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Abstract 

A highly efficient recursive algorithm for edge detection is presented. Using Canny's design [1], we show 
that a solution to his precise formulation of detection and localization for an infinite extent filter leads to 
an optimal operator in one dimension, which can be efficiently implemented by two recursive filters 
moving in opposite directions. In addition to the noise truncature immunity which results, the recursive 
nature of the filtering operations leads, with sequential machines, to a substantial saving in computational 
effort (five multiplications and five additions for one pixel, independent of the size of the neighborhood). 
The extension to the two-dimensional case is considered and the resulting filtering structures are im- 
plemented as two-dimensional recursive filters. Hence, the filter size can be varied by simply changing the 
value of one parameter without affecting the time execution of the algorithm. Performance measures of 
this new edge detector are given and compared to Canny's filters. Various experimental results are 
shown. 

I Introduction 

One of the most important tasks in any vision sys- 
tem is the detection of edges in digitized images. 
The requirements of a good edge detector are 
that it responds only to true edge structure and 
is relatively insensitive to noise. Computationally 
efficient realization is also required. Several meth- 
ods have been proposed and most of them suggest 
considering local operations on the elements of 
the input image to extract edges. Examples are 
the gradient operators and second-derivative 
operators generally followed respectively by 
peak and zero-crossing detections. Threshold- 
ing and thinning operations are applied to 
localize boundaries and remove edge segments 
that arise from noise in the imaging process. For 
a large survey of these techniques, one can refer 
to Davis [2], Grimson and Hildreth [3], Haralick 
[4], Hildreth [5], and Rosenfeld and Kak [6]. 

With blurred and noisy edges, the performance 
of local gradient operators deteriorates rapidly. 
This has led to the development of some particu- 
lar methods more specialized for detecting edges 
in noisy pictures. Modestino and Fries [7] intro- 

duced first an approach to edge detection in noisy 
images using two-dimensional recursive digital 
filtering. A stochastic model of edge structure was 
proposed and the edge detection problem formu- 
lated was one of least mean-square spatial filter- 
ing with an a priori assumption that a spatial 
frequency-weighted version of the Laplacian 
operator is the optimum filter. This led to a trans- 
fer function having the form: 

H(to) = k.to2.e-'~:2.Hl(to) (1) 

where Hl(to) is the Wiener filter which yields a 
minimum mean-squared error estimate of the 
edges in the input image. 

The results indicated substantial advantages 
over conventional edge detectors in the presence 
of noise. In a later article, Shanmugan et al. [8] 
derived an optimal edge detection filter operating 
on a global basis and optimizing a given perfor- 
mance measure. The quantity whose maximum 
value was sought represents the portion of the 
output signal energy contained in an interval I 
(descriptive of the resolution of the system) cen- 
tered in the vicinity of the edge. Their approach 
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led to an optimum edge detection filter specified 
in terms of the prolate spheroidal wave functions 
and the edge function. For the special case of a 
step edge input, the optimal frequency domain 
filter corresponds to the filter having the transfer 
function: 

H(to) = k'wZ'e-kl"o~ 2 (2) 

Shanmugan et al. [8] follow their filtering stage 
with magnitude and thresholding operations. 

More recently, in his MS thesis, Canny [1] 
made noise a central concern in his investigation 
of edge finding. Using the calculus of variations, 
he derived an operator from a precise formulation 
of detection and localization. The contents of our 
article are organized to first give a description of 
Canny's design and to describe and evaluate with 
Canny's performance measure a new edge detec- 
tor which presents optimal performances and 
additional advantages in implementation. The 
large variety of types of intensity change that 
appear in an image has suggested the use of a 
range of operator sizes, with selection criteria for 
deciding which size best reflects the properties of 
the underlying edge. A limitation of many of 
these schemes has been the use of extremely small 
operators very sensitive to noise. With our new 
edge detector recursively implemented, we can 
easily sacrifice localization for improving the out- 
put signal-to-noise ratio and vice versa. This 
trade-off is accomplished by changing the value of 
a single parameter, playing the same role as the 
inverse of the ~r parameter of a Gaussian, filter 
without affecting time execution of the algorithm. 
This property is very useful in a multi-scaled de- 
scription of a shape as described by Witkin [9] 
since it allows multi-scale edge detection to be 
performed with the same computational complex- 
ity for all the scales. 

Presented in this article is a comparative study 
of this edge detector with Canny's optimal edge 
detector and its approximate filter, the first de- 
rivative of a Oaussian; this new edge detector is 
shown to perform better. An extension to the 
two-dimensional (2D) case, with the resulting 
filtering structures implemented as 2D infinite im- 
pulse response (IIR) digital filters, is presented. 
Experimental results with excellent sensitivity to 
edge detail and remarkable noise immunity are 
shown. 

2 Canny's Design 

In his MS thesis, Canny [1] considered first the 
one-dimensional case edge detection problem 
with the traditional model of a step in white Gaus- 
sian noise. 

Let the amplitude of the step be A, and let the 
variance of the input white noise be n 2. The input 
signal I(x) can be represented by the step 

l(x) = A.U_l(X ) + n(x) (3) 

with n 2 = <n2(x) >for all x. 
He assumed that detection was performed by 

convolving the noisy edge with a spatial antisym- 
metric functionf(x) and making edges at the max- 
ima in the output O(Xo) of this convolution: 

O(xo) = f ~_; I(x)'f(xo - x) dx (4) 

Trying to formulate precisely the criteria for 
effective edge detection, he set the following 
goals: 

Good detection. There should be a low probabil- 
ity of failing to detect a real edge point and low 
probability of falsely marking non-edge points. 
This criterion corresponds to maximizing signal- 
to-noise ratio (SNR), which is defined as the 
quotient of the response to the step only and the 
square root of the mean-squared noise response: 

m f o_~ f(x)dx A 
SNR = - -  ~ ~ = "E (5) 

no t f+_ j alx)d l  no 
Finding the impulse response fix) which maxi- 
mizes ~ corresponds to finding the best operator 
for detection only. 

Good localization. The points marked as edges 
by the operator should be as close as possible to 
the center of the true edge. This criterion corre- 
sponds to minimizing the variance or 2 of the 
zero-crossing position or maximizing the local- 
ization criterion L defined as the reciprocal of o~: 

A tf'(o)l A L . . . .  A (6) 

tf_+Si ' no 2(x)dx]~ no 

Finding the impulse response f(x) which maxi- 
mizes A corresponds to finding the best operator 
for localization only. 
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One response to one edge. The detector should 
not produce multiple outputs in response to a 
single edge. There is a need to limit the number of 
peaks in the response so there will be a low prob- 
ability of declaring more than one edge. The dis- 
tance between peaks in the noise response of f, 
denoted Xmax, is set to be some fraction k of the 
operator width W: 

[ f+_2i'2(x)dx" 
Xma x = k "  W = 2 , 7 r ,  f+^T f .2 (x )dx  (7) 

Having developed criteria for detection, local- 
ization, and limitation of the number of peaks, 
Canny combined them in a meaningful way: 
Maximize the product ~ - a  (invariant under 
changes of scale or amplitude) under the con- 
straint of the third criterion. 

By expressing the criterion as a composite func- 
tional he found that this leads to the solution f(x) 
such that 

2"f(x) - 2"A1 "f"(x) + 2"A 2"f''"(x) + i 3 = 0 
(8) 

with 

a = X2 -- 12/4 > 0 (9) 

and where a and to are real, such that: 

O~ 2 - -  O.12 - -  i 1  4" O~ 2° to2 - -  - 1 2  nt- 4" 1 2  

2"12 4"a2 (10) 

The general solution in the range [0, W] may be 
written: 

f (x)  = al "e~"x'sin to.x + a2-e~x.cos to'x + 
a3 "e-~ 'x ' s in  to'x + 
aa 'e- '~ 'x 'cos to 'x  + C (11) 

subject to the boundary conditions: 

f(O) = O f ( W )  = O f'(O) = S f ' ( W )  = 0  
(12) 

where S is an unknown constant equal to the 
slope of the function f (x)  at the origin. Since f (x)  
is antisymmetric, the above solution is extented to 
the range [ -W,+W]  using f (x)  = - f ( - x ) .  The 
four boundary conditions enable the quantities al 
through a4 to be determined. 

Using constrained numerical optimization, 
Canny found that the largest value of k that could 

be obtained was about 0.58 and its performance 
was given by ~" a = 1.12. 

On inspection of the shape of this optimal oper- 
ator, he observed that it is approximately the first 
derivative of a Gaussian: 

f (x)  = _ x .  e_x2/2 ,e (13) 
~r2 

The reason for doing this was that there are 
efficient ways to compute the 2D extension. 

Because the overall performance index for the 
first derivative of a Gaussian is 

A = 0.92 and k = 0.51 (14) 

it is worse than the optimal operator by about 
20% and was used exclusively in experiments 
(however, it should be pointed out that this 
approximation step has not been made clear by 
Canny; no analysis has been done concerning this 
approximation which has been proposed only on 
the observation of the shape). In two dimensions, 
the simplest form of the detector used by Canny is 
created by convolving the image with a symmetric 
two-dimensional Gaussian and then differentiat- 
ing in two directions. After the image has been 
convolved with a symmetric Gaussian, the edge 
direction is estimated from the gradient of the 
smoothed image intensity surface. The gradient 
magnitude is then nonmaximum suppressed in 
that direction. 

3 An Optimal Edge Detector 

It should be pointed out that Canny's design was 
developed for a finite extent antisymmetric filter. 
Dealing with an infinite extent antisymmetric 
filter leads to the same differential equation and 
therefore the same general solution given by 
equation (11). However, the boundary condi- 
tions, given by equation (12), for finite extent 
filter defined in the range [0, W] change as fol- 
lows: 

f ( 0 ) = 0  f ( + m ) = 0  f ' ( 0 ) = S  f ' ( + m ) = 0  
(15) 

Applying these conditions to equation (11) 
leads to the following solution: 

f(x) = -c.e- '~ 'x-sin to'x (16) 

with a, to, and c positive reals. 
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Since f (x)  is antisymmetric and sin [to" ( -x ) ]  = 
-sin[to.x],  the above definition will be given for 
any x by: 

f(x) = - c "  e-"" Ixl. sinto.x (17) 

The Fourier transform of this filter is: 

i . 4 . c - a ' t o ' u  
F(u) = 

(012 + tO2)2 -{- U 4 + 2" U 2" (012 -- 0)2) (18) 

with i 2 = - 1 ,  and the variable u is spatial fre- 
quency. Its transfer function is therefore a band- 
pass. 

Evaluating the integral in the performance 
criteria leads to the following results: 

I f ' ( o ) l  = to.c (19) 

f to'c (20) 0- f ( x ) d x  --  0l 2 "q- 0) 2 

f f2(x)dx = to2.c  
_ 2.01.(to 2 + 012) (21) 

f +] f '2(x)dx - to2.c2 - (22) 

I = to2.C2,(5.014 -~- 0) 4 -Jr- 6.012. to  2) 

2 .01. ( to  2 + 012) 
(23) 

It follows that the overall performance index 
for our operator is: 

' [ 2.01 1~ (24) 
A = (2.01)~ ~ =  [012 + to2] 

r 012+ to2 l i 
. . . . .  2 E . a -  2.01 , k =  [5.012+ o,2] (25) 

(tog + 012)  

If we set 01 = m-to, then we deduce four in- 
teresting cases: 

a) m > > l  A=(2"01)  ~ ~ ( 2 ) ~  

2 - A ~ 2  k = . 4 4  

1 
b) m < < l  A = ( 2 " a )  ~ ~ = m -  2 

~ . a  = 2.rn k = l  

c) m = l  a = ( 2 . a )  ~ Y]= 

~ ' A ~ 1 . 4 1 4  k ~ . 5 8  

( A )  d) m = ( 3 )  ~ A = ( 2 . a )  ~ ~ 2 

~ ' A = 1 . 7 3 2  k = . 5  

Case d) shows that for the same value of k, the 
performance of the first derivative of a Gaussian 
is worse than the operator presented here, by 
more than 90%. 

Case c) shows that the final form used by Canny 
for his optimal operator ( ~" A ~ 1.12 k = .58) is 
worse than the operator we presented by more 
than 25%. 

Case b) presents an ideal response measure for 
k, but the problem is that the product ~ .  A be- 
comes much less than unity. 

The first case presents the best trade-off. Since 
the product ~ .  h is maximum for to = O, and 
remembering that for to'x is very small we have 
sin(to.x) ~ to'x. This leads us to rewrite our 
optimal filter as: 

g(x) = - c" x e-  ~" Ix I (26) 

The Fourier transform of this filter is: 

i . 4 . a . u ' c  
F(u) - (27) 

(/12 -{- 012)2 

This is the transfer function of a bandpass filter. 
In fact, this function is the solution of equation 

(8) when A, given by equation (9), is null. Using 
the integral in the performance criteria, it can be 
easily verified that the overall performance index 
for this operator is given by: 

1 (21 A = ( 2 . A )  ~ Z =  ~ E ' A = 2  

1 
k - , = .44 (28) 

It follows that this operator performs better 
than Canny's operator. It is very simple and pre- 
sents only one parameter a. This parameter is ad- 
justed to yield the desired localization or signal- 
to-noise ratio. It should be pointed out that the 
maximum of g(x) is situated at x = 1/01, thus a 
plays exactly as the inverse of the parameter tr in 
the first derivative of Gaussian. Decreasing a will 
lower the edge localization, but yield better 
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signal-to-noise ratio and vice versa. 
For comparison purposes, figure la gives the 

shape of the operator g(x) (extern curve) and 
compares it with the first derivative of a Gaussian 
(intern curve); figure lb shows the same operator 
compared with Spacek's operator [10] (intern 
curve), and figure lc allows one to compare the 
same operator g(x) with f (x)  (intern curve) when 
the ratio a/to is much more than the unity and one 
can see that no difference can be detected in this 
case. For the sake of this comparison, all the 
operators have been scaled to have the same 
maximum amplitude. 

From case a) we see that f (x)  presents the same 
overall performance index as g(x), and from 
figure lc that it has the same shape than g(x) 
when the ratio a/a~ is much more than the unity. 
Because f (x)  can be efficiently implemented in a 
recursive way (see the next section), it is the final 
form of optimal operator that we will use here. In 
a later article we will evaluate performances of 
the operator g(x) and give an efficient imple- 
mentation in one dimension and two dimensions. 

4 One-dimensional Digital Recursive 
Implementation 

In this section, we introduce first the problem of 
recursive filtering; develop, in a second part, one 
procedure to implement our optimal operator 
recursively; and analyze, in the last part, the 
problem of errors in recursive filtering. 

4.1 Introduction 

Given an impulse response sequence {h(n)} of 
length N, whose Z-transform is: 

H d ( Z ) = ~ h ( n ) ' Z  - k f o r k = O ,  . . . . . .  , N -  1 
(29) 

A causal nonrecursive system is characterized by 
the following equation: 

y(i) = ~ h(k ) ' x ( i  - k) for k = 0 . . . . . . . .  
N -  1 f o r / =  1 . . . . . . .  , M -  1 (30) 

where {x(n)) and {y(n)} denote the nonrecursive 
system's input and output of length M points, re- 
spectively. 

The number of operations required to calculate 
each output element y(i) can be excessive if we 
deal with filters having large length N. Thus for 
large values of N, a direct implementation of the 
nonrecursive system described by equation (30) 
can be inefficient since it is very time-consuming. 
For example, a smoothing operation using a half- 
Gaussian filter will need about 4.o" arithmetic 
operations per input element, if we decide to 
truncate the Gaussian filter at about 0.1% of its 
peak value. Thus for large values of o-, a direct 
implementation will be very time-consuming. 

The problem of recursive filtering design deals 
with the determination of the coefficients ak's and 
bk's of a rational transfert function of the form: 

H a ( Z  ) = ao + a l ' Z  -1 + . . . . . .  a n - l ' Z - ( n - l )  

1 + b l . Z  -~ + . . . . . .  b n . Z  -n 
(31) 

which characterizes the causal recursive system of 
order n: 

y(i) = ~at 'x( i  - 1) - 2~bk'y(i -- k) 
for l = 0 . . . . . . . .  n - 1 and 
k = 0 . . . . . . .  , n ( 3 2 )  

so that the rational transfer function Ha(Z) is 
exactly, or best approximates in accordance with 
certain error criterion, Ha(Z)  the transfer func- 
tion of the nonrecursive system described by 
equation (29). 

The most used criterion is that in which the cor- 
responding impulse responses are compared by a 
least-squares criterion, that is, minimizing E such 
that: 

E = ~ (h(k) - ha(k)) 2 for k = 0 . . . . . . . .  +2  
( 3 3 )  

with {ha(k)} denoting the impulse response of 
recursive system given by equation (32). 

We present in reference [11] a procedure to de- 
termine the bk's and the ak's coefficients using a 
least-squares criterion and an efficient separable 
and recursive implementation for the most com- 
monly and successfully used filters in edge detec- 
tion: the 2D Gaussian filter, its first directional 
derivative, and its 2D Laplacian. We show in 
particular that these filters can be efficiently 
implemented in a recursive way with only third- 
order recursive filters. However, for our optimal 
operatorf(x), given by equation (16), the approx- 
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Fig. 1. Comparison between operators. (a) Comparison be- 
tween the first derivative of a Gaussian (intern curve) and g(x) 
(extern curve). (b) Comparison between Spacek's operator 
(intern curve) and g(x) (extern curve). (c) Comparison be- 
tween the operator f (x)  (intern curve) and g(x) (extern curve). 

imation step is not necessary. We show in the fol- 
lowing subsection that the coefficients a k ' S  and 
b k ' S  of equation (31) for f(x) can be exactly calcu- 
lated from its transfer function and that the value 
obtained for n is 2. 

When we deal with the causal recursive system 
of order n, given by equation (32), the number 
of operations per input element is reduced to 
2" n. Therefore, our implementation reduces the 
amount of computation from N operations per 
input element for a direct nonrecursive imple- 
mentation to only 2"n. This renders the use of a 

-Io 

-I, 

large filter to be very practical. However, it should 
be pointed out first that the structure of this filter 
is highly sequential and so its implementation 
assumes only sequential machines and, second, a 
recursive filter is useless unless it is stable; there- 
fore stability checks must accompany all design 
and, to preserve properties of interest like stabil- 
ity and filter frequency response, it is necessary to 
have sufficient accuracy in the representation of 
the filter coefficients. This will be discussed in sec- 
tion 4.3. 

4 . 2  D e s i g n  A l g o r i t h m  

A recursive realization of the optimal filter f ( x ) ,  

given by equation (17), may be derived by the fol- 
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l o w i n g  way .  L e t  f (n)  b e  t h e  s a m p l e s  o f  f (x)  and  

F(Z) its Z - t r a n s f o r m :  

F(Z) = Z f(n)" Z - "  
fo r  n = - 2  . . . . . . . .  + 2  (34) 

T o  d e a l  wi th  causa l  s e q u e n c e ,  w e  h a v e  to  pe r -  

f o r m  s o m e  o p e r a t i o n s  to  t r a n s f o r m  the  i m p u l s e  

r e s p o n s e  f(n) as a s u m  o f  causa l  s e q u e n c e s .  T o  

this  e n d ,  we  spli t  t h e  i m p u l s e  r e s p o n s e  f(n) i n to  

t w o  h a l v e s  f_(n) ad f+(n) such  tha t :  

f(n) = y_(n) + f+(n) 
fo r  n = - o c  . . . . . . . .  + 2  (35) 

0 n - > O  
f_(n)  = a l ( p 2 ) "  + a~{(p~)" n < 0 (36) 

f+(n) = al(pl)"  + a'{(p'{)" n >- 0 
0 n < 0 (37) 

a n d  

- - ¢  

al - 2 . i  Pl = e-c'+i"° P2 = e~+i"° (38) 

* d e n o t e s  t he  c o m p l e x  c o n j u g a t e .  

U s i n g  t h e  Z - t r a n s f o r m ,  r e c o g n i z i n g  tha t  e a c h  

f a c t o r  ai" (Pi)" has  Z - t r a n s f o r m  ai/(1 - p i ' Z  -1)  

and  s impl i fy ing ,  w e  o b t a i n :  

F(Z)  = F_(Z)  + F + ( Z - ~ )  

w h e r e  

a . Z - I  
F+(Z-1) = 1 + b l . Z  -1 + b2.Z  -2 
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COUIqlE I s ~ 1. -1o 

COURllE 2 s . . . . . .  1 .  o l .  

- a . Z  
F _ ( Z )  = 1 + b I • Z + be" Z 2 (39) 

with 

a -- - c ' e -~"s in to  bl -- - 2 " e - a ' c o s t o  
bz = e -2"a (40) 

F+(Z -1) (resp. F _ ( Z ) ) c o n v e r g e s  for [Pl 'Z-I[  
< 1 and [p~'Z-11 < 1 (resp. [ p z l ' Z  I > 1 and 
[ p 2 1 .  " Z [  > 1) .  Since all singularities of F + ( Z  - 1 )  

(resp. F _ ( Z ) )  are inside (resp. outside) the unit 
circle for ot positive real, these two Z-transforms 
correspond to two rational system transfer func- 
tions of stable second-order filters recursing from 
the left to the right (F+) and the right to the left 
(F_). 

In particular, the output sequence {y(m)} in re- 
sponse to {x(m)} as input to a system, with ira- 

pulse response {f(n)}, can be obtained recursive- 
ly according to: 

y+(m)  = x ( m  - 1) - bl"y+(m - 1) - 
b2 .y+(m - 2) (41) 

fo rm = 1 , . . .  , M  

y- (m)  = x ( m  + 1) - b l ' y - ( m  + 1) - 
b2 "y-  (m + 2) (42) 

for m = M . . . . .  1 

y (m)  = a.  (y+(m) - y - ( m ) )  (43) 
fo rm = 1 . . . .  , M  

with a, bl, and b 2 given by equation (33) and M 
denoting the length of {(y(m)}. The constant c 
may be fixed by the following normalization re- 
quirement: 
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{Z f (n )  forn = 0 , .  . . . . . . . .  +oo} 

= { -  Z f(n) for n = - o % .  . . . . . . . .  0} 
= - 1  (44) 

Straightforward manipulations lead to a value 
for c such that: 

1 - 2 . e - " . cos to  + e -2 '~ 
c = e - " .  sinto (45) 

The importance of the equations (41) to (43) as 
a practical tool for determining the output of the 
optimal edge detector without having to perform 
a convolution should not be neglected. The shape 
of the filter, determined by the parameters.a and 
to, can be varied by simply changing the values of 
a and to, without affecting time execution. Small 
values for a give large filters. The algorithm re- 
quires only five multiplications and five additions 
per point independently of the size of the oper- 
ator specified by the parameters a and to. For 
comparison purposes, an FIR (finite impulse re- 
sponse) implementation of {f(n)}, truncated to 
have 2 - N  + 1 coefficients, will require N opera- 
tions (multiplication + addition) per point using 
the antisymmetry of {f(n)} when the recursive 
algorithm requires only five operations without 
any truncature operation. Thus, we have a gain 
ratio of N/5, which can be important for large N. 
However,  even if equations (41) and (42) can be 
performed in separate processors, the structure of 
this filter is highly sequential and assumes only 
sequential machines. 

Applying the same technique, we can show that 
samples {h(n)} of the integral h(x) off(x)  can also 
be implemented recursively. We will apply this to 
the extension of the two-dimensional case. We 
have: 

h(n) = (Cl-sinto-In[ + c2"costo" [n]).e-,,'lnl 
(46) 

with 

k,o~ k , t o  
q a2 + to2 c2 a2 + o.)2 (47) 

A careful observation of this smoothing func- 
tion reveals that for the case where a and w are 
such that: 

1 
a = to - - -  (48) 

v 2 . a  1, 

h(x) is equal, up to a multiplicative constant (k/ 
42), to the optimal smoothing operator R(x,h) de- 
rived by Poggio et al. [12] using the tools of reg- 
ularization theory to transform the ill-posed dif- 
ferentiation problem into a well-posed problem. 

Let A be the regularizing parameter determin- 
ing the scale of the optimal filter; the one- 
dimensional regularizing filter in Poggio et al. [12] 
is then given by: 

R(x,A) = [a/(X/'2]" e -  ~'lxl" cos(a.  Ixl - rr/4) 
(49) 

with a given by equation (48). 
This point is very interesting since the approach 

developed here is completely different from 
Poggio's work. 

Let us see how h(n) can be implemented recur- 
sively. Calculating the Z-transform H(Z) of h(n), 
we obtain: 

H(Z) = H + ( Z  -1) + H_(Z) 

ao + al" Z -1  
H + ( Z - 1 )  = 1 + b 1" Z -1  "at- b2" Z - 2  a n d  

a2" Z + 43" Z 2 (50) 
H_(Z) = 1 7 b-l:Z + b2"Z 2 

with 

ao = c2 a1 = (-c2"costo + Cl'sinto)e -'~ 
a2 = a l  -- c2" bl a3 = --c2" b2 

bl = - 2 e - " . c o s t o  b2 = e -2"" (51) 

H + ( Z  -1) (resp. H_(Z)) converges for IPl" Z- l ]  
< 1 and Ip~'Z-11 < 1 (resp. IP2"ZI > 1 and 
[p~ -1. "Z[ > 1). Since all singularities of H + ( Z  -1) 
(resp. H_(Z)) are inside (resp. outside) the unit 
circle for a positive real, these two Z-transforms 
correspond to two rational system transfer func- 
tions of stable second-order filters recursing from 
left to right (H+) and right to left (H_).  

The output {y(m)} of the convolution of an in- 
put sequence {x(m)} with the impulse response 
{h(n)} is obtained as follows: 

y+(m) = ao'x(m) + 41 "x(m - 1) - 
b 1 "y+(m - 1) - b2"y+(m - 2) (52) 

fo rm = 1 . . . . .  M 

y-(m) = a2"x(m + 1) + a 3"x(m + 2) - 
bl "y-(m + 1) - b2"y-(m + 2) (53) 
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f o r m = M , . . . , 1  

y(m)=y+(m)+y- (m)  f o r m = l , . . .  , M  
(54) 

with ao, al, a2, a3, bl ,  and b2 given by equation 
(51). The constant k may be fixed by the following 
normalization requirement: 

{ ~ h ( n ) f o r n = - ~ , .  . . . . . . . .  +~} = 1 (55) 

This leads to a value for k such that: 

k = [1 - 2" e -~" coso~ + e -2" ~]" [Or 2 + o9 2] (56) 

[2.a.e-'~.sino~ + oJ - o~.e -z'~] 

This smoothing step requires only eight multi- 
plications and seven additions per point. This has 
to be compared to the ( N +  1) operations per 
point required in a FIR implementation of 
{h(n)}, truncated to have (2 .N + 1) coefficients 
nonnull, using the symmetry of {h(n)}. In addi- 
tion to the substantial saving in computational 
effort that results in sequential machines when N 
is large enough, it should be pointed out that this 
implementation leads to a noise truncature im- 
munity. 

4.3 Effect of Finite Word Length on the Accuracy 
of Filters 

We have discussed the computations to be done 
by the filters {f(n)} and {h(n)} as if the arithmetic 
would be handled accurately. In practice, it is well 
known [13, 14] that because of finite word length 
used in their implementation, the performance of 
the actual filter will differ from the proposed 
filter. This question becomes increasingly impor- 
tant when the filter is to be built out of definite 
hardware (integrated circuit chips) or imple- 
mented in a computer with fixed-point arith- 
metic assuming few bits. For efficiency, the chip is 
apt to have a rather short word length. In addition 
to the word length, the accuracy of a digital filter 
depends on two factors: the form of realization 
and the type of arithmetic used. This section 
attempts to discuss the effects of a finite number 
of bits on the accuracy of the filters f(n) and h(n), 
when their implementation is realized in the 
direct form characterized by equations (41), (42), 
(52), (53), and (54) using a fixed-point implemen 
tation. The effects analyzed are the roundoff errors 

and the filter coefficient quantization errors. 
Roundoff errors occur every time a multiplica- 

tion is performed. Multiplying an n bits (including 
sign bit) number by an m bits number will result 
in an n + m -  1 bits numbers. Generally only 
p bits (p < n + m -  1) will be available to store 
the result of multiplication. Rounding/truncation 
operation will be performed introducing the so- 
called roundoff error. 

Quantization errors occur because the filter 
coefficients a~'s and bk's represented by only a 
finite number of bits will not take the exact value 
they were assigned by the proposed filter. 

4.3.1 Modeling of the Multiplication Roundoff 
Error. In a fixed-point representation, the error 
introduced in rounding a number off can be mod- 
eled as a random variable with uniform probabil- 
ity density function, having zero mean and a 
variance of (2-2b)/12, when (b + 1) is the total 
number of bits (including the sign bit). 

In order to model the effects of rounding due to 
multiplication in a digital filter, the following 
assumptions are generally made: 

1. Any two different samples from the same noise 
source are uncorrelated. 

2. Any two different noise sources are uncorre- 
lated. 

3. Each noise source is uncorrelated with the in- 
put sequence. 

The above set of assumptio~,o make it possible to 
calculate the total noise variance at the output of 
the filter as a superposition of the variances due to 
each noise source with the other noise sources 
and input deactivated. 

Consider the direct form realization of the 
transfer function G(Z) given as: 

G(Z) - N(Z) 
D(Z) 

_ ao + a l , Z  -1  + . . . . . .  a n _ l , Z - ( n - l )  

1 + b l . Z  -1  + . . . . . .  b n ' Z  - n  

(57) 

Since the total number of noise source is 2"n, 
the total output noise variance can be readily 
obtained as: 
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0-2 = 2" n((2-2b)/12) • ~'~ h(n) 2 
for n = 0, . . . . . . . . .  +m (58) 

where {h(n)} is the impulse response correspond- 
ing to the following transfer function: 

1 
H(Z) - 

D(Z) 

1 
(59) 

1 + b l . Z  -1 + . . . . . . . .  bn .Z  -n 

It is worth noting that the infinite sum in equation 
(58) can be computed by making use of the 
Parseval's relation [13]: 

~-~ h(n) 2 = (1/(2- 7r-j)). jH(Z). H(Z-1) • Z-IKZ 

for n = 0 . . . . . . . . . .  + ~  (60) 

Where the contour of integration C is the unit cir- 
cle, traversed in the counterclockwise direction. 

It is then easy to determine 0-2 for the specified 
transfer function given in equations (39) and (50). 
For both cases, H(Z) is given by: 

1 
H(Z) - D(Z) 

1 
1 - 2-cos( to)-e-~.Z -1 + e - 2 ~ . Z  -2 

(61) 

Therefore, applying the Parseval's relation and 
taking into account N noise sources, we obtain 
the following interesting results: 

N .2  -2"b (1 + e -2''~) 
0-2 = 

12 ( 1 - e  -2"~') 

1 
(1 + e -a''~ - 2. e -2" ~'. cos(2" to)) (62) 

For the optimal filter {f(n)} implemented by 
equations (41) and (42), since there are two multi- 
plications in each direction, two noise sources are 
introduced for each direction and therefore N = 
2. For the smoothing filter {h(n)}, implemented 
by equations (52) and (53), N is equal to 4. An 
important aspect of the statistical model pre- 
sented above is to show how 0-2 becomes impor- 
tant when a is clustered to 0. Further, it enables 
us to calculate for differents values of a, to, and b 
the number of bits, the value of o -2, and assess 
whether a practical realization of the filters {h(n)} 
and {f(n)} can be made on a given word-length 

computer. As an example of the use of this analy- 
sis of the filter (h(n)} with a = 1.0 and to = 
0.0001, the number of bits required to meet or --~ 
10 -5 can readily be found to be about 16. For a = 
0.1, to = 0.0001, to deal with the same error, the 
number of bits required has been found to be 
about 19. The same analysis can be made for the 
smoothing filter {h(n)}. 

4.3.2 Coefficient Accuracy. The frequency re- 
sponse of the actual filter realized with a fixed 
number of bits deviates somewhat from that 
which would have been obtained with an infinite- 
word-length computer. By regarding the filter 
coefficients errors as statistically independent and 
uniformly distributed with zero mean, Knowles 
and Olcayto [15] have calculated the statistically 
expected mean-square difference between the 
real frequency responses of the actual and real 
filters given by: 

0-2 = E[(1/(2- 7r)). _ H ( j "  o2) - H~(j" ¢0) 12" dto] 
(63) 

Where H(j .  to) and H~(j.  to) represent the fre- 
quency responses of the actual and ideal (infinite 
word length) filters and E denotes expectation. 

Let the ideal digital filter being realized as a 
transfer function: 

H ( Z ) -  A~(Z) (64) 8 (z) 
Then Knowles and Olcayto [15] showed that 

0-2, given by equation (63), can be readily evalu- 
ated by the computational technique showed in 
figure 2 where q is the size of the quantization 
step (q = 2 -b) and v and v are the number of 
nonzero, nonunity coefficients in the numerator 
and denominator, respectively. Experimental 
measurements verified the analysis in the practi- 
cal case. 

Applying the statistical model presented above 
to the specified transfer functions given in equa- 
tions (39) and (50), the degeneration in filter per- 
formance can be calculated for different values of 
a,  to, and b, the number of bits used in a fixed 
point implementation. Following the results ob- 
tained for 0-2, the number of bits can be found 
to be sufficient or not and changed consequently. 
For example, for a = 1 and to = 0.0001, o-has 
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(a) 

Fig. 2. (a and b) Plots of the masks {X(m, n)} and {Y(m, n)} with a = 0.5 and w = 0.0005 

been found to be about 1.7 10 -5 using 15-bit word 
length. For a = 0.1 and to = 0.0001, to. deal 
roughly with the same error the number of bits 
required is 19. 

5 T w o - d i m e n s i o n a l  C a s e  

The operators in the preceding sections can be ex- 
tended to the 2D case by making use of the fact 
that the slope of a surface in any direction can be 

X(m, n) = [-c'e-~"lml'sinto'm]" [k. (a-sinto. I'1 + to.costo-I 1)" e-~'l"l] 
a2 + ofl 

y (m,  ,,) = [~,-(a. sinto. Iml + co-cos~" Iml).  e - ~  tmq. [--¢. e-  ~" I-I sinto-n] 
~ z +  j 

determined exactly from its slopes in two direc- 
tions. We create for the x-direction (y-direction, 
respectively) a 2D separable mask, product of the 
edge detector aligned with the x-direction (y- 
direction, respectively) with a projection function 
parallel to the y-direction (x-direction, respective- 
ly). A highly efficient recursive implementation 
results if the projection function, which can be 
considered as the smoothing function, is chosen 
to be the integral of the edge detector. 

Making use of the integral of the operator f (n) ,  
given by equation (17), we obtain: 

(65) 

(66) 

Figures 2a and b show the plots of {X(m, n)} and 
{Y(m, n)} obtained for a = 0.5 and to = 0.0005. 
For the operator g(x), the two masks are: 

X(m,n) = [-c.m.e-~'l'l] .[k-(o/. Inl + 1).e-~'l'q 
o/2 

(67) 

L j  _ Iz~ v q2 ~ 

F/g. 3. T e c h n i q u e  for m e a s u r i n g  var iance  of  e r ror  due  to co- 
efficient quan t i za t ion  af ter  Knowles  and  Olcayto  [15]. 

Y(m,n) = [k" (a" Iml + 1). e- ~'lmq- [-c.n. e-"" Inl] 
o/2 

(68) 

k and c may be fixed by the normalization re- 
quirement as described in equations (44) and 
(55). This leads to the following values: 

[1 - e-'~] 2 
C - -  

e - "  

[1 - e-'~] 2. a 2 
k = 1 + 2 " a ' e  -'~ - e -2"'~ (69) 

In an FIR realization, the size of the two masks 
{X(m, n)} and {Y(m, n)} depends on a and the 
approximation error caused by not extending 
them to infinity. By making use of an 2D IIR im- 
plementation for the two masks of equations (65) 
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and (66) (see the next section), this error will be 
zero. After the image has been convolved with 
these two masks, we obtain two images {r(m, n)) 
and {s(m, n)}. The edge direction {a(m, n)} and 
the amplitude {A(m, n)) are then estimated from 
{r(m, n)} and {s(m, n)} by: 

1 

A ( m ,  n) = (r(m,  n) 2 a t- s(m,  n)2)) 2 

s(m,  n) (70) 
a = arctg r(m,  n) 

{A(m,  n)} is then nonmaximum suppressed in 
the exact edge direction a(m, n) and thresholded 
with hysterisis, i.e., if any part of a contour is 
above a high threshold, that point is immediately 
output, as is the entire connected segment of the 
contour that contains the point and that lies above 
a low threshold (for more details, the reader is 
referred to Canny [1]). 

6 Two-dimensional Recursive Implementation 

By making use of their separability, the masks 
{X(m,  n)} and {Y (m,  n)} given by equations (65) 
and (66) can easily be implemented as a 2D sep- 
arable recursive filter. 

To convolve an NLG x NCL image {I(i, j)} 
with the mask {X(m, n)), we first do a filtering in 
the horizontal direction with the operator {f(n)} 
and then apply the filter {h(n)} in the vertical 
direction to the image obtained by the horizontal 
filtering. Using the results obtained in the preced- 
ing sections, we obtain: 

Y+(i , j )  = l ( i , j - 1 )  - b, . Y + ( i , j - 1 )  - 
b2" Y + ( i , ] - 2 )  (71) 

j = a  . . . . .  NCL i = 1  . . . .  ,NLG 

Y - ( i ,  j) : l(i ,  j+ l ) - b, . r - ( i ,  j+ l ) - 
b 2 " Y - ( i , j + 2 )  (72) 

j = N C L  . . . . .  1 i = l  . . . . .  NLG 

S( i , j )  = a ' ( Y + ( i , j )  - Y - ( i , j ) )  (73) 
j = l  . . . . .  NCL i = l  . . . . .  NLG 

R+(i , j )  = ao 'S( i , j )  + a, . S ( i - l , j )  - 
b , ' R + ( i - l , j )  - b e ' R + ( i - Z , j )  (74) 

i = l  . . . . .  NLG j = l  . . . . .  NCL 

R - ( i ,  j) = az. S(i + l ,  j) + a3 " S(i + 2, j) - 
b ~ ' R - ( i + l , j ) - b 2 " R - ( i + 2 , j )  (75) 

i = N L G  . . . .  ,1 j = l  . . . . .  NCL 

R( i , j )  = R - ( i , j )  + R+( i , j )  (76) 
i = I , . . . , N L G  j = I , . . . , N C L  

the values of a, ao, ax, a2, a3, b l ,  and b2 are given 
by equations (40) and (51). 

This implementation allows us to convolve the 
input image with the mask {X(m,  n)} with a com- 
putational effort of 13 multiplications and 12 addi- 
tions per point and without any truncation of the 
mask. The same technique can be applied to the 
mask {Y(m, n)}. 

7 Experimental Results 

This section is concerned with testing the algo- 
rithm for different types of images. Various real- 
world images and two noisy images were selected 
to show the capabilities of our optimal filter recur- 
sively implemented. All the images processed are 
of size 256 x 256 except the 512 x 512 stereo pair 
representing indoor scenes (figure 6). 

In figures 4a and b, the performance of our fil- 
ter is illustrated when input images consist of a 
step edge and a centered circle with a radius of 
64 pixels, added in a white Gaussian noise with 
zero mean. The signal-to-noise ratio (SNR), de- 
fined as the ratio of the amplitude of the step to 
the standard deviation of the noise at each pixel, 
is SNR = 0.2, and the parameters used to detect 
the contour surperimposed in the original images 
were (a -- 0.08, ~o -- 0.00008) and (a = 0.06, oJ -- 
0.00006), respectively. Observe how this algo- 
rithm yields excellent results for noisy images. 

Figure 5a-d represents various classes of real- 
world images including aerial images and seismic 
data (figure 5d). 

Figure 6a-d represents a stereo pair of classic 
indoor scenes that our vision group is working 
with. 

Using our optimal operator with a = 1 and w = 
0.0001 on the original images shown in figures 5 
and 6 yields the results represented in figures 7 
and 8, respectively. The choice of a depends on 
the resolution at what the contours have to be de- 
tected. A value of a clustered to the unity tended 
to produce the best results for this class of images. 

Figure 9 illustrates the effect of different values 
for w while c~ is set constant (a = 1). To help dis- 
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(a) 

determined the following experimental results: 

N(2) = 16672 N(1) = 15266 
N(0.5) = 12263 N(0.1) = 10885 
N(0.01) = 10811 N(0.0001) = 10807 

Also included in figure 9 are the local maxima 
detected utilizing the first derivative of Gaussian 
(o- = 1) and the Canny's operator ( ~ h  = 1.12). 
The projection function, in implementing Can- 
ny's operator, was a Gaussian with or = 1. Our 
operator (N(to) = 10807) and Canny's operator 
(N(to) = 11444) ignore many of the noise-induced 
contour points that are reported as interesting by 
the first derivative of Gaussian (N(to) = 13898) 
while the width of the operators are the same. 
The local maxima detected with hysterisis thresh- 
olding utilizing the first derivative of Gaussian 
and the Canny's operator are shown in figure 
10a and b so as to be compared to figure 8d. 
These images are interesting and comfirm our 
earlier results in evaluating the overall perfor- 
mance indexes for each operator. They clearly 
illustrate the performance of our optimal opera- 
tor, which has parameters easy to interpret, an 
overall performances index easy to calculate, and 
the additional advantage of being efficiently 
implemented in a recursive way. 

(b) 

Fig. 4. Step edges in white Gaussian noise (SNR = 0.2): (a) 
straight line, and (b) Centered circle with a radius of 64 pixels. 

cover what changed when to decreased, all the 
maxima detected were set to 1. As expected, the 
number N(to), of points that are marked as local 
maxima, decreases sensibly as to becomes smaller. 
For the 256 × 256 aerial image of figure 9, we 

8 Conclusion 

In this article we presented two optimal edge 
detector in images. Their impulse responses are 
given by: 

f (x )  = k ' e - '~ ' l x l ' s in to 'x  and 
g(x)  = k . x e  -~'lxl (77) 

We showed that these filters verify Canny's dif- 
ferential equation with its constraints. Their per- 
formances can be expressed easily as a function of 
a and to, and are much better than the first de- 
rivative of a Gaussian (the filter preconized by 
Canny to approximate its optimal operator). For 
a particular choice of a and to, we showed that 
these two filters present the same overall perfor- 
mance index. We proposed a highly recursive 
algorithm for implementing the convolution with 
f(x), which results in a noise truncation immu- 
nity and a substantial saving in computational 
effort. The extension to the 2D case was pre- 



A Recursively Implemented Optimal Edge Detector 181 

(n) (b) 

(c) (d) 

Fig. 5. (a-d) Various classes of real-world 256 z 256 image including aerial images and seismic data. 



182 Denche  

(a) (b) 

(e) 

Fig. 6. (a-d) 512 x 512 stereo pair of classic indoor scenes. 

(d) 
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(a) (b) 

(c) (d) 

Fig. 7. E d g e s  o f  f igure 5 d e t e c t e d  wi th  ~ = 1.0 a n d  w = 0 .0001 .  
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(a) (b) 

(c) (d) 

Fig. 8. Edges of figure 6 detected with a = 1.0 and to = 0.0001. 
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(a) (b) 

le) (0) 

Fig. 9. Local  m a x i m a  d e t e c t e d  and set  to 1 for the aer ia l  image  of  figure 5c wi th  a = ! .0  and  var ious  va lues  for ~o: (a) w = 2.0, (b) w 

= 1.0, (c) o~ = 0.5, (d)  w = 0.1, (e) to = 0.01, ( f )  oJ = 0.0001, (g) first de r iva t ive  of  a Gauss i an  wi th  ~ = 1.0, and  (h) C a n n y ' s  
o p e r a t o r  with a G a u s s i a n  p ro jec t ion  funct ion.  
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(e) (f) 

(g) (h) 
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geras for his helpful suggestions and comments 
throughout this work. 

(a) 

(b) 

Fig. 10. Local maxima detected and thresholded with hysteri- 
sit: (a) utilizing the first derivative of a Gaussian with ~ = 1.0, 
and (b) Utilizing the Canny's operator (y'2 = 1.12). 

sented and the results obtained by this algorithm 
were showed. 
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