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Abstract 

This paper describes a new comer detection algorithm, based on the property of comers that the change of image intensity should be high 
in all directions. Consequently, the comer response function (CRF) is computed as a minimum change of intensity over all possible 
directions. To compute the intensity change in an arbitrary direction an interpixel approximation is used. A multigrid approach is employed 
to reduce the computational complexity and to improve the quality of the detected corners. This algorithm, and other popular comer 
detectors, were evaluated and compared on the basis of their consistency, accuracy and speed using a range of images and video sequences. 
It was found that our algorithm performs well compared to the other algorithms, but it is significantly faster to compute. 0 1998 Elsevier 
Science B.V. 

Keywords: Feature detection; Multigrid algorithm; Comer detector 

1. Introduction 

The detection of feature points in images is essential for 
many tasks in machine vision, including optical flow com- 
putation [1,4,11], structure from motion [7,17,20], object 
tracking [ 15,171, 3D scene reconstruction from stereo 
image pairs [2], etc. The reason that this approach is so 
popular is that feature points provide a sufficient constraint 
to compute image displacements reliably, and that by 
processing feature points the data is reduced by orders of 
magnitude compared to the original image data, which is 
particularly important for application that must run in real 
time. 

One of the most intuitive types of feature point is the 
comer. Comers are image points that show a strong two- 
dimensional intensity change, and are therefore well distin- 
guished from the neighbouring points. Comer detectors 
have been widely used as feature point detectors because 
comers correspond to image locations with a high informa- 
tion content, and they can be matched between images (e.g. 
temporal sequence or stereo pair) reliably. These matched 
feature point locations are then taken as an input to high- 
level computer vision tasks. 

To be useful for feature point matching a comer detector 
should satisfy the following criteria: (1) consistency, 
detected positions should be insensitive to the variation of 
noise and, more importantly, they should not move when 
multiple images are acquired of the same scene; (2) 

0262-8856/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved 
PZI SO262-8856(97)00056-5 

accuracy, comers should be detected as close as possible to 
the correct position; and (3) speed, even the best comer detec- 
tor is useless for the real time tasks if it is not fast enough. 

In this paper we introduce a new comer detector and 
compare its performance, based on the above criteria, with 
other popular detectors [6,18,22]. The new comer detector 
uses a comer response function (CRF) that gives a numer- 
ical value for the comer strength at a pixel location based on 
the image intensity in the local neighbourhood. The CRF is 
computed over the image and comers are local maxima of 
the CRF. A multigrid technique is employed which both 
increases the computational speed of the algorithm and 
also acts to suppress false comers being detected in textured 
regions of an image. 

Besides our own comer detector, we have implemented 
the Harris [6], SUSAN [ 181 and Wang [22,23] comer detec- 
tors. The four comer detectors were tested and compared on 
a range of images and image sequences. We also propose a 
modification to the Harris comer detector that decreases the 
computational time of the algorithm by a factor of two to 
three without compromising the results. 

The main contributions of this paper are: (1) to present a 
new algorithm that overcomes some limitations of currently 
used comer detectors; (2) to provide a thorough and consis- 
tent comparison between our comer detector and three other 
widely used detectors based on consistency, accuracy and 
speed; and (3) to show how the computational cost of exist- 
ing comer detectors may be reduced. 
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The organisation of the paper is as follows. First an 
overview of the previous work on comer detectors is 
presented. We then introduce and verify a new comer 
response function, and show how to overcome the problem 
of false comer detection. After that we discuss the applica- 
tion of a multigrid algorithm comer detection to reduce the 
computational cost of the comer detector. Finally, we 
present experimental results based on several real images 
and image sequences for the four tested algorithms and 
compare the results. 

conditions are fulfilled: 

2. Previous work 

One of the first approaches to finding comers was to seg- 
ment the image into regions, extracting the boundaries as a 
chain code, then identify comers as points where directions 
changes rapidly (see [ 161 for a review of those techniques). 
This approach has been largely abandoned as it relied on the 
previous segmentation step (which is a complex task itself) 
and is also computationally expensive. 

Subsequent comer detectors may be divided into two 

classes: (1) curvature based; and (2) ‘interest operators’, 
or feature point detectors. 

Most of the existing comer detectors [4,9,14,22-241 
belong to the first class and exploit an intuitive definition 
of a comer as a point on the boundary of two image regions 
where the boundary curvature is sufficiently high. Essen- 
tially, these methods define ‘comemess’ as the product of 
the magnitude of the gradient of image intensity and the rate 
of change of gradient direction at the point under considera- 

tion. This measure has the form [9]: 

As this ‘comerness’ depends of the second-order deriva- 
tives, these comer detectors are generally sensitive to 

noise. In addition, they can not handle other types of 2D 
features such as X, Y and T junctions. 

One of the curvature-based comer detectors that has been 
used in some applications [3,15,17] is the Wang and Brady 
comer detector [22,23]. To improve the stability of detected 
comers they convolved the original image with a Gaussian 
filter (a = 0.5 pixels) and then computed the total image 
surface curvature. They showed that for points with a strong 
gradient, the total curvature K may be approximated by: 

’ a2F \VF] >> 1 K=IVFIat2 
where a2Fldt2 is a directional derivative along direction 
perpendicular to the image gradient n. This derivative is 
computed directly using a linear approximation for the 
pixel values along the line. Comers are defined as points 
where K is high and is a local maxima. After some refine- 
ment, comers were defined as points where the following 

2 

- SIVF12 = maximum, 
C12F 
-- 0 
ai2 - 

]VF12 > T,, r > T2 

where F is intensity image after Gaussian smoothing, r is a 
CRF, S is a measure of image curvature specified by 
user and T, and T2 are user-defined thresholds on edge 
and comer strengths. 

The second class of comer detectors is the so-called 
feature point detectors [5,6,10,13,18]. These operators devi- 
ate from the intuitive definition of comers and define cor- 
ners as points that are sufficiently different from their 
neighbours, or [5,6,10] as points where the local autocorre- 
lation of the image intensity is high. 

Moravec [lo] defined ‘points of interest’ as points where 
there is a large intensity variation in every direction. The 
comer response function (CRF) is found by computing an 
un-normalised local autocorrelation in four directions and 
taking the lowest result as a measure of the CRF. As the 
variation was computed along four directions only, this 
operator is sensitive to strong edges under certain directions. 

Similar ideas were used by Harris and Stephens [6], 
but the measure of autocorrelation was estimated from 
the first-order derivatives. At each pixel location they com- 
puted a 2 X 2 autocorrelation matrix, A = w*[ (Vr)(VZ)r], 
where w is a Gaussian smoothing mask and if both eigen- 
values are large the pixel is flagged as a comer. To avoid 
eigenvalue decomposition of A, they defined the CRF as 
det(A) - k(trace(A))2 where k is a given constant (0.04). 
The algorithm is consistent, but computationally expensive, 
mainly due to the Gaussian filter that is applied three times. 
It was also found [12], that the algorithm works reliably 
only for L junctions. This algorithm is probably the most 
widely used one, and it is interesting to note that, in one 
form or another, it has been ‘reinvented’ by at least three 
different authors. Forstner and Gulch [5] first described a 
method that used the same measure of ‘cornemess’ as the 
Harris comer detector. They used a more complicated multi- 

scale implementation and obtained better localisation than 
Harris, but the computational complexity was even higher. 
Tomasi and Kanade [19] obtained the same equation by 
analysing the optical flow equation proposed by Lucas and 
Kanade [8] 

This equation is stable (i.e. the optical flow can be reliably 

computed) if both eigenvalues are high. Comers are chosen 
as image locations where this condition is satisfied and this 
condition is seen to be the same as the one used by Harris 
comer detector. 

Smith and Brady [18] introduced the SUSAN algorithm 
for low-level image processing, and this will be briefly 
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a b c 

Fig. 1. Representative shapes of USAN: (a) the nucleus is within the USAN; (b) the nucleus is an edge point; (c) the nucleus is a comer point. 

explained here, as we will use the same notation. Consider 
an arbitrary pixel in the image and a corresponding circular 
window around it (the central pixel shall be called the 
‘nucleus’). Provided the image is not textured, there is a 
compact region within the window whose pixels have simi- 
lar brightness to the nucleus and this area will be called 
USAN, standing for ‘Univalue Segment Assimilating 
Nucleus’ (see Fig. 1 for the representative shapes of 
USAN). To find corners they computed the area and the 
center of gravity of the USAN, and developed a comer 
detector based on these parameters. Their algorithm is 
theoretically sound and can handle all types of junctions. 
The accuracy and speed of the algorithm are reasonable, but 
our experiments have shown that it has poor stability. 

In this paper we present a new comer detector that 
provides an accuracy and stability that is comparable with 
the best of these algorithms, but which is much faster to 
compute. The algorithm is based on the variation of image 
intensity along arbitrary lines passing through the point of 
investigation within a neighbourhood of the point. A comer 
is detected if the variation of image intensity along such 
lines is high for all line orientations. The variation is 
found using only first derivatives and therefore the comer 
detector is less sensitive to noise than curvature-based 
methods, which use second-order derivat,ives. Our algo- 
rithm employs linear interpolation to compute the direc- 
tional first-order derivatives. It makes no assumption 
about image structure in the vicinity of comers and it can 
detect any type of junction. The algorithm is very fast as it 
effectively rejects points with small intensity variations. A 
further increase in speed is achieved through the use of a 
multigrid approach, which also largely eliminates the detec- 
tion of false comers in textured regions of the image. We 
refer to this algorithm as MIC, standing for minimum inten- 
sity change, as the points whose minimal intensity change 
over all directions is high are declared comers. 

2.1. Modi$ed Harris algorithm 

In this paper we propose a modified version of Harris 
algorithm that achieves almost the same performance as 
the original algorithm, but has a much lower computational 
cost. In addition to a high CRF, we also require a pixel to 
have high image gradient in order to be a comer candidate. 

For each pixel we first compute the image gradient, and if it 
is lower than some threshold it is not necessary to evaluate 
the computationally expensive CRF. Since for most real 
images only lo-20% of image pixels have a high gradient, 
we do not need to compute the CRF for the majority of 
pixels. The drawback is that the Gaussian convolution 
now cannot be fully decomposed. Nonetheless, a speed up 
factor of two to three is obtained, depending of content of 
the image. 

3. Corner response function 

We will consider here three representative shapes of the 
USAN, which correspond to a point in the uniform area, on 
the edge and on the comer, as shown on Fig. 1. Our goal is to 
develop a CRF which will distinguish between a comer 
point (c) and a point which belongs to an edge or a uniform 
area (a, b). 

Let us now consider an arbitrary line 1 containing the 
nucleus and intersecting the boundary of the circular 
window at two opposite points P and P’, and the following 
CRF: 

R~=min((fp--fN)~ +(f~, -fNh (2) 

where N is the central point and fp refers to the image 
intensity at the point P. 

Three cases can occur, corresponding to cases a, b and c. 
Case a: The nucleus is within the uniform area. There is 

at least one line 1, so that both P and P’ belong to the USAN. 
Therefore, the response is low. 

Case b: The nucleus is the edge point. There is exactly 
one line (tangential to the edge), so that both P and P’ 
belong to the USAN and the CRF is again low. 

Case c: The nucleus is a comer point. For every line 1 at 

. . . 

EB 

n c . 
. . . 

Fig. 2. Digital circles of diameter 3, 5 and 7 (S,, Ss and S,). 



78 M. Trajkovid, M. Hedleyhage and Vision Compuring 16 (1998) 75-87 

Fig. 3. First-order neighbourhood of nucleus C (ABA’B’) showing linear 

and circular interpixel positions (P. P’, Q and Q’). 

least one of points P and P’ does not belong to the USAN. 
Hence the CRF is high. 

In practice, to compute the CRF we use a discrete approx- 
imation of the circular window, as shown in Fig. 2. Hence 
Eq. (2) becomes 

RN= ,$',n, ((ff-.h?+(f~'-fN)*) (3) 
v n 

where N is the nucleus and P and P’ are opposite with 

respect to N. 

4. Interpixel approximation 

The problem with Eq. (3) is that a strong edge with a 
direction different to those examined can cause a false cor- 
ner response. This can be partly resolved by using bigger 
window (more directions are considered) but then we 
usually have a worse localisation of the comer pixel. To 
overcome this problem, we use an interpixel approximation 
that can be linear or circular. To show how the interpixel 
approximation is used we will consider the simplest case, a 
window of diameter three, containing four neighbours only 
(Fig. 3). The extension to higher order neighbourhoods is 

straightforward and will not be considered here. 
First we compute horizontal (rA) and vertical (rg) intensity 

variation, defined as 

rA = (fA -fd2 + (fAre-fd2? 

rB=(fB -.fc)* +vB' -fc>*. (4) 

Then, the CRF is computed as 

R = min(rp, rB). (5) 

If R is less than a given threshold, the nucleus is not a comer 
point and no further computation is necessary. However, if 
R is greater than a given threshold, the interpixel approx- 
imation is applied to check for diagonal edges. 

4.1. Linear interpixel approximation 

The CRF is computed along the square ABA’B’ as 

R = $n,) G-1(4, r2(4) (6) 

where x is a parameter which determines position of the 
point on the square. The response functions are given as 

ri (x) = cfp -fc)* + 6 -f~)*~ 

r2(d=(fe -fc)* +(fe' -fc)*. (7) 

P (i.e., Q) and P’ (i.e., Q’) are opposite regarding to C and as 
shown on Fig. 3. 

The intensity at interpixel locations is computed as a 
linear combination of the corresponding endpoint intensi- 
ties. Hence. 

fp=(l -x).fA+xfs, fp’=(l -.$.fA’+x$-,,‘, 

f~=(l -X).f~'+xf~, &,=(I -~)&+~fg. O-9 

Note that rl(0) = r2(0) = rA and r,( 1) = r2(1) = rB. Substi- 
tuting Eq. (8) in Eq. (7) we get 

rl(x)=A,x2+2B1x+C, r2(x)=A2x2+2B2x+C (9) 

where 

C=rA; 

Bi = (fs -X4)% -fc) + VB, -.f4~M4' -fck 

B2= 61 -.h,H.h* -fc>+(fs, -.fi)(fA -fch 

Al=rg-rA-2B,; 

A2=rB-rA-2B2. 

If we define B = min(B, , B2) and A = rB - rA - 2B then the 
CRF has a minimum on the square ABA’B’ iff 

B<O and A+B>O, (10) 

and the value of minimum is 

R=C- ;; (11) 

If Eq. (10) is not satisfied, then we use Eq. (5) to compute R. 

4.2. Circular interpixel approximation 

In this case the CRF is computed along the circle ABA’B’ 

as 

R = arEg&,2) 6-l (4, r*(4) 

As before 

ri(o)=Vf -fd* +(ff, -.fd* 

r2(~)=(fQ-fC)2+cfQ'-fC)2 (12) 

The intensity at interpixel locations is computed using the 
following equations: 
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fQ, -fc = (fA -fc). cos ff + uB, -fc). sin cr; (13) 

As before rl (0) = r2(0) = rA and rl(7r/2) = rz(7r/2) = ~a. 
Substituting Eq. (13) in Eq. (12) yields 

rl(cr)=Acos2~-tBBI sin2cy+C; 

r2(cx) =A cos ICY + B2 sin 2c~ + C (14) 

where 

rA - rB 
A=---- 

2 ’ 

rA + rB 
B=- 

2 ’ 

B2 = (fA’ -fch(fs -fc> + ti -fc)6? -fch 

Defining B = min (B1, 82) it can be easily shown that the 
CRF has a maximum iff B < 0 and that value of the CRF is 

R=C-JA2+B2 (15) 

As before, if B 2 0 we use Eq. (5) to compute R. 

5. Multigrid algorithm 

A multigrid algorithm is used to compute the feature 
points. The advantages of this approach are: (1) To decrease 
the computational time; and (2) To improve the quality of 
the detected comers. 

To show how these goals are achieved, we first classify 
all comers into two categories-geometrical and texture 
corners. 

Geometrical comers belong to the boundaries of the 
objects in the scene. Since these objects are expected to 
be of reasonable size and few in number, the number of 
geometrical comers is small, rarely exceeding 1% of the 
number of all pixels in the image. Because objects in the 
scene do not vanish or change shape on lower scales, geo- 
metrical comers are relatively invariant to the scale (they 
will disappear at sufficiently low scale) or the window used 
to compute the CRF. Therefore these comers can be 
detected at any scale, with the greater precision at the higher 
scales. 

Texture comers are associated with small or textured 
objects in the scene (e.g. grass or woven materials), and 
usually do not correspond to the physical comers of objects. 
Hence they are usually not good for trying to match in two 
images (either stereo or in time sequence). Also, there are 
usually more texture comers than geometrical comers in a 
scene, thus taking a lot of computational time to try to match 
between images. For these reasons we usually do not want 
to find texture comers. As they are created by small regions 
of intensity variations, these comers will disappear on lower 
scales, unlike geometrical comers, giving us a criteria for 
separating the two. 

Another issue, which seems to attract little attention in the 
literature, is the quality and computational complexity of the 
CRF used. Since the number of comers usually does not 
exceed a few percent of the image pixels, it does not 
make sense to apply the same (usually expensive) CRF 
to each pixel, because the response is likely to be low, no 
matter which CRF we use. It is, therefore, much more 
economical to use a simple (computationally inexpensive) 
CRF. In case of high response, a more sophisticated 
CRF can be applied to verify the existence of the comer. 
Since we expect that most pixels will give a low response, 
the more sophisticated CRF will be applied only to a small 
number of the image locations, greatly reducing the compu- 
tational time compared to using this CRF over the entire 
image. 

The three-step algorithm used to find the comers is 
presented below. 

Step 1. In a low resolution image compute the simple 
CRF (Eq. (5)) at every pixel location. Classify pixels with 
a response higher than a given threshold (T,) as ‘potential 
comers’. 

Step 2. Using the full resolution image, for each potential 
comer pixel: 

(2a) compute the CRF using Eq. (5). If the response is 
lower than another threshold (&) then the pixel is not a 
comer, and do not perform (2b). 
(2b) Use the interpixel approximation and compute a 
new response as explained before. If the response is 
lower than threshold T2 then the pixel is not a comer. 

Step 3. Find pixels with a locally maximal CRF and mark 
them as comers. This step is necessary since in the vicinity 
of a comer more than one point will have high CRF, and 
only the largest one is declared to be a comer point-this is 
called non-maximum suppression (NMS). 

6. Experimental results 

In this section we examine the performance of five comer 

detectors, ours (MIC), SUSAN [ 181, Harris [6], Wang [22,23], 
and the modified Harris algorithm presented earlier. The algo- 
rithms were tested and compared on the basis of their: 

Accuracy: this is subjectively evaluated using images 
presenting a range of comer types. 

Stability: to test the stability of the comer detection we 
video sequences. This test also relies on the comer- 
matching algorithm that we use, which here is correlation 
matching over a rectangular window. The correlation 
matching is widely used, but can have problems in regions 
with little texture or features, particularly when there is a 
non-integer pixel displacement. Better results could be 
obtained using sub-pixel matching techniques, but with a 
greatly increased computational cost. 

Computational cost: this is determined theoretically and 
confirmed experimentally. 
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I 

Fig. 4. Images and video sequences used to evaluate the performance of the comer detection algorithms: (a) synthetic image; (b) book image; (c) car sequence; 

and (d) ambulance sequence. 

6.1. Test images 

In this section we describe the test images and video 
sequences that were used to evaluate the performance of 
the comer detector algorithms. 

most difficult part of the image due to the problem of comer 
matching with non-integer displacements between frames. 
Another difficulty with the sequence is the illumination 
changes between frames. 

6.1.4. Ambulance sequence 

6.1.1. Synthetic image 

The image in Fig. 4a consists of most types of junctions 
(L, T, X and Y) and is widely used [l&23] to test 
how accurately an algorithm responds to different types of 
junctions. 

61.2. Book image 
The image in Fig. 4b shows a book on a carpet. It consists 

of nine geometric comers on the book and many texture 
comers on the carpet. It is used to show the ability of the 
algorithm to distinguish the geometrical corners from the 
texture comers. 

Fig. 4d shows one of the images from the ‘ambulance’ 
sequence. This sequence was taken by a moving observer 
and consists of two vehicles, a road (weakly textured area) 
and trees and a bush in the background (highly textured 
area). Geometrical comers are present in both vehicles, 
and at the border of the trees, while texture comers mainly 
appear in the trees and the bush. This tests the ability of the 
algorithm to distinguish geometrical comers from texture, 
and the stability test has the same motion problem as the 
previous sequence, except now the entire image moves (due 
to the moving camera), rather than just a region of the 
image. 

6.1.3. Car sequence 6.2. Selection of parameters 

Fig. 4c shows an image from the ‘car’ sequence, which 
was taken from a static camera. This image consists of three 
parts: a road which is mainly weakly textured, with some 
geometrical structure on the left side; a moving car which 
mainly has geometrical comers; and distant buildings with 
obvious geometrical comers. This video sequence was used 
to test the stability of the algorithms. The moving car is the 

Every comer detector computes the CRF for each pixel in 
the image and from this needs to classify each pixel as 
either a comer or not. One part of this test is that the 
CRF must exceed some threshold for a pixel to be classified 
as a comer, and the value of threshold is usually content 
dependent. Some algorithms will employ other thresholds or 
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parameters. In all cases these parameters must be selected 
before the algorithm may be executed. It should be noted 
that for all algorithms the choice of thresholds is not critical. 

The range of threshold values given below will provide 
reasonable response for a wide range of situations. Gener- 
ally, for the low contrast images, lower thresholds are more 
appropriate and vice-versa. 

The MIC corner detector requires two thresholds to be 
chosen. The first threshold, T1, controls the number of texture 
comers, and we have found experimentally that values in the 
range from 0 to 200 (default 50) are suitable for most of the 
applications. The higher T, is, the fewer comers will be 
reported. The second threshold, TZ, determines the mini- 
mum variation of brightness around the pixel, for the 
pixel to be a corner candidate. As this value is reduced 
more subtle structures in the image will be reported as cor- 
ners, and more comers will be found, but the algorithm will 
have a higher sensitivity to noise. We have found that values 
ranging from 200 to 800 work well (default 500). 

The original Harris comer detector used only one thresh- 
old and it is of the same nature as T2 for the MIC comer 
detector. We have found that a suitable range for this 
threshold is IO 000- 1000 000 depending of the image con- 
tent (default 80 000). 

The modijed Harris algorithm first checks the strength of 
the square of the magnitude of the image gradient and if this 
is higher than threshold T,, it then computes the CRF as for 
the original Harris comer detector. The value for T, is not 
critical and values from 0 to 400 (default 100) were found to 
be suitable. 

The SUSAN comer detector has two types of threshold 
[ 181. The geometric threshold that controls the area of 
USAN was set by Smith to be half of the size of the window, 
and we use the same value. We found that suitable values 
for the brightness threshold, which depends of the contrast 
in the image, are in the range from 5 to 30 (default 20). 

The Wang algorithm requires two thresholds and one 
constant parameter S (see Eq. (1)). S is a measure of 
image curvature used for the suppression of the false comers 
and in [22,23] they recommended values in the range from 
0.0 to 0.5 (default 0.1). T, defines the minimum edge gra- 
dient that each other candidate must have, and it affects the 
number of comers and the speed of the algorithm. We found 
that suitable values range from 0 to 400 (default 100). T2 is a 
threshold for the minimum CRF and we found suitable 
values range from 500 to 2000. The choice of suitable 
thresholds for this algorithm requires more attention, as 
their ‘roles’ are not well separated as in other algorithms. 
The increase of any of the parameters will reduce the num- 
ber of reported comers, so if T, is high T2 has to be lower in 
order to preserve the same number of comers, and different 
choices of parameters can give same number of comers, but 
not an identical response. However, we have found that if 
the parameters are kept in above-mentioned ranges, the cor- 
ner maps will be similar in terms of accuracy and stability, 
so that choice of threshold is not critical. 

6.3. Algorithm pe$ormance 

Fig. 5 shows the comer maps obtained from the MIC, 

original Harris, modified Harris, SUSAN and Wang comer 
detectors applied to an image from the ambulance sequence. 

The initial comer map obtained by the first step of the 
MIC algorithm (‘potential comers’) is shown in Fig. 5a 
(black pixels are potential comers). This map was computed 
on the lowest resolution, using threshold T, = 80, for which 
14 864 potential comers (22.68% of all image pixels) were 
selected for further processing. To test the sensitivity of this 
parameter we computed the potential comers with T1 = 50 
and T, = 200, and we found they numbered 19 792 (30.2% 
of pixels) and 8800 (13.4% of pixels), respectively. 

For the second step we computed the CRF using: (a) S7 
neighbourhood (see Fig. 2) without interpixel approxima- 
tion; (b) first-order neighbourhood with linear interpolation; 
and (c) first-order neighbourhood with circular interpola- 
tion. For a range of images, we found that linear interpola- 
tion gave the best results and only this is presented here. The 
threshold T2 was set to 500. The comers obtained using the 
linear interpixel approximation are shown in Fig. 5b. Strong 
edges have almost no effect on the final comer map. Most of 
the comers have been accurately found, although a few 
comers have not been reported on the small car and on 
the lower right window of the ambulance. 

The comers obtained using the Harris (original and mod- 
ified), SUSAN and Wang algorithms are shown in Fig. 5c-f, 
respectively. All the thresholds were chosen so that each 
comer map has about 150 comers. For both versions of 
Harris algorithm, threshold T2 was set to 50000, and for 
the modified version T, was set to 100. For the SUSAN 
algorithm the threshold was set to 24, and for the Wang 
algorithm we used S = 0.1, T, = 100 and T2 = 800. Gen- 
erally, all the comer detectors perform reasonably well, but 
some differences may be found. Both of the Harris comer 
detectors achieved almost identical results, so we will com- 
ment only on the original version. This comer detector 
found the lowest number of false responses, just a few on 
the bend of the road, but they are due to specularity of the 
surface. On the other hand, it has missed just a few comers, 
e.g. on the lower windows of the ambulance and on the back 
right wheel. It has found most of the comers on the small 
vehicle, more than any other algorithm. It may be noted that 
many comers found by the Harris comer detector have the 
same location as those found by the MIC comer detector. 
Compared to other comer detectors, the SUSAN comer 
detector performed worse on this image. It picked some 
subtle comers (e.g. back right wheel of the ambulance), 
but missed some strong comers on the car, and had a poor 
accuracy for most of the comers on the ambulance. 

The Wang comer detector has a good accuracy and 
roughly the same distribution of detected comers as the 
MIC comer detector, although they are detected on slightly 
different positions. This is for the following reason. If we 
model the image intensity around as a cliff (e.g. convolution 
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Fig. 5. Potential comers for ambulance sequence (a), and comer maps obtained using: (b) MIC algorithms; (c) the Harris corner detector; (d) the modified 

Harris comer detector; (e) the Susan comer detector; and (e) the Wang and Brady algorithm. 

of two-dimensional step function end Gaussian), the MIC 
corner detector will detect a comer in the middle of the cliff, 
where the intensity change is the highest. the Wang corner 
detector should detect a comer close the top of the cliff, but 
due to high symmetry and noise, it may report a comer on 
the bottom as well (This is clearly seen on the right higher 
(or lower) window of the ambulance). This may be a pro- 
blem when comers are tracked over the time as the detected 
comer can flicker between the top and the bottom. 

For the Wang and Harris algorithm, the size of the 
Gaussian mask was 5 X 5, while for the SUSAN algorithm 
we used a ‘37-pixel’ circular mask. For all detectors a 5 X 5 
mask was used for the non-maximum suppression. 

We also tested the MIC algorithm on the synthetic image 
shown on Fig. 4a, which has been widely used for measur- 
ing the accuracy of comer detectors [ 18,231. Its comer map 
is shown in Fig. 6. All junctions have been correctly 
detected, as we would expect because the algorithm checks 
the direction of lowest contrast which will reveal the junc- 
tion, unlike the derivative-based methods. Only one 
comer was missed, at the obtuse angle of the triangle, and 
this is because a small mask was used (3 X 3) and the 
angle is very close to 180”, so it appears as a line, not a 
comer. Also, one false comer was detected at the 
diagonal edge in the middle square. This is because the 
edge is strong and synthetic, i.e. contains a microstructure 
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Fig. 6. Comer map of synthetic image obtained using the MIC algorithm. 

that was locally detected as a corner. It should be noted that 
of the other three algorithms, only SUSAN gives better 
results, namely it detects all the corners correctly. As 
shown in [23], the Wang algorithm gave a similar result 
to the MIC, achieving good accuracy, while the Harris algo- 
rithm [6] performed the worst, achieving poor accuracy on 
all T junctions. 

The algorithms were also tested using the ‘Book’ image, 
and the results are shown in Fig. 7, which shows the comer 
maps detected by the MIC and the Wang algorithms. All 
thresholds were manually set to give the best results. Our 
algorithm removed all texture comers and detected all geo- 
metric comers precisely. On the other hand, the Wang algo- 
rithm was incapable of detecting only geometric comers, 
and we could not get a better result using any of the other 
algorithms. 

Comparing algorithms in terms of accuracy, we can see 
from the presented results that the MIC and Wang algo- 
rithms achieved the best accuracy over a range of images. 
The SUSAN algorithm has a good accuracy for all kind of 
junctions, but it seems to be vulnerable to the blurring in the 
image. The Harris algorithm detects accurately L junctions, 
but has poor accuracy for the other types. 

6.4. Computational complexity 

In all derivations below we assume that 75% of pixels 
have a low gradient (i.e. belong to uniform areas), and of the 
remaining 25% of pixels 20% are assumed to be edge pixels 
and 5% are assumed to be comers. 

6.4.1. MIC algorithm 
The computational superiority of our algorithm lies in the 

fact that we rarely check intensity changes in all possible 
directions. Namely, we check intensity changes by direction 
(investigating horizontal and vertical directions and diago- 
nals first and then employing interpixel approximation), and 
once a low intensity change has been found the pixel is 

Fig. 7. Comer maps of the book image obtained using: (a) the MIC algo- 

rithm; and (b) the Wang algorithm. 

rejected as a potential comer. As the majority of pixels 
have small intensity change (lower than T2) in all directions, 
they will be disregarded in the first step, employing only 
three additions and two multiplications. In the worst case 
(high intensity change in all directions), the full check must 
be employed with the computational complexity 7(n + 1) 
additions and 4(n + 1) multiplications, where n refers to the 
diameter of window used. 

For edge pixels, the computational complexity varies 
between the lowest and the highest, depending on the 
edge angle and strength. Assuming a uniform distribution 
of edge angles, the average complexity of the edge point 
elimination may be taken as 2 + 3.5n additions and 3 + 2n 

multiplications. Using the given image assumptions, the 
average computational complexity of our algorithm is 
3.3 + 1.05n additions and 2.3 + 0.6n multiplications. For 
n = 3, which is used in our implementation, there are 10.5 
operations per pixel (it is usually even lower in practice, as 
the number of low intensity pixels is usually higher than 
75%). 

When the multigrid approach is used, the computational 
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Table 1 
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Computational times of the five algorithms, over a range of images, and computational complexity in arithmetic operations 

Algorithm MIC 

Time (ms) 70-140 
Complexity 10 

Mod. Harris Wang 

400-500 350-400 
30 32 

SUSAN Harris 

320-360 800- 1000 
49 55 

complexity is even lower, and assuming 20% of the pixels 
are flagged as potential comers the computational cost is 
2.60 + 0.875n additions and 1.12 + OSn multiplications, 
or in total for n = 3, 7.8 operations per pixel. 

6.4.2. Wang algorithm 

Due to the use of Gaussian smoothing (a = 0.5, i.e., a 5 X 5 
window is used) and the Sobel operator (3 X 3 window) the 
computational cost for each pixel is at least 17 additions and 
seven multiplications. The additional cost of computing 
the directional derivatives is 4n + 2 additions and 2n 
multiplications. 

Windows 95 operating system were found (see Table 1). 
Note that these times are indicative only, as the actual 
execution time varies from image to image and also depends 
upon the selected parameters. It may be noted that experi- 
mental times roughly correspond to the computational com- 
plexity. The highest difference is for the SUSAN comer 
detector. According to the computational complexity, this 
algorithm should be among the slowest, but as this algo- 
rithm requires almost exclusively additions (all integer 
operations) it is in fact the second fastest. 

6.5. Stability 

Given the image assumptions, the average computational 
cost is 17.5 + n additions and 7 + 0.5n multiplications. For 
n = 5 (as the authors used), the total cost is 32 operations per 
pixel. 

6.4.3. SUSAN corner detector 

The SUSAN comer detector has a computational cost 
-n*, but with a rather small constant. The expression for 
the computational complexity is rather complicated, but for 
n = 7 (that is value that authors used in his implementation) 
the average cost is 49 operations per pixel (48.2 additions 
and 0.8 multiplications, see Appendix A for more details). 

Our interest in comer detection comes from its use in 
tracking and structure from motion estimation. As pre- 
viously mentioned, a comer detector can be successfully 
used for these tasks if it has a good stability over time, 
i.e., if it can track comers reliably over a sequence of 
images. The minimum requirement that any comer detector 
must fulfil is that for each moving segment it can reliably 
track at least four comers over three frames [ 151. 

6.4.4. Harris corner detector 

This is the only comer detector for which the computa- 
tion is independent of the image, and it required 6n additions 
and 3n + 10 multiplications which for n = 5 gives a total of 
55 operations per pixel. The modified Harris algorithm that 
we propose here first checks if intensity gradient is higher 
than threshold, and if so, performs the full detection. The 
computational complexity for n = 5 can be shown to be 30 
operations per pixel, see Appendix A for more details. 

To experimentally verify that the above analysis is 
approximately correct the computational times of five algo- 
rithms executed on a Pentium-based PC (90 Mhz) under the 

As there is no standard procedure to measure stability of 
comer detector we have performed the following test to 
compare the stability of different comer detectors. For 
each comer detector we choose threshold(s), so that each 
of them detects a similar number of comers in the first 
frame. Then, we find comers in the next three frames and 
perform matching using a cross-correlation-based procedure 
as described in [21]. Basically, between each two consecu- 
tive frames, we find mutually best matches, and only comers 
that are reliably matched over three consecutive pairs are 
used (we call them ‘strong matches’). Ideally, if there is no 
occlusion, the number of strong matches will be same as the 
number of comers in the first frame. However, due to varia- 
tion of noise and imperfection of comer detectors this 
number will be lower. As a measure of stability we can 
define K = NJN,, where N, and N, denote number of strong 

Table 2 
Results of stability tests for the five algorithms over two, three and four frames using the car sequence: all thresholds were chosen to give a similar number of 

corners in the first frame 

Algorithm Thresholds TIIT2/S Initial corners Matches over (frames) 

2 3 4 

MIC 201600 276 236 213 208 
Harris (orig.) 20 000 278 245 228 219 
Harris (mod.) loo/20 000 277 245 227 218 
SUSAN 19 276 178 132 Ill 
Wang 80/300/O. 1 273 218 185 175 
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Table 3 
Results of stability tests for the five algorithms over two, three and four frames using the ambulance sequence: all thresholds were chosen to give a similar 

number of comers in the first frame 

Algorithm Thresholds TIIT2/S Initial corners 

MIC o/410 250 

Harris (orig.) 10000 250 

Harris (mod.) 100/10000 250 

SUSAN 19 256 

Wang 60/240/O. 1 249 

Matches over (frames) 

2 3 4 

154 103 83 
186 142 118 
18.5 141 118 

135 58 29 

150 92 68 

matches and number of comers in the first frame respec- 
tively. In terms of stability, a corner detector is better if K is 

higher. 
The results of the stability test for all corner detectors are 

presented for both the ‘car’ and the ‘ambulance’ sequences. 
The results for all algorithms applied to both sequences are 

given in Table 2 and Table 3. 
As can be seen from Table 2, all algorithms performed 

well for this sequence except SUSAN. The Harris algorithm 
(both modified and original) has the best performance, while 
our algorithm has slightly lower stability over all frames. 
The Wang algorithm also has good stability for this 
sequence (about 10% lower than ours), while the SUSAN 
algorithm has the lowest stability. 

The second sequence is more difficult because the entire 
scene is moving, so it is not surprising that all the algorithms 
performed worse on this sequence, as seen in Table 3. 

This sequence gives a clearer insight into the difference 
among comer detectors. The Harris detector is the most 
reliable with stability over four frames of about 50%. Our 
algorithm achieved around 33%, while the Wang algorithm 
stability was about 25%. The SUSAN corner detector had 
the lowest stability, of only around 12%. 

The results for comer matching are presented for our 
algorithm only and are shown in Fig. 8. The figure shows 
the strong matches over four frames for the two sequences. 
A 5 X 5 mask was used for the cross-correlation matching, 
the diameter for the search space was set to 11, and the cor- 
relation threshold was set to 0.5 (see [21] for more details). 

6.6. Comparison among algorithms 

The properties of the five algorithms are summarised in 
Table 4. The accuracy is a subjective assessment based on 
the results presented earlier in this section (see Section 6.3). 

7. Conclusion 

In this paper a novel corner detector was introduced. The 
new comer response function (CRF) operates in a 3 X 3 
window, and to overcome the problem of lines at certain 
orientations being detected as comers an interpixel 
approximation was used. Two types of approximation 

were tested, and the linear approximation was found to per- 
form better over a range of images. A multiguard approach 
was employed to reduce the sensitivity of the algorithm to 
false comers in textured regions of the images, and to 
increase the computation speed of the algorithm. 

a 

b 

Fig. 8. The images show strong comer matches obtained from a sequence of 

four images using the MIC algorithm on: (a) the car sequence; and (b) the 

ambulance sequence. 
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Table 4 

Stability, accuracy and speed of five corner detectors 

Algorithm 

MIC 

Harris (orig.) 

Stability 

Good 

Excellent 

Accuracy 

Good 

Good for L junctions, 

poor for all other types 

Speed 

Excellent 

Very slow 

Harris (mod.) 

SUSAN 

Excellent 

Poor 

As for original 

Bad for blurred images, 

very good otherwise 

Good 

Good 

Wang Good Good Good 

Five algorithms were implemented and compared, ours 
(MIC), Harris [6], modified Harris, .SUSAN [ 181 and Wang 
[22,23]. These were evaluated on the basis of their accuracy, 
consistency and speed. It was found that for accuracy the 
performance of our algorithm was among the best and for 
consistency our algorithm performed well, just behind the 
best which is the Harris algorithm, but our algorithm was 
significantly faster than any of the other algorithms-which 
is important for real time machine vision applications. 
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Appendix A Computational complexities of the SUSAN 
and modified Harris corner detectors 

In the derivations in this appendix we assume that 75% of 
pixels have a low gradient (i.e. belong to uniform areas), and 
of the remaining 25% of pixels 20% are assumed to be edge 
pixels and 5% are assumed to be corners. 

Appendix A.1 SUSAN corner detector 

From the computational point of view, the SUSAN comer 
detection algorithm can be divided in three steps. The first 
step involves computation of the USAN area for half of the 
pixels from the circular neighbourhood and this step must 
be performed for each pixel. This step involves r(n) - 1 
additions, where 7~ is a function which gives the number of 
points in a digital circle of diameter n, e.g., n(3) = 9, n(5) = 
21 and 7r(7) = 37. 

The second step involves computation of the USAN area 
for the second half of circular neighbourhood, but after 
value for each pixel is added, the size of USAN is compared 
with a threshold and if the point is not a comer no further 
computation is performed. Because of the comparison with 
threshold, the computational cost of this step is 1.5(~(n) - 
1). This step is not performed for pixels in uniform areas, as 
they will have large USAN after the first step. According to 
the above assumption this step will be performed for 

roughly 25% of pixels (edge and comer pixels). After this 
step another 20% of the pixels should be rejected, and as 
they can be rejected in various phases of the algorithm, we 
can take the average time of processing each edge pixel to 
be 0.75(a(n) - 1). 

The remaining 5% of pixels will go to the third step, 
which checks for false comers and has a computational 
complexity of 2n(n) - 2n + 3 additions and 2n + 2 multi- 
plications.The total cost of the SUSAN algorithm can 
now be evaluated as 1.325?r(n) - O.ln - 0.05 additions 
and O.ln + 0.1 multiplications, giving 49 operations for 
n = 7. 

Appendix A.2 Modi$ed Harris corner detector 

The computational complexity of the modified Harris 
comer detector can be found in a similar manner. For all 
pixels we have to compute Z,, I; and ZXZY and to compare the 
gradient with a threshold and this requires three multiplica- 
tions and four additions. The second step is performed on 
25% of pixels having a computational cost of 3n2 + 4 

additions and 3p(n) + 7 multiplications where p(n) = 
(n + l)(n + 3)/8. The average computational cost per 
pixel can be easily found as 2.5 + 0.75n2 additions and 
4 + 0.75p(n) multiplications, giving 30 operations per 
pixel for n = 5. 
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