicated. One copy is then transformed
by pi, the other by pd. This yields two images of the original set of objects.

(2) The first image is fitted to the second, so that the position, orientation
and size of the images are matched to each other.

The non-realistic projection framework provides a means of using curved
projection surfaces. It controls both the degree to which orthogonals con-
verge to or diverge from a vanishing point in the image, and the behavior of
orthogonals as they converge or diverge. Different objects can be projected
independently and their images can be composited together.
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Agrawala et al. merely concentrated on how to create multi-projection
images that can express a mood, feeling or idea, improve the representation
or comprehensibility of the scene, and visualize information about the spatial
relationships and structure of the scene [Agrawala et al., 2000]. The input to
the algorithm is a set of camera groups, each associating a collection of geo-
metric objects with one local camera. The first stage of the algorithm renders
each camera group into a separate image layer. All the image layers are then
merged together to form the resultant multi-projection image. Their main
difficulty in the compositing stage is the absence of natural visibility order-
ing. The solution is to let the user simply specify a master camera (often a
local camera doubles as the master), and the master camera is employed to
resolve visibility through a combination of two automation techniques: 3D
depth-based compositing and standard 2D compositing based on object-level
occlusion constraints. If necessary, the user can directly modify the visibil-
ity ordering by specifying additional pairwise occlusion relationships between
image layers. They also set-up a series of constraints for the camera, including
object-size constraint (keeping the object’s size and position approximately
constant while changing its perspective convergence), fixed-view constraint
(maintaining a particular view of the object), and fixed-position constraint
(maintaining the position of the object in the image plane), etc. The resul-
tant multi-projection images are generated by the constraints-based solver.
Fig. 5.9 shows the simulation of the multi-projection from an artwork.

Fig. 5.9 A multi-projection artwork and its simulated multi-projection image
[Agrawala et al., 2000]. (a) Giorgio de Chirico’s the mystery and melancholy of
a street; (b) The simulated multi-projection image. Copyright of ACM, used with
permission

Singh further generalized Agrawala’s multi-projection model and
proposed an incremental approach, which allows non-linear perspective views
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of a scene to be built gradually by blending and compositing multiple
linear perspectives [Singh, 2002]. Let Ci represent the camera parameters for
exploratory view i ∈ {1, . . . , n}, let Mi represent the perspective projection
matrix built from the parameters Ci. Given a viewport specification
represented by matrix Vi, the resulting point in two dimensional screen space
〈xs, ys〉 is

〈xs, ys, zs〉 = PMiVi.

Usually, zs = z is the depth value of the point P , unchanged by Vi. Singh
extended the viewport transformations Vi so that the canonical depth of a
point z ∈ [0, 1] is mapped to z in an arbitrary user specified range. While the
relative depth values are preserved with respect to a single perspective view,
this allows the powerful visual capability of intuitively altering the relative
depths of points in a scene as one transition between the multiple linear
perspectives. Supposing that a normalized weight vector 〈w1p, w2p, . . . , wnp〉
is specified for any point P in the scene, the projection of P is defined
as PMP VP , where Mp is the perspective projection of a virtual linear
perspective camera Cp, which is calculated by the following equation:

Cp =
[
C1 C2 ... Cn

]
⎡
⎢⎢⎢⎢⎢⎣

w1

w2

...

wn

⎤
⎥⎥⎥⎥⎥⎦ .

Similarly, Vp is generated by weighted averaging the affine components of
viewport transformations V1, . . . , Vn with the weights w1p, w2p, . . . , wnp, i.e.,
Vp is

Vp =
[
V1 V2 ... Vn

]
⎡
⎢⎢⎢⎢⎢⎣

w1

w2

...

wn

⎤
⎥⎥⎥⎥⎥⎦ .

The rationale for generating an interpolated camera and an interpolated
viewport independently, rather than simply weighted averaging the projected
points resulting from applying each linear perspective camera projection to
P , is twofold. First and foremost, a number of camera parameters are angular
and are best interpolated individually using quaternion. Secondly, the camera
parameters have intuitive physical manifestations and their interpolation can
be better understood and controlled by a user. Fig. 5.10 shows a group of
non-linear projection instances.

Mart́ın et al. employed the Hierarchical extended non-linear transforma-
tions to produce modifications in the visualization of the elements included
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Fig. 5.10 Examples of non-linear projections [Singh, 2002]. Copyright of ACM,
used with permission

in the scene [Mart́ın et al., 2000]. Hierarchical extended non-linear transfor-
mations are a variation of geometric transformations, translation, rotations,
scale and so on. In non-linear transformations, the transformation itself is
changed depending on the position. The function that relates position and
transformation is called a control function. A geometric transformation can
be seen as a non-linear transformation, for which the control function is
constant (henceforth referred to as constant transformation). More formally,
given a transformation, T , which is constant for all vertices, a point (x, y, z)
is transformed into

(x′, y′, z′) = T (x, y, z).

To which coordinate x, y, o, z, the selection axis points will be the inde-
pendent variable in the control function, and a selection axis will be chosen
for every transformation. A control function is a function that defines how
the parameters control the deformation change. This function depends on
the value of a coordinate, which itself depends in turn on the selection axis.
Fig. 5.11 shows the control functions for orientation [Mart́ın et al., 2000]. Fig.
5.12 gives the examples of non-linear transformations.
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Fig. 5.11 General scheme of orientation and distance functions

Fig. 5.12 Examples of non-linear transformations [Mart́ın et al., 2000].
(a) Orientation-dependent deformation; (b) Distance-dependent deformation.
Copyright of ACM, used with permission

5.1.3 Non-photorealistic Texture Mapping and Synthesis

In photorealistic rendering, texture mapping is an important approach to en-
hancing the realism of the resultant image. This naturally motivates the NPR
researchers to start exploring how to present the artistic effect of rendition
by non-photorealistic texture mapping and synthesis.

Klein et al. presented how to synthesize imagery of architectural interiors
using stroke-based textures [Klein et al., 2000]. In a preprocessing stage, they
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captured photos of a real or synthetic environment, mapped the photos to a
coarse model of the environment, and ran a series of NPR filters to gener-
ate textures. At runtime, the system re-renders the NPR textures over the
geometry of the coarse model, and it adds dark lines that emphasize creases
and silhouettes. Such a hybrid non-photorealistic rendering and image-based
rendering approach makes it possible to reap the benefits of both technolo-
gies: an aesthetic rendering of the scene, and visual complexity from a simple
model. Fig. 5.13 shows non-photorealistic texture mapping examples for a
virtual environment.

Fig. 5.13 Image-based rendering using non-photorealistic textures [Klein et al.,
2000]. Copyright of ACM, used with permission

Praun et al. proposed a real-time system for non-photorealistic rendering
of hatching strokes over arbitrary surfaces [Praun et al., 2001]. It pre-renders
hatch strokes into a sequence of mipmapped images corresponding to dif-
ferent tones, collectively called a tonal art map (TAM). Strokes within the
hatch images are scaled to attain appropriate stroke size and density at all
resolutions, and are organized to maintain coherence across scales and tones.
In order to maintain both spatial and temporal coherence of the underly-
ing strokes, TAM images are established with a nesting structure among the
strokes, both between tones and between mipmap levels. Tone coherence is
preserved by requiring that strokes in lighter images be subsets of those in
darker ones. Resolution coherence is preserved by making strokes at coarser
mipmap levels be subsets of those at finer levels (see Fig. 5.14). At runtime,
hardware multi-texturing blends the hatch images over the rendered faces
to locally vary tone by weighting each texture image according to lighting
computed at the vertices. To render strokes over arbitrary surfaces, a lapped
texture parametrization is built where the overlapping patches are aligned
to a curvature-based direction field. Fig. 5.15 shows the resultant images
rendered with different TAMs.
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Fig. 5.14 A tonal art map. Strokes in one image appear in all the images to the
right and down from it [Praun et al., 2001]. Copyright of ACM, used with permission

Fig. 5.15 Hatching examples rendered with different TAMs [Praun et al., 2001].
Copyright of ACM, used with permission

Fung and Veryovka further extended the TAM approach that enables rep-
resentation of arbitrary textures [Fung &Veryovka, 2003]. The TAM images
are generated by distributing stroke primitives according to a probability
density function. This function is derived from the input image and varies
depending on the TAM’s scale and tone levels. The distribution functions at
multiple resolutions are computed according to some importance functions.
Frame-to-frame coherence is preserved by copying drawing primitives from
the light tonal textures into dark ones. The resulting depiction of textures
approximates various styles of pen-and-ink illustrations such as outlining,
stippling and hatching. Fig. 5.16 shows examples of stroke control using the
probability density.
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Fig. 5.16 The probability of a stroke becoming a hatching stroke increases as the
tone darkens [Fung &Veryovka, 2003]. Copyright of ACM, used with permission

Kulla et al. presented a method to artistically control the brush stroke
texture and color [Kulla et al., 2003]. A scanned paint sample has two distinct
properties: texture and color. The global color change across the sample is
called the color trajectory, as it defines a path through color space. Texture
change can be viewed as a local modulation of the color trajectory. It is
created separately by subtracting the color trajectory from each pixel column
of the original paint sample. An arbitrary color trajectory can then be added
back into this texture difference image to obtain a sample with different
colors but similar texture. Three methods, image-based texture synthesis,
view aligned 3D texture projection and view-dependent interpolation, are
explored to produce rendered, shaded images from the texture samples (see
Fig. 5.17).

Hall presented a Q-mapping technique for rendering three-dimensional
objects using non-photorealistic cues [Hall, 1999]. Q-maps are three-
dimensional textures that make marks on objects, and thus providing visual
cues for shape, shade and texture. Standard texture maps are applied before
lighting calculations, Q-mappings are applied afterwards. Q-maps adapt to
light intensity, typically by making more marks in darker areas. A Q-map can
produce images with a very wide range of visual styles (e.g., half tone shading,
and pen-and-ink color wash). A rendering system that includes Q-mapping
has three parts:

(1) Compute the intensity of reflected light using any standard method, such
as ray-tracing.

(2) Apply Q-maps to recolor the point. For each Q-map to be applied:
• Adapt the Q-map using light intensity.
• Transform the point from object into Q-map coordinates.
• Decide if the point is in or out of the Q-map texture.
• Decide a color for the point, and composite onto current color.

(3) Project the re-colored point onto the image using standard method.

Fig. 5.18 shows examples of the generation of non-photorealistic images
by Q-mapping.
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Fig. 5.17 Rendering a skull mesh with different paint samples [Kulla et al.,
2003]. (a) Paint samples; (b) Image based Texture Synthesis; (c) View aligned
3D texture projection; (d) View dependent interpolation. Copyright of IEEE, used
with permission

Fig. 5.18 Examples of visual styles simulation by Q-mapping [Hall, 1999]. Copy-
right of Blackwell, used with permission

Veryovka extended threshold-function-based discrete color shading by
specifying threshold values with an image or a procedural texture [Very-
ovka, 2002]. The threshold textures are constructed from texture images us-
ing the adaptive histogram equalization algorithm with clipping of values.
The mip map filtering is modified to maintain uniform texture effects regard-
less of surface orientation and scale. Similarly, procedural line textures are
constructed with the necessary distribution of values. In order to maintain
constant spacing between the lines, it recomputes coordinates of procedural
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textures depending on surface position. The aliasing artifacts are addressed
by filtering shading values produced with multiple threshold samples. The
threshold textures are often employed to highlight important features and
to suggest surface roughness, or the procedural textures are often used to
convey surface curvature by approximating artistic hatching. Fig. 5.19 shows
examples when applying the procedural textures.

Fig. 5.19 Procedural line hatching is used to convey discontinuities of the hair
surface. The spacing of hatching lines adapts to orientation, scale and deformation
of the face model [Veryovka, 2002]. Copyright of ACM, used with permission

5.2 Non-photorealistic Rendering with Interim Images

It is easy to create the shading image from a 3D object by traditional com-
puter graphics, and there also exists lots of work for converting the reference
image into artistic effect (see Chapter 4). Therefore a hybrid approach for
the NPR of a 3D object is proposed. It firstly generates the shading image
of the 3D object and then, guided by the corresponding 3D geometry, the
improved image-based artistic rendering is applied to generate the final ren-
dition in terms of the visual styles specified by the users. Fig. 5.20 gives a
non-photorealistic rendering diagram for it.
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Fig. 5.20 Diagram for NPR using interim image

5.2.1 Pen-and-ink Illustration from 3D Object

Pen-and-ink illustration is a limiting medium. Its major components are
strokes, tone, textures and outlines, etc. The pen itself gives off no color
or tone, so both color and shading must be suggested by combinations of in-
dividual strokes. Compared with the traditional graphics pipeline, there are
two fundamental differences between them:

(1) The dual nature of strokes. In the traditional graphics pipeline, a texture
is typically defined as a set of images assigned to each surface, which affect
the shading parameters and the tone is produced by dimming or brighten-
ing the rendered shades, while leaving the texture invariant. However, for
pen-and-ink illustration, the very same strokes that produce tone must
also be used to convey textures (see Fig. 5.21). Thus, tone and texture
must become more tightly linked in the system to produce this type of
imagery.

Fig. 5.21 The dual nature of strokes in pen-and-ink illustration [Winkenbach
& Salesin, 1996]. Copyright of ACM, used with permission
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(2) The need to combine 2D and 3D information. For pen-and-ink illustra-
tion, the 2D aspects of the particular projection used are every bit as
essential as the 3D information for creating a proper rendering. The nec-
essary 2D information takes a number of forms. For example, the size of
the projected areas must be used to compute the proper stroke density,
in order to accommodate the dual nature of strokes.

Winkenbach and Salesin introduced the “stroke texture”, which can be
used for achieving both texture and tone with line drawing [Winkenbach &
Salesin, 1996]. To render a scene, their system begins by computing the visible
surfaces and the shadow polygons. It then uses these polygons, projected to
normalized device coordinate space, to build the 2D BSP tree and the planar
map. Each visible surface is then rendered. The procedural texture attached
to each surface is invoked to generate the strokes that convey the correct
texture and tone for the surface. All the strokes are clipped to the visible
portions of the surface using set operations on the 2D BSP tree. Finally,
the outline strokes are drawn by extracting from the planar map all of the
outline edges necessary for the illustration. The notable differences from the
standard pipeline are given below:

(1) Maintaining a 2D spatial subdivision. The need to consider 2D adjacency
information in rendering suggests the use of some form of spatial subdi-
vision of the visible surface.

(2) The rendering of texture and tone. Polygons are no longer scan-converted,
both texture and tone must be conveyed with some form of hatching.

(3) Clipping. The strokes must be clipped to the regions they are texturing.
Since so many strokes are drawn, the clipping must be extremely fast.
Moreover, the clipping should be stroke-based, allowing a wavy stroke to
sometimes stray slightly outside of the clipped region.

(4) Outlining. Outlines play a significant role in pen-and-ink illustration.
Outlines come in two varieties: boundary and interior outlines. The
boundary outlines surround the visible polygons of the image, and must
be drawn in a way that takes into account both the textures of the
surrounded regions, and the adjacency information stored in the planar
map. The interior outlines are used within polygons to suggest shadow
directions or give view-dependent accents to the stroke texture.

In their system implementation, indication is also allowed. The pen-and-
ink illustration required just enough detail in just the right places, and also
the fading out of the detail into the unornamented parts of the surface in a
subtle and unobtrusive way. The user interactively places “detail segments”
on the image to indicate where detail should appear. Each segment is pro-
jected and attached to the texture of the 3D surface for which indication is
being designed. Fig. 5.22 shows an example of a pen-and-ink illustration from
a 3D model.
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Fig. 5.22 Pen-and-ink illustration from 3D model [Winkenbach & Salesin,1996].
(a) Pen-and-ink illustration without indication; (b) Detail segments for indication;
(c) Pen-and-ink illustration with indication. Copyright of ACM, used with permis-
sion

Sousa et al. presented a system for non-photorealistic rendering of precise
pen-and-ink drawing strokes over dense 3D triangle meshes with arbitrary
topology [Sousa et al., 2003]. The precise drawing can effectively illustrate
complex mesh models in a simple, informative manner that is valuable, espe-
cially for illustrating regions of interest while maintaining shape perception,
where the short pen marks are used to depict the geometric forms that give
3D objects their characteristic shape. They utilize techniques from geomor-
phology to calculate shape measures across the surface of the models. Pen
strokes are then modeled and rendered at each edge on the model with auto-
matic thickness adjustment and interactive control over pen marking styles.
The main strategies for their precise ink drawing are given below:

(1) One stroke per mesh edge. Each stroke has the same length and location
of its corresponding edge, and is modeled and rendered individually (i.e.,
no chaining). This strategy provides rendering at reasonable rates with
temporal coherence, as the strokes are fixed to their edges on the model,
and are not redistributed for each frame.

(2) Edge-based shape measures. It calculates shape measures at every mesh
edge, using only information from its two adjacent faces. This is achieved
by extending the edge-buffer data structure and by adapting shape mea-
sure calculation schemes from geomorphology.

(3) Pen stroke thickness and styles. It automatically adjusts the thickness of
each stroke as a function of surface curvature estimated at the edge; the
user controls the parameters of stroke style for placing different types of
pen marks and for achieving ink distribution visual effects.

In their system implementation, two styles are provided: filled and ser-
rated (see Fig. 5.23). Filled marks are implemented by simply rendering the
stroke defined by the ribbon in black. Serrated marks are modeled by dis-
tributing marks with different directions and lengths within the ribbon. Dur-
ing its pre-processing stage, a single 3D triangle mesh is read, with no need
for either illumination or surface reflectance information. An edge buffer data
structure is then constructed with automatic calculation of shape measures
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directly at each edge, by adapting numerical techniques used in digital terrain
analysis (geomorphology). At runtime, the edge-buffer is traversed, carrying
user information on (a) which shape measures to display, (b) threshold values
for the shape measures and (c) parameters to adjust stroke style attributes.
Each edge is then modeled and rendered as a single stroke, with a specific
thickness and style. Stroke thickness is automatically adjusted by the pre-
computed surface curvature measure associated with the edge. Stroke styles
are provided by an interactive stroke model, which reproduces traditional
pen marks and visual effects of ink distribution. Fig. 5.24 shows examples of
precise drawing.

Fig. 5.23 Filled style (a) and Serrated style (b) of precise ink drawing [Sousa et
al., 2003]. Copyright of Blackwell, used with permission

Fig. 5.24 Illustration examples of precise ink drawing [Sousa et al., 2003]. Copy-
right of Blackwell, used with permission
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Winkenbach and Salesin presented algorithms and techniques for render-
ing parametric free-form surfaces in pen and ink, and introduced the idea of
“controlled-density hatching” for conveying tone, texture and shape [Winken-
bach & Salesin, 1996]. The controlled density hatching problem is formally
stated below:

Given a parametric surface

(u, v) → (xw, yw, zw),

which maps points in the parameter domain (u, v) to points in world space
(xw, yw, zw). A perspective viewing transformation

V : (xw, yw, zw) → (x, y),

which maps (visible) points in world space to points in image space (x, y). A
hatching direction

h = (hu, hv).

in the parameter domain and a target tone function T (x, y).
Find a set of strokes

γi = (λi, θi),

with lines λi in the parameter domain running parallel to the hatching direc-
tion h, such that the apparent tone of mapping the strokes is T (x, y).

Where a stroke γ is defined as a pair of functions (λt, θt), where λt is a line
in the parameter domain (u, v), and θt is a thickness function, which describes
the thickness used in rendering the stroke at every parameter value t. The
apparent tone of an image in the neighborhood of a given point in image
space (x, y) to the ratio of the amount of ink deposited in the neighborhood
to its area .

The key step in solving this problem will be to determine exactly how the
images of two parallel lines in the parameter domain converge and diverge
when seen in image space. They approximate the distance between two curves
in image space, and adjust the thickness and spacing function to compensate
for any spreading and compression (see Fig. 5.25). The controlled-density
hatching also provides “fine grain” control of the tone of an illustration,
therefore traditional texture mapping techniques can be used to extend the
range of effects that can be achieved with pen-and-ink rendering (see Fig.
5.26).
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Fig. 5.25 Controlled-density hatching for the perspective of a sphere [Winkenbach
& Salesin, 1996]. Copyright of ACM, used with permission

Fig. 5.26 Pen-and-ink illustration for parametric surface [Winkenbach & Salesin,
1996]. Copyright of ACM used with permission

5.2.2 Pencil Drawing from 3D Polygonal Object

A key work on pencil drawing from a 3D polygonal object comes from Sousa
and Buchanan [1999a]. They described a 3D rendering, and broke the problem
of simulating pencil drawing down into four fundamental parts:

(1) Drawing materials. Low-level simulation models for wood-encased
graphite pencil and drawing paper, and for blenders and kneaded eraser.

(2) Drawing primitives. Pencil stroke and mark-making (for tones and tex-
tures) built on top of the drawing materials.

(3) Rendering methods built on top of the drawing primitives. Algorithms for
outlining, shading, shadowing and texturing of reference images and 3D
objects with a look that emulates real pencil renderings.

(4) High-level tools. Partial control of the drawing composition through or-
dering and repeating of drawing steps.

The matching between the tone of the interim image and pencil strokes is
carried out by a tone value chart, which is defined as an array tvci (3� i �11).
Each entry in tvci has the following information:
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(1) Lightness intensity range vmin, vmax.

(2) Average intensity value: av =
vmax + vmin

2
.

(3) Pencil hardness ph.
(4) Pressure value p.
(5) Number of pencil passes (or layers of marks) np.

Two traditional approaches are implemented to create charts of a graded
tone from value 0 (black) to 10 (white):

(1) Use one pencil hardness that will make a dark enough tone to create a
solid black. All tone values from 0 to 9 are created by changing the pencil
pressure and varying the number of pencil passes. The pressure applied
to the pencil is adjusted according to the average tone intensity values
and is given by: p = 1.0 − av. (see Fig. 5.27 top chart).

(2) Use seven pencils of grades 6B, 4B, 2B, HB, 2H, 4H, and 6H. Pencils are
changed to create a gradual blending of the tones. There are slight or no
variations on the pencil pressure and variations on the number of pencil
passes from one value to the next (see Fig. 5.27 bottom chart).

Fig. 5.27 Examples of tone value charts [Sousa & Buchanan, 1999b]. Copyright of
Blackwell, used with permission

Its algorithmic pipeline to generate pencil drawing from 3D polygonal
model is given in Fig. 5.28. They also provide the control of drawing steps
from preparatory sketches to finished rendering results. The pencil drawing
examples from a 3D object are given in Fig. 5.29.
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Fig. 5.28 The diagram of pencil drawing from 3D polygonal model

Fig. 5.29 Examples of pencil drawing from 3D polygonal model [Sousa &
Buchanan, 1999b]. Copyright of Blackwell, used with permission

5.2.3 Chinese Painting from 3D Model

There are two typical approaches to creating Chinese painting from a 3D
model. The first one is to manually re-structure and re-shape the 3D object
to be rendered in terms of the characteristics of Chinese painting strokes.
That is to say, the brush strokes are modeled as 3D geometric objects that
form a 3D scene, and then the photorealistic rendering pipeline is employed
to simulate the visual effect of Feibai (the white space showing through the
strokes), split end (the ends of the brush stroke shape are made transparent),
pressure end (the ends of the shape are made darker), etc. Fig. 5.30 shows
its algorithmic processing pipeline.

In this method, the Chinese painting is actually modeled in 3D brush
strokes (see Fig. 5.31). However, modeling shapes of a 3D object by these 3D
brush strokes is a challenge since these strokes (geometric objects) need to
be modeled in such a way that they will look interesting from every angle.
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Fig. 5.30 The algorithmic processing pipeline of 3D Chinese painting

Fig. 5.31 A bird modeled with 3D Chinese painting stokes [Chan et al., 2002].
Copyright of IEEE, used with permission

The visual effect of Feibai is created by adding irregular white lines to
the surface (see Fig. 5.32). Based on the diffuse color in the interim image,
the lighter area gets more lines and also the lines are thicker. The lines are
created using a pulse function, whereas a noise function is used to make the
lines irregular. The outline of the shape is created by determining the angle
between the normal of the surface and the viewing vector. The bigger the
angle, the thicker is the outline. The noise function is also used to make the
outline irregular.

Fig. 5.32 Feibai effect and outlines for 3D Chinese painting [Chan et al., 2002]. (a)
Diffuse color shader; (b) Feibai effect; (c) Outlines. Copyright of IEEE, used with
permission
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Moreover, to achieve the atmospheric perspective or depth effect, their
shaders detect the distance between the camera and the point being shaded.
If the distance is large, meaning that the object is farther away, the point is
shaded with less opacity, therefore it looks more transparent. Fig. 5.33 shows
a 3D Chinese painting of bamboo.

Fig. 5.33 A 3D Chinese painting of bamboo [Chan et al., 2002]. Copyright of IEEE,
used with permission

The second approach to generating Chinese painting from a 3D object is
shown in Fig. 5.34. It decomposes the rendering of Chinese painting into two
parts: borderline drawing and shading of interior region [Yeh & Ouhyoung,
2002].

Fig. 5.34 The algorithmic pipeline for generating Chinese painting from 3D objects

In the borderline stroke making process, 3D model silhouettes are first
calculated in real-time depending on the viewing direction of the user. Af-
ter retrieving silhouette information from all model edges, a stroke linking
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mechanism is applied to link these independent edges into a long stroke. Fi-
nally, a plain thin silhouette line is stylized as a stylus stroke with various
widths at each control point and a 2D brush model is combined with it to
simulate a Chinese painting stroke (see Fig. 5.35). In the interior shading
pipeline (see Fig. 5.36), three stages are used to convert a Gouraud-shading
image to a Chinese painting style image: color quantization, ink diffusion and
box filtering. The color quantization stage assigns all pixels in an image into
four color levels and each level represents a color layer in a Chinese painting.
The ink diffusion stage is used to transfer inks and water between different
levels and to grow areas in an irregular way. The box filtering stage blurs
sharp borders between different levels to embellish the appearance of the fi-
nal interior shading image. In addition to automatic rendering, an interactive
Chinese painting system which is equipped with friendly input devices can be
also combined to generate more artistic Chinese painting images manually.
Fig.5.37 shows examples of Chinese painting generated from 3D models.

Fig. 5.35 Examples of borderline drawing [Yeh & Ouhyoung, 2002]. Copyright of
Journal of System Simulation, used with permission.

Fig. 5.36 Interior shading pipeline [Yeh & Ouhyoung, 2002]. (a) Original image;
(b) Color quantization; (c) Ink diffusion; (d) Box filtering. Copyright of Journal of
System Simulation, used with permission.

Fig. 5.37 The resulting Chinese painting automatically generated from 3D animal
models [Yeh & Ouhyoung, 2002]. Copyright of Journal of System Simulation, used
with permission.



5.2 Non-photorealistic Rendering with Interim Images 191

5.2.4 Colorful Painting from 3D Model

The color information in the interim image plays a significant role in gen-
erating colorful images from 3D model. Some researchers explored forming
colorful painting by adding artistic elements such as stylized outlines and
shadows into the interim image generated by photorealistic rendering. For
example, Decaudin added stylized silhouettes and shadows into the interim
images to form a colorful cartoon style rendition [Decaudin, 1996]. Some
researchers employed interactive colorful painting methods to generate the
desired colorful illustrations, for example, Curtis et al. [1997] generated the
watercolor painting by allowing the users to manually specify the parameters
of strokes and pigments.

Later on, Lei and Chang proposed an approach to create the watercolor
effects from a 3D model based on modern per-pixel shading hardware in real-
time [Lei & Chang, 2004]. Their rendering pipeline is composed of two phases:
color band specifying and watercolor shader. The color-band specifying phase
lets the user create a color-band for each object in the scene, using an isotropic
lit-sphere interface [Sloan et al., 2001], which is set on top of a watercolor
simulation engine, created using Curtis et al. [1997] water-flowing model. The
watercolor shader takes the original 3D geometric models as the input, and
applies the watercolor stylization to the 3D scene using vertex and fragment
shaders. The 3D objects and the color-band are first taken to generate a color-
map and a granulation-map using a vertex shader script. Then the color-map
is further processed using a fragment shader, which takes the color-map and
paper-texture as the inputs and combines them with a Sobel edge map to
create various watercolor effects (see Fig. 5.38).

Fig. 5.38 Watercolor painting examples from 3D models [Lei & Chang, 2004].
Copyright of Springer Science and Business Media, used with permission
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5.3 Artistic Silhouette and Line-drawing for 3D Model

Silhouettes and line-drawings provide one of the main cues for figure-to-
ground distinction and play a significant role in shape conveying and recog-
nition. In this section, we will mainly discuss how to generate silhouette
rendition and line-drawing for 3D objects respectively.

5.3.1 Silhouette Rendering from 3D Polygonal Object

The silhouette of an object is the edge of a shape relative to a viewer, it is the
boundary of the object’s visible and invisible regions. The silhouette edges
for 3D polyhedral objects are usually defined as those edges that mark the
border between front-facing and back-facing polygons, and the visible parts
thereof as visible silhouette segments (see Fig. 5.39). From the point of the
drawing of strokes, a silhouette is the union of visible silhouette segments,
which are connected to form silhouette strokes.

Fig. 5.39 Silhouette definition for 3D polyhedron

The silhouette edge S of a free-form object is typically defined as the set
of points on the object’s surface where the surface normal is perpendicular
to the vector from the viewpoint (see Fig. 5.40). Mathematically, this means
that the dot product of the normal ni with the view vector at a surface vertex
P ’s position pi is zero:

S = {P : 0 = ni · (pi − C)},

with C being the center of projection.
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Fig. 5.40 Definition of silhouette for 3D surface model

Every silhouette rendering algorithm must solve two major problems: de-
tecting the set of silhouette edges and determining the visible subset thereof
(visibility culling). With respect to solving these two problems, the silhou-
ette rendering algorithms can be categorized as image-based algorithms (the
silhouette is represented in an image buffer), object-based algorithms (the
resulting silhouette is represented by an analytic description of silhouette
edges), and hybrid algorithms [Isenberg et al., 2003].

The image-based silhouette rendering approach usually exploits discon-
tinuities in the image buffer(S ) that result from conventional rendering and
extracts them using image-processing methods. It usually employs the depth
buffer to detect the discontinuities which correspond to regions where there is
a sudden change in the depth value of adjacent pixels. For example, Saito and
Takahashi applied an edge detector such as the Sobel operator to detect the
silhouettes [Saito & Takahashi, 1990]. This has the advantage of only finding
object-relevant edges such as silhouette lines including contours, because at
most of the places where silhouette lines are in the image there is a (C0)
discontinuity in the depth-buffer (see Fig. 5.41).

Fig. 5.41 Image space silhouette detection based on edge detection operators on
the Z-buffer [Saito & Takahashi, 1990]. Copyright of ACM, used with permission

Hagen extended this method by using a normal buffer, in which discon-
tinuities correspond to regions where there is a sudden change in the surface
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normals [Hagen, 2004]. Discontinuities will be detected in both the depth and
normal buffers. The union of these two discontinuities is stored in another
buffer, representing the silhouette. The silhouette may then be refined using
a thresholding function, and finally displayed.

In the object-space silhouette rendering, a straightforward way to de-
termine a model’s silhouette edges follows directly from the definition of a
silhouette. It consists of two basic steps. First, it classifies all the mesh’s
polygons as front or back facing, as seen from the camera. Next, the algo-
rithm examines all model edges and selects only those that share exactly one
front and one back facing polygon. Buchanan and Sousa suggested using a
data structure called an edge buffer to support this process [Buchanan &
Sousa, 2000]. In this data structure they stored two additional bits per edge,
F and B for front and back facing. When going through the polygons and
determining whether they face front or back, they XOR the respective bits
of the polygon’s adjacent edges. If an edge is adjacent to one front and one
back facing polygon, the F, B bits are 11 after going through all polygons.
In order to speed up the silhouette detection for changing views, some al-
gorithms use pre-computed data structures, while other algorithms achieve
faster execution by employing stochastic methods.

Gooch et al. [1999] and Benichou and Elber [1999] presented a prepro-
cessing procedure based on projecting face normals onto a Gaussian sphere.
Here, every mesh edge responds to an arc on the Gaussian sphere, which con-
nects the normal’s projections of its two adjacent polygons. For orthographic
projection, a view of the scene is equivalent to a plane through the origin of
the Gaussian sphere. It is further observed that every arc intersected by this
plane is a silhouette edge in the corresponding view. Applying this observa-
tion to silhouette edge extraction removes the need to check for each frame if
every face is front or back facing. The arcs are computed in a preprocessing
step and at runtime only the intersections with the view plane are tested.
Fig. 5.42 shows an example rendering of the silhouette.

Fig. 5.42 Silhouette rendering based on projecting face normals onto a Gaussian
sphere [Benichou & Elber, 1999]. Copyright of ACM, used with permission
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Hertzmann and Zorin presented a method that uses a data structure also
based on a dual representation [Hertzmann & Zorin, 2000]. This approach
constructs a dual representation of the mesh in 4D space based on the po-
sition and tangent planes of every vertex. The viewpoint’s dual (a plane in
4D) intersects the mesh triangles’ dual. Beforehand, the approach normal-
izes the dual vertices using the norm so that the vertices end up on one of
the unit hypercube’s sides. (The normalization does not make a difference
because the viewpoint’s dual plane goes though the origin.) This means you
need to intersect triangles in eight 3D unit cubes (the eight hypercube sides)
with a plane. At runtime, the approach only computes the viewpoint’s dual
plane and then intersects it with each hypercube side, resulting in edges that
intersect the silhouette. The major advantage of this approach over other
methods is that it works for orthographic as well as perspective projections.

Kim and Choe presented a progressive silhouette edges rendering method
using level-of-detail meshes, and the stylistic rendering was carried out with
stylized brush functions [Kim & Choe, 2002]. The proposed progressive sil-
houette rendering framework consists of two major steps, one is mesh sim-
plification for silhouette feature preservation and the other is the stylized sil-
houette edge rendering. The mesh simplification algorithm is based on local
changes in volume over the surface and changes in area near surface bound-
aries. Silhouette information has been used to enhance artistic rendering of
3D objects, and the parameterized brush functions in various styles are em-
ployed to artistically render progressive silhouette rendering of triangle mesh
of arbitrary topology.

In contrast to precomputation, Markosian et al. suggested a stochastic
algorithm to gain faster runtime execution of silhouette detection [Markosian
et al., 1997]. They observed that only a few edges in a polygonal model were
actually silhouette edges. In the hope of finding a good initial set of candi-
dates for front and back face culling, they randomly selected a small fraction
of the edges and exploited spatial coherence. Once they detected a silhou-
ette edge, they recursively tested adjacent edges until they reached the end
of the silhouette line. In addition, they also exploited spatial coherence, as
the silhouette in one frame was typically not far from the (visually) simi-
lar silhouette in the next frame. The combination of these two parts of the
algorithm yields most of the silhouette edges in one image. However this al-
gorithm can’t guarantee finding the entire set of silhouette edges for a certain
view in the scene.

However, object space silhouette rendering is usually time-consuming, and
a fast but less accurate way of determining silhouette edge visibility is an im-
age space approach. But in many applications, such as the stylized silhouette
rendering, only pixel accuracy is necessary. Thus, combining object space and
image space approaches in a hybrid algorithm can achieve significant speedup
for silhouette rendering. For example, Raskar and Cohen employed a depth
buffer to find and display silhouettes based on a solver of partial visibility of a
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3D model. The rendering process computes the intersection of adjacent front
facing and back facing surfaces in image space at interactive rates [Raskar
& Cohen, 1999]; Northrup and Markosian employed an ID buffer and a Z-
buffer to determine silhouette edge visibility [Northrup & Markosian, 2000].
A unique color identifies each triangle and silhouette edge in this ID buffer.
For each frame, the ID buffer is read from the graphics hardware and all ref-
erence image pixels are examined to extract all silhouette edges represented
by at least one pixel. The approach then scan converts and checks for visi-
bility the remaining silhouette edges according to whether a pixel with the
edge’s unique color exists in the ID buffer (see Fig. 5.43). Isenberg et al. used
a similar approach in principle, and they directly exploited the analytic con-
nectivity information of the mesh in combination with the available Z-buffer
information during rendering [Isenberg et al., 2003]. The silhouettes edges
are the border between front facing and back facing polygons as silhouette
edges and the visible parts thereof as visible silhouette segments. A silhouette
stroke is a concatenation of visible silhouette segments that pairwise share
a common vertex. The formed long smooth silhouette strokes can be the
stylization algorithm.

Fig. 5.43 Silhouette rendering in the hybrid approach [Northrup & Markosian,
2000]. Copyright of ACM, used with permission

This hybrid approach is also very popular in the artistic rendering of
silhouettes. Mart́ın and Torres developed the Virtual Lights model, which
allows the user to define when, how and where the silhouettes will appear in
an object [Mart́ın &Torres, 2001]. The main advantage of the method is that
it separates the location of the observer and the lighting process from the
selection of silhouettes. This is done using external components, the virtual
lights, which specify the silhouette’s location in a more flexible way. The basic
idea is to use virtual illumination, which produces virtual changes in shadows
and color; these changes are then used to define the silhouettes. Two kinds
of silhouettes, outlines and shape lines, are allowed in their system. Given
an observer, the outlines are the lines that represent the limit between the
visible and invisible parts of the object. Given one or more lights, shape lines
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are lines that represent the limit between different colors or shades. Fig. 5.44
shows the examples of silhouette rendering with the virtual lights.

Fig. 5.44 Silhouette rendering with the virtual lights [Mart́ın &Torres, 2001]. Copy-
right of Blackwell used with permission

Furthermore, Mart́ın et al. employed the silhouettes to produce the plane
elements, which are composed of an area part represented by a polygon,
and one or more linear parts represented by silhouettes [Mart́ın et al., 2002].
The form of the object can be transformed artistically, not only by changing
the attributes of the silhouettes, but also those of the polygons. The main
idea is that, given a 3D scene, each component can be converted into plane
elements that are parallel to the projection place, in such a way that the
projected image of a 3D scene is equivalent to the composition of these 2D
plane elements, like pushing the 3D objects until they are flat. The place
representation is termed a layered plane element, LPE. Each LPE has two
components: an area represented by a closed polygon, and a closed silhouette
(which can be divided into two or more open silhouettes). An object can be
divided into one or more LPEs. A convex object always produces an LPE
with one polygon and one silhouette, which is closed. A concave object can
produce one or more LPEs, each of which can have one closed silhouette or
several open ones. The scheme to produce an LPE is as follows:

For each object do
Define and extract the silhouettes
Obtain LPEs using connectivity and visibility information
Divide and clean the LPEs to eliminate useless information

End For

Once we have the LPEs of each object, they must be ordered. The correct
image is obtained by drawing them from back to front. Fig. 5.45 shows the
stylized rendering of flattening 3D objects into silhouettes.
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Fig. 5.45 Stylized rendering of flattening 3D objects into silhouettes [Mart́ın et
al., 2002]. Copyright of Blackwell, used with permission

5.3.2 Line-drawing for 3D Surface

Line drawing is one of the most common illustration styles, and can be found
in many contexts, such as cartoons, technical illustration, architectural design
and medical atlases. These drawings often communicate information more ef-
ficiently and precisely than photographs. From many points of view, a smooth
object may have no visible silhouette lines, aside from the outer silhouette,
and all the information inside the silhouette is lost. In these cases, the extra
line-drawings should be added to indicate the shape of the 3D surface.

Elber preferred the strokes from isoparametric curves of a free-form sur-
face for line art rendering [Elber,1995]. His strokes are defined as parallel
lines in the parameter domain resulting in isoparametric curves. The density
of the isoparametric curves are set to be a function of the illumination of
the surface determined using a simple shading model, or of regions of special
importance such as silhouettes. This works especially well with surfaces of
revolution (see Fig. 5.46).

Afterwards, Elber extended these techniques to enable interactive render-
ing with isoparametric curves, isophotes or lines of curvature on free form
surfaces [Elber, 1998]. For rendering, these stroke curves are approximated
by piecewise linear polygons. They are then evaluated up to a certain length
determined by the shader. For shading, the surface normals at the seed points
of the polygons are used. In order to meet real-time demands, all possible
strokes are precalculated. Furthermore, the number of polygons involved in
the rendering process is effectively reduced by inserting the polygons into
buckets. Geometrically, a bucket is a cone outgoing from the origin. The
union of all buckets covers the unit sphere. Every bucket contains all normals
falling into the corresponding cone. Fig. 5.47 shows an example line drawing
of a free-form surface.
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Fig. 5.46 Utah teapot line-art using isoparametric curves, with different densities
[Elber,1995]. Copyright of IEEE, used with permission

Fig. 5.47 Line-drawing of a wavy torus and a light bulb [Elber,1999]. Copyright
of Blackwell, used with permission

Rössel et al. further expand Elber’s method and utilize it on the triangle
meshes, which are a universal representation of surfaces and they become
more and more popular for geometric modeling[Rössel et al., 2000]. Discrete
curvature analysis on a triangulated surface allows the estimation of differen-
tial parameters. Lines of curvature are then constructed to be used as strokes.
For the rendering of the scene, such lines are uniformly scattered over the
surface. Depending on the point of view and the lighting, the strokes are
drawn with different lengths.

Rössel and Kobbelt presented an interactive system for computer-aided
generation of line art drawings to illustrate 3D models that are given as tri-
angulated surfaces [Rössel & Kobbelt, 2000]. In a pre-processing step, an
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enhanced 2D view of the scene is computed by sampling for every pixel in
the shading, the normal vectors and the principal directions obtained from
discrete curvature analysis. Then streamlines are traced in the 2D direction
fields and are used to define line strokes. By exploiting the special structure
of the streamlines, an intuitive and simple tone mapping algorithm can be
derived to generate the final rendering. The rendering style produces long sin-
gle or cross hatched lines of varying thickness that are especially appropriate
for technical drawings (see Fig. 5.48).

Fig. 5.48 Examples of interactive line art rendering [Rössel & Kobbelt, 2000].
Copyright of IEEE, used with permission

With respect to line-drawing for implicit surfaces, Elber presented a
scheme to render line art illustrations of free-form models using a coverage
that is based on a uniform point set distribution [Elber, 1998]. The use of
uniform point distribution allows one to locally prescribe the direction of the
stroke, a degree of freedom that was difficult to exploit before. The coverage
is independent of the parameterization in a global sense, and can be employed
for line art illustrations of other surface representations, most noticeably for
implicit forms. The line art effect is parameterization-independent, and can
be combined with traditional rendering techniques such as transparency and
texture mapping (see Fig. 5.49).

Fig. 5.49 Examples of line art drawing by point-based coverage [Elber, 1998].
Copyright of IEEE, used with permission

Belyaev et al. employed ridges and ravines to depict the shape of the
implicit surface [Belyaev et al., 1998]. Ridges are the local positive maxima
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of the maximal principal curvature along its associated curvature line, and
ravines are the local negative minima of the minimal principal curvature along
its associated curvature line. They derived formulas to detect the ridges and
ravines on a surface given in implicit form, and proposed an algorithm for
obtaining the piecewise linear approximation of ridges and ravines as inter-
section curves of two implicit surfaces. The illustrated ridges and ravines are
important for shape analysis and possess remarkable mathematical properties
(see Fig. 5.50).

Fig. 5.50 Line drawing for implicit surface [Belyaev et al., 1998]. Copyright of
IEEE, used with permission

5.4 Artistic Rendering for 3D Landscape

The modeling of a 3D landscape is very complicated, and its representation
forms also vary greatly. The approaches to the artistic rendering of a 3D
landscape are classified in the following three ways, in terms of the represen-
tational models:

(1) The 3D polygonal or surface models are built as base models to approxi-
mate the 3D landscape, and the artistic particles and strokes are created
to depict the details of the appearance of a 3D landscape. The resulting
rendering is generated by placing these artistic particles or strokes on it
directly.

(2) The 3D landscape is represented by special models such as the L-system
or shape grammar. The artistic rendering algorithms are embedded into
the modeling phases of 3D landscapes, and the resulting illustrations are
then generated by the artistic simulation methods aforementioned.

(3) The 3D landscape is represented by point clouds from the 3D scanner, and
the artistic illustration is generated by the point-based artistic simulation
methods.
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5.4.1 Artistic Simulation by Placing Artistic Particles and Strokes
on the 3D Surface

In the modeling and rendering of a 3D landscape, artists are able to rapidly
create an impression of free-form shape by drawing a few well-chosen strokes.
However, it is difficult to do this with conventional 3D modeling systems in
a computer graphics community. In order to ease the burden of modeling
complex scenes such as 3D landscapes, Kowalski et al. treated the rendering
strategy as an aspect of modeling, and used strokes to render 3D landscapes
in a stylized manner, suggesting the complexity of the scene without repre-
senting it explicitly [Kowalski et al., 1999].

They borrowed the “graftal” concept from Smith [1984], which is defined
as particles, together with recursively defined L-systems. From the point of
view of rendering, these “graftal”s are procedural stroke-based textures. The
key requirements are that “graftal”s be placed with controlled screen-space
density in a manner matching the aesthetic requirements of the particular
textures, but at the same time seeming to “stick” to surfaces in the scene,
providing inter-frame coherence and a sense of depth through parallax. In
their system implementation, the base polyhedral models are divided into
one or more surface regions (called patches), to each of which the user can
assign one or more procedural textures (called textures), although just one is
active at a time. The procedural texture elements are placed at specific areas
of the surface via a modified version of the “difference image” stroke-placing
algorithm, and the particular aesthetic effects are achieved by the customized
“graftals” (see Fig. 5.51).

Fig. 5.51 The “graftal” rendering of a 3D landscape [Kowalski et al., 1999]. (a) The
3D landscape represented with polyhedral models (b) The same scene drawn with
“graftals”. Copyright of ACM, used with permission

Kaplan et al. further extended the “graftal” to “geograftal”, which are
composed of common rendering-related attributes such as normals, positions,
colors and highlights [Kaplan et al., 2000]. Each geograftal is statically placed
on a model’s surface, the creator of a scene can edit the attributes of any ge-
ograftal to obtain full control over the look and feel of the hand drawn effects.
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Each model within a scene is stored as a list of constituent quadrilateral sur-
faces which define the mesh. Individual geograftal objects are stored with
each surface. Attributes such as location, width, height, type and color are
stored with each geograftal object. It allows the user to completely control
particle placement, size, shape and orientation on a per object basis, to gen-
erate a variety of artistic effects of significant complexity. The subdivision
surface models of complex scenes are rendered in a variety of artistic styles,
using this interactively editable particle system.

Cornish et al. proposed a framework that employs the hierarchical view-
dependent clustering algorithm to regulate the number and placement of
view-dependent particles, which are inspired by and built upon algorithms for
view-dependent polygonal simplification [Cornish et al., 2001]. The object-to-
be-rendered is represented as a densely sampled polygonal model, the vertices
of this model form the highest resolution of the view-dependent particle sys-
tem. View-dependent particles provide an efficient multi-resolution structure
for fine-grained control over the placement of strokes, and can be generated
from any polygonal model. Each node in a view-dependent simplification hi-
erarchy either represents a vertex from the original full-resolution model or
a vertex created by a series of vertex merging operations. The nodes form a
hierarchy called the particle tree. Each node represents a particle, leaf nodes
are attached to a vertex of the original polygonal model, while internal nodes
represent the result of particle merging operations. Internal nodes in polyg-
onal simplification typically represent a sort of average of all vertices below
them in the hierarchy (see Fig. 5.52).

Fig. 5.52 A view-dependent simplification hierarchy
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The multi-resolution nature of the structure provides efficient rendering
on all scales, allowing densely populated scenes containing tens or hundreds
of thousands of particles. Arbitrary scalar or vector fields may be defined
over the particles to describe attributes, such as color or orientation, which
affect stroke rendering. The view-dependent particles can be adjusted dy-
namically and continuously as viewing parameters shift, using the underlying
multi-resolution structure to enhance interactivity. The resulting rendering
can produce compelling artistic imagery of polygonal models in many varied
artistic styles at interactive rates (see Fig. 5.53).

Fig. 5.53 Artistic rendering using view dependent particles [Cornish et al., 2001].
Copyright of ACM, used with permission

5.4.2 Artistic Rendering of Plants Based on Their 3D Structure

Landscapes are one of the most important themes in painting. Plants such as
trees are the essential painting objects. The 3D modeling method of plants
such as the L-system is usually based on the integrated 3D structure and
geometry. Therefore, the dedicated artistic rendering methods based on the
3D structure are developed for the 3D plants model, such as trees.

Zhang et al. employed the following strategies for their painting of trees
by 3D structure [Zhang et al., 1999]:

(1) Move the brush from the root to a branch.
(2) Draw a vital branch (internode) using one stroke. Vitality appears on

a branch of strong apical dominance. Give priority to thick branches. If
there are two offspring branches, give priority to the one closer to the
parent branch.

(3) Give priority to offspring branches closer to the point of view.
(4) If the angle between the offspring branch and the parent branch exceeds

a limit, terminate the stroke.
(5) Draw a background branch using a separate stroke if the branch is not

hidden by a foreground branch.
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Their geometrical models of trees are generated from a growth model,
i.e., a tree is modeled on the simple dichotomy of its skeleton and thickness
(diameter). A skeleton is a set of internodes of a tree. An internode of a tree
is represented by a line segment e = (p, q) and a diameter de, where p and q
are position vectors of the terminal points. The entire rendering pipeline is
composed of the following three major steps:

(1) Split the tree into strokes, i.e., sequences of line segments each of which
represents an internode of the tree(see Fig. 5.54).

(2) Eliminate the hidden parts from each stroke under a certain criterion and
define the substrokes for the remainder of the tree;

(3) Draw the strokes individually by applying the models for ink transfer,
diffusion, paper and brush (see Fig. 5.55).

Fig. 5.54 The process of splitting a tree into strokes [Zhang et al., 1999]. (a)
The tree model; (b) The initial splitting of strokes; (c) The dividing of intersection
strokes; (d) The final painting. Copyright of John Wiley & Sons, Ltd., used with
permission

Fig. 5.55 The resulting painting of trees rendered from different view points [Zhang
et al., 1999]. Copyright of John Wiley & Sons, Ltd., used with permission

Way et al. presented a set of novel methods to automatically draw trees
in Chinese ink painting from 3D polygonal models. Outline rendering and
texture generation use the information of the silhouette, shade and orienta-
tion of the three-dimensional model’s surface to draw a particular tree [Way
et al., 2002]. The depth map, normal map and curvature maps (see Fig. 5.56)
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are constructed as the reference maps to analyze the information for the bark
texture.

Fig. 5.56 Reference maps for the analysis of information for the bark texture [Way
et al., 2002]. (a) Depth map; (b) Normal map; (c) Curvature map. Courtesy of Way
et al.

They employed a procedural textural approach to preserve the Chinese
ink painting style from accurately rendering the surface. The texture shape
is controlled by defining at least one brush stroke on the texture pattern. A
2D texture pattern is created to preserve both the stroke path and the brush
profile. Let τ(G, B, s, t) be a unit texture pattern defined by the brush stroke
set (G,B) at texture coordinate (s, t). Each brush stroke(gi, bi) of (G,B) is
defined by two components—stroke geometry (path), gi, and brush profile,
bi. In practice, gi can be defined by a set of control points to specify the
path of the stroke at a texture coordinate, and bi can be defined by a set
of parameters of the brush model. A mapping matrix is defined to map the
geometric component, G, of texture pattern, τ , to the screen space. Fig. 5.57
shows some examples of Chinese paintings of a 3D tree.

Fig. 5.57 Example painting of 3D trees [Way et al., 2002]. Courtesy of Way et al.
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Aiming to provide a transition from a tree illustration with a realistic
plant-specific look to an abstract representation, Deussen and Strothotte pre-
sented a framework for a pen-and-ink illustration of a 3D tree model [Deussen
& Strothotte, 2000]. They employed the “divide-and-conquer” strategy, and
separately rendered the tree skeleton and the foliage. The tree skeleton is
usually drawn up to the second branching level, and the trunk and branches
are represented by silhouette lines augmented by crosshatching in dark areas
(see Fig. 5.58). The foliage is drawn by using abstract drawing primitives
that represent leaves. Such primitives can be circles, ellipses or other poly-
gons. The visual appearance of the foliage can be divided into three areas.
The top of the tree is usually in direct light and is therefore visualized by
only some details and its outline. In the half shadow more details are drawn
to achieve an appropriate grey level and the outline of the leaves is often
drawn in detail. The third area is the shaded part. An interpolation scheme
allows the users to adapt the form of the primitives to the normal vector of
the particles that are used as input. Depth differences are used to determine
which part of the primitives is drawn (see Fig. 5.59).

The depth differences can be computed from the depth values in eye
coordinates to achieve linear differences or directly for the depth buffer values.
The depth z in the eye coordinate system is calculated from a depth value d
(d ∈ [0, . . . , 1]) by the following equation:

z =

z1z0(d1 − d0)
z1 − z0

d − (z1 + z0)(d1 − d0)
2(z1 − z0)

− (d1 + d0)
2

,

where d0 and d1 are minimal and maximal values represented in the depth
buffer, and, z0 and z1 are the corresponding depth values of the near and far
clipping plane in the camera projection.

With this proposed method, the users are able to generate illustrations
with different drawing styles and levels of abstraction. The illustrations gen-
erated are spatially coherent, enabling us to create animations of sketched
environments (see Fig. 5.60).

Wilson and Ma attempted to deal with highly complex geometrical mod-
els, such as trees, in a way that gives clear, meaningful and artistically be-
lievable renderings [Wilson & Ma, 2004]. Unnecessary or incomprehensible
details are removed while preserving important details and as much tex-
ture as possible. Their system supports two primary pen-and-ink styles for
tree rendering: silhouette edge rendering, in which only edges are drawn and
hatching, in which small groups of parallel lines are drawn. For silhouette
edge renderings, complex areas are identified and important edges in those
areas are drawn to match the greyscale value of a target rendering. For hatch-
ing, small blocks of the image with similar properties are extracted, allowing
abstraction of low importance details but preservation of the more important
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Fig. 5.58 The trunk and main branches of a tree are extracted and rendered by
silhouette lines and cross hatching [Deussen & Strothotte, 2000]. Copyright of ACM,
used with permission

Fig. 5.59 The pen-and-ink illustration with different threshold of depth disconti-
nuities [Deussen & Strothotte, 2000]. Copyright of ACM, used with permission

Fig. 5.60 The pen-and-ink illustration examples of 3D trees [Deussen & Strothotte,
2000]. Copyright of ACM, used with permission
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boundaries. These two methods can be combined in different amounts to
achieve a range of rendering styles imparting different information and style.
In the system implementation, they combined the two-dimensional image
processing techniques and three-dimensional geometry-processing techniques
in a hybrid pipeline to leverage the strengths of each. An intermediate render-
ing stage, combined with image processing techniques such as segmentation
provides additional information to the final renderer about how the viewer
will perceive the scene. These techniques, each with their own large range of
stylistic control, can be combined to form a continuum of styles. This infor-
mation is combined with the original geometry to generate the final stylized
rendering. Fig. 5.61 shows the example rendering of trees.

Fig. 5.61 The pen-and-ink illustration of trees with silhouettes and hatching [Wil-
son & Ma, 2004]. (a) Reference image; (b) Silhouette rendering; (c) Depth map;
(d) Hatching illustration. Copyright of ACM, used with permission

5.4.3 Artistic Rendition for Point-based Models

Using points as alternative modeling primitives has been explored for over
a decade and has recently received increasing attention. Points have been
shown to be advantageous over polygons when representing highly detailed
features. The output of the 3D scanner is usually represented as a point
cloud. Recently, researchers have shown increasing interest in capturing and
processing real-world 3D objects and scenes, as advances in 3D scanning
technology are making this 3D acquisition method feasible for objects on
ever larger scales. Outdoor scanning is becoming an efficient way to acquire
real world environments.

Outdoor environment scans demonstrate the following properties [Xu &
Chen, 2004]:

(1) Incompleteness. A complete scan of every object in the environment is
impossible to obtain due to the usual obstructions caused by intervening
objects, and the constrained accessibility of the scanner.

(2) Complexity. Natural objects, such as trees and plants are complex in
terms of their geometric shapes.
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(3) Inaccuracy. Distant objects are less accurate due to scanning hardware
limitations, and plants and trees can be moved by wind during the scan-
ning process.

(4) The data size is relative large, and holes and noise are also apparent in
the dataset.

These properties raise unprecedented challenges for existing methods, as
most of them have been focused on generating a complete polygon mesh
from points. Certain heuristics or even manual controls have to be specified
to smooth out noise and patch up holes, which can be a tedious and even
prohibitive process.

In order to artistically render the point-based models, each point is first
classified through a feature degree computation and a fuzzy classification as
either a directional feature point (on an object’s geometry or appearance
boundaries with consistent local orientation), non-directional feature point
(feature points without consistent local orientation), or non-feature point (the
rest). The variation in normal error is employed to determine the feature
degree of a point. The normal estimation error is also augmented by using
an edge detection filter on the color image associated with the scan to obtain
a color gradient value for each point. By assigning weights to the error value
and the gradient value, a final feature degree is assigned to each point, with
large feature degrees denoting points with high variation in normal estimation
error and large color shifts. The points are sorted from low to high feature
degree and divide the list evenly into bins. The bins are then used to produce
iterations with decreasing brush size (see Fig. 5.62).

Fig. 5.62 The rendering pipeline for point-based models [Xu et al., 2004]. Copyright
of John Wiley & Sons, Ltd., used with permission
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Once this classification is achieved, points of different classification are
depicted using strokes of various styles. While the directional feature points
are usually drawn using line segments or textured strokes with their orien-
tation guided by the point’s direction, the non-directional points are drawn
using strokes of uniform direction (pre-determined) or isotropic strokes such
as circular point sprites. To illustrate an object’s shading tone, a subset of
the non-feature points is also depicted, using strokes similar to those of non-
directional feature points. These points are selected through a conventional
dithering operation.

Adams et al. proposed a unified sample-based approach to represent the
geometry and appearance of the 3D object as well as the brush surface [Adams
et al., 2004]. Their point-based model can be re-sampled dynamically and
adaptively to store appearance detail across a wide range of scales. Each sur-
face sample carries geometric attributes such as position, normal and radius,
as well as a set of appearance attributes which represent the paint pigments:
dry paint attributes, wet paint attributes and wet paint volume per unit area.
The point samples are stored in a kd-tree which is used for efficient collision
detection and neighbor collection during painting.

In their painting system, the user interface enables the artist to manip-
ulate the brush, mix paint, move the object and apply paint in an intuitive
manner. The virtual brushes are modeled by a geometric representation of
the point-sampled surface, wrapped around a mass-spring skeleton, which
is a physics-based skeleton to simulate the dynamic behavior of the brush
(see Fig. 5.63). This flexible brush model enables us to define different brush
types of various sizes and resolutions. Collision detection between the brush
and complex 3D objects is possible at high rates. Since the paint transfer is
handled locally between brush and surface samples, texture parameterization
and patching become obsolete, it permits painting onto irregularly sampled
object surfaces without distortions or visual artifacts, and supports a variety
of paint effects, including paint diffusion, gold, chrome and mosaic paint, and
renders the objects in high quality(see Fig. 5.64).

Fig. 5.63 The painting interface and the virtual brush model [Adams et al., 2004].
Copyright of IEEE, used with permission
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Fig. 5.64 Painting example of point-based Bunny models [Adams et al., 2004].
Copyright of IEEE, used with permission

5.5 Artistic Illustration of Volume-based Models

A volume model is a visual representation of a large data set that can capture
both interesting elements and interesting structure inside the data. It is often
created for scientific visualization, whose main goal is to effectively convey
information to the user using the wide input channel provided by the human
visual system. The scientific visualization can be divided into two categories in
terms of its expressive roles: interpretive and expressive [Gordin et al., 1996].
In interpretive use, the user is primarily a viewer who is attempting to extract
meaning from visualizations. In expressive use, the user is an author who is
attempting to convey meaning through the construction of visualizations.

Volume illustration is a new approach to volume rendering, involving the
augmentation of a physics-based rendering process with non-photorealistic
rendering techniques to enhance the expressiveness of the visualization
[Rheingans, 2004]. The goals of volume illustration include directing atten-
tion to particular parts of the subject, clearly conveying the shape of the
subject, emphasizing depth relationships of items in the scene, and convey-
ing the nature of the translucence of objects. The major differences between
volume illustration and surface-based artistic rendering are summarized as
below:
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(1) In surface-based artistic rendering, the surfaces (features) are well de-
fined, whereas, with volumes, the volumetric features vary continuously
throughout three-dimensional space and are not as well defined as surface
features.

(2) In a surface model, the essential feature is the surface itself. The surface is
explicitly and discretely defined by a surface model, making “surfaceness”
a Boolean quality. Many other features, such as silhouettes or regions of
high curvature, are simply interesting parts of the surface. Such features
can be identified by analysis of regions of the surface. In a volume model,
there are no such discretely defined features. Additional processing is
required to first identify interesting features in the volume.

(3) A few of the usual depth cues are present in traditional rendering of
translucent volumes. Obscuration cues are largely missing since there
are no opaque objects to show a clear depth ordering. Perspective cues
from converging lines and texture compression are also lacking, since few
volume models contain straight lines or uniform textures. The dearth of
clear depth cues makes understanding spatial relationships of features
in the volume difficult. Similarly, information about the orientation of
features within the volume is also largely missing.

Algorithms for volume illustration can be categorized into two general
approaches. Surface algorithms first map the volume data to representative
geometry, such as an isosurface of constant value, and then render the ge-
ometric representation using artistic rendering techniques. The second type
of approach, direct volume rendering, generates the image directly from the
volume data, without first creating any geometry. We will discuss both of
them in detail in this section.

5.5.1 Artistic Rendering of Surface Features of Volume Model

The features of surface and boundary in a volume model are composed of the
overall shape of the representative geometry, silhouettes, border lines, tone,
texture and shadow, etc. It is possible to generate a single scan-converted solid
stroke texture that can be used to illustrate the essential shape information
of any level surface in the data. For example, Interrante presented a method
to place an evenly distributed set of tiny opaque particles on the surface via
3D line integral convolution through the vector field defined by the princi-
pal directions and principal curvatures of the level surfaces passing through
each grid-point of a 3D volume [Interrante, 1997]. From the point of view of
research methodology, the volume data is often converted into iso surfaces.
In addition, there are also attributes associated with the whole volumetric
object, such as texture identifier, normals, colors. Non-photorealistic render-
ing techniques are then employed to generate the resulting illustration. Fig.
5.65 shows an illustration example of a Microsoft mouse with various artistic
rendering effects.
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Fig. 5.65 An example of combined illustration techniques on the mouse data set
[Lum & Ma, 2002]. (a) Volume without light; (b) Cool to warm shading contribu-
tion; (c) Volume with cool to warm shading; (d) Silhouette contribution; (e) Volume
with silhouette; (f) Depth color cue contribution; (g) Volume with depth color cue;
(h) Final volume illustration. Copyright of ACM, used with permission

Most artistic rendering techniques such as line-drawing, silhouette, pen-
and-ink illustration, can be applied after the geometric representation of the
volume model is built. For example, Nagy et al. employed the hatching tech-
nique to enhance the features of the volume model [Nagy et al., 2002]. Their
hatching fields coincide with the principal curvature directions along selected
volume structures. To generate hatching strokes a number of seed points are
scattered into the volume. The number of effectively placed seed points is
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determined by the normalized gradient magnitude and mean curvature infor-
mation. The overall volume hatching is split into two passes. In the first pass
hatching strokes are rendered as line strips starting at the currently selected
seed points. In the second pass the volumetric dataset is rendered by means of
three-dimensional texture maps. Later on, Nagy and Klein further presented
an accurate, interactive silhouette extraction mechanism for texture-based
volume rendering [Nagy & Klein, 2004]. It serves the purpose of visualizing
silhouettes with an accurate width of one pixel. In a subsequent step, the
silhouettes can be optionally broadened, either by a fixed pixel width or,
depending on screen-space depth, using image processing. This illustration
technique is in particular insensitive to coarse discretization in the dataset.

Treavett and Chen presented two pen-and-ink rendering methods based
on the isosurface representation of the volume model [Treavett & Chen, 2000].
The pen-and-ink line-drawing are illustrated by the scalar fields, which are
the underlying mathematical definition of a volume dataset coupled with
an interpolation function. Their system implementation is built upon a tra-
ditional volume rendering pipeline integrated photorealistic rendering. It is
demonstrated that such an integration facilitates an effective mechanism for
enhancing visualization and its interpretation (see Fig. 5.66).

Dong et al. proposed a volumetric hatching approach for producing pen-
and-ink drawings from medical volume data [Dong et al., 2003]. Their hatch-
ing with line strokes accounts for data beneath the surface, and requires de-
termining not just the position of the line strokes, but also their orientation.
Thus, the strokes not only illustrate the subject’s shape, but also describe
its character in some way, for example, by displaying fiber orientations for
muscles. This volumetric hatching approach is well-suited for medical illus-
trations. The results are pen-and-ink-style images (see Fig. 5.67).

Lu et al. employed the stippling technique to artistically illustrate the
volume dataset [Lu et al., 2003]. Stippling is effective for many applications
and provides a quick and efficient method to investigate both volume and
surface models. Lu et al. explored several feature enhancement techniques to
create effective, interactive visualizations of scientific and medical datasets.
These enhancements include a new method for silhouette curve generation,
varying point sizes and stipple resolution adjustments based on distance,
transparency and lighting effects. They provided an effective way to inter-
actively preview large, complex volume and surface datasets in a concise,
meaningful and illustrative manner.

Besides the geometric representation in isosurface form, the volume model
of an object can also be directly converted into the polygonal mesh represen-
tation of its surface. Kobbelt et al. extended the well-known Marching Cubes
algorithm for the surface extraction, and its sampling is feature-sensitive and
thus reduces these alias effects, while keeping the simple algorithmic structure
of the standard Marching Cubes algorithm [Kobbelt et al., 2001].
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Fig. 5.66 Examples of traditional visualization and pen-and-ink based line-drawing
of the volume dataset [Treavett & Chen, 2000]. (a) Traditional visualization of
volume dataset; (b) Pen-and-ink based line-drawing of volume model. Copyright of
IEEE, used with permission

Fig. 5.67 Comparison of (a) Surface hatching with (b) Volumetric hatching. Vol-
umetric strokes better describe the subject [Dong et al., 2003]. Copyright of IEEE,
used with permission
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5.5.2 Artistic Illustration of Internal Structure of Volume Model

Surfaces are the most popular geometric representation for 3D models, as
they are easy to construct, transmit, and render. However, the surface repre-
sentation is limited because it lacks internal information. The key advantage
of direct volume rendering over surface rendering approaches is the poten-
tial to show the structure of the value distribution throughout the volume,
rather than just at selected boundary surfaces of variable value (by isosurface)
or coordinate value (by cutting plane). There has been extensive research
into illustrating surface shape using non-photorealistic rendering techniques.
However, accurately and automatically conveying the structure of a volume
model is a problem not fully solved by existing volume rendering approaches.
Physics-based volume rendering approaches create images which may match
the appearance of translucent materials in nature, but may not embody im-
portant structural details. Transfer function approaches allow flexible design
of the volume appearance, but generally require substantial hand tuning for
each new dataset in order to be effective.

One special challenge facing artistic illustration of internal structures of
a volume model is the specification of features and parameters of visual ef-
fects such that the resultant images are in fact providing useful insights into
the objects of interest. Rheingans and Ebert introduced a general method
for creating halo effects during the illumination process using the local spa-
tial properties of the volume [Ebert & Rheingans, 2000]. Halos are created
primarily in planes orthogonal to the view vector by making regions just out-
side features darker and more opaque, obscuring background elements which
would otherwise be visible. The strongest halos are created in empty regions
just outside (in the plane perpendicular to the view direction) of a strong
feature. The halo effect at a voxel is computed from the distance weighted
sum of haloing influences in a specified neighborhood. In order to restrict
halos to less interesting regions, summed influences are weighted by the com-
plement of the voxel’s gradient. The believable lighting and shadows can also
enhance the spatial structure of internal objects inside the volume model.
For example, a rim shadow, one particular form of stylized lighting effect,
shows the periphery and distant areas of the subject to be in shadow, sim-
ulating a beam of light from the front. Tone shading adds warm/cool cues
to shape, simulating the chromatic warming produced by a warm-spectrum
light source. Outlines serve an important purpose in conveying shape by em-
phasizing important boundaries and providing detail in flat parts that would
not be captured by lighting cues.

Overlaying the silhouettes on top of a volumetric image can help to better
convey the geometric structure of inner objects that are exposed during a
direct rendering process. Csébfalvi et al. utilized object contours to enhance
the shape features of internal objects inside the volume model [Csébfalvi et
al., 2001]. Object contours are usually characterized by locally high gradient
values. Based on the magnitude of local gradient information as well as on
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the angle between the viewing direction and gradient vector, data-values are
mapped to visual properties (color, opacity), which then are combined to form
the rendered image. This illustration approach varies the ways of visualizing
the interior of a 3D dataset, and is very useful when the user aims to peer
inside 3D objects (see Fig. 5.68).

Fig. 5.68 Illustration examples based on contour enhancement [Csébfalvi et al.,
2001]. Copyright of Blackwell, used with permission

Schein and Elber presented an algorithm for silhouette extraction from
volumetric data [Schein & Elber, 2004]. Trivariate tensor product B-spline
functions are used to represent the data. An offline phase that arranges the
data in a lookup table is employed to improve the computation time during
an interactive session. A subdivision scheme is employed to extract the sil-
houette curves from an implicit trivariate B-spline function. It can generate
high-quality smooth silhouettes that are of great value in the generation of
technical illustrations. Fig. 5.69 shows a distance-based coloring scheme for
the extracted silhouettes. Silhouettes that are close to the viewer are shaded
in red, while silhouettes that are farther away are shaded in dark blue.

Burns et al. described a method for creating line drawings from volu-
metric datasets by extracting linear features such as contours and suggestive
contours directly from the data [Burns et al., 2005]. The resultant imagery
is often more comprehensible than standard rendering styles, since it focuses
attention on important features in the data. Both the efficiency and com-
prehensibility of these algorithms are demonstrated by creating a variety of
figures based on a variety of datasets using a working system (see Fig. 5.70).

If there are no apparent objects inside the volume model, it will be diffi-
cult to express the internal structure merely by silhouettes or line-drawings.
The texture mapping techniques are then employed to represent the inter-
nal information inside the volume data model. The user can visually obtain
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Fig. 5.69 The color-coded silhouette of the foot volume [Schein & Elber, 2004].
Copyright of Springer Science and Business Media, used with permission

Fig. 5.70 Two volumetric line drawings. The left one is without hidden surface
removal [Burns et al., 2005]. Copyright of ACM, used with permission

the internal information of volume models by cutting the volume models at
the desired locations, and browsing the cross-section with internal textures.
Owada et al. developed an interactive designing and browsing system that al-
lows the user to add interesting textures to surface meshes manually by using
existing 2D reference images [Owada et al., 2004]. To assign internal textures
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to a surface mesh, the designer cuts the mesh and provides simple guiding
information to specify the correspondence between the cross-section and a ref-
erence 2D image. The guiding information, such as flow orientation, is stored
with the geometry and used during the synthesis of cross-sectional textures.
The texture synthesis technique is then employed to generate a plausible
cross-sectional image using 2D reference images, instead of sampling directly
from a complete 3D RGB volumetric representation. The overall pipeline to
illustrate the internal information by textures is shown in Fig. 5.71. It sup-
ports three types of textures: isotropic, layered and oriented. Isotropic tex-
tures have a uniform distribution in 3D space with no dependency on position
or orientation. All of the cross-sections of an isotropic texture look similar,
regardless of their location or orientation. Layered textures have varying ap-
pearances according to their position in the axial or radial direction, and it
requires depth information for the target 3D region. Oriented textures are
defined by both a reference image and a flow direction, the appearance of an
oriented texture depends on the orientation of the cut-plane relative to the
flow-direction. Fig. 5.72 shows more illustration examples of a volume model
with internal textures.

Fig. 5.71 The overall pipeline to illustrate the volume model with internal textures
[Owada et al., 2004]. Copyright of ACM, used with permission
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Fig. 5.72 Volume illustrations with internal textures [Owada et al., 2004]. Copy-
right of ACM, used with permission

Wang et al. proposed a “focus+context” framework that uses various stan-
dard and advanced magnification lens rendering techniques to magnify the
features of interest, while compressing the remaining volume regions without
clipping them away completely [Wang et al., 2005]. The magnification lens is
based on the magnification model in optical physics. It provides users with
a method for close inspection of regions of interest in volumetric objects.
Fig. 5.73 illustrates the principle of a magnification lens. The blue line seg-
ment represents a magnification lens positioned on the image plane by the
user. Lc is the center point of the lens and F is the virtual focal point. The
transition region is represented by the red line segments on the image plane
with a width Lb, Lr is the radius of the lens, and the magnification region of
the lens is shown as the blue line segment. For a ray starting from a point Pl

in the transition region, the direction is computed according to the distance
from Pl to Lc as follows:

|PF−F |
Lr

=
|Pl − Lc| − (Lr − Lb)

Lb
.

Let PF be the point at which this ray passes through the virtual lens
focus plane, which is parallel to the image plane and includes the focal point
F . PF is calculated by the following equation:

PF = F +
Pl − Lc

|Pl − Lc| × |PF−F |,
ray dir = PF − Pl.

Assuming that PRI is the orthogonal projection of PR on the image plane,
the magnification factor mf for point PR is calculated by

mf =
|PR − PRI |
|F − Lc|

(
Lb

Lr
− 1

)
+ 1.
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Fig. 5.73 The principle of a magnification lens [Wang et al., 2005]. Copyright of
IEEE, used with permission

When orthogonal incident rays hit the image plane, in the region of the
magnification lens, then the ray directions are modified and go through the
focal point F . Therefore, a ray cone is formed between the lens and F . The
objects within this cone are rendered in a larger area on the image plane
than their original size, while the other objects retain their original size.
Consequently, the objects in the region of interest are magnified.

In feature-driven volume visualization, the free-form magnification lens
can be employed to also achieve feature-sensitive and feature-centric object
enlargement. The difference is that the shape of the magnification lens is de-
fined dynamically by the shape of the features (represented by the segmenta-
tion information) in the dataset, within an arbitrary viewport (see Fig. 5.74).
For each ray orthogonally incident upon the image plane, the new direction is
computed as follows. Assuming all rays have changed directions to the focal
point F ,

(1) If a ray passes through the feature, then its new direction is pointing
to F .

(2) If the ray does not pass through the feature but is inside the transition
region on the image plane, the distance d (see Fig. 5.74) from its entry
point to the boundary of the feature projected area is calculated. This
distance is used to compute the new direction.

(3) Otherwise, the ray continues in its original direction.

Fig. 5.75 shows the illustration samples of feature magnification.
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Fig. 5.74 Feature-based lens illustration [Wang et al., 2005]. Copyright of IEEE,
used with permission

Fig. 5.75 Feature magnification illustration examples with different magnification
factors [Wang et al., 2005]. Copyright of IEEE, used with permission

5.6 Summary

In this chapter, the artistic rendering techniques for 3D objects are reviewed
in terms of research methodology and drawing skills. In general, 3D artistic
rendering techniques are becoming mature, and the modeling domain has
been extended from 3D polygonal objects to 3D landscapes, 3D surfaces
and 3D volume models, etc. For the time being, real-time artistic rendering
techniques get more attention in the booming video game industry, and some
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of the artistic rendering techniques have been implemented in the 3D game
engine [Freudenberg et al., 2001]. At the same time, hardware-accelerated
artistic rendering techniques emerge to speed-up the generation of artistic
rendition, and it becomes an interesting tendency in non-photorealistic
rendering [Raskar, 2001; Claes et al., 2001].

From the point of view of research methodology, the 3D artistic rendering
techniques should systematically embed more commonsense knowledge and
experience from human artists into the algorithm. If a breakthrough can be
made in the real-time implementation of 3D artistic rendering in the near
future, it will be very convenient and effective when generating the resulting
artistic rendition from the 3D model, especially for the illustration of a large
scene or a huge dataset.
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Rössel C, Kobbelt L, Seidel H(2000) Line art rendering of triangulated surfaces

using discrete lines of curvatures. Journal of WSCG 2000 168–175
Saito T, Takahashi T(1990) Comprehensible rendering of 3D shapes. In: Proceed-

ings of the 17th Annual Conference on Computer Graphics and Interactive
Techniques 197–206

Schein S, Elber G(2004) Adaptive extraction and visualization of silhouette curves
from volumetric datasets. The Visual Computer 20(4):243–252

Singh K(2002) A fresh perspective. In: Proceedings of Graphics Interface 2002
Sloan PJ, Mart́ın W, Gooch A, Gooch B(2001) The lit sphere:a model for captur-

ing NPR shading from art. In: Proceedings of Graphics Interface 2001 143–150
Smith AR(1984) Plants, fractals and formal languages. Computer Graphics

18(3):1–10
Sousa MC, Buchanan J W(1999b) Computer-generated graphite pencil rendering

of 3D polygonal models. Computer Graphics Forum 18(3):195–207
Sousa MC, Buchanan, J W(1999a) Computer-generated pencil drawing. In: West-

ern Computer Graphics Symposium
Sousa MC, Foster K, Wyvill B, Samavati F(2003) Precise ink drawing of 3D

models. Computer Graphics Forum 22(3):369–379
Treavett SMF, Chen M(2000) Pen-and-ink rendering in volume visualization. In:

Proceedings of the 11th IEEE Visualization 2000 Conference 203–210
Veryovka O(2002) Animation with threshold textures. In: Proceedings of Graphics

Interface 2002 9–16
Wang L, Zhao Y, Mueller K, Kaufman A (2005) The magic volume lens: an

interactive focus+context technique for volume rendering. In: Proceedings of
the 16th IEEE Visualization 2005 367–374

Way D, Lin Y, Shih Z(2002) The synthesis of trees in Chinese landscape painting
using silhouette and texture strokes. Journal of WSCG 2002 499–506

Wilson B, Ma KL(2004) Rendering complexity in computer-generated pen-and-
ink illustrations. In: Proceedings of the 3rd International Symposium on Non-
photorealistic Animation and Rendering 129–137

Winkenbach G, Salesin DH(1996) Rendering parametric surfaces in pen and ink.
In: Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques 469–476
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6

Expressive Rendering

The ultimate goal of computer graphics is to make the rendered image effec-
tively convey the visual content that can be effectively recognized by human
beings. Almost all physical surfaces contain some microstructure or texture
visible to the human eye. It gives us information such as the type of material
which composes the object and the relative smoothness or coarseness of the
surface. Therefore, texture is an important surface characteristic which pro-
vides a great deal of information about the nature of a surface, and here are
three characteristics of texture which provide this perceptual information:
size, shape, and density [Schweitzer, 1983]. Perceptual psychologists have
recognized the importance of surface texture as a cue to space perception,
and lots of perceptual principles are newly developed for computer graph-
ics [May, 2000].Changes in these components due to standard perspective
and projective transformations provide knowledge about surface depth and
changes in the orientation of the surface.

With the advent of expressive rendering [Landsdown & Schofield, 1995],
the problem of computer graphics gradually changed from making displays
recognizable, to ensuring that users notice what they are intended to see,
without being distracted by irrelevant information. In expressive rendering,
the resultant image will encourage the viewer to make the same imaginative,
perceptual contributions they make to interpretive art. It is also desirable to
be capable of interpreting all the data available in a 3D model in order to
generate images that possess some internal meaning and structure. In this
chapter we will mainly discuss how to make the resultant image comprehensi-
ble, how to convey the shape to the viewer, how to communicate meaningful
information to the viewer, and how to depict the transparent surfaces or
objects for the observer.
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6.1 Comprehensible Rendering

Comprehensibility mainly depends on the object, purpose and sometimes
the viewers’ preferences, and cannot be expressed with theoretical definitions.
The key point in synthesizing a comprehensible image is how to determine the
most suitable combination of enhancement techniques. In general, there are
three major approaches to improving the comprehensibility of the resulting
rendition, there are:

(1) The enhancement of visual cues for cognition. The drawing primitives
themselves or the attributes or features of the visual effect are augmented
to attract the attention of the user, or to make the information-to-be-
conveyed clear.

(2) The composition of multiple views into one picture. The points of view
are carefully selected, controlled and the renditions from multiple views
are seamlessly composed into the picture of the main view in which the
user can simultaneously capture the necessary information from different
views in the same illustration.

(3) The exposure of hidden information by cutting-out. The outer shape of
the object is removed by cutting-out operations in terms of the user’s
interests, such that the user can easily see the hidden information or
internal structure of the object.

6.1.1 Enhancement of Rendering by Emphasis of Visual Cues

In graphical rendering, the detailed visual cues, such as depth, light intensity,
normals, contrast and hidden parts of the scene, often become unnoticeable in
the flood of details in the resulting pictures, partly due to the limitation of the
traditional rendering or modeling techniques. Therefore, it will be very useful
for visual cognition tasks if these visual cues can be exposed or emphasized by
alternative rendering or modeling approaches, which can effectively eliminate
the vagueness of the resultant images.

The pioneer work on the emphasis of visual cues can be dated back to
[Kamada & Kawai, 1987], in which Kamada and Kawai proposed a hidden-
line indication scheme that can produce the explanatory nature of the result-
ing pictures. They developed a view-dependent picturing function to control
how hidden parts of lines are displayed, such as removing all hidden lines or
drawing all hidden lines in dashed style. Each part of a hidden line is charac-
terized by the shielding set of surfaces that hide it (see Fig. 6.1). The display
attribute of a part of a hidden line is determined by both its shielding set
and the line to which the subpart belongs.
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Fig. 6.1 Example of hidden line emphasis

6.1.1.1 Emphasis of the normal

Cignoni et al. proposed a normal emphasis technique that can enhance the
shading and the perception of its features by modifying the normals of an
object [Cignoni et al., 2005]. The implicit idea behind this is that appropri-
ate shading supplies the kind of information that is more qualitative than
quantitative in the perception of an image (see Fig. 6.2). The enhanced nor-
mals are integrated into the model, either by assigning new normal values per
vertex, or through re-sampled normal maps. The normal enhancement effect
that can be obtained with the application of the formula nE=n+k×(n−nL)
depends mainly on two parameters: the amount of low-pass filter that we use

Fig. 6.2 Comparison of traditional Phong shading and normal emphasis [Cignoni
et al., 2005]. (a)Phong shading; (b) Shading with normal variation. Copyright of
Elsevier, used with permission
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to generate the smooth normals nL and the value of the weighting constant
k used in the perturbation of the original normal vectors. During the ren-
dering stage, the enhanced normals, mapped to the input geometry using a
standard texture mapping approach, can then be used in any rendering sub-
system that supports user-specified normals, or interactive bump mapping.
In essence, the normal emphasis enhances the surface orientation, leaving the
silhouette unchanged. It is particularly well suited to improve the rendering
of mechanical parts where common straight-forward shading techniques can
often generate shading ambiguities. (see Fig. 6.3).

Fig. 6.3 Examples of synthesized images with normal emphasis [Cignoni et al.,
2005]. Copyright of Elsevier, used with permission

6.1.1.2 Emphasis on depth

Luft et al. introduced additional depth cues to improve the perception of com-
plex scenes [Luft et al., 2006]. The difference between the original and the
low-pass filtered depth buffer is computed in order to find spatially important
areas. This information is explicitly utilized to enhance the perceptual qual-
ity of the resultant images by locally altering the contrast, color and other
parameters of the image. It allows us to emphasize objects in the foreground
and to visually depict the spatial relation in complex scenes, especially the
effect of depth darkening (the background objects are slightly darkened) and
introduces a natural additional depth cue by usually increasing the local
contrast. The method is useful for all scenes that contain spatially complex
arrangements of objects. This approach can be applied to any image data
with available depth information.

6.1.1.3 Emphasis on lighting

Tanaka and Ohnishi presented a regional emphasis of lighting intensity
[Tanaka & Ohnishi, 1997]. Their intensity emphasis method is based on hu-
man vision. It simulates the adaptation of photoreceptor cells and the lateral
inhibition of receptive fields. These attributes of a vision system are realized
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by the computation of relative intensity and differential intensity in small
areas. The algorithm first converts a color image into a grey-scale image. The
grey-scale image is normalized by its mean intensity, so that the average in-
tensity of the image is equal to 1. The image is then emphasized by increasing
local contrast while reducing global contrast, amplifying image intensity on
shadowed surfaces, reducing intensity on illuminated surfaces and expand-
ing contrast at intensity edges. The resultant image is amplified for display.
This is the inverse process of intensity normalization. Finally, a color image
is reconstructed with the original hue and chroma so the color of the orig-
inal image is retained. This method can successfully generate painting-like
artifacts, which greatly improves the perception of visual elements displayed
in an image. As shown in Fig. 6.4, it exhibits contrast magnification along
object boundaries. Darker backgrounds are drawn at the places where glossy
objects are located. The same background is represented as a much brighter
region around shadowed or shaded objects. This makes the silhouettes of the
objects clear.

Fig. 6.4 Example of intensity emphasis of computer generated images [Tanaka &
Ohnishi, 1997]. (a) Original image; (b) Resultant image with intensity emphasis.
Copyright of Blackwell, used with permission

Akers et al. further summarized that lighting can be used to convey the
following features of the object [Akers et al., 2003]:

(1) Orientation: On smooth portions of a curved surface, directional light
is used to create diffuse shading, which helps viewers estimate the local
orientation of the surface and differentiate between convex and concave
parts of the shape.

(2) Curvature: Regions with high curvature or edge discontinuities are often
emphasized with highlights. Photographers depict metallic objects using
linear lights, aligning highlights with directions of zero curvature.
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(3) Bumps and texture: Small-scale surface features are much easier to de-
tect under side or raking lighting. Shadows cast by these features create
regions of high contrast and reveal texture. The best landscape pho-
tographs are often taken at dawn or dusk; the best views of the moon’s
craters occur along its terminator.

(4) Silhouettes: The silhouette of an object is one of its most distinctive
features. Rim lighting is often used along the edge of an object to distin-
guish it from a dark background. Rim shadowing serves the same purpose
against a light background.

They accordingly presented a novel compositing process to allow the
artist to quickly and easily create technical illustrations from a set of
photographs of an object taken from the same point of view under variable
lighting conditions (see Fig. 6.5). Each source photograph is associated
with a matte image that modulates its contribution to the final image
at each pixel. All the weighted source images are then added together to
produce the final composite. It enables the final lighting in each area of
the composite to be manipulated independently, as the source images are
combined using spatially-varying light mattes. To ensure that the composite
photograph has the same average brightness as the input images, it is
required that the weights at each pixel add up to one. This image-based
re-lighting technique makes it easy to create illustrations of complex objects
that effectively communicate their shape and texture using common lighting
design techniques (see Fig. 6.6).

Fig. 6.5 Three sample photographs of a baboon skull cast taken under different
lighting conditions, showing above their corresponding mattes. The composite im-
age is shown on the right. Arrows indicate local variation in the lighting direction
across the resultant composite [Akers et al., 2003]. Copyright of IEEE, used with
permission
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Fig. 6.6 Above: three example images of a robotic assembly taken under three
different lighting directions (indicated by arrows). Below: The resultant re-lighted
image. The colored arrows indicate the predominant lighting direction used in se-
lected regions of the composite. The first two are used to add highlights to the
cylindrical base, while the third is used to reveal the brushed texture of a flat
surface [Akers et al., 2003]. Copyright of IEEE, used with permission.

6.1.1.4 Emphasis on discontinuity

Saito and Takahashi presented the rendering method to improve the compre-
hensibility of shape features by enhancing certain geometric properties [Saito
& Takahashi, 1990]. Data about the geometric properties of the surfaces
are preserved as Geometric Buffers (G-buffers). A G-buffer set is obtained
by forming projection views and removing hidden surfaces. Each G-buffer
contains one geometric property such as the depth or the normal vector of
the visible object in each pixel. By using G-buffers as intermediate results,
artificial enhancement processes are separated from geometric processes (pro-
jection and hidden surface removal) and physical processes (shading and tex-
ture mapping), and are performed as post-processes. If geometric factors (i.e.,
shapes and camera parameters) are fixed, any combination of enhancement
can be examined without changing the contents of the G-buffers. This permits
a user to rapidly examine various combinations of enhancement techniques
without excessive re-computation, and easily obtain the most comprehensible
image. The allowed basic enhancement operations are discontinuities, edges,
contour lines and curved hatching. The most significant application of draw-
ing discontinuity is edge drawing. Though all of them are line drawings, they
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are realized with 2D image processing operations instead of line tracking,
so that they can be efficiently combined with conventional surface rendering
algorithms.

Nienhaus and Döellner further extend the G-buffer technique to edge
enhancing in real-time non-photorealistic rendering [Nienhaus & Döellner,
2003]. It is based on the edge map, a 2D texture that encodes visually im-
portant edges of 3D scene objects. The edge map is based on the following
classification of edges: (a) A silhouette edge is an edge adjacent to a poly-
gon facing towards the camera (front-facing); (b) one polygon facing in the
opposite direction (back-facing); (c) a border edge is an edge to exactly one
polygon. A crease edge is an edge between two front-facing (or back-facing,
respectively) polygons whose dihedral angle is above some threshold. The
dihedral angle defines the intensity of a crease edge. The implementation is
based on multi-pass rendering: First, geometrical properties of 3D scene ob-
jects are extracted to generate image-space data similar to G-buffers. Next,
discontinuities are extracted in the image-space data using common graphics
hardware to emulate image-processing operations. In subsequent rendering
passes, the algorithm applies texture mapping to combine the edge map with
3D scene objects.

6.1.2 Cutaway Illustration

Cutaway illustrations produce a visual appearance as if someone had cut out a
piece of the object or sliced it into parts, and the entities lying inside or going
through an opaque object are of more interest than the surrounding one itself.
The purpose of cutaway illustration is to allow the user to view the interior
of a solid opaque object. Illustrators often use cutaways to reduce occlusions
and expose important internal parts, as most complex 3D objects contain
many tightly connected and intertwined parts that occlude one another. Well
designed illustrations reveal not only the shape and appearance of important
parts, but also the position and orientation of these parts in the context of the
surrounding structures. It avoids ambiguities with respect to spatial ordering,
provides a sharp contrast between foreground and background objects, and
facilitates a good understanding of spatial ordering.

From an algorithmic point of view, the most interesting question is where
to cut the outside object, as naively cutting a hole through the occluding
parts usually does not reveal the context of the surrounding structures. Cuts
should respect the geometry of occluding parts. The most effective cuts should
be carefully designed to partially remove occluding parts so that viewers can
mentally reconstruct the missing geometry. Thus, the shape and location of
cuts depend as much on the geometry of the occluding parts as they do on the
position of the target internal parts that are to be exposed. Diepstraten et al.
found some interesting common properties in many examples of traditional
cutaway drawings [Diepstraten et al., 2003], and summarized them in seven
basic rules, including:
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(1) Inside and outside objects have to be distinguished from each other.
(2) The cutout geometry is represented by the intersection of (a few) half

spaces.
(3) The cutout is located at or around the main axis of the outside object.
(4) An optional jittering mechanism is useful to allow for rough cutouts.
(5) The possibility of making the wall visible is needed.
(6) The breakaway should be realized by a single hole in the outside object.
(7) All interior objects should be visible from any given viewing angle.

These rules allow the automatic generation of reasonable cutaways. Diep-
straten et al. carried out two different subclasses of the general notion of a
cutaway drawing: cutout and breakaway (see Fig. 6.7). These cutaway tech-
niques can be readily combined with existing non-photorealistic rendering
styles, such as silhouette rendering cool/warm tone shading, or pen-and-ink
illustration. Several different NPR styles were implemented to demonstrate
that our cutaway processes are independent of the rendering style (see Fig.
6.8).

Fig. 6.7 Comparison of computer-generated cutout and breakaway illustrations
[Diepstraten et al., 2003]. (a) The image demonstrates the cutout technique with
a jittering boundary; (b) The breakaway method is applied to the same scene.
Copyright of Blackwell, used with permission

Fig. 6.8 Cutaway illustrations of a curved conduit [Diepstraten et al., 2003]. (a)
Toon shading and silhouette rendering; (b) Cool/warm tone shading with black
silhouette lines; (c) Layered-stroke textures. Copyright of Blackwell, used with per-
mission
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Li et al. presented a system for authoring and viewing interactive cutaway
illustrations of complex 3D models using the conventions of traditional scien-
tific and technical illustration [Li et al., 2007]. They simulated three classical
cutaway illustrations: object-aligned box cuts, tube cuts, and window cuts.
The object-aligned box cuts are aligned with the principal Cartesian coordi-
nate frame of a part. This helps to accentuate its geometric structure. For
man-made objects, the shape of the part usually implies the orientation of
this frame. Such objects are typically designed with respect to three orthog-
onal principal axes and in many cases they resemble rectangular solids.

In the tube cuts, illustrators usually align the cut with the primary axis
running along the length of the part. Often, illustrators will remove a section
of the structure using a transverse cutting plane that is perpendicular to the
primary axis. The tube cuts fit well with 3D models of both biological and
man-made objects containing many structures that resemble tubes, either
because they exhibit radial symmetry (e.g., pipes and gears), or because
they are long and narrow (e.g., long muscles and bones, plumbing).

The window cuts fit well with complex 3D models that include thin ex-
tended enclosing structures (e.g., skin, the chassis of a car) that occlude
much of the model’s internal detail. To expose internal parts, illustrators of-
ten cut freeform or four-sided windows out of these structures. The window
boundaries provide a useful cue about the shape of the enclosing structure.
Boundary edges near silhouettes of the object help emphasize these contours.
Another convention is to make the window jagged. This approach emphasizes
that a cut was made and distinguishes the boundaries of the cut from other
edges in the scene. All three of these boundary conventions help viewers
mentally reconstruct the shape of the enclosing structure.

The view points should also be carefully chosen to help the viewer see
the spatial relationship between the internal target parts they are interested
in and the occluding parts. Typically, the viewpoint not only centers the
target parts in the illustration, but also minimizes the number of occluding
structures. This strategy makes it possible to expose the parts of interest
with relatively few cuts, leaving more of the surrounding structures intact for
context.

In the system implementation, there are two components. The authoring
interface allows an author to equip a 3D geometric model with additional
information that enables the formation of dynamic cutaways. The viewing
interface takes a rigged model as input and enables viewers to explore the
dataset with high-level cutaway tools. Both the viewpoint and cutting pa-
rameters can be interactively controlled to make it easier for the viewer to
understand the complex spatial relationships between parts.
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6.1.3 Comprehensive Rendering via Composite Viewpoints

There are two typical multi-viewpoint-based rendering methods to enhance
the comprehension: the detail in context technique and surperspective pro-
jection technique.

The detail in context is defined as the ability to see simultaneously, for
some chosen aspect of the information, sufficient local detail set in the over-
all global context. It strives to provide increased information comprehension,
ease of navigation and effective use of screen space. There is a growing variety
of types of distortion that can create detail in context viewing tools. Current
techniques, which admit a greater variety of resulting views, are called distor-
tion viewing, multi-scale viewing and detail in context views. Sheelagh et al.
summed up the principles to create a multi-scale display as follows [Sheelagh
et al., 1997]:

(1) Avoid all occlusion if possible.
(2) Keep focal points in at least approximately the same location as in the

initial layout.
(3) Smoothly integrate the focal point into its context.
(4) Use a familiar distortion curve (hemisphere).
(5) Preserve the mental map by maintaining orthogonality, proximity and

topology.
(6) Animate transitions between views.

When the choice of focal sections changes in emphasis, location or num-
ber, a distortion viewing tool creates a new view of the same information
representation. It is apparent that users cannot always recognize that they
are actually looking at the same information (see Fig. 6.9).

Fig. 6.9 Regular layout of a grid graph with two focal points [Sheelagh et al.,
1997]. Copyright of IEEE, used with permission
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A surperspective projection is modeled as the target object is partitioned
into several feature parts by analyzing its shape features, and each feature
part has its own viewpoint. The 2D visual effects are calculated for the se-
lected feature areas, and the final surperspective image is then created. Taka-
hashi et al. presented a framework for generating surperspective images based
on shape deformation techniques (see Fig. 6.10) [Takahashi et al., 2002]. Us-
ing the ordinary perspective projection, the deformed shape is then trans-
formed into a target guide-map image where each landmark enjoys its own
vista points. Their framework consists of three algorithms. The first one is
for partitioning terrain surfaces, and it extracts terrain features such as ridge
and ravine lines, which partition the overall terrain surface into feature areas
so that a designer can easily assign 2D visual effects to the portioned areas.
The second one is for handling 2D visual effects, and it converts given 2D
visual effects to 3D geometric constraints so that the designer can realize the
surperspective effects in ordinary 2D perspective images after deforming the
terrain surface under the converted constraints. The third one is for calculat-
ing such 2D visual effects, and it semi-automatically calculates the position
and view direction of each partitioned feature area through the geographical
shape analysis of the terrain surface. Fig. 6.11 shows the examples of surper-

Fig. 6.10 Principle of surperspective projection model based on shapes deforma-
tion [Takahashi et al., 2002]. (a) Ordinary perspective projection with a single
viewpoint; (b) Multi-perspective projection where each area of interest has its own
viewpoint;(c) Its implementation through ordinary perspective projection based on
shape deformation techniques. Copyright of Blackwell, used with permission

Fig. 6.11 Examples of surperspective guide-maps based on shape deformation
[Takahashi et al., 2002]. Copyright of Blackwell, used with permission
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spective landscape images for guide-maps generated from 3D geographical
elevation data.

6.2 Shape-conveying Illustrations

The effective expression and communication of 3D shapes is one of the ma-
jor objectives in graphical rendering. Rodger and Browne designed and con-
ducted a series of visual perceptual experiments to access the contribution of
rendering parameters to the visual cognition of shapes of 3D objects, and they
also provided a set of principles about how to choose the suitable displaying
and viewing parameters to effectively convey the 3D shapes in realistic ren-
dition [Rodger & Browne, 2000]. In non-photorealistic rendering, there are
two typical approaches to conveying 3D shapes:

(1) Expressing shape features via stroke texture. The illustration technique,
the position and modeling of lighting, stroke types and styles, etc., are
carefully chosen to best express the desired shape features.

(2) Shape expression via abstraction. The abstraction rendering techniques
such as line-drawing are employed to depict the significant shape features,
ignoring the minor details of the 3D object. The user can quickly and
clearly perceive the desired 3D shapes in the abstract illustration.

6.2.1 Expressing Shape Features via Stroke Texture

Although the mechanisms of the texture’s effect on shape perception are
not yet completely understood, numerous studies over the years have found
evidence that the accuracy of observers’ judgments of surface orientation and
curvature can be significantly affected by the presence of a surface texture
pattern. The existing theories of shape perception have not yet provided
sufficient guidance to definitively answer the question of how to best define
the surface material properties of an object in order to best facilitate the
accurate understanding of its shape [Kim et al., 2003]. But, much research
work has been carried out to empirically find the solution to effectively express
the shape features via stroke texture, e.g., Saito and Takahashi employed the
stroke texture of hatching to convey the curved features of a 3D shape[Saito
& Takahashi, 1990].

Veryovka and Buchanan presented a comprehensive half-toning technique
in which the half-toning texture is explicitly employed to provide visual
cues and to enhance the viewer’s comprehension of 3D scenes [Veryovka &
Buchanan, 1999]. The texture shape, scale, direction and contrast are adapted
to the 3D information, and thus enhance the display with artistic elements
providing visual cues of the form, position and illumination of the 3D scene.
The algorithm is based on the property of the ordered dithering algorithm
to define the appearance of the half-toning texture. The texture shape is
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controlled by constructing a dither matrix from an arbitrary image or a pro-
cedural texture. A mapping function is used to construct a dither screen from
the resulting dither matrices and to adapt texture direction and scale to the
control image. Texture contrast and the accuracy of the tone reproduction
are varied across the image using the error diffusion process. The resultant
half-toning image of 3D scene is generated in terms of the geometry, position
and illumination information (see Fig. 6.12).

Fig. 6.12 An example of comprehensive half-toning [Veryovka & Buchanan, 1999].
(a)Ordered dithering with conventional clustered dither matrix; (b)Dither matrix
generated from pencil stroke texture, cross-hatching is imitated; (c)Pencil stroke
texture is adapted to object geometry. Copyright of Blackwell, used with permission

Deussen et al. presented a method for generating line drawings of complex
geometries in the style of crosshatched illustrations [Deussen et al., 1999].
The 3D models are first segmented into parts that will be handled by the
desired line styles and intersection sets. For each part of the model, the set
of intersecting planes is created. Computing a geometric skeleton allows us
to determine automatically the orientation of the intersection planes for a
wide variety of models. The hatching lines are generated by intersecting the
geometry with a set of planes. The resultant curves are drawn in order to
achieve half-toning which represent a given intensity distribution.

Aiming at evoking powerful expressive meaning, Sousa et al. simulate
pen-and-ink style rendering of triangle-mesh surfaces by employing strokes
that are short, straight and with very little width variation [Sousa et al.,
2004]. This illustration technique integrates two very important illustration
strategies for depicting shape features: selection of drawing direction and the
use of light. Drawing direction is given by four stroke directional fields. The
lighting is based on the idea of “spotlight silhouettes”, which consider only
the regions on the mesh that are visible to the spotlight cone. The target
tone is matched by adjusting the stroke length adaptively from parameters
computed directly from the mesh, without the need for tone value charts or
pre-generated stroke textures. At each edge of the mesh, a stroke is mapped
directly to one of four possible directional fields. Finally, the stroke is stylized
with path perturbation and ink weight distribution, imparting a less uniform
look to strokes rendered on regular meshes. It also allows visual effects of
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reverse tone values and depth cueing. The resultant illustration provides good
visualizations of shape features, creating convincing impressions of 3D forms
(see Fig. 6.13).

Fig. 6.13 Examples of illustration in pen-and-ink edge-based strokes [Sousa et al.,
2004]. Copyright of IEEE, used with permission

In order to express meaningful information about a 3D terrain, manual
sketching is usually employed to depict the relief features, such as watersheds,
stream networks, breaks in the slope, ridges and edges of terraces. Lesage and
Visvalingam provide an informal deductive analysis of the marks in sketches
[Lesage & Visvalingam, 2002]. Fig. 6.14 shows an example of the sketching
of a 3D terrain object.

Fig. 6.14 A sketching illustration of 3D terrain [Lesage & Visvalingam, 2002].
Copyright of Elsevier, used with permission

6.2.2 Expressing Shape Features by Selective Depiction

The interpretation of shape features is dependent upon a wealth of visual
cues, including contours, surfaces, visibility of faces and edges, texture, shad-
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ing, shadow, and many others. When artists design imagery to portray a 3D
object, they do not just render visual cues veridically. Instead, they select
which visual cues to portray and adapt the information each cue carries.
These illustrations depart dramatically from natural scenes, but nevertheless
convey visual information effectively, because viewers’ perceptual inferences
still work flexibly to arrive at a consistent interpretation of the 3D shape.

The line-drawing is one of the most popular forms for selectively depict-
ing 3D shapes. This is mainly because, on the one hand, line-drawing can be
interpreted remarkably well by humans, who are able to perceive and under-
stand 3D object structures from very sparse collections of lines. The artists
and scientific illustrators prefer to employ line-drawing to effectively represent
the form of 3D objects. On the other hand, the line-drawing can well reduce
the visual information, and the remaining information will not leave the im-
pression that something about 3D shapes is wrong or missing. This will allow
the viewer to focus on the information he or she wants, without being both-
ered by extra unnecessary and unwanted information. On the other hand, the
line-drawing can effectively approximate the attributes of the surface of the
3D object by compressing the redundant information. Contours provide the
simplest form of line-drawing, and many lines naturally come from contours.
The visual system of humans is capable of relaxing the natural interpreta-
tion of contours, although contours are quite limited in the information they
convey about shape on their own. Buchanan and Sousa proposed a dedicated
data structure, edge buffer, for contour generation [Buchanan & Sousa, 2000].
This edge buffer is used a-priori to define which edges are to be rendered when
visible, and is also updated each time the object is rendered so that silhouette
edges can be drawn. It allows the users to portray the important features of
a model by highlighting silhouette edges, boundary edges and artist defined
edges.

Dooley and Cohen provided a line-drawing way of imparting meaning to
visual representation of complex objects, and additional semantic attributes
to be attached to objects [Dooley & Cohen, 1990]. They borrowed the expe-
rience and techniques of the art of technical illustration and employed four
categories of lines: boundary lines, silhouette lines, discontinuity lines (folds),
and contour or isoparametric lines, to indicate geometric meaning and help
convey the curvature of the surface. A single line in their illustration is defined
as being composed of line segments which define continuous portions of lines
which do not cross in front of, or behind, other boundary or silhouette lines.
A line segment has a thickness, a transparency and a style, i.e., solid, dashed,
dotted, sketched, etc. Style and transparency and thickness attributes may
convey different degrees of hiddenness or may indicate the importance of the
object (or portion of the object) being drawn. A set of illustration rules takes
the segment information and determines the drawing parameters for the spe-
cific segment. These rules are based on user specification and inferences drawn
from artistic knowledge about illustration principles. This provides a balance
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between flexibility and automation of the production of final drawings (see
Fig. 6.15).

Fig. 6.15 Line-drawing examples with different illustration rules [Dooley & Cohen,
1990]. Copyright of IEEE, used with permission

Schlechtweg et al. developed tools for selectively mapping attributes of
surfaces of an object onto lines based on the decomposition of the rendering
process into a projection phase and an interpretation phase of an enriched
2D model [Schlechtweg et al.,1998]. Their enriched 2D model contains the
following surface-oriented information:

(1) The projected geometry with all intermediate coordinates attached.
(2) Information about the visibility of parts of the geometry.
(3) Normal vectors or intensity values for model surfaces, edges and vertices,

and connectivity information.

Within the second phase of the rendering pipeline, the enriched 2D model
is interpreted in terms of mapping attributes contained in this model onto
visual properties of a 2D image. For line-drawing, the following principles are
employed to encode 3D information in line-drawing:

(1) Providing at least the silhouette of the objects to display helps to under-
stand the structure of the observed scene. Different levels of detail can
encode more information.

(2) Presenting the model with curved rather that with sharp polygonal bor-
ders.

(3) Encoding lighting by the use of lines of varying width and brightness.
(4) Suggesting surface properties by hatching or similar techniques.

Their line-drawing model also consists of two parts. The path determines
the overall shape of the line as a parametric curve. Attributes may be attached
describing, for example, the pressure and saturation of a drawing tool. These
attribute values finally result in a certain appearance of the line. The style
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determines all deviations of the final line from this general path. This rich line
drawing technique not only enables us to render images which encode only
those properties which are needed for the application at hand, but also offers
a flexible treatment of image creation in terms of pictorial style. Different
interpretation leads to different pictorial styles and thus to different images
from one given model.

DeCarlo et al. went beyond contours and explored how to depict and
draw a new type of line: the suggestive contour [DeCarlo et al., 2003]. The
contours will appear where a surface turns away from the viewer and becomes
invisible. The suggestive contours will be drawn on clearly visible parts of the
surface, where a true contour would first appear with a minimal change in
viewpoint. They can augment true contours to help convey shape. Consider
a view of a smooth and closed surface S from a perspective camera centered
at c. The contour is mathematically defined as the set of points that lie on
this surface and satisfy:

n(p) · v(p) = 0.

where p is a point on the surface,n(p) is the unit surface normal at p, and
v is the view vector:

v(p) = c − p.

Informally, suggestive contours are curves along which the radial curva-
ture is zero and where the surface bends away from the viewer (as opposed
to bending towards them). DeCarlo et al. provided three mathematical defi-
nitions of suggestive contours [DeCarlo et al., 2003]:

(1) The suggestive contour generator is the set of points on the surface at
which its radial curvature kr is 0, and the directional derivative of kr in
the direction of w is positive:

Dwkr > 0.

The directional derivative Dwkr is defined as the differential of kr(p)
applied to w, or dkr(w) (see Fig. 6.16).

(2) The suggestive contour generator is the set of minima of n · v in the
direction of w.

(3) The suggestive contour generator is the set of points on the contour gen-
erator of a nearby viewpoint (of radial distance less than 90 degrees)
that is not in radial correspondence with points on the contour of any
(radially) closer viewpoint.

Based on the aforementioned definitions of suggestive contours, DeCarlo
et al. presented two methods for calculating suggestive contours (one in ob-
ject space and one in image space), including an algorithm that finds the
zero crossings of the radial curvature. It is shown that suggestive contours
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Fig. 6.16 (a) The view vector v is projected onto the tangent plane to obtain w ;
(b) The radial plane is formed by p, n and w and slices the surface along the radial
curve, the curvature of which is r(p) [Decarlo et al., 2003]. Copyright of ACM, used
with permission

can be drawn consistently with true contours, and the resultant images con-
vey shape more effectively than contour alone, as the renderings of contour
alone presented the limited shape information that seems to depict only an
undifferentiated, smooth and round relief. However, suggestive contours en-
rich and differentiate the conveyed shape, e.g., they can convey small shape
features as well as large ones, and can also convey folds in the surface when
they are deep enough to contain an inflection point, as are the wrinkles on
the hand.

However, the suggestive contours are heavily dependent on the viewing
direction, and it is difficult to apply them in animation production, as the
temporal coherence of suggestive drawing can’t be guaranteed. In order to
facilitate the problem of temporal coherence in suggestive contours rendition,
DeCarlo et al. further embedded the temporal constraints into the rendering
framework to generate the temporal-coherence suggestive contours [DeCarlo
et al., 2004].

In general, the line-drawing in non-photorealistic rendering computes the
rendition effects as a function of the drawing style, the light intensity at
an object and the distance from the viewer/camera to the point in space
being visualized etc. However, these considerations are not rich enough to
achieve the necessary repertoire of illustrative techniques as used in hand-
drawn illustrations. In order to convey the 3D shape more effectively, there are
two typical approaches for further enhancing the visual effect of line-drawing.
One is to integrate the spatial effects into the line-drawing, e.g., Isenberg et
al. employed the illustrative effects to describe the workings of illustrative
techniques that rely on spatial location rather than just illumination or depth.
This is based on specifying a general function fE(x, y, z) to describe the
desired visualization effect to points (x, y, z) of the scene, combined with
a function fS(object) which determines the visualization style in which an
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object in the scene is to be drawn. The combination of the two functions, fE ,
fS , is used for computing the final image. Although the rendering style is still
object-dependent, this technique allows the users to visualize or emphasize
parts of objects or the whole scene without being limited by the scene’s object
decomposition (see Fig. 6.17).

Fig. 6.17 Integration of spatial effect with line-drawing [Isenberg et al., 2000].
Copyright of IEEE, used with permission

The other technique is to extract and emphasize a few good lines to
enhance the line-drawing, i.e., a small number of lines with carefully cho-
sen line qualities are drawn to suggest the 3D shape of the objects [Sousa
& Prusinkiewicz, 2003]. Sousa and Prusinkiewicz extracted, segmented and
smoothed feature edges related to the outline and interior of a given 3D
mesh, yielding chains of lines with varying path, length, thickness, gaps and
enclosures. The effects of ink fluidity, line weighting, connectives and enclo-
sure are reproduced and this leads to results adding three-dimensional shape
suggestion using selected feature lines [Sousa & Prusinkiewicz, 2003]. Their
system takes as input a single 3D triangle mesh, and illumination and sur-
face reflectance information are not taken into account. The main steps of
the algorithm are performed in the object space and are as follows:

(1) Feature lines are extracted and classified.
(2) On this basis, several graphs are constructed as an input for chaining,

which is the connection of lines of the same type into sequences.
(3) These chains are extruded into 3D (perpendicular to the object’s surface),

creating ribbons of width dependent on a selected measure of surface
curvature.

(4) Spline curves are fitted to the edges of the ribbons, resulting in a smooth
representation.

This suggestive drawing of a 3D model reproduces the artistic principle
of suggestion or indication, in which lines are used with economy, and the
expressive power of illustration results from engaging the imagination of the
viewer rather than revealing all details of the subject (see Fig. 6.18).
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Fig. 6.18 Examples of suggestive drawing of 3D models [Sousa & Prusinkiewicz,
2003]. Copyright of Blackwell, used with permission

6.3 Intent-based 3D Illustration

Intent consists of both the purpose and content of the communication. Intent-
based illustration is to generate a picture that can fulfill a communicative in-
tent, including the presentation of the position and orientation of an object,
the moving state of an object and how to manipulate a product etc. How-
ever, intent communication is closely related to the interpretation. The same
presentation, viewed by several people, may be interpreted to mean different
things, while different presentations may be interpreted to mean the same
thing. To further complicate matters, none of these interpretations may be
the one intended by the presenter. Therefore, it is necessary to integrate the
visual content with semantic meanings in terms of the cognitive models and
principles [Geng et al., 1999]. Although we are still lacking sophisticated the-
ories to clearly explain the relationship between intent communication and
visual cognition, lots of research has been done on how to effectively commu-
nicate the intent. For example, Csinger presented how to develop artificial
intelligence techniques to acquire, represent and exploit such models, and
probabilistic abduction is used to recognize user models and cost-based ab-
duction to design tailored presentations [Csinger, 1995]; Giannini and Monti
investigated the possible relationships between shape geometry and aesthetic
character linked to the geometry and the design intent, and the formalization
of these relations may allow the designers’ aesthetic intent to be communi-
cated through a product’s shape and non-shape characteristics [Giannini &
Monti, 2003]. Lu et al. employed context-dependent rendering to depict the
internal flaws hidden in a design object [Lu et al., 1996].

Intent-base illustration techniques can be summarized as follows:

(1) Intent communication by multimedia presentation. Aiming at the pre-
sentation of the desired intent, the visual content and semantic symbols
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depicting the same object are composed together in terms of the aesthetic
and cognitive principles.

(2) Interpreting intent by graphical abstraction. The 3D objects are hierarchi-
cally depicted and rendered from concrete geometry to abstract symbols,
and the intent is effectively expressed by associating all these renditions
with each other in terms of the conventions and empirical principles.

(3) Visual explanation of iconic symbols. It starts from the abstract symbols,
which are semantically analyzed and interpreted, and then these iconic
symbols are connected to the comprehensible visual content. Thus, the
abstract symbols will be concretized as a visual icon and accordingly form
an interpretation of the meanings embodied in the abstract symbols.

6.3.1 Intent Communication by Multimedia Presentation

The pioneer work on intent communication in 3D illustration is based on the
multimedia presentation principle [Seligmann & Feiner, 1989]. They formal-
ized the illustration process as a goal-driven process: the goal is to achieve
a specified communicative intent within a complex of stylistic choices. The
generate-and-test approach was employed to generate the intent-based 3D
illustration, relying upon a rule base to make stylistic and design choices.
Each rule in their system falls into one of two categories: method or evalu-
ator. A method identifies what must be accomplished to satisfy a particular
goal. An evaluator measures how well a particular goal is currently accom-
plished.

Later on, they implemented an intent-based illustration system (IBIS)
that designs illustrations to fulfill a high-level description of the communica-
tive goal. Communicative goals specify that particular properties of objects,
such as their color, size, or location are to be conveyed in the illustration. An
illustration’s communicative goals are used to determine what is important to
show in each illustration and to invoke rules that guide this decision process.
The communicative goals that IBIS can satisfy are as follows:

(1) Location. Show the location of an object in a context (either explicitly
specified or derived by the system).

(2) Relative location. Show the relative location of two or more objects in
terms of a specified or derived context.

(3) Property. Show one of the following physical properties of an object:
material, color, size, shape.

(4) State. Show an object’s state.
(5) Change. Show the difference between a set of states.

Given an initial set of input goals, IBIS’s rule-based control compo-
nent builds and evaluates a representation of the illustration. Rules spec-
ify methods for accomplishing each kind of goal and methods for evaluation
of goal achievement and interaction with other goals. IBIS first selects a
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set of achievement-methods to accomplish a goal and then uses evaluation-
methods to rate how well the goal has been satisfied and to detect incom-
patibilities. When an incompatibility occurs, IBIS backtracks to select differ-
ent achievement-methods. In addition to controlling the illustration process,
evaluation methods can be queried directly, providing means for outside com-
ponents to evaluate how well certain communicative goals are satisfied in an
illustration. This in turn provides the necessary feedback for, as an example,
a media coordinator to decide which medium is best suited to convey what in-
formation. The algorithmic pipeline of IBIS is shown in Fig. 6.19 [Seligmann
& Feiner, 1991].

Fig. 6.19 The algorithmic pipeline in IBIS

IBIS is also provided with a knowledge base that specifies information
about the objects in the world it depicts. This information includes the phys-
ical properties of the objects (shape, material, location and orientation), along
with additional properties such as their type or purpose. Objects are orga-
nized in parts hierarchy in which leaf nodes constitute the indivisible physical
objects and internal nodes represent composite objects. Each object refers to
its shape by name, rather than storing its own geometry. The shape name
indexes into a geometric object base, allowing multiple objects to share the
same geometry. Facilities are provided to define new shapes in terms of the
polyhedral geometry that IBIS supports. Any collection of objects that can
be described in this form can be processed by IBIS.

The illustration contains all the information necessary to render it. Its
members are a viewing specification, lighting specification, viewport specifi-
cation and a display-list composed of illustrator-objects. The viewport spec-
ification denotes the placement of the illustration (inset in, overlapping, or
non-overlapping its parent illustration’s viewport), its range of acceptable
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viewport dimensions, and its location relative to its parent. Fig. 6.20 gives
an illustration example showing the location of an object in a specific context,
and the following strategies are employed for it.

(1) The object must be included in the illustration. The achievement thresh-
old “highest” indicates that this style strategy must be fully satisfied.

(2) The object must be recognizable.
(3) The context object must be included.
(4) The object must be visible.
(5) The object must be highlighted.
(6) The context object must also be recognizable, but with a lower threshold.
(7) The context object must also be visible, but with a lower threshold.

Fig. 6.20 Illustration example of the showing location [Seligmann & Feiner, 1991].
Copyright of ACM, used with permission

6.3.2 Interpreting Intent by Graphical Abstraction

Graphical abstraction is a simplification of an object’s depiction. It could be
abstract paintings, sketch drawings or pictures of technical documentations,
etc. The model of graphical abstraction is to provide measures to evaluate
and compare different graphical abstractions of the same object, assuming
that graphics convey not only information, but also meaning, as part of a
communicative act. From the point of view of intent communication, graph-
ical abstraction not only reduces the probability of distracting the viewer’s
attention by unimportant details, but also enables the viewer’s attention to
be directed to relevant parts of the graphics, without using meta-objects
or-colors (e.g., arrows, blinking objects, etc.).

In the context of intent-based 3D illustration, graphical abstraction is usu-
ally generated by simplification techniques. Different kinds of simplifications
include: substitution of an object’s colored parts by greyscales, unification
of line styles (leading to a kind of sketch), smoothing the object’s contour,
suppression of some parts of the object. However, graphical abstraction is
a special form of simplification, and a simplification becomes a graphical
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abstraction only if the viewer is still able to recognize the simplified depic-
tion as a particular world object or as a member of a class of world objects.
In order to distinguish simplification and graphical abstraction, Krüger in-
troduced the concept of simplification degree to measure the syntactic and
semantic simplicity which is dependent on the amount of information and
the types of meaning conveyed by different depictions of the same object
[Krüger, 1998]. Syntactic criteria of simplicity are the complexity of object
composition, object shapes and object properties. For example: given two de-
pictions G1 and G2 of the same object O, G1 is simpler than G2 if G1 shows
less object parts than G2. Concerning O ’s shape depiction, G1 is simpler if
G1’s contour consists of less line segments or less noncontinuous parts or has
less concave elements. If G1 is a black and white picture and G2 shows O
colored, G1 is simpler in respect of O ’s color property. The maintenance of
object properties, like the object’s main axis or texture is also a criterion to
distinguish different syntactic simplification degrees. A semantic measure of
simplicity can therefore be defined as follows: Given two graphical abstrac-
tions GA1 and GA2 of the same object O, if GA1 is identifiable as O and
GA2 is only categorizable as a member of O ’s basic category, GA2 can be
considered as a semantically more simple depiction.

Krüger also presented an abstraction pipeline on each level of the image
generation from a 3D model [Krüger, 1998]. Three major abstraction layers
are distinguished: model space, generation space and image space. The model
space describes all the initial 3D information (e.g., the location of objects and
lights) needed to produce graphics. Different simplification techniques can be
applied to the 3D models. Usually they aim at reducing the representational
complexity of the 3D models, (e.g., in the case of a polygon-based represen-
tation to reduce the number of vertices that are needed to describe it). The
modification in generation space includes changes in camera parameters and
light conditions. Different shading techniques yield different results that may
vary from photorealistic over shaded to wire frame depictions. The suppres-
sion of colors is another way to raise the degree of the depiction’s simplicity.
Rendering can also control the line thickness of depictions and a further
method suitable for simplifying line drawings is known as hard edging. In
the image space, a lot of different simplification techniques are available that
manipulate the images directly. This includes a variety of filters, for example
a Gaussian filter that blurs the image, color filters or erasers that completely
remove image parts. Usually these methods do not need more information
than the pixels of an image. However, in order to use them consciously to
abstract certain parts, they must be restricted to some regions. Otherwise
unwanted effects may occur and this will distort the attention of the user.

The key advantage of abstraction-based intent illustration is that both
computational and cognitive resources are taken into consideration at the
same time. By means of an evaluation component detecting artifacts, the
results can be improved stepwise through a generate-and-test cycle.
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6.3.3 Visual Explanation of Iconic Symbols

In essence, intent can be considered as a kind of semantic meaning, which is
usually represented in textual symbols. However, the abstract symbol is not
comprehensible, and therefore the semantic symbols are often interpreted in
a specific context, expressing the user’s intent together with the 3D scene.
The major advantage of an iconic symbol is to better present the dynamic in-
formation in a single illustration. Preim et al. provided visual explanation of
navigation intent by an integrated view of geometry, structure and rendering
context [Preim et al., 1997]. In the geometric view, it describes mathematical
attributes for manipulating the 3D object, including graphical transforma-
tion, camera parameters and the picking-up of the object. In the structural
view, it provides a visual tree of the entire 3D scene, where the nodes and
edges represent the spatial order of each geometric primitive. In the rendering
context view, it gives the textual description of non-geometric attributes such
as the best-fit rendering parameters and the interaction strategies between
user and the 3D scene. When the three views are presented to the user at
the same time, all the information in one view will be reinforced in the other
two views.

Nienhaus and Döllner employed dynamic glyphs to present dynamics in
static media [Nienhaus & Döllner, 2003]. Dynamic glyphs are visual elements
that symbolize dynamics in images of 3D scenes. For instance, arrows in-
dicate the direction of movement, rays symbolize an extraordinary event, or
clouds contain descriptions of the thoughts of an actor. Such depictions of dy-
namics in images enable observers to understand the dynamics of 3D scenery
even in static images, to relate dynamics of the past and the future with the
current state of a 3D scene, and to communicate all kinds of non-geometric
information such as tension, danger and feelings. Dynamic glyphs are usually
derived from a formal specification of dynamics based on a behavior graph.
Different types of dynamics and corresponding mappings to dynamic glyphs
can be identified, for instance, scene events at a discrete point in time, trans-
formation processes of scene objects and activities of scene actors. Finally,
an appropriate non-photorealistic rendering style is employed to produce the
illustrations of 3D scenes and their dynamics.

In order to design step-by-step assembly instructions, Agrawala et al.
examined how people mentally represent and communicate the process of
assembling an object, and presented design principles drawn from cognitive
psychology research [Agrawala et al., 2003]. People’s conceptual models of
assembly and effective methods to visually communicate assembly intent are
then investigated and the design knowledge is codified in computer programs,
which can make it easier to produce clear drawings of 3D objects and more
effective instructions. There are two primary tasks in designing assembly
instructions: planning and presentation. The key-point in “planning” lies in
that most objects can be assembled in a variety of ways, and the system
should choose a sequence of assembly operations that is easy to understand
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and follow. The challenge in “presentation” is how to convey the assembly
operations in a series of operations. Their assembly instruction design systems
are accordingly decomposed into two parts: a planner and a presenter. The
planner searches the space of feasible assembly sequences to find one that
best matches the cognitive design principles. To do this the planner must
also consider many aspects of presentation. The presenter then renders a
diagram for each step of the assembly sequence generated by the planner.
The presenter also uses the design principles to determine where to place
parts, guidelines and arrows. In particular, the presenter can generate action
diagrams which use the conventions of exploded views to clearly depict the
parts and operation required in each assembly step. Given object geometry,
orientation and optional grouping and ordering constraints on the object’s
parts, the system can effectively produce good assembly instructions for it.

6.4 Expressive Rendering for Transparency

There are many potential advantages in using transparency to simultaneously
depict multiple superimposed layers of information. The first advantage is si-
multaneity: displaying all relevant external and internal anatomical objects
together in the context of each other allows better comprehension of the
complex spatial relationships between two irregularly-shaped surfaces. The
second advantage is completeness: a 3D display allows maximum compre-
hension of the 3D form, and the three-dimensional structure of a scene can
be more accurately and efficiently appreciated when the layered elements
are displayed in their entirety. However, the challenge is how to render the
transparent surfaces in such a way that their three-dimensional shape can
be readily understood and their depth distance from underlying structures
clearly perceived, since in computer-generated images it can often be difficult
to adequately perceive the full three-dimensional shape of an external trans-
parent surface, or to correctly judge its depth distance from arbitrary points
on an underlying opaque structure.

The representative work on transparency illustration comes from Inter-
rante et al. [1995,1996,1997]. Inspired by artists’ use of line to show shape,
they explored methods for automatically defining a distributed set of opaque
surface markings that intend to portray the three-dimensional shape and
relative depth of a smoothly curving layered transparent surface in an intu-
itively meaningful (and minimally occluding) way. A transparent surface is
“textured” with uniformly distributed opaque short strokes, locally oriented
in the direction of greatest normal curvature and of length proportional to
the magnitude of the surface curvature in the stroke direction. Adding such a
sparse, opaque texture to a transparent surface can help make its location in
space much more explicit, providing additional occlusion cues and possibly
enabling a better estimation of relative depth from motion. (see Fig. 6.21).
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Fig. 6.21 Expressive rendering of transparency [Interrante et al., 1997]. Copyright
of IEEE, used with permission
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Hamel et al. summarized principles of depicting transparency in hand-
made line drawings, and developed a method to generate similar, but
computer-generated line drawings [Hamel et al., 1998]. Three different meth-
ods derived from traditional drawing techniques are simulated (see Fig. 6.22).

Fig. 6.22 Three different ways of expressing transparency in a line-drawing [Hamel
et al., 1998]. (a) Increasing the thickness of lines; (b) Inserting additional lines;
(c) Using a different style (stippling). Copyright of IEEE, used with permission

In their system implementation, three different images are generated first:
the “opaque” image, where all objects are rendered opaque and the outer
parts brightness is faded to zero towards the edge between inner and outer
parts; the “transparent” image rendered with a simple lighting model by a
simplified transparency calculation; a mask, which masks out all pixels not
concealed in the opaque image. Second, the three different ways of expressing
transparency are simulated as follows (see Fig. 6.23):

(1) Increasing the thickness of lines. Lines are intersected with the edge of
the mask and the part inside is drawn with a thickness based on the
brightness of the transparent picture. The thickness of the line parts
outside the masked area and all other lines are based on the opaque
image.

(2) Inserting additional lines. Every second line is drawn on the tube, based
on the opaque picture. The other lines are intersected with the mask edge
and are drawn based on the transparent image.

(3) Using a different style. The lines are drawn on the basis of the opaque
image, then the lines or dots are added, and, whatever the different
style used, the primitives are drawn based on the transparent image and
masked out.
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Fig. 6.23 Rendering transparency in different ways [Hamel et al., 1998]. Copyright
of IEEE, used with permission

In the traditional illustration of transparent objects, the outlines are often
drawn in a line-style different to the other outlines, to make them distinct
from the opaque objects. This line-style is often described as phantom lines.
Although this technique can be applied to a wide variety of drawing styles,
ranging from color illustrations to simple line or sketch drawings, there are
certain drawbacks [Diepstraten et al., 2002]:

(1) Details of the transparent objects are lost, as only their outlines are
drawn.

(2) Material and surface information of transparent objects are ignored.
(3) There are only two transparency states: fully opaque or fully non-opaque,

semi-transparency cannot be visualized.

In order to facilitate the aforementioned limitations, Diepstraten et al.
[2002] introduced a novel view-dependent transparency model and carried it
out based on the following empirical rules extracted from manual drawings:

(1) Faces of transparent objects never shine through.
(2) Opaque objects which are occluded by two transparent objects do not

shine through.
(3) Transparency falls off close to the edges of transparent objects and in-

creases with the distance to the edges.

Based on these rules, the basic algorithm is as follows. In the first step, all
front-facing transparent surfaces are rendered to the depth buffer; afterwards,
the depth buffer contains the depth values of the closest transparent surfaces.
In the second step, the depth buffer is stored in a high-resolution texture and
then the depth buffer is cleared. In the third step, the front-facing trans-
parent surfaces are rendered to the depth buffer except the foremost ones,
virtually peeling off the closest surfaces. In the fourth step, opaque objects
are rendered. The depth test rejects all surfaces except for those lying in
front of the second-closest transparent front faces. Finally, just the foremost
transparent surfaces are blended into the frame buffer. Fig. 6.24 shows the
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comparative illustration of phantom lines showing transparent objects and
view dependent transparency.

Fig. 6.24 The comparative illustration of transparency [Diepstraten et al.,
2002].(a)Phantom lines illustration of transparency of transparency; (b) View-
dependent illustration. Copyright of Blackwell, used with permission

6.5 Summary

The traditional rendering process is mainly computed from the physical prin-
ciples in an objective way. However, expressive rendering takes into consid-
eration the subjective cognitive factors of human beings, such as the capa-
bility of visual perception and cognition. For the time being, research into
expressive rendering is mainly driven by concrete applications, due to a lack
of systematic cognitive theories and quantitative guidelines, although there
are a few works that are starting to investigate the influence of subjective
cognition and interaction between expressive goals and the objects-to-be-
depicted[Seligmann & Feiner, 1993; Strothotte et al., 1994], the cognitive
model of sketch drawing of terrain [Visvalingam & Dowson, 2001], and the
evaluation model of the resultant expressive illustration, etc. In order to
deepen the research into expressive rendering, more work should be done on
the systematic analysis and comparison of expressive rendering techniques
and the quantitative construction of a series of computational models for
expressive rendering, based on the relevant cognitive theories and principles.
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7

Computer-assisted Cartoon Animation by
Traditional Production Pipeline

The production of 2D cartoon animation is in essence a process of draw-
ing a series of pictures that are smooth and temporally-coherent, and the
production pipeline is traditionally decomposed into three major phases:

(1) The extreme frames, in which the emotion, motion or color of the cartoon
characters are changed rapidly, are first drawn by experienced animators
in terms of the storyboard.

(2) The key frames are then further drawn by the assistant animators on the
basis of commonsense and his personal understanding of the episodes in
the story.

(3) At last all the in between frames are created in detail by the
painters/inbetweeners in terms of the key frames.

Such a production pipeline is not only time-consuming, but also requires
that the animators should have a rich experience of life and possess a sophisti-
cated skill in drawing. In order to speed up the production of cartoon anima-
tion, lots of computer-assisted cartoon animation systems were implemented
and commercialized in the animation industry [Fekete et al., 1995]. The com-
puter graphics community also proposed and designed many key techniques
that could partially automate the production process of cartoon animation
such as semi-automatic/automatic coloring and line-drawing generation of
in-between frames. In this chapter we will first give a brief introduction of
the traditional production pipeline of cartoon animation, and then discuss
the techniques of computer-assisted coloring and generation of in-between
frames in cartoon animation.

7.1 The Traditional Animation Process

The overall pipeline of the traditional animation process can be summarized
as three linear phases: pre-production, production and post-production [Cat-
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mull, 1978; Fekete et al., 1995; Patterson & Willis, 1995; Qiu et al., 2005].
As shown in Fig. 7.1, the involved steps are:

Fig. 7.1 The overall pipeline of the traditional animation process

(1) Story writing. Creates the drama script of the story of the animation
narrated by text.

(2) Story board. Splits script into scenes with dialog and music.
(3) Model sheet. Designs and draws the characters in various poses.
(4) Sound track. Records dialog and music in prototype form.
(5) Sound detection. Fills the dialog column of an exposure sheet.
(6) Layout. Manages the drawing of backgrounds and main character po-

sitions, with specifications for camera movement and other animation
characteristics.

(7) Background painting. Paints the background according to the layout.
(8) Key frame animation. Draws extreme positions of characters as specified

by the layout. Provides instructions for the inbetweeners.
(9) Cleaning. Cleans up the drawings to achieve final quality of the strokes.

(10) Inbetweening. Draws the missing frames according to the key frame ani-
mator’s instructions.

(11) Paint. Photocopies the clean drawings onto acetate celluloid (cel) and
paints zones with water color.

(12) Check. Verifies animation and backgrounds according to the layout and
approves for shooting.

(13) Shoot. Records frame-by-frame on film or video, using a rostrum.
(14) Composition. The recorded video clips are integrated into animation se-

quences by further editing and synthesizing.
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(15) Sound and music. The sound effects and background music are synchro-
nized with the video clips.

(16) Special effects. The special effects are created and inserted into the re-
sultant animation sequence.

(17) The route sheet. Every scene is listed with its length, vital statistics and
the name of the person in charge of the various stages. This allows the
director to quickly determine the status and location of a scene.

(18) The exposure sheet. The exposure sheet has a line on it for every frame
in the film. Each line indicates the dialogue for that frame, the order of
all figures, the background and camera position. The exposure sheets are
grouped according to scenes.

Whether it is generated by hand or by computer, the first goal of the
animation is to entertain the audience. The animator must have two things:
a clear concept of exactly what will entertain the audience, and the tools and
skills to put those ideas across clearly and unambiguously [Lasseter, 1987].

Besides the well-defined pipeline, a set of drawing and production conven-
tions are gradually formed in 2D hand-drawn animation, and finally become
the fundamental principles of traditional animation [Lasseter, 1987].

(1) Squash and stretch. Defining the rigidity and mass of an object by dis-
torting its shape during an action. The squashed position depicts the
form either flattened out by an external pressure or constricted by its
own power. The stretched position always shows the same form in a very
extended condition. The most important rule of squashing and stretching
is that, no matter how squashed or stretched out a particular object gets,
its volume remains constant (see Fig. 7.2). If an object is squashed down
without its sides stretching, it would appear to shrink; if it is stretched
up without its sides being squeezed in, it would appear to grow [Lasseter,
1987].

Fig. 7.2 Squash and stretch example in bouncing ball
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(2) Timing, or the speed of an action, is an important principle because it
gives meaning to movement. The speed of an action defines how well the
idea behind the action will be read by an audience. It reflects the weight
and size of an object, and can even carry emotional meaning. Proper
timing is critical to making ideas readable. If too much time is spent on
any of these, the audience’s attention will wander. If too little time is
spent, the movement may be finished before the audience notices it, thus
wasting the idea.

(3) Anticipation. The preparation for an action. There are several facets to
anticipation. In one sense, it is the anatomical provision for an action.
Anticipation is also a device to catch the audience’s eye, to prepare them
for the next movement and lead them to expect it before it actually
occurs. Anticipation is often used to explain what the following action
is going to be. Anticipation is also used to direct the attention of the
audience to the fight part of the screen at the fight moment. This is
essential for preventing the audience from missing some vital actions.
Without anticipation many actions are abrupt, stiff and unnatural.

(4) Staging. Presenting an idea so that it is unmistakably clear. This principle
translates directly from 2D hand drawn animation. An action is staged so
that it is understood; a personality is staged so that it is recognizable; an
expression is staged so that it can be seen; a mood is staged so that it will
affect the audience. It is important, when staging an action, that only one
idea be seen by the audience at a time. If a lot of action is happening at
once, the eye does not know where to look and the main idea of the action
will be “upstaged” and overlooked. The object of interest should contrast
from the rest of the scene. In a still scene, the eye will be attracted to
movement. In a very busy scene, the eye will be attracted to something
that is still. Each idea or action must be staged in the strongest and the
simplest way before going on to the next idea or action.

(5) Follow through and overlapping action. The termination of an action and
establishing its relationship to the next action. Actions very rarely come
to a sudden and complete stop, but are generally carried past their ter-
mination point. In the movement of any object or figure, the actions of
the parts are not simultaneous: some part must initiate the move. This
is called the lead. In walking, the action starts with the hips. As the hip
swings forward, it sets a leg in motion. The hip “leads”, the leg “follows”.
As the hip twists, the torso follows, then the shoulder, the arm, the wrist,
and finally the fingers. Appendages or loose parts of a character or ob-
ject will move at a slower speed and “drag” behind the leading part of
the figure. Then, as the leading part of the figure slows to a stop, these
appendages will continue to move and will take longer to settle down.
Slight variations are often added to the timing and speed of the loose
parts of objects. This overlapping action makes the object seem natu-
ral, the action more interesting. Perhaps more important, overlapping is
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critical to conveying the main ideas of the story. An action should never
be brought to a complete stop before starting another action, and the
second action should overlap the first. Overlapping maintains a continual
flow and continuity between whole phrases of actions.

(6) Straight ahead action and pose-to-pose action. The two contrasting ap-
proaches to the creation of movement. Straight ahead action is used
for wild, scrambling actions where spontaneity is important. In this ap-
proach, the animator literally works straight ahead from his first drawing
in the scene. He knows where the scene fits in the story and the business
it has to include. He does one drawing after another, getting new ideas
as he goes along, until he reaches the end of the scene. In the pose-to-
pose approach, the animator plans his actions, and figures out just what
drawings will be needed to animate the business, makes the drawings
concentrating on the poses, relates them to each other in size and action,
and then draws the in-betweens. Pose-to-pose is used for animation that
requires good acting, where the poses and timing are all important.

(7) Slow in and out. The spacing of the in-between frames to achieve subtlety
of timing and movement. Mathematically, it refers to second-order and
third-order continuity of motion. It is often achieved by interpolation
along the trajectory of motion. It can also be achieved by breaking the
motion trajectory using its continuity parameters.

(8) Arcs. The visual path of action for natural movement. Arcs in nature are
the most economical routes by which a form can move from one position
to another. In animation such arcs are used extensively, for they make
animation much smoother and less stiff than a straight line for the path
of action.

(9) Exaggeration. Accentuating the essence of an idea via the design and
the action. A scene has many components to it: the design, the shape of
the objects, the action, the emotion, the color, the sound. Exaggeration
can work with any component, but not in isolation. If just one thing
is exaggerated in an otherwise life-like scene, it will stick out and seem
unrealistic. The principle of exaggeration in animation does not mean
arbitrarily distorting shapes or objects or making an action more violent
or unrealistic. The animator must go to the heart of anything or any
idea and develop its essence, understanding the reason for it, so that the
audience will also understand it. If a character is sad, make him sadder;
if he is bright, make him shine; worried, make him fret; wild, make him
frantic.

(10) Secondary action. The action of an object resulting from another action.
Secondary actions are important in heightening interest and adding a
realistic complexity to the animation. A secondary action is always kept
subordinate to the primary action. If it conflicts, becomes more interest-
ing, or dominates in any way, it is either the wrong choice or is staged
improperly. The facial expression of a character will sometimes be a sec-
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ondary action. When the main idea of an action is being told in the
movement of the body, the facial expression becomes subordinate to the
main idea.

(11) Appeal. Creating a design or an action that the audience enjoys watching.
It means anything that a person likes to see: a quality of charm, pleasing
design, simplicity, communication, or magnetism. Your eye is drawn to
the figure or object that has appeal and, once there, it is held while you
appreciate the object. A weak drawing or design lacks appeal. A design
that is complicated or hard to read lacks appeal. Clumsy shapes and
awkward moves all have low appeal.

7.2 The Role of the Computer in Traditional 2D
Animation

With the advent of computer graphics, it enables the computer to aid the
production process of traditional animation. Catmull made a systematic anal-
ysis of the problems in computer-assisted animation, and summarized that
the computer can be used in the following steps in the traditional animation
pipeline [Catmull, 1978]:

(1) Inbetweening. Given figures A and C, the computer is employed to find
the correspondence between the figures, such that it can produce an in-
terpolated figure B dependent on the correspondence.

(2) Input of drawings. Figures can either be drawn directly on the tablet,
traced in, or scanned in with the aid of the computer.

(3) Coloring. An operator indicates what color each area is to receive. The
figures are colored by some area filling program.

(4) Composition and photographing or videotaping. With the computer, this
can be done in a frame buffer before sending the picture to the film or
video recorder. The programs must include capabilities for zoom and pan
of the components in the picture, etc.

(5) Background painting. The software system can be used for painting back-
grounds by tablet, color monitor and frame buffer.

(6) Sound track reading. Digital sound equipment could also be used to syn-
thesize sound or to fix errors, by expanding or contracting sound on a
tape.

(7) Check (pencil test). Animators need to check the action in their scenes.
With the computer, the artist can get real-time playback of a scene as
soon as the figures are entered or synthesized.

(8) Exposure sheets. One can easily think of the exposure sheet as a data
base management system. It is a natural implementation on a computer.

From the point of view of research methodology, the work of computer
assisted 2D animation can be classified as two major approaches. One is to
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“digitize” the production process, such as digitization of the shoot [Stern,
1979], vectorization of cartoon drawing [Zou & Yan, 2001] and paperless 2D
animation [Van Reeth et al., 1994; Fekete et al., 1995]. The other is to let the
computer assist the animators in time-consuming or repetitive work such as
coloring or inbetweening. For the time being, computer-assisted 2D anima-
tion has made significant progress, especially in “digitizing” the production
process, and most steps in the production pipeline were supported in the com-
mercialized 2D animation software systems such as TOONZ, RETAS PRO,
ANIMO, AXA, etc. (see Fig. 7.3). It not only greatly reduces the workload
of animators, but also has obvious advantages over the hand drawn work of
dialog design, timing control and motion specification etc. [Kurlander et al.,
1996; Litwinowicz, 1991]. Moreover, with the aid of the computer, the tempo-
ral coherence between consecutive frames can be easily checked and preserved
and the quality of the resulting animation is much better than before (see
Fig. 7.4).

Fig. 7.3 Example of computer-assisted cartoon animation [Stern, 1979]. Copyright
of ACM, used with permission

Although the computer can effectively aid many steps involved in the tra-
ditional animation pipeline, it is still facing challenges when used to assist
the coloring and inbetweening in 2D animation production. The computer
can only play a secondary role in these two steps. This is mainly because
the traditional animation production is merely based on the 2D plane, and
the 3D information about characters and scenes is mentally and implicitly
represented in the mind of the animator. Moreover, the visual content of tra-
ditional cartoon animation is an aesthetic depiction of the world, requiring
the artistic imagination to interpret it, and its motion content is embodied
in the 2D line-drawing that is expected to behave the way the 3D models
do. Therefore it will be very difficult for the computer to directly infer the
3D geometric information and motion of the 2D character and background
scene. Consequently, it is not easy to make the computer effectively assist
the coloring and inbetweening of cartoon animation when occlusion occurs
among consecutive frames [Catmull, 1978; Patterson & Willis, 1995]. How-
ever, in the traditional animation production, most work and time is spent
on two tedious tasks: drawing and inking/coloring of the individual animated
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characters for each frame, which takes up approximately 60% of total labor
required in traditional animation [Durand, 1991], and it makes sense to con-
tinue the exploration and development of key techniques to speed up coloring
and inbetweening steps. The remaining sections of this chapter will discuss
computer-assisted coloring and inbetweening in detail.

Fig. 7.4 Example of motion specification in traditional 2D animation [Litwinowicz,
1991]. Copyright of ACM, used with permission

7.3 Computer-assisted Coloring

The goal of computer-assisted coloring is to automatically fill each region of
animation frames with the specified color. There are two major approaches
to auto-coloring in cartoon animation production. One is based on the tradi-
tional animation pipeline, and the computer automatically fills the remaining
frames with the specified colors in terms of the correspondence relationship
of line-drawings and the reference frames, manually colored by the animator.
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The other one aims at making the existing black-and-white animation clips
colorful, and accordingly generates new colorful animation by transferring
the desired colors into the entire animation sequence automatically.

7.3.1 Auto-coloring of Inbetweening Frames

The major task in auto-coloring of inbetweening frames is to find the cor-
rect correspondence relationship between regions to be colored in the current
frames under consideration and the colored regions in the reference frames,
and precisely propagate the colors in the reference frames into the regions
in the remaining frames. The key technical point is how to build the cor-
respondence relationship model between the regions to be colored and the
regions manually colored by the animators. A typical solution for creating
the correspondence relationship model is based on the visual similarities and
motion principles of relevant regions, and the correspondence relationship
among regions is usually determined by the means of quantitative computing
of similarity between regions, qualitative reasoning of the neighboring rela-
tionship among regions, spatial reasoning of relative locations among regions,
etc.

Madeira et al. estimated and evaluated the similarities among regions by
shape-matching algorithms [Madeira et al., 1996]. The user first chose an
initial set of matched regions between the current and the reference frames.
The matched regions in the reference and current frame under consideration
are denoted as R and P respectively. Ri are the neighboring regions of R in
the reference frame (i=1,. . .,n) and Pj are the neighboring regions of P in the
current frame (j=1,. . .,m). For each candidate matched pair of (Ri, Pj), the
Sobel operator is employed to compute the gradient of each pixel along the
counters of the region, and then the shape of each region is then encoded as
a sorted string in terms of the magnitude and sign of the calculated gradient.
Given two encoded strings A = A1A2. . .An and B = B1B2. . .Bm, a distance
matrix of (n + 1) × (m + 1) is created and the cost of converting string A
into B by inserting, deleting, replacing substrings is taken as the value of
the difference in shapes in their corresponding regions. Let Dij be the shape
difference of (Ri, Pj), the impossibly matched regions are first removed by
qualitative reasoning of the topological relationship among candidate regions,
and the correspondence relationship model among the candidate regions is
built by minimizing the overall cost of all the candidate matched regions as
follows:

min
m∑

i=1

n∑
j=1

dijxij ,

where
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n∑
j=1

xij = 1, i = 1, 2, . . . , m,

m∑
i=1

xij = 1, i = 1, 2, . . . , n,

where
xij ∈ {0, 1}.

Instead of minimizing the shape differences of all matched regions as in
[Madeira et al., 1996], Chang and Lee took the approach of creating a cor-
respondence relationship model by maximizing the similarities between two
matched regions. The similarity between two image regions, a target region
and a reference region, is defined as the maximum number of similar features
that are common between them, or is defined as the minimum changes that
need to be performed on one object in order to produce the other region.
They classified the region features into two categories: (a) Shape of regions,
and attributes affecting their appearance such as area, bounding box, aspect
ratio, density, and motion direction, etc.; (b) Spatial layout and connectivity
of the components of each region. Moreover, a topological attribute graph
is created to describe the planar spatial relationship of a drawing and is
represented by the form

Dg = (V, E),

where V = {v1,. . . , vn} is a finite set of n region vertices with statistical
region features and E = {e1,. . . , er} is a set of r edges with adjacency rela-
tionship attributes, that is, relationships connected by border arc segments.
This topological attribute graph is employed for the progressive matching of
regions and the similarity between two graphs is evaluated by surrounding
color, same surrounding edge with same color pair, extra neighbor color, and
degree difference of edges, etc. The overall algorithmic pipeline of their au-
tomatic cel painting is summarized as: (a) Color the first drawing manually;
(b) Obtain the next drawing and record all of the region feature information
related to the drawings; (c) Perform image preprocessing for the new draw-
ing to obtain a better drawing feature quality; (d) Establish region features
and graph structures using an integrated labeling algorithm; (e) Make the
matching and similarity measurement to find the color of the target region
from the previous corresponding region, and fill colors into this target region;
(f) Repeat steps (b)∼(e), until all drawings in the current scene have been
painted.

Seah and Tian presented how to automatically color line-drawings of car-
toon animation by motion estimation [Seah & Tian, 2000]. The motion (dis-
placement) vectors between two corresponding images are calculated by tak-
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ing them as samples of a scene at a discrete time, and features such as in-
tensities, edginess, cornerness (positive and negative), and regions (displace-
ment orientation and magnitude smoothness) are selected as tokens that are
to be matched. The employment of these multiple image features yields an
over-determined system of matching constraints. This becomes an optimiza-
tion problem, which can be solved with the least-square error technique. The
following general principles are utilized to hierarchically match the line draw-
ings:

(1) Preprocess the scanned line drawings to remove noises or broken lines.
(2) Establish the displacement vector field between the source and the target.
(3) Segment both images into regions and label them.
(4) Match all large regions in the source to those regions in the target one

by one according to greatest similarity.
(5) Make small regions in the target correspond with respect to their neigh-

boring relationships and information about the larger regions colored in
the previous step.

The overall algorithm for the hierarchical feature based matching tech-
nique is as follows.

(1) Extract the attribute images (intensity, edginess, and cornerness) from
the two input drawings at the original resolution (lowest level).

(2) Recursively smooth these images for higher levels to generate lower res-
olution images.

(3) Start with the highest level.
(4) Initialize displacement vectors (DVs) at all pixel locations to zero.
(5) Iterate for a preset number of times, at all pixel locations.

a. Compute the average displacement vector and hence the orientation
and displacement residuals.

b. Compute and update the DVs.
(6) Project the DVs downwards to the next lower level.
(7) Set the level to the next lower level.
(8) Repeat step (5) until the lowest level is reached.

Their experimental results show that this technique is robust enough to
color most regions of the frames when differences between the reference and
target frames are small enough, even though there are some inaccuracies in
the computation of displacement vectors due to the least-squares matching
approach (see Fig. 7.5). Very minor intervention or correction by the user is
required to complete the rest (for different cartoon sequences, this require-
ment varies in terms of the complexity of the characters and the changes
among frames).

In order to further improve matching accuracy and make it more ro-
bust, Qiu et al. (2005a) presented a Hierarchical Region Matching (HRM)
approach for computer-assisted auto coloring, expanding the matching pro-
cess from the scope of single level regions to that of multi-level components.
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Fig. 7.5 Coloring examples by matching line-drawing [Seah & Tian, 2000]. (a)
Reference frame painted by the animator in advance; (b) Successful coloring of the
target frame; (c) Failure to be colored by the reference frame. Copyright of Springer
Science and Business Media, used with permission

The hierarchization representation of the frame is carried out by the group-
ing method that expands the region level into several component levels. The
regions which are grouped to form a component are called the component’s
element regions. After grouping, the shared border of each component’s ele-
ment regions will be removed so that the component can be combined into
a new region. For some components at the higher level, the corresponding
combined regions may have some inner element regions which do not have
shared borders with them. This grouping and decomposition process will it-
erate at the lower level until no components can be found (see Fig. 7.6). After
all stable relations for each level are reorganized, the stable topology for each
level is recomposed from them (see Fig. 7.7). The stable topology for each
level can also be manually defined by users.

After the hierarchization and the stable topology for each level is recom-
posed, components and regions are matched from the first to the last compo-
nent level. At each level, the order for selecting the target region goes from
combined regions of components to ungrouped regions. With the expanded
hierarchy, candidate regions selection is confined within a range based on
the matching result of the target region’s parent. For each target region, the
matching criteria are given below:
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Fig. 7.6 Hierarchization result of a crab character [Qiu et al., 2005a]. Courtesy of
Zhongke Wu

Fig. 7.7 Expanded hierarchy topology representation for the crab in Figure 7.3.2
[Qiu et al., 2005a]. Courtesy of Zhongke Wu

(1) If its parent is matched to a component, candidate regions are selected
from the component’s children;

(2) If its parent is matched to a region, the region is its only candidate region;
(3) If its parent is not matched to any component or region, candidate regions

are selected from all the components and regions at the same level and
those regions which have not been matched at the higher level.

The matching process at each level is divided into two stages. (a) The
matching is from the reference frame to the target frame, those components
and ungrouped regions that constitute the stable topology are traced and
bi-directionally matched. (b) Those unmatched components or regions in the
target frame are matched with those in the reference frame. Examples have
illustrated that HRM can improve matching accuracy, and could partly deal
with matching errors caused by occlusion, making the matching more robust.
A comparative example of auto coloring is given in Fig. 7.8.

The aforementioned algorithms can color successive frames according to
the color information of their preceding frames. However, their limitation is



276 7 Computer-assisted Cartoon Animation by Traditional Production Pipeline

Fig. 7.8 A comparative example of auto coloring with and without hierarchical
region matching [Qiu et al., 2005a]. Courtesy of Zhongke Wu

that the changes between two frames must be small enough, the characters
should be viewed with little rotations and the coloring error may be prop-
agated from one frame to the next. To resolve these problems, Qiu et al.
presented an approach to auto coloring based on master frames, mimick-
ing the way humans apply colors to individual hand-drawn cartoon frames
[Qiu et al., 2003; Qiu et al., 2005b]. Master frames are frames that define
the appearance of the individual character to be animated, often containing
the front, back and side views, or some specific postures of a character, as
shown in Fig. 7.9. In traditional animation production, master frames are
colored first. Animators can then color the character in any of the postures
that appear in the animation, based on the color information of the master
frames.

Fig. 7.9 Examples of master frames [Qiu et al., 2005b]. Courtesy of Zhongke Wu

Assuming that objects that do not appear in master frames will not be
drawn in the same layer as the character, the simulation of a human ani-
mator’s auto-coloring by master frames is carried out in three algorithmic
steps. It first matches a set of master frames to construct correspondences
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between regions in the master frames and extract a stable topology. The first
frame of each scene is then colored, based on the set of master frames. With
the painted first frame and an established stable topology, each region in
subsequent frames is matched with regions in the previous frames and col-
ored. Therefore, two types of matching are considered, one is the matching
between painted master frames (master frames are both source frames and
target frames), and the other is the matching from master frames (source
frames) to an uncolored frame (target frame). To do matching from one or
several source frames to one target frame, a region in the target frame is
compared with all regions on the same scale in source frames, looking for the
best-matched one. Compared with other algorithms, this approach is able to
handle bigger changes between frames and automatically color the first frame
of each sequence (see Fig. 7.10).

Fig. 7.10 Examples of auto coloring by the master frames in Fig. 7.12 [Qiu et al.,
2005b]. Courtesy of Zhongke Wu

7.3.2 Colorizing Black-and-white Cartoons

In the early history of cartoon-production, there was a lot of really valuable
and artistically advanced work which stands up in front of world-wide, mod-
ern cartoon production. This provides an invaluable source of imagination for
each new generation of children. However, these old cartoons were often shot
in black-and-white film. It is desirable that color enhancement be applied to
the black-and-white world, such that these old cartoons can be well perceived
afresh, especially by an adolescent audience. Without the assistance of the
computer, an artist who wants to color a black-and-white cartoon usually has
to focus on featureless, repetitive work which prevents him from doing really
creative artwork [Sýkora et al., 2004].

For the point of view of technology, the colorization of black-and-white
cartoon animation can be converted into a problem that transfers the color
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into a sequence of grey-scale images (see Fig. 7.11). Transferring color to a
grey-scale image is a heavy under-constrained problem. The basic techniques
for transferring color to grey-sale images can be found in a digital image
processing textbook. A generic inking method is based on the user-defined
look-up table, which converts each level of grey-scale intensity into the speci-
fied hue, saturation and brightness. Selected luminance values are converted,
using a user-defined look-up table to the desired hue, saturation and bright-
ness. Smooth selections of input luminance values are known as luminance
keys. They could be used simultaneously on several regions with different
luminance median and an almost disjointed deviation interval. The problem
arises when one wants to apply different colors at the same intensity level. It
is usually possible to overcome this limitation using simultaneously a few lu-
minance keys for different manually segmented regions. This tedious process
significantly increases the amount of hand-driven work.

Fig. 7.11 Color applied to the grey-scale image in the middle using left color image
[Sýkora et al., 2004]. Copyright of ACM, used with permission

Another color transfer approach is based on textural information [Welsh
et al., 2002]. Color transfer between an already inked source and a grey-scale
target is based on local luminance distribution matching in LAB color space.
Jitter sampling is used to select a subset of representative pixels in the color
image. It is also possible to choose these samples manually as rectangular
swatches in both images to reach better matching results. This technique is
surprisingly successful in natural scenes (e.g., a tree in a meadow with sky on
the horizon, a deep forest with brown tree trunks and green leaves, etc.). But
cartoons have not enough textural information. Lots of frames only consist
of almost plain regions and vary, above all, in global intensity and thus this
simple process will fail.

Therefore Sýkora et al. started from scratch and developed an example-
based inking framework that can effectively colorize the black-and-white car-
toon [Sýkora et al., 2004]. For this inking process, it is really important to
determine which parts of the input image will be understood as background
and foreground respectively. The dynamic foreground layer contains homo-
geneous regions surrounded by visible outlines and the background layer is
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usually a more complicated textural image which remains static during the
animation. This important property enables one to divide the original grey-
scale image into the set of regions using robust outline detector and classify
them roughly as foreground or background via region size thresholding (see
Fig. 7.12). The overall algorithmic pipeline consists of contour detection, area
segmentation, color indexation with prediction and final composition, with
the restored or original background (see Fig. 7.13). On the segmented image
the color transfer is applied only once using standard image manipulation
software or some specialized colorization tool. In the dynamic foreground
layer, color is applied frame-by-frame. It is based on the assumption that at
least one animation frame is correctly colorized by a color expert. This means
that each foreground region has associated with one index from the palette
of available colors and it is possible to predict color-to-region assignment for
the rest of the sequence using already colored frames as an example. Finally,
color composition of each animation frame is made by pasting previously
extracted and already colorized foregrounds into the correct position on the
reconstructed and colorized background (see Fig. 7.14).

Bezerra et al. presented a colorization algorithm based on topological dif-
ferences defined over a hierarchical graph of adjacent regions [Bezerra et al.,
2006]. It is based on propagating the structural information of the draw-
ings from one frame to the next in an animation sequence. Each frame is
described by a two-dimensional graph where nodes represent regions of the
drawing and arcs their adjacency relationship (see Fig. 7.15). Nodes have
several attributes that characterize the associated regions, such as centroid,
area and shape. The topological difference between regions s and t is mea-
sured by the degree of topological difference DTD (s, t), which gives us the
information about the proximity of the two regions based on a comparison
of their adjacency functions. Multiple criteria are employed to establish the
correspondence relationship between successive frames, and a match is only

Fig. 7.12 Segmentation of foreground layer [Sýkora et al., 2004]. (a) The original
image; (b) The edge detection; (c) The outline detection; (d) The outline extraction;
(e) The final segmentation. Copyright of ACM, used with permission
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Fig. 7.13 The algorithmic diagram of coloring of black-and-white cartoon on the
segmented image [Sýkora et al., 2004]. Copyright of ACM, used with permission

Fig. 7.14 Coloring composition by patch pasting [Sýkora et al., 2004]. Copyright
of ACM, used with permission

accepted when all criteria agree. Although it was originally proposed for
auto-coloring of in-between frames, it can also be applied to the colorization
of black-and-white cartoons, as it propagates colors from the first frame of
the sequence to all the other frames (see Fig. 7.16).

Qu et al. proposed a method that can colorize black-and-white “manga”
(comic book in Japanese) which contains an intensive amount of strokes,
hatching, half-toning and screening [Qu et al., 2006]. The Japanese “manga”
are distinctive from traditional western comic books in presenting fine details.
The intensive use of strokes in “manga” causes discontinuities in intensity,
imposing many difficulties for the aforementioned intensity-based coloriza-
tion methods, which mainly rely on a “rough” continuity of grey levels to
grow the affective regions and segment the image into color regions. However,
the black-and-white patterns in “manga” preserve no grey-level continuity
to facilitate the segmentation. Instead, “manga” exhibit a rough continuity
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of pattern. Therefore Qu et al. carried out the colorization of “manga” by
propagating the colors over regions exhibiting pattern-continuity as well as
intensity continuity in terms of the level-set principle.

The proposed technique starts by scribbling the desired color on the in-
terested regions. The boundary is then propagated by the level set method
that monitors the pattern /intensity continuity. The propagation stops ac-
curately at the boundary where the pattern exhibits abrupt change, even
if there is no apparent outline. There are two modes of color propagation
for segmentation, pattern-continuous and intensity continuous propagations.
The pattern-continuous and intensity-continuous propagations are designed
for hatched/screened regions and intensity-continuous regions with/without
unclosed outlines, respectively. The colorization over both pattern-continuous
and intensity-continuous regions can be naturally formulated using the same
mathematical framework. Besides the mathematical elegance, the level set
provides several advantages. Its topological flexibility allows us to conve-
niently segment multiple disjointed regions with a single user scribble. More-
over, its capability in controlling local deformation allows us to conveniently

Fig. 7.15 Adjacency graph. Regions (circles) and their adjacencies (lines) repre-
sented on both source (a) and target images (b) [Bezerra et al., 2006]. Copyright
of ACM, used with permission

Fig. 7.16 Example of colorization for cartoon drawing [Bezerra et al., 2006]. Copy-
right of ACM, used with permission
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leak-proof during colorization. Once the regions are segmented, they can be
colorized using stroke preserving colorization, pattern-to-shading and multi-
color transition based on the user decision.

7.4 Computer-assisted Inbetweening

Inbetweening in traditional 2D animation is a process where animators draw
a sequence of key frames first, and assistant animators then draw inbetween
frames correspondingly. Drawing the inbetween frames is time-consuming and
tedious. Given an animation, usually a huge number of inbetweens have to
be drawn manually. Automation of these steps not only reduces a significant
amount of time and labor, but also allows the artist to concentrate on more
creative work such as drawing the key frames. But inbetweens are not just
interpolations between key drawings. When drawing the inbetweens, the in-
betweener utilizes: (a) His/her background knowledge of the physical rules of
the world; (b) His/her expert knowledge as to when to bend or ignore these
rules; (c) His/her idea of what emotions should be evoked by the animation.

For these reasons, automatic inbetweening will probably remain an
unattainable goal, at least in the near future [Kort, 2002]. In this section
we will discuss the generation of inbetweening poses and facial expressions
respectively.

7.4.1 Generation of Inbetween Poses

The line-drawing of cartoon characters with different poses is in fact the
contours of the characters, and the pose-to-pose in betweening is accordingly
transformed into a kind of contour animation production [Kunii & Maeda,
1996]. Melikhov et al. [2004] summarized that the generation of inbetweening
poses in traditional animation should meet the following requirements:

(1) Motion shall be smooth.
(2) Edges and curves shall remain as smooth as they are on given key frames.
(3) Lines and strokes shall not be thin and sometimes shall have a compli-

cated texture. Therefore, inbetweening shall be performed by morphing
the textures from one into another, in order to stylize the inbetweens.

(4) Curvature of strokes shall change from the first key frame into another,
so dynamics of curvature and line length shall be considered.

The key frames are usually drawn on 2D canvas, and therefore the early
work of computer-assisted in betweening was usually carried out in the 2D
image plane, and the pixels are directly manipulated to create the inbetween
frames. For instance, Bourdev designed and implemented an automatic inbe-
tweening approach for the strokes with repetitive patterns by means of the
image processing of silhouetted figure drawing and one-dimensional texture
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mapping [Bourdev, 1998]. A more sophisticated inbetweening approach is
based on multi-layer representation of key frames by taking much of the ani-
mator’s expertise into consideration [Melikhov et al., 2004]. The preparatory
work for layer-based matching and inbetweening consists of the vectoriza-
tion of the key frames and construction of a polygonal core model linked
with correspondent splines and textures. The vectorization of strokes in key
frames is performed by finding their centers which form their skeletons. These
centers are called skeletal points and computed by segmenting strokes with
rectangles. A rectangle’s centre is that of the stroke segment enclosed by the
rectangle, and its direction follows the tangent of a stroke segment’s edge.
The size of the rectangle is determined by a threshold which represents the
average difference of all points in the segment from one side of the rectangle.
The vertices of the polygon core are feature points of the vectorized lines,
including intersections of initial strokes and ends of strokes. If a curve’s cur-
vature changes significantly (according to the second derivatives of points of
the curve), additional feature points are chosen on the curve in order to split
it into several simpler parts.

Each key frame therefore is represented as a non-weighted graph which
is used for matching. Graph representation builds a correspondence based
on the structure (topology) of objects. After correspondence between each
stroke of both key frames is built, the interpolation process is applied to each
pair of strokes. This is divided into several levels with the following features:

(1) Stroke positions, defined by coordinates of their ends, are the feature
points of images. The interpolation of the positions is an interpolation of
two pairs of points in 2D space.

(2) Stroke curvature is defined by the stroke spline curve.
(3) Stroke texture is represented by needles of a hedgehog model computed

for each skeleton stroke.

Interpolation of positions forms a motion of objects while that of curva-
tures and textures contributes to stroke styles.

Another layer-based auto-inbetweening approach was proposed by Kort
(2002). The content of each key drawing is analyzed and classified into strokes,
chains of strokes and relations of adjunction/occlusion with the following
assumptions:

(1) Each drawing is made of stroke chains, structures consisting of one or
more connected strokes.

(2) A stroke chain in one key drawing may have a corresponding stroke chain
in another key drawing.

(3) The transition between stroke chains is modeled by animation paths.
These animation paths indicate both the correspondence between stroke
chains in key drawings and the spatial interpolations between them.

Stroke chains of connected visible and invisible strokes are the building
blocks both for the matching algorithm and the generation of inbetweens. The
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best overall matching is found by building up an assignment tree between the
stroke chains {a1, . . . , am} and {b1, . . . , bn} of the stroke chain graphs G1

and G2. In this tree, every node corresponds to

• a matching between two stroke chains ai →bj ;
• an unassigned matching ai →0;
• a surplus matching 0→bj .

The nodes are attributed with the cost of the matching. In each path
from a leaf to the root node, each stroke can appear only once. No forbidden
mappings are allowed in any path from leaf to root node. Non-assignment of
stroke chains is punished with high costs, but it is explored whenever possible.
Even when a match would be possible, the variant with the involved stroke
being unassigned is tested as well. Finally, one or more complete paths in this
tree remain, that involve all stroke chains in the two key drawings. The path
with the least cost is chosen as the match. Animation path Ai:[0, 1]→ R2 is
defined as the correspondence model of stroke chains. A mapping function m:
[0, 1]→[0, 1] specifies the correspondence of points on these chains. Ai and m
define the location of the morphed points on the inbetweens. Let t ∈ [0 . . . 1]
be the time and s∈[0, 1] be the scalar value of the point on the first stroke
to be morphed. The path from S1(s) on the stroke chain S1 ends at point
S2(m(s)) on stroke chain S2. The corresponding interpolated point is given
by

I(s, t) =(1 − t)S1(s) + tS2(m(s)) + (1 − s)Ai(t) + sAi+1(t)

− (1 − s)(1 − t)Ai(0) − (1 − s)tAi(1)

− (1 − t)sAi+1(0) − stAi+1(1).

It is applied to two stroke chains S1 and S2 with neighboring animation
paths Ai and Ai+1. Generated animation paths between corresponding
strokes determine the resultant inbetweens (see Fig. 7.17).

Fig. 7.17 A successful inbetweening with the key drawings [Kort, 2002]. Copyright
of ACM, used with permission
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The further improvement of the visual effect of auto-inbetweening is based
on a more sophisticated stroke model in [Seah et al., 2005]. They proposed
the Disk B-Spline Curve (DBSC) that represents not only the 2D region of
the stroke but also its centerline, so that various attributes like the scalar
and vector field can be applied to the stroke (see Fig. 7.18). Given two or
more animation drawings represented by DBSC, the intermediate frames can
be automatically generated to form a smoother sequence, either linearly or
non-linearly.

Fig. 7.18 Stroke example of DBSC[Seah et al., 2005]. Copyright of ACM, used
with permission

However, the linear interpolation of two DBSCs without incorpo-
rating characteristics of shape or motion will result in distortion and
unrealistic motion in the inbetweening frames. In order to facilitate this
problem, Chen et al. extracted and utilized more information in key
frames in the generation of inbetweening frames [Chen et al., 2006]. Points
with high curvature are computed and corresponded between strokes in
interpolation, which preserves features of strokes in animation (see Fig. 7.19).

Fig. 7.19 Comparison of stroke interpolation techniques: a cartoon scene [Chen et
al., 2006]. (a) Previous method (main distortion in circles); (b) Feature-enhanced
stroke interpolation. Copyright of John Wiley & Sons, Ltd., used with permission

In addition, the global motion of a character or its various components
is estimated and interpolated as well, which retains the shapes during the
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Fig. 7.20 Comparison of inbetweening techniques: Fish [Chen et al., 2006]. (a)
Linear interpolation; (b) Feature-based stroke interpolation; (c) Motion-enhanced
interpolation based on (b); (d) Path-driven inbetween generation based on (c).
Copyright of John Wiley & Sons, Ltd., used with permission

motion (see Fig. 7.20). Both the feature and motion enhanced methods in-
corporate properties of the drawing, which eliminate distortion and achieve
a smoother sequence of animation (see Fig. 7.21).

The aforementioned auto-inbetweeing approach is mainly based on the
pose-to-pose technique to generate the actions in hand-drawn animation. An-
other typical action generation technique in traditional animation is based
on the straight-ahead mode, in which the animator literally works straight
ahead from his first drawing in the scene (see Section 7.2). Assuming that
the motion of the animation character is driven by a group of skeletons, and
the line drawings of contours of characters will be changed according to the
movement of skeletons, the animator’s straight-ahead action mode could be
simulated by the skeleton-based auto-inbetweening method.

For example, Hsu & Lee implemented an auto-inbetweening approach by
skeleton strokes [Hsu & Lee, 1994]. Each skeleton stroke consists of a stroke
path and width. Its “ink” is an image specified by the user, and the draw-
ing of strokes is carried out by the morphing of the image along the stroke
path. When the skeleton strokes are applied to the generation of inbetweening
frames, they further provide an anchoring mechanism to conveniently trans-
form the arbitrary image into a single skeleton stroke, such that the width
and skew angle of the skeleton stroke can be fixed, and accordingly generate
a pseudo 3D effect while drawing the character (see Fig. 7.22).
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Fig. 7.21 Comparison of motion interpolation techniques [Chen et al. 2006]
(a) Global motion estimation; (b) Previous method (main distortion in red cir-
cles); (c) Motion-enhanced in between generation; (d) Align all nodes. Copyright
of John Wiley & Sons, Ltd., used with permission

Fig. 7.22 The auto-inbetweening approach based on an anchoring mechanism [Hsu
& Lee, 1994]. Copyright of ACM, used with permission
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7.4.2 Generation of inbetweening Facial Expression

Computer facial animation has been a flourishing research topic over the past
decades, aiming at models that can be animated and used to easily convey
distinctive communicational (e.g., paying attention), cognitive (e.g., agree-
ing) and emotional (e.g., surprise) expressions. A synthetic human face can
attract the user’s attention, improve the effectiveness of using the computer
and even have an influence on the cognition of users. However, making fa-
cial computer animation look convincing has proven to be a difficult task,
as facial animations are usually complex, and drawing all emotions for all
characters is without doubt a labour-intensive process. There is a clear need
for a simple yet versatile method to speed up the generation of inbetweening
facial animations, while not limiting the animation artists in their creativity.

Thorisson presented a ToonFace system that can create facial expressions
in real time in response to a human interacting with it [Thórisson, 1996].
The scheme divides the face into seven parts: two eyebrows, eyes and pupils,
and one mouth. Each part is associated with a specific number of control
points. The eyebrows have three control points each, the eyes and mouth
have four and pupils one each. As the control points are moved, either in one
or two dimensions, the shape and position of animated polygons is modified
to conform to the change, and thus change the facial expression. The resultant
inbetweening facial expression frames are generated in terms of anatomical
constraints and artistic conventions .

Inspired by the ToonFace system, Ruttkay and Noot extended the para-
metric keyframing technique and further implemented a CharToon system
that supports the interactive design and animation of 2D cartoon faces [Rut-
tkay & Noot, 2000]. CharToon consists of 3 components: Face Editor, Ani-
mation Editor and Face Player. Face Editor is a 2.5D drawing program with
which one can define the structure, the geometry, the colors and the potential
motions of the face. Animation Editor is an interactive “animation compos-
ing” program, to define the time-behavior of a drawing’s animation param-
eters, provided by Face Editor. Face Player actually generates the frames of
an animation, on the basis of the animation parameter values in the movie
script file provided by Animation Editor and the face description file pro-
vided by Face Editor. The fundamental part of the CharToon system is the
Face Editor. The components of the face are defined similarly to vector-based
graphical objects by points. The defined points can be of four kinds:

(1) Master control points which are used to animate the object, as the posi-
tion of the control points is given by animation parameters;

(2) Slave control points which are assigned to a master control point and
move as their master control point does;

(3) Frozen points which never move;
(4) Fixed points which may move, if driven by some control point, otherwise

they remain in place.
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While creating a component of a drawing, one also specifies its potential
dynamical behavior to be used when animating it. The possibilities are:

(1) Change location;
(2) Change scale in the horizontal and/or vertical direction;
(3) Change visibility;
(4) Most of the components can change shape according to the changing

position of the control points they contain.

CharToon also separates the appearance, the dynamism (possible defor-
mations) and the behaviour of a face. The first two aspects are incorporated
in the definition of the face, while the latter in the animation. Technically,
CharToon supports the reuse of facial components and pieces of animations
as building blocks. Based on careful analysis of specific facial features of the
basic expressions—happiness, surprise, fear, sadness, anger and disgust— for
each feature (eye, mouth, eyebrow...) different alternative designs are pro-
duced, forming together the feature repertoire. For each feature, the defor-
mation for the basic expressions is given (in terms of animation parameters),
forming the expression repertoire. The alternatives for a feature differ con-
cerning the deformation control mechanism and/or structure. Variants of a
face are built up from identical feature repertoire elements. The variants are
gained by changing the rendering, the shape and color of the building blocks
and the dynamism (ranges of control parameters).

From the point view of facial motion simulation, the aforementioned facial
generation method mainly deals with the transformations in a plane parallel
to the drawing canvas (the x -y plane), such as rotations around the z -axis and
translations with a plane parallel to the x -y plane. However, there exists an-
other kind of transformation that is outside the drawing plane, especially for
all rotations around an axis different from the z -axis. The auto-inbetweening
of this transformation needs the 3D structure underlying the objects and
characters, and in traditional animation this 3D information is mainly pre-
sented in the animator’s and viewer’s mind, not in the 3D drawings. In order
to explore the auto-inbetweening of 3D facial expression, Di Fiore and Van
Reeth introduced the concept of facial emotion channels that represents a
facial part expressing an emotion, and presented a novel approach through
which an emotionally meaningful 2D facial expression, from one point of view,
can be created from a reference expression, from another point of view [Di
Fiore & Van Reeth, 2003]. The face modeling is implemented as a multi-
layered 2.5D modeling system situated in their prior work [Di Fiore et al.,
2001]. The basic 2D drawing primitives (curves) are at level 0, and explicit
2.5D structure at level 1. The inclusion of 3D information by means of skele-
tons is at level 2 and high-level deformation tools (and possibly other tools
for supporting specific purposes such as facial expression) at level 3. Multi-
level 2D strokes, interpolation techniques and on-the-fly resorting are used
to create convincing 3D-like animations starting from pure 2D information
(see Fig. 7.23).
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Fig. 7.23 Example of face modeling [Di Fiore et al., 2001]. (a) shows a man’s head
face-on and a side-view obtained by NPR techniques; (b) shows the same views as
an animator is likely to draw it. Copyright of IEEE, used with permission

Facial emotion channels can be seen as the building blocks of any facial
expression. Instead of modelling a complete face at once, each individual
facial part is modeled separately and independently. That is, for each indi-
vidual part, the user models one neutral version (which depicts no emotion
at all) and a set of emotional versions (one version for each emotion that
has to be supported). Concerning the animation phase, the animator only
has to specify key frames in time by entering parameters using the same
methods as described in [Di Fiore et al., 2001]. Afterwards, the automatic
inbetweening method comes into play and generates the desired animation.
This gives the animator the opportunity to create countless different facial
expressions without having to model each expression manually, contrary to
earlier systems.

7.5 Summary

In this chapter we mainly discuss computer-assisted techniques for auto- col-
oring and inbetweening based on the traditional animation pipeline. However,
in traditional animation, modeling, motion and rendering are closely coupled
to a single drawing process and the 3D information of objects and charac-
ters merely exists in the animator’s mind, not in the 2D drawing. Therefore,
it is difficult for the computer to acquire sufficient information to automate
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its inbetweening process, and the challenging technical problems in assisting
traditional animation proposed by Catmull [1978] have not yet been solved.

For the time being, the researchers and artists in the animation industry
are exploring novel techniques and the production pipeline for traditional
animation, and we will discuss them in detail in the next chapter.
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8

Novel Approaches to Computer-assisted
Cartoon Animation

In the production of traditional cartoon animation the computer does not
play the key role as it does in generating 3D animations, although it has
achieved much work in auto-coloring and inbetweening. With the advent of
non-photorealistic graphics technology, researchers in the computer graphics
community further explored how to improve the production efficiency by in-
vestigating many novel approaches to assisting 2D cartoon animation with
artistic rendering, modeling and motion generation. From the point of view
of research methodology, these novel approaches to cartoon animation pro-
duction can be summarized as follows:

(1) Video driven cartoon animation. The performances of objects and actors
are first extracted by image processing and computer vision techniques,
etc., and then accordingly retargeted to the objects and characters in the
cartoon animation sequence.

(2) Carton animation production guided by approximate 3D geometry. The
objects or characters to be animated are modeled with 2.5D or 3D in-
formation, and the 3D computer animation techniques are borrowed to
speed-up the production of 2D animation.

(3) Cartoon generation by artistic rendering with temporal coherence. The
temporal coherence mechanisms are embedded into the artistic render-
ing techniques, and then the resulting cartoon sequences can be semi-
automatically/automatically generated by them.

(4) Cartoon production by “borrowing” 3D animation techniques. 3D com-
puter graphics techniques and animation methods are employed to ex-
plore and investigate the novel artistic modeling and rendering techniques
that can improve the production efficiency of 2D cartoon animation.

(5) Cartoon production by content reusing. It acquires the relevant visual and
motion content from the existing cartoon animation, and applies them to
the production of new cartoon animation.
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8.1 Video Driven Cartoon Animation

It is natural for researchers to take video into consideration while exploring
novel approaches to assisting cartoon animation, as the video clips not only
provide visual information (colors, textures and contours etc.) of objects of
interest, but also indicate how this visual information changes with time. In
essence, the algorithmic idea of video-driven cartoon animation is based on
“rotoscoping”, which traces and draws the contours of objects in the images
and then generates the animation sequence frame by frame. Three major
criteria for evaluating a successful video tooning system are summarized as
follows [Wang et al., 2004]:

(1) The result sequence should maintain spatio-temporal consistency to avoid
significant jumps in frame transitions.

(2) The content of the video should be abstracted in such a way as to respect
the higher level semantic representation.

(3) The artist should be able to express control over the style of the result.

The techniques regarding video-driven cartoon animation can be summa-
rized as being of the following three types:

(1) The frames in the video sequence are directly processed in terms of car-
toon animation conventions. The image-based artistic rendering tech-
niques are intuitively applied to the overall image of each frame, con-
verting the images in video clips into the corresponding frames in the
resulting cartoon sequence. It is useful in creating the background in
cartoon frames.

(2) The needed visual and motion content is extracted from the video clips
for cartoon animation production, e.g., the contours can be traced and
extracted from the video sequence, and the resulting animation clips can
be generated by coloring the regions in terms of these contours. It is often
used in foreground character drawings in cartoon production.

(3) Performance-driven facial animation. The facial expressions in the video
are acquired by motion tracing and recovering, and the desired facial
animations are created by retargeting them on the faces of the characters.

8.1.1 Directly Converting Video Segment into Painterly
Animation

Painting each image in a video sequence is labor intensive, and even more
work is necessary to produce a sequence that is temporally coherent. In order
to automatically produce painterly animations from video clips, an example-
based approach is usually employed to convert the video segment into cartoon
sequence, i.e., a few frames from the source video are manually converted into
the target cartoon frames with desired hand-drawn visual effect, and then
the remaining frames of the source video are accordingly transformed into



8.1 Video Driven Cartoon Animation 295

the resulting cartoon effect in terms of the artistic rendering parameters or
templates applied to the reference frames. Its algorithmic diagram is shown
in Fig. 8.1.

Fig. 8.1 The algorithmic diagram to convert video into cartoon sequence in terms
of the reference frames

The simplest method for generating painterly video is to apply an image-
based artistic rendering technique to each frame independently. As has been
previously observed in the literature, subtle changes in the input can cause
dramatic changes in the output, creating severe flickering in the output video.
Therefore new approaches with a temporal-coherence mechanism should be
explored for video-driven animation. Litwinowicz was the first to exploit tem-
poral coherence in video clips to design an automatic filter with a hand-drawn
animation quality [Litwinowicz, 1997]. It uses optical flow fields to push brush
strokes from frame to frame in the direction of pixel movements. The pixel
motions are tracked to produce a temporally coherent painterly style anima-
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tion from an input video sequence. In order to move the brush strokes from
one frame to the next, the optical flow between the two images is first calcu-
lated. Optical flow methods are a subclass of motion estimation techniques
and are based on the assumption that illumination is constant, occlusion
can be ignored, and that the observed intensity changes are only due to the
motion of the underlying objects. The optical flow vector field is used as a
displacement field to move the brush strokes (specifically their centers) to
new locations in a subsequent frame. To generate new brush strokes in re-
gions that are too sparse, a Delaunay triangulation using the previous frame’s
brush stroke centers (after application of the optical flow field) is employed
to update the moved strokes (see Fig. 8.2).

Fig. 8.2 Move brush strokes to new locations in a subsequent frame by Delaunay
triangulation [Litwinowicz, 1997]. (a) Initial brush stroke positioning; (b) The four
middle strokes are to be moved as shown; (c) Delaunay triangulation of the moved
strokes; (d) Red points show new vertices introduced as a result of satisfying the
maximal area constraint; (e) The updated list of brush strokes. The original lower
left corner brush stoke has been deleted because the distance between it and an-
other original stroke satisfies the closeness test. Two of the potentially added new
brush strokes have also been removed from the list. Copyright of ACM, used with
permission.

To render a brush stroke, an antialiased line is drawn through its cen-
ter in the appropriate orientation. Brush strokes are oriented normal to the
gradient direction of the original image; a scattered data interpolation tech-
nique is used to interpolate the gradient field in areas where the magnitude
of the gradient is near zero. Randomness is used to perturb the brush stroke’s
length, color and orientation to enhance the hand-touched look. In order to
preserve detail and silhouettes, strokes are clipped to edges that they en-
counter in the original image. Therefore, after a few initial decisions, such as
what the brush stroke length, radius and texture should be, whether or not
to use the gradient for brush stroke orientation, what filter kernels should
be used, providing distances and areas for the closeness and sparseness tests,
the source video can be automatically converted into the animation sequence
with Impressionist effect (see Fig. 8.3).

Hertzmann and Perlin presented the approach of “painting-over” suc-
cessive frames of animation based on their still image processing technique,
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Fig. 8.3 Example of animation frame converted from video with Impressionist
effect [Litwinowicz, 1997]. Copyright of ACM, used with permission.

which paints a rough sketch of the image with large brush strokes, and then
refines it with smaller brush strokes [Hertzmann & Perlin, 2000]. The first
frame of the video sequence is painted normally. For each successive frame,
they “paint over” the previous frame only in regions where the source video is
changing. This means that the painting of the first frame is used as the initial
canvas for the second frame, which leads a natural mechanism of preserving
temporal coherence in the resulting painterly video (see Fig. 8.4).

Fig. 8.4 Frames from a music video, illustrating various painting styles and result-
ing effects [Hertzmann & Perlin, 2000]. Copyright of ACM, used with permission

Mihai presented a system that can generate a stylized line-drawing based
on the interesting features such as edges and large color areas [Mihai,1998].
Straight-line segments from the gradient of an image are extracted, and these
are then combined into continuous strokes. Color areas are extracted using
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k-means clustering, working in HSV color space. The frame-to-frame coher-
ence is established on the basis of optical flow.

Collomosse and Hall presented a novel framework for the automated syn-
thesis of non-photorealistic animations from video sequences [Collomosse &
Hall, 2005]. They interpreted the source video sequence as a spatio-temporal
voxel volume, with time as the third dimension. Video frames are segmented
into homogeneous regions, and heuristic associations between regions formed
over time to produce a collection of conceptually high level spatio-temporal
objects. These objects carve sub-volumes through the video volume delimited
by continuous isosurface “Stroke Surface” patches. By manipulating objects
in this representation it can synthesise a wide gamut of artistic effects, which
allows the user to stylise and influence through a parameterized “Video Paint-
box”. The Video Paintbox consists of a single rendering framework which
may be broken into a front and back end. The front end is responsible for the
parsing of the source video to create an intermediate representation, and is
largely automated through application of Computer Vision techniques. This
abstracted video representation is then passed to the back end, where it is
rendered in one of a range of artistic styles (see Fig. 8.5).

Fig. 8.5 Painterly animation generation based on “stroke surface”[Collomosse &
Hall, 2005]. Copyright of IEEE, used with permission

Hays and Essa presented a new approach that builds on and refines several
aforementioned techniques for generating painterly animations [Hays & Essa,
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2004]. The central element in this approach is a brush stroke with dynamic
properties. Each of these brush strokes has properties such as opacity, color,
length, width, orientation and motion. The brush strokes are arranged in
layers which are disjoint groups of brush strokes representing successive passes
of refinement in a painting (see Fig. 8.6).

Fig. 8.6 Brush stroke layers and the canvas. The layers are independent meshes
of brush strokes which successively refine the input frame [Hays & Essa, 2004].
Copyright of ACM, used with permission

Painterly animations are generated using a mesh of brush stroke objects
with dynamic spatio-temporal properties. All brush stroke properties are tem-
porally constrained to guarantee temporally coherent non-photorealistic ani-
mations. Their behaviors are governed by user-defined and selected styles as
well information extracted from the input image, video, or motion informa-
tion. A style is an encapsulation of parameters that control the analysis of
input frames, the behavior of brush strokes, and the rendering of output. The
images and videos can be transformed into painterly animations depicting dif-
ferent artistic styles (see Fig. 8.7). Its significant technical improvements in
transforming video into painterly animations are as follows:

(1) Each brush stroke property is constrained over time to ensure that
smooth, temporally constrained animations are produced. Brush stroke
generation and deletion are performed smoothly through time by modi-
fying brush stroke opacity.

(2) Radial basis functions (RBFs) are employed to globally orient brush
strokes across time and space.

(3) Edge detection at varying frequencies is utilized to guide the creation of
new brush strokes and the refinement of fine details.

(4) Rendering quality is improved by decoupling output resolution from input
dimensions and by using real brush stroke textures along with a simple
lighting model.

(5) The artistic versitility of motion is emphasized by synthesizing motion
information for still images to produce animated stills as well as trans-
planting motion from video segments onto stills.
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Fig. 8.7 Various painterly renderings of a pink flower (top left). Painterly ren-
derings representing (top row) “watercolor”, “Van Gogh”, “Impressionism”, (bot-
tom row) “Abstract”, “Pointillism”, “Flower” and “Abstract” styles [Hays & Essa,
2004]. Copyright of ACM, used with permission

8.1.2 Contour-based Animation Generation from Video

The direct conversion of a video segment into painterly animation trans-
formed the entire image into painterly effect, and this is useful in quickly
creating the background in cartoon frames. However, in the foreground char-
acter drawing, users often identify and extract the foreground features in the
image that they wish to include in the animation. Therefore, contour-based
animation generation from video is proposed. From the point of view of tech-
nology, it is based on the common tracing techniques in rotoscoping, where
cartoons are traced from film projected onto their desk, to handle especially
complicated sequences. Children or untrained users often create better draw-
ings than they could create alone by laying semi-transparent paper over an
image and tracing it. However, cartoon rotoscoping is laborious, as it still
requires the animator to hand-draw each frame of the animation.

In order to improve this situation, Agarwala combined this process of cre-
ating cartoons with video analysis, and implemented a SnakeToonz system
which aims to give anyone with a video camera and a computer the ability to
create compelling cel animation [Agarwala, 2002]. In SnakeToonz, the process
of creating a cartoon is modeled as a dialogue between child and computer
(see Fig. 8.8). The user first creates a cartoon of the first frame of the video
by drawing curves directly on the image. The system responds by modifying
the drawn curves to best fit the edges in the image as well as other aesthetic
constraints. The system also snaps together small gaps between drawn curves.
The user can advance to the next frames as the system attempts to automat-
ically propagate the cartoon using video motion estimation. They can then
edit the system’s suggestion, if necessary, and is free to add or delete curves
as occlusions occur or new perspectives of objects appear.
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Fig. 8.8 The overall production pipeline in SnakeToonz

In SnakeToonz, its key technical point is contour tracking. It first copies
the current frame’s cartoon forward to the next frame along with the snap-
ping information. A point tracking technique is employed to track the ends of
the contours. Internal points are moved using a transformation space defined
by the endpoints. The snakes are then relaxed to the edges in the new frame.
It still requires significant and repetitive efforts in contour tracking. In order
to facilitate this problem, Agarwala et al., [2004] proposed a user-driven key-
frame system for contour tracking. They combined the best features of user
guidance and automated tracking: the user can specify constraints by manip-
ulating any contour control point at any frame in the sequence; a space-time
optimization, computed using a standard nonlinear optimization technique,
then finds the best interpolation of the contours over time. The user can it-
erate by refining the results and restarting the optimization. Thus, the user
can guide the automatic tracking in situations, and the optimization can
significantly reduce the amount of human effort involved.

The goal of SnakeToonz is not to surpass professional animation, or to
trivialize the medium. Instead, SnakeToonz allows those without experience
in cel animation to express themselves in the medium at quality levels much
better than they could have accomplished alone. It will help those of us who
are brimming with creative vision but lack the skill and experience to map
from this vision into results.
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Wang et al. treated the video as a space-time volume of image data,
and transformed an input video into a highly abstracted, spatio-temporally
coherent cartoon animation with a range of styles [Wang et al., 2004]. An
anisotropic kernel mean shift technique is developed to segment the video
data into contiguous volumes. This provides a simple cartoon style in itself,
but more importantly provides the capability to semi-automatically roto-
scope semantically meaningful regions. The coherence problem is handled by
accumulating the video frames to create a 3D data volume and directly clus-
ter the pixels in the three dimensional space (x, y, t). This avoids many of
the robustness problems of optical flow methods that track pixel or object
movements only between successive frames.

In their VideoTooning system, the major algorithmic steps to transform
a video sequence are summarized as follows (see Fig. 8.9):

Fig. 8.9 The major algorithmic steps in VideoTooning

(1) A set of volumetric objects is determined by mean shift video segmenta-
tion.

(2) The user draws on a limited number of key frames to indicate how small
segments should be merged into larger, semantic regions.

(3) The user’s indications are interpolated between key frames by a mean
shift guided interpolation technique propagating the user’s input to all
frames.

(4) The user can optionally draw paint strokes within regions at key frames.
These are similarly interpolated.

(5) Semantic regions and surfaces are reconstructed and smoothed. Edge and
stroke sheets are determined.

(6) At each frame, time regions and sheets are sliced to yield area and curve
primitives.
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(7) These primitives are rendered in desired style to create a final stylized
video frame and output.

This VideoTooning approach provides a possible means to overcome the
main challenge of providing temporal stability by leveraging a new mean shift
method applied to video data. It is also shown that the mean shift results,
together with the artist’s input, can provide a variety of non-photorealistic
styles (see Fig. 8.10).

Fig. 8.10 Examples of animation generated based on VideoTooning approach

8.1.3 Video-driven Facial Animation with Style

The human face is one of the most complex and interesting objects that
we come across on a regular basis. The face, the myriad expressions and
gestures that are capable of making, are a key component of human com-
munication. Human beings are extremely adept at recognizing faces. This
attribute presents both an advantage and a challenge to any system that ma-
nipulates facial images. The viewer is likely to be able to instantly spot any
defects or shortcomings in the image. If the image is not a perfect rendition
of an actual face, both in appearance and in motion, the user will notice
the discrepancies. Therefore, facial animation has become one of the most
challenging tasks in producing character animation.

Video driven facial animation enables the user to create stylized facial an-
imation by a small number of images and a few parameters for the inbetween-
ing images. Buck et al. presented a system that can generate “hand-drawn”
facial animation from video in real time [Buck et al., 2000]. To construct a
face, it requires an initial set of hand-drawn images to blend together. The
artist draws this set, divided into mouth, eyes and background head images,
all of which can be warped and blended independently (see Fig. 8.11).
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Fig. 8.11 A sample of facial expression, triangulation for mouth interpolation and
multi-mouth morphing [Buck et al., 2000]. Copyright of ACM, used with permis-
sion. (a) A full set of hand-drawn images; (b) A sample triangulation for mouth
interpolation; (c) The three mouths on the left are warped and then blended to
make the mouth on the right
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A training step is also required to manually associate each eye and mouth
expression from the set of artwork with an equivalent expression from a video
frame. This correspondence allows the system to discern which tracked mea-
surements of the real person’s face best match each hand-drawn image. After
this initialization, a person’s facial features are tracked in real time. To draw
the face, it first renders the warped versions of the eye and mouth regions
of the face. Next, the head image, which contains “soft” alpha values in the
eye and mouth areas to provide feathered masking, is placed on top of the
rendered eyes and mouth. More than one such head image can be loaded,
and the program will cycle through them at each frame. It demonstrates
that a small set of hand-drawn artwork, in conjunction with a small amount
of facial tracking data, can be used to create a real-time performance-driven
animation system in which animations effectively mimic the expressions and
facial actions of a human speaker (see Fig. 8.12).

Fig. 8.12 Sample of hand-drawn eyes and mouths from videos [Buck et al., 2000].
Copyright of ACM, used with permission

Blanz et al. presented a framework that can re-animate the faces in a
single image or video based on a common representation of different faces and
facial expressions in a vector space of 3D shapes and textures [Blanz et al.,
2003]. In this vector space, expressions can be changed continuously along any
trajectory in face space, and transferred across individuals. Recorded from
a single person, the expressions and mouth movements can be transferred
to another person’s neutral face by simple vector space operations (see Fig.
8.13). This procedure assumes that the 3D displacements of surface points
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are the same for all individuals, and they ignore the slight variations across
individuals that depend on the size and shape of faces, characteristic patterns
of muscle activation, and mechanical properties of skin and tissue.

Fig. 8.13 In the vector space of faces, facial expressions are transferred by com-
puting the difference between two scans of the same person [Blanz et al., 2003].
Copyright of Blackwell, used with permission

To be able to transfer facial expressions, they combine the expression
vectors with the face vectors of 200 individual neutral faces. The neutral face
vectors have to be converted, since they are based on a different, closed-mouth
reference surface. A point-to-point mapping between the two representations
is established by matching the reference scan of personality space to the
closed mouth vector in expression space (see Fig. 8.14).

The estimate of a 3D shape from a single image or a video frame is
obtained by a fitting algorithm that minimizes the image difference between
the synthetic image and the input image. In order to re-animate novel faces,
the system automatically estimates the 3D shape and all relevant rendering
parameters, and then adds the performed expression on them, and the desired
facial expression is rendered from their neutral faces accordingly (see Fig.
8.15). More examples of re-animating facial paintings by video are given in
Fig. 8.16.

However, the facial expression in cartoon animation is not just a repro-
duction of what is presented in the video sequence, the exaggeration of faces
is always preferred by the animators. Aimed at facilitating the limitations
of the aforementioned performance-driven facial animation, Liang et al. pro-
posed an example-based approach to exaggerating the faces from input facial
images [Liang et al., 2002]. Their system learns how to identify facial features
and exaggerate them using the artist’s style, albeit implicitly. The exagger-
ation of faces is accomplished by a prototype-based method that captures
the artist’s understanding of what are distinctive features of a face and the
exaggeration style. A prototype is defined on a subset of training data that
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Fig. 8.14 Recovering a 3D face from E. Hopper’s self-portrait: Initialized with
manually labeled features (top, left) and starting from a front view of the average
face, the algorithm automatically optimizes the shape and texture of the morphable
model, and estimates pose, illumination and other parameters. The second row
shows the result without (left) and with (right) texture extraction [Blanz et al.,
2003]. Copyright of Blackwell, used with permission

contains samples with a similar exaggeration direction. Each prototype cor-
responds to the exaggeration style of some facial features, such as elongating
a face. Based on the training data, a set of such prototypes is picked out to
represent different exaggeration directions of the artist. Then, given a new
input face, the system decides which prototype this face most likely belongs
to, then exaggerates it in the same direction as the samples that support this
prototype. The overall process to generate the facial exaggeration consists
of two parts (see Fig. 8.17): a training phase and a runtime phase. At the
training phase, the training examples are analyzed to build the correlation
between images and the exaggerated ones, and a set of exaggeration pro-
totypes is constructed. At the runtime phase, the input shape is classified
into one of the exaggeration prototypes, and the input shape is accordingly
exaggerated by the selected prototype.

Their system can automatically identify facial features from input images,
and exaggerate such features simulating the artist’s style, and the significant
facial features can be obviously exaggerated in a proper direction (see Fig.
8.18).
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Fig. 8.15 The re-animation of the face of Leonardo’s Mona Lisa. Her 3D face is
reconstructed and the expression is added, and the new surface is rendered into the
painting [Blanz et al., 2003]. Copyright of Blackwell, used with permission

Fig. 8.16 Examples of facial animation driven by video sequence [Blanz et al.,
2003]. Copyright of Blackwell, used with permission
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Fig. 8.17 The algorithmic pipeline of example-based exaggeration of faces [Liang
et al., 2002]. Copyright of IEEE, used with permission

Fig. 8.18 Comparative examples of unexaggerated and exaggerated faces [Liang
et al., 2002]. (a) Original image; (b) Unexaggerated image; (c) Exaggerated image.
Copyright of IEEE, used with permission
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8.2 Cartoon Production Integrated with 3D Geometric
Elements

The 3D information presented in the animator’s mind is a very important
factor in the art of bringing hand–drawn characters to life. The animator relies
on his ready knowledge of the 3D object he is about to draw. Without that,
often partial or approximate, knowledge, creating a satisfactory animation
would be a nearly impossible task [Di Fiore & Van Reeth, 2002].

The key problem in 2D animation is how to automate the inbetween-
ing: the process of generating successive drawings of a figure which change
consistently with our 3D intuition of how the drawings should change. The
animated drawings are just stylized 2D representations of 3D images. One
of the major challenges in computer-assisted auto-inbetweening lies in the
fact that the 2D hand-drawn picture does not contain the 3D information
presented in the animator’s mind, but still everybody expects the 2D repre-
sentations to behave in similar ways as our 3D mental models do [Catmull,
1978]. Part of the current research focuses on employing full 3D input models,
which are rendered and even animated in many different artistic rendering
styles. Disadvantages are the need to create complicated 3D models and the
many difficulties in achieving lively movements. Purely 2D approaches, on
the other hand, need many elaborated single drawings, as a 2D sketch is to
a single viewpoint, and the user cannot move around the object drawn, nor
view it from different angles. However, the 3D information in the animated
2D drawings is implicit, as the modeling, rendering and motion specification
are combined into a single drawing process, and it is difficult to make the
automated inbetweening frames behave in the same way as our 3D mental
models [Patterson & Willis, 1995]. Therefore, introducing minimum 3D in-
formation to computer-assisted inbetweening might be one of the valuable
solutions towards the automation of the inbetweening process, and the exist-
ing exploratory work can be summarized as follows:

(1) Automated inbetweening by the 3D approximate model: The computer
recovers the third dimensional information beyond the 2D plane based
on the aesthetic knowledge and conventions, and then builds the approx-
imate 3D geometric model to guide the automated inbetweening process.

(2) Cartoon animation by 3D canvas: The 3D model is employed as a “3D”
painting canvas, and the animator directly paints on it on the principle
of “what you see is what you get”. The computer can then automatically
generate the animated drawings with the desired artistic effect from a
specified viewpoint.

(3) Cartoon animation based on view-dependent geometry: The view-
dependent geometric model is constructed from a basic 3D model and
a set of 2D drawings from various viewpoints. The 3D view morphing
technique is employed to automatically generate the inbetweening draw-
ings from a new viewpoint.
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8.2.1 Automated inbetweening by the 3D Approximate Model

Di Fiore and Van Reeth introduced a novel approach in which approximate
3D models are used to guide the animator throughout various stages of the
animation process [Di Fiore & Van Reeth, 2002]. They focused on its use
as a tool for (i) depicting and retaining the volume and overall shape of the
objects which make up the scene, (ii) rapidly inking the outlines by tracing sil-
houettes and marker lines of the objects, and (iii) providing frame-to-frame
coherence. Drawing has long been an intuitive way to communicate com-
plexity in a comprehensible and effective manner, due to visual abstraction.
Drawing a sketch is much faster that creating a 3D model, and definitely more
convenient to express ideas. Therefore, their basic shapes of approximate 3D
models are input by the sketching (and possibly modifying) 2D circular and
rounded forms as if drawing on paper, and then their system interprets these
circular and rounded forms to automatically construct a 3D polygonal object
of revolution. This modeling method enables the easy and rapid construction
of the plain approximate shapes that traditional animators tend to use. The
algorithmic pipeline to the 3D modeling is as follows:

While modelling:

Select underlying curve primitive
adjust brush stroke parameters

For each stroke gestured by the animator
collect 2D screen positions
For each 2D screen position

transform screen position to 3D object space
create particle
For all extreme frames

calculate 3D position of particle
transform 3D position to screen space
store position

End(for all extreme frames)
End (for each 2D screen position)

End (for each stroke gestured by the animator)

Regarding the painting process, first of all the animator has to select
one of the underlying curve primitives to which brush strokes are attributed.
That way the underlying drawing order of the curve primitives specified in the
extreme frames is utilized to determine the drawing order of brush strokes. As
a result, this solves the problem of self-occlusions. At the same time (when
gesturing the strokes), their system transforms the current position in 2D
screen space to the object space of the underlying 3D surface at that moment.
This is done at discrete moments in time and delivers a set of 3D points (which
lie on the surface of the underlying 3D object). Then, with each of the points
we associate a particle which stores the current selected brush, its position
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and orientation. Finally, for each extreme frame we calculate the 3D position
of the particles by exploiting the underlying 3D surfaces. These 3D positions
are then transformed to 2D screen space and rendering in a painterly style
(see Fig 8.19). The animation process during run time is given as follows:

During animation(at runtime):

For each frame in time
generate inbetween frame
For each sorted primitive

draw primitive
For each associated particle

orient particle orthogonal to view vector
draw brush stroke into paint buffer

End (for each associated particle)
End (for each sorted primitive)

End (for each frame in time)

Fig. 8.19 Snapshots of an animation of the exotic bird guided by the approximate
3D model [Di Fiore & Van Reeth, 2002 ]. Copyright of IEEE, used with permission

Later on, Di Fiore et al. extended it to design artistic and believable trees
in a cartoon-like style, which can be rendered by an animated camera to
produce a convincing 3D-like experience [Di Fiore et al., 2003]. However, the
trees have a complex, recursive structure, and consist of numerous branches
and leaves, and it is difficult for the animator to picture in his mind the trees
he is about to draw. Therefore they employed realistic 3D geometries of trees
as the underlying models to incorporate 3D information. Aimed at giving the
animator the same freedom for expressing the artistic style he has in mind,
as if drawing on paper, they presented a hybrid (2.5D) framework, combining
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the advantages of both 2D and 3D approaches. From an underlying 3D geom-
etry they get the necessary information to obtain an acceptable level of 3D
behavior and a good frame-to-frame coherence. In the same framework, 2D
artistic input is employed to obtain any desired “look”, both of the rendering
and of the animation. In order to achieve convincing 3D-like animations, their
system requires the object to be modeled as seen from different viewpoints.
These different viewpoints can be seen as the extreme frames and will be
used by our inbetweening method in the animation phase.

Cohen et al. focused on the automatic inbetweening of background paint-
ing, and presented an interactive system, Harold, for creating 3D worlds in
terms of 2D drawings from a single point of view [Cohen et al., 2000]. The
interface paradigm in Harold is drawing : All objects are created simply by
drawing them with a 2D input device. The primary geometric primitive in
Harold is a billboard ; these are commonly used in interactive systems to render
complex yet unimportant objects with low overhead. A billboard is typically
a plane with an image texture-mapped onto it that rotates about some point
or axis to face the viewer as much as possible. Their billboards contain col-
lections of planar strokes rather than textures. When the user draws a stroke
over a billboard, Harold simply projects the stroke onto the billboard and
stores it, then display the billboard and re-render each stroke, rotated appro-
priately. Most of the 3D objects in Harold are collections of planar strokes
that are reoriented in a view-dependent way as the camera moves through
the world. Virtual scenes created in Harold are rendered with a stroke-based
system so that the resulting rendition will maintain a hand-drawn appearance
as the user navigates through it (see Fig 8.20).

Fig. 8.20 The interface to create 3D terrain and examples of conceptual sketches
of outdoor scene [Cohen et al., 2000]. Copyright of ACM, used with permission

In order to better retain many of the characteristics of traditional 2D
drawing, Bourguignon et al. built a sketching system that can employ the
user-drawn strokes to infer the sketches representing the same scene from
different viewpoints, rather than attempting to reconstruct a 3D model (see
Fig. 8.21) [Bourguignon et al., 2001]. Their work is a natural continuation of
drawing or sketching tools which have been developed in computer graphics
over the last few years. The central idea of their approach is to represent
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strokes in 3D space, thus promoting the idea of going from strokes to a fully-
fledged 3D entity. Even in 3D, strokes are still an excellent way to indicate
the presence of a surface silhouette: several neighboring strokes reinforce the
presence of a surface in the viewer’s mind, while attenuated strokes may
indicate imprecise contours or even hidden parts. Two kinds of strokes are
used in their system: line strokes that represent 1D detail and silhouette
strokes that represent the contour of a surface.

Fig. 8.21 An example of inferring the occluded strokes from a novel viewpoint
[Bourguignon et al., 2001]. Copyright of Blackwell, used with permission.

To enable the user to view stroke-based sketches from multiple viewpoints,
their system interprets strokes as indications of a local surface silhouette or
contour. Strokes thus deform and disappear progressively as the user moves
away from the original viewpoint. Assuming that strokes are drawn in a
plane, and by using differential geometry properties of the curve, 2D silhou-
ette strokes can be interpreted as curves, and a curvature estimation scheme
is employed to infer a local surface around the original stroke (see Fig. 8.22).
This mechanism permits efficient stroke-based rendering of the silhouette
from multiple viewpoints. In addition to stroke deformations, this includes
a variation in intensity according to the viewing angle, since the precision
of the inferred local surface decreases when we move away from the initial
viewpoint. It also includes relative stroke occlusion, and additive blending
of neighboring strokes in the image. It effectively enhances the traditional
drawing process with 3D capabilities, notably by permitting multiple view-
points for a single drawing based on the inferred local surface stroke, and well
preserves the degree of expression, imagination and simplicity of use achieved
by 2D drawing (see Fig. 8.23).
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Fig. 8.22 Stroke representation and rendering [Bourguignon et al., 2001]. In (a) the
final stroke is a slice of Bezier surface obtained by using two clipping planes P1 and
P2 facing the camera; CB is the barycenter of Ci. In (b), two texture samples, one of
“stroke texture” (left) and one of “occlude texture” (right). White corresponds to an
alpha value of 1, black to an alpha value of 0. In (c), image obtained from rendering
a black stroke against a white background, with the slice position corresponding
roughly to (a). Copyright of Blackwell, used with permission

Fig. 8.23 Examples of generating a single landscape from two different views
[Bourguignon et al., 2001]. Copyright of Blackwell, used with permission.

8.2.2 Cartoon Animation by 3D Canvas

This approach is based on the assumption that the 3D characters or objects to
be animated can be taken as a “3D canvas”. The user can then interactively
paint the pigments on the “3D canvas” to achieve the desired artistic effects,
and with the help of the traditional 3D rendering techniques the system
can automatically generate the resulting illustrations with the input artistic
effects for the novel viewpoints. It not only imparts a personal aesthetic
to the rendering of the object, but also helps automate the generation of
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inbetweening frames with any specified viewpoints after the animator finishes
the painting on the “3D canvas” — the characters or objects to be animated.
In essence, the 3D characters or objects themselves are taken as a kind of
drawing media to assist the production of cartoon animation.

Hanrahan and Haeberli are the pioneers in the development of a 3D object
space paint system that allows the user to directly manipulate the parameters
used to shade the surface of the 3D shape by applying pigments to its sur-
face [Hanrahan & Haeberli, 1990]. Their design principle for painting on “3D
canvas” is based on “what you see is what you get, non-photorealistic ren-
dering” [Kalnins et al., 2002]. The user controls the position of a brush using
a tablet; the brush contains paint that is applied to the shape being painted
on. Rather than creating a final 2D image, their system creates an object
description that describes the composite material properties everywhere on
the surface of the object. The output of their painting system is a 3D model
with associated texture maps. The resulting images of this object are then
created by conventional rendering techniques as the user paints. The painting
interface and an example of painting instance are shown in Fig. 8.24.

Fig. 8.24 The snapshots of the painting instance and a painting instance [Hanrahan
& Haeberli, 1990]. Copyright of ACM, used with permission

Kalnins et al. further improved this approach by stoke-based rendering
techniques [Kalnins et al., 2002]. In their system, the artist can directly an-
notate a 3D model with three main categories of strokes: (a) Silhouette and
crease lines that form the basis of simple line drawings; (b) Decal strokes
that suggest surface features; (c) Hatching strokes to convey lighting and
tone. The designer can apply strokes in each category with significant stylis-
tic variation, and thus in combination achieve a broad range of effects (see
Fig. 8.25).

The system offers direct user control over brush and paper styles, as well as
the placement of individual marks and their view-dependent behavior by an
interface with three editing modes. In the first, the artist can position each
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Fig. 8.25 Examples of annotating 3D object with different rendering styles [Kalnins
et al., 2002]. Copyright of ACM, used with permission.

object and set its “base coat”. In outline mode the artist can draw decals
and stylize silhouettes and creases. In hatching mode, he can draw hatching
strokes. In any mode, the artist can modify the current “brush style” that
affects stroke properties. When the system renders the scene from any new
viewpoint, it adapts the number and placement of the strokes appropriately
to maintain the original look. Fig. 8.26 shows an example of the generation
of an animation sequence.

Fig. 8.26 Example of generation of an animation sequence [Kalnins et al., 2002].
Copyright of ACM, used with permission
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8.2.3 Cartoon Animation by View-dependent Geometry

When constructing 3D geometry for use in cel animation, the animators
typically begin with a set of reference drawings of the object (the model
sheet), showing it from different viewpoints. The artists who draw them
try to achieve the best aesthetic effect, and are not bound to geometric
precision. As a result, these drawings typically contain many subtle artis-
tic distortions, such as changes in scale and perspective, or more noticeable
effects such as changes in the shape or location of features. Because these
distortions differ in each drawing and do not correspond to a 3D geomet-
ric space, conventional 3D models are unable to capture them all. Therefore,
Rademacher proposed the view-dependent geometry technique, wherein a 3D
model changes shape based on the direction it is viewed from [Rademacher,
1999]. A view-dependent model consists of a base model, a set of key deforma-
tions (deformed versions of the base model), and a set of corresponding key
viewpoints (which relate each 2D reference drawing to the 3D base model)
(see Fig. 8.27).

Fig. 8.27 Example components of a view-dependent model [Rademacher, 1999].
Copyright of ACM, used with permission

The first step in creating 3D view dependent geometry is determining a
viewpoint for each drawing by calculating a projection that best matches the
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given drawings. The second step is to create key deformation by deforming
the base model according to the reference drawings, and a set of key defor-
mations are built to indicate what an object should look like from various
viewpoints (see Fig. 8.28). Given an arbitrary viewpoint, the computer inter-
polates the key deformations to generate a 3D model that is specific to the
new viewpoint– what the object’s 3D shape should be. The rendering process
proceeds as follows:

(1) Find the three nearest key viewpoints surrounding the current viewpoint.
(2) Calculate blending weights for the associated key deformations.
(3) Interpolate the key deformations to generate a new 3D model for the

current viewpoint.
(4) Render the resulting interpolated 3D model.

Fig. 8.28 An example of creating key deformation by reference drawings
[Rademacher, 1999]. Copyright of ACM, used with permission

From the point of view of animation production, these viewpoints in the
view-dependent geometry model are known as the key viewpoints (which are
independent of the camera path that will be used during rendering), and the
corresponding object shapes are the key deformations. The key deformations
are simply deformed versions of the base model, with the same vertex con-
nectivity. Given an arbitrary viewpoint or camera path, the deformations are
blended to generate a new, view-specific 3D model, and accordingly form the
resulting animation sequence (see Fig. 8.29).

Aiming at enhancing the artistic impact of the characters and imparting
them a personality of their own, Chaudhuri et al. presented a novel system for
facilitating the creation of stylized view-dependent 3D animation by inject-
ing view-dependent stylization into the animation [Chaudhuri et al., 2004].
They embeded a multilayered deformation system into a view-dependent set-
ting and integrated it with computer vision techniques for camera estimation.
The technique of view-dependent geometry is enhanced by tying it up with
the more conventional 3D character manipulation technique of inverse kine-
matics and direct free-form deformation. Their system allows the recovery of
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Fig. 8.29 An example of generation of animation sequence by view-dependent
model [Rademacher, 1999]. Copyright of ACM, used with permission.

a camera which best matches the intended view direction in the sketch. The
skeletal pose of the 3D character is reconstructed in terms of the recovered
camera (see Fig. 8.30). A base mesh model of the character can be modified
to match closely to an input sketch, with minimal user interaction. After
aligning the mesh model with the sketch, the system can then deform the
mesh to match the deformation of the sketched character. This deformation
model is coupled with the camera, and thus it gives a deformation consistent
with the recovered view point. At every stage the system offers considerable

Fig. 8.30 Projecting the goal back using the recovered camera [Chaudhuri et al.,
2004]. Copyright of Blackwell, used with permission
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flexibility to the user to correct the recovered view, reconstructed pose or the
deformed mesh by manual intervention. Finally, their system is capable of
creating view-specific distortions as a character moves from the traditional
2D world to the modern 3D world of computer animation (see Fig. 8.31).

Fig. 8.31 Example of view-dependent animation by mannequin sketches [Chaud-
huri et al., 2004]. Copyright of Blackwell, used with permission

In order to further inject expression into the cartoon animation, Li et al.
proposed a sketch-based stylization method allowing us to use an animator’s
talents to add exaggeration into the resulting animation [Li et al., 2003]. The
2D sketches are seamlessly integrated into the original animation for em-
phasis, or purposefully shape the apparent silhouette to make the character
easier to “read.” The hand drawn images are called the examples, and the
original computer drawing images are called the rendering. The differences
between the example and the rendering represent the animator’s intension
of exaggerating or changing the appearance of the character, and these ex-
pressed changes are further divided into two parts: those that can be made
by altering the skeletal animation, and those that must be made by altering
the character’s mesh geometry (see Fig. 8.32).

The algorithmic steps of this approach are given as follows:

(1) The user adjusts the skeletal pose that corresponds with the example
image, and the system creates a new motion (and corresponding set of
renderings) that interpolates this pose using motion warping.

(2) The user provides a small set of correspondences between the rendering
and the example image and the system expands these points into curves.

(3) The system creates a dense image warp between the example and ren-
dering using an interpolation technique based on the 3D structure of the
model. This associates pixels in the example image with the 3D data.

(4) The system interprets the image-space field of the image warp as a vector
field along the surface of the character.

(5) The character’s appearance is computed at times other than in the ex-
ample by driving the vector field along with the motion of the character.

(6) The system fades these changes in and out over time.
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Fig. 8.32 (a) The difference is visualized by overlaying the example image over the
rendered frame. The changes on the left can be minimized by fine-tuning the skeletal
parameter, and the changes on the right can only be reduced by altering the mesh
geometry of the character; (b) The user places a few anchor points (highlighted
by squares), snapping them on corresponding positions in the example image. The
corresponding curves inbetween these anchors are computed using a snake operator
[Li et al., 2003]. Copyright of ACM, used with permission

Fig. 8.33 gives a comparative example of the original animation and the
stylized one.

Fig. 8.33 A comparative example of the original animation (top) and the stylized
one (bottom) [Li et al., 2003]. Copyright of ACM, used with permission

8.3 Cartoon Generation by Temporal Coherent
Rendering

With the advent of artistic rendering techniques, it is possible to easily and
automatically generate the artistic image from 3D objects in terms of the
specified viewpoint and rendering style parameters. Therefore, it is natural for
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the animators to imagine directly generating the cartoon animation sequence
merely based on the input 3D geometry. Aesthetically, a still frame in hand-
drawn animation should have the following characteristics of painting [Meier,
1996]: details should be abstracted by shorthand brush strokes, the roundness
of forms should be defined by brush stroke directions, color should break the
boundaries of surfaces to create rhythm in the composition, brush stroke size
and texture should be varied according to the kind of surface being depicted,
and the effects of light should be exaggerated to help provide focus, all as if
an artist had painted on a physical canvas. Technically, the rendered images
in cartoon animation should maintain coherence in animated sequences and
should not change in a random way every frame. Images should not have the
gift-wrapped look of painted textures that are mapped onto the geometry
using traditional methods. A human artist drawing each frame is better able
to control frame-to-frame coherence, while maintaining a hand-crafted look.
However, computer rendering usually creates static images that do not invite
the viewer into the rendering process. Too much randomness often creeps in
and makes the animation noisy while trying to mimic the wavering quality
of hand-drawn animation. Therefore, the key point in using existing static
image rendering techniques for animation is to get the paint to “stick” to
surfaces rather than randomly change with each frame, while automating the
drawing of brush strokes and retaining a hand-crafted look.

Meier was one of the pioneers who extended the artistic rendering meth-
ods for the static image to painterly animation by modeling surfaces as 3D
particle sets which will be rendered as 2D paint brush strokes in screen space,
much like an artist lays down brush strokes on a canvas [Meier, 1996]. The
overall algorithmic pipeline is given in Fig. 8.34. It first generates a set of par-
ticles that describes a surface, depth-sorts the particles in camera space, and
renders them as 2D brush strokes in screen space using a painter’s algorithm.
The look of the 2D brush strokes, including color, size and orientation, is
derived from the geometry, surface attributes, and lighting characteristics of
the surface. These attributes are designed by the user and either associated
directly with the particles or encoded in rendered images of the geometry,
called reference pictures. To maintain coherence, a seed is stored with each
particle so that the same random perturbations will be used for a particular
particle throughout an animation. The user specifies the amount of random-
ness by choosing a range about the given attribute.

This approach not only eliminates the “shower door” effect, in which an
animation appears as if it were being viewed through textured glass, but
also creates the desired painterly style of animation and forces the brush
strokes to stick to animating surfaces (see Fig. 8.35). By varying lighting
and choosing brush stroke parameters, the animator can create many varied
painterly styles.

Based on similar principles of art-based graphics, Kowalski et al. employed
“graftals” to model complex scenes (fur, grass and trees etc.) by treating the
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Fig. 8.34 The algorithmic pipeline of painterly rendering. The particle placer pop-
ulates a surface with particles. The surface geometry is rendered using various
shaders to create brush stroke attribute reference pictures. The orientations are en-
coded in the color channels of the image. The particles, which are transformed into
screen space, the reference pictures, and the brush image are input to the painterly
renderer. The renderer looks up brush stroke attributes in the reference pictures
at the screen space location given by each particle’s position and renders brush
strokes that are composited into the final rendered image [Meier, 1996]. Copyright
of ACM, used with permission

Fig. 8.35 Frames from a painterly rendered animation [Meier, 1996]. Copyright of
ACM, used with permission
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rendering strategy as an aspect of modeling [Kowalski et al., 1999, Markosian
et al. 2000]. In fact, the complexity of the scene is merely suggested by the
stylized strokes, and these complex scenes are not explicitly represented. Ba-
sic graftals depict small detail elements such as individual leaves or blades of
grass. Each graftal is composed of one or more drawing primitives, together
with a set of 3D points or vertices. When a new graftal is copied from one of
the example graftals, some of its parameters can be varied randomly, within
a specified range of values. Graftals can scale their geometry and volume
so that they tend to maintain a desired screen-space size and relative den-
sity. These graftals are constructed as procedural stroke-based textures that
will be placed on polyhedral models. For the animation production, the key
requirements of graftals placement are that graftals should be placed with
controlled screen-space density in a manner matching the aesthetic require-
ments of the particular textures, but at the same time seem to “stick” to
surfaces in the scene, providing interframe coherence and a sense of depth
through parallax. In order to effectively maintain the coherence, a “static”
placement scheme can be adopted to distribute graftals onto surfaces during
the modeling phase, when the designer creates the scene [Markosian et al.,
2000]. Then, in each frame, graftals are drawn (or not) view-dependently.
Fig. 8.36 gives some examples of the modeling and animation of a complex
3D scene with “graftals”.

Fig. 8.36 Examples of modeling and animation of complex 3D scene with “graftals”
[Kowalski et al., 1999, Markosian et al. 2000 ]. Copyright of ACM, used with per-
mission

In order to produce animations of polygonal 3D models rendered using the
stippling style, Pastor and Strothotte explored frame-coherent stippling by
taking the same idea of particle systems from painterly rendering, where par-
ticles, or graftals, are fixed on the surface of 3D models [Pastor & Strothotte,
2002]. Their algorithmic framework is based on the view-dependent parti-
cle system for real time non-photorealistic rendering [Cornish et al., 2001].
Their hierarchical particles are constructed from a mesh simplification and
subdivision scheme. Each input model’s vertex is a particle that indicates a
potential stipple location. Because each point attaches to a specific location
on the surface of the model, points move along with the model as the model
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moves in an animated scene. In order to get even point distributions on the
final rendition, they add and remove stipples from the surface of the mod-
els, using spatial criteria to meet this requirement as the animation occurs:
new stipples, which are inserted lower in the particle hierarchy, are placed
at locations roughly in the middle of existing stipples. Alternatively, when
stipples are removed from the surface of a model, stipples at the bottom of
the hierarchy are the ones that vanish first. The overall algorithmic steps to
generate the animation with fame-coherent stippling rendition are given as
follows:

(1) Compute a connectivity graph to operate on the input polygonal mesh.
(2) Apply a randomized phase on the vertices of the input mesh to reduce the

presence of regular patterns that appear when the vertices of the input
mesh are taken as locations for the stipples.

(3) Perform mesh simplification on the input mesh and simultaneously create
a bottom-up hierarchy for the vertices in the input mesh.

(4) Render each frame of the animation using a series of key frames, inter-
polating values between each key frame to set the viewing parameters
for each individual frame. These viewing parameters include the camera
position and orientation, illumination and frame-rate among others, and
determine whether more refinement is needed to fill in dark regions of
the model.

(5) Assemble the rendered frames in an animation file.

Selection of particles during rendering also takes into account the screen
space projection of the edges of a polygon fan that surround the particles and
the desired tone at the position of the particles. This approach provides the
frame-coherence effect at the stipple level, and can be applied to arbitrary
polygonal meshes and can be extended to include grey scale textures, bump
mapping and custom illumination models.

Kalnins et al. described a way to render stylized silhouettes of animated
3D models with temporal coherence [Kalnins et al., 2003]. Stylized silhouettes
can suggest surface texture, give an organic feeling to an overly-mechanical
shape, or simply annotate features of a model such as the hidden silhouettes
denoted by dashed lines. Temporal coherence is especially challenging for sil-
houettes because they may not have obvious inter-frame correspondence as
they evolve over time. Strokes have two properties that affect coherence: the
path in the image plane over which the stroke is applied, and the parameter-
ization that defines how stylization (e.g., wiggles or texture) is mapped onto
that path. Typically, silhouette paths in the image plane enjoy a natural co-
herence. Therefore, the key to achieving our goal is to provide coherence for
the parameterization of silhouettes. Kalnins et al. addressed the coherence
challenge by propagating the parameterization from strokes in one frame to
strokes in the next. In their implementation, each mesh is assigned a styl-
ization based on application-specific aesthetic concerns. The stylization is
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defined either as a set of brush marks or as a texture image. The mesh may
be separated into patches, each of which receives a single stylization that is
applied uniformly to all silhouettes. In order to maintain the coherence dur-
ing rendering, stylization is mapped onto the brush path via a parameter that
will be propagated from one frame to the next. This approach can effectively
render coherent stylized silhouettes for animated 3D models (see Fig. 8.37).

Fig. 8.37 Temporal coherent stylized silhouettes on an animated figure [Kalnins
et al., 2003]. Copyright of ACM, used with permission

8.4 Cartoon Generation Together with 3D Graphical
Processing Techniques

Many of the existing 3D graphics processing algorithms or principles can be
borrowed, to enhance or speed up the 2D cartoon animation. In this section
we will mainly discuss how to utilize the 3D artistic processing techniques
such as affine transformation, texture mapping, shadows and highlight for
cartoon animation production.

8.4.1 Cartoon Production Integrated with 3D Transformation

The 3D transformation can be applied on both background and foreground
objects in cartoon animation production. Wood et al. employed the artis-
tic transformation technique to simulate apparent camera motion through
the background scene [Wood et al., 1997]. In 2D cartoon animation, a back-
ground image (panoramas) is usually constructed to incorporate multiple
views of a 3D environment as seen from along a given camera path. When
viewed through a small moving window, the panorama produces the illu-
sion of 3D motion. They explored how such panoramas can be designed by
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computer, and examined their application to cel animation in particular. Its
major algorithmic steps are given as follows (see Fig. 8.38):

(1) A 3D modeling program is used to create a crude 3D scene and camera
path.

(2) It takes the 3D scene and camera path as input, and outputs one or more
panoramas, each with a 2D moving window for viewing the panorama
during each frame of the animation. When viewed as a whole, the panora-
mas may appear strangely warped. However, when taken together, the
panoramas and moving windows should produce the illusion of 3D motion
along the camera path.

(3) An illustrator then uses each computer-generated panorama as a guide to
produce a high-quality artistic rendering of the distorted scene, called an
illustrated panorama. The illustrated panorama may be created with any
traditional media and scanned back into the computer. Alternatively, the
illustrated panorama may be created with a digital paint system directly
on the computer.

(4) For each frame in the scene, images are extracted from the panoramas
according to the moving windows. These images are composited (together
with any additional foreground or computer-animated elements) to pro-
duce the final frames of the animation.

Fig. 8.38 An example of algorithmic pipeline based on Pan transformation
of camera. (a) Views from a 3D camera path; (b) Computer-generated lay-
out; (c) Illustrated panorama; (d) Frames from the illustrated panorama with a
computer-animated bouncing ball [Wood et al., 1997]. Copyright of ACM, used
with permission

This automated process not only allows layout artists to work more effi-
ciently and employ layouts more widely, but also leverages the strengths of
both the computer and the artist. The computer permits the use of much
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more complex camera paths than can be created by hand; in addition, it al-
lows easier experimentation in designing them. The artist, on the other hand,
is free to create the panorama in any artistic style, and is not limited by the
availability of any particular computer rendering technique (see Fig. 8.39).

Fig. 8.39 Examples of 3D views of extracted frames in the resulting animation
[Wood et al., 1997]. Copyright of ACM, used with permission

Mart́ın and Torres focused on the foreground characters and utilized the
hierarchical non- linear transformations to produce computer animations that
look like 2D classic cartoons [Mart́ın & Torres, 1999]. They defined two axes
for the non-linear transformation: one is the selection axis and the other
is the application axis. The selection axis controls which coordinate is taken
from the point to be transformed. This coordinate determines the value of the
transformation that will be used with the point. The application axis controls
which coordinate the transformation will be applied to. The transformations
are made for each coordinate independent, which adds more computation but
also provides more flexibility. However, for a given selection axis and value,
the transformation is the same for all the points which have the same value
in the selected coordinate. In order to facilitate this limitation, the hierarchi-
cal non-linear transformation is employed for cartoon animation production.
That is, non-linear transformations can be passed down to other objects in
the hierarchy. These transformations are inherited by the object, which can
have its own local non-linear transformations. In some cases, the object is
included in the application range of the object that is on a higher level in
the hierarchy. In the other cases, the object is partially included or even to-
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tally excluded from the object at the higher level. An example of hierarchical
non-linear transformation for cartoon animation can be seen in Fig. 8.40.

Fig. 8.40 Example of hierarchical non-linear transformation for cartoon animation
[Mart́ın & Torres, 1999]. Copyright of IEEE, used with permission

8.4.2 Cartoon Animation Enhanced with Artistic Texture
Mapping

In traditional cartoon animation, foreground characters are usually illustrated
with flat colors, whereas background scenery is often drawn in subtle detail.
This disparity in rendition may be desirable to distinguish the animated
characters from the background. But there are still many cartoon figures for
which complex textures would be advantageous. Applying complex textures
to hand-drawn characters in cartoon animation is extremely difficult. Corrêa
et al. summarized that there are two major factors that prohibit animators
from painting moving characters with detailed textures [Corrêa et al., 1998].
First, foreground characters are drawn differently from frame to frame, re-
quiring any complex shading to be replicated for every frame, adapting to the
movements of the characters—an extremely daunting task. Second, even if an
animator is to re-draw a detailed texture for every frame, temporal inconsis-
tencies in the painted texture tend to lead to disturbing artifacts, wherein the
texture appears to “boil” or “swim” on the surface of the animated figures.

Corrêa et al. presented a method that correlates features in a simple,
textured, 3D model with features on a hand-drawn figure, and then distorts
the model to conform to the hand-drawn artwork [Corrêa et al., 1998]. Their
system begins with hand-drawn characters created by a traditional animator.
Next, a computer graphics animator creates a crude 3D model that mimics
the basic poses and shapes of the hand-drawn art, but ignores the subtlety
and expressiveness of the character. The 3D model includes both a texture
and the approximate camera position shown in the artwork. The computer
distorts the model within the viewing frustum of the camera, in such a way
that the model conforms to the hand-drawn art, and then renders the model
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with its texture. Finally, the rendered model replaces the flat colors that
would be used in the ink-and-paint stage of traditional cartoon animation.

For each shot in the animation, the detailed operational steps are given
as follows:

(1) The user/animator scans in the cleaned-up hand-drawn artwork.
(2) The user/animator creates a simple 3D model that approximates roughly

to the shape of the hand-drawn character.
(3) The computer finds border and silhouette edges in the model.
(4) The user/animator traces over edges of the line art that correspond to

border and silhouette features of the 3D model.
(5) The computer performs depth-preserving warps for the 3D model to

match the shape of the line art, and then renders the model.
(6) The computer composites the rendered model with the hand-drawn line

art and background scenery.
(7) entire process requires relatively little effort per frame and allows anima-

tors to combine complex textures with hand-drawn artwork, leveraging
the strengths of 3D computer graphics while retaining the expressiveness
of traditional hand-drawn cartoon animation.

8.4.3 Cartoon Motions Augmented by 3D Physical Models

There are two typical expressive motions involved in cartoon animation pro-
duction: apparent motion and squash-and-stretch motions. Apparent motion
is a kind of global motion of foreground characters that comes from relative
displacement between layers of characters and backgrounds, and there are no
corresponding physical displacements for it. That is, the cartoon characters
appear to move in the animated environment but they remain in the same
position on a flat 2D screen. Squash-and -stretch motions address the inter-
actions between foreground characters and the surrounding environment, in
which the stretch anticipates the collision and the squash exaggerates its ef-
fects. That is, an object is stretched as it approaches a collision, and squashed
through the collision, and then stretched again as it rebounds. Squash-and-
stretch may also convey information about the physical properties of objects
(their mass, hardness and so on).

In traditional cartoon animation, apparent motions are usually made from
a series of drawings simulating motion by means of small progressive changes
in the drawings. There are four well-known types of apparent motion: motion
after effect (MAE) (e.g., upward motion of objects near a waterfall), phi
phenomenon (e.g., filled in motion in a movie of flickering animation stills),
induced motion (e.g., perceived movement due to a slowly moving train on
the next track) and autokinetic movement (e.g., perturbation seen at low
light in a dark room).

Raskar et al. exploited the induced motion effect generation by combining
two-dimensional cartoon animation and static three dimensional dioramas of
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physical models into lively nonrealistic setups and non-realistic movement
[Raskar et al., 2002]. They illuminated the static physical models with pro-
jectors (see Fig. 8.41) and substituted the prerecorded sequence of images
with real-time three dimensional computer graphics renderings to create an
animated physical world with apparent motion effect. To induce motion, they
segment a continuous static physical scene into sub-parts, so that the mul-
tiple movements appear compatible. They also force temporary and invalid
3D interpretation using shadows, lighting and texture movements.

Fig. 8.41 Setup with a projector and simple diorama of toy car [Raskar et al.,
2002]. Copyright of ACM, used with permission

In order to demonstrate the effectiveness of cartoon dioramas, they sim-
ulated a car driving along a road,on a rough surface, or in various other
environments. To create apparent motion, they illuminated the wheels with
images of rotating wheels. The images in the background (made up of the
backdrop and ground) move in a direction opposite to the intended car move-
ment. They implemented both a photo-realistic version and the cartoon-like
version (see Fig. 8.42). The experimental results show that this technique
can be used on similar setups while creating apparent motion for animation
scenarios.

Chenney et al. presented a simulation system that uses a mixture of dy-
namic and kinematic techniques to squash-and-stretch objects with geometric
deformations while preserving desirable qualities of the object’s appearance
and motion [Chenney et al., 2002]. Their goal is to automatically add dy-
namic, cartoon style deformations to interactive models with the focus on the
final appearance of the motion, rather than a physical model, and accord-
ingly the following rules were summarized for generating squash-and-stretch
motion:



8.4 Cartoon Generation Together with 3D Graphical Processing Techniques 333

Fig. 8.42 A comparative example of photo-realistic diorama (left column) vs. car-
toon diorama (right column) [Raskar et al., 2002]. Copyright of ACM, used with
permission

(1) The object should squash during the collision by an amount that depends
on how hard it hits the user-defined squash parameters.

(2) The deformation should vary smoothly through the collision, and should
be continuous through the transition between ballistic and colliding mo-
tion.

(3) The object should appear to stick through the collision, rather than slide.
The object must also rotate during the collision, to align its deformation
axis with the outgoing direction of travel.

Their simulation process is initialized with the positions and velocities
for each object. Assuming that no objects are inter-penetrating, and each
simulation time step then performs the following steps:

(1) Update all the objects in free space according to ballistic point mass
equations, and set their deformations and alignment according to rules
described below. Objects are updated to either the next rendering frame
time or the next collision time, whichever occurs first.

(2) Compute collision interpolation parameters for any new collisions found.
Collision interpolations are based on velocities, contact conditions and
our desired squash-and-stretch behavior. At each step, they serve as
guidelines for the deformation and orientation of the colliding object.

(3) Update all objects involved in collisions, and set their deformations, ori-
entations and positions.

The stylistic requirements for the squash-and-stretch deformations are:

(1) The deformations should be volume preserving.
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(2) Each object has a natural set of deformation axes, including one principal
axis, and scaling should always be done with respect to these axes. These
axes define a deformation coordinate system with the x-axis aligned with
the forward direction for the object.

It is demonstrated that the resultant motions generated by these require-
ments are pleasing for a range of objects (see Fig. 8.43). The major strength
of this approach is its tight coupling between user controlled parameters and
the appearance of the motion. The user can control that map directly onto
properties of the motion, allowing the easy specification of particular styles.

Fig. 8.43 Examples of simulated squash-and-stretch motions [Chenney et al., 2002].
Copyright of ACM, used with permission

8.4.4 Stylized Highlight and Shadow Generation for Cartoon
Animation

In traditional cartoon animation, highlights and shadows are semantic in that
they imply an artistic and meaningful interpretation of the characters and
scene. This highlight could be a kind of environment reflection or refraction,
rather than the brightest area on the rear window. For example, a highlight
on the swords, portraying that the swords are flat and shiny like plane glasses,
and that they are so sharp that the heroine might be wounded in the next
frame; the highlight on the monster’s claws suggests that the claws are very
hard, and that they can hurt someone easily (see Fig. 8.44). The practical re-
quirements in making cartoon-style highlights for 3D objects are summarized
as follows [Anjyo & Hiramitsu, 2003]:

(1) Shape: A simply shaped highlight should be created with a clear bound-
ary. It won’t always have a rounded shape, but can have rich variations
such as crescents and squares.

(2) Animation: Highlight animation should be made smooth and dynamic,
and therefore the temporal deformation of the stylistic highlight should
be described.

Shadows provide important visual cues for depth, shape, contact, move-
ment and lighting in cartoon animation. A moving figure and background
scenery are illustrated in different layers with different styles, and therefore
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Fig. 8.44 Various highlights suggest different artistic meanings of objects in the
scene [Anjyo & Hiramitsu, 2003]. Copyright of IEEE, used with permission

shadows play an especially crucial role by integrating the character into the
background. In most cases, shadows in cartoon animation serve to anchor the
character to the ground, enhance the form of the figure, or suggest lighting
or mood. Without some kind of contact with the background, the charac-
ters seem to float around, walk on air, no matter how much weight has been
animated into their movements [Petrovic et al., 2000].

By the aforementioned cartoon-like highlighting principles, Anjyo and
Hiramitsu presented a novel highlight shader that can create cartoon-style
highlights for 3D objects by a highlight vector field [Anjyo & Hiramitsu,
2003]. Without using a texture-mapping technique, their shader makes an
initial highlight shape using the traditional Blinn’s specular model. Then it
interactively modifies the initial shape through geometric (local affine trans-
formations such as translation, rotation and directional scaling), stylistic (a
slight modification of the directional scaling operation or making a highlight
area more square shaped, etc.) and Boolean transformations for the highlight
vector field until the system gets our final desired shape. Moreover, once these
operations specify highlight shapes for each key frame, their shader can au-
tomatically generate the highlight animation by linear interpolation (see Fig.
8.45).

Petrovic et al. proposed a semi-automatic method for creating shadow
mattes in cartoon animation [Petrovic et al., 2000]. Their system employs a
scheme for “inflating” a 3D figure based on hand-drawn art. At a high level,
the shadow creation process begins with hand-drawn line art created by a
traditional animator, as well as hand-painted scenery created by a background
artist. The user sketches over features in the painted background to establish
the camera, ground plane and background objects. Using character mattes
integral to the compositing stage of the normal cartoon animation pipeline,
the system automatically “inflates” a 3D mesh for the character. The user
specifies the depth for the character in the scene, as well as light positions.
Next, based on the lights, the 3D character and the background objects, the
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Fig. 8.45 Example of highlighting animation [Anjyo & Hiramitsu, 2003]. Copyright
of IEEE, used with permission

computer renders three types of shadow mattes for the character: tone mattes
indicate both self-shadowing and shadows of other objects on the character;
contact shadow mattes emphasize contact between the character and the
ground; and cast shadow mattes specify shadows cast by the character onto
the background scenery. Finally, these mattes are composited into the scene
as part of the conventional cartoon animation pipeline. This system requires
a small amount of user input—less effort than would be required to draw the
mattes by hand. Once the user has set up the scene, it is easy to alter the
lighting conditions to produce very different kinds of shadows.

8.5 Cartoon Production via Reuse of Traditional
Animation

The long history of cartoon animation provides a huge amount of artistically
advanced art works, which give a valuable reference for the animators while
creating new cartoon animation clips. The reuse of traditional animation
will obviously speed up the production of new cartoon animations. Bregler
et al. summarized that there are two dimensions in cartoon animation: the
visual style (how the image looks, how it is rendered, the style of the drawing
or model) and the motion style (how the characters move, the amount of
exaggeration, use of cartoon physics and the way in which the animation
principles are used) [Bregler et al., 2002]. Therefore, we accordingly classify
animation reuse into two types: reuse of visual style and motion style for
cartoon animation.
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8.5.1 Reusing Visual Style for Cartoon Animation

The key points in reusing visual styles for cartoon animation are how to ef-
fectively extract the desired visual content from traditional animation, and
seamlessly apply them in the production of cartoon animation. Aiming at
combining fragments of the original artwork to design new characters and
poses, Sýkora et al. presented a novel example-based framework for reusing
traditional cartoon animation [Sýkora et al., 2005]. The input to their system
is a set of classical cartoon images composed of two layers: background and
foreground. In order to reuse shapes and regions stored in the foreground
layer, the first step in their framework is an unsupervised image segmenta-
tion that allows us to partition the input image into a set of regions. Each
region is then classified as to whether it belongs to the background or to the
foreground layer. An interactive phase follows. In this step, the user simply
selects a subset of interesting regions called a fragment. Afterwards, the sys-
tem extracts the fragment together with corresponding outlines and performs
vectorization. Finally, the user arranges it in a new position by sketching two
composition scribbles that make it possible to define a combination of rigid
transformation and free-form deformation. By this framework, the user can
simply select an interesting part in the original image and then adjust it in a
new composition using a few control scribbles. Practical results show that it
can produce high-quality cartoon drawings within a much shorter time frame
when compared with standard approaches [Sýkora et al., 2005].
de Juan and Bodenheimer presented a semiautomatic segmentation and inbe-
tweening method for reusing the cartoon characters [de Juan & Bodenheimer,
2006]. They employed support vector machines (SVM) to segment cartoon
images from their backgrounds for incorporation into an image library. The
first step in using SVMs to segment cartoon images is to classify the training
data by selecting the appropriate attribute-label samples. Two feature sets
are identified for classifying the data: color alone or color with optical flow
vector magnitudes. Once the training data is classified, the SVM is trained to
create a classifier model for each character. In order to generate the inbetween
frames between the two newly reused key images, three steps are involved. In
the first step, the character is partitioned into several layers such as head and
torso. In the second step, inbetween shape contours are generated for each
layer using an RBF-based technique, and in the final step the cartoon color
or texture is fitted to the inbetween shape, using an elastic registration tech-
nique. The final inbetween typically requires only a small amount of touch
up after generating the inbetween texture.

Besides the aforementioned character-reusing methods based on intuitive
editing principles, some researchers explored the high-level reuse of visual
effect or illustration styles in cartoon animation. For example, Sato et al.
employed the data-mining concept to extract the accentuation effects in the
hand-drawn images of the scene, and then the animation can be created inter-
actively displaying the same accentuation effects [Sato et al., 2004]. Hamel
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and Strothotte presented a solution to capture and re-use rendition styles
for non-photorealistic rendering of 3D models, which is also applicable for
the production of cartoon animation [Hamel & Strothotte,1999]. The rendi-
tion style is represented as a non-photorealistic template (NP-template for
short) which describes the attributes of a rendition with respect to features
of the underlying geometric model. In order to create an NP-template, the
user initially works with the NP-renderer of his choice to construct a rendi-
tion R1 from a geometric model M1. This is a highly interactive process in
which a considerable amount of fine-tuning is used to produce good-looking
images. Next the final rendition R1 and the Model M1 are read by the non-
photorealistic template extractor. The rendition is analyzed in order to map
features of the geometric model onto the image. This mapping is recorded
in the non-photorealistic template T1, which now contains information about
the objects in M1 and the rendering styles in R1 (see Fig. 8.46).

Fig. 8.46 Extraction of a template [Hamel & Strothotte, 1999]. Copyright of Black-
well, used with permission

Fig. 8.47 Application of template [Hamel & Strothotte, 1999]. Copyright of Black-
well, used with permission
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The application of the NP-template is shown in Fig. 8.47. The user has
chosen a new model M2 which is to be rendered in the style of R1. The
corresponding template T1 as well as M2 is analyzed by the NP-template
applicator to produce initial settings for the renderer. The settings are passed
on to the renderer and applied to M2 and the user is given the opportunity
to carry out some more fine-tuning. The result is a new non-photorealistic
rendition R2. This template-based rendition reusing approach can effec-
tively transfer the style of rendition from one model to another (see Fig. 8.48).

Fig. 8.48 Example of transferring rendition styles to new models [Hamel &
Strothotte, 1999]. Copyright of Blackwell, used with permission. (a) The source
rendition style; (b) The same rendition style transferred to a new model
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8.5.2 Reusing Motions for Cartoon Animation

If the motion styles can be captured from existing cartoon animation and then
applied to the production of new animation, the expressive characteristics,
such as meaningful mood and exaggerations, will be naturally inherited in
the new animation sequence. The main challenges in reusing cartoon motions
are summarized as two aspects:

(1) It is difficult to effectively capture and extract motions from existing car-
toon animations. There are no markers on the cartoon characters, and
the typical vision-based tracking techniques can’t be applied directly.
Moreover, the frame rate in cartoon animation is relatively low, and con-
sequently it is difficult to get a high quality of resulting motion from the
source animation sequence.

(2) It is difficult to retarget the cartoon motions to new characters. The
cartoon motions usually focused on the visual plausibility, ignoring the
physical or logical plausibility. Moreover, the traditional cartoon motions
are highly coupled with the exaggerated drawing of characters. It will
often deform or degrade the cartoon motion greatly when applying it to
new characters.

Assuming that most of the “essence” of the expressive movements will be
preserved by maintaining the timing and motion parameters from the origi-
nal animation, Bregler et al. presented a technique of “cartoon capture and
retargeting”, which is able to track the motion from traditionally animated
cartoons and retarget it onto 3D models, 2D drawings and photographs [Bre-
gler et al., 2002]. Its goal is to isolate the motion style of an existing cartoon
animation and apply the same style to a new output domain. The input to
their cartoon capture process is the digitized video, and a user-defined set of
key shapes (chosen from the source sequence). Cartoon capture transforms a
digitized cartoon into a cartoon motion, which is represented as a composition
of two types of deformations: (a) Affine deformations, that encode the global
translation, rotation, scaling and sheer factors; (b) Key-shape deformations,
that are defined relative to a set of key-shapes. This combination of affine
transformation and key-weight vectors can describe a wide range of motion
and non-rigid shape deformations. For the cartoon retarget process, the user
has to define for each input key-shape a corresponding output key-shape, or
key-image, or 3D key-model. The motion parameters are mapped from the
source to the target. An overall algorithmic cartoon capture and retargeting
pipeline is shown in Fig. 8.49.

By using animation as the source, the system can efficiently produce new
animations that are expressive, exaggerated or non-realistic. Cartoon capture
transforms a digitized cartoon into a cartoon motion representation. Using
a combination of affine transformation and key-shape interpolation, cartoon
capture tracks non-rigid shape changes in cartoon layers. Cartoon retarget-
ing translates this information into different output media. The result is an
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Fig. 8.49 The overall pipeline of cartoon capture and retargeting [Bregler et al.,
2002]. Copyright of ACM, used with permission

animation with a new look but with the movement of the original cartoon
(see Fig. 8.50).

Fig. 8.50 Capturing line-of-action and retargeting onto a new 2D character [Bregler
et al., 2002]. Copyright of ACM, used with permission.

Sumi and Nakajima presented a motion reusing method by motion vector
based on the model shapes [Sumi & Nakajima, 2003]. The overall algorithmic
pipeline of motion reuse is shown in Fig. 8.51. It extracts motions at the same
time as extracting the model shape from the existing animation sequence, and
the major algorithmic steps are as follows:

(1) Binarization and making filamentation: The bitmap image from a frame
of 2D animation sequences is binarized and the lines of the model shape
are filamented.

(2) Extracting lines: The line of a segment is extracted by detecting the
intersection points, and start and end points. A feature point is the pixel
with the longest perpendicular line exceeding a user defined threshold
length. The same process is repeated continuously for a line segment
from the start point to the feature point until there is no length greater
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than the threshold. If an area defined by the segment is closed, that area
is extracted as a closed region.

(3) Making associations between closed regions and line: The graphics im-
age is divided into closed regions and layers. The closed regions between
frames are matched using the absolute position, the area and the relative
position of the closed region, and afterwards each line is associated. The
amount of the transformation of each pixel is calculated from the results
of association, and the result is assumed to be the value of motion data.

Fig. 8.51 The overall processing pipeline of motion reuse based on motion vector
[Sumi & Nakajima, 2003]. Copyright of IEEE, used with permission

The resulting animation sequence of the target character model is gener-
ated by repeating the following two steps:

(1) The index to each pixel of the original image (original image index) is
computed. At this time the target frame’s correspondence point is to be
the base value. Other original image indexes in between the correspon-
dence points are calculated by a linear interpolation.

(2) The motion vector of the target image is calculated by using the original
image indexes. At this time, use the weight of the decimal part of the
original image indexes to create the motion vector of the target image
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so that the amount of transformation of each pixel is proportional to its
amount of position movement.

8.6 Summary

This chapter mainly describes and analyzes the novel approaches to speeding
up cartoon animation production beyond the traditional computer-assisted
coloring and inbetweening. The major algorithmic principles and key
technical points are summarized in Table 8.1. These existing works clearly
show that computer-assisted cartoon animation should go beyond 2D planes
integrating with 3D information such as 3D geometry, video, emotions, etc.
In the future, research into computer-assisted cartoon animation will still
focus on the agile generation of high quality visual and motion content in
cartoon animation, and the new generation pipeline of computer-assisted
cartoon animation will achieve multi-discipline integration with techniques
from computer vision, computer arts, artistic rendering, artificial intelligence
and effective computing.

Table 8.1. A summary of novel approaches to assisting cartoon animation produc-
tion

Novel approaches Algorithmic principles The key technical points in-
volved

Video driven car-
toon animation

It extracts the temporal features
of visual and motion styles from
the source video, and the new
production of cartoon animation
will be guided by them

The visual feature extraction
and tracking, artistic render-
ing, performance driven defor-
mation of 3D models or 2D
images

Cartoon produc-
tion integrated
with 3D geomet-
ric elements

It usually reconstructs the 3D
approximate geometry or trans-
formations from 2D sketches or
line-drawings, or pre-builds the
base model of 3D object in ad-
vance. The resulting cartoon an-
imation is generated by the 3D
animation pipeline in terms of
the newly-specified view points

Sketch-based 3D modeling,
view-dependent geometry,
image-based artistic render-
ing, view-independent artistic
style simulation etc.

(to be continueed)
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(Table 8.1)

Novel approaches Algorithmic principles The key technical points in-
volved

Cartoon genera-
tion by temporal
coherent render-
ing

The input is the 3D model of car-
toon characters or scenes. The
temporal coherence maintaining
mechanism is embedded into the
artistic rendering, and the re-
sulting animation sequence is
generated by the 3D computer
animation pipeline

Artistic rendering, artistic
styles rendition simulation
with temporal coherence
maintaining mechanism

Cartoon gener-
ation together
with 3D graph-
ical processing
techniques

The input usually consists of
both 2D hand-drawn images and
3D models. The 3D graphical
processing techniques such as
lighting model, digital geomet-
rical processing, motion gener-
ation are modified to generate
the desirable cartoon sequence
in terms of the requirements of
cartoon production

3D modeling integrated with
cartoon rendering and mo-
tion generation respectively,
the agile generation of cartoon
scenes, cartoon stylized spe-
cial effects simulation by 3D
graphical processing

Cartoon produc-
tion via reusing
traditional ani-
mation

Its input is the traditional car-
toon animation sequence. The
visual style and motion styles
are extracted from the input an-
imation sequence. The desirable
animation sequence is generated
by applying the visual and mo-
tion style on the new foreground
character or background scene

Segmentation of foreground
characters and background
scenes in cartoon image. The
analysis and extraction of
visual and animation styles
from traditional animation se-
quence, simulation of artistic
illustration styles, motion ex-
aggeration and motion retar-
geting for 2D cartoon charac-
ters
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Corrêa WT, Jensen RJ, Thayer CE, Finkelstein A (1998) Texture mapping for
cel animation. In: Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques 435–446

de Juan CN, Bodenheimer B(2006) Reusing traditional animation: methods for
semi-automatic segmentation and inbetweening. In: Eurographics/ ACM SIG-
GRAPH Symposium on Computer Animation 223–232

Di Fiore F, Van Haevre W, Van Reeth F(2003) Rendering artistic and believable
trees for cartoon animation. In: Proceedings of Computer Graphics Interna-
tional 2003 144–151

Di Foire F, Van Reeth F(2002) Employing approximate 3D models to enrich tra-
ditional computer-assisted animation. In: Proceedings of Computer Animation
2002 183–190



346 8 Novel Approaches to Computer-assisted Cartoon Animation

Hamel J, Strothotte T(1999) Capturing and reusing rendition styles for non-
photorealistic rendering. Computer Graphics Forum 18(3):173–182

Hanrahan P, Haeberli P(1990) Direct WYSIWYG painting and texturing on 3D
shapes. SIGGRAPH Computer Graphics 24(4):215–223

Hays J, Essa I(2004) Image and video based painterly animation. In: Proceed-
ings of the 3rd Internatioal Symposium on Non-photorealistic Animation and
Rendering 113–120

Hertzmann A, Perlin K(2000) Painterly rendering for video and interaction. In:
Proceedings of the First International Symposium on Non-photorealistic Ani-
mation and Rendering 7–12

Kalnins RD, Markosian L, Meier BJ, Kowalski MA, Lee JC, Davidson PL, Webb
M, Hughes JF, Finkelstein A(2002) WYSIWYG NPR:drawing strokes directly
on 3D models. ACM Transactions on Graphics 21 (3):755–762

Kalnins RD, Davidson PL, Markosian L, Finkelstein A(2003) Coherent stylized
silhouettes. ACM Transactions on Graphics 22 (3):856–861

Kowalski MA, Markosian L, Northrup JD, Bourdev L, Barzel R, Holden LS,
Hughes JF(1999) Art-based rendering of fur, grass and trees. In: Proceedings of
the 26th Annual Conferences on Computer Graphics and Interactive Techniques
433–438

Lake A, Marshall C, Harris M, Blackstein M(2000) Stylized rendering techniques
for scalable real-time 3D animation. In: Proceedings of the 1st International
Symposium on Non-photorealistic Animation and Rendering 13–20

Li Y, Gleicher M, Xu Y, Shum H(2003) Stylizing motion with drawings. In: Pro-
ceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation 309–319

Liang L, Chen H, Xu Y, Shum H(2002) Example-based caricature generation with
exaggeration. In: Proceedings of the 10th Pacific Conferences on Computer
Graphics and Applications 386–393

Litwinowicz P(1997) Processing images and video for an impressionist effect. In:
Proceedings of the 24th Annual Conference on Computer Graphics and Inter-
active Techniques 407–414

Markosian L, Meier BJ, Kowalski MA, Holden LS, Northrup JD, Hughes JF(2000)
Art-based rendering with continuous levels of detail. In: Proceedings of the 1st
International Symposium on Non-photorealistic Animation and Rendering 59–
66

Mart́ın D, Torres JC(1999) Alhambra:a system for producing 2D animation. In:
Proceedings of Computer Animation 1999 38–47

Meier BJ(1996) Painterly rendering for animation. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques 477–484

Mihai P(1998) Image seqence stylization:a frame-to-frame coherent approach.
Simulation and Animation 1998 101–112

Pastor QEM, Strothotte T(2002) Frame-coherent stippling. Eurographics 2002
Patterson JW, Willis PJ(1995) Computer assisted animation: 2D or not 2D? The

Computer Journal 37(10):829–839
Petroic L, Fujito B, Williams L, Finkelstein A(2000) Shadows for cel animation.

In: Proceedings of the 27th Annual Conferences on Computer Graphics and
Interactive Techniques 511–516



References 347

Rademacher P(1999) View-dependent geometry. In: Proceedings of the 26th An-
nual Conferences on Computer Graphics and Interactive Techniques 439–446

Raskar R, Ziegler R, Willwatcher T(2002) Cartoon dioramas in motion. In: Pro-
ceedings of the Second International Symposium on Non-photorealistic Anima-
tion and Rendering 7–12

Sato T, Dobashi Y, Yamamoto T, Takao K, Anjyo K(2004) Extracting 3D stylized
accentuation effects from a painted image. In: Proceedings of Computer and
Graphics International 2004 222–228

Sumi F, Nakajima M(2003) A production method of reusing existing 2D anima-
tion sequences (short paper). In: Proceedings of Computer Graphics Interna-
tional 2003 258–263
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9

Perspectives of Non-photorealistic Computer
Graphics

Non-photorealistic computer graphics has created an intriguing new field es-
pousing expression, abstraction and stylization in preference to traditional
computer graphics concerns about photorealism. It has two complimentary
goals: the communication of information using images and rendering im-
ages in interesting and novel visual styles which are free from the traditional
computer graphics constraint of producing images which are life-like. Many
artistic and visual styles have been realized in non-photorealistic computer
graphics, including interactive and automated systems for drawing and paint-
ing [Sayeed & Howard, 2006]. There is an international symposium NPAR
(non-photorealistic animation and rendering) dedicated to non-photorealistic
computer graphics, sponsored by the ACM SIGGRAPH and in co-operation
with Eurographics. In 2009 it is the second time for NPAR to be collocated
with SIGGRAPH, and this allows us to raise attention to this important
field, and to open it to new people from academia, arts and industry.

From the point of view of research methodology, non-photorealistic com-
puter graphics involves three major components: techniques, arts and human
factors. The “techniques” related to non-photorealistic computer graphics
are composed of artificial intelligence, virtual reality, human computer inter-
action, computer vision, multimedia computing, visualization, image/video
processing, computer-aided design, computer graphics, computer animation,
etc. The “arts” refer to calligraphy, painting, sculpture, literature, film, an-
imation, dancing, drama, etc. Human factors are playing a more and more
important role in future research, including visual cognition, thinking based
on a mental image, affective computing, aesthetical assessment, subjective
perception, psychology, etc. Fig. 9.1 shows a diagram of their relationship.

In essence, the scientific problems involved in non-photorealistic computer
graphics can be summarized as (see Chapter One): (a) How to create art crafts
from a blank canvas? (b) How to convert the source images into pictures with
the desirable visual effects? (c) How to generate artistic rendition from 3D
models? (d) How to synthesize expressive pictures from textual, graphical
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Fig. 9.1 A diagram of the relationship between techniques, arts and human factors
in non-photorealistic computer graphics.

or pictorial data? (e) How to speed up the production of cartoon animation
sequences with temporal coherence. There are more than 20 topics listed in
the symposium of non-photorealistic animation and rendering in recent years,
including:

• Simulation of traditional and new graphical styles;
• Simulation of natural media;
• Hardware-accelerated non-photorealistic algorithms;
• Level-of-detail in image space;
• Abstraction and composition in rendered images;
• Synthesis of stroke-based patterns;
• Style transfer;
• Automatic painting from photographs and video;



9 Perspectives of Non-photorealistic Computer Graphics 351

• Temporal and spatial coherence in non-photorealistic rendering;
• Motion blur and depth of field in non-photorealistic images;
• Lighting models for NPAR;
• Non-traditional perspective;
• Non-photorealistic modeling;
• Animation systems;
• Computer-aided cartoon animation;
• 2D/3D integration;
• Live-action integration;
• Computer-aided inbetweening;
• Computer-aided layout;
• Matting and compositing;
• Image-based rendering;
• Rendering languages and systems;
• Practical NPAR applications;
• Evaluation methods for artistic graphics;
• Computer-generated abstract art.

To the best of our knowledge, we correlate these specific themes with
the five fundamental problems in non-photorealistic computer graphics (see
Fig. 9.2). For the time being, the research into non-photorealistic computer
graphics has made a significant advance in artistic rendering and cartoon an-
imation. However, the perfect solution or computational models to solve the
five problems have not yet emerged, and we still lack a technical breakthrough
with great milestones. We believe that the future work on non-photorealistic
computer graphics will remain centered on the aforementioned five problems.

From the point of view of evaluation criteria (the Turing test for non-
realistic images), one of the biggest challenges faced by non-photorealistic
computer graphics is the dependence on the human factors involved, because
how humans perceive, think about and interact with images will affect their
understanding of information presented visually, and most of the criteria used
to assess the progress made, or the objective achieved in non-photorealistic
computer graphics, is still subject-dependent. The graphics community has
come to realize the importance of taking human factors into account and
several research initiatives have begun to study them. Hapler et al. proposed
the necessity of developing a theory of psychology within non-photorealistic
computer graphics, and briefly discussed the functional and theoretical rela-
tionship of non-photorealistic rendering with general, social, biological and
environmental psychology paradigms [Halper et al., 2003]. Tory and Möller
reviewed known methodology for doing human factors research and existing
work on human factors, with specific emphasis on visualization, and identified
promising areas for future research [Tory & Möller, 2004]. Sullivan et al. made
a survey of the computational models of various perceptual functions in the
graphics community, and the new insights into both graphics and perception
[Sullivan et al., 2004]. Lee explored how to improve the comprehensibility
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Fig. 9.2 The correlation of specific themes with the five fundamental problems
in non-photorealistic computer graphics: The symbols that suffix a specific theme
state that the current theme is also related to the corresponding problem annotated
by this symbol.

of 3D graphics rendering using insights from human perception of geome-
try and illumination, and developed algorithms and systems to seamlessly
integrate the low-level human visual system cues with object modeling and
lighting for 3D graphics [Lee, 2005]. Santella presented several approaches
for simplifying photographs to create concise, artistically abstracted images
by the perceptual model based on eye movements, i.e., features in the image
will be preserved where the viewer looked, and removed elsewhere. Some in-
teresting insights into artistic abstraction and human visual perception are
also provided, based on a series of experiments [Santella, 2005]. Winnemöller
et al. studied the connections between non-realistic depiction and human
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perception, and proposed two non-realistic rendering frameworks for image
abstraction and the generation of isolated visual shape cues, respectively
[Winnemöller 2006, Winnemöller et al., 2007]. Isenberg et al. presented an
observational study of how people understand and assess both traditionally
created hand-drawn and computer-generated non-photorealistic pen-and-ink
illustrations, and revealed that hand-drawn images clearly still seem different
from computer-generated images [Isenberg et al., 2006]. Therefore, it is obvi-
ous that the non-photorealistic rendering work involving human factors is in
its infancy, and many potentially promising areas have yet to be explored.

In the future, the research work in non-photorealistic computer graphics
will still focus on the five aforementioned scientific problems, but more com-
putational models of visual perception and cognition will be embedded into
it. A breakthrough in formal evaluation and validation of non-realistic images
will significantly help establish a major milestone in the non-photorealistic
computer graphics community.
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